

Configuration — Security Avaya Ethernet Routing Switch 4000 Series

© 2011 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the information in this document is complete and accurate at the time of printing, Avaya assumes no liability for any errors. Avaya reserves the right to make changes and corrections to the information in this document without the obligation to notify any person or organization of such changes.

Documentation disclaimer

"Documentation" means information published by Avaya in varying mediums which may include product information, operating instructions and performance specifications that Avaya generally makes available to users of its products. Documentation does not include marketing materials. Avaya shall not be responsible for any modifications, additions, or deletions to the original published version of documentation unless such modifications, additions, or deletions were performed by Avaya. End User agrees to indemnify and hold harmless Avaya, Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation, to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked Web sites referenced within this site or documentation provided by Avaya. Avaya is not responsible for the accuracy of any information, statement or content provided on these sites and does not necessarily endorse the products, services, or information described or offered within them. Avaya does not guarantee that these links will work all the time and has no control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on its Hardware and Software ("Product(s)"). Refer to your sales agreement to establish the terms of the limited warranty. In addition, Avaya's standard warranty language, as well as information regarding support for this Product while under warranty is available to Avaya customers and other parties through the Avaya Support Web site: http://support.avaya.com. Please note that if you acquired the Product(s) from an authorized Avaya reseller outside of the United States and Canada, the warranty is provided to you by said Avaya reseller and not by Avaya.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE, <u>HTTP://SUPPORT.AVAYA.COM/LICENSEINFO/</u> ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AUTHORIZED AVAYA RESELLER (AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH AVAYA OR AN AUTHORIZED AVAYA RESELLER. UNLESS OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN AVAYA AUTHORIZED RESELLER; AVAYA RESERVES THE RIGHT TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE SOFTWARE (HEREINAFTER REFERRED TO INTERCHANGEABLY AS "YOU" AND "END USER"), AGREE TO THESE TERMS AND CONDITIONS AND CREATE A BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE AVAYA AFFILIATE ("AVAYA").

Copyright

Except where expressly stated otherwise, no use should be made of materials on this site, the Documentation, Software, or Hardware provided by Avaya. All content on this site, the documentation and the Product provided by Avaya including the selection, arrangement and design of the content is owned either by Avaya or its licensors and is protected by copyright and other intellectual property laws including the sui generis rights relating to the protection of databases. You may not modify, copy, reproduce, republish, upload, post, transmit or distribute in any way any content, in whole or in part, including any code and software unless expressly authorized by Avaya. Unauthorized reproduction, transmission, dissemination, storage, and or use without the express written consent of Avaya can be a criminal, as well as a civil offense under the applicable law.

Third-party components

Certain software programs or portions thereof included in the Product may contain software distributed under third party agreements ("Third Party Components"), which may contain terms that expand or limit rights to use certain portions of the Product ("Third Party Terms"). Information regarding distributed Linux OS source code (for those Products that have distributed the Linux OS source code), and identifying the copyright holders of the Third Party Components and the Third Party Terms that apply to them is available on the Avaya Support Web site: http://support.avaya.com/Copyright.

Trademarks

The trademarks, logos and service marks ("Marks") displayed in this site, the Documentation and Product(s) provided by Avaya are the registered or unregistered Marks of Avaya, its affiliates, or other third parties. Users are not permitted to use such Marks without prior written consent from Avaya or such third party which may own the Mark. Nothing contained in this site, the Documentation and Product(s) should be construed as granting, by implication, estoppel, or otherwise, any license or right in and to the Marks without the express written permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners, and "Linux" is a registered trademark of Linus Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya Support Web site: http://support.avaya.com.

Contact Avaya Support

Avaya provides a telephone number for you to use to report problems or to ask questions about your Product. The support telephone number is 1-800-242-2121 in the United States. For additional support telephone numbers, see the Avaya Web site: http://support.avaya.com.

Contents

Chapter 1: New in this release	15
Features	
Avaya Identity Engines Ignition Server	15
Secure File Transfer Protocol (SFTP)	15
SSH Client	15
SSH RSA authentication	16
Chapter 2: Introduction	17
ACLI command modes	
Chapter 3: Security fundamentals	19
Hardware-based security	
MAC address-based security	19
MAC address-based security autolearning	20
Sticky MAC address	21
RADIUS-based network security	21
How RADIUS works	21
RADIUS server configuration	22
RADIUS server reachability	22
RADIUS EAP or non-EAP requests from different servers	22
RADIUS password fallback	29
Configuring RADIUS authentication	29
RADIUS Request use Management IP	29
RADIUS Management Accounting	30
RADIUS interim accounting updates	31
Campus security example	32
EAPOL-based security	33
EAPOL dynamic VLAN assignment	35
System requirements	
EAPOL-based security configuration rules	
Advanced EAPOL features	37
Client reauthentication	
Single Host with Single Authentication and Guest VLAN	
Guest VLAN	
802.1X or non-EAP and Guest VLAN on the same port	
802.1X or non-EAP with Fail Open VLAN	
Multiple Host with Multiple Authentication	
RADIUS-assigned VLAN use in MHMA mode	
Multiple Hosts with Multiple VLANs	
802.1X or non-EAP Last Assigned RADIUS VLAN	
802.1X or non-EAP with VLAN names	
Non EAP hosts on EAP-enabled ports	
Non-EAPOL MAC RADIUS authentication	
Multiple Host with Single Authentication	
Non-EAP client re-authentication	
Summary of multiple host access on EAPOL-enabled ports	50

	802.1X authentication and Wake on LAN	51
	EAP (802.1X) accounting	52
	Non-EAP accounting.	52
	Feature operation.	53
802.1	IX dynamic authorization extension (RFC 3576)	54
	ACS+	
	TACACS+ architecture	
	Feature operation.	
	TACACS+ authentication.	
	TACACS+ authorization.	
	Changing privilege levels at runtime	
	TACACS+ server configuration example	
	TACACS+ accounting	
	TACACS+ configuration	
	anager	
	word security	
	Password length and valid characters	62
	Password retry	
	Password history	63
	Password display	63
	Password verification	63
	Password aging time	63
	Read-Only and Read-Write passwords	63
	Default password and default password security	64
	Password security enabled or disabled	64
	Password security commands	64
	Password security features and requirements	64
ACLI	audit	65
	Erasable ACLI audit log	66
Simp	le Network Management Protocol	66
	SNMP Version 1 (SNMPv1)	66
	SNMP Version 2 (SNMPv2)	67
	SNMP Version 3 (SNMPv3)	
	Avaya Ethernet Routing Switch 4000 Series support for SNMP	
	SNMP MIB support	67
	SNMP trap support	
Secu	re Socket Layer protocol	
	Secure versus Non-secure mode	
	SSL Certificate Authority	
	SSL configuration and management	
Secu	re Shell protocol	
	Components of SSH2	
	SSH service configuration	
	SSH clients	
	SSH and SSH Client	
	SSH Client known hosts	
	SSH Client known hosts in stacks	76

	Switch capacity to learn keys	76
	Standards and Compliance	76
	Feature Interactions	77
	DHCP snooping	77
	DHCP binding table	78
	Static DHCP binding table entries	78
	Externally saving the DHCP Snooping binding table file	78
	DHCP snooping configuration and management	79
	DHCP snooping Global Configuration	
	DHCP Option 82	79
	Dynamic ARP inspection	
	IP Source Guard	80
	Avaya Identity Engines Ignition Server	82
	NSNA	
	NSNA configuration example for MAC authorization enhancement	
	Port modes	86
	Filters in the NSNA solution	
	Filter parameters	
	Configuring filters for Novell Netware log on	91
	Topologies	
	Layer 2	
	Fail open	
	Basic switch configuration for NSNA	
	Prerequisites	
	Configuring the network access device	
	Configuring SSH on the 4000 Series switch for NSNA	
	NSNA solution deployment in an active network	
	About the ports	
	About the VLANs and filters	
	Updating the filter sets	
	Rolling back NSNA mode to default mode	
	Summary of security features	
Ch	apter 4: Security configuration and management using ACLI	
	Setting user access limitations.	
	USB port and serial console port control using ACLI	
	Disabling serial console ports using ACLI	
	Enabling serial console ports using ACLI	
	Viewing serial console port status using ACLI	
	Disabling USB ports using ACLI	
	Enabling USB ports using ACLI	
	Viewing USB port status using ACLI	
	Configuring MAC address-based security	
	ACLI commands for MAC address security	
	ACLI commands for MAC address autolearning	
	RADIUS authentication configuration using ACLI	
	Configuring switch RADIUS server settings using ACLI	
	Enabling or disabling RADIUS password fallback using ACLI	

Viewing RADIUS information using ACLI	. 1 <mark>23</mark>
Configuring RADIUS server reachability using ACLI	. 124
Viewing the RADIUS server reachability method using ACLI	
Configuring EAPOL security	. 125
eapol command	. 126
eapol command for modifying parameters	. 126
show eapol command	
show eapol multihost status command	
Enabling or disabling Non-EAP client re-authentication using ACLI	
Viewing the non-EAP client re-authentication status using ACLI	
Clearing non-EAP authenticated clients from ports using ACLI	
Configuring features	
no eapol multihost use radius-assigned-vlan command	
802.1X or non-EAP Last Assigned RADIUS VLAN configuration using ACLI	
Enabling use-most-recent-RADIUS assigned VLAN	
Disabling use-most-recent-RADIUS assigned VLAN	
Restoring use-most-recent-RADIUS assigned VLAN	
Selecting the packet mode for EAP requests	
Configuring guest VLANs	
eapol guest-vlan command	
no eapol guest-vlan command	
default eapol guest-vlan command	
802.1X or non-EAP and Guest VLAN on the same port configuration using ACLI	
Enabling EAPOL VoIP VLAN	
Disabling EAPOL VoIP VLAN	
Configuring EAPOL VoIP VLAN as the default VLAN	
Displaying EAPOL VoIP VLAN	
802.1X or non-EAP with Fail Open VLAN configuration using ACLI	
Enabling EAPOL Fail Open VLAN	
Disabling EAPOL Fail Open VLAN	
Setting EAPOL Fail Open VLAN as the default	
Displaying EAPOL Fail Open VLAN	
Configuring multihost support.	
eapol multihost command	
no eapol multihost command	
default eapol multihost command	
eapol multihost enable command	
no eapol multihost enable command	
eapol multihost eap-mac-max command	
eapol multihost use radius-assigned-vlan command	
Configuring support for non-EAPOL hosts on EAPOL-enabled ports	
Enabling local authentication of non EAPOL hosts on EAPOL-enabled ports	
Enabling RADIUS authentication of non EAPOL hosts on EAPOL-enabled ports	
Configuring the format of the RADIUS password attribute when authenticating non-EAP MAC	. 130
addresses using RADIUSaddresses using RADIUS	. 151
Enabling RADIUS-assigned VLAN for non-EAP MACs	
Disabling RADIUS-assigned VLAN for non-EAP MACs	
Specifying the maximum number of non EAPOL hosts allowed	

Creating the allowed non EAPOL MAC address list	. 154
Viewing non EAPOL host settings and activity	154
Configuring EAP and non-EAP multiple VLAN capability	156
Viewing EAP and non-EAP multiple VLAN capability status	157
802.1X dynamic authorization extension (RFC 3576) configuration using ACLI	157
Configuring 802.1X dynamic authorization extension (RFC 3576) using ACLI	157
Disabling 802.1X dynamic authorization extension (RFC 3576) using ACLI	159
Viewing 802.1X dynamic authorization extension (RFC 3576) configuration using ACLI	159
Viewing 802.1X dynamic authorization extension (RFC 3576) statistics using ACLI	
Enabling 802.1X dynamic authorization extension (RFC 3576) on EAP ports using ACLI	161
Disabling 802.1X dynamic authorization extension (RFC 3576) on EAP ports using ACLI	162
Enabling 802.1X dynamic authorization extension (RFC 3576) default on EAP ports using ACLI	162
Configuring Wake on LAN with simultaneous 802.1X Authentication using ACLI	163
Enabling Avaya IP Phone clients on an EAP-enabled port	165
Globally enabling Avaya IP Phone clients as a non-EAP type	165
Enabling Avaya IP Phone clients in the interface mode	166
Configuring MHSA	167
Globally enabling support for MHSA	168
Configuring interface and port settings for MHSA	168
Viewing MHSA settings and activity	169
Setting SNMP v1, v2c, v3 Parameters	
SNMPv3 table entries stored in NVRAM	170
Configuring SNMP using ACLI	170
show snmp-server command	171
snmp-server authentication-trap command	172
no snmp-server authentication-trap command	172
default snmp-server authentication-trap command	172
snmp-server community for read or write command	173
snmp-server community command	173
no snmp-server community command	174
default snmp-server community command	175
snmp-server contact command	176
no snmp-server contact command	176
default snmp-server contact command	176
snmp-server command	. 177
no snmp-server command	177
snmp-server host command	. 177
no snmp-server host command	179
default snmp-server host command	180
default snmp-server port	180
snmp-server location command	. 181
no snmp-server location command	181
default snmp-server location command	. 181
snmp-server name command	182
no snmp-server name command	182
default snmp-server name command	182
Enabling SNMP server notification control using ACLI	123

Disabling SNMP server notification control using ACLI	183
Setting SNMP server notification control to default using ACLI	
Viewing the SNMP server notification control table using ACLI	184
snmp-server user command	185
no snmp-server user command	187
snmp-server view command	187
no snmp-server view command	188
snmp-server host for old-style table command	189
snmp-server host for new-style table command	189
snmp-server bootstrap command	190
RADIUS accounting configuration using ACLI	191
Enabling RADIUS server accounting using ACLI	192
Disabling RADIUS server accounting using ACLI	192
Configuring RADIUS interim accounting updates using ACLI	194
Disabling RADIUS interim accounting updates using ACLI	195
Configuring RADIUS interim accounting updates to default using ACLI	195
Viewing RADIUS interim accounting updates information using ACLI	196
TACACS+ configuration using ACLI	
Configuring switch TACACS+ server settings using ACLI	197
Disabling switch TACACS+ server settings using ACLI	198
Enabling remote TACACS+ services using ACLI	199
Enabling or disabling TACACS+ authorization using ACLI	200
Configuring TACACS+ authorization privilege levels using ACLI	200
Enabling or disabling TACACS+ accounting using ACLI	201
Configuring the switch TACACS+ level using ACLI	201
Viewing TACACS+ information using ACLI	202
Configuring IP Manager	203
Enabling IP Manager	203
Configuring the IP Manager list	203
Removing IP Manager list entries	204
Viewing IP Manager settings	204
Setting the user name and password	205
username command	
Setting the system user to default using ACLI	205
Setting ACLI password	206
cli password command	
Viewing the user name and password configuration using ACLI	
Configuring password security	
password security command	
no password security command	
Configuring the number of retries	
Password history configuration using ACLI	
Configuring password history using ACLI	
Configuring password history to default using ACLI	
Viewing password history using ACLI	
ACLI Audit log configuration	
Displaying ACLI audit log	211

	Enabling and disabling ACLI audit log	212
	Configuring ACLI audit log to default	212
	Clearing the ACLI audit log	213
	Preventing erasure of the ACLI audit log	214
Secu	ıre Socket Layer services	214
Conf	iguring the Web server for client browser requests using ACLI	216
View	ing the Web server client browser request configuration using ACLI	216
Secu	re Shell protocol configuration using ACLI	217
	Displaying SSH information using ACLI	217
	Enabling SSH using ACLI	218
	Disabling SSH using ACLI	218
	Generating a new SSH DSA host key using ACLI	219
	Deleting the SSH DSA host key using ACLI	219
	Generating a new SSH RSA host key using ACLI	220
	Deleting the SSH RSA host key using ACLI	220
	Downloading DSA or RSA authentication keys using ACLI	220
	Deleting the SSH DSA authentication key using ACLI	221
	Deleting the SSH RSA authentication key using ACLI	221
	Enabling user log-on with an SSH DSA key using ACLI	222
	Disabling user log-on with an SSH DSA key using ACLI	222
	Enabling user log-on with an SSH RSA key using ACLI	222
	Disabling user log-on with an SSH RSA key using ACLI	
	Enabling user log-on with SSH password authentication using ACLI	223
	Disabling user log-on with SSH password authentication using ACLI	
	Disabling SNMP and Telnet With SSH using ACLI	
	Setting the TCP port for SSH daemon using ACLI	
	Setting the default TCP port for the SSH daemon using ACLI	
	Setting the SSH timeout using ACLI	
	Setting the SSH timeout to default using ACLI	
Secu	re Shell Client configuration using ACLI	
	Configuring SFTP authentication for SSH Client using ACLI	
	Setting SFTP authentication for SSH Client to default using ACLI	
	Closing an SSH Client session using ACLI	
	Generating an SSH client DSA host key using ACLI	
	Deleting DSA host keys using ACLI	
	Generating an SSH client RSA host key using ACLI	
	Deleting RSA host keys using ACLI	
	Connecting SSH to a host using ACLI	
	Displaying current SSH client sessions	
	Displaying SSH client known hosts	
	Clearing SSH Client known hosts using ACLI	
DI 10	Configuration examples for configuring Secure Shell connections.	
DHC	P snooping configuration using ACLI	
	Configuring DHCP snooping globally using ACLI	
	Viewing the global DHCP snooping configuration ACLI	
	Configuring VLAN-based DHCP snooping using ACLI	
	Viewing the VLAN-based DHCP snooping configuration using ACLI	236

	Configuring port-based DHCP snooping using ACLI	237
	Viewing the port-based DHCP snooping configuration using ACLI	238
	Adding static entries to the DHCP binding table using ACLI	239
	Deleting static entries from the DHCP binding table using ACLI	239
	Viewing the DHCP binding table using ACLI	240
	Configuring DHCP Snooping external save using ACLI	241
	Disabling DHCP Snooping external save using ACLI	241
	Restoring the externally saved DHCP Snooping database using ACLI	242
	Viewing DHCP Snooping external save information using ACLI	242
	DHCP Snooping layer 2 configuration using ACLI example	243
	Configuring dynamic ARP inspection	246
	Enabling dynamic ARP inspection on the VLANs	246
	Configuring trusted and untrusted ports	247
	Viewing dynamic ARP inspection settings	247
	Dynamic ARP inspection layer 2 configuration example	248
	IP Source Guard configuration using ACLI	250
	Enabling IP Source Guard using ACLI	
	Viewing IP Source Guard port configuration information using ACLI	252
	Viewing IP Source Guard-allowed addresses using ACLI	252
	Disabling IP Source Guard using ACLI	
	RADIUS Request use Management IP configuration using ACLI	254
	Enabling the RADIUS Request use Management IP	254
	Disabling the RADIUS Request use Management IP	
	Setting the RADIUS Request use Management IP to default mode	255
Cha	apter 5: Ignition Server configuration using ACLI	
	Configuring Ignition Server as a RADIUS server using ACLI	
	Configuring Ignition Server as an EAP RADIUS server using ACLI	
	Configuring Ignition Server as a non-EAP RADIUS server using ACLI	
	Configuring Ignition Server as a TACACS+ server using ACLI	
Cha	apter 6: NSNA configuration using ACLI	
	Configuring the NSNAS 4050/4070 subnet	
	Viewing NSNAS 4050/4070 subnet information	
	Removing the NSNAS 4050/4070 subnet	
	Configuring QoS for the NSNA solution	
	Configuring NSNA per VLAN	
	Viewing NSNA VLAN information	
	Removing a NSNA VLAN	
	Configuration example: Configuring the NSNA per VLANs	
	Enabling NSNA on ports using ACLI	
	Viewing NSNA port information	
	Removing an NSNA port	
	Configuration example: Adding the uplink port	
	Configuration example: Adding client ports	
	Viewing information about NSNA clients	
	Entering phone signatures for NSNA	
	Removing NSNA phone signatures	
	Viewing NSNA phone signatures	276

	Configuring NSNA Fail Open	277
	Configuration example	277
	Enabling NSNA	277
	Disabling NSNA	278
	Viewing the NSNA state	278
	Configuration example	279
Cha	apter 7: Security configuration and management using Enterprise Device Manager	285
	EAPOL configuration using EDM	
	Configuring EAPOL globally using EDM	
	Configuring port-based EAPOL using EDM	
	Configuring advanced port-based EAPOL using EDM	
	Graphing port EAPOL statistics using EDM	290
	Graphing port EAPOL diagnostics using EDM	
	Viewing Multihost status information using EDM	
	Viewing Multihost session information using EDM	
	Allowed non-EAP MAC address list configuration using EDM	
	Viewing port non-EAP host support status using EDM	
	Enabling VoIP VLAN using EDM	
	Configuring general switch security using EDM	
	Security list configuration using EDM	
	Adding ports to a security list using EDM	
	Deleting specific ports from a security list using EDM	
	Deleting all ports from a security list using EDM	
	AuthConfig list configuration using EDM	304
	Adding entries to the AuthConfig list using EDM	
	Deleting entries from the AuthConfig list using EDM	
	Configuring MAC Address AutoLearn using EDM	
	Viewing AuthStatus information using EDM	
	Viewing AuthViolation information using EDM	
	Viewing MacViolation information using EDM	
	Configuring Secure Shell protocol using EDM	
	Viewing SSH Sessions information using EDM	
	Configuring an SSH Client using EDM	
	Configuring SSL using EDM	
	Configuring RADIUS globally using EDM	
	Configuring RADIUS accounting using EDM	318
	Configuring the Global RADIUS Server using EDM	
	Configuring the EAP RADIUS server using EDM	
	Configuring the NEAP RADIUS server using EDM	
	Viewing RADIUS Dynamic Authorization server information using EDM	
	Creating an 802.1X dynamic authorization extension (RFC 3576) client using EDM	
	Deleting an 802.1X dynamic authorization extension (RFC 3576) client configuration using EDM.	
	Viewing the 802.1X dynamic authorization extension (RFC 3576) client configuration using EDM.	
	Modifying the 802.1X dynamic authorization extension (RFC 3576) client configuration using EDM	
	Changing the 802.1X dynamic authorization extension (RFC 3576) client secret word using EDM	
	Viewing RADIUS Dynamic Server statistics using EDM	
	Graphing PADILIS Dynamic Server statistics using EDM	224

	DHCP snooping configuration using EDM	332
	Configuring global DHCP snooping using EDM	332
	Configuring DHCP snooping on a VLAN using EDM	334
	Configuring DHCP snooping on a port using EDM	335
	DHCP binding configuration using EDM	336
	Viewing DHCP binding information using EDM	336
	Creating static DHCP binding table entries using EDM	337
	Deleting DHCP binding table entries using EDM	338
	Configuring dynamic ARP inspection on VLANs using EDM	339
	Configuring dynamic ARP inspection on ports using EDM	339
	IP Source Guard configuration using EDM	
	Configuring IP Source Guard on a port using EDM	341
	Filtering IP Source Guard addresses using EDM	341
	Viewing IP Source Guard port statistics using EDM	343
	TACACS+ configuration using EDM	343
	Configuring TACACS+ services using EDM	344
	Adding a TACACS+ server using EDM	344
	Deleting a TACACS+ server using EDM	345
	Configuring the Web and Telnet password using EDM	346
	Configuring the console password using EDM	347
	SNMP configuration using EDM	
	Viewing the SNMP configuration using EDM	348
	Creating a user using EDM	349
	Viewing the user details using EDM	
	Viewing MIBs assigned to an object using EDM	
	Creating a community using EDM	
	Deleting a community using EDM	
	Viewing the details of a community using EDM	
	Configuring an SNMP host using EDM	
	Configuring notifications (traps) from the list using EDM	
	Configuring SNMP notification control using EDM	
	Graphing SNMP statistics using EDM	
Ch	apter 8: Ignition Server configuration using Enterprise Device Manager	
	Configuring Ignition Servers as a RADIUS server using EDM	
	Configuring Ignition Server as an EAP RADIUS server using EDM	
	Configuring Ignition Server as a non-EAP RADIUS server using EDM	
	Configuring Ignition Server as a TACACS+ server using EDM	
Ch	apter 9: NSNA configuration using Enterprise Device Manager	
	Configuring the NSNAS 4050/4070 subnet using EDM	
	Removing the NSNAS 4050/4070 subnet using EDM	
	Configuring QoS for the NSNA solution using EDM	
	Configuring NSNA per VLAN using EDM	
	Removing a NSNA VLAN using EDM	
	Enabling NSNA on ports using EDM	
	Viewing information about NSNA clients using EDM	
	Entering phone signatures for NSNA using EDM	
	Removing NSNA phone signatures using EDM	383

Configuring Fail Open using EDM	. 383
Enabling NSNA using EDM	. 384
Appendix A: TACACS+ server configuration examples and supported SNMP MIBs	. 387
TACACS+ server configuration examples.	
Configuration example: Cisco ACS (version 3.2) server	. 387
Configuration example: ClearBox server	
Configuration example: Linux freeware server	
Supported SNMP MIBs and traps	
Supported MIBs	. 399
Supported traps	. 402
Appendix B: Supported EAP modes and configuration examples	405
SHSA authentication mode with or without RADIUS additional attributes with or without Multihost MultiVLAN	. 405
SHSA authentication mode (with Guest VLAN enabled) with or without RADIUS additional attributes, with or without Multihost MultiVLAN	. 411
SHSA authentication mode (with Guest VLAN and Fail Open VLAN enabled) with or without RADIUS additional attributes with or without Multihost MultiVLAN	. 418
MHSA authentication mode (with or without RADIUS VLAN and with or without Multihost MultiVLAN enabled)	. 427
MHSA authentication mode (Guest VLAN option enabled) with or without RADIUS additional attributes with or without Multihost MultiVLAN	. 433
MHSA authentication mode (Guest VLAN and Fail Open VLAN options enabled) with or without RADIUS additional attributes and with or without Multihost MultiVLAN option	. 440
MHMA authentication mode (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes	. 449
MHMA authentication mode (Multihost MultiVLAN option enabled) with or without additional RADIUS attributes	. 464
MHMA authentication mode with Guest VLAN (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes	480
MHMA authentication mode with Guest VLAN (Multihost MultiVLAN option enabled) with or without additional RADIUS attributes	. 494
MHMA authentication mode with Guest VLAN and Fail Open VLAN (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes	. 508
Annendix C: Sticky MAC address configuration examples	527

Chapter 1: New in this release

The following section details what is new in Avaya Ethernet Routing Switch 4000 Security — Configuration, NN47205-505 for Release 5.6.

Features

See the following sections for information about feature changes.

Avaya Identity Engines Ignition Server

Avaya Identity Engines Ignition Server (Ignition Server) is an 802.1X-capable RADIUS authentication server and TACACS+ server that grants or denies users access to your network based on your policies. When you use Ignition Server you can create a single set of policies that control access for all user connection methods: over a wired Ethernet jack, wireless, or VPN.

Ignition Server also authenticates devices and you can configure an 802.1X authentication bypass for older devices on your network that cannot perform an 802.1X authentication

Secure File Transfer Protocol (SFTP)

For secure (SSH) software images Secure File Transfer supports download of Agent and diagnostic files and ASCII configuration file download and upload. SFTP allows secure transfer of a binary configuration file between a switch or stack and an SFTP server that uses SFTP with SSH version 2. Enabled by default, and available through ACLI and EDM, SFTP interacts with SSH Client.

SSH Client

Present only on switches with SSH images, and available only through ACLI, SSH Client uses SSH version 2. It is a secure shell protocol you can use to connect to an SSH Server device in the network that accepts remote connections.

SSH RSA authentication

SSH RSA authentication provides increased security for Secure Shell (SSH) login. With this feature, the switch supports RSA public-private key encryption that uses a digital certificate. SSH RSA Authentication is supported when you select the RSA certificate option for a Secure Shell connection from a client PC to the switch.

Chapter 2: Introduction

This document describes security features and how to configure security services for the Avaya Ethernet Routing Switch 4000.

ACLI command modes

ACLI provides the following command modes:

- User EXEC
- Privileged EXEC
- Global Configuration
- Interface Configuration

Mode access is determined by access permission levels and password protection.

If no password is set, you can enter ACLI in User EXEC mode and use the enable command to move to the next level (Privileged EXEC mode). However, if you have read-only access, you cannot progress beyond User EXEC mode, the default mode. If you have read-write access you can progress from the default mode through all of the available modes.

With sufficient permission, you can use the rules in the following table to move between the command modes.

Table 1: ACLI command modes

Command mode and sample prompt	Entrance commands	Exit commands
User EXEC 4526>	No entrance command, default mode	exit or logout
Privileged EXEC 4526#	enable	exit or logout
Global Configuration 4526(config)#	From Privileged EXEC mode, type: configure terminal	To return to Privileged EXEC mode, type: end or exit To exit ACLI completely, type: logout
Interface Configuration 4526 (config-if)#	From Global Configuration mode:	To return to Global Configuration mode, enter: exit

Command mode and sample prompt	Entrance commands	Exit commands
	To configure a port, type: interface fastethernet <port number=""> To configure a VLAN, type: interface fastethernet <vlan number=""></vlan></port>	To return to Privileged EXEC mode, type: end To exit ACLI completely, type: logout

For more information about ACLI command modes, see Avaya Ethernet Routing Switch 4000 Series Fundamentals (NN47205-102).

Chapter 3: Security fundamentals

This chapter describes the hardware-based and software-based security features supported by the Avaya Ethernet Routing Switch 4000.

Hardware-based security

Network administrators enable or disable the USB or serial console ports on the Avaya Ethernet Routing Switch 4000 to control access to an operational switch. To prevent unauthorized access and configuration, the network administrators disable the USB or serial console ports.

MAC address-based security

The Media Access Control (MAC) address-based security feature is based on Avaya BaySecure local area network (LAN) Access for Ethernet, a real-time security system that safeguards Ethernet networks from unauthorized surveillance and intrusion.

You can use the MAC-address-based security feature to set up network access control based on source MAC addresses of authorized stations.

You can use MAC-address-based security to perform the following activities:

- Create a list of up to 10 MAC addresses to filter
 - as destination addresses (DA)—all packets with one of the specified MAC addresses as the DAs are dropped regardless of the ingress port, source address intrusion, or virtual local area network (VLAN) membership
 - as source addresses (SA)—all packets with one of the specified MAC addresses as the SAs are dropped

Important:

Ensure that you do not enter the MAC address of units in the stack using MAC security. This can impact operation of switch management or the stack.

 Create a list of up to 448 MAC SAs and specify SAs that are authorized to connect to the switch or stack configuration.

You can configure the 448 MAC SAs within a single stand-alone or distribute them in any order among the units in a single stack configuration.

When you configure MAC-based security, you must specify the following:

- Switch ports that can be controlled for each MAC address security association.
 - The options for allowed port access include NONE, ALL, and single or multiple ports that are specified in a list (for example, 1/1-4, 1/6, 2/9).
- Optional actions that the switch can perform if the software detects a source MAC address security violation.

The options are to send an SNMP trap, turn on DA filtering for the specified source MAC address, disable the specific port, or a combination of these three options.

Use either the Avaya Command Line Interface (ACLI) or Enterprise Device Manager (EDM) to configure MAC-address based security features.

MAC address-based security autolearning

The MAC address-based security autolearning feature provides the ability to add allowed MAC addresses to the MAC Security Address Table automatically without user intervention.

MAC address-based security autolearning has the following features:

- You can specify the number of addresses that can be learned on the ports, to a maximum
 of 25 addresses for each port. The switch forwards traffic only for those MAC addresses
 statically associated with a port or learned with the autolearning process.
- You can configure an aging timer, in minutes, after which autolearned entries are refreshed in the MAC Security Address Table. If you set the aging time value to 0, the entries never age out. To force relearning of entries in the MAC Security Address Table you must reset learning for the port.
- If a port link goes down, the autolearned entries associated with that port in the MAC Security Address Table are removed.
- You cannot modify autolearned MAC addresses in the MAC Security Address Table.
- MAC Security port configuration including the aging timer and static MAC address entries
 are saved to the switch configuration file. MAC addresses learned with autolearning are
 not saved to the configuration file. They are dynamically learned by the switch.
- You can reset the MAC address table for a port by disabling the security on the port and then enabling it.
- If a MAC address is already learned on a port (port x) and the address migrates to another
 port (port y), the entry in the MAC Security Address Table changes to associate that MAC
 address with the new port (port y). The aging timer for the entry is reset.
- If you disable autolearning on a port, all autolearned MAC entries associated with that port in the MAC Security Address Table are removed.
- If a static MAC address is associated with a port (which is or is not configured with the autolearning feature) and the same MAC address is learned on a different port, an autolearn entry associating that MAC address with the second port is not created in the

MAC Security Address Table. In other words, user settings have priority over autolearning.

Sticky MAC address

Sticky MAC address provides a high level of control, and simpler configuration and operation for MAC address security, on a standalone switch or a switch that is part of a stack. With Sticky MAC address, you can secure the MAC address to a specified port so if the MAC address moves to another port, the system raises an intrusion event. When you enable Sticky MAC address, the switch performs the initial auto-learning of MAC addresses and can store the automatically learned addresses across switch reboots.

RADIUS-based network security

Remote Access Dial-In User Services (RADIUS) is a distributed client server system that helps secure networks against unauthorized access, allowing a number of communication servers and clients to authenticate user identities through a central database. The database within the RADIUS server stores information about clients, users, passwords, and access privileges; these are protected with a shared secret.

RADIUS authentication is a fully open and standard protocol defined by RFC 2865.

How RADIUS works

A RADIUS application has two components:

- RADIUS server—a computer equipped with RADIUS server software (for example, a UNIX workstation). The RADIUS server stores client or user credentials, password, and access privileges, protected with a shared secret.
- RADIUS client—a router, PC, or a remote access server equipped with the appropriate client software.

A switch can be configured to use RADIUS authentication to authenticate users attempting to log on to the switch using telnet, SSH, EDM, or the console port.

Avaya recommends that you configure two RADIUS servers so that if one server is unreachable, the switch will attempt authentication using the secondary server. If a specific RADIUS server does not respond to a certain request, the switch retries the request a maximum of five times, which is the retry limit. The default retry value is three times. To prevent false retries, you can configure the interval between retries up to 60 seconds, based on network requirements. The default retry interval is 2 seconds.

RADIUS server configuration

You must set up specific user accounts on the RADIUS server before you can use RADIUS authentication in the Avaya Ethernet Routing Switch 4000 Series network. User account information about the RADIUS server contains user names, passwords, and service-type attributes.

Provide each user with the appropriate level of access.

- for read-write access, set the Service-Type field value to Administrative
- for read-only access, set the Service-Type field value to NAS-Prompt

For more information about configuring the RADIUS server, see the documentation that came with the server software.

RADIUS server reachability

You can use RADIUS server reachability to configure the switch to use ICMP packets or dummy RADIUS requests to determine the reachability of the RADIUS server. The switch regularly performs the reachability test to determine if the switch should fail over to the secondary RADIUS server or to activate the fail open VLAN, if that feature is configured on the switch.

If you implement internal firewalls which limit the flow if ICMP reachability messages from the switch to the RADIUS server, you can configure the switch to use dummy RADIUS requests. If the switch is configured to use dummy RADIUS requests, the switch generates a regular dummy RADIUS request with the username 'avaya'. It is recommended that you set up a dummy account with the user name **avaya** on the RADIUS server to avoid the generation of error messages indicating invalid user logins, if RADIUS server reachability is enabled.

By default, the switch uses ICMP packets to determine the reachability of the RADIUS server.

RADIUS EAP or non-EAP requests from different servers

You can manage EAP and Non-EAP (NEAP) functions on separate RADIUS servers.

EAP RADIUS servers: You can configure a maximum of two EAP RADIUS servers, either IPv4 or IPv6, for the authentication and accounting of EAP client requests. You can configure one EAP RADIUS server as the primary server and the other EAP RADIUS server as the secondary server.

Non-EAP RADIUS servers: You can configure a maximum of two non-EAP RADIUS servers, either IPv4 or IPv6, for the authentication and accounting of Non-EAP client requests. You can

configure one non-EAP RADIUS server as the primary server and the other non-EAP RADIUS server as the secondary server.

Global RADIUS servers: Global RADIUS servers process both EAP and Non-EAP client requests if EAP or non-EAP RADIUS servers are not configured. You can configure one Global RADIUS server as the primary server and the other Global RADIUS server as the secondary server.

RADIUS servers with SHSA, MHSA, and MHMA modes

When you use SHSA, MHSA and MHMA modes, if the primary RADIUS server is not reachable, the system attempts to connect to the secondary RADIUS server. If both the primary and secondary RADIUS servers cannot be reached, the EAP or Non-EAP client is not authenticated, and the system repeats the process with all RADIUS servers, in priority order, until an available server is found.

🐯 Note:

If the system cannot reach a RADIUS server with a valid IP address, it disconnects clients from the server at the next re-authentication.

RADIUS server priority in SHSA and MHSA modes

For SHSA and MHSA modes, if you configure EAP RADIUS servers, only the EAP RADIUS servers are used in the following priority order:

- EAP RADIUS server primary
- EAP RADIUS server secondary

For SHSA and MHSA modes, if you do not configure EAP RADIUS servers, servers are used in the following priority order:

- Global RADIUS server primary
- Global RADIUS server secondary

Because SHSA and MHSA modes do not support the authentication of Non-EAP clients, ports in SHSA or MHSA mode do not use Non-EAP RADIUS servers for authentication.

RADIUS server priority in MHMA mode

Since MHMA mode is used when multiple authentications are required for a single port, and authenticated clients can be either EAP or Non-EAP, the client type determines which RADIUS server processes client requests.

EAP clients

• If only EAP RADIUS servers are configured, all EAP clients are authenticated using an EAP server (primary or secondary). If both primary and secondary EAP RADIUS servers

24

become unavailable, the EAP clients remain authenticated until the next reauthentication.

- If EAP and Global RADIUS servers are configured, all EAP clients are authenticated using only an EAP server (primary or secondary). If both primary and secondary EAP RADIUS servers become unavailable, the EAP clients remain authenticated until the next reauthentication.
- If only Global RADIUS servers are configured, all EAP clients are authenticated using a Global RADIUS server (primary or secondary). If both primary and secondary Global RADIUS servers become unavailable, the EAP clients remain authenticated until the next re-authentication.

Non-EAP clients

- If only non-EAP RADIUS servers are configured, all Non-EAP clients are authenticated using the non-EAP RADIUS servers (primary or secondary). If both primary and secondary non-EAP RADIUS servers become unavailable, the Non-EAP clients remain authenticated until the next re-authentication.
- If Non-EAP and Global RADIUS servers are configured, all Non-EAP clients are authenticated using only the non-EAP RADIUS servers (primary or secondary). If both primary and secondary non-EAP RADIUS servers will become unavailable, the Non-EAP clients remain authenticated until the next re-authentication.
- If only Global RADIUS servers are configured, all Non-EAP clients are authenticated using a Global RADIUS server (primary or secondary). If both primary and secondary Global RADIUS servers become unavailable, the Non-EAP clients remain authenticated until the next re-authentication.

Examples of RADIUS servers with MHMA mode

The following diagram illustrates a network that includes the following:

- an ERS 4000 switch with a port configured for MHMA
- the MHMA port connected to multiple EAP and Non-EAP clients
- a group of RADIUS servers configured as primary and secondary EAP RADIUS servers, non-EAP RADIUS servers, and Global RADIUS servers

Figure 1: EAP and non-EAP RADIUS servers in MHMA mode

The following scenarios for EAP clients are based on the configuration in the preceding diagram:

- 1. EAP clients are authenticated on a Global RADIUS server and you configure the EAP RADIUS servers. At the next re-authentication, all EAP clients authenticate on the EAP RADIUS server.
- 2. Both the EAP RADIUS servers and the Global RADIUS servers are configured, with EAP clients authenticated on an EAP RADIUS server. In this case, the following can occur:
 - If the EAP RADIUS server becomes unavailable, the system disconnects the EAP clients at the next re-authentication, and the system does not reauthenticate the EAP clients on the Global RADIUS server.
 - If you reset the EAP RADIUS servers to default settings, where the IP addresses for both the primary and secondary hosts return to 0.0.0.0, at the next re-authentication the system authenticates EAP clients on the Global RADIUS server.

Assumptions:

• If you configure an EAP RADIUS server, the system does not use the Global RADIUS server for EAP clients.

• The system does not use the non-EAP RADIUS server for EAP clients

The following scenarios for Non-EAP clients are based on the configuration in the preceding diagram:

- 1. Non-EAP clients are authenticated on a Global RADIUS server and you configure the non-EAP RADIUS servers. At the next re-authentication, all Non-EAP clients are authenticated using the non-EAP RADIUS server.
- 2. Both the non-EAP RADIUS servers and the Global RADIUS are configured; with Non-EAP clients authenticated on a non-EAP RADIUS server. In this case, the following can occur:
 - If the non-EAP RADIUS server becomes unavailable, the system disconnects the Non-EAP clients at the next re-authentication, and the system does not reauthenticate the Non-EAP clients on the Global RADIUS server.
 - If you reset the non-EAP RADIUS servers to default settings, where the IP addresses for both the primary and secondary hosts return to 0.0.0.0., at the next re-authentication, the system authenticates Non-EAP clients on the Global RADIUS server.

Assumptions:

- If you configure the non-EAP RADIUS server, the system does not use the Global RADIUS server for Non-EAP clients.
- The system does not use the non-EAP RADIUS server for EAP clients.

Interaction with other features

26

The following sections describe how the RADIUS EAP or non-EAP requests from different servers feature interacts with other features.

Interaction with RADIUS server reachability

When you use the RADIUS EAP or non-EAP requests from different servers feature, the method you use to determine RADIUS server reachability, ICMP or dummy RADIUS requests, applies equally to either Global RADIUS servers, EAP RADIUS servers, or NEAP RADIUS servers.

Interaction with Fail Open VLAN and Multivlan

In software releases prior to Release 5.5, Fail Open VLAN and Multivlan were mutually exclusive when interacting with other features. With the introduction of RADIUS EAP or non-EAP requests from different servers in Release 5.5, this behavior is changed as described in this section.

When you configure Global RADIUS servers, EAP RADIUS servers, or non-EAP RADIUS servers, and a switch port cannot connect to the RADIUS servers, the system moves the port to the designated Fail Open VLAN.

When the RADIUS servers are unreachable, the different RADIUS servers feature interacts with Fail Open VLAN to provide some restricted access, independent of the Guest VLAN, when Fail Open VLAN is enabled.

EAP clients authenticate on the EAP RADIUS servers. If EAP RADIUS servers are not configured, EAP clients authenticate on the Global RADIUS server.

NEAP clients authenticate on the NEAP RADIUS servers. If NEAP RADIUS servers are not configured, NEAP clients authenticate on the Global RADIUS server.

EAP or NEAP Multivlan is disabled or not implemented

This section describes RADIUS server interaction with Fail Open VLAN when you disable or do not implement EAP or NEAP Multivlan.

- If you configure either EAP or NEAP RADIUS servers, when the RADIUS server becomes unreachable, the system moves the port to the Fail Open VLAN.
- If you configure both EAP and NEAP RADIUS servers, only when both RADIUS servers become unreachable does the port move to the Fail Open VLAN. Otherwise, port membership does not change.
- If you configure EAP and Global RADIUS servers, only when both RADIUS servers become unreachable does the port move to Fail Open VLAN.
- If you configure NEAP and Global RADIUS servers, only when both RADIUS servers become unreachable does the port move to Fail Open VLAN.
- If you configure only a Global RADIUS server, only when the RADIUS server becomes unreachable does the port move to Fail Open VLAN .
- If you configure EAP, NEAP, and Global RADIUS servers, only when both EAP and NEAP RADIUS servers become unreachable does the port move to Fail Open VLAN. If only the Global RADIUS server becomes unreachable, the port membership does not change.

EAP or NEAP Multivlan is enabled

When you enable and implement EAP or NEAP Multivlan, and the RADIUS servers are unreachable, the port can be copied to Fail Open VLAN, depending on which RADIUS servers you configured.

EAP RADIUS servers only:

If you configure only EAP RADIUS servers, when the RADIUS servers become unreachable, all EAP-enabled ports are moved to Fail Open VLAN, and no PVID or priority changes occur on those ports. Traffic from authenticated EAP clients goes to the corresponding VLAN (RADIUS assigned VLAN or the initial VLAN), and not the Fail Open Vlan.

If all new MACs learned on the EAP-enabled ports are not authenticated as NEAP clients using other authentication methods, like static MACs or DHCP signature, the new MACs are considered potential EAP clients, and traffic is forwarded to Fail Open VLAN.

If EAP re-authentication is enabled, EAP clients do not re-authenticate while ports are in Fail Open VLAN.

NEAP RADIUS servers only:

If you configure only NEAP RADIUS servers, when the RADIUS servers become unreachable, all EAP-enabled ports are moved to Fail Open VLAN, and no PVID or priority changes occur on those ports. Traffic from authenticated NEAP clients goes to the corresponding VLAN (RADIUS assigned VLAN or the initial VLAN), and not the Fail Open Vlan.

All new MACs learned on the ports are considered potential NEAP clients and traffic is fowarded to Fail Open VLAN, unless the clients are authenticated using NEAP methods that do not require connectivity to RADIUS server, like local MACs or DHCP signature.

If non-EAP re-authentication is enabled, NEAP clients do not re-authenticate while ports are in Fail Open VLAN.

EAP and NEAP RADIUS servers:

If you configure both EAP and NEAP RADIUS servers and the EAP RADIUS servers become unreachable, traffic from authenticated EAP clients goes to the corresponding VLAN. EAP-enabled ports are moved to Fail Open VLAN.

If you configure both EAP and NEAP RADIUS servers and the NEAP RADIUS servers become unreachable, traffic from authenticated NEAP clients goes to the corresponding VLAN. EAP-enabled ports are moved to Fail Open VLAN.

If EAP or non-EAP re-authentication is enabled and the corresponding RADIUS server is not reachable, EAP or NEAP clients do not re-authenticate while ports are in Fail Open VLAN.

All new MACs learned on the port are considered potential EAP or NEAP clients, depending on which RADIUS server becomes unreachable, and traffic is forwarded to Fail Open VLAN, unless the MACs are authenticated using methods like static MACs or DHCP signature. If both EAP and NEAP RADIUS servers recover, EAP-enabled ports are removed from Fail Open VLAN and all authenticated MACs, except NEAP clients authenticated based on DHCP signature, are reauthenticated. All MACs that were not authenticated are flushed from the system to be authenticated.

EAP and Global RADIUS servers:

If you configure EAP and Global RADIUS servers, Global RADIUS servers are not used to authenticate EAP clients if EAP RADIUS servers become unreachable. In this case, Global RADIUS servers are used to authenticate NEAP clients. If either EAP or Global radius servers become unreachable, the behavior is similar to when you configure both EAP and NEAP radius servers.

NEAP and Global RADIUS servers:

If you configure NEAP and Global RADIUS servers, Global RADIUS servers are not used to authenticate NEAP clients if NEAP RADIUS servers become unreachable. In this case, Global RADIUS servers are used to authenticate EAP clients. If either NEAP or Global radius servers become unreachable, the behavior is similar to when you configure both EAP and NEAP radius servers.

EAP, NEAP, and Global RADIUS servers:

If you configure EAP, NEAP, and Global RADIUS servers, the Global RADIUS server does not authenticate EAP clients when EAP RADIUS servers become unreachable, or NEAP clients when NEAP RADIUS servers become unreachable. If either EAP or NEAP radius servers become unreachable, the behavior is similar to when you only configure both EAP and NEAP radius servers.

Global RADIUS server only:

If you configure only a Global RADIUS server, both EAP and NEAP clients are authenticated using the Global RADIUS server.

If the Global RADIUS server becomes unreachable all EAP-enabled and EAP-enabled ports are moved to Fail Open VLAN.

Traffic from all authenticated EAP and NEAP clients goes to the corresponding VLAN.

All new MACs learned on the port are considered potential EAP or NEAP clients and traffic is forwarded to Fail Open VLAN, unless the MACs are authenticated using methods like static MACs or DHCP signature.

When the Global RADIUS server recovers, all EAP-enabled and EAP-enabled ports are removed from Fail Open VLAN. All authenticated clients, except those authenticated by DHCP signature, are reauthenticated. All MACs that were not authenticated are flushed from the system to be authenticated.

🐯 Note:

If some MACs are forwarding traffic to a Guest VLAN when a RADIUS server becomes unreachable and the EAP-enabled ports are moved to Fail Open VLAN, those MACs continue to forward traffic to the Guest VLAN.

RADIUS password fallback

With the RADIUS password fallback feature the user can log on to the switch or stack by using the local password, if the RADIUS server is unavailable or unreachable for authentication.

RADIUS password fallback is disabled by default.

Configuring RADIUS authentication

You can configure and manage RADIUS authentication using ACLI or Enterprise Device Manager (EDM).

RADIUS Request use Management IP

When the switch is operating in Layer 2 mode, by default, all RADIUS requests generated by the switch use the stack or switch management IP address as the source address in RADIUS requests or status reports. The RADIUS Request use Management IP configuration has no impact when the switch operates in Layer 2 mode.

When the switch is operating in Layer 3 mode, by default, a RADIUS request uses one of the routing IP addresses on the switch. When the switch is operating in Layer 3 mode, the RADIUS Request use Management IP configuration ensures that the switch or stack generates RADIUS requests using the source IP address of the management VLAN. In some customer networks, the source IP in the RADIUS request is used to track management access to the switch, or it can be used when non-EAP is enabled. Because Non-EAP can use an IP in the password mask it is important to have a consistent IP address.

30

If the management VLAN is not operational, then the switch cannot send any RADIUS requests when:

- the switch is operating in Layer 2 mode
- the switch is operating in Layer 3 (routing) and RADIUS Request Use Management IP is enabled

This is normal behavior in Layer 2 mode; if the Management VLAN is unavailable, then there is no active Management IP instance. In Layer 3 mode, if RADIUS Request Use Management IP is enabled, then the switch does not use any of the other routing instances to send RADIUS requests when the Management VLAN is inactive or disabled.

RADIUS Management Accounting

You can use the RADIUS Management Accounting feature to send radius accounting packets when management events such as user logon or logoff, or session timeout for a logged on user occur. The feature can record management logon activity to the switch. The switch generates an authentication message, to the RADIUS server, which includes basic information such as: NAS-IP-Address, Service-Type, User-Name, Client-IP-Address, and Timestamp.

The RADIUS Management accounting records are generated when the switch is accessed using the console, telnet, SSH, or when a session is disconnected either by logging out or through time-out.

The following table describes the additional information fields in the RADIUS accounting message. This information enhances the interoperability of the switch in environments where other vendors use their switches.

Table 2: RADIUS Management Accounting Records

RADIUS attribute	Definition
NAS-IP-Address	The IP address of the device generating the RADIUS accounting message (the switch or stack IP address).
NAS-IPv6-Address	The IPv6 address of the device generating the RADIUS Accounting message (the switch or stack address).
NAS-Port-Type	The type of port through which the connection is made to the switch, as defined in RFC2865. In case of logon through the console port, the port takes a value of 1, which corresponds to Async or 5 representing Virtual for the network connections.
NAS-Port	This is equal to the unit number in a stack if the customer uses the console port. If the

Configuration — Security December 2011

Comments? infodev @avaya.com

RADIUS attribute	Definition
	connection is virtual, Avaya recommends that this value be set to the protocol used to access the switch, for example, IPv4.
Service-Type	Set to Administrative-User for access to the switch or stack with read-write rights. Set to NAS-Prompt-User for access to the switch/stack with read-only rights
User-Name	The user name used to connect the current administrative session to the switch.
Acct-Status-Type	Indicates if this is an accounting Start or Stop record, used to respectively identify connection or disconnection to or from the switch.
Acct-Terminate- Cause	This is used in the accounting stop records that the switch generates after a session is disconnected from the switch. Possible values includes the following options.
	User-Request - used when user signs off
	Idle-Timeout - used when timeout occurs
	Lost-Carrier - used when a serial login was performed and the serial cable is unplugged (works with serial security enabled)
Client-IP-Address	Indicates the end client IP address, if the customer connects through IP. If the customer connects through the console, this is the same as the switch or stack address.
Timestamp	The timestamp of the RADIUS accounting record.

RADIUS Management accounting mode can be configured using ACLI and EDM.

RADIUS interim accounting updates

With RADIUS interim accounting updates, the RADIUS server can make policy decisions based on real-time network attributes sent by the switch. The Framed-IP-Address attribute can help compare Layer 2 and Layer 3 IP addresses in the RADIUS server session database and with support for Dynamic Authorization Extensions to RADIUS (RFC 5176), enable integration with applications that operate with Layer 3 IP addresses only. The Framed-IP-Address attribute will only be populated by the switch if DHCP snooping is enabled.

RADIUS interim accounting updates are disabled by default.

Campus security example

The following figure shows a typical campus configuration using the RADIUS-based and MAC-address-based security features for the Avaya Ethernet Routing Switch 4000.

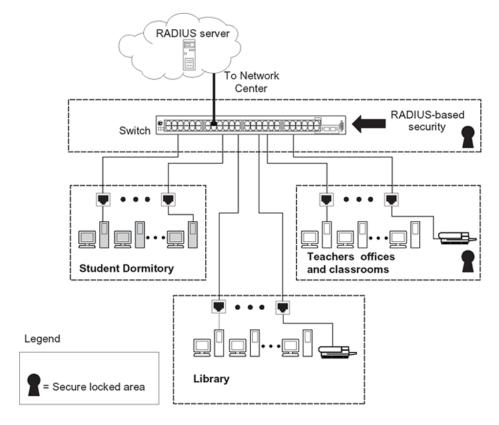


Figure 2: Avaya Ethernet Routing Switch 4000 Series security features

This example is based on the assumption that the teachers' offices, classrooms, and the library are physically secure. The student dormitory can also be physically secure.

In the configuration example, the security measures are implemented in the following locations, as follows:

• The switch

RADIUS-based security limits administrative access to the switch through user authentication. For more information, see RADIUS-based network security on page 21.

MAC address-based security permits up to 448 authorized stations access to one or more switch ports. For more information, see MAC address-based security on page 19.

The switch is in a locked closet, accessible only by authorized Technical Services personnel.

Student dormitory

Dormitory rooms are typically occupied by two students and are prewired with two RJ-45 jacks.

As specified by the MAC address-based security feature, only authorized students can access the switch on the secured ports.

Teachers' offices and classrooms

The PCs that are in the teachers' offices and in the classrooms are assigned MAC address-based security, which is specific for each classroom and office location.

The security feature logically locks each wall jack to the specified station, thereby preventing unauthorized access to the switch.

The printer is assigned to a single station and has full bandwidth on that switch port.

This scenario is based on the assumption that all PCs are password protected and that the classrooms and offices are physically secured.

Library

The PCs can connect to any wall jack in the room. However, the printer is assigned to a single station with full bandwidth to that port.

This scenario is based on the assumption that all PCs are password protected and that access to the library is physically secured.

EAPOL-based security

The switch uses an encapsulation mechanism, Extensible Authentication Protocol over LAN (EAPOL), to provide security. This concept uses the Extensible Authentication Protocol (EAP) as described in the IEEE 802.1X so you can set up network access control on internal LANs. EAPOL filters traffic based on source MAC address. An unauthorized client, whether EAPOL or NonEAPOL, can receive traffic from authorized clients.

With EAP, the exchange of authentication information can occur between end stations or servers connected to the switch and an authentication server, such as a RADIUS server. The EAPOL-based security feature operates in conjunction with a RADIUS-based server to extend the benefits of remote authentication to internal LAN clients.

The following example illustrates how the Avaya Ethernet Routing Switch 4000 Series, configured with the EAPOL-based security feature, reacts to a new network connection:

- The switch detects a new connection on a port.
 - The switch requests a user ID from the new client.

- EAPOL encapsulates the user ID and forwards it to the RADIUS server.
- The RADIUS server responds with a request for the user's password.
- The new client forwards a password to the switch within the EAPOL packet.
 - The switch relays the EAPOL packet to the RADIUS server.
 - If the RADIUS server validates the password, the new client can access the switch and the network.

Some components and terms used with EAPOL-based security include the following:

- Supplicant: The device that applies for access to the network.
- Authenticator: The software that authorizes a supplicant attached to the other end of a LAN segment. For SHSA mode, the authenticator sends the EAP Request Identity to the supplicant using the MAC destination address—the EAP MAC address (01:80:C2:00:00:03). For MHMA mode, the authenticator sends the EAP Request Identity to the supplicant using the MAC destination address—the supplicant MAC address.
- Authentication Server: The RADIUS server that provides authorization services to the Authenticator.
- Port Access Entity (PAE): The software entity that is associated with each port that supports the Authenticator or Supplicant functionality.
- Controlled Port: A switch port with EAPOL-based security enabled.

The Authenticator communicates with the Supplicant using an encapsulation mechanism known as EAP over LANs (EAPOL).

The Authenticator PAE encapsulates the EAP message into a RADIUS packet before sending the packet to the Authentication Server. The Authenticator facilitates the authentication exchanges that occur between the Supplicant and the Authentication Server by encapsulating the EAP message to make it suitable for the packet destination.

The Authenticator PAE functionality is implemented for each controlled port on the switch. At system initialization, or when a supplicant is initially connected to the switch controlled port, the controlled port state is set to Unauthorized. During this time, the authenticator processes EAP packets.

When the Authentication server returns a success or failure message, the controlled port state changes accordingly. If the authorization succeeds, the controlled port operational state is Authorized. The blocked traffic direction on the controlled port depends on the Operational Traffic Control field value in the EAPOL Security Configuration screen.

The Operational Traffic Control field can have one of the following two values:

- Incoming and Outgoing: If the controlled port is unauthorized, frames are not transmitted through the port. All frames received on the controlled port are discarded.
- Incoming: If the controlled port is unauthorized, frames received on the port are discarded, but the transmit frames are forwarded through the port.

EAPOL dynamic VLAN assignment

If you allow EAPOL-based security on an authorized port, the EAPOL feature dynamically changes the port VLAN configuration and assigns a new VLAN. The new VLAN configuration values apply according to previously stored parameters in the Authentication server.

The following VLAN configuration values are affected:

- port membership
- PVID
- port priority

When you disable EAPOL-based security on a port that was previously authorized, the port VLAN configuration values are restored directly from the switch nonvolatile random access memory (NVRAM).

The following exceptions apply to dynamic VLAN assignments:

- The dynamic VLAN configuration values assigned by EAPOL are not stored in the switch NVRAM.
- If an EAPOL connection is active on a port, then changes to the port membership, PVID, or port priority are not saved to NVRAM.
- When you enable EAPOL on a port, and you configure values other than VLAN configuration values, these values are applied and stored in NVRAM.

You can set up your Authentication server (RADIUS server) for EAPOL dynamic VLAN assignments. With the Authentication server, you can configure user-specific settings for VLAN memberships and port priority.

When you log on to a system that is configured for EAPOL authentication, the Authentication server recognizes your user ID and notifies the switch to assign preconfigured (user-specific) VLAN membership and port priorities to the switch. The configuration settings are based on configuration parameters customized for your user ID and previously stored on the Authentication server.

To set up the Authentication server, set the following return list attributes for all user configurations. For more information, see your Authentication server documentation.

- VLAN membership attributes (automatically configures PVID)
 - Tunnel-Type: value 13, Tunnel-Type-VLAN
 - Tunnel-Medium-Type: value 6, Tunnel-Medium-Type-802

- Tunnel-Private-Group-ID: ASCII value 1 to 4094 or an ASCII string starting with a non-numeric character (this value identifies the specified VLAN)
- Port priority (vendor-specific) attributes
 - Vendor Id: value 562, Avaya vendor ID
 - Attribute Number: value 1, Port Priority
 - Attribute Value: value 0 (zero) to 7 (this value indicates the port priority value assigned to the specified user)

System requirements

The following are the minimum system requirements for the EAPOL-based security feature:

- at least one switch
- RADIUS server (Microsoft Windows 2003 Server or other RADIUS server with EAPOL support)
- client software that supports EAPOL (Microsoft Windows XP Client)

You must configure the Avaya devices with the RADIUS server IP address for the Primary RADIUS server.

EAPOL-based security configuration rules

The following configuration rules apply to the Avaya Ethernet Routing Switch 4000 Series when you use EAPOL-based security:

- Before configuring your you must configure the Primary RADIUS Server and Shared Secret fields.
- You cannot configure EAPOL-based security on ports that are currently configured for
 - shared segments
 - MultiLink Trunking
 - MAC-address-based security
 - IGMP (Static Router Ports)
 - port mirroring
- With EAPOL SHSA (the simplest EAPOL port operating mode), you can connect only one client on each port that is configured for EAPOL-based security. If you attempt to add additional clients to a port, that port state changes to Unauthorized.

RADIUS-based security uses the RADIUS protocol to authenticate local console, Telnet, and EAPOL-authorized logons.

December 2011 Configuration — Security

Advanced EAPOL features

EAPOL supports the following advanced features:

- Single Host with Single Authentication (SHSA) and Guest VLAN.
- Multihost (MH) support:
 - Multiple Host with Multiple Authentication (MHMA).
 - Non EAP hosts on EAP-enabled ports.
 - Multiple Host with Single Authentication (MHSA).
- 802.1X or non-EAP and Guest VLAN on the same port.
- 802.1X or non-EAP with Fail Open VLAN.
- 802.1X or non-EAP Last Assigned RADIUS VLAN.
- 802.1X or non-EAP with VLAN names.

Support exists only for untagged traffic when you use the multihost features.

Client reauthentication

If your system is configured for SHSA and MHSA, when clients are reauthenticated the system moves them into the new RADIUS-assigned VLAN, if the new RADIUS-assigned VLAN differs from the current VLAN.

If you use RADIUS-assigned VLAN in multi-host mode and, if the RADIUS-assigned VLAN of the first authenticated clients is invalid, the switch ignores those RADIUS VLAN assignments and assigns the port to the first valid RADIUS VLAN assignment if Last RADIUS Assigned VLAN is disabled. If Last RADIUS Assigned VLAN is enabled, the port remains assigned to the last valid RADIUS Assigned VLAN. If your system is configured for MHMA, when clients are reauthenticated the system does not move them into the new RADIUS-assigned VLAN.

Single Host with Single Authentication and Guest VLAN

Single Host with Single Authentication (SHSA) support is the default configuration for an EAPenabled port. At any time, only one MAC user can be authenticated on a port, and the port assigned to only one port-based VLAN.

If you configure no guest VLAN, only the particular device or user that completes EAP negotiations on the port can access that port for traffic. Tagged ingress packets are sent to the PVID of that port. The only exceptions are reserved addresses.

You can configure a guest VLAN for non authenticated users to access the port. Any active VLAN can be a guest VLAN.

The following rules apply for SHSA:

- When the port is EAP enabled
 - If Guest VLAN is enabled, the port is placed on a Guest VLAN.
 - PVID of the port = Guest VLAN ID
 - If Guest VLAN is not enabled, the port handles EAPOL packets only until successful authentication.
- During EAP authentication
 - If Guest VLAN is enabled, the port is placed on a Guest VLAN.
 - If Guest VLAN is not enabled, the port handles EAPOL packets only.
- If authentication succeeds

The port is placed on a preconfigured VLAN or a RADIUS-assigned VLAN. Only packets with the authenticated MAC (authMAC) can be on that port. Other packets are dropped.

- If authentication fails
 - If Guest VLAN is enabled, the port is placed on a Guest VLAN.
 - If Guest VLAN is not enabled, the port handles EAPOL packets only.
- Reauthentication can be enabled for the authenticated MAC address. If reauthentication fails, the port is placed back in the Guest VLAN.

The EAP-enabled port belongs to the Guest VLAN, RADIUS-assigned VLAN, or configured VLANs.

Guest VLAN

You can configure a global default Guest VLAN ID for the stack or the switch. Set the VLAN ID as Valid when you configure the switch or the stack.

Guest VLAN support contains the following features:

- Guest VLAN support is available for each port. Guest VLANs can have a valid Guest VLAN ID on each port. If a Guest VLAN ID is not specified for a port, the global default value is used. You cannot enable this feature on a particular port if the global default value or the local Guest VLAN ID is invalid.
- The Guest VLAN chosen must be an active VLAN configured on the switch. EAP registers with the VLAN module, so that it can be recovered if you delete a VLAN.

When a VLAN that is in use by EAP is deleted, the following actions are performed:

- A message is sent to the syslog.

- The port is blocked.
- When an authentication failure occurs, a port is placed back in the Guest VLAN.
- This feature affects ports that have EAP-Auto enabled. Therefore, the port must always be in a forwarding mode. It does not affect ports with administrative state, forceauthorized, or force-unauthorized.
- This feature uses Enterprise Specific Management Information Bases (MIB).
- The Guest VLAN configuration settings are saved across resets.

The EAP enabled port is not moved to the Guest VLAN, if the Guest VLAN and original VLAN are associated with different Spanning Tree Groups. The EAP port does not forward traffic in the guest VLAN or the original VLAN. If EAP authentication succeeds, packets are transmitted properly in the original VLAN.

802.1X or non-EAP and Guest VLAN on the same port

802.1X or non-EAP and Guest VLAN on the same port removes the previous restrictions on configuring the 802.1X and non-EAP function on the same port simultaneously. In the current release, 802.1X functionality supports multiple modes simultaneously on the port allowing Guest VLAN to function along with non-EAP and various 802.1X operational modes.

For example, the switch supports authenticating an IP Phone using non-EAP according to the DHCP signature of the phone. The data VLAN remains in the Guest VLAN until a device on that port is appropriately authenticated using 802.1X and optionally placed in the appropriate RADIUS assigned VLAN.

802.1X or non-EAP with Fail Open VLAN

802.1X or non-EAP with Fail Open VLAN provides network connectivity when the switch cannot connect to the RADIUS server. Every three minutes, the switch verifies whether the RADIUS servers are reachable. If the switch cannot connect to the primary and secondary RADIUS servers, then after a specified number of attempts to restore connectivity, the switch declares the RADIUS servers unreachable.

All authenticated devices move into the configured Fail Open VLAN, when the switch declares the RADIUS servers unreachable. This prevents the clients from being disconnected when the reauthentication timer expires and provides the devices some form of network connectivity. To provide the level of connectivity as required by corporate security policies, configure the Fail Open VLAN within the customer network. For example, the Fail Open VLAN configured to provide access to corporate IT services can be restricted from access to financial and other critical systems. In these situations clients receive a limited level of network connectivity when the RADIUS servers are unreachable rather than receiving no access.

When a switch is operating in the Fail Open mode, which means that the RADIUS servers are unreachable, the switch regularly verifies the connectivity. When the RADIUS servers become

reachable, the clients are reauthenticated and, as appropriate, moved to the assigned VLANs, allowing normal network connectivity to resume.

When a client operates in the Fail Open VLAN, because RADIUS servers are unreachable, any 802.1X logoff messages received from the EAP supplicant are not processed by the switch.

For an EAP or non-EAP enabled port, by default, the Fail Open VLAN feature is disabled. When the RADIUS servers are unreachable, if the Fail Open VLAN is defined, then

- the port becomes a member of both the EAP Fail Open VLAN and EAP Fail Open VolP VLAN
- the switch sets the PVID of the switch port to EAP Fail Open VLAN
- all the EAP-enabled ports move to the Fail Open VLANs across the units in a stack

Important:

When the switch is operating in Fail Open mode, it does not send EAP authentication requests to the RADIUS Server and instead performs a dummy reauthentication of the client within the Fail Open VLAN.

Important:

When the port transitions from normal EAP operation to Fail Open, the end client is not aware that the port has transitioned to a different VLAN. Depending upon the association of the IP addressing scheme to VLANs, it is necessary for the client to obtain a new IP address when transitioning to or from the Fail Open VLAN. An enhancement calls for the port to be administratively turned off, and then back on again when the port transitions between Fail Open VLAN. If the PC is directly connected to the switch, this results in the client automatically refreshing the IP address. If the PC is located behind an IP handset, another switch, or a hub, the client must perform a manual renewal of the IP address.

After the switch accesses the RADIUS server and authentication succeeds, the ports move to the Guest VLAN, or to configured VLANs, and age to allow the authentication of all incoming MAC addresses on the port. If there is at least one authenticated MAC address on the port, it blocks all other unauthenticated MAC addresses on the port. You must turn on the debug counters to track server reachability changes.

Multiple Host with Multiple Authentication

For an EAP-enabled port configured for Multiple Host with Multiple Authentication (MHMA), a finite number of EAP users or devices with unique MAC addresses are allowed on the port.

Each user must complete EAP authentication before the port allows traffic from the corresponding MAC address. Only traffic from the authorized hosts is allowed on that port.

RADIUS-assigned VLAN values are allowed in the MHMA mode. For more information about RADIUS-assigned VLANs in the MHMA mode, see <u>RADIUS-assigned VLAN use in MHMA mode</u> on page 42

40 Configuration — Security December 2011

MHMA support is available for an EAP-enabled port.

The following are some of the concepts associated with MHMA:

· Logical and physical ports

Each unique port and MAC address combination is treated as a logical port. MAX_MAC_PER_PORT defines the maximum number of MAC addresses that can perform EAP authentication on a port. Each logical port is treated as if it is in the SHSA mode.

Indexing for MIBs

Logical ports are indexed by a port and source MAC address (src-mac) combination. Enterprise-specific MIBs are defined for state machine-related MIB information for individual MACs.

Transmitting EAPOL packets

Only unicast packets are sent to a specific port so that the packets reach the correct destination.

Receiving EAPOL packets

The EAPOL packets are directed to the correct logical port for state machine action.

Traffic on an authorized port

Only a set of authorized MAC addresses is allowed access to a port.

MHMA support for EAP clients contains the following features:

- A port remains on the Guest VLAN when no authenticated hosts exist on it. Until the first authenticated host, both EAP and non-EAP clients are allowed on the port.
- After the first successful authentication, only EAPOL packets and data from the authenticated MAC addresses are allowed on a particular port.
- Only a predefined number of authenticated MAC users are allowed on a port.
- RADIUS VLAN assignment is enabled for ports in MHMA mode. Upon successful RADIUS authentication, the port gets a VLAN value in a RADIUS attribute with EAP success. The port is added and the PVID is set to the first such VLAN value from the RADIUS server.
- Configuration of timer parameters is for each physical port, not for each user session. However, the timers are used by the individual sessions on the port.
- Reauthenticate Now, when enabled, causes all sessions on the port to reauthenticate.
- Reauthentication timers are used to determine when a MAC is disconnected so as to enable another MAC to log on to the port.
- Configuration settings are saved across resets.

EAP and non-EAP multiple VLAN capability

With the EAP and non-EAP multiple VLAN capability, you can assign multiple EAP and non-EAP hosts to different VLANs on the same port. Before you can enable or disable the multi-VLAN capability, you must disable EAP globally on the switch.

The support of multiple VLAN functionality is an important option for when you want to configure Guest VLAN in MHMA mode and have multiple devices connected to the port. Using multiple

VLANs simultaneously with EAP or non-EAP, you can assign the port to VLANs based on client returned attributes, and unauthenticated clients can remain in the Guest VLAN when other clients on the port (for example an IP Phone) are authenticated.

When you enable the multiple VLAN feature, the use of 802.1X or non-EAP Last Assigned RADIUS VLAN functionality is redundant and the switch does not permit Last Assigned VLAN to be enabled.

The advantages of the multiple VLAN capability are seen only when you use the use-radiusassigned-vlan option for EAP clients. If you perform Non-EAP MAC RADIUS authentication, then you should use non-eap-use-radius-assigned-vlan. When you use the multiple VLAN capability on a switch, each authenticated client can access the VLAN corresponding to the VLAN RADIUS attribute. If no attribute is received from the RADIUS server, the untagged frames from the authenticated clients will be forwarded in the initial VLAN.

Important:

Avaya recommends that you do not change the multiple VLAN status while Fail Open VLAN is enabled.

RADIUS-assigned VLAN use in MHMA mode

RADIUS-assigned VLAN use in the MHMA mode gives you greater flexibility and a more centralized assignment. This feature is useful in an IP Phone set up also, where the phone traffic is directed to the Voice over IP (VoIP) VLAN and the PC Data traffic is directed to the assigned VLAN. When RADIUS-assigned VLAN values are allowed for the port, the first authenticated EAP MAC address cannot have a RADIUS-assigned VLAN value; at this point. the port is moved to a configured VLAN. A later authenticated EAP MAC address (for instance. the third one on the port) receives a RADIUS-assigned VLAN value. This port is then added, and the port VLAN ID (PVID) is set to the first such VLAN value from the RADIUS server. The VLAN remains the same irrespective of which MAC leaves, and a change in the VLAN takes place only when there are no authenticated hosts on the port.

In the 5.3 Release, the 802.1X or non-EAP Last Assigned RADIUS VLAN functionality allows vou to configure the switch such that the last received radius-vlan assignment is always honoured on a port. For more information, see 802.1X or non-EAP Last Assigned RADIUS VLAN on page 45.

Important:

All VLAN movement in an EAP-enabled state is dynamic and is not saved across resets.

Consider the following setup in Figure 3: RADIUS-assigned VLAN in MHMA mode on page 43:

- Ethernet Routing Switch 4550T stand-alone switch with default settings
- IP Phone connected to the switch in port 1

- PC connected to the PC port of the IP Phone
- RADIUS server connected to switch port 24 (directly or through a network)

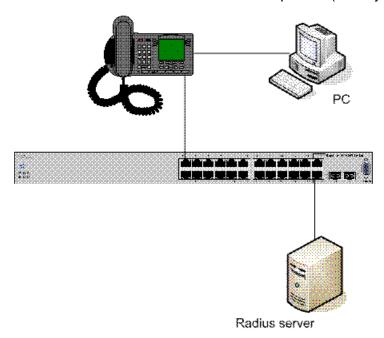


Figure 3: RADIUS-assigned VLAN in MHMA mode

EAP multihost mode needs to be configured on the switch (global settings and local settings for switch port 1/1):

- 1. Put a valid IP address on the switch.
- 2. Configure at least the Primary RADIUS server IP address (you can also fill the IP address of the Secondary one).
- 3. Enable EAP globally.
- 4. Enable EAP (status Auto) for switch port 1.
- 5. Enable EAP multihost mode for switch port 1.

The EAP clients will authenticate using MD5 credentials, but you can use other available types of authentication (such as TLS, PEAP-MSCHAPv2, PEAP-TLS, TTLS). The RADIUS server can be properly configured to authenticate the EAP users with at least MD5 authentication.

Non-EAP IP Phone authentication:

This enhancement is useful mainly for the IP Phones that cannot authenticate themselves with EAP. On an EAP capable IP Phone, EAP must be disabled if the user specifically wants to use the non-EAP IP Phone authentication. DHCP must be enabled on the phone, because the switch examines the phone signature in the DHCP Discover packet sent by the phone.

Following are the steps to enable the enhancement:

- 1. Enable non-EAP IP Phone authentication in the Global Configuration mode 4550T(config)#eapol multihost non-eap-phone-enable
- 2. Enable non-EAP IP Phone authentication in the interface mode for switch port 1
 4550T(config-if)#eapol multihost port 1 non-eap-phone-enable

The switch waits for DHCP Discover packets on port 1. After a DHCP Discover packet is received on port 1, the switch looks for the phone signature (for example, Avaya-i2004-A), which can be enclosed in the DHCP Discover packet. If the proper signature is found, the switch registers the MAC address of the IP Phone as an authenticated MAC address and lets the phone traffic pass through the port.

By default, the non-EAP IP Phone authentication enhancement is disabled in both Global Configuration and Interface Configuration modes, for all switch ports.

Unicast EAP Requests in MHMA

When you enable this enhancement, the switch no longer periodically queries the connected MAC addresses to a port with EAP Request Identity packets. The clients can initiate for themselves the EAP authentication sessions (send EAP Start packets to the switch). Not all EAP supplicants can support this operating mode.

Following are the steps to enable the enhancement:

1. enable unicast EAP requests in the Global Configuration mode:

```
4550T(config)#eapol multihost eap-packet-mode unicast
```

2. enable Unicast EAP Requests in the interface mode for switch port 1:

```
4550T(config-if)#eapol multihost port 1 eap-packet-mode unicast
```

By default, multicast mode is selected in both Global Configuration and Interface Configuration modes, for all switch ports. You must set the EAP packet mode to Unicast in both global and Interface Configuration modes for a switch port, to enable this feature. Other combinations (for example, multicast in global, unicast in the interface mode) will select the multicast operating mode.

RADIUS Assigned VLANs in MHMA

This enhancement is basically an extension of the RADIUS assigned VLANs feature in SHSA mode; you can move a port to a specific VLAN even if that switch port operates in EAP MHMA mode.

This enhancement has one restriction. If you have multiple EAP clients authenticating on a switch port (as you normally can in MHMA mode), each one configured with a different VLAN ID on the RADIUS server, the switch moves the port to the VLAN of the first authenticated client. In this way, you can avoid a permanent bounce between different VLANs of the switch port.

Enable the enhancement by following these steps:

1. Enable RADIUS assigned VLANs in the Global Configuration mode:

```
4550T(config)#eapol multihost use-radius-assigned-vlan
```

2. Enable RADIUS assigned VLANs in the interface mode for switch port 1:

```
4550T(config-if)#eapol multihost port 1 use-radius-assigned-
vlan
```

By default, the RADIUS assigned VLANs in the MHMA enhancement is disabled in the Global Configuration and Interface Configuration modes, for all switch ports.

Multiple Hosts with Multiple VLANs

With the Multiple Hosts with Multiple VLANs (MHMV) feature, you can assign multiple authenticated devices to different VLANs on the same EAP-enabled or non-EAP-enabled port, using device MAC addresses.

Benefits of using MHMV are:

- Using RADIUS VLAN attributes, different clients can access different VLANS.
- Unauthenticated clients can retain Guest VLAN access.

3 Note:

MHMV is supported only on EAP-enabled or non-EAP-enabled ports configured for Multiple Host with Multiple Authentication (MHMA).

With software releases prior to Release 5.5, the functions of MHMV and Fail Open VLAN were mutually exclusive of each other.

802.1X or non-EAP Last Assigned RADIUS VLAN

The 802.1X or non-EAP Last Assigned RADIUS VLAN functionality allows you to configure the switch such that the last received RADIUS VLAN assignment is always honoured on a port. In the previous release, if you enable the use-radius-assigned-vlan option only the first valid RADIUS-assigned VLAN (by EAP or non-EAP authentication) on that port is honoured. The subsequent RADIUS VLAN assignments are ignored for any user on that port. The last RADIUS-assigned VLAN (either EAP or non-EAP) determines the VLAN membership and PVID replacing any previous RADIU-assigned VLAN values for that port.

The functional examples are as follows:

- Multiple EAP and non-EAP clients authenticate on a port.
- The EAP clients can reauthenticate; the non-EAP clients age out and reauthenticate. The Last Assigned VLAN setting for either EAP or non-EAP clients is always applied to the

port when you enable the Last Assigned VLAN. This can result in the port moving unexpectedly between VLANs.

The feature supports ACLI, SNMP, and ACG interfaces. Weber is not available for this function.

ACLI commands

For more information on the commands and procedures for configuring the most recent RADIUS-VLAN assignments on a port, see 802.1X or non-EAP Last Assigned RADIUS VLAN configuration using ACLI on page 132.

802.1X or non-EAP with VLAN names

The 802.1X or non-EAP with VLAN names functionality enhances the Avaya Ethernet Routing Switch 4000 to match RADIUS assigned VLANs based on either the VLAN number or a VLAN name. Prior to this release, a match occurred based on the VLAN number of the Tunnel-Private-Group-Id attribute returned by the RADIUS server. Now you can use the VLAN number or names for configuring VLAN membership of EAP or non-EAP clients.

The Tunnel-Private-Group-Id attribute is converted to either a VLAN ID or VLAN name, based on the first character of the returned attribute. If the first character in the attribute is a number, the switch processes it as a VLAN number. In other cases, the attribute is taken as a VLAN and matched on the full string. The maximum length of a VLAN name can be 16 characters. You do not have to configure this feature as this mode is always enabled.

Non EAP hosts on EAP-enabled ports

For an EAPOL-enabled port configured for non-EAPOL host support, a finite number of non-EAPOL users or devices with unique MAC addresses are allowed access to the port.

Allow the following types of non-EAPOL users:

- Hosts that match entries in a local list of allowed MAC addresses. You can specify the allowed MAC addresses when you configure the port to allow non-EAPOL access. These hosts are allowed on the port without authentication.
- Non-EAPOL hosts whose MAC addresses are authenticated by RADIUS.
- IP Phones configured for Auto-Detection and Auto-Configuration (ADAC).
- Avaya IP Phones.

Support for non-EAPOL hosts on EAPOL-enabled ports is primarily intended to accommodate printers and other passive devices sharing a hub with EAPOL clients.

December 2011 46 Configuration — Security

Support for non-EAPOL hosts on EAPOL-enabled ports includes the following features:

- EAPOL and authenticated non-EAPOL clients are allowed on the port at the same time. Authenticated non-EAPOL clients are hosts that satisfy one of the following criteria:
 - Host MAC address matches an entry in an allowed list preconfigured for the port.
 - Host MAC address is authenticated by RADIUS.
- Non-EAPOL hosts are allowed even if no authenticated EAPOL hosts exist on the port.
- When a new host is seen on the port, non-EAPOL authentication is performed as follows:
 - If the MAC address matches an entry in the preconfigured allowed MAC list, the host is allowed.
 - If the MAC address does not match an entry in the preconfigured allowed MAC list, the switch generates a <username, password> pair, which it forwards to the network RADIUS server for authentication. For more information about the generated credentials, see Non-EAPOL MAC RADIUS authentication on page 48.
 - If RADIUS authenticates the MAC address, the host is allowed.
 - If the MAC address does not match an entry in the preconfigured allowed MAC list and fails RADIUS authentication, the host is counted as an intruder. Data packets from that MAC address are dropped.

EAPOL authentication is not affected.

- For RADIUS-authenticated non-EAPOL hosts, VLAN information from RADIUS is ignored. Upon successful authentication, untagged traffic follows the PVID of the port.
- Non-EAPOL hosts continue to be allowed on the port until the maximum number of non-EAPOL hosts is reached. You can configure the maximum number of non-EAPOL hosts allowed.
- After the maximum number of allowed non-EAPOL hosts has been reached, data packets received from additional non-EAPOL hosts are dropped. The additional non-EAPOL hosts are counted as intruders. New EAPOL hosts can continue to negotiate EAPOL authentication.
- When the intruder count reaches 32, the system generates a SNMP trap and system message. The port shuts down, and you must reset the port administrative status (from force-unauthorized to auto) to allow new EAPOL and non-EAPOL negotiations on the port. The intruder counter is reset to zero.
- The feature uses enterprise-specific MIBs.
- Configuration settings are saved across resets.

For more information about configuring non-EAPOL host support, see <u>Configuring support for non-EAPOL hosts on EAPOL-enabled ports</u> on page 148.

Non-EAPOL MAC RADIUS authentication

For RADIUS authentication of a non-EAPOL host MAC address, the switch generates a <username, password> pair as follows:

- The username is the non-EAPOL MAC address in string format.
- The password is a string that combines the MAC address, switch IP address, unit, and port.

| Important:

Follow these Global Configuration examples to select a password format that combines one or more of these three elements:

password = 010010011253..0305 (when the switch IP address, unit and port are used).

password = 010010011253.. (when only the switch IP address is used).

password= 000011220001 (when only the user's MAC address is used).

The following example illustrates the <username, password> pair format:

```
switch IP address = 10.10.11.253
non-EAP host MAC address = 00 C0 C1 C2 C3 C4
unit = 3 port = 25
```

- username = 00C0C1C2C3C4
- password = 010010011253.00C0C1C2C3C4.0325

Multiple Host with Single Authentication

Multiple Host with Single Authentication (MHSA) is a more restrictive implementation of support for non-EAPOL hosts on EAPOL-enabled ports.

For an EAPOL-enabled port configured for MHSA, one EAPOL user must successfully authenticate before a finite number of non-EAPOL users or devices with unique MAC addresses can access the port without authentication.

The MHSA feature is intended primarily to accommodate printers and other passive devices sharing a hub with EAPOL clients.

MHSA support is on a port by port basis for an EAPOL-enabled port.

Configuration — Security

Comments? infodev@avaya.com

MHSA support for non-EAPOL hosts includes the following features:

- The port remains unauthorized when no authenticated hosts exist on it. Before the first successful authentication occurs, both EAPOL and non-EAPOL clients are allowed on the port to negotiate access, but only one host can negotiate EAPOL authentication.
- After the first EAPOL client successfully authenticates, EAPOL packets and data from that client are allowed on the port. No other clients are allowed to negotiate EAPOL authentication. The port is set to preconfigured VLAN assignments and priority values or to values obtained from RADIUS for the authenticated user.
- After the first successful authentication, new hosts, up to a configured maximum number, are automatically allowed on the port, without authentication.
- After the maximum number of allowed non-EAPOL hosts has been reached, data packets received from additional non-EAPOL hosts are dropped. The additional non-EAPOL hosts are counted as intruders.
- When the intruder count reaches 32 or more configured NEAP users, a SNMP trap and system message are generated. The port is set to force-unauthorized and you must reset the port to auto to allow new EAPOL negotiations on the port. The intruder counter is reset to zero.
- If the EAPOL-authenticated user logs off, the port returns to an unauthorized state and non-EAPOL hosts are not allowed.
- This feature uses enterprise-specific MIBs.

The maximum value for the maximum number of non-EAPOL hosts allowed on an MHSA-enabled port is 32. However, Avaya expects that the usual maximum value configured for a port is 2. This translates to around 200 for a box and 800 for a stack.

Non-EAP client re-authentication

The Non-EAP (NEAP) client re-authentication feature supports the re-authentication of non-EAP clients at defined intervals.

You can enable or disable NEAP client re-authentication globally for the switch, but the time interval for NEAP client re-authentication is determined by the value you set for EAP client re-authentication, at the port level. For information about setting the EAP client re-authentication timer, see either of the following sections:

- Configuring port-based EAPOL using EDM
- eapol command for modifying parameters

With the exception of the re-authentication interval timer, NEAP client re-authentication and EAP client re-authentication function independent of each other.

When you enable NEAP client re-authentication, an authenticated NEAP client is only removed from the authenticated client list if you remove the client account from the RADIUS server, or if you clear the NEAP authenticated client from the switch.

If an authenticated NEAP client does not generate traffic on the network, the system removes the MAC address for that client from the MAC address table when MAC ages out. Although the client MAC address is not displayed in MAC Address table, the client can appear as an authenticated client. If NEAP client re-authentication is enabled, the idle NEAP authenticated client is not removed from the authenticated client list when MAC ages out.

When you disable NEAP client re-authentication, the switch cancels authentication for all authenticated NEAP clients, and automatically clears the MAC addresses of the NEAP clients from the forwarding database.

If you disconnect an authenticated NEAP client from a switch port, or if the port shuts down, the switch clears all NEAP clients authenticated on that port.

You cannot authenticate one NEAP client on more than one switch port simultaneously. If you connect NEAP clients to a switch port through a hub, those clients are authenticated on that switch port. If you disconnect a NEAP client from the hub and connect it directly to another switch port, the client is authenticated on the new port and its authentication is removed from the port to which the hub is connected.

If NEAP client re-authentication is enabled and the RADIUS server that the switch is connected to becomes unavailable, the system clears all authenticated NEAP and removes those clients from the switch NEAP client list.

For NEAP client re-authentication to function properly, you must enable the following features:

- MHMA at the port level
- RADIUS for non-EAP clients globally
- RADIUS for non-EAP clients at the port level

50

You do not have to enable the above features before you can enable or disable NEAP client re-authentication globally for the switch.

Summary of multiple host access on EAPOL-enabled ports

The following table summarizes the order of the checks performed by the switch when a new host is seen on an EAPOL multihost port. If all the checks fail, the new host is counted as an intruder.

Table 3: EAPOL Multihost access

Scenario	Action
No authenticated hosts on the port.	Allow
Guest VLAN is enabled.	
New host MAC address is authenticated.	Allow

Configuration — Security December 2011

Scenario	Action
Port is configured for MHSA.	Allow
One EAPOL-authenticated host exists on the port.	
The number of existing non-EAPOL hosts on the port is less than the configured maximum number allowed.	
Host is an IP Phone.	Allow
Port is configured for ADAC (allowed PhoneMac, not callSvr, not Uplink).	
Port is configured for non-EAPOL host support.	Allow
Host MAC address is in a preconfigured list of allowed MAC addresses.	
The number of existing non-EAPOL hosts on the port is less than the configured maximum number allowed.	
Port is configured for non-EAPOL host support.	Disallow pending
Host MAC address is authenticated by RADIUS.	RADIUS authentication; allow
The number of existing non-EAPOL hosts on the port is less than the configured maximum number allowed.	when authentication succeeds.

802.1X authentication and Wake on LAN

WoL networking standard enables remotely powering-up a shutdown computer from a sleeping state. In this process, the computer is shutdown with power reserved for the network card. A packet known as Magic Packet is broadcast on the local LAN or subnet. The network card on receiving the Magic Packet verifies the information. If the information is valid, the network card powers-up the shutdown computer.

The WoL Magic Packet is a broadcast frame sent over a variety of connectionless protocols like UDP and IPX. The most commonly used connectionless protocol is UDP. The Magic Packet contains data that is a defined constant represented in hexadecimal as FF:FF:FF:FF:FF; followed by 16 repetitions of the target computer's MAC address and possibly by a four or six byte password.

If you implement enhanced network security using 802.1X, the transmission of Magic Packets to sleeping or unauthorized network devices is blocked. An interface specific 802.1X feature known as traffic-control can be used to address this requirement of supporting both WoL and 802.1X Authentication simultaneously. The default mode of traffic-control operation blocks both ingress and egress unauthenticated traffic on an 802.1X port. Setting the traffic control mode to in enables the transmission of Magic Packets to sleeping or unauthenticated devices. This mode allows any network control traffic, such as a WoL Magic Packet to be sent to a workstation irrespective of the authentication or sleep status.

If a PC client is assigned to a VLAN based on a previous RADIUS Assigned VLAN, when the client goes into sleep or hibernation mode it reverts to either the default port-based VLAN or Guest VLAN configured for that port. So, the WoL Magic Packet must be sent to the default VLAN or Guest VLAN.

EAP (802.1X) accounting

EAP accounting provides RADIUS accounting for EAP-authenticated clients in the network.

The RADIUS accounting protocol is defined in RFC 2866.

RADIUS accounting in the current Avaya Ethernet Routing Switch 4000 Series implementation utilizes the same RADIUS server used for RADIUS authentication.

By default, the RADIUS accounting UDP port is the RADIUS authentication port + 1. Beginning with Release 5.5, you can configure RADIUS accounting separately.

Non-EAP accounting

Beginning with Release 5.5, EAP (802.1X) accounting is extended to non-EAP (NEAP) clients.

If you configure EAP clients and non-EAP clients on different servers, the system directs accounting messages to the appropriate EAP and non-EAP servers.

The maximum number of clients for NEAP accounting permitted on a switch port is limited to the maximum number of configurable NEAP clients on the port (32).

The maximum number of clients for NEAP accounting permitted on a standalone switch or a stack is 384.

Because the switch can only report statistics for individual ports, NEAP accounting information for MultiHost modes reflects the total network activity on a port.

NEAP accounting supports the following authentication methods:

- IP phone DHCP signature authentication
- ADAC authentication
- MHSA NEAP authentication
- RADIUS authentication

December 2011 52 Configuration — Security

Feature operation

RADIUS accounting logs all of the activity, of each remote user in a session on the centralized RADIUS accounting server.

Session IDs for each RADIUS account are generated as 12-character strings. The first four characters in the string form a random number in hexadecimal format. The last eight characters in the string indicate, in hexadecimal format, the number of user sessions started since reboot.

The Network Access Server (NAS) IP address for a session is the IP address of the switch management VLAN.

The following table summarizes the events and associated accounting information logged at the RADIUS accounting server.

Table 4: Accounting events and logged information

Event	Accounting information logged at server
Accounting is turned on at the router	Accounting on request: NAS IP address
Accounting is turned off at the router	Accounting off request: NAS IP address
User logs on	Account start request:
	NAS IP address
	NAS port
	Account session ID
	Account status type
	User name
User logs off or port is forced to unauthorized state	Account stop request:
	NAS IP address
	NAS port
	Account session ID
	Account status type
	User name
	Account session time
	Account terminate cause
	Input octet count for the session*
	Output octet count for the session*

Event	Accounting information logged at server
	• Input packet count for the session*
	Output packet count for the session*
	Note:
	Octet and packet counts are by port and therefore provide useful information only when ports operate in the SHSA mode.

The following table summarizes the accounting termination causes supported.

Table 5: Supported Account Terminate causes

Cause	Cause ID	When logged at server
ACCT_TERM_USER_REQUEST	1	on User LogOff
ACCT_TERM_LOST_CARRIER	2	on Port Link Down/Failure
ACCT_TERM_ADMIN_RESET	6	on Authorised to ForceUnAuthorised
ACCT_TERM_SUPP_RESTART	19	on EapStart on Authenticated Port
ACCT_TERM_REAUTH_FAIL	20	on ReAuth Failure
ACCT_TERM_PORT_INIT	21	on Port ReInitialization
ACCT_TERM_PORT_ADMIN_DISABLE	22	on Port Administratively Shutdown

802.1X dynamic authorization extension (RFC 3576)

With 802.1X dynamic authorization extension (RFC 3576), you can enable a third party device to dynamically change VLANs on switches or close user sessions.

The 802.1X dynamic authorization extension devices include the following:

- Network Access Server (NAS) the Avaya Ethernet Routing Switch 4000 that authenticates each 802.1X client at a RADIUS server.
- RADIUS server sends disconnect and Change of Authorization (CoA) requests to the NAS. A CoA command modifies user session authorization attributes, and a disconnect command ends a user session.

Configuration — Security December 2011

Important:

The term *RADIUS server*, which designates the device that sends the requests, is replaced in RFC 5176 with the term *Dynamic Authorization Client (DAC)*. The NAS is the Dynamic Authorization Server (DAS).

• 802.1X client — the device that requires authentication and uses the Avaya Ethernet Routing Switch 4000 services.

Important:

Requests from the RADIUS server to the NAS must include at least one NAS identification attribute and one session identification attribute.

An Avaya Ethernet Routing Switch 4000 can receive disconnect or CoA commands in the following conditions:

- a user authenticated session exists on a port (one user session for single-host configuration or multiple user sessions for Multihost configuration)
- the port maintains the original VLAN membership (Guest VLAN and RADIUS VLAN configurations)
- the port is added to a RADIUS-assigned VLAN (port VLAN ID (PVID) is the RADIUSassigned VLAN ID)

802.1X dynamic authorization extension (RFC 3576) applies only to Extensible Authentication Protocol (EAP) clients and does not impact non-EAP clients.

802.1X dynamic authorization extension supports the following configured features:

- Guest VLAN
- RADIUS VLAN for EAP clients
- RADIUS VLAN for non-EAP clients

802.1X dynamic authorization extension functions when either of the RADIUS VLAN assignment features are active on a port.

802.1X dynamic authorization extension functions with SHSA, MHMA, and MHSA port operating modes.

The following authorization considerations apply:

- Enable only used servers to prevent receiving and processing requests from servers not trusted.
- The requirements for the shared secret between the NAS and the RADIUS server are the same as those for a well chosen password.
- If user identity is essential, do not use specific user identification attributes as the user identity. Use attributes that can identify the session without disclosing user identification attributes, such as port or calling-station-id session identification attributes.

To enable the 802.1X dynamic authorization extension feature on the Avaya Ethernet Routing Switch 4000, you must do the following:

- Enable EAP globally.
- Enable EAP on each applicable port.
- Enable the dynamic authorization extensions commands globally.
- Enable the dynamic authorization extensions commands on each applicable port.

Important:

The switch ignores disconnect or CoA commands if the commands address a port on which 802.1X dynamic authorization extension is not enabled.

While listening for request traffic from the DAC, the NAS can copy and send a UDP packet, which can disconnect a user. Avaya recommends that you implement reply protection by including the Event Timestamp attribute in both the request and response. To correctly process the Event Timestamp attribute, you must synchronize the DAC and the NAS (an SNTP server must be used by both the DAC and the NAS).

The DAC must use the source IP address of the RADIUS UDP packet to determine which shared secret to accept for RADIUS requests to be forwarded by a proxy. When a proxy forwards RADIUS requests, the NAS-IP-Address or NAS-IPv6-Address attributes do not match the source IP address observed by the DAC. The DAC cannot resolve the NAS-Identifier attribute, whether a proxy is present or not. The authenticity check performed by the DAC does not verify the NAS identification attributes, and an unauthorized NAS can forge identification attributes and impersonate an authorized NAS in your network.

To prevent these vulnerabilities, Avaya recommends that you configure proxies to confirm that NAS identification attributes match the source IP address of the RADIUS UDP packet.

802.1X dynamic authorization extension complies with the following standards and RFCs:

- IEEE 802.1X standard (EAP)
- RFC 2865-RADIUS
- RFC 3576–Dynamic Authorization Extensions to RADIUS

TACACS+

The Avaya Ethernet Routing Switch 4000 supports the Terminal Access Controller Access Control System plus (TACACS+) client. TACACS+ is a security application implemented as a client/server based protocol that provides centralized validation of users attempting to gain access to a router or network access server.

TACACS+ differs from RADIUS in two important ways:

- TACACS+ is a TCP-based protocol.
- TACACS+ uses full packet encryption, rather than just encrypting the password (RADIUS authentication request).

Configuration — Security December 2011

Important:

TACACS+ encrypts the entire body of the packet but uses a standard TACACS+ header.

TACACS+ separates authentication, authorization, and accounting services. This means that you can selectively implement one or more TACACS+ service.

TACACS+ provides management of users who access the switch through Telnet, serial, and SSH v2 connections. TACACS+ supports users only on ACLI.

Access to SNMP and EDM interface are disabled when TACACS+ is enabled.

For more information about TACACS+, go to the Microsoft Web site: http://www.microsoft.com

Important:

TACACS+ is not compatible with previous versions of TACACS.

TACACS+ architecture

You can configure TACACS+ on the Avaya Ethernet Routing Switch 4000 using the following methods:

- Connect the TACACS+ server through a local interface. Management PCs can reside on an out-of-band management port or serial port, or on the corporate network. The TACACS + server is placed on the corporate network so that it can be routed to the Avaya Ethernet Routing Switch 4000.
- Connect the TACACS+ server through the management interface using an out-of-band management network.

You can configure a secondary TACACS+ server for backup authentication. You specify the primary authentication server when you configure the switch for TACACS+.

Feature operation

During the log on process, the TACACS+ client initiates the TACACS+ authentication session with the server. After successful authentication, if TACACS+ authorization enables, the TACACS+ client initiates the TACACS+ authorization session with the server. After successful authentication, if TACACS+ accounting enables, the TACACS+ client sends accounting information to the TACACS+ server.

TACACS+ authentication

TACACS + authentication offers complete control of authentication through log on and password dialog, and response. The authentication session provides user name and password functionality.

You cannot enable both RADIUS and TACACS+ authentication on the same interface. However, you can enable RADIUS and TACACS+ on different interfaces; for example, RADIUS on the serial connection and TACACS+ on the Telnet connection.

💔 Important:

Prompts for log on and password occur prior to the authentication process. If TACACS+ fails because there are no valid servers, the user name and password are used for the local database. If TACACS+ or the local database return an access denied packet, the authentication process stops. No other authentication methods are attempted.

TACACS+ authorization

The transition from TACACS+ authentication to the authorization phase is transparent to the user. Upon successful completion of the authentication session, an authorization session starts with the authenticated user name. The authorization session provides access level functionality.

With TACACS+ authorization, you can limit the switch commands available to a user. When TACACS+ authorization enables, the NAS uses information retrieved from the user profile. which is located either in the local user database or on the security server, to configure the user session. The user is granted access to a requested command only if the information in the user profile allows it.

TACACS+ authorization is not mandatory for all privilege levels.

After the NAS requests authorization, the entire command is sent to the TACACS+ daemon for authorization. You preconfigure command authorization on the TACACS+ server by specifying a list of regular expressions that match command arguments, and associating each command with an action to deny or permit. For more information about the configuration required on the TACACS+ server, see TACACS+ server configuration example on page 59.

Authorization is recursive over groups. If you place a user in a group, the daemon looks in the group for authorization parameters if it cannot find them in the user declaration.

If authorization is enabled for a privilege level to which a user is assigned, the TACACS+ server denies commands for which access is not explicitly granted for the specific user or for the user group. On the daemon, ensure you authorize each group to access basic commands such as enable Or logout.

December 2011 Configuration — Security

If the TACACS+ server is not available or an error occurs during the authorization process, the only command available is logout.

In the TACACS+ server configuration, if a privilege level is not defined for a user but the user can execute at least one command, the user defaults to privilege level 0. If all commands are explicitly denied for a user, the user cannot access the switch at all.

Changing privilege levels at runtime

Users can change their privilege levels at runtime by using the following command on the switch:

tacacs switch level [<level>]

[<level>] is the privilege level you want to access.

You are prompted to provide the required password. If you do not specify a level in the command, the administration level (15) is selected by default.

To return to the original privilege level, enter the following command on the switch:

tacacs switch back

To support runtime switching of users to a particular privilege level, you must preconfigure a dummy user for that level on the daemon. The format of the user name for the dummy user is ϵ_n . The privilege level to which you want to allow access is ϵ_n .

For more information about the configuration required on the TACACS+ server, see <u>TACACS</u>+ <u>server configuration example</u> on page 59.

TACACS+ server configuration example

The following figure shows a sample configuration for a Linux TACACS+ server. In this example, the privilege level is defined for the group, not the individual user. The dummy user is created to support runtime switching of privilege levels.

```
#Setting the accounting file on the server and server key
accounting file = /var/log/tac_plus.act
key = n0rt31
#Setting a user account used to log in
user= freddy {
  member=level6
   login=cleartext kruger
   expires="Dec 31 2006
# Setting the runtime switching privilege level
user=Senab85 {
  member=level8
   login=cleartext makemelevel8
#Setting the permissions for each privilege level
group=level6 {
  cmd=enable { permit .* }
   cmd=configure { permit terminal }
   cmd=vlan ( permit .* )
  cmd=interface { permit .* }
  cmd=ip ( permit .* )
  cmd=router ( permit .* )
  cmd=network { permit .* }
  cmd=show ( permit .* )
  cnd=exit ( permit .* )
cnd=logout ( permit .* )
  service=exec (
  priv-lvl=6
```

Figure 4: Example: TACACS+ server configuration

TACACS+ accounting

TACACS+ accounting enables you to track

- the services accessed by users
- the amount of network resources consumed by users

When you enable TACACS+ accounting, the NAS reports user activity to the TACACS+ server in the form of accounting records. Each accounting record contains accounting attribute=value (AV) pairs. The accounting records are stored on the security server. The accounting data can be analyzed for network management and auditing.

TACACS+ accounting provides information about user ACLI terminal sessions within serial, Telnet, or SSH shells (from ACLI management interface).

The accounting record includes the following information:

- user name
- date
- start, stop, and elapsed time
- access server IP address
- reason

You cannot customize the set of events that are monitored and logged by TACACS+ accounting. TACACS+ accounting logs the following events:

- user logon and logoff
- logoff generated because of activity timeout
- unauthorized command
- Telnet session closed (not logged off)

TACACS+ configuration

You can use ACLI to configure TACACS+ on the Avaya Ethernet Routing Switch 4000. You cannot configure TACACS+ using Enterprise Device Manager.

For more information about configuring TACACS+ server information and TACACS+ authentication, authorization, and accounting using ACLI, see TACACS+ configuration using ACLI on page 197.

You can also use the console interface to enable or disable TACACS+ authentication on serial and Telnet connections. On the Console/Comm Port Configuration menu, select Telnet/WEB Switch Password Type or Telnet/WEB Stack Password Type, and select TACACS+ Authentication.

IP Manager

You can limit access to the management features of the Avaya Ethernet Routing Switch 4000 by defining the IP addresses that are allowed access to the switch.

The IP Manager allows you to do the following:

- Define up to 50 lpv4 and 50 lpv6 addresses and masks that can access the switch. No other source IP addresses have management access to the switches.
- Enable or disable access to Telnet, SNMP, SSH, and Web-based management.

You cannot change the Telnet access field if you are connected to the switch through Telnet. Use a non-Telnet connection to modify the Telnet access field.

💔 Important:

To avoid locking a user out of the switch, Avaya recommends that you configure ranges of IP addresses that are allowed to access the switch.

Changes you make to the IP Manager list are applied immediately.

Password security

With unified password authentication you can manage the local authentication type username and password for a switch, whether it is part of a stack or a standalone unit.

For a stack environment, the local username and password authentication is applied universally across all switches in a stack.

If you insert a standalone switch with authentication credentials and mode already configured into an existing stack, both authentication credentials and mode of stack base unit are applied to the newly inserted switch. This maintains unified authentication management throughout the stack.

If you remove a switch from a stack to have it function as a standalone unit, that switch retains the unified stack authentication credentials until you manually change the credentials.

Switch authentication is identical to stack authentication except when RADIUS or TACACS+ authentication is used for the stack and there is no IP address configured for one or more of the stack units. In this case, the stack authentication type is set to RADIUS or TACACS+, the authentication type is automatically changed to "Local" for the units without IP addresses configured, and log messages are generated.

You can apply the following security methods to manage passwords for serial, Web, or Telnet access to a switch:

- local—uses the locally defined password
- none—disables the password
- RADIUS—uses RADIUS password authentication
- TACACS+—uses TACACS+ authentication, authorization, and accounting (AAA) services

Password length and valid characters

Valid passwords are from 10 to 15 characters long. The password must contain a minimum of the following:

- two lowercase letters
- two capital letters
- two numbers
- two special symbols, such as !@#\$%^&*()

The password is case-sensitive.

December 2011 Configuration — Security

Password retry

If the user fails to provide the correct password after a number of consecutive retries, the switch resets the log-on process. You can configure the number of retries, using ACLI. The default is three. For more information, see Configuring the number of retries on page 209.

Password history

You can configure the Avaya Ethernet Routing Switch 4000 to keep a maximum history of the last ten passwords. If you set the password for the fourth time and the history size is set to 3, you can reuse the password that you used the first time. You cannot reuse a password stored in history.

Password display

The password is not displayed as clear text. Each character of the password is substituted with an asterisk (*).

Password verification

When you provide a new password, you must confirm it by retyping the password. If the two passwords do not match, the password update process fails. In this case, you must try to update the password once again. No limit exists on the number of times you are allowed to update the password.

Password aging time

Passwords expire after a specified aging period. The aging period is configurable, with a range of 1 day to approximately 7.5 years (2730 days). The default is 180 days. When a password has aged out, the user is prompted to create a new password. Only users with a valid Read-Write (RW) password can create a new RW password or Read-Only (RO) password.

Read-Only and Read-Write passwords

The RO and RW passwords cannot be the same.

Default password and default password security

For the non-SSH image, the default password for RO is user and secure for RW. For the SSH software image, the default password for RO is userpasswd and securepasswd for RW.

Password security enabled or disabled

By default, password security is disabled for the non-SSH software image and enabled for the SSH software image.

You can enable password security from ACLI only. When it is enabled, the following happens:

- Current passwords remain unchanged if they meet the required specifications. If they do not meet the required specifications, the user is prompted to change them to passwords that do meet the requirements.
- An empty password history bank is established. The password bank stores three used passwords.
- Password verification is required.

You can enable password security from ACLI only. When it is disabled, the following happens:

- Current passwords remain valid.
- Password history bank is removed.
- Password verification is not required.

Password security commands

For more information about ACLI commands to enable or disable password security, see Configuring password security on page 208.

Password security features and requirements

The following table describes the password security features and requirements in place when you enable password security.

Table 6: Password security features and requirements summary

Feature requirement	Description
Password composition	The password must contain a minimum of two of each of the following types of characters: lowercase letters,

December 2011 Configuration — Security

Feature requirement	Description
	capital letters, numbers, and special symbols such as ! @#\$%^&*().
Password length	The password must consist of between 10 and 15 characters.
Login attempts	The switch allows only a specified maximum number of consecutive failed log on attempts. The number of allowed retries is configurable. The default is three.
Password history	The previous three passwords used are saved on the switch and cannot be reused until they pass out of the history table.
Password update verification	Password change must be verified by typing the new password twice.
Password aging time	Passwords expire after a specified period. The aging time is configurable. The default is 180 days.
Password display masking	When a password appears or is entered in ACLI, each character of the password is displayed as an asterisk (*).
Password security factory default	By default, password security is enabled on the SSH software image and disabled on the non-SSH software image.

ACLI audit

ACLI audit provides a means for tracking ACLI commands.

A special area of flash memory reserved for ACLI audit stores the command history. Access to this area is read-only. When you enable remote logging, the audit message is also forwarded to a remote syslog server, no matter the logging level.

Every time you issue a ACLI command, the switch generates an audit message. Each log entry consists of the following information:

- timestamp
- fixed priority setting of 30 (= informational message)
- command source
 - serial console and the unit connected
 - Telnet or SSH connection and the IP address
- command status (success or failure)
- ACLI command itself

By default ACLI audit is enabled. You can disable the audit log that stops log messages from being written to the FLASH memory and the syslog server, if configured.

Erasable ACLI audit log

You can erase the contents of the CLI audit log on a switch running the standard software image, should circumstances arise that require the log contents to be cleared. For example, you can clear the CLI audit log contents on switches that are being decommissioned or moved to another company location.

Because the CLI audit log is an important security feature, the audit log cannot be erased on switches running the secure software image or on switches that have the no-erase audit log flag enabled. Enabling the no-erase audit log function when using the standard software image is a one-time configuration option. After the audit log flag has been set to non-erasable, you cannot reverse this configuration action and you will not be able to clear the audit log, even if the switch is re-configured to factory defaults.

Simple Network Management Protocol

The Avaya Ethernet Routing Switch 4000 supports Simple Network Management Protocol (SNMP).

SNMP is traditionally used to monitor devices running software that allows the retrieval of SNMP information (for example, UNIX systems, Windows systems, printers, modem racks, switches, routers, power supplies, Web servers, and databases).

You can also use SNMP to change the state of SNMP-based devices. For example, you can use SNMP to turn off an interface on your device.

SNMP Version 1 (SNMPv1)

SNMP Version 1 (SNMPv1) is a historic version of the SNMP protocol, defined in RFC 1157 and is an Internet Engineering Task Force (IETF) standard.

SNMPv1 security is based on communities, which are passwords (plain text strings allowing SNMP-based applications, which know the strings, to gain access to device management information). SNMPv1 typically has three communities: read-only, read-write, and trap.

S Configuration — Security December 2011

SNMP Version 2 (SNMPv2)

SNMP Version 2 (SNMPv2) is another historic version of SNMP, and is often referred to as community string-based SNMPv2. This version of SNMP is technically called SNMPv2c, defined in RFC 1905, RFC 1906, and RFC 1907.

SNMP Version 3 (SNMPv3)

SNMP Version 3 (SNMPv3) is the current formal SNMP standard, defined in RFCs 3410 through 3419, and in RFC 3584. It provides support for strong authentication and private communication between managed entities.

Avaya Ethernet Routing Switch 4000 Series support for SNMP

The SNMP agent in the supports SNMPv1, SNMPv2c, and SNMPv3. Support for SNMPv2c introduces a standards-based GetBulk retrieval capability using SNMPv1 communities.

SNMPv3 support provides industrial-grade user authentication and message security. This includes MD5- and SHA-based user authentication and message integrity verification, as well as AES- and DES-based privacy encryption.

You to configure SNMPv3 using EDM, or ACLI.

SNMP MIB support

The Avaya Ethernet Routing Switch 4000 supports an SNMP agent with industry-standard Management Information Bases (MIB) as well as private MIB extensions, which ensures compatibility with existing network management tools.

The IETF standard MIBs supported on the switch include MIB-II (originally published as RFC 1213, then split into separate MIBs as described in RFCs 4293, 4022, and 4113), Bridge MIB (RFC 4188), and the RMON MIB (RFC2819), which provides access to detailed management statistics.

For more information about the MIBs supported by the Avaya Ethernet Routing Switch 4000, see <u>Supported SNMP MIBs and traps</u> on page 399.

SNMP trap support

With SNMP management, you can configure SNMP traps to automatically generate notifications globally, or on individual ports. These notifications can report conditions such as an unauthorized access attempt or changes in port operating status.

SNMP trap notification-control defines traps, such as bsnConfigurationSavedToNvram, on a global basis (per bridge). You can also use SNMP trap notification-control to configure supported notifications, such as linkDown or linkup, to be enabled or disabled on individual interfaces as well as globally.

All notifications are enabled on individual interfaces by default.

The Avaya Ethernet Routing Switch 4000 supports both industry-standard SNMP traps, as well as private Avaya enterprise traps. SNMP trap notification-control provides a generic mechanism for the trap generation control that works with any trap type.

For more information about the MIBs and traps supported by the Avaya Ethernet Routing Switch 4000, see Supported SNMP MIBs and traps.

You can use ACLI or EDM to enable or disable SNMP traps for the following features:

- DHCP Snooping
- Dynamic ARP Inspection (DAI)
- IP Source Guard (IPSG)
- Auto-Detection and Auto-Configuration (ADAC)

You can use ACLI or EDM to generate the following SNMP traps for operational conditions and errors:

- authenticationFailure
- bsAdacPortConfigNotification
- bsAdacPortOperDisabledNotification
- bsaiArpPacketDroppedOnUntrustedPort
- bsDhcpOption82MaxLengthExceeded
- bsDhcpSnoopingBindingTableFull
- bsDhcpSnoopingExtSaveEntryMACConflict
- bsDhcpSnoopingExtSaveEntryInvalidInterface
- bsDhcpSnoopingExtSaveEntryLeaseExpired
- bsDhcpSnoopingExtSaveEntryParsingFailure
- bsDhcpSnoopingExtSaveNTP
- bsDhcpSnoopingExtSaveUSBSyncSuccess

December 2011 Configuration — Security

- bsDhcpSnoopingExtSaveTFTPSyncSuccess
- bsDhcpSnoopingExtSaveUSBSyncFailure
- bsDhcpSnoopingExtSaveTFTPSyncFailure
- bsDhcpSnoopingExtSaveUSBRestoreSuccess
- bsDhcpSnoopingExtSaveTFTPRestoreSuccess
- bsDhcpSnoopingExtSaveUSBRestoreFailure
- bsDhcpSnoopingExtSaveTFTPRestoreFailure
- bsDhcpSnoopingTrap
- bsnConfigurationSavedToNvram
- bsnEapAccessViolation
- bsnEapRAVError
- bsnEnteredForcedStackMode
- bsnLacPortDisabledDueToLossOfVLACPDU
- bsnLacPortEnabledDueToReceiptOfVLACPDU
- bsnLacTrunkUnavailable
- bsnLoginFailure
- bsnStackConfigurationError
- bsnStackManagerReconfiguration
- bsnTrialLicenseExpiration
- bsnTrunkPortDisabledToPreventBroadcastStorm
- bsnTrunkPortEnabledToPreventBroadcastStorm
- bsSourceGuardCannotEnablePort
- bsSourceGuardReachedMaxIpEntries
- coldStart
- entConfigChange
- fallingAlarm
- linkDown
- linkUp
- IIdpRemTablesChange
- IldpXMedTopologyChangeDetected
- ospflfAuthFailure
- ospflfConfigError

- ospflfStateChange
- ospfNbrStateChange
- ospfVirtIfAuthFailure
- ospfVirtIfConfigError
- ospfVirtlfStateChange
- ospfVirtNbrStateChange
- pethMainPowerUsageOffNotification
- pethMainPowerUsageOnNotification
- pethPsePortOnOffNotification
- rcnBpduReceived
- risingAlarm
- s5CtrNewHotSwap
- s5CtrNewProblem
- s5CtrNewUnitDown
- s5CtrNewUnitUp
- s5EthernetTrapMib.5
- s5EtrSbsMacRemoved
- s5EtrSbsMacTableCleared
- s5EtrSbsMacTableClearedForPort
- s5EtrSbsMacTableFull
- s5EtrNewSbsMacAccessViolation
- warmStart

Important:

When you use SNMPv1, trap receivers can mistakenly interpret the ${\bf s5EtrSbsMacRemoved}$ SNMP trap as ${\bf s5EtrRedBadRemCfgDetected}$.

Important:

When you use SNMPv1, trap receivers can mistakenly interpret the **s5EtrSbsMacTableClearedForPort** SNMP trap as **5EtrPortDteJabbering**.

Important:

When you use SNMPv1, trap receivers can mistakenly interpret the s5EtrNewSbsMacAccessViolation SNMP trap as s5EtrSbsMacAccessViolation.

70 Configuration — Security December 2011

lmportant:

Trap receivers may not display the correct TFTP server IP address in SNMP trap text related to DCHP Snooping External Save.

Note:

You can only use SFTP server when you are running the secure software image on the switch.

Secure Socket Layer protocol

Secure Socket Layer (SSL) deployment provides a secure Web management interface.

The SSL server has the following features:

- SSLv3-compliant
- PKI key exchange
- key size of 1024-bit encryption
- RC4 and 3DES cryptography
- MAC algorithms MD5 and SHA-1

Generally, an SSL certificate is generated when

- The system is powered up for the first time and the NVRAM does not contain a certificate that can be used to initialize the SSL server.
- The management interface (ACLI and SNMP) requests that a new certificate to be generated. A certificate cannot be used until the next system reset or SSL server reset.

Secure versus Non-secure mode

The management interfaces (ACLI and SNMP) can configure the Web server to operate in a secure or nonsecure mode. The SSL Management Library interacts with the Web server to this effect.

In secure mode, the Web server listens on TCP port 443 for client browser requests. You can use the https-only command to configure the Web server to respond to both HTTPS and HTTP requests, or HTTPS requests only, from client browsers when the Web server is in secure mode. By default, the Web server is configured to respond to HTTPS client browser requests only.

In the nonsecure mode, the Web server listens on TCP port 80, by default, and responds only to HTTP client browser requests. All existing secure connections with the browser are closed down. You can designate this TCP port as a value between 1024 and 65535.

If the TCP port is set to a number other than 80, you must configure the HttpPort attribute for the device properties to match the switch configuration to access the device home page using EDM.

SSL Certificate Authority

SSL certificates are issued and signed by a Certificate Authority (CA) such as VeriSign. Because the management and cost of purchasing a certificate from a CA is a client concern, Avaya issues and signs the SSL certificate with the understanding that it is not a recognized CA.

The SSL certificate contains the following information. The first three items (Issuer, Start Date, End Date) are constant. The remaining items are derived from the RSA host key associated with the certificate.

```
Issuer : Avaya
Start Date : May 26 2003, 00:01:26
End Date : May 24 2033, 23:01:26
SHA1 Finger Print:
d6:b3:31:0b:ed:e2:6e:75:80:02:f2:fd:77:cf:a5:fe:9d:6d:6b:e0
MD5 Finger Print:
fe:a8:41:11:f7:26:69:e2:5b:16:8b:d9:fc:56:ff:cc
RSA Host Key (length= 1024 bits):
40e04e564bcfe8b7febf1f7139b0fde9f5289f01020d5a59b66ce7207895545f
b3abd694f836a9243651fd8cee502f665f47de8da44786e0ef292a3309862273
d36644561472bb8eac4d1db9047c35ad40c930961b343dd03f77cd88e8ddd3dd
a02ae29189b4690a1f47a5fa71b75ffcac305fae37c56ca87696dd9986aa7d19
```

SSL configuration and management

For more information about configuring and managing SSL services, see <u>Secure Socket Layer</u> <u>services</u> on page 214

Secure Shell protocol

Secure Shell (SSH) protocol replaces Telnet to provide secure access to ACLI interface.

The SSH protocol includes two versions: SSH1 and SSH2. The SSH implementation in the Avaya Ethernet Routing Switch 4000 series supports SSH2.

72 Configuration — Security December 2011

Components of SSH2

You can use SSH2 for secure remote log on and other secure network services over an insecure network. SSH2 consists of three major components:

- The Transport Layer Protocol (SSH-TRANS): SSH-TRANS is one of the fundamental building blocks, providing initial connection, packet protocol, server authentication, and basic encryption, and integrity services. The protocol can also provide compression. The transport layer is used over a TCP/IP connection and can be used on top of other reliable data streams.
- The User Authentication Protocol (SSH-USERAUTH) authenticates the client-side user to the server. It runs over the transport layer protocol. SSH-AUTH supports two methods: public key and password authentication. To authenticate, an SSH2 client tries a sequence of authentication methods chosen from the set allowed by the server (for example, public key, password) until one succeeds or all fail.
- The Connection Protocol (SSH-CONNECT) multiplexes the encrypted tunnel into several logical channels. This protocol runs over the user authentication protocol.

SSH service configuration

The SSH service engine allows you to configure the SSH service. You can configure SSH through ACLI interface and the SNMP interface.

💔 Important:

If you enable SSH on the switch and you load an ASCII configuration file containing SSH related commands, those commands will fail. You must disable SSH on the switch before you load an ASCII configuration file containing SSH related commands.

The management objects are:

SSH enable or disable

When SSH is enabled, you can configure the SSH server to disable other non-secured interfaces. This is referred to as the SSH secured mode. Otherwise, when you enable SSH, it operates in unsecured mode.

DSA authentication enable or disable

You can configure the SSH server to allow or disallow DSA authentication.

RSA authentication enable or disable

You can configure the SSH server to allow or disallow RSA authentication.

Note:

If SSH is enabled on the switch and you load an ASCII configuration file containing SSH related commands, those commands will fail. You must disable SSH on the switch before you load an ASCII configuration file containing SSH related commands.

• Password authentication enable or disable

If password authentication is not enabled, you can only connect by the public key authentication method, and only if you have the correct authentication key (DSA or RSA). You cannot disable both public key and password authentication. If you disable password authentication, you must ensure that at least one of RSA and DSA authentication is enabled.

- DSA public key upload and download
- RSA public key upload and download
- SSH information dump: shows all the SSH-related information

SSH clients

The following SSH clients are supported by the switch:

- Putty SSH (Windows 2000)
- F-secure SSH, v5.3 (Windows 2000)
- SSH Secure Shell 3.2.9 (Windows 2000)
- SecureCRT 4.1
- Cygwin OpenSSH (Windows 2000)
- AxeSSH (Windows 2000)
- SSHPro (Windows 2000)
- Solaris SSH (Solaris)
- Mac OS X OpenSSH (Mac OS X)

SSH and SSH Client

Secure Shell (SSH), a network protocol, uses a secure channel to exchange data between two network devices. Remote login to execute commands is a typical use of SSH. SSH also supports file transfer (using SFTP or SCP protocols), tunneling, forwarding TCP ports and X11 connections. SSH uses the client-server model to provide confidentiality and integrity of data over an unsecured / public network, such as the Internet. The SSH Client is a secure shell protocol for connecting to an SSH Server device in the network that is accepting remote

connections. SSH Client is present only on switches with SSH images and is available only through the ACLI.

The Avaya-implemented SSH Client uses SSH version 2 protocol (SSH-2) to provide an SSH Client session.

The SSH Client authenticates to a SSH server using (in order):

- 1. DSA public key authentication
 - —the system performs this authentication only if DSA Auth Key exists, using the DSA key for authentication.
- 2. RSA public key authentication
 - —the system performs this authentication only if the previous authentication method fails, and if RSA Auth Key existss, using the RSA key for authentication.
- 3. password authentication
 - —the system performs this authentication only if previous authentication methods fail. You can enter a username and password.

If public authentication fails and SSH server does not support password authentication, password authentication will be tried only one time.

If any authentication method succeeds, the methods following in order are not performed.

SSH Client connection can be performed from serial console, or from a SSH connection to the switch or stack. You cannot initiate the SSH connection from a telnet connection. When the Console session terminates, the inner SSH Client also terminates.

To end the SSH session and return to ACLI, enter a '~' followed by a period (~.). You can also use the ACLI command 'ssh close-session' form a different ACLI console.

With software release 5.6, you can open only one SSH Client session. Multiple SSH Client sessions are not supported.

SSH Client known hosts

To support public key authentication, the switch saves a list of SSH Client know hosts—Host IP, public key entries— in NVRAM. The switch identifies a host as known when the host's public key matches the NVRAM saved public key. Only administrators, users with read-write access, have access to known hosts.

During SSH connection to a host, on receipt of the host public key the switch accepts the host if the Host IP/received public key pair matches the Host IP/public key entry of known hosts. If keys do not match, the SSH Client ends the connection.

If the Host IP does not have an entry in the known-hosts list for read-write access, you can accept or decline the Host IP/received public key association. If you accept the host, then the switch updates the known-hosts list and the switch accepts the connection.

You can delete known hosts from the ACLI, by host IP address—you require read-write access. You do not affect an existing connection if you delete the Host IP entry of an active SSH session. You do not affect the running sessions if you modify known hosts. The switch only consults known hosts during SSH connection time. After you reset the switch to default, the switch empties the SSH known-hosts list.

SSH Client known hosts in stacks

In switch stacks, the system saves and updates known hosts in the NVRAM of all units. Therefore, if the base unit leaves the stack, or the stack breaks, the rest of the units retain the learned hosts from the stack configuration.

During stack formation, the switch synchronizes the known-hosts list on all stack units and removes deleted known hosts from all units in the stack. When the stack forms, the starting known-hosts list contains the base unit known hosts. SSH Client initialization overrides known hosts on the rest of the units in the stack with known hosts from the base unit. During stack configuration, the known-hosts list updates on all units in the stack.

Switch capacity to learn keys

At 32 Bytes NVRAM per saved key, a switch should be able to save the public keys of at least twenty different hosts, and more if there is available NVRAM.

Standards and Compliance

The SSH Client complies with SSH version 2 protocol, described in these RFCs:

- • RFC 4251 (Protocol Architecture) describes the overall design of SSH-2.
- • RFC 4253 (Transport Layer Protocol) provides a single, full-duplex, byte-oriented connection between client and server, with privacy, integrity, server authentication, and man-in-the-middle protection.
- • RFC 4252 (Authentication Protocol) identifies the client to the server.

6 Configuration — Security December 2011

- • RFC 4254 (Connection Protocol) provides richer, application-support services over the transport pipe, such as channel multiplexing, flow control, remote program execution, signal propagation, connection forwarding, and so on.
- • RFC 4250 (Assigned Numbers) gathers together and lists various constant assignments made in the other drafts.

Feature Interactions

The SSH Client interacts with the SFTP Client application. They share the same DSA and RSA keys and key sizes.

DHCP snooping

Dynamic Host Configuration Protocol (DHCP) snooping provides security to the network by preventing DHCP spoofing. DHCP spoofing refers to an attacker's ability to respond to DHCP requests with false IP information. DHCP snooping acts like a firewall between untrusted hosts and the DHCP servers, so that DHCP spoofing cannot occur.

DHCP snooping classifies ports into two types:

- Untrusted—ports that are configured to receive messages from outside the network or firewall. Only DHCP requests are allowed.
- Trusted—ports that are configured to receive messages only from within the network, such as switch-to-switch and DHCP server ports. In the switch-to-switch scenario, in the path from switch B to switch A to the DHCP server: the outgoing port of B to A is trusted, the incoming port from A to B is untrusted, and the outgoing port from A to the server is trusted. All types of DHCP messages are allowed.

DHCP snooping operates as follows to eliminate the capability to set up roque DHCP servers on untrusted ports:

- DHCP snooping allows only DHCP requests from untrusted ports. DHCP replies and all other types of DHCP messages from untrusted ports are dropped.
- DHCP snooping verifies the source of DHCP packets.
 - When the switch receives a DHCP request on an untrusted port, DHCP snooping compares the source MAC address and the DHCP client hardware address. If the addresses match, the switch forwards the packet. If the addresses do not match, the switch drops the packet.
 - When the switch receives a DHCP release or DHCP decline broadcast message from a client, DHCP snooping verifies that the port on which the message was received matches the port information for the client MAC address in the DHCP binding table. If the port information matches, the switch forwards the DHCP packet.

DHCP binding table

DHCP snooping dynamically creates and maintains a binding table. The DHCP binding table includes the following information about DHCP leases on untrusted interfaces:

- source MAC address
- IP address
- lease duration
- time to expiry
- VLAN ID
- port

78

The maximum size of the DHCP binding table is 1024 entries.

The DHCP binding table is stored in RAM, and therefore is not saved across restarts. You can take a back up of the DHCP binding table using *DHCP snooping external save* feature and automatically restore after it restarts. See Externally saving the DHCP Snooping binding table file on page 78for more information.

Static DHCP binding table entries

You can manually add static entries in the DHCP binding table to protect IP devices using applications such as DAI and IPSG, that on DHCP snooping table entries. When the protection of these statically configured IP devices is no longer required, you can manually delete entries from the DHCP binding table.

Static DHCP binding table entries are stored in NVRAM and will be saved across restarts.

Externally saving the DHCP Snooping binding table file

You can use DHCP Snooping external save to store the DHCP Snooping database at predefined, 5 minute intervals, to an external TFTP server or USB drive.

When the DHCP Snooping external save feature is enabled, the switch monitors changes to the DHCP Snooping database. If a change is detected, the sync flag is set to true, and when the five minute interval is reached, the binding database is saved to the selected TFTP server or USB drive. In the event of a reboot, the switch attempts to restore the DHCP Snooping database with the externally saved file. If the switch learns duplicate DHCP addresses or processes duplicate DHCP requests between the completion of the reboot process and when the DHCP Snooping database is restored from the externally saved file, the new information takes precedence over the information from the restored file.

Configuration — Security December 2011

Any DHCP Snooping database entries that you manually configure, or that the switch learns between the time of the last initiated external save and the beginning of the reboot process are lost and not available when the switch is again operational.

Enabling SNTP and synchronization is mandatory. The DHCP snooping external save uses the clock time as it is supported by SNTP and NTP. The lease expiry time the switch writes to the externally saved DHCP Snooping database is the absolute lease expiry time, which can be accurately restored from the externally saved file when you reboot the switch .

DHCP snooping configuration and management

DHCP snooping is configured on a VLAN to VLAN basis.

Configure and manage DHCP snooping using the Avaya Command Line Interface (ACLI), Enterprise Device Manager (EDM), and SNMP. For more information about configuring DHCP snooping through ACLI see DHCP snooping configuration using ACLI on page 234. For more information about configuring DHCP snooping through EDM, see DHCP snooping configuration using EDM on page 332.

DHCP snooping Global Configuration

This configuration enables or disables DHCP snooping for the entire unit or stack. If you enable DHCP snooping globally, the agent determines whether the DHCP reply packets will be forwarded, based on the DHCP snooping mode (enable or disable) of the VLAN and the untrusted or trusted state of the port. You must enable DHCP snooping globally before using DHCP snooping on a VLAN. If you disable DHCP snooping globally, the switch or stack will forward DHCP reply packets to all required ports, irregardless of whether the port is configured as trusted or untrusted.

DHCP Option 82

With DHCP Option 82, the switch can transmit information about the DHCP client and the DHCP agent relay to the DHCP server. The server can use the information from the switch to locate the DHCP client in the network and allocate a specific IP address to the DHCP client.

DHCP Option 82 function is controlled by the one switch at the edge of a network and not by any switches located between the network edge switch and the DHCP server.

DHCP Option 82 functions with DHCP snooping (Layer 2 mode) or DHCP relay (Layer 3 mode) and cannot function independent of either of these features. To use DHCP snooping with DHCP Option 82 enable both features globally and for each client VLAN.

To use DHCP Option 82 with DHCP relay, you must enable DHCP relay globally on the switch and client VLANs. For more information about DHCP Option 82 with DHCP relay, see Avaya Ethernet Routing Switch 4000 Configuration — IP Routing and Multicast (NN47205-506).

Dynamic ARP inspection

Dynamic Address Resolution Protocol (Dynamic ARP) inspection is a security feature that validates ARP packets in the network.

Without dynamic ARP inspection, a malicious user can attack hosts, switches, and routers connected to the Layer 2 network by poisoning the ARP caches of systems connected to the subnet and by intercepting traffic intended for other hosts on the subnet. Dynamic ARP inspection prevents this type of attack. It intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings.

The address binding table is dynamically built from information gathered in the DHCP request and reply when DHCP snooping is enabled. The MAC address from the DHCP request is paired with the IP address from the DHCP reply to create an entry in the DHCP binding table. For more information about the DHCP binding table, see DHCP binding table on page 78.

When you enable Dynamic ARP inspection, ARP packets on untrusted ports are filtered based on the source MAC and IP addresses seen on the switch port. The switch forwards an ARP packet when the source MAC and IP address matches an entry in the address binding table. Otherwise, the ARP packet is dropped.

For dynamic ARP inspection to function, DHCP snooping must be globally enabled.

Dynamic ARP inspection is configured on a VLAN to VLAN basis.

Configure and manage dynamic ARP inspection using ACLI or Enterprise Device Manager (EDM). For more information about configuring this feature with ACLI, see <u>Configuring dynamic ARP inspection</u> on page 246. For more information about configuring this feature with EDM, see <u>Configuring dynamic ARP inspection on VLANs using EDM</u> on page 339 and .<u>Configuring dynamic ARP inspection on ports using EDM</u> on page 339

IP Source Guard

IP Source Guard provides security to the network by filtering clients with invalid IP addresses. IP Source Guard is a Layer 2 (L2), port-to-port basis feature that works closely with information in the Dynamic Host Control Protocol (DHCP) snooping binding table. For more information about DHCP snooping, see DHCP snooping on page 77. When you enable IP Source Guard on an untrusted port with DHCP snooping enabled, an IP filter entry is created or deleted for that port automatically, based on IP information stored in the corresponding DHCP binding table entry. When a connecting client receives a valid IP address from the DHCP server, a filter is installed on the port to allow traffic only from the assigned IP address. A maximum of 10 IP addresses are allowed on each IP Source Guard-enabled port. When this number is reached, no more filters are set up and traffic is dropped.

80 Configuration — Security December 2011

IP Source Guard is available to the Avaya Ethernet Routing Switch 4000 utilizing Broadcom 569x ASICs, and is implemented with the facility provided by the port ContentAware Processor (CAE) in the ASIC.

Enable IP Source Guard only on an untrusted DHCP snooping port.

Avaya recommends that you do not enable IPSG on MLT, DMLT and LAG ports.

The following table shows you how IP Source Guard works with DHCP snooping.

Table 7: IP Source Guard and DHCP snooping

IP Source Guard configuration state	DHCP snooping configuration state	DHCP snooping Binding Entry action (untrusted ports)	IP Source Guard action
disabled or enabled	enabled	creates a binding entry	creates a filter for the IP address using the IP address from the binding table entry
enabled	enabled	creates a binding entry	creates a filter for the IP address using the IP address from the binding table entry
enabled	enabled	deletes a binding entry	deletes the IP filter and installs a default filter to block all IP traffic on the port
enabled	enabled	deletes binding entries when one of the following conditions occurs	deletes the corresponding IP Filter and installs a default filter to block
		DHCP is released	all IP traffic
		 the port link is down, or the administrator is disabled 	
		the lease time has expired	
enabled or disabled	enabled	not applicable	deletes the installed IP filter for the port
disabled	enabled	creates a binding entry	not applicable

IP Source Guard configuration state	DHCP snooping configuration state	DHCP snooping Binding Entry action (untrusted ports)	IP Source Guard action
disabled	enabled	deletes a binding entry	not applicable

You can configure IP Source Guard using the Avaya command line interface (ACLI), Enterprise Device Manager, and SNMP.

Avaya Identity Engines Ignition Server

Avaya Identity Engines Ignition Server (Ignition Server) is an 802.1X-capable RADIUS authentication server and TACACS+ server that grants or denies users access to your network based on your policies. When you use Ignition Server you can create a single set of policies that control access for all user connection methods: over a wired Ethernet jack, wireless, or VPN.

Ignition Server also authenticates devices and you can configure an 802.1X authentication bypass for older devices on your network that cannot perform an 802.1X authentication.

While you store access policies on the Ignition Server, user accounts remain in your traditional user store(s) such as LDAP and Active Directory servers

To reduce security risks and task duplication, and maintain clear lines of responsibility, Ignition Server acts as a single policy decision point that makes and logs access decisions but leaves the management of user account data in your enterprise directories. Your user account data can remain in your enterprise directories because you can specify a search order that directs Ignition Server identity routing to direct the Ignition Server to search one or more user directories to find the correct user account.

Consolidating access decisions provides:

- consistent policy enforcement of your network access policies across wired, wireless, VPN, and remote access
- streamlined security and compliance audits because users can access the network through any allowed switch or access point, but wherever they connect, the log entry resolves to the user account in the appropriate enterprise user directory
- faster network extension and new network services deployment, since you can add a new access point or network with just a few steps in Ignition Server.

Ignition Server includes a policy engine that lets you make network access decisions based on, but not limited to, the following criteria:

- user identity
- acccount details and group memberships

Configuration — Security December 2011

- the location of the login attempt
- the time of day

For example, you can create an Ignition Server policy that grants network access to a user based on identity, point of access - which network switch or wireless access point the user connects through, and the user's laptop security state - ensuring that the laptop is a companyowned laptop as recorded in the corporate Active Directory store and ensuring that it has upto-date anti-virus profiles installed.

Ignition Server network access tool can check whether the workstation has passed MAC authentication, Windows machine authentication, and/or a security posture check and you can combine many policy elements to enforce a single rule. For example, you can create a rule to authenticate the user with PEAP/MSCHAPv2, check that the user device has been authenticated, and, if those checks are successful, assign the user to the appropriate VLAN based on role.

For more information about Ignition server, see http://support.avaya.com.

NSNA

The NSNA solution is a protective framework to completely secure the network from endpoint vulnerability. The NSNA solution addresses endpoint security and enforces policy compliance. NSNA delivers endpoint security by enabling only trusted, role-based access privileges premised on the security level of the device, user identity, and session context. NSNA enforces policy compliance, such as for Sarbanes-Oxley and COBIT, ensuring that the required antivirus applications or software patches are installed before users are granted network access.

You must make any modifications to NSNA QoS filters before you enable NSNA globally or on any switch port.

The NSNA solution provides both authentication and enforcement (operating system, antivirus, firewall code revision enforcement, Windows registry content verification and enforcement, and file system verification and enforcement).

The Avaya Ethernet Routing Switch 4000 supports NSNA release 2.0.

Note:

After you configure NSNA, Avaya recommends that you disable the autosave to NVRAM function. Configuration changes must be explicitly saved to NVRAM.

When a large number of NSNA logon or logout events occur in parallel, a few can fail. The NSNAs resets the switch port after a few minutes and you can log back in. You can also disconnect and reconnect the link to the switch to log in.

You can configure the switch as a network access device for the NSNA solution. Host computers can connect using dynamic or static IP addressing. Windows, MacOSX, and Linux operating systems are supported.

Access to the corporate network requires successful:

- authentication (user name and password or MAC address)
- host integrity check and remediation (as needed and when configured)

To access the network proceed as follows:

- 1. Three enforcement zones—Red, Yellow, and Green—provide layered access to the corporate network. Connection requests are directed to a specific zone based on filter sets that are predefined on NSNA network access devices. You can configure the Red, Yellow, and Green enforcement zones using the filter sets in conjunction with unique VLANs for each zone, or by using the filter sets within a single (Red) VLAN. You can customize the filter sets, if necessary.
- 2. Initial connection requests are directed to the Red zone. The default NSNA Red filter set allows access only to the NSNAS 4050/4070 and the Windows domain controller (or other network log on controller, for example, Novell netware log on). The connection remains in the Red zone pending successful authentication. You can use either the MAC address of the host or a user name and password of the end user for authentication.
- 3. After successful authentication, a security agent, the TunnelGuard applet, provides host integrity checking. You can configure TunnelGuard to run once, continuously, or never. Integrity checking is performed on hosts that support Windows operating systems when TunnelGuard is set to run once or continuously.
- 4. If the TunnelGuard applet determines that the host does not meet the required integrity criteria, the host is placed in the Yellow zone. The Yellow zone provides access to the remediation network only.
- 5. If the host passes authentication, and integrity checking when configured, the connection is transferred to the Green zone. This gives the user full access to the network, depending on the user profile.

NSNA requires the secure runtime image of the software.

Avaya IP Phones are supported under the NSNA solution though they are not required to pass authentication and integrity checking. Avaya IP Phones access to a preconfigured VoIP subnet, and are allowed a pre-specified type of communication. The VoIP filters are such that they do not allow the VoIP traffic to go anywhere except to a specific subnet. This subnet is specified by the VoIP VLAN.

For more information about the NSNA solution and deployment scenarios, see *NSNA Solution Guide* (320817-A). For more information about configuring the NSNAS 4050/4070, see *NSNA Switch 4050 User Guide* (320818-A).

For more information about configuring the Avaya Ethernet Routing Switch 4000 for the NSNA solution, see NSNA configuration using ACLI on page 267 or NSNA configuration using Enterprise Device Manager on page 375.

NSNA configuration example for MAC authorization enhancement

This enhancement is to distinguish the trusted users from untrusted users and grant quick access.

The MAC addresses of devices are known and you can use this knowledge to authenticate such devices in a simple, centralized way.

MAC authentication support on NSNA ports

- Mac Authentication by the SNAS is automatically enabled on a NSNA Dynamic Port.
- Mac Authentication is used for PCs and Passive devices.
- Phones will still be authenticated by their DHCP signature. Provision to configure a list of signatures is provided.
- Initial state of an NSNA port will be in Red VLAN and Red Filter

New MAC event at the port

- If the Mac comes in on a VoIP VLAN, it is treated as a phone and informs SNAS, or else the switch sends an Authenticate Request to the SNAS using SSCP
- If SNAS has the MAC in its Data Base (DB), it will send back an AuthenticateResponse=Success to the switch using SSCP.
- SSCP message changes are handled between the switch and SNAS internals.

MAC Age Event at the Port

The MAC will remain in the list (as aged out) until replaced by another MAC.

Reset Event at the port

The port can be reset by physical link down and up or through an SSCP message from the SNAS either case, all devices will be deleted and the port moved to the red VLAN filter.

VLAN-Filter Change at the port

4000 5.2 with NSNAS 2.0 supports vlan_filter change on mac authentication.

MAC Authentication Success

The Success Response contains the following:

- Auth. Result = Success
- Device Type = PC or Passive
- Filter Id (as VID) to indicate Red, Yellow, or Green filter
- Client IP Address if available or 0

The switch saves the device Information in its local list and moves the port to the appropriate filter. If the device has a static IP, it will be populated in the SNAS and the switch will learn it in

the Auth-Response. If the device supports DHCP, the IP Address is learned by DHCP filtering at the switch. When a Device-IP is learned, the SNAS is informed by SSCP

MAC Authentication Failure

No Response sent on Auth-Failure, but TG (TunnelGuard) Authentication can still happen.

Port modes

Avaya supports the following three modes of operation on a port:

Default mode

In this mode, the switch port does not have user-based security (for example, 802.1X or EAP or NSNA). You can, however, configure MAC-based security on these ports.

• 802.1X (client mode—that is, the 802.1 supplicant is present)

In this mode, the user is authenticated by EAP using an external authentication server, such as a RADIUS server. In this scenario, there is a client (for example, the EAP supplicant) present in the PC.

NSNA dynamic ports

On NSNA dynamic ports you can connect dynamic IP PCs and passive devices, static IP PCs and passive devices, or phones. Authentication can be done through TunnelGuard (for devices that support this) or by MAC authentication on NSNAS controller.

You can configure ports in different modes within the same switch. However, you cannot configure a single port into multiple modes.

The Spanning Tree Protocol (STP) state of the dynamic NSNA ports is set automatically to Fast Learning.

Filters in the NSNA solution

86

A corresponding NSNA filter set is provisioned for NSNA Red, Yellow, and Green VLANs. Avaya recommends that you use the default filter sets. You can, however, create customized filter sets and attach these to the NSNA VLANs. You can also modify the default filters after you have enabled them and assigned them to the NSNA VLANs.

For more information about modifying the filter sets, see *Avaya Ethernet Routing Switch 4000 Series Configuration* — *Quality of Service* (NN47205-504).

Configuration — Security December 2011

Important:

When you apply the NSNA filters to a port, existing Quality of Service (QoS) filters on that port are disabled, and the NSNA filters are applied (preexisting policies are reenabled when NSNA is disabled). For more information, see Rolling back NSNA mode to default mode on page 100 and NSNA solution deployment in an active network on page 97.

🖖 Important:

You must make any modifications to NSNA QoS filters before you enable NSNA globally or on any switch port.

You can configure the NSNA filters manually if, for example, you have specific parameters or proprietary applications.

In certain configurations, workstation boot processes depend on specific network communications. System startup can be negatively impacted if certain network communications are blocked by the initial Red filters. Ensure you are aware of which communications are required for system startup and user authentication prior to the NSNA log on.

If you must configure filters manually to best address your circumstances, Avaya recommends that you use the default filters as your template. You must include manually configured custom filters in the NSNA filter set.

Important:

Avaya does not support NSNA filter sets and non NSNA filter sets coexisting on NSNA ports.

You must configure Red. Yellow, and Green VLANs on the NSNA uplink ports of the NSNA network access device when the NSNA filter sets for each enforcement zone are assigned to specific VLANs. When only the filter sets are used, a Red VLAN must be configured on the NSNA uplink ports. To configure the uplink ports, use nsna port <portlist> uplink vlans <vidlist>. For more information, see Enabling NSNA on ports using ACLI on page 272 or Enabling NSNA on ports using EDM on page 380.

Only NSNA ports (uplink or dynamic) can be in the Red, Yellow, Green, and VoIP VLANs.

NSNA ports become members of NSNA VLANs when NSNA is enabled. Manually attaching dynamic NSNA ports to a non NSNA VLAN is not allowed.

Uplink ports can be members of non NSNA VLANs.

The NSNA software puts all user ports (dynamic NSNA ports) in the Red. Yellow, or Green state dynamically. When the switch initially comes up, all NSNA ports are moved to the Red state with Red filters attached.

You can configure the uplinks as tagged or untagged. A typical uplink on the edge switch is one or more MLTs connected to two core Avaya Ethernet Routing Switches 8600 (to provide redundancy). The core routing switches implement SMLT, but that is transparent to the edge switch. In Layer 2, the NSNA uplink is always tagged.

Important:

Avaya recommends that you set the NSNA uplink port STP to either Fast Learning or disabled.

The Red, Yellow, and Green VLANs can be Layer 2. For more information, see Topologies on page 92.

You must have one Red VLAN on each switch. You can, however, have multiple Yellow, Green, and VoIP VLANs on each switch.

🖖 Important:

With the Avaya Ethernet Routing Switch 4000, each switch can support five Yellow VLANs, five Green VLANs, and five VolP VLANs.

Only 128 filters for each precedence level are available for each chip (1/1-24.1/25-48) Because of this there is one more limitation regarding the number of VolP VLANs supported, as each VoIP VLAN consumes 2 filters on the same precedence level. Example: If there are 5 VoIP VLANs defined, then NSNA Red filter can be enabled on 12 ports for each chip.

Completing the combinations, the Red default filter set can be applied to the following number of ports assigned the specified VoIP VLANs:

- 1 VoIP VLANs -> 24 ports (128 / [1 VoIP VLANs * 2 filters])
- 2 VoIP VLANs -> 24 ports (128 / [2 VoIP VLANs * 2 filters])
- 3 VoIP VLANs -> 21 ports (128 / [3 VoIP VLANs * 2 filters])
- 4 VoIP VLANs -> 16 ports (128 / [4 VoIP VLANs * 2 filters])
- 5 VoIP VLANs -> 12 ports (128 / [5 VoIP VLANs * 2 filters])

The VoIP filters are part of the Red and Yellow filters by default, but you can define a separate set of VoIP filters (with different VoIP policing values), if necessary. In the Green VLAN, all traffic is allowed by the default filter, therefore VoIP filters are not specifically added.

You can create multiple Yellow and Green VLANs, as well as multiple VoIP filter sets. When you create the Red, Yellow, and Green VLANs, you attach the Red, Yellow, and Green filters and a set of VoIP filters to the new Red and Yellow VLANs). For example, when the NSNA software adds a port to the Yellow VLAN, it installs the Yellow filters and the VoIP filters that vou attached to the Yellow VLAN.

lmportant:

Manual configuration of filters is optional. If filters are not manually configured prior to configuring the NSNA VLANs, the switch automatically generates default filters when you configure the Red, Yellow, Green, and VolP VLANs.

The devices that connect to a NSNA port can be DHCP PCs and passive devices, as well as static PCs and passive devices. To have Green access you can add the MAC of the passive devices to the SNAS MAC address database.

The following table shows filter consumption when using the default NSNA filters.

Table 8: Default NSNA filter consumption

Filter set	Filters consumed	Precedence levels consumed
Red	6, plus 2 filters for each VoIP VLAN configured	4, plus 1 precedence level for VoIP VLANs (see note)
Yellow	7, plus 2 filters for each VoIP VLAN configured	5, plus 1 precedence level for VoIP VLANs (see note)

Although each additional VoIP VLAN consumes two more filters, no additional precedence levels are consumed (that is, the first VoIP VLAN consumes one precedence level, but additional VoIP VLANs do not consume more precedence levels).

lmportant:

With the default NSNA QoS filters there are two free precedences for Red VLAN and one for Yellow VLAN. You can use these for manual added NSNA QoS entries

Filter parameters

🖖 Important:

If you plan to use the default filters, it is not necessary to configure filters before enabling NŠNA.

The default NSNA filters protect the workstations.

Only 128 filters for each precedence level are available for each chip (1/1-24.2/25-48) because there is a limitation on the number of VoIP vlans supported. Also, each VOIP VLAN consumes two filters on the same precedence level.

Example: If there are five VoIP VLANs defined, then nsna red filter is enabled on 12 ports for each chip. Completing the combinations, the Red default filter set can be applied to the following number of ports assigned the specified VoIP VLANs:

- 1 VoIP VLANs -> 24 ports (128 / (1 VoIP VLANs * 2 filters))
- 2 VoIP VLANs -> 24 ports (128 / (2 VoIP VLANs * 2 filters))
- 3 VoIP VLANs -> 21 ports (128 / (3 VoIP VLANs * 2 filters))
- 4 VoIP VLANs -> 16 ports (128 / (4 VoIP VLANs * 2 filters))
- 5 VoIP VLANs -> 12 ports (128 / (5 VoIP VLANs * 2 filters))

The following table describes the traffic allowed by each default NSNA filter set.

Table 9: Traffic allowed in the default NSNA filter sets

Filter				Traffic	c type				
set	DNS	HTTP	HTTPS	ARP	DHCP	UDP	ICMP	Yellow subnet	AII
Red	Traffic to NSNAS 4050/407 0 allowed	Traffic to NSNAS 4050/40 70 allowed	Traffic to NSNAS 4050/40 70 allowed	Yes	Yes		Yes		
Yellow	Traffic to NSNAS 4050/407 0 allowed	Traffic to NSNAS 4050/40 70 allowed	Traffic to NSNAS 4050/40 70 allowed	Yes	Yes		Yes	Yes	
Green					Yes				Yes
VoIP				Yes	Yes	Yes	Yes		

Note: Avaya recommends that you use filters to allow all traffic to your WINS domain controller in the Red VLAN. You must specify a destination IP address for all WINS domain controllers. For example, if you have two WINS domain controllers, use the following two commands:

qos nsna classifier name <Red VLAN name> dst-ip <win1-ipaddr/ mask> ethertype 0x0800 drop-action disable block wins-primsec eval-order 70

qos nsna classifier name <Red VLAN name> dst-ip <win2-ipaddr/ mask> ethertype 0x0800 drop-action disable block wins-primsec eval-order 71

For more information about configuring the filters for Novell Netware log on, see Configuring filters for Novell Netware log on on page 91. If you use another log on controller, you must modify the filter set to allow the log on to work

🖖 Important:

In the Yellow VLAN, the default filters allow all IP traffic for the Yellow subnet. You specify the Yellow subnet in the command nsna vlan <vid> color yellow filter <filter name> yellow-subnet <ipaddr/mask>. For more information, see Configuration example: Configuring the NSNA per VLANs on page 270. You can enter the remediation server IP/subnet as the Yellow subnet IP. You can also add multiple IP addresses manually in the Yellow filter set. For example:

qos nsna classifier name ALPHAYELLOW dst-ip 10.80.22.25/32 ethertype 0x0800 dropaction disable block remedial eval-order 70 qos nsna classifier name ALPHAYELLOW dst-ip 10.16.50.30/32 ethertype 0x0800 dropaction disable block remedial eval-order 71 qos nsna classifier nameALPHAYELLOW dst-ip 10.81.2.21/32 ethertype 0x0800 dropaction disable block remedial eval-order 72

Adding these two filters consumes another precedence level. For more information about the qos nsna commands, see *Avaya Ethernet Routing Switch 4000 Series Configuration*—Quality of Service (NN47205-504).

Important:

If you want to add new entries on nsna qos filters, you must add the entries before enabling nsna globally or on ports; if NSNA is enabled and you need to add new nsna qos entries to existing nsna gos filters, first disable nsna.

Selective broadcast is allowed by the Red default filter set (DHCP broadcast [response] coming in on the uplink port goes out on the relevant NSNA port only).

A rate-limiting rule applies to the Red filter set (committed rate = 1000 Kbps).

Configuring filters for Novell Netware log on

If you use Novell Netware as your domain log on, the following is one example of IPX filters for the Red VLAN. These filters require additional modification based on your specific configuration (the filter set name in this example is "red"; modify the command to use your actual Red filter set name):

qos nsna classifier name red protocol 17 dst-port-min 427 dst-port-max 427 ethertype 0x0800 drop-action disable block novell eval-order 101

qos nsna classifier name red protocol 6 dst-port-min 524 dst-port-max 524 ethertype 0x0800 drop-action disable block novell eval-order 102

qos nsna classifier name red protocol 6 dst-port-min 396 dst-port-max 396 ethertype 0x0800 drop-action disable block novell eval-order 103

qos nsna classifier name red protocol 17 dst-port-min 396 dst-port-max 396 ethertype 0x0800 drop-action disable block novell eval-order 104

qos nsna classifier name red protocol 6 dst-port-min 1366 dst-port-max 1366 ethertype 0x0800 drop-action disable block novell eval-order 105

qos nsna classifier name red protocol 17 dst-port-min 1366 dst-port-max 1366 ethertype 0x0800 drop-action disable block novell eval-order 106

qos nsna classifier name red protocol 6 dst-port-min 1416 dst-port-max 1416 ethertype 0x0800 drop-action disable block novell eval-order 107

qos nsna classifier name red protocol 17 dst-port-min 1416 dst-port-max 1416 ethertype 0x0800 drop-action disable block novell eval-order 108

qos nsna classifier name red protocol 6 dst-port-min 686 dst-port-max 686 ethertype 0x0800 drop-action disable block novell eval-order 109

qos nsna classifier name red protocol 6 dst-port-min 389 dst-port-max 389 ethertype 0x0800 drop-action disable block novell eval-order 110

Adding these filters consumes another precedence level.

If you want to open traffic to specific IP addresses (for example, IP address 1 to IP address 6), use the following commands:

qos nsna classifier name red dst-ip <ipaddr1> ethertype 0x0800 drop-action disable block novell-ips eval-order 111

qos nsna classifier name red dst-ip <ipaddr2> ethertype 0x0800 drop-action disable block novell-ips eval-order 112

qos nsna classifier name red dst-ip <ipaddr3> ethertype 0x0800 drop-action disable block novell-ips eval-order 113

qos nsna classifier name red dst-ip <ipaddr4> ethertype 0x0800 drop-action disable block novell-ips eval-order 114

qos nsna classifier name red dst-ip <ipaddr5> ethertype 0x0800 drop-action disable block novell-ips eval-order 115

qos nsna classifier name red dst-ip <ipaddr5> ethertype 0x0800 drop-action disable block novell-ips eval-order 116

Adding these filters consumes another precedence level.

Topologies

You can configure the Avaya Ethernet Routing Switch 4000 Series to function in Layer 2 or for the NSNA solution. In Layer 2, routing is disabled in the switch.

Layer 2

92

In Layer 2 mode, DHCP-relay is done on a central router or routing switch. <u>Figure 5: Network access device-Layer 2 mode</u> on page 93 shows a network where the Avaya Ethernet Routing Switch 8600 is the core routing device. The Avaya Ethernet Routing Switch 4000, the network access device in this case, functions in Layer 2 mode. All NSNA VLANs (Red, Yellow, Green, and VoIP) are Layer 2.

A tagged uplink exists between the network access device and the routing device. You must configure this link as a NSNA uplink port and specify all VLANs (NSNA or non NSNA) in which it must be placed. When you do this, it is automatically tagged. This link can be MLT or LACP. You can configure multiple NSNA uplink ports on the switch.

You must configure MLTs and LAGs before NSNA is globally enabled. After you globally enable NSNA, you cannot disable the MLT or LAG.

Configuration — Security December 2011

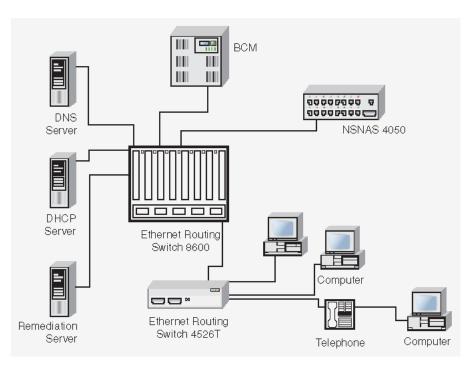


Figure 5: Network access device-Layer 2 mode

Fail open

With the NSNA Fail Open enhancement users can deploy NSNA on switches at remote sites and still access the network. If connections to the SNAS fail, then clients are placed in a Fail Open VLAN. VLAN transition with MAC DB enables the Avaya Ethernet Routing Switch 4000 to support Fail Open for NSNA v2.0. This supports MAC processing where NSNA has a list of MAC addresses that can be trusted or not trusted by the system. With Fail Open, you can transition a PVID on a port based on a device MAC address.

A Status Quo time interval applies to all NSNA server connections to the Ethernet Routing Switch 5000 Series. The expiration of this interval indicates that the NSNAS connection with the switch has failed. When Fail Open is enabled on the switch and the connection to the NSNAS fails or is never established, the following apply:

- New clients connecting on ports without any pre-authenticated clients will be moved to the Fail Open VLAN and filter. If the Fail Open filter is the red or yellow VLAN, the clients cannot gain full access to the network.
- New clients cannot connect on ports that already have authenticated clients connected (non-phone).
- Network access is not interrupted for devices pre-authenticated with MAC-authentication, TG-authentication, or 802.1X authentication.

If the NSNAS reconnects, ports are moved to the red VLAN and red filter and all MACs on the ports are aged out. Any previous blocked MACs are unblocked.

If a connection to a NSNAS is never established on switch startup and Fail Open is enabled, Fail Open actions apply to all new clients.

Basic switch configuration for NSNA

🖖 Important:

Avava recommends that you configure the core routing device, if it exists in your network, before you configure the network access device.

🖖 Important:

If clients come up when NSNAS connects to the switch and receives port information, those clients may need to redo DHCP (if they are dynamic clients). This can be done from the Windows command line: ipconfig/release ipconfig/renew

Important:

When a large number of NSNA logon or logout events occur in parallel, a few may fail. The NSNAs resets the switch port after a few minutes and you can log back in. You can also disconnect and reconnect the link to the switch to log in.

Prerequisites

- Generate the SSH keys on the NSNAS 4050/4070, and upload the public key to a TFTP server or SFTP server.
- Identify the NSNAS 4050/4070 portal Virtual IP address (pVIP) and mask.
- Identify VLAN IDs for NSNA use (that is, for Red and VoIP VLANs; plus Yellow and Green when enforcement zones are configured with VLANs and filters).
- Identify ports to use for uplink ports (in Layer 2 mode only).
- Identify ports to use for NSNA client ports.

🖖 Important:

NSNA and SFTP server require the secure runtime image of the software.

Configuring the network access device

To configure the Avaya Ethernet Routing Switch 4000 to function as a network access device in the NSNA solution, Avaya recommends you complete the following steps in the order in which they are listed.

For more information about ACLI commands to configure the NSNA solution, see NSNA configuration using ACLI on page 267. For more information about configuring the NSNA

December 2011 Configuration — Security

solution using Enterprise Device Manager, see <u>NSNA configuration using Enterprise Device</u> Manager on page 375.

1. Configure static routes to all the networks behind the core routing device.

This can be automated, as RIP and OSPF routing protocols are supported.

- 2. Configure the switch management VLAN, if necessary.
- 3. Configure SSH. For more information, see <u>Configuring SSH on the 4000 Series</u> <u>switch for NSNA</u> on page 96.
 - a. Download the NSNAS 4050/4070 SSH public key to the switch.
 - b. Enable SSH on the switch.

Important:

You must enable SSH before you enable NSNA globally. The command to enable NSNA fails if SSH is not enabled.

- c. Import the switch SSH public key on the NSNAS 4050/4070 (perform this step on the NSNAS 4050/4070, not on the edge switch).
- Configure the NSNAS 4050/4070 portal IP address (pVIP)/subnet. For more information, see <u>Configuring the NSNAS 4050/4070 subnet</u> on page 267 for ACLI, or <u>Configuring the NSNAS 4050/4070 subnet using EDM</u> on page 375.
- 5. Configure port tagging, if applicable.

Important:

For a Layer 2 the uplink ports are tagged automatically to allow them to participate in multiple VLANs.

6. Create the port-based VLANs.

The VLANs are configured as VoIP, Red, Yellow, and Green VLANs later.

7. (Optional) Configure the filters (Red, Yellow, Green, and VoIP).

Important:

Manual configuration of the filters is optional. The filters are configured automatically as predefined defaults when you configure the Red, Yellow, Green, and VoIP VLANs. You can modify default filter sets and manually created filter sets after NSNA is enabled.

- Configure the VoIP VLANs. For more information, see <u>Configuring NSNA per VLAN</u> on page 269 for ACLI, or <u>Configuring NSNA per VLAN using EDM</u> on page 377.
- Configure the Red, Yellow, and Green VLANs, associating each with the applicable filters. For more information, see <u>Configuring NSNA per VLAN</u> on page 269 for ACLI, or <u>Configuring NSNA per VLAN using EDM</u> on page 377.

When you configure the Yellow VLAN, you must configure the Yellow subnet. When a port is in the Yellow state, only traffic on the Yellow subnet is allowed (if you are

using the default filters). Therefore, only devices in the Yellow subnet are accessible. Avaya recommends that you put the remediation server in the Yellow subnet.

10. Configure the NSNA ports. For more information, see Enabling NSNA on ports using ACLI on page 272 for ACLI, or Enabling NSNA on ports using EDM on page 380.

Identify switch ports as uplink or dynamic. When you configure the uplink ports, you associate the NSNA VLANs with those ports. Clients are connected on the dynamic ports.

Important:

If the network access device itself is the DHCP relay agent for the Red, Yellow, Green, or VoIP VLANs, it is not necessary to configure an uplink port in that VLAN. You can configure NSNA ports (both dynamic and uplink) after NSNA is enabled globally.

If an end device is allocated a DHCP lease in the NSNA Fail Open VLAN, the client will keep that address until the lease expired, even if the device is moved to another NSNA VLAN. If a client is transitioned to a different NSNA VLAN then issuing ipconfig /release and ipconfig /renew obtains a new DHCP lease.

11. Enable NSNA globally. For more information, see Enabling NSNA on ports using ACLI on page 272 for ACLI, or Enabling NSNA on ports using EDM on page 380.

Configuring SSH on the 4000 Series switch for NSNA

The Secure Shell (SSH) protocol provides secure and encrypted communication between the NSNAS 4050/4070 and the network access devices. For secure communication between the NSNAS 4050/4070 and the network access device, each must have knowledge of the other device public SSH key.

To configure SSH communication between the Avaya Ethernet Routing Switch 4000 Series and the NSNAS 4050/4070, follow this procedure:

1. Download the SSH public key from the NSNAS 4050/4070 to the switch:

Important:

Ensure you have generated the NSNAS 4050/4070 key. Use the following command on the NSNAS 4050/4070 to generate the SSH public and private keys for the NSNAS 4050/4070: cfg/domain #/sshkey/generate

a. On the NSNAS 4050/4070, use the /cfg/domain #/sshkey/export command to upload the key to a TFTP server or SFTP server, for manual retrieval from the switch.

December 2011 Configuration — Security

b. On the 4000 Series load the NSNAS 4050/4070 public key to the switch using the following commands from the Global Configuration mode:

```
ssh download-auth-key address <ipaddr> key-name
<filename>
```

<ipaddr> is the IP address of the server (entered as A.B.C.D) where
you placed the key.

2. On the 4000 Series enable SSH using the following command from the Global Configuration mode:

ssh

3. On the NSNAS 4050/4070, import the 4000 Series switch public key:

/cfg/domain #/switch #/sshkey/import apply

For more information, see NSNA Switch 4050 User Guide (320818-A).

Important:

NSNA and SFTP require the secure runtime image of the software.

Important:

If you subsequently reset the switch to factory defaults, a new public key is generated on the switch. Consequently, you must repeat this procedure each time the switch is set to factory default settings. You must re-import the switch key on the NSNAS 4050/4070 and apply this change.

NSNA solution deployment in an active network

You can deploy the NSNA solution on an existing, active switch.

The term 'network access device' is used to refer to the edge switch when it is configured for the NSNA environment.

About the ports

A port on the network access device can operate in one of two modes:

- NSNA
- non NSNA

There are two kinds of NSNA ports: dynamic and uplink.

If clients come up when NSNAS connects to the switch and receives port information, those clients may need to renew DHCP (if they are dynamic clients). This is achieved from the Windows command line: ipconfig/release ipconfig/renew

When you configure a port as a dynamic NSNA port and you enable NSNA, the following properties are changed on the port:

- The port is removed from the existing VLAN and placed in the Red VLAN, and in the VolP VLAN that was configured for that port.
- The client port tagging behavior changes to untagpvidonly.
- The Port VLAN ID (PVID) of the port is changed to the Red PVID.
- If the port has existing QoS filters, they are replaced by the NSNA filter set, and the port Spanning Tree state is changed to Fast Learning (if STP was set as Normal Learning before enabling NSNA).

During runtime, NSNA changes the port VLAN membership, the filters, and the PVID properties dynamically, based on the client authentication state.

If you subsequently disable NSNA, the port returns to the pre-NSNA state. For more information, see Rolling back NSNA mode to default mode on page 100.

When the port is a NSNA uplink port and NSNA is enabled, the port can be a member of NSNA and non NSNA VLANs. For more information, see Configuration example: Adding the uplink port on page 273.

🖖 Important:

Avaya recommends that the Spanning Tree Protocol (STP) on the NSNA uplink port and on the router port be either Fast Learning or disabled. Ensuré STP is the same on both ports (that is. if STP is Fast Learning enabled on the NSNA uplink port, it must be Fast Learning enabled on the router port, also).

You can configure multiple NSNA uplink ports.

You can add the uplink port to a non NSNA VLAN or delete it from a non NSNA VLAN. The membership of the NSNA uplink port in non NSNA VLANs is not affected by globally enabling or disabling NSNA. No other NSNA port can be a member of a non NSNA VLAN.

The PVID of the uplink port can be modified.

If a port is a NSNA uplink port, enabling NSNA changes the port to a tagall port.

About the VLANs and filters

VLANs that you plan to configure as NSNA VLANs must be empty (that is, they have no port members assigned).

NSNA enforcement zones have corresponding default NSNA filter sets. Avaya recommends that you use the default filter sets. You can, however, create customized filters sets and attach

December 2011 Configuration — Security

these to the NSNA VLANs. You can also modify the default filters, if necessary, after you have enabled them. For more information, see *Avaya Ethernet Routing Switch 4000 Series Configuration* — *Quality of Service* (NN47205-504).

When you apply the NSNA filters to a port, existing QoS filters on that port are disabled, and the NSNA filters are applied (preexisting policies are reenabled when NSNA is disabled).

Avaya does not support NSNA filter sets and non NSNA filter sets coexisting on NSNA ports. NSNA VLANs are divided into four categories:

- Red
- Yellow
- Green
- VoIP

Each network access device must have one Red VLAN. Each switch can, however, have multiple Yellow and multiple Green VLANs. With the Avaya Ethernet Routing Switch 4000, you can configure only five Yellow, five Green, and five VoIP VLANs on each switch.

Only 128 filters for each precedence level are available for each chip (1/1-24, 1/25-48). Because of this there is one more limitation regarding the number of VOIP VLANs supported, as each VOIP VLAN consumes two filters on same precedence level. Example: If there are 5 VoiP VLANs defined, then nsna red filter can be enabled on 12 ports for each chip.

Completing the combinations, the Red default filter set can be applied to the following number of ports assigned the specified VoIP VLANs:

- 1 VoIP VLANs -> 24 ports (128 / [1 VoIP VLANs * 2 filters])
- 2 VoIP VLANs -> 24 ports (128 / [2 VoIP VLANs * 2 filters])
- 3 VoIP VLANs -> 21 ports (128 / [3 VoIP VLANs * 2 filters])
- 4 VoIP VLANs -> 16 ports (128 / [4 VoIP VLANs * 2 filters])
- 5 VoIP VLANs -> 12 ports (128 / [5 VoIP VLANs * 2 filters])

Updating the filter sets

Ensure you thoroughly plan your NSNA deployment. For example, as part of the NSNA configuration on the Avaya Ethernet Routing Switch 4000, you must configure the NSNAS 4050/4070 portal Virtual IP (pVIP) address and mask. This address is added to the NSNA filter sets only (this applies to VoIP VLAN IDs and the Yellow subnet, also).

If you change the NSNAS 4050/4070 pVIP subnet (or VoIP VLAN IDs, or the Yellow subnet), you must update the filter sets. You update the filter sets in one of two ways:

- 1. Manually update them using the **qos nsna** command. For more information, see *Avaya Ethernet Routing Switch 4000 Series Configuration Quality of Service* (NN47205-504).
- 2. Remove the filters and reconfigure:

- a. Disable NSNA globally.
- b. Disable NSNA on the ports.
- c. Mark the VLANs as non NSNA (mark VoIP VLANs last).
- d. Delete the filters using one of the following methods:
 - i. Delete all the filters at once:

```
enable con ter gos agent reset-default
```

ii. Delete the filters one by one:

```
no qos nsna name <filter-name-red> no qos
nsna name <filter-name-yellow> no qos nsna
name <filter-name-green>
```

- e. Remove the NSNAS 4050/4070 (no nsna nsnas).
- f. Reconfigure NSNA.

Rolling back NSNA mode to default mode

When you enable NSNA on the Avaya Ethernet Routing Switch 4000 Series, NSNA dynamically changes the following port settings:

- VLAN settings
- QoS parameters
- Spanning Tree configuration

When you disable NSNA, the changes to those port settings are rolled back automatically, and pre-NSNA settings are applied on the port.

There is one exception: when NSNA is enabled on a port, STP runs in FAST START mode to enable faster convergence. The Spanning Tree state of the LAN port can stay in FAST START mode when NSNA is disabled if the client ports were set to Normal Learning in the pre-NSNA state. If the pre-NSNA Spanning Tree state was Fast Learning or disabled, the port rolls back correctly.

If you physically moved existing users from a legacy switch, to a NSNA-enabled switch, the only task you must complete to roll back port settings is: to physically reconnect the users to the legacy switch.

Summary of security features

For more information about some of the security features available on the Avaya Ethernet Routing Switch 4000, see <u>Table 10: MAC security</u> on page 101 through <u>Table 14: SNMPv3 security</u> on page 103.

Table 10: MAC security

MAC security	Description
Description	Use the MAC address-based security feature to set up network access control based on source MAC addresses of authorized stations.
What is being secured	Access to the network or specific subnets or hosts.
For each port or each switch	Each port.
Layer	Layer 2.
Level of security	Forwarding.
Violations	SA filtering, DA filtering, Port Partitioning, SNMP Trap.
Requirements for setup	Not applicable.
Configuring using interfaces	ACLI, ASCII configuration file, SNMP, and EDM.
Restrictions and limitations	_
Reference	s5sbs MIB (S5-SWITCH-BAYSECURE-MIB)
Comments	_

Table 11: Password Authentication security

Password authentication	Description
Description	Security feature.
What is being secured	User access to a switch or stack.
Port to port or switch to	For RADIUS authentication.
switch	The RADIUS server needs to be accessible from switch.
	The RADIUS client from the switch must be provided with the RADIUS server IP and UDP Port and a shared secret.
Layer	Not applicable.

Password authentication	Description
Level of security	Provides Read Only and Read Write access. The access rights are checked against Local Password and RADIUS Server.
Violations	Not applicable.
Requirements for setup	For RADIUS authentication.
	The RADIUS server needs to be accessible from the switch.
	 The RADIUS client from the switch must be provisioned with the RADIUS server IP, the UDP Port, and a shared secret.
Configuring using interfaces	EDM, ACLI, ASCII configuration file.
Restrictions and limitations	Not applicable.

Table 12: EAPOL security

EAPOL	Description
Description	Extensible Authentication Protocol Over LAN (Ethernet)—you can use this to set up network access control on internal LANs.
What is being secured	User access to the network.
Port to port or switch to switch	User authentication by port.
Layer	Layer 2.
Level of security	Network access encryption.
Violations	The switch blocks a port if intruder is seen on that port. Administration has to reenable port.
Requirements for setup	RADIUS Server configuration on the switch. EAP-RADIUS server needs to be accessible from the switch.
Configuring using interfaces	Enterprise Device Manger (EDM) and Avaya Command Line (ACLI).
Restrictions and limitations	Not allowed: shared segments and ports configured for MultiLink Trunking, MAC address-based security, IGMP (static router ports), or port mirroring.
Reference	IEEE802.1X, RFC 2284.

Table 13: IP Manager security

IP Manager	Description
Description	IP Manager is an extension of Telnet. It provides an option to enable or disable access for TELNET (Telnet On or Off), SNMP (SNMP On or Off) and Web Page Access (Web On or Off) with or without a list of 50 IP Addresses and masks.
What is being secured	User access to the switch through Telnet, SNMP, or Web.
Port to port or switch to switch	By switch.
Layer	IP.
Level of security	Access.
Violations	User is not allowed to access the switch.
Requirements for setup	Optional IP Addresses or Masks, Individual Access (enable or disable) for Telnet, SNMP or Web page.
Configuring using interfaces	Web and ACLI.
Restrictions and limitations	Not applicable.

Table 14: SNMPv3 security

SNMPv3	Description
Description	The latest version of SNMP provides strong authentication and privacy for Simple Network Management Protocol (SNMP)—using hash message authentication codes message digest 5 (HMAC-MD5), HMAC-secure hash algorithm (SHA), cipher block chaining Data Encryption Standard (CSCDES), Advanced Encryption Standard (AES), and Triple DES (3DES)—plus access control of Management Information Base (MIB) objects based on user names.
What is being secured	Access to MIBs using SNMPv3 is secured. Access to MIBs using SNMPv1 or v2c can be restricted.
Port to port or switch to switch	By switch.
Layer	SNMP Port 161, 162.
Level of security	Access and Encryption.
Violations	Received SNMPv3 packets that cannot be authenticated are discarded. For authenticated packets that try to access MIB objects in an unauthorized manner, an error is returned to the sender. Various MIB counters are incremented when a violation occurs. (These can be monitored to detect intrusions, for example, by using RMON alarms.)

SNMPv3	Description
Requirements for setup	For maximum security, initial configuration of views, users, and keys must be done through the console port or over a physical network connection. Subsequent secure configuration changes can be accomplished using SNMPv3 using a secure SHA or DES connection.
Configuring using interfaces	Enterprise Device Manger (EDM), Avaya Command Line Interface (ACLI), ASCII configuration file, and SNMP Set requests.

Table 15: NSNA

NSNA	Description
Description	NSNA used to protect the network from DoS attacks and endpoint vulnerability.
What is being secured	The network is secured from the devices that are not compliant with network policies.
Port to port or switch to switch	User authentication is done by port.
Layer	Layer 2-7.
Level of security	Network access.
Violations	The switch will keep the ports in RED VLAN (restricted access zone) for the nonauthenticated clients. If after successful authentication the PC client is not compliant with network policies the port will be placed in YELLOW VLAN (remediation zone).
Requirements for setup	SNAS server IP address or port and NSNA VLANs configuration on the switch. SNAS server can be accessible from the switch and the switch to SNAS Communication Protocol (SSCP) can be up.
Configuring using interfaces	Avaya Command Line (ACLI) and Device Manger (DM).
Restrictions and limitations	Not allowed on ports configured for EAP, MAC address-based security, port mirroring (monitor port), BRouter port, ADAC and VLACP.

Table 16: DHCP Snooping security

DHCP Snooping	Description
Description	Use the Dynamic Host Control Protocol (DHCP) snooping security feature to provide security to the network by filtering untrusted DHCP messages to prevent DHCP spoofing.

What is being secured	Access to the network.
Port to port or switch to switch	Per port.
Layer	Layer 2 and 3.
Level of security	Forwarding.
Violations	Allows only DHCP requests from untrusted ports. DHCP replies and all other types of DHCP messages are dropped. If the source MAC address and the DHCP client hardware address do not match, the switch drops the packet.
Requirements for setup	Not applicable.
Configuring using interfaces	Avaya Command Line Interface (ACLI) and Enterprise Device Manager (EDM).

Table 17: Dynamic ARP Inspection security

Dynamic ARP Inspection	Description
Description	Use the dynamic Address Resolution Protocol (ARP) Inspection to validate ARP packets in a network.
What is being secured	Access to the network.
Per port or per switch	Per port.
Layer	Layer 2 and 3.
Level of security	Forwarding.
Violations	Dynamic ARP Inspection intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings.
Requirements for setup	DHCP snooping must be globally enabled.
Configuring using interfaces	Avaya Command Line Interface (ACLI) and Enterprise Device Manager (EDM).

Security fundamentals

Chapter 4: Security configuration and management using ACLI

This chapter describes the methods and procedures necessary to configure security on the Avaya Ethernet Routing Switch 4000 using the Avaya Command Line Interface (ACLI).

Depending on the scope and usage of the commands listed in this chapter, different command modes are needed to execute them.

Setting user access limitations

For more information about the configuration and management of user access limitations using ACLI, see the *Avaya Ethernet Routing Switch 4000 Series Overview – System Configuration* (NN47205-500).

USB port and serial console port control using ACLI

This section describes how you can control access to the Avaya Ethernet Routing Switch 4000 by enabling or disabling the USB port or serial console port. All serial console ports on the Avaya Ethernet Routing Switch 4000 are enabled by default.

Disabling serial console ports using ACLI

Disable serial console ports to deny users console access to the Avaya Ethernet Routing Switch 4000 uses the following procedure.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

1. Disable serial console ports on all Avaya Ethernet Routing Switch 4000s in a stack by using the following command:

```
no serial-console <enable>
```

2. Disable the serial console port on a specific Avaya Ethernet Routing Switch 4000 unit in a stack by using the following command:

```
no serial-console [unit <1-8>] <enable>
```

Variable definitions

The following table defines optional parameters that you enter with the no serial-console [unit <1-8>] <enable> command.

Variable	Value
[unit <1-8>]	Identifies the unit number of an Avaya Ethernet Routing Switch 4000 in a stack. Values range from 1 to 8.

Enabling serial console ports using ACLI

Enable serial console ports to grant users console access to the Avaya Ethernet Routing Switch 4000 by following this procedure.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

1. Enable serial console ports on all Ethernet Routing Switch 4000s in a stack by using either of the following commands:

serial-console <enable>

OR

default serial-console <enable>

2. Enable the serial console port on a specific Ethernet Routing Switch 4000 unit in a stack by using the following command:

```
serial-console [unit <1-8>] <enable>
```

OR

default serial-console [unit <1-8>]<enable>

Variable definitions

The following table defines variables that you enter with the serial-console [unit <1-8>] <enable> command.

Variable	Value
[unit <1-8>]	Identifies the unit number of a Ethernet Routing Switch 4000 in a stack. Values range from 1 to 8.

Viewing serial console port status using ACLI

View serial console port status to display the operational status of serial console ports on all Avaya Ethernet Routing Switch 4000s in a stack or on a stand-alone Avaya Ethernet Routing Switch 4000 by following this procedure.

Prerequisites

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

1. View the status of all serial console ports on the switch by using the following command:

```
show serial-console
```

2. View the status of a specific serial console port on the switch by using the following command:

show serial-console [unit <1-8>]

Variable definitions

The following table defines variables that you enter with the show serial-console [unit <1-8>] command.

Variable	Value
[unit <1-8>]	Identifies the serial console port unit number. Values range from 1 to 8.

Disabling USB ports using ACLI

Disable USB ports to deny users console access to USB ports on the Avaya Ethernet Routing Switch 4000.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

1. Disable USB ports on all Avaya Ethernet Routing Switch 4000s in a stack by using the following command:

```
no usb-host-port [unit <1-8>] <enable>
```

2. Disable the USB port on a stand-alone Avaya Ethernet Routing Switch 4000 by using the following command:

```
no usb-host-port <enable>
```

Variable definitions

The following table defines variables that you enter with the usb-host-port [unit <1-8>] <enable> command.

Variable	Value
[unit <1-8>]	Identifies the unit number of an Avaya Ethernet Routing Switch 4000 in a stack. Values range from 1 to 8.

Enabling USB ports using ACLI

Enable USB ports to grant users console access to the Avaya Ethernet Routing Switch 4000 by following this procedure.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

1. Enable USB ports on all Avaya Ethernet Routing Switch 4000s in a stack by using either of the following commands:

```
usb-host-port [unit <1-8>] <enable>
```

OR

default usb-host-port [unit <1-8>] <enable>

2. Enable the USB port on a stand-alone Avaya Ethernet Routing Switch 4000 by using either of the following commands:

```
usb-host-port <enable>
```

OR

default usb-host-port <enable>

Variable definitions

The following table defines variables that you enter with the usb-host-port [unit <1-8>] <enable> command.

Variable	Value
[unit <1-8>]	Identifies the unit number of an Avaya Ethernet Routing Switch 4000 in a stack. Values range from 1 to 8.

Viewing USB port status using ACLI

View USB port status to display the operational status of USB ports on all Avaya Ethernet Routing Switch 4000s in a stack or on a stand-alone Avaya Ethernet Routing Switch 4000 by following this procedure.

Prerequisites

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

1. View the status of USB ports on all Avaya Ethernet Routing Switch 4000s in a stack by using the following command:

```
show usb-host-port [unit <1-8>]
```

2. View the status of the USB port on a stand-alone Avaya Ethernet Routing Switch 4000 by using the following command:

show usb-host-port

Variable definitions

The following table defines variables that you enter with the show serial-console [unit <1-8>] command.

Variable	Value
[unit <1-8>]	Identifies the unit number of an Avaya Ethernet Routing Switch 4000 in a stack. Values range from 1 to 8.

Configuring MAC address-based security

The following ACLI commands allow for the configuration of the BaySecure application using Media Access Control (MAC) addresses.

The MAC Security feature shares resources with QoS. Precedence values for non QoS features are allocated dynamically in descending order of availability. Therefore, the

Comments? infodev @avaya.com

precedence value used depends on the order in which features are configured. With DHCP Relay enabled by default and assigned the highest precedence value (15), a QoS policy with a precedence value of 15 cannot be installed. If the MAC Security feature is also enabled, it is assigned a precedence value of 14. Therefore, a QoS policy with a precedence value of 14 cannot be installed.

For more information about QoS policies, see *Avaya Ethernet Routing Switch 4000 Series Configuration* — *Quality of Service* (NN47205-504).

ACLI commands for MAC address security

You can use ACLI commands in this section to configure and manage MAC address security.

show mac-security command

The **show mac-security** command displays configuration information for the BaySecure application.

The syntax for the **show mac-security** command is

show mac-security {config|mac-address-table [address <macaddr>]|macda-filter|port <portlist> |security-lists}

The following table outlines the parameters for this command.

Table 18: show mac-security parameters

Parameter	Description
config	Displays general BaySecure configuration.
mac-address-table [address <macaddr>]</macaddr>	Displays contents of BaySecure table of allowed MAC addresses:
	address — specifies a single MAC address to display; enter the MAC address
mac-da-filter	Displays MAC DA filtering addresses.
port <portlist></portlist>	Displays the BaySecure status of all ports.
security-lists	Displays port membership of all security lists.

The show mac-security command is executed in the Privileged EXEC command mode.

show mac-security mac-da-filter command

The show mac-security mac-da-filter command displays configuration information for filtering MAC destination addresses (DA). Packets can be filtered from up to 10 MAC DAs or MAC SAs.

The syntax for the show mac-security mac-da-filter command is

```
show mac-security mac-da-filter
```

The show mac-security mac-da-filter command is executed in the Privileged EXEC command mode.

The show mac-security mac-da-filter command has no parameters or variables.

mac-security command

The mac-security command modifies the BaySecure configuration.

The syntax for the mac-security command is

```
mac-security [disable|enable] [filtering {enable|disable}]
[intrusion-detect {enable|disable|forever}] [intrusion-timer
<1-65535>] [auto-learning][learning-ports <portlist>] [learning
{enable|disable}][mac-adress-table] [mac-da-filter {add|delete}]
[security-list][snmp-lock {enable|disable}] [snmp-trap {enable|
disable ]
```

Table 19: mac-security parameters

Parameter	Description
disable enable	Disables or enables MAC address-based security.
filtering {enable disable}	Enables or disables destination address (DA) filtering on intrusion detected.
intrusion-detect {enable disable forever}	Specifies partitioning of a port when an intrusion is detected:
	enable — port is partitioned for a period of time
	disabled — port is not partitioned on detection
	forever —- port is partitioned until manually changed
intrusion-timer <1-65535>	Specifies, in seconds, length of time a port is partitioned when an intrusion is detected; enter the number of seconds desired.

Parameter	Description
auto-learning	Configures MAC Autolearning.
learning-ports <portlist></portlist>	Specifies MAC address learning. Learned addresses are added to the table of allowed MAC addresses. Enter the ports to learn; a single port, a range of ports, several ranges, all ports, or no ports can be entered.
learning {enable disable}	Specifies MAC address learning:
	enable — enables learning by ports
	disable — disables learning by ports
mac-address-table	Specifies MAC address to be added.
mac-da-filter {add delete}	Add or delete MAC DA filtering addresses.
security-list	Specifies the security list number from 1 to 32.
snmp-lock {enable disable}	Enables or disables a lock on SNMP write-access to the BaySecure MIBs.
snmp-trap {enable disable}	Enables or disables trap generation upon intrusion detection.

The mac-security command is executed in the Global Configuration command mode.

mac-security mac-address-table address command

The mac-security mac-address-table address command assigns either a specific port or a security list to the MAC address. This removes previous assignments to the specified MAC address and creates an entry in the BaySecure table of allowed MAC addresses.

The syntax for the mac-security mac-address-table address command is

mac-security mac-address-table address <H.H.H.> {port <portlist>| security-list <1-32>}

The following table outlines the parameters for this command.

Table 20: mac-security mac-address-table address parameters

Parameter	Description
<h.h.h></h.h.h>	Enter the MAC address in the form of H.H.H.
port <portlist> security-list <1-32></portlist>	Enter the port number or the security list number. In this command the port list must be a single port.

The mac-security mac-address-table address command is executed in the Global Configuration command mode.

no mac-security mac-address-table command

The no mac-security mac-address-table command clears static entries from the MAC address security table. MAC addresses autolearned on ports are not deleted.

The syntax for the no mac-security mac-address-table command is

The following table outlines the parameters for this command.

Table 21: no mac-security mac-address-table parameters

Parameter	Description
address <h.h.h></h.h.h>	Enter the MAC address in the form of H.H.H.
port <portlist></portlist>	Enter the port number.
security-list <1-32>	Enter the security list number.

The no mac-security mac-address-table command is executed in the Global Configuration command mode.

show mac-security mac-address-table command

The show mac-security mac-address-table command displays the current global MAC Address security table. The syntax for this command is

show mac-security mac-address-table.

This command is executed in the Privileged EXEC command mode.

mac-security security-list command

The mac-security security-list command assigns a list of ports to a security list.

The syntax for the mac-security security-list command is

mac-security security-list <1-32> <portlist>

Table 22: mac-security security-list parameters

Parameter	Description
<1-32>	Enter the number of the security list you want to use.

Parameter	Description
<portlist></portlist>	Enter the port number.

The mac-security security-list command is executed in the Global Configuration command mode.

no mac-security security-list command

The no mac-security security-list command clears the port membership of a security list.

The syntax for the no mac-security security-list command is

no mac-security security-list <1-32>

Substitute the <1-32> with the number of the security list to be cleared.

The no mac-security security-list command is executed in the Global Configuration command mode.

mac-security command for specific ports

The mac-security command for specific ports configures the BaySecure status of specific ports.

The syntax for the mac-security command for specific ports is:

mac-security [port <portlist>] {disable|enable|learning}

Table 23: mac-security parameters

Parameter	Description
port <portlist></portlist>	Enter the port numbers.
disable enable learning	Directs the specific port: • disable - disables BaySecure on the specified port and removes the port from the list of ports for which MAC address learning is being performed
	enable — enables BaySecure on the specified port and removes the port from the list of ports for which MAC address learning is being performed
	learning — disables BaySecure on the specified port and adds this port to the list of ports for which MAC address learning is being performed

The mac-security command for specific ports is executed in the Interface Configuration command mode.

show mac-security command

The show mac-security command displays the current MAC Address security table for the ports entered. The syntax for this command is

```
show mac-security port <portlist>.
```

Substitute <portlist> with the ports to be displayed.

This command is executed in the Privileged EXEC command mode.

mac-security mac-da-filter command

The mac-security mac-da-filter command allows packets to be filtered from up to ten specified MAC DAs or MAC SAs. You can also use this command to delete such a filter, and then receive packets from the specified MAC DA.

The syntax for the mac-security mac-da-filter command is

```
mac-security mac-da-filter {add|delete} <H.H.H.>
```

Substitute the {add|delete} < H.H.H.> with either the command to add or delete a MAC address and the MAC address in the form of H.H.H.

The mac-security mac-da-filter command is executed in the Global Configuration command mode.

ACLI commands for MAC address autolearning

You can use ACLI commands in this section to configure and manage MAC autolearning.

mac-security auto-learning aging-time command

The mac-security auto-learning aging-time command sets the aging time for the autolearned addresses in the MAC Security Table.

The syntax for the command is

```
mac-security auto-learning aging-time <0-65535>
```

Substitute <0-65535> with the aging time in minutes. An aging time of 0 means that the learned addresses never age out. The default is 60 minutes.

The mac-security auto-learning aging-time command is executed in the Global Configuration command mode.

no mac-security auto-learning aging-time command

The no mac-security auto-learning aging-time command sets the aging time for the autolearned addresses in the MAC Security Table to 0. In this way, it disables the removal of autolearned MAC addresses.

The syntax for the command is

no mac-security auto-learning aging-time

The no mac-security aging-time command is executed in the Global Configuration command mode.

default mac-security auto-learning aging-time command

The default mac-security auto-learning aging-time command sets the aging time for the autolearned addresses in the MAC Security Table to the default of 60 minutes.

The syntax for the command is

default mac-security auto-learning aging-time

The default mac-security auto-learning aging-time command is executed in the Global Configuration command mode.

mac-security auto-learning sticky command

The mac-security auto-learning sticky command enables the storing of automatically learned MAC addresses across switch reboots.

The syntax for the command is

mac-security auto-learning sticky

The mac-security auto-learning sticky command is executed in the Global Configuration command mode.

! Important:

Avaya recommends that you disable autosave using the no autosave enable command when you enable Sticky MAC address.

To view the current Sticky MAC address mode, use the show mac-security command on page 113 with the config variable.

no mac-security auto-learning sticky command

The no mac-security auto-learning sticky command disables the storing of the automatically learned MAC addresses across switch reboots.

The syntax for the command is

no mac-security auto-learning sticky

The no mac-security auto-learning sticky command is executed in the Global Configuration command mode.

To view the current Sticky MAC address mode, use the <u>show mac-security command</u> on page 113 with the <u>config</u> variable.

default mac-security auto-learning sticky command

The default mac-security auto-learning sticky command sets the storing of the automatically learned MAC addresses across switch reboots to the default state (disabled).

The syntax for the command is

default mac-security auto-learning sticky

The default mac-security auto-learning sticky command is executed in the Global Configuration command mode.

To view the current Sticky MAC address mode, use the <u>show mac-security command</u> on page 113 with the <u>config</u> variable.

RADIUS authentication configuration using ACLI

You can use the procedures in this section to help secure networks against unauthorized access, by configuring communication servers and clients to authenticate user identities through a central database.

Configuring switch RADIUS server settings using ACLI

Use this procedure to configure RADIUS server account information on the switch.

Prerequisites

Log on to the Global Configuration mode in ACLI

Procedure steps

Configure RADIUS server account information on the switch by using the following command:

[no] [default] radius server host {ipaddr | ipv6addr} [acctenable] [acct-port <port>] [key{key}] [port <port>] [retry <1-</pre> 5>] [secondary] [timeout <1-60>] [used-by <eapol| non-eapol>]

Variable definitions

Variable	Value	
<ipaddr></ipaddr>	Specifies the IPv4 address of the primary server you want to add or configure.	
	● Important:	
	A value of 0.0.0.0 indicates that a primary RADIUS server is not configured.	
<ipv6addr></ipv6addr>	Specifies the IPv6 address of the primary server you want to add or configure.	
	Important: A value of 0.0.0.0 indicates that a primary RADIUS server is not configured.	
acct-enable	Enables RADIUS accounting for a RADIUS server instance.	
acct-port <port></port>	Specifies the UDP accounting port number for clients to use when trying to contact the RADIUS server at the corresponding Global RADIUS Server IP address. Values range from 0 to 65535.	
default	Restores the switch RADIUS server settings to default values. To delete a RADIUS server and restore default RADIUS settings, use one of the following commands in the Global or Interface Command mode:	
	•default radius server host	
	•default radius server host secondary	
	•default radius server host used-by eapol	
	•default radius server host secondary used-by eapol	

Variable	Value
	•default radius server host used-by non-eapol
	•default radius server host secondary used-by non-eapol
key <key></key>	Specifies the secret authentication and encryption key used for all communications between the NAS and the RADIUS server. The key, also referred to as the shared secret, must be the same as the one defined on the server. You are prompted to enter and confirm the key.
no	Deletes switch RADIUS server settings.
port <port></port>	Specifies the UDP port number for clients to use when trying to contact the RADIUS server at the corresponding RADIUS server IP address. Values range from 1 to 65535. The default port number is 1812.
retry <1-5>	Specifies the number of RADIUS retry attempts for a RADIUS Server instance. Values range from 1 to 5.
secondary	Specifies the RADIUS server you are configuring as the secondary server. The system uses the secondary server only if the primary server is not configured or is not reachable.
timeout <timeout></timeout>	Specifies the timeout interval between each retry for service requests to the RADIUS server. Values range from 1 to 60 seconds. The default value is 2 seconds.
used-by <eapol non-eapol=""></eapol >	Specifies the RADIUS server as an EAP RADIUS Server or a Non-EAP (NEAP) RADIUS Server.
	eapol—configures the RADIUS server to process EAP client requests only .
	non-eapol—configures the RADIUS server to process Non-EAP client requests only.
	If you do not specify the RADIUS server as either EAP or Non-EAP, the system configures the server as a Global RADIUS Server, and processes client requests without designating them as separate EAP or Non-EAP.

Enabling or disabling RADIUS password fallback using ACLI

Use this procedure to enable or disable RADIUS password fallback feature for logging on to a switch or stack by using the local password, if the RADIUS server is unavailable or unreachable.

Prerequisites

Log on to the Global or Interface Configuration mode in ACLI

Procedure steps

1. Enable RADIUS password fallback by using the following command:

```
radius-server password fallback
```

2. Disable RADIUS password fallback by using either of the following commands:

```
no radius-server password fallback default radius-server password fallback
```

Viewing RADIUS information using ACLI

Use this procedure to display RADIUS server configuration information.

Prerequisites

Log on to the Privileged EXEC command mode in ACLI.

Procedure steps

To display RADIUS configuration status, enter the following command:

show radius-server

Job aid: show radius-server command output

The following figure displays sample output for the show radius-server command.

```
4524GT-PWR#show radius-server
RADIUS Global Server
                                   : 0.0.0.0
Primary Host
Secondary Host
                                     1812
Port
Time-out
Radius Accounting : Disal
Radius Accounting Port : 1813
Radius Retry Limit : 4
                                     Disabled
RADIUS EAP Server
                                     0.0.0.0
Primary Host
Secondary Host
Port
                                     1812
Time-out
Rey : Radius Accounting : Disal Radius Accounting Port : 1813 Radius Retry Limit : 3
                                   : Disabled
RADIUS Non-EAP Server
                                     0.0.0.0
Primary Host
Secondary Host
                                   : 1812
: 2
Port
Time-out
Radius Accounting : Disal
Radius Accounting Port : 1813
Radius Retry Limit : 3
                                   : Disabled
Other Settings
Password Fallback
4524GT-PWR#
                                  : Disabled
```

Configuring RADIUS server reachability using ACLI

Use this procedure to select and configure the method by which to determine the reachability of the RADIUS server.

Prerequisites

Log on to the Global Configuration mode in ACLI

Procedure steps

Select and configure the method by which to determine the reachability of the RADIUS server by using the following command:

[default] radius reachability {use-icmp | use-radius [username <username> | password <password>]}

Variable definitions

Variable	Value
default	Restores RADIUS server reachability to default values.
password <password></password>	Specifies a password for the RADIUS request.

Variable	Value
use-icmp	Uses ICMP packets to determine reachability of the RADIUS server (default).
use-radius	Uses dummy RADIUS requests to determine reachability of the RADIUS server.
username <username></username>	Specifies a user name for the RADIUS request.

Viewing the RADIUS server reachability method using ACLI

Use this procedure to display the configured RADIUS server reachability method.

Prerequisites

Log on to the User EXEC mode in ACLI

Procedure steps

Display the configured RADIUS server reachability method by using the following command:

show radius reachability

Job aid

The following table shows sample output for the show radius reachability command.

```
4524GT-PWR>show radius reachability
RADIUS reachability: USE ICMP
4524GT-PWR>
```

Configuring EAPOL security

Use the following ACLI commands to configure and manage Extensible Authentication Protocol over LAN (EAPOL) security. EAPOL filters traffic based on the source MAC address.

You must enable EAPOL before you enable UDP Forwarding, IP Source Guard, and other features that use QoS policies.

eapol command

The eapol command enables or disables EAPOL-based security.

The syntax for the eapol command is

```
eapol {disable|enable}
```

Use either disable or enable to enable or disable EAPOL-based security.

The eapo1 command is executed in the Global Configuration command mode.

eapol command for modifying parameters

The eapol command for modifying parameters modifies EAPOL-based security parameters for a specific port.

The syntax for the eapol command for modifying parameters is:

```
eapol [port <portlist>] [init] [status {authorized|unauthorized|
auto}] [traffic-control {in-out|in}] [reauthentication {enable|
disable [ reauthentication-period <1-604800 > ] [re-authenticate]
[quiet-interval <num>] [transmit-interval <num>] [supplicant-timeout
<num>] [server-timeout <num>] [max-request <num>]
```

Table 24: eapol parameters

Parameter	Description
port <portllist></portllist>	Specifies the ports to configure for EAPOL; enter the desired port numbers
	Important:
	If this parameter is omitted, the system uses the port number specified when the interface command was issued.
init	Reinitiates EAP authentication.
status {authorized unauthorized	Specifies the EAP status of the port:
auto}	authorized — port is always authorized
	unauthorized — port is always unauthorized
	auto — port authorization status depends on the result of the EAP authentication
traffic-control (in-out I in)	Sets the level of traffic control:

Parameter	Description
	in-out — if EAP authentication fails, both ingressing and egressing traffic are blocked
	in — if EAP authentication fails, only ingressing traffic is blocked
	EAPOL filters traffic based on the source MAC address. An unauthorized client, whether EAPOL or NonEAPOL, can receive traffic from authorized clients.
reauthentication enable disable	Enables or disables reauthentication for EAPOL clients.
reauthentication-period <1-604800>	Enter the desired number of seconds between reauthentication attempts.
re-authenticate	Specifies an immediate reauthentication. NonEAP clients are not reauthenticated even if reauthentication is enabled on the port.
quiet-interval <num></num>	Enter the desired number of seconds between an authentication failure and the start of a new authentication attempt; range is 1 to 65535.
transmit-interval <num></num>	Specifies a waiting period for response from supplicant for EAP Request/Identity packets. Enter the number of seconds to wait; range is 1 to 65535.
supplicant-timeout <num></num>	Specifies a waiting period for response from supplicant for all EAP packets except EAP Request/ Identity packets. Enter the number of seconds to wait; range is 1 to 65535.
server-timeout <num></num>	Specifies a waiting period for response from the server. Enter the number of seconds to wait; range is 1 to 65535.
max-request <num></num>	Enter the number of times to retry sending packets to supplicant; range is 1 to10.

The eapol command for modifying parameters is executed in the Interface Configuration command mode.

show eapol command

The show eapol command displays the EAPOL-based security.

The syntax for the show eapol command is

```
show eapol [<portlist>] [multihost {interface|status}] [guest-vlan
{interface}][auth-diags {interface}] [auth-stats {interface}]
```

The following table outlines the parameters for this command.

Table 25: show eapol parameters

Parameter	Description
port	The list of ports for which EAPOL security is to appear.
multihost {interface status }	Displays EAPOL multihost configuration. Select interface to display multihost port configuration and status to display multihost port status.
guest-vlan {interface}	Displays EAPOL port Guest VLAN settings.
auth-diags {interface}	Displays the EAPOL authentication diagnostics interface.
auth-stats {interface}	Displays the authentication statistics interface.

The show eapol command is executed in the Privileged EXEC command mode.

show eapol multihost status command

The show eapol multihost status command displays the multihost status of eapol clients on EAPOL-enabled ports.

The syntax for the show eapol multihost status command is

show eapol multihost status [<port_list>] [verbose]

🖖 Important:

If you apply the show eapol multihost status command on a large stack with complex configuration, you can experience slow output if this command is executed within 4-5 minutes of the stack being booted or power-cycled. If you wait 5 minutes after the stack is booted or power-cycled before executing this show command, the normal response times will be observed.

Table 26: show eapol multihost status parameters

Parameter	Description
<port_list></port_list>	Specifies an individual port or list of ports for which to display the EAPOL multihost status.
<verbose></verbose>	Displays detailed EAPOL multihost port status.

The show eapol multihost status command is executed in the Privileged Exec command mode.

Enabling or disabling Non-EAP client re-authentication using ACLI

Use this procedure to enable or disable Non-EAP (NEAP) re-authentication for the switch.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

- 1. Enable Non-EAP re-authentication by using the following command: eapol multihost non-eap-reauthentication-enable
- 2. Disable Non-EAP re-authentication by using either of the following commands:

 no eapol multihost non-eap-reauthentication-enable

 default eapol multihost non-eap-reauthentication-enable

Viewing the non-EAP client re-authentication status using ACLI

Use this procedure to display the configuration status of NEAP re-authentication for the switch.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Display the configuration status of NEAP re-authentication by using the following command:

show eapol multihost

Job aid: show eapol multihost command output

The following figure displays sample output for the show eapol multihost command.

```
ERS-4524GT(config)#show eapol multihost
Allow Non-EAPOL Clients: Disabled
Use RADIUS To Authenticate Non-EAPOL Clients: Disabled
Allow Non-EAPOL Clients After Single Auth (MHSA): Disabled
Allow Non-EAPOL VoIP Phone Clients: Disabled
EAPOL Request Packet Generation Mode: Multicast
Allow Use of RADIUS Assigned VLANs: Disabled
Allow Use of RADIUS Assigned VLANs: Disabled
Allow Use of Non-Eapol RADIUS Assigned VLANs: Disabled
EAPOL Reauthentication Security Mode: Fail on RADIUS Timeout
Non-EAPOL RADIUS Password Attribute Format: IpAddr.MACAddr.PortNumber
Use most recent RADIUS VLAN: Disabled
Non-EAP re-authentication: Disabled
ERS-4524GT(config)#
```

Clearing non-EAP authenticated clients from ports using ACLI

Use this procedure to clear authenticated NEAP clients from a specified port.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Clear authenticated NEAP clients from a specified port by using the following command:

clear eapol non-eap [<portList>] [address <H.H.H>]

Variable definitions

Variable	Value
address <h.h.h></h.h.h>	Specifies the MAC address of an authenticated NEAP client to clear from the port. If you enter a MAC address value of 00:00:00:00:00:00, all authenticated NEAP clients are cleared from the specified port.
<portlist></portlist>	Specifies an individual port or list of ports from which to clear authenticated NEAP clients.

Configuring features

The Avaya Ethernet Routing Switch 4000 supports advanced EAPOL features that allow multiple hosts on a port. For more information about the advanced EAPOL features, see <u>Advanced EAPOL features</u> on page 37.

130 Configuration — Security

This section provides information about configuring the following features:

- Single Host with Single Authentication (SHSA) and Guest VLAN. For more information, see Configuring guest VLANs on page 136.
- Multiple Host with Multiple Authentication (MHMA). For more information, see <u>Multiple Host with Multiple Authentication</u> on page 40.
- Multiple Host with Single Authentication (MHSA). For more information, see <u>Multiple Host</u> with <u>Single Authentication</u> on page 48.
- Non EAP hosts on EAP-enabled ports. For more information, see <u>Non EAP hosts on EAP-enabled ports</u> on page 46.

SHSA is the default configuration.

no eapol multihost use radius-assigned-vlan command

To globally disable RADIUS-assigned VLAN use in MHMA mode, use one of the following commands in the Global Configuration mode:

```
no eapol multihost [use-radius-assigned-vlan]

or

default eapol multihost [use-radius-assigned-vlan]
```

The following tables outline the parameters for the **no** and **default** versions of this command respectively:

Table 27: no eapol multihost [use-radius-assigned-vlan] parameters

Parameter	Description
use-radius-assigned-vlan	globally disables RADIUS-assigned VLAN use in the MHMA mode.

Table 28: default eapol multihost [use-radius-assigned-vlan] parameters

Parameter	Description
use-radius-assigned-vlan	globally sets the default (disable) for RADIUS-assigned VLAN use in the MHMA mode.

To disable RADIUS-assigned VLAN use in the MHMA mode for the desired interface, use one of the following commands:

```
no eapol multihost [port <portlist>] [use-radius-assigned-vlan]
or
default eapol multihost [port <portlist>] [use-radius-assigned-vlan]
```

The following tables outline the parameters for the no and default versions of this command respectively:

Table 29: no eapol multihost [use-radius-assigned-vlan] parameters: Interface mode

Parameter	Description
<portlist></portlist>	specifies the port on which you want RADIUS-assigned VLAN use disabled in the MHMA mode. You can enter a port, several ports or a range of ports.
use-radius-assigned-vlan	disables RADIUS-assigned VLAN use in the MHMA mode, on the desired interface.

Table 30: default eapol multihost [use-radius-assigned-vlan] parameters: Interface mode

Parameter	Description
<portlist></portlist>	specifies the port on which you want RADIUS-assigned VLAN use disabled in the MHMA mode. You can enter a port, several ports or a range of ports.
use-radius-assigned-vlan	sets the default (disable) for RADIUS-assigned VLAN use in the MHMA mode, on the desired port.

802.1X or non-EAP Last Assigned RADIUS VLAN configuration using ACLI

This section describes the procedures for the configuration of 802.1X non-EAP Last Assigned RADIUS VLAN using ACLI.

Enabling use-most-recent-RADIUS assigned VLAN

Perform this procedure to allow the system to use the most recently assigned RADIUS VLAN.

132 Configuration — Security December 2011

Prerequisites

Log on to the Global configuration mode using ACLI.

Procedure steps

Enable the most recent RADIUS VLAN by using the following command:

eap multihost use-most-recent-radius-vlan

Variable Definitions

The following table defines variable parameters that you enter with the eap multihost usemost-recent-radius-vlan command.

Variable	Value
use-most-recent-radius-vlan	Allows the use of most recent RADIUS VLAN.

Disabling use-most-recent-RADIUS assigned VLAN

Perform this procedure to prevent the system from using the most recently assigned RADIUS VLAN.

Prerequisites

Log on to the Global configuration mode using ACLI.

Procedure steps

Disable the use of most recent RADIUS VLAN by using the following command:

no eap multihost use-most-recent-radius-vlan

Variable Definitions

The following table defines variable parameters that you enter with the no eap multihost use-most-recent-radius-vlan command.

Variable	Value
use-most-recent-radius-vlan	Disables the use of most recent RADIUS VLAN.

Restoring use-most-recent-RADIUS assigned VLAN

Perform this procedure to restore the default EAPol multihost settings.

Prerequisites

Log on to the Global configuration mode using ACLI.

Procedure steps

Restore the default EAPol multihost settings by using the following command:

default eap multihost use-most-recent-radius-vlan

Variable Definitions

The following table defines variable parameters that you enter with the default eap multihost use-most-recent-radius-vlan command.

Variable	Value
use-most-recent-radius-vlan	Disables the use of most recent RADIUS VLAN.

Selecting the packet mode for EAP requests

This feature prevents repeated EAP responses from an EAP-capable device that has already been authenticated.

Use the following command to globally select the packet mode for EAP requests:

eapol multihost [eap-packet-mode {multicast | unicast}]

Table 31: eapol multihost [eap-packet-mode {multicast | unicast}] parameters

Parameter	Description
[eap-packet-mode {multicast unicast}]	globally enables the desired packet mode (multicast or unicast) for EAP requests.

Use the following command to select the packet mode on the desired interface or on specific ports:

```
eapol multihost [port <portlist>] [eap-packet-mode {multicast |
unicast}]
```

The following table outlines the parameters for this command.

Table 32: eapol multihost [eap-packet-mode {multicast | unicast}] parameters: Interface mode

Parameter	Description
<portlist></portlist>	the port or ports for which you want to select the packet mode. You can enter a single port, several ports or a range of ports.
[eap-packet-mode {multicast unicast}]	enables the desired packet mode (multicast or unicast) on the desired port or ports.

Use one of the following commands to globally disable the selection of packet mode:

```
no eapol multihost [eap-packet-mode {multicast | unicast}]
or
```

default eapol multihost [eap-packet-mode {multicast | unicast}]

The following tables outline the parameters for the no and default versions of this command, respectively:

Table 33: no eapol multihost [eap-packet-mode {multicast | unicast}] parameters

Parameter	Description
[eap-packet-mode {multicast unicast}]	globally disables selection of the packet mode.

Table 34: default eapol multihost [eap-packet-mode {multicast | unicast}] parameters

Parameter	Description
[eap-packet-mode {multicast unicast}]	globally sets the default (disable) for the selection of packet mode.

Use one of the following commands to disable the selection of packet mode on the desired interface:

```
no eapol multihost [port <portlist>][[eap-packet-mode {multicast |
unicast ]
```

or

default eapol multihost [<portlist>][eap-packet-mode {multicast | unicast]

The following tables outline the parameters for the no and default versions of this command, respectively:

Table 35: no eapol multihost [eap-packet-mode {multicast | unicast}] command parameters

Parameter	Description
[eap-packet-mode {multicast unicast}]	disables selection of packet mode on the desired interface.

Table 36: default eapol multihost [eap-packet-mode {multicast | unicast}] command parameters

Parameter	Description
[eap-packet-mode {multicast unicast}]	sets the default (disable) for the selection of packet mode on the desired interface.

Configuring guest VLANs

To configure guest VLAN support, do the following:

- 1. Enable guest VLAN globally, and set the guest VLAN ID.
- 2. Enable guest VLAN on specific ports on an interface.

eapol guest-vlan command

The eapol guest-vlan command sets the guest VLAN for EAP-controlled ports.

The syntax for the eapol guest-vlan command is

eapol guest-vlan enable vid <1-4094>

Table 37: eapol guest-vlan parameters

Parameter	Description
enable	Enable Guest VLAN.
<vid></vid>	Guest VLAN ID.

The eapol guest-vlan command is executed in the Global Configuration command mode.

no eapol quest-vlan command

The no eapol guest-vlan command disables the guest VLAN.

The syntax for the no eapol guest-vlan command is

no eapol guest-vlan [enable]

The no eapol guest-vlan command is executed in the Global Configuration command mode.

default eapol guest-vlan command

The default eapol guest-vlan command disables the guest VLAN.

The syntax for the default eapol guest-vlan command is

default eapol quest-vlan [enable] [vid]

The default eapol guest-vlan command is executed in the Global Configuration command mode.

The default eapol guest-vlan command has no parameters or variables.

Important:

EAP enabled port is not moved to guest VLAN, if guest VLAN and original VLAN are associated with different STGs. EAP port does not forward traffic in guest VLAN or original VLAN; if EAP authentication succeeds packets are transmitted properly in the original VLAN.

802.1X or non-EAP and Guest VLAN on the same port configuration using ACLI

Use the commands in this section to allow a non-EAP phone to function with the Guest VLAN enabled.

Enabling EAPOL VolP VLAN

Perform this procedure to enable the EAPOL multihost VoIP VLAN.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Enable the EAPOL multihost VoIP VLAN by using the following command:

eapol multihost voip-vlan <1-5> {[enable] [vid <1-4094>]}

Variable definitions

The following table defines variables you can use with the eapol multihost voip-vlan <1-5> {[enable] [vid <1-4094>]} command.

Variable	Value
enable	Enables VoIP VLAN.
voip-vlan <1-5>	Sets number of VoIP VLAN from 1 to 5.
vid <1-4094>	Sets VLAN ID, which ranges from 1 to 4094.

Disabling EAPOL VolP VLAN

Perform this procedure to disable the EAPOL multihost VoIP VLAN.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Disable the EAPOL multihost VoIP VLAN by using the following command:

no eapol multihost voip-vlan <1-5> [enable]

Variable Definitions

The following table defines variables you can use with the no eapol multihost voipvlan <1-5> [enable] command.

Variable	Value
enable	Disables VoIP VLAN.
voip-vlan <1-5>	Sets number of VoIP VLAN from 1 to 5.

Configuring EAPOL VoIP VLAN as the default VLAN

Perform this procedure to configure the EAPOL multihost VoIP VLAN as the default setting.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure the EAPOL multihost VoIP VLAN by using the following command:

default eapol multihost voip-vlan <1-5> [enable] [vid]

Variable Definitions

The following table defines variables you can use with the default eapol multihost voip-vlan <1-5> [enable] [vid] command.

Variable	Value
enable	Disables VoIP VLAN.
vid	Default VoIP VLAN ID.
voip-vlan <1-5>	Sets number of VoIP VLAN from 1 to 5.

Displaying EAPOL VolP VLAN

Perform this procedure to display information related to the EAPOL multihost VoIP VLAN.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Display information related to the EAPOL multihost VoIP VLAN by using the following command:

show eapol multihost voip-vlan

802.1X or non-EAP with Fail Open VLAN configuration using ACLI

Use the procedures in this section to configure the 802.1X non-EAP with Fail Open VLAN using ACLI.

The switch does not validate that RADIUS Assigned VLAN attribute is not the same as the Fail_Open VLAN. This means that if you configure the Fail_Open VLAN name or ID the same as one of the VLAN names or IDs which can be returned from the RADIUS server, then EAP or NEAP clients is assigned to the Fail_Open VLAN even though no failure to conenct to the RADIUS server has occurred.

Enabling EAPOL Fail Open VLAN

Perform this procedure to enable the EAPOL Fail Open VLAN.

Prerequisites

Log on to the Global configuration mode using ACLI.

Procedure steps

Enable the EAPOL Fail Open VLAN by using the following command:

eapol multihost fail-open-vlan {[enable] [vid <1-4094>]}

Variable Definitions

The following table defines variables you can use with the eapol multihost fail-openvlan {[enable] [vid <1-4094>]} command.

Variable	Value
Enable	Enables fail-open-vlan.
Vid <1-4094>	Specifies a guest VLAN ID in a range from <1-4094>.

Disabling EAPOL Fail Open VLAN

Perform this procedure to disable the EAPOL Fail Open VLAN.

Prerequisites

Log on to the Global configuration mode using ACLI.

Procedure steps

Disable the EAPOL Fail Open VLAN by using the following command:

no eapol multihost fail-open-vlan [enable]

Variable Definitions

The following table defines variables you can use with the no eapol multihost fail-open-vlan [enable] command.

Variable	Value
Enable	Disables the Fail Open VLAN.

Setting EAPOL Fail Open VLAN as the default

Perform this procedure to set the EAPOL Fail Open VLAN as the default.

Prerequisites

Log on to the Global configuration mode using ACLI.

Procedure steps

Set the EAPOL Fail Open VLAN as the default by using the following command:

default eapol multihost fail-open-vlan [enable] [vid]

Variable Definitions

The following table defines variables you can use with the default eapol multihost fail-open-vlan [enable] [vid] command.

	Variable	Value
E	Enable	Disables the Fail Open VLAN.
١	/id	Sets the default Fail Open VLAN ID.

Displaying EAPOL Fail Open VLAN

Perform this procedure to display information related to the EAPOL Fail Open VLAN.

Prerequisites

Log on to the privileged exec mode and configuration mode using ACLI.

Procedure steps

Display the status of the fail-open VLAN by using the following command:

```
show eapol multihost fail-open-vlan
```

Configuring multihost support

Configure multihost support by completing the following steps:

- Enable multihost support for the interface. The relevant command is executed in the Interface Configuration mode. You can issue the command for the interface selected when you enter the Interface Configuration mode (so that all ports have the same setting), or you can issue the command for specific ports on the interface.
- 2. Specify the maximum number of EAP clients allowed on each multihost port. You can issue the command for the interface selected when you enter the Interface Configuration mode (so that all ports have the same setting), or you can issue the command for specific ports on the interface.

eapol multihost command

This command is executed in the Interface Configuration mode.

The syntax for the eapol multihost command is

```
eapol multihost { [enable] [port] [eap-mac-max <1-32>] [non-eap-mac-max <1-32>] [allow-non-eap-enable] [radius-non-eap-enable] [non-eap-use-radius-assigned-vlan] [auto-non-eap-mhsa-enable] [non-eap-phone-enable] [use-radius-assigned-vlan] [use-most-recent-radius-vlan] [eap-packet-mode {multicast | unicast}]}
```

Table 38: eapol multihost parameters

Parameter	Description
allow-non-eap-enable	Enables MAC addresses of non-EAP clients.

Parameter	Description
auto-non-eap-mhsa-enable	Enables autoauthentication of non-EAP clients in the Multiple Host with Single Authentication (MHSA) mode.
eap-mac-max	Specifies the maximum number of EAP MAC addresses allowed.
eap-packet-mode {multicast unicast}	Enables the packet mode (multicast or unicast) for EAP requests.
enable	Globally enables EAPOL.
non-eap-mac-max	Specifies the maximum number of non-EAP MAC addresses allowed.
non-eap-phone-enable	Enables Avaya IP Phone clients as another non-EAP type.
non-eap-use-radius-assigned-vlan	Allows the use of VLAN IDs assigned by RADIUS for non-EAP clients.
port	The port number on which to apply EAPOL settings.
radius-non-eap-enable	Enables RADIUS authentication of non-EAP clients.
use-most-recent-radius-vlan	Allows the use of most recent RADIUS VLAN.
use-radius-assigned-vlan	Enables use of RADIUS-assigned VLAN values in the multihost mode.

no eapol multihost command

The no eapol multihost command disables EAPOL multihost. This command is executed in the Interface Configuration mode.

The syntax for the no eapol multihost command is

no eapol multihost [enable] [port] [allow-non-eap-enable] [radiusnon-eap-enable] [auto-non-eap-mhsa-enable] [non-eap-phone-enable] [use-radius-assigned-vlan] [non-eap-use-radius-assigned-vlan] [usemost-recent-radius-vlan]

The following table outlines the parameters for this command. If you do not specify parameters, the command resets all EAPOL multihost settings to the defaults.

Table 39: no eapol multihost parameters

Parameter	Description
allow-non-eap-enable	disables MAC addresses of non-EAP clients.

Parameter	Description
auto-non-eap-mhsa-enable	disables auto-authentication of non-EAP clients.
enable	disables EAP multihost mode.
non-eap-mac-max	specifies the maximum number of non-EAP authenticated MAC addresses allowed.
non-eap-mac	disables allowing a non-EAPOL MAC address.
non-eap-phone-enable	disables authentication of Avaya IP Phone clients as another non-EAP type.
non-eap-use-radius-assigned- vlan	disables the use of VLAN IDs assigned by RADIUS for non-EAP clients.
port	the port number on which to disable EAPOL.
radius-non-eap-enable	disables RADIUS authentication of non-EAP clients.
use-most-recent-radius-vlan	disables the use of VLAN IDs assigned by RADIUS.
use-radius-assigned-vlan	disables use of RADIUS-assigned VLAN values in the MHMA mode.

default eapol multihost command

The default eapol multihost command sets the EAPOL multihost feature to the defaults.

The syntax for the default EAPOL multihost command is

default eapol multihost [enable] [port] [eap-mac-max] [non-eap-mac-max] [allow-non-eap-enable] [radius-non-eap-enable] [auto-non-eap-mhsa-enable] [non-eap-phone-enable][use-radius assigned-vlan] [eap-packet-mode] [use-most-recent-radius-vlan] [non-eap-use-radius-assigned-vlan]

The following table outlines the parameters for this command. If you do not specify parameters, the command resets all EAPOL multihost settings to the defaults.

Table 40: default eapol multihost parameters

Parameter	Description
allow-non-eap-enable	resets control of non-EAP clients (MAC addresses) to the default (disabled).
auto-non-eap-mhsa-enable	disables auto-authentication of non-EAP clients.
eap-mac-max	resets the maximum number of EAP clients allowed on the port to the default value (1).

Parameter	Description
eap-packet-mode	Resets the EAP packet mode to the default (multicast).
enable	restores EAPOL multihost support status to the default value (disabled).
non-eap-mac	resets the non-EAP MAC addresses to the default.
non-eap-mac-max	resets the maximum number of non-EAP authenticated MAC addresses allowed to the default value (1).
non-eap-phone-enable	disables authentication of Avaya IP Phone clients as non-EAP type.
non-eap-use-radius-assigned- vlan	disables the use of VLAN IDs assigned by RADIUS for non- EAP clients.
port	the port number on which to disable EAPOL.
radius-non-eap-enable	disables RADIUS authentication of non-EAP clients.
use-most-recent-radius-vlan	disables the use of most recent RADIUS VLAN.
use-radius-assigned-vlan	disables use of RADIUS-assigned VLAN values in the MHMA mode.

eapol multihost enable command

The eapol multihost enable command enables multihost support for EAPOL.

The syntax for the eapol multihost enable command is

eapol multihost [port <portlist>] enable

where

<portlist> is the list of ports on which you want to enable EAPOL support. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command applies to all ports on the interface.

The default is disabled.

The eapol multihost [port <portlist>] enable command is executed in the Interface Configuration mode.

no eapol multihost enable command

The no eapol multihost enable command disables the EAPOL multihost.

Comments? infodev @avaya.com

The syntax for the no eapol multihost enable command is

no eapol multihost [<portlist>] [enable] [allow-non-eap-enable] [radius-non-eap-enable] [auto-non-eap-mhsa-enable] [non-eap-phoneenable] [use-radius-assigned-vlan]

Table 41: no eapol multihost command parameters

Variable	Description
<portlist></portlist>	is the list of ports on which you want to disable EAPOL support. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command applies to all ports on the interface
enable	Disables eapol on the desired ports.
radius-non-eap-enable	Disables RADIUS authentication of non-EAP clients.
allow-non-eap-enable	Disables control of non-EAP clients (MAC addresses).
auto-non-eap-mhsa-enable	Disables auto-authentication of non-EAP clients.
non-eap-phone-enable	Disables Avaya IP Phone clients.
use-radius-assigned-vlan	Disables use of RADIUS-assigned VLAN.

The no eapol multihost enable command is executed in the Interface Configuration mode.

eapol multihost eap-mac-max command

The eapol multihost eap-mac-max command sets the maximum number of EAP clients.

The syntax for the eapol multihost eap-mac-max command is

eapol multihost [port <portlist>] eap-mac-max <num>

where

<portlist> is the list of ports for which you are setting the maximum number of EAP clients. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command applies to all ports on the interface.

<num> is an integer in the range 1–32 that specifies the maximum number of EAP clients allowed. The default is 1.

The eapol multihost [port <portlist>] eap-mac-max command is executed in the Interface Configuration mode.

eapol multihost use radius-assigned-vlan command

To enable RADIUS-assigned VLAN use in the MHMA mode, use the following command in the Global Configuration mode:

eapol multihost [use-radius-assigned-vlan]

The following table outlines the parameters for this command.

Table 42: eapol multihost [use-radius-assigned-vlan] parameters

Parameter	Description
use-radius-assigned-vlan	globally enables RADIUS-assigned VLAN use in the MHMA mode.

To enable RADIUS-assigned VLAN use in the MHMA mode for the desired interface, use the following command:

eapol multihost [port <portlist>] [use-radius-assigned-vlan]

The following table outlines the parameters for this command.

Table 43: eapol multihost [use-radius-assigned-vlan] parameters: Interface mode

Parameter	Description
<portlist></portlist>	the port on which you want RADIUS-assigned VLAN use configured in the MHMA mode. You can enter a single port, several ports or a range of ports.
use-radius-assigned-vlan	enables RADIUS-assigned VLAN use on the desired interface.

Configuring support for non-EAPOL hosts on EAPOL-enabled ports

To configure support for non-EAPOL hosts on EAPOL-enabled ports, do the following:

- 1. Ensure that:
 - EAPOL is enabled globally and locally (for the desired interface ports).
 For more information, see <u>Configuring EAPOL security</u> on page 125.
 - b. the desired ports are enabled for multihost mode. For more information, see <u>Configuring multihost support</u> on page 143.

148 Configuration — Security December 2011

- c. guest VLAN is disabled locally (for the desired interface ports). For more information, see Configuring guest VLANs on page 136.
- 2. Enable non EAPOL support globally on the switch and locally (for the desired interface ports), using one or both of the following authentication methods:
 - a. local authentication. For more information, see <u>Enabling local</u> authentication of non <u>EAPOL</u> hosts on <u>EAPOL-enabled ports</u> on page 149.
 - RADIUS authentication. For more information, see <u>Enabling RADIUS</u> <u>authentication of non EAPOL hosts on EAPOL-enabled ports</u> on page 150.
- Specify the maximum number of non EAPOL MAC addresses allowed on a port.
 For more information, see <u>Specifying the maximum number of non EAPOL hosts</u> <u>allowed</u> on page 153.
- For local authentication only, identify the MAC addresses of non EAPOL hosts allowed on the ports. For more information, see <u>Creating the allowed non EAPOL</u> <u>MAC address list</u> on page 154.

By default, support for non EAPOL hosts on EAPOL-enabled ports is disabled.

Enabling local authentication of non EAPOL hosts on EAPOLenabled ports

For local authentication of non EAPOL hosts on EAPOL-enabled ports, you must enable the feature globally on the switch and locally for ports on the interface.

To enable local authentication of non EAPOL hosts globally on the use the following command in Global Configuration mode:

```
eapol multihost allow-non-eap-enable
```

To enable local authentication of non EAPOL hosts for a specific port or for all ports on an interface, use the following command in Interface configuration mode:

```
eapol multihost [port <portlist>] allow-non-eap-enable
```

where

<portlist> is the list of ports on which you want to enable non EAPOL hosts using local authentication. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command applies to all ports on the interface.

To discontinue local authentication of non EAPOL hosts on EAPOL-enabled ports, use the no or default keywords at the start of the commands in both the Global and Interface configuration modes.

Enabling RADIUS authentication of non EAPOL hosts on EAPOLenabled ports

For RADIUS authentication of non EAPOL hosts on EAPOL-enabled ports, you must enable the feature globally on the switch and locally for ports on the interface.

To enable RADIUS authentication of non EAPOL hosts globally, use the following command in Global Configuration mode:

eapol multihost radius-non-eap-enable

The following table outlines the parameters for this command.

Table 44: eapol multihost radius-non-eap-enable command

Parameter	Description
radius-non-eap-enable	globally enables RADIUS authentication for non EAPOL hosts.

To enable RADIUS authentication of non EAPOL hosts for a specific port or for all ports on an interface, use the following command in Interface configuration mode:

eapol multihost [port <portlist>] radius-non-eap-enable

The following table outlines the parameters for this command.

Table 45: eapol multihost radius-non-eap-enable command: Interface mode

Parameter	Description
<portlist></portlist>	the port or ports on which you want RADIUS authentication enabled. You can enter a single port, several ports or a range of ports. If you do not specify a port parameter, the command enables RADIUS authentication of non-EAP hosts on all ports on the interface.
radius-non-eap-enable	enables RADIUS authentication on the desired interface or on a specific port, for non EAPOL hosts.

The default setting for this feature is: disabled.

To discontinue RADIUS authentication of non-EAPOL hosts on EAPOL-enabled ports, use the **no** or **default** keywords at the start of the commands, in both the Global and Interface configuration modes.

Configuring the format of the RADIUS password attribute when authenticating non-EAP MAC addresses using RADIUS

To configure the format of the RADIUS password when authenticating non-EAP MAC addresses using RADIUS, use the following command in the Global Configuration mode:

```
eapol multihost non-eap-pwd-fmt
```

The syntax for the eapol multihost non-eap-pwd-fmt command is

```
eapol multihost non-eap-pwd-fmt { [ip-addr] [mac-addr] [port-
number] }
```

The following table outlines the parameters for this command.

Table 46: eapol multihost non-eap-pwd-fmt parameters

Parameter	Description
<ip-addr></ip-addr>	the IP address of the non-EAP client.
<mac-addr></mac-addr>	the MAC address of the non-EAP client.
<port-number></port-number>	the port number for which you want the RADIUS password attribute configured.

If you configure the password string to include only MAC address, enter the password string with no delimiting periods. For example, the MAC address format is 00:C0:C1:C2:C3:C4, enter the password string in the format: 00c0c1c2c3c4.

To discontinue configuration of the RADIUS password attribute format, use the **no** or **default** keywords at the start of the commands, in the Global Configuration mode.

Enabling RADIUS-assigned VLAN for non-EAP MACs

To enable RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode, use the following command in the Global Configuration mode:

```
eapol multihost [non-eap-use-radius-assigned-vlan]
```

RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode is disabled by default.

To enable RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode for a specific interface, use the following command in the Interface Configuration mode:

```
eapol multihost [port <portlist>] [non-eap-use-radius-assigned-vlan]
```

RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode is disabled by default.

Variable definitions

The following table outlines the parameters for the eapol multihost [non-eap-useradius-assigned-vlan command in the Global Configuration mode:

Variable	Value
[non-eap-use-radius- assigned-vlan]	Globally enables RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode.

The following table outlines the parameters for the eapol multihost [port <portlist>] [non-eap-use-radius-assigned-vlan] command in the Interface Configuration mode:

Variable	Value
<portlist></portlist>	Defines the port on which to enable RADIUS-assigned VLAN use for non-EAP configured in the MHMA mode. You can enter a single port, several ports or a range of ports.
[non-eap-use-radius- assigned-vlan]	Enables RADIUS-assigned VLAN use on the interface.

Disabling RADIUS-assigned VLAN for non-EAP MACs

To disable RADIUS-assigned VLAN use for non-EAP macs in the MHMA mode, use one of the following commands in the Global Configuration mode:

no eapol multihost [non-eap-use-radius-assigned-vlan]

OR

default eapol multihost [non-eap-use-radius-assigned-vlan]

RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode is disabled by default.

To disable RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode for a specific interface, use the following command in the Interface Configuration mode:

no eapol multihost [port <portlist>] [non-eap-use-radius-assignedvlanl

OR

default eapol multihost [non-eap-use-radius-assigned-vlan]

RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode is disabled by default.

Variable definitions

The following table outlines the parameters for the no eapol multihost [non-eap-useradius-assigned-vlan] and default eapol multihost [non-eap-use-radiusassigned-vlan] commands in the Global Configuration mode:

Variable	Value
[non-eap-use-radius- assigned-vlan]	Globally disables RADIUS-assigned VLAN use for non-EAP MACs in the MHMA mode.

The following table outlines the parameters for the no eapol multihost [port <portlist>] [non-eap-use-radius-assigned-vlan] and default eapol multihost [non-eap-use-radius-assigned-vlan] commands in the Interface Configuration mode:

Variable	Value
<portlist></portlist>	Defines the port on which to enable RADIUS-assigned VLAN use for non-EAP configured in the MHMA mode. You can enter a single port, several ports or a range of ports.
[non-eap-use-radius- assigned-vlan]	Disables RADIUS-assigned VLAN use on the interface.

Specifying the maximum number of non EAPOL hosts allowed

To configure the maximum number of non EAPOL hosts allowed for a specific port or for all ports on an interface, use the following command in Interface configuration mode:

eapol multihost [port <portlist>] non-eap-mac-max <value>

where

<portlist> is the list of ports to which you want the setting to apply. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command sets the value for all ports on the interface.

<value> is an integer in the range 1-32 that specifies the maximum number of non EAPOL clients allowed on the port at one time. The default is 1.

The configurable maximum number of non- EAPOL clients for each port is 32, but Avaya recommends that the maximum allowed for each port be lower. Avaya recommends that the combined maximum be approximately 200 for each box and 800 for a stack.

Creating the allowed non EAPOL MAC address list

To specify the MAC addresses of non EAPOL hosts allowed on a specific port or on all ports on an interface, for local authentication, use the following command in Interface configuration mode:

eapol multihost non-eap-mac [port <portlist>] <H.H.H>

where

<portlist> is the list of ports on which you want to allow the specified non EAPOL hosts. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command applies to all ports on the interface.

<H.H.H> is the MAC address of the allowed non EAPOL host.

Viewing non EAPOL host settings and activity

Various show commands allow you to view:

- global settings. For more information, see Viewing global settings for non EAPOL hosts on page 154.
- port settings. For more information, see Viewing port settings for non EAPOL hosts on page 155.
- allowed MAC addresses, for local authentication. For more information, see Viewing allowed MAC addresses on page 155.
- current non EAPOL hosts active on the switch. For more information, see Viewing current non EAPOL host activity on page 156.
- status in the Privilege Exec mode. For more information, see show eapol multihost status command on page 128.

Viewing global settings for non EAPOL hosts

To view global settings for non EAPOL hosts on EAPOL-enabled ports, use the following command in Privileged Exec, Global Configuration, or Interface configuration mode:

show eapol multihost

The display shows whether local and RADIUS authentication of non EAPOL clients is enabled or disabled.

Important:

If you apply the show eapol multihost command on a large stack with complex configuration, you can experience slow output if this command is executed within 4-5 minutes of the stack being booted or power-cycled. If you wait 5 minutes after the stack is booted or power-cycled before executing this show command, the normal response times will be observed.

Viewing port settings for non EAPOL hosts

To view non EAPOL support settings for each port, use the following command in Privileged Exec, Global Configuration, or Interface configuration mode:

show eapol multihost interface [<portlist>]

where

<portlist> is the list of ports you want to view. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command displays all ports.

For each port, the display shows whether local and RADIUS authentication of non EAPOL clients is enabled or disabled, and the maximum number of non EAPOL clients allowed at a time.

Viewing allowed MAC addresses

To view the MAC addresses of non EAPOL hosts allowed to access ports on an interface, use the following command in Privileged Exec, Global Configuration, or Interface configuration mode:

show eapol multihost non-eap-mac interface [<portlist>]

where

<portlist> is the list of ports you want to view. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command displays all ports.

The display lists the ports and the associated allowed MAC addresses.

Viewing current non EAPOL host activity

To view information about non EAPOL hosts currently, use the following command in Privileged Exec, Global Configuration, or Interface configuration mode:

```
show eapol multihost non-eap-mac status [<portlist>]
```

<portlist> is the list of ports you want to view. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command displays all ports.

🖖 Important:

where

If you apply the show eapol multihost non-eap-mac status [<portlist>] command on a large stack with complex configuration, you can experience slow output if this command is executed within 4-5 minutes of the stack being booted or power-cycled. If you wait 5 minutes after the stack is booted or power-cycled before executing this show command, the normal response times will be observed.

The following example shows sample output for the command.

```
show eapol multihost non-eap-mac status
Unit/Port Client MAC Address State
1/5 UU:01:00:07:00:01
1/7 00:02:B3:BC:AF:6E
1/7 00:C0:C1:C2:C3:C4
1/7 00:C0:C1:C2:C3:C7
2/21 00:02:00:21:00:80
3/12 00:03:12:21:00:82
3/15 00:0A:E4:01:10:21
3/15 00:0A:E4:01:10:22
                                           Authenticated For IP Telephony
3/15 00:0A:E4:01:10:22
                                         Authenticated For IP Telephony
```

Configuring EAP and non-EAP multiple VLAN capability

To enable the multiple VLAN capability for EAP and non-EAP hosts, use the following command in Global Configuration mode:

```
eapol multihost multivlan enable
```

The default setting for this feature is: -disabled.

To disable the multiple VLAN capability for EAP and non-EAP hosts, use the no or default keywords at the start of the commands, in the Global Configuration mode.

Important:

Before you can configure the multiple VLAN capability for EAP and non-EAP hosts, you must disable EAP globally on the switch.

Important:

Avaya recommends that you do not change the multiple VLAN status while Fail Open VLAN is enabled.

Important:

You cannot enable EAP and non-EAP multiple VLAN capability, and use-most-recent-RADIUS assigned VLAN at the same time.

Viewing EAP and non-EAP multiple VLAN capability status

To display the status the multiple VLAN capability for EAP and non-EAP hosts, use the following command in User EXEC mode:

show eapol multihost multivlan

802.1X dynamic authorization extension (RFC 3576) configuration using ACLI

You can configure 802.1X dynamic authorization extension (RFC 3576) for a third party device to dynamically change VLANs on switches or close user sessions.

Configuring 802.1X dynamic authorization extension (RFC 3576) using ACLI

Configure RADIUS dynamic authorization extension (802.1X RFC 3576) to enable the RADIUS server to send a change of authorization (CoA) or disconnect command to the Network Access Server (NAS).

Prerequisites

- Enable EAP globally and on each applicable port.
- Enable the dynamic authorization extensions commands globally and on each applicable port.

Disconnect or CoA commands are ignored if the commands address a port on which the feature is not enabled

Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure RADIUS dynamic authorization extension by using the following command:

```
radius dynamic-server client A.B.C.D [ secret] [ port
<1024-65535> ] [ enable ] [process-disconnect-requests]
[process-change-of-auth-requests]
```

Variable definitions

The following table defines parameters that you enter with the radius dynamic-server client A.B.C.D [secret] [port <1024-65535>] [enable] [process-disconnect-requests] [process-change-of-auth-requests] command.

Variable	Value
<a.b.c.d.></a.b.c.d.>	Adds a new RADIUS dynamic authorization client or changes the configuration of an existing RADIUS dynamic authorization client. <a.b.c.d.> is an IP address.</a.b.c.d.>
enable	Enables packet receiving from the RADIUS Dynamic Authorization Client.
port	Configures the server and NAS UDP port to listen for requests from the RADIUS Dynamic Authorization Client. Values range from 1024 to 65535.
process-change-of-auth-requests	Enables change of authorization (CoA) request processing.
process-disconnect-requests	Enables disconnect request processing.
secret	Configures the RADIUS Dynamic Authorization Client secret word.

158 Configuration — Security

Disabling 802.1X dynamic authorization extension (RFC 3576) using ACLI

Disable RADIUS dynamic authorization extension (802.1X RFC 3576) to prevent the RADIUS server to send a change of authorization (CoA) or disconnect command to the Network Access Server (NAS).

Procedure steps

Disable RADIUS dynamic authorization extension by using the following command:

no radius dynamic-server client <A.B.C.D.> enable

Variable definitions

The following table defines variable parameters that you enter with the no radius dynamicserver client <A.B.C.D.> enable command.

Variable	Value
<a.b.c.d.></a.b.c.d.>	Adds a new RADIUS dynamic authorization client or changes the configuration of an existing RADIUS dynamic authorization client. <a.b.c.d.> is an IP address.</a.b.c.d.>

Viewing 802.1X dynamic authorization extension (RFC 3576) configuration using ACLI

View RADIUS dynamic authorization client configuration to display and confirm the configuration of RADIUS dynamic authorization client parameters.

Prerequisites

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

Configure View RADIUS dynamic authorization client configuration by using the following command:

show radius dynamic-server client <A.B.C.D.>

Variable definitions

The following table defines parameters that you enter with the **show radius dynamic- server client <A.B.C.D.>** command.

Variable	Value
<a.b.c.d.></a.b.c.d.>	Identifies the IP address of the RADIUS dynamic authorization client.

Viewing 802.1X dynamic authorization extension (RFC 3576) statistics using ACLI

View RADIUS dynamic authorization client statistics to display RADIUS dynamic authorization client statistical information.

Prerequisites

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

Configure View RADIUS dynamic authorization client configuration by using the following command:

show radius dynamic-server statistics client <A.B.C.D.>

Variable definitions

The following table defines parameters that you enter with the show radius dynamicserver statistics client <A.B.C.D.> command.

Variable	Value
<a.b.c.d.></a.b.c.d.>	Identifies the IP address of the RADIUS dynamic authorization client.

Enabling 802.1X dynamic authorization extension (RFC 3576) on **EAP ports using ACLI**

Enable 802.1X dynamic authorization extension (RFC 3576) on EAP ports for the ports to process CoA and disconnect requests from the RADIUS server.

Prerequisites

Log on to the Interface Configuration mode in ACLI.

Procedure steps

1. Enable 802.1X dynamic authorization extension (RFC 3576) on an EAP port by using the following command:

```
eapol radius-dynamic-server enable
```

2. Enable 802.1X dynamic authorization extension (RFC 3576) on a specific EAP port or a list of EAP ports by using the following command:

eapol port <LINE> radius-dynamic-server enable

Variable definitions

The following table defines variable parameters that you enter with the eapol port <LINE> radius-dynamic-server enable command.

Variable	Value
<line></line>	Indicates an individual port or list of ports.

Disabling 802.1X dynamic authorization extension (RFC 3576) on EAP ports using ACLI

Disable 802.1X dynamic authorization extension (RFC 3576) on EAP ports to discontinue the ports from processing CoA and disconnect requests from the RADIUS server.

Prerequisites

Log on to the Interface Configuration mode in ACLI.

Procedure steps

1. Disable 802.1X dynamic authorization extension (RFC 3576) on an EAP port by using the following command:

no eapol radius-dynamic-server enable

2. Disable 802.1X dynamic authorization extension (RFC 3576) on a specific EAP port or a list of EAP ports by using the following command:

no eapol port <LINE> radius-dynamic-server enable

Variable definitions

The following table defines variable parameters that you enter with the no eapol port <LINE> radius-dynamic-server enable command.

Variable	Value
<line></line>	Indicates an individual port or list of ports.

Enabling 802.1X dynamic authorization extension (RFC 3576) default on EAP ports using ACLI

Enable 802.1X dynamic authorization extension (RFC 3576) default on EAP ports to return the ports to the default configuration for processing CoA and disconnect requests from the RADIUS server.

162 Configuration — Security December 2011

Prerequisites

Log on to the Interface Configuration mode in ACLI.

Procedure steps

1. Enable 802.1X dynamic authorization extension (RFC 3576) default on an EAP port by using the following command:

```
default eapol radius-dynamic-server enable
```

2. Enable 802.1X dynamic authorization extension (RFC 3576) default on a specific EAP port or a list of EAP ports by using the following command:

default eapol port <LINE> radius-dynamic-server enable

Variable definitions

The following table defines variable parameters that you enter with the default eapol port <LINE> radius-dynamic-server enable command.

Variable	Value
<line></line>	Indicates an individual port or list of ports.

Configuring Wake on LAN with simultaneous 802.1X Authentication using ACLI

Authenticate 802.1X and Wake on LAN simultaneously by changing the 802.1X port configuration control.

Prerequisites

- Configure the primary RADIUS server
- · Configure the shared secret
- Enable EAPOL

Procedure steps

- 1. Enter the Interface Configurationg mode.
- 2. Enable the EAPOL administrative state by using the following command:

```
eapol port <port_list> traffic-control in
```

Variable Definitions

Variable	Value
<port_list></port_list>	Specifies a port or list of ports.

Job aid

To verify the EAPOL administrative state, use the following command:

show eapol port <port_list>

Following is a sample show eapol port <port_list> command output:

EAPOL administrative state enabled – Wake on LAN available	EAPOL administrative state disabled – no Wake on LAN
4526FX(config-if)#show eapol port 1/1	4526FX(config-if)# show eapol port 1/1
EAPOL Administrative State: Enabled Unit/Port: 1/1 Admin Status: Auto Auth: No Admin Dir: In Oper Dir: In ReAuth Enable: No ReAuth Period: 3600 Quiet Period: 60 Xmit Period: 30 Supplic Timeout: 30 Server Timeout: 30 Max Req: 2 RDS DSE: No	EAPOL Administrative State: Disabled Unit/Port: 1/1 Admin Status: Auto Auth: Yes Admin Dir: In Oper Dir: In ReAuth Enable: No ReAuth Period: 3600 Quiet Period: 60 Xmit Period: 30 Supplic Timeout: 30 Server Timeout: 30 Max Req: 2 RDS DSE: No

Enabling Avaya IP Phone clients on an EAP-enabled port

Enable this feature to allow an Avaya IP Phone client and an EAP PC to exist together on a port. To enable Avaya IP Phone clients on an EAP-enabled port, do the following:

- 1. Ensure that:
 - EAP is enabled globally and locally (on the desired interface ports). (See Configuring EAPOL security on page 125).
 - Multihost is enabled on the desired ports. (See <u>Configuring multihost support</u> on page 143).
 - NonEAP is enabled globally and locally (on the desired interface ports). (See <u>Configuring support for non-EAPOL hosts on EAPOL-enabled ports</u> on page 148).
 - Filtering is enabled (to capture DHCP packets and to look for the Avaya Phone Signature).

Important:

Avaya recommends that the following two features not be enabled at the same time:

- Guest VLAN.

This is to ensure that the Call server and VoIP information packets the phone receives from the DHCP server are sent on the configured VLAN, so correct information (such as the IP address) is obtained.

- EAP at the phone.
- 2. Enable Avaya IP Phone clients globally on the switch. (See Globally enabling Avaya IP Phone clients as a non-EAP type on page 165).
- 3. Enable Avaya IP Phone clients locally or for specific ports on the interface. (See Enabling Avaya IP Phone clients in the interface mode on page 166).
- 4. Specify the maximum number of non EAPOL MAC addresses allowed: the maximum number allowed is 32.

Globally enabling Avaya IP Phone clients as a non-EAP type

To globally enable Avaya IP Phone clients as a non-EAP type, use the following command in the Global Configuration mode:

```
eapol multihost {[non-eap-phone-enable]}
```

The following table outlines the parameters for this command.

Table 47: eapol multihost non-eap-phone-enable parameters

Parameter	Description
non-eap-phone-enable	globally enables Avaya IP Phone clients as a non-EAP type.

To globally disable Avaya IP Phone clients as a non-EAP type, use one of the following commands in the Global Configuration mode:

```
no eapol multihost {[non-eap-phone-enable]}
or
default eapol multihost {[non-eap-phone-enable]}
```

The following tables outline the parameters for the no and default versions of this command respectively:

Table 48: no eapol multihost non-eap-phone-enable parameters

Parameter	Description
non-eap-phone-enable	globally disables Avaya IP Phone clients as a non-EAP type.

Table 49: default eapol multihost non-eap-phone-enable parameters

Parameter	Description
non-eap-phone-enable	globally sets the default (disable) for Avaya IP Phone clients as a non-EAP type.

Enabling Avaya IP Phone clients in the interface mode

To enable Avaya IP Phone clients in the interface mode, use the following command: eapol multihost [port <portlist>][non-eap-phone-enable]

Table 50: eapol multihost non-eap-phone-enable parameters: Interface mode

Parameter	Description
<portlist></portlist>	the port or ports on which you want Avaya IP Phone clients enabled as a non-EAP type. You can enter a single port, several ports or a range of ports.
non-eap-phone-enable	enables Avaya IP Phone clients as a non-EAP type, on the desired port or ports.

To disable Avaya IP Phone clients in the interface mode, use one of the following commands:

no eapol multihost [port <portlist>] [non-eap-phone-enable]

or

default eapol multihost [port <portlist>] [non-eap-phone-enable]

The following tables outline the parameters for the **no** and **default** versions of this command respectively:

Table 51: no eapol multihost non-eap-phone-enable parameters: Interface mode

Parameter	Description
<portlist></portlist>	the port or ports on which you want Avaya IP Phone clients disabled as a non-EAP type. You can enter a single port, several ports or a range of ports.
non-eap-phone-enable	disables Avaya IP Phone clients as a non-EAP type, on the desired port or ports.

Table 52: default eapol multihost non-eap-phone-enable parameters: Interface mode

Parameter	Description
<portlist></portlist>	the port or ports on which you want the defaults for Avaya IP Phone clients set. You can enter a single port, several ports or a range of ports.
non-eap-phone-enable	sets the default (disable) for Avaya IP Phone clients, on the desired port or ports.

Configuring MHSA

To configure MHSA support, do the following:

- 1. Ensure that:
 - a. EAPOL is enabled globally and locally (for the desired interface ports). For more information, see Configuring EAPOL security on page 125.
 - b. the desired ports are enabled for multihost mode. For more information, see Configuring multihost support on page 143.
 - c. guest VLAN is disabled locally (for the desired interface ports). For more information, see Configuring guest VLANs on page 136.
- 2. Enable MHSA globally on the switch. For more information, see <u>Globally enabling</u> support for MHSA on page 168.
- Configure MHSA settings for the interface or for specific ports on the interface. For more information, see <u>Configuring interface and port settings for MHSA</u> on page 168.

- a. Enable MHSA support.
- b. Specify the maximum number of non EAPOL MAC addresses allowed.

By default, MHSA support on EAP-enabled ports is disabled.

Globally enabling support for MHSA

To enable support for MHSA globally, use the following command in Global Configuration mode:

eapol multihost auto-non-eap-mhsa-enable

To discontinue support for MHSA globally, use one of the following commands in Global Configuration mode:

no eapol multihost auto-non-eap-mhsa-enable default eapol multihost auto-non-eap-mhsa-enable

Configuring interface and port settings for MHSA

To configure MHSA settings for a specific port or for all ports on an interface, use the following command in Interface configuration mode:

eapol multihost [port <portlist>]

where

<portlist> is the list of ports to which you want the settings to apply. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port parameter, the command applies the settings to all ports on the interface.

This command includes the following parameters for configuring MHSA:

<pre>eapol multihost [port <portlist>] followed by:</portlist></pre>	
auto-non-eap-mhsa-enable	Enables MHSA on the port. The default is disabled. To disable MHSA, use the no or default keywords at the start of the command.
non-eap-mac-max <value></value>	Sets the maximum number of non EAPOL clients allowed on the port at one time.
	<value> is an integer in the range 1 to 32. The default is 1.</value>
	Important:
	The configurable maximum number of non EAPOL clients for each port is 32, but Avaya expects that the

168 Configuration — Security

usual maximum allowed for each port will be lower.
Avaya expects that the combined maximum will be approximately 200 for each box and 800 for a stack.

Viewing MHSA settings and activity

For more information about the commands to view MHSA settings and non EAPOL host activity, see Viewing non EAPOL host settings and activity on page 154.

Setting SNMP v1, v2c, v3 Parameters

Earlier releases of SNMP used a proprietary method for configuring SNMP communities and trap destinations for specifying SNMPv1 configuration that included up to four trap destinations and associated community strings that can be configured using SNMP Set requests on the s5AgTrpRcvrTable.

With the support for SNMPv3, you can configure SNMP using the new standards-based method of configuring SNMP communities, users, groups, views, and trap destinations.

The also supports the previous proprietary SNMP configuration methods for backward compatibility.

All the configuration data configured in the proprietary method is mapped into the SNMPv3 tables as read-only table entries. In the new standards-based SNMPv3 method of configuring SNMP, all processes are configured and controlled through the SNMPv3 MIBs. The Command Line Interface commands change or display the single read-only community, read-write community, or four trap destinations of the proprietary method of configuring SNMP. Otherwise, the commands change or display SNMPv3 MIB data.

The software supports MD5 and SHA authentication, as well as AES DES, and 3DES encryption.

The SNMP agent supports exchanges using SNMPv1, SNMPv2c and SNMPv3. Support for SNMPv2c introduces a standards-based GetBulk retrieval capability using SNMPv1 communities. SNMPv3 support introduces high security user authentication and message security. This includes MD5 and SHA-based user authentication and message integrity verification, as well as AES-, DES-, and 3DES-based privacy encryption. Export restrictions on SHA and DES necessitate support for domestic and non domestic executable images or defaulting to no encryption for all customers.

The traps can be configured in SNMPv1, v2, or v3 format. If you do not identify the version (v1, v2, or v3), the system formats the traps in the v1 format. A community string can be entered if the system requires one.

SNMPv3 table entries stored in NVRAM

The number of nonvolatile entries (entries stored in NVRAM) allowed in the SNMPv3 tables are shown in the following list. The system does not allow you to create more entries marked nonvolatile when you reach these limits:

• snmpCommunityTable: 20

vacmViewTreeFamilyTable: 60vacmSecurityToGroupTable: 40

vacmAccessTable: 40usmUserTable: 20snmpNotifyTable: 20

• snmpTargetAddrTabel: 20

• snmpTargetParamsTable: 20

Configuring SNMP using ACLI

Use the following commands to configure and manage SNMP:

- show snmp-server command on page 171
- snmp-server authentication-trap command on page 172
- no snmp-server authentication-trap command on page 172
- default snmp-server authentication-trap command on page 172
- snmp-server community for read or write command on page 173
- snmp-server community command on page 173
- no snmp-server community command on page 174
- default snmp-server community command on page 175
- snmp-server contact command on page 176
- no snmp-server contact command on page 176
- default snmp-server contact command on page 176
- snmp-server command on page 177
- no snmp-server command on page 177
- snmp-server host command on page 177
- no snmp-server host command on page 179

- default snmp-server host command on page 180
- snmp-server location command on page 181
- no snmp-server location command on page 181
- default snmp-server location command on page 181
- snmp-server name command on page 182
- no snmp-server name command on page 182
- <u>default snmp-server name command</u> on page 182
- Enabling SNMP server notification control using ACLI on page 183
- <u>Disabling SNMP server notification control using ACLI</u> on page 183
- Setting SNMP server notification control to default using ACLI on page 184
- Viewing the SNMP server notification control table using ACLI on page 184
- snmp-server user command on page 185
- no snmp-server user command on page 187
- snmp-server view command on page 187
- no snmp-server view command on page 188
- snmp-server bootstrap command on page 190

show snmp-server command

The show snmp-server command displays the SNMP configuration.

The syntax for the show snmp-server command is

show snmp-server {host|notification-control|notify-filter|user|view}

The show snmp-server command is executed in the Privileged EXEC command mode.

<u>Table 53: show snmp-server command parameters and variables</u> on page 171 describes the parameters and variables for the **show snmp-server** command.

Table 53: show snmp-server command parameters and variables

Parameters and variables	Description
host	Displays the trap receivers configured in the SNMPv3 MIBs.
notification-control	Displays the notification control table
notify-filter	Displays the SNMP notify filter configuration
user	Displays the SNMP users, including views accessible to each user.

Parameters and variables	Description
view	Displays SNMP views.

snmp-server authentication-trap command

The snmp-server authentication-trap command enables or disables the generation of SNMP authentication failure traps.

The syntax for the snmp-server authentication-trap command is

snmp-server authentication-trap {enable|disable}

The snmp-server authentication-trap command is executed in the Global Configuration command mode.

Table 54: snmp-server authentication-trap command parameters and variables on page 172 describes the parameters and variables for the snmp-server authentication-trap command.

Table 54: snmp-server authentication-trap command parameters and variables

Parameters and variables	Description
enable disable	Enables or disables the generation of authentication failure traps.

no snmp-server authentication-trap command

The no snmp-server authentication-trap command disables generation of SNMP authentication failure traps.

The syntax for the no snmp-server authentication-trap command is

no snmp-server authentication-trap

The no snmp-server authentication-trap command is executed in the Global Configuration command mode.

default snmp-server authentication-trap command

The default snmp-server authentication-trap command restores the SNMP authentication trap configuration to the default settings.

The syntax for the default snmp-server authentication-trap command is

Comments? infodev@avaya.com

default snmp-server authentication-trap

The default snmp-server authentication-trap command is executed in the Global Configuration command mode.

snmp-server community for read or write command

This command configures a single read-only or a single read-write community. A community configured using this command does not have access to the SNMPv3 MIBs. These community strings have a fixed MIB view.

The snmp-server community command for read/write modifies the community strings for SNMPv1 and SNMPv2c access.

The syntax for the snmp-server community for read/write command is

snmp-server community [word{notify-view|read-view|ro|rw|write-view}]

The snmp-server community for read/write command is executed in the Global Configuration command mode.

<u>Table 55: snmp-server community for read/write command</u> on page 173 describes the parameters and variables for the **snmp-server community** for read/write command.

Table 55: snmp-server community for read/write command

Parameters and variables	Description
word [notify-view read-view ro rw write-view]	The following list describes the snmp-server community parameters:
	notify-view specifies the notify (trap) access view name.
	Read-view specifies the read access view name.
	ro specifies read-only access with this community string.
	rw specifies read-write access with this community string.
	write-view specifies the write-access view name.
	● Important:
	Stations with ro access can retrieve MIB objects, and stations with rw access can retrieve and modify MIB objects. If neither ro nor rw is specified, ro is assumed (default).

snmp-server community command

The snmp-server community command allows you to create community strings with varying levels of read, write, and notification access based on SNMPv3 views. These

community strings are separate from those created using the **snmp-server community** for read/write command.

This command affects community strings stored in the SNMPv3 snmpCommunity Table, which allows several community strings to be created. These community strings can have any MIB view.

The syntax for the snmp-server community command is

```
snmp-server community {read-view <view-name>|write-view <view-name>|
notify-view <view-name>}
```

The snmp-server community command is executed in the Global Configuration command mode.

<u>Table 56: snmp-server community command parameters and variables</u> on page 174 describes the parameters and variables for the snmp-server community command.

Table 56: snmp-server community command parameters and variables

Parameters and variables	Description
read-view <view-name></view-name>	Changes the read view used by the new community string for different types of SNMP operations. view-name: specifies the name of the view which is a set of MIB objects/instances that can be accessed; enter an alphanumeric string.
write-view <view-name></view-name>	Changes the write view used by the new community string for different types of SNMP operations. view-name: specifies the name of the view which is a set of MIB objects/instances that can be accessed; enter an alphanumeric string.
notify-view <view-name></view-name>	Changes the notify view settings used by the new community string for different types of SNMP operations. view-name: specifies the name of the view which is a set of MIB objects/instances that can be accessed; enter an alphanumeric string.

no snmp-server community command

The no snmp-server community command clears the snmp-server community configuration.

The syntax for the no snmp-server community command is

no snmp-server community {ro|rw|<community-string>}

The no snmp-server community command is executed in the Global Configuration command mode.

If you do not specify a read-only or read-write community parameter, all community strings are removed, including all the communities controlled by the snmp-server community command and the snmp-server community for read-write command.

If you specify read-only or read-write, then just the read-only or read-write community is removed. If you specify the name of a community string, then the community string with that name is removed.

Table 57: no snmp-server community command parameters and variables on page 175 describes the parameters and variables for the no snmp-server community command.

Table 57: no snmp-server community command parameters and variables

Parameters and variables	Description
ro rw <community-string></community-string>	Changes the settings for SNMP:
	ro rw: sets the specified old-style community string value to NONE, thereby disabling it.
	 community-string: deletes the specified community string from the SNMPv3 MIBs (that is, from the new-style configuration).

default snmp-server community command

The default snmp-server community command restores the community string configuration to the default settings.

The syntax for the default snmp-server community command is

default snmp-server community [ro|rw]

The default snmp-server community command is executed in the Global Configuration command mode.

If the read-only or read-write parameter is omitted from the command, then all communities are restored to their default settings. The read-only community is set to Public, the read-write community is set to Private, and all other communities are deleted.

Table 58: default snmp-server community command parameters and variables on page 176 describes the parameters and variables for the default snmp-server community command

Table 58: default snmp-server community command parameters and variables

Parameters and variables	Description
ro rw	Restores the read-only community to Public, or the read-write community to Private.

snmp-server contact command

The snmp-server contact command configures the SNMP sysContact value.

The syntax for the snmp-server contact command is

snmp-server contact <text>

The snmp-server contact command is executed in the Global Configuration command mode.

Table 59: snmp-server contact command parameters and variables on page 176 describes the parameters and variables for the snmp-server contact command.

Table 59: snmp-server contact command parameters and variables

Parameters and variables	Description
text	Specifies the SNMP sysContact value.

no snmp-server contact command

The no snmp-server contact command clears the sysContact value.

The syntax for the no snmp-server contact command is

no snmp-server contact

The no snmp-server contact command is executed in the Global Configuration command mode.

default snmp-server contact command

The default snmp-server contact command restores sysContact to the default value.

Comments? infodev @avaya.com

The syntax for the default snmp-server contact command is

default snmp-server contact

The default snmp-server contact command is executed in the Global Configuration command mode.

snmp-server command

The snmp-server command enables or disables the SNMP server.

The syntax for the snmp-server command is

snmp-server {enable|disable}

The snmp-server command is executed in the Global Configuration command mode.

Table 60: snmp-server command parameters and variables on page 177 describes the parameters and variables for the snmp-server command.

Table 60: snmp-server command parameters and variables

Parameters and variables	Description
enable disable	Enables or disables the SNMP server.

no snmp-server command

The no snmp-server command disables SNMP access.

The syntax for the no snmp-server command is

no snmp-server

The no snmp-server command is executed in the Global Configuration command mode.

The no snmp-server command has no parameters or variables.

If you disable SNMP access you cannot use Enterprise Device Manager for the switch.

snmp-server host command

The snmp-server host command adds a trap receiver to the trap-receiver table.

In the proprietary method, the table has a maximum of four entries, and these entries can generate only SNMPv1 traps. This command controls the contents of the s5AgTrpRcvrTable.

The proprietary method syntax for the snmp-server host for command is

```
snmp-server host <host-ip> <community-string>
```

Using the new standards-based SNMP method, you can create several entries in this table, and each can generate v1, v2c, or v3 traps.

! Important:

Before using the desired community string or user in this command, ensure that it has been configured with a notify-view.

The new standards-based method syntax for the snmp-server host command is

snmp-server host <host-ip> [port <trap-port>] {v1 <community-string>| v2c <community-string> {inform [timeout <1-2147483647>] [retries <0-255>]} |v3 {auth|no-auth|auth-priv} <username>} {inform [timeout <1-2147483647>] [retries <0-255>]}

The snmp-server host command is executed in the Global Configuration command mode.

Table 61: snmp-server host command parameters and variables on page 178 describes the parameters and variables for the snmp-server host command.

Table 61: snmp-server host command parameters and variables

Parameters and variables	Description
host-ip	Enter a dotted-decimal IP address of a host to be the trap destination.
community-string	If you are using the proprietary method for SNMP, enter a community string that works as a password and permits access to the SNMP protocol.
port <trap-port></trap-port>	If you are using the new standards-based tables, enter a value from 1 to 65535 for the SNMP trap port.
v1 <community-string></community-string>	To configure the new standards-based tables, using v1 creates trap receivers in the SNMPv3 MIBs. Multiple trap receivers with varying access levels can be created.
v2c <community-string></community-string>	To configure the new standards-based tables, using v2c creates trap receivers in the SNMPv3 MIBs. Multiple trap receivers with varying access levels can be created.

Parameters and variables	Description
v3 {auth no-auth auth-priv}	To configure the new standards-based tables, using v3 creates trap receivers in the SNMPv3 MIBs. Multiple trap receivers with varying access levels can be created. The variables are:
	auth: auth specifies SNMPv3 traps are sent using authentication and no privacy;
	no-auth: no-auth specifies SNMPv3 traps are sent using with no authentication and no privacy.
	auth-priv: specifies traps are sent using authentication and privacy; this parameter is available only if the image has full SHA/DES support.
username	To configure the new standards-based tables; specifies the SNMPv3 user name for trap destination; enter an alphanumeric string.
{inform [timeout <1-2147483647>] [retries <0-255>]}	Generates acknowledge Inform requests.

no snmp-server host command

The no snmp-server host command deletes trap receivers from the table.

The proprietary method syntax for the no snmp-server host command is

```
no snmp-server host [<host-ip> [<community-string>]]
```

Using the standards-based method of configuring SNMP, trap receivers matching the IP address and SNMP version are deleted.

The standards-based method syntax for the no snmp-server host command is

```
no snmp-server host <host-ip> [port <trap-port>] \{v1|v2c|v3 <community-string>}
```

The no snmp-server host command is executed in the Global Configuration command mode.

If you do not specify parameters, this command deletes all trap destinations from the s5AgTrpRcvrTable and from SNMPv3 tables.

<u>Table 62: no snmp-server host command parameters and variables</u> on page 180 describes the parameters and variables for the **no snmp-server host** command.

Table 62: no snmp-server host command parameters and variables

Parameters and variables	Description
<host-ip> [<community-string>]</community-string></host-ip>	In the proprietary method, enter the following variables:
	host-ip: the IP address of a trap destination host.
	community-string: the community string that works as a password and permits access to the SNMP protocol.
	If both parameters are omitted, nothing is cleared. If a host IP is included, the community-string is required or an error is reported.
<host-ip></host-ip>	Using the standards-based method, enter the IP address of a trap destination host.
port <trap-port></trap-port>	Using the standards-based method, enter the SNMP trap port.
v1 v2c v3 <community-string></community-string>	Using the standards-based method, specifies trap receivers in the SNMPv3 MIBs. <community-string>: the community string that works as a password and permits access to the SNMP protocol.</community-string>

default snmp-server host command

The default snmp-server host command restores the old-style SNMP server and the standards based tables are reset (cleared).

The syntax for the default snmp-server host command is

default snmp-server host

The default snmp-server host command is executed in the Global Configuration command mode.

The default snmp-server host command has no parameters or variables.

default snmp-server port

default snmp-server port command restores all trap receivers configured ports to the default port used for listening traps. The default port is 162.

The syntax for the default snmp-server port command is

default snmp-server port

The default snmp-server port command is executed in the Global configuration command mode.

The default snmp-server port command has no parameters or variables.

snmp-server location command

The snmp-server location command configures the SNMP sysLocation value.

The syntax for the snmp-server location command is

snmp-server location <text>

The snmp-server location command is executed in the Global Configuration command mode.

Table 63: snmp-server location command parameters and variables on page 181 describes the parameters and variables for the snmp-server location command.

Table 63: snmp-server location command parameters and variables

Parameters	Description
text	Specify the SNMP sysLocation value; enter an alphanumeric string of up to 255 characters.

no snmp-server location command

The no snmp-server location command clears the SNMP sysLocation value.

The syntax for the no snmp-server location command is

no snmp-server location

The no snmp-server location command is executed in the Global Configuration command mode.

default snmp-server location command

The default snmp-server location command restores sysLocation to the default value.

The syntax for the default snmp-server location command is

default snmp-server location

The default snmp-server location command is executed in the Global Configuration command mode.

snmp-server name command

The snmp-server name command configures the SNMP sysName value.

The syntax for the snmp-server name command is

snmp-server name <text>

The snmp-server name command is executed in the Global Configuration command mode.

Table 64: snmp-server name command parameters and variables on page 182 describes the parameters and variables for the snmp-server name command.

Table 64: snmp-server name command parameters and variables

Parameters and variables	Description
text	Specify the SNMP sysName value; enter an alphanumeric string of up to 255 characters.
	Note:
	On the console, the SNMP server name is truncated. On the Web interface, the full SNMP server name appears.

no snmp-server name command

The no snmp-server name command clears the SNMP sysName value.

The syntax for the no snmp-server name command is

no snmp-server name

The no snmp-server name command is executed in the Global Configuration command mode.

default snmp-server name command

The default snmp-server name command restores sysName to the default value.

The syntax for the default snmp-server name command is

default snmp-server name

The default snmp-server name command is executed in the Global Configuration command mode.

Enabling SNMP server notification control using ACLI

Use this procedure to enable SNMP traps for specific ports, or for all switch ports.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Enable SNMP server notification control by using the following command:

snmp-server notification-control <WORD> <portlist>

Variable definitions

Variable	Value
<portlist></portlist>	Specifies a port or group of ports. If you do not specify a port or group of ports, notification control is enabled for all switch ports.
<word></word>	Specifies a character string or OID describing the notification type. An example of a character string describing the notification type is, linkDown , linkup . An example of an OID describing the notification type is, 1.3.6.1.6.3.1.1.5.3 , 1.3.6.1.6.3.1.1.5.4 .

Disabling SNMP server notification control using ACLI

Use this procedure to disable SNMP traps for specific ports, or for all switch ports.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Disable the SNMP server notification control by using the following command:

no snmp-server notification-control <WORD> <portlist>

Variable definitions

Variable	Value
<portlist></portlist>	Specifies a port or group of ports. If you do not specify a port or group of ports, the notification control is disabled for all switch ports.
<word></word>	Specifies a character string or OID describing the notification type. An example of a character string describing the notification type is, linkDown , linkup . An example of an OID describing the notification type is, 1.3.6.1.6.3.1.1.5.3 , 1.3.6.1.6.3.1.1.5.4 .

Setting SNMP server notification control to default using ACLI

Use this procedure to set SNMP traps to the default value (disabled).

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Set SNMP server notification control to default by using the following command:

default snmp-server notification-control <WORD> <portlist>

Variable definitions

Variable	Value
<portlist></portlist>	Specifies a port or group of ports. If you do not specify a port or group of ports, the notification control is set to default globally.
<word></word>	Specifies a character string or OID describing the notification type. An example of a character string describing the notification type is, linkDown , linkup . An example of an OID describing the notification type is, 1.3.6.1.6.3.1.1.5.3 , 1.3.6.1.6.3.1.1.5.4 .

Viewing the SNMP server notification control table using ACLI

Use this procedure to display the SNMP server notification control table.

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

Display the SNMP server notification control table by using the following command:

```
show snmp-server notification-control
```

snmp-server user command

The snmp-server user command creates an SNMPv3 user.

For each user, you can create three sets of read/write/notify views:

- for unauthenticated access
- for authenticated access
- for authenticated and encrypted access

The syntax for the snmp-server user command for unauthenticated access is:

```
snmp-server user [engine-id <engine-id>] <username>] [read-view <view-name>] [write-view <view-name>] [notify-view <view-name>]
```

The syntax for the **snmp-server user** command for authenticated access is:

```
snmp-server user <username> [[read-view <view-name>] [write-view
<view-name>] [notify-view <view-name>]] md5|sha <password> [read-view
<view-name>] [write-view <view-name>] [notify-view <view-name>]
```

The syntax for the snmp-server user command for authenticated and encrypted access is:

```
snmp-server user <username>[[read-view <view-name>] [write-view
<view-name>] [notify-view <view-name>]] md5|sha <password> [[read-view <view-name>] [notify-view <view-name>]]
{3des|aes|des} <password> [read-view <view-name>] [write-view <view-name>]
[notify-view <view-name>]
```

The snmp-server user command is executed in the Global Configuration command mode.

The **sha** and **3des/aes/des** parameters are only available if the switch/stack image has SSH support.

For authenticated access, you must specify the md5 or sha parameter. For authenticated and encrypted access, you must also specify the 3des, aes, or des parameter.

For each level of access, you can specify read, write, and notify views. If you do not specify view parameters for authenticated access, the user will have access to the views specified for

unauthenticated access. If you do not specify view parameters for encrypted access, the user will have access to the views specified for authenticated access or, if no authenticated views were specified, the user will have access to the views specified for unauthenticated access.

<u>Table 65: snmp-server user parameters</u> on page 186 describes the parameters and variables for the snmp-server user command.

Table 65: snmp-server user parameters

Parameters	Description
username	Specifies the user name. Enter an alphanumeric string of up to 255 characters.
md5 <password></password>	Specifies the use of an md5 password. <password> specifies the new user md5 password; enter an alphanumeric string. If this parameter is omitted, the user is created with only unauthenticated access rights.</password>
read-view <view-name></view-name>	Specifies the read view to which the new user has access:
	view-name: specifies the viewname; enter an alphanumeric string of up to 32 characters.
write-view <view-name></view-name>	Specifies the write view to which the new user has access:
	view-name: specifies the viewname; enter an alphanumeric string that can contain at least some of the non alphanumeric characters.
notify-view <view-name></view-name>	Specifies the notify view to which the new user has access:
	view-name: specifies the viewname; enter an alphanumeric string that can contain at least some of the non alphanumeric characters.
SHA	Specifies SHA authentication.
3DES	Specifies 3DES privacy encryption.
AES	Specifies AES privacy encryption.
DES	Specifies DES privacy encryption.
engine-id	Specifies the SNMP engine ID of the remote SNMP entity.

If a view parameter is omitted from the command, that view type cannot be accessed.

no snmp-server user command

The no snmp-server user command deletes the specified user.

The syntax for the no snmp-server user command is

no snmp-server user [engine-id <engine ID>] <username>

The no snmp-server user command is executed in the Global Configuration command mode.

<u>Table 66: no snmp-server user command parameters and variables</u> on page 187 describes the parameters and variables for the **no snmp-server user** command.

Table 66: no snmp-server user command parameters and variables

Parameters and variables	Description
[engine-id <engine id="">]</engine>	Specifies the SNMP engine ID of the remote SNMP entity.
username	Specifies the user to be removed.

snmp-server view command

The snmp-server view command creates an SNMPv3 view. The view is a set of MIB object instances which can be accessed.

The syntax for the snmp-server view command is

snmp-server view <view-name> <OID> [<OID> [<OID> [<OID> [<OID> [<OID> [<OID>]]]]]]]]]

The snmp-server view command is executed in the Global Configuration command mode.

<u>Table 67: snmp-server view command parameters and variables</u> on page 187 describes the parameters and variables for the **snmp-server view** command.

Table 67: snmp-server view command parameters and variables

Parameters and variables	Description
viewname	Specifies the name of the new view; enter an alphanumeric string.
OID	Specifies Object identifier. OID can be entered as a dotted form OID. Each OID must be preceded by a + or - sign (if this is omitted, a + sign is implied).

For income of the second secon	ne + is not optional. or the dotted form, a sub-identifier can be an asterisk, dicating a wildcard. Here are some examples of valid ID parameters: sysName +sysName
•-	
•-	+sysName
• -	-sysName
	+sysName.0
• -	+ifIndex.1
I	-ifEntry.*.1 (this matches all objects in the ifTable with an instance of 1; that is, the entry for interface #1)
•	1.3.6.1.2.1.1.0 (the dotted form of sysDescr)
inc ob	ne + or - indicates whether the specified OID is cluded in or excluded from, respectively, the set of MIB pjects that are accessible using this view. For example, you create a view like this:
	snmp-server view myview +system -sysDescr
the	nd you use that view for the read-view of a user, then e user can read only the system group except for /sDescr.
	Important: There are ten possible OID values.

no snmp-server view command

The no snmp-server view command deletes the specified view.

The syntax for the no snmp-server view is:

no snmp-server view <viewname>

The no snmp-server view is executed in the Global Configuration command mode.

Table 68: no snmp-server view command parameters and variables on page 189 describes the parameters and variables for the no snmp-server view command.

Table 68: no snmp-server view command parameters and variables

Parameters and variables	Description
viewname	Specifies the name of the view to be removed. If no view is specified, all views are removed.

snmp-server host for old-style table command

The snmp-server host for old-style table command adds a trap receiver to the old-style trap-receiver table. The table has a maximum of four entries, and the entries can generate only SNMPv1 traps. This command controls the contents of the s5AGTrpRcvrTable, which is the set of trap destinations controlled by the SNMP Configuration screen in the console interface.

The syntax for the snmp-server host for old-style table command is

snmp-server host <host-ip> [port <1-65535>] <community-string>

Run the snmp-server host for old-style table command in Global Configuration command mode.

<u>Table 69: snmp-server host for old-style table command parameters and variables</u> on page 189 describes the parameters and variables for the <u>snmp-server</u> host for old-style table command.

Table 69: snmp-server host for old-style table command parameters and variables

Parameters and variables	Description
port <1-65535>	Assign SNMP trap port.
<host-ip></host-ip>	Enter a dotted-decimal IP address of a host that is the trap destination.
<community-string></community-string>	Enter a community string that works as a password and permits access to the SNMP protocol.

snmp-server host for new-style table command

The snmp-server host for new-style table command adds a trap receiver to the new-style configuration (that is, to the SNMPv3 tables). You can create several entries in this table, and each can generate v1, v2c, or v3 traps. You must have previously configured the community string or user that is specified with a notify-view. The syntax for the snmp-server host for new-style table command is

```
snmp-server host <host-ip> [port <1-65535>] {v1 <community-string>|
v2c <community-string>| v3 {auth|no-auth|auth-priv} <username>}
```

Run the snmp-server host for new-style table command in Global Configuration command mode.

<u>Table 70: snmp-server host for new-style table command parameters and variables</u> on page 190 describes the parameters and variables for the <u>snmp-server</u> host for new-style table command.

Table 70: snmp-server host for new-style table command parameters and variables

Parameters and variables	Description
<host-ip></host-ip>	Enter a dotted-decimal IP address of a host (trap destination).
port <1-65535>	Assign SNMP trap port.
v1 <community-string></community-string>	Using v1 creates trap receivers in the SNMPv3 MIBs. You can create multiple trap receivers with varying access levels.
v2c <community-string></community-string>	Using v2c creates trap receivers in the SNMPv3 MIBs. You can create multiple trap receivers with varying access levels.
v3 {auth no-auth auth-priv}	Using v3 creates trap receivers in the SNMPv3 MIBs. You can create multiple trap receivers with varying access levels. Enter the following variables:
	auth no-auth: specifies whether SNMPv3 traps are authenticated
	auth-priv: this parameter is available if the image has full SHA/DES support.
<username></username>	The SNMPv3 user name for trap destination; enter an alphanumeric string.

snmp-server bootstrap command

The snmp-server bootstrap command allows you to specify how you wish to secure SNMP communications, as described in the SNMPv3 standards. It creates an initial set of configuration data for SNMPv3. This configuration data follows the conventions described in the SNMPv3 standard (in RFC 3414 and 3415). This command creates a set of initial users, groups, and views.

Important:

This command deletes all existing SNMP configurations.

The syntax for the snmp-server bootstrap command is

snmp-server bootstrap <minimum-secure>|<semi-secure> |<very-secure>

The snmp-server bootstrap command is executed in the Global Configuration command mode.

<u>Table 71: snmp-server bootstrap command parameters and variables</u> on page 191 describes the parameters and variables for the **snmp-server** bootstrap command.

Table 71: snmp-server bootstrap command parameters and variables

Parameters and variables	Description
<minimum-secure></minimum-secure>	Specifies a minimum security configuration that allows read access and notify access to all processes (or Internet views) using no authentication and no privacy; and write access to all processes using authentication and no privacy.
<semi-secure></semi-secure>	Specifies a partial security configuration that allows read access and notify access but no write access to a small subset of system information (or restricted views) using no authentication and no privacy; and read, write, and notify access to all processes using authentication and no privacy. (Refer to RFCs 3414 and 3415 for a list of the MIB views in the semi-secure restricted set.)
<very-secure></very-secure>	Specifies a maximum security configuration that allows no access to the users.

RADIUS accounting configuration using ACLI

RADIUS accounting utilizes the same network server settings used for RADIUS authentication. For more information about the commands to configure the RADIUS server settings, see Configuring switch RADIUS server settings using ACLI on page 120.

The RADIUS accounting UDP port is the RADIUS authentication port +1. By default, the RADIUS accounting UDP port is port 1813.

By default, RADIUS accounting is disabled.

Enabling RADIUS server accounting using ACLI

Use this procedure to enable RADIUS accounting for a Global, EAPOL, or non-EAPOL RADIUS server.

Procedure steps

- 1. Log on to Global Configuration or Interface Command mode in ACLI.
- 2. To enable RADIUS accounting for a Global RADIUS server, use the following command:

```
radius server host [<ipaddr> | <ipv6addr>] acct-enable
```

3. To enable RADIUS accounting for an EAPOL RADIUS server, use the following command:

```
radius server host [<ipaddr> | <ipv6addr>] used-by eapol
acct-enable
```

4. To enable RADIUS accounting for a non-EAPOL RADIUS server, use the following command:

radius server host [<ipaddr> | <ipv6addr>] used-by non-eapol acct-enable

Variable definitions

Variable	Value
<ipaddr></ipaddr>	Specifies the IPv4 address of the RADIUS server for which you want to enable accounting.
<ipv6addr></ipv6addr>	Specifies the IPv6 address of the RADIUS server for which you want to enable accounting.

Disabling RADIUS server accounting using ACLI

Use this procedure to disable RADIUS accounting for a Global, EAPOL, or non-EAPOL RADIUS server.

Procedure steps

- 1. Log on to Global Configuration or Interface Command mode in ACLI.
- 2. To disable RADIUS accounting for a Global RADIUS server, use the following command:

no radius server host [<ipaddr> | <ipv6addr>] acct-enable

3. To disable RADIUS accounting for an EAPOL RADIUS server, use the following command:

no radius server host [<ipaddr> | <ipv6addr>] used-by eapol acct-enable

4. To disable RADIUS accounting for a non-EAPOL RADIUS server, use the following command:

no radius server host [<ipaddr> | <ipv6addr>] used-by noneapol acct-enable

Variable definitions

Variable	Value
<ipaddr></ipaddr>	Specifies the IPv4 address of the RADIUS server for which you want to disable accounting.
<ipv6addr></ipv6addr>	Specifies the IPv6 address of the RADIUS server for which you want to disable accounting.

Setting RADIUS server accounting to default using ACLI

Use this procedure to set RADIUS accounting for a Global, EAPOL, or non-EAPOL RADIUS server to default.

Procedure steps

- 1. Log on to Global Configuration or Interface Command mode in ACLI.
- 2. To set RADIUS accounting for a Global RADIUS server to default, use the following command:

default radius server host [<ipaddr> | <ipv6addr>] acct-

3. To set RADIUS accounting for an EAPOL RADIUS server to default, use the following command:

default radius server host [<ipaddr> | <ipv6addr>] used-by eapol acct-enable

4. To set RADIUS accounting for a non-EAPOL RADIUS server to default, use the following command:

default radius server host [<ipaddr> | <ipv6addr>] used-by non-eapol acct-enable

Variable definitions

Variable	Value
<ipaddr></ipaddr>	Specifies the IPv4 address of the RADIUS server for which you want to set accounting to default.
<ipv6addr></ipv6addr>	Specifies the IPv6 address of the RADIUS server for which you want to set accounting to default.

Configuring RADIUS interim accounting updates using ACLI

Use the following procedure to enable RADIUS interim accounting updates and configure the interval timeout period for the updates.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure RADIUS interim accounting updates by using the following command:

radius accounting interim-updates [enable] [interval <seconds>]
[use-server-interval]

Variable definitions

The following table defines parameters that you can enter with the radius accounting interim-updates [enable] [interval <seconds>] [use-server-interval] command.

Variable	Value
enable	Enables RADIUS accounting interim updates for the switch.
interval <seconds></seconds>	Specifies the time interval (in seconds) before RADIUS accounting interim updates times out.
use-server-interval	Uses the value applied by the RADIUS server for the time interval (in seconds)

194 Configuration — Security

December 2011

Variable	Value
	before RADIUS accounting interim updates times out.

Disabling RADIUS interim accounting updates using ACLI

Use this procedure to disable RADIUS interim accounting updates for the switch or to discontinue using the RADIUS server timeout interval for the updates.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Disable RADIUS interim accounting updates by using the following command:

no radius accounting interim-updates [enable] [use-serverintervall

Variable definitions

The following table defines parameters that you can enter with the no radius accounting interim-updates [enable] [use-server-interval] command.

Variable	Value
enable	Disables RADIUS accounting interim updates for the switch.
use-server-interval	Discontinues using the value applied by the RADIUS server for the time interval (in seconds) before RADIUS accounting interim updates times out.

Configuring RADIUS interim accounting updates to default using **ACLI**

Use this procedure to configure RADIUS interim accounting updates to default values.

Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure RADIUS interim accounting updates to default by using the following command:

default radius accounting interim-updates [enable] [interval]
[use-server-interval]

Variable definitions

The following table defines parameters that you can enter with the default radius accounting interim-updates [enable] [interval] [use-server-interval] command.

Variable	Value
enable	Configures the RADIUS accounting interim updates status to default (disabled).
interval	Configures the RADIUS accounting interim updates timeout interval to default (600 seconds).
use-server-interval	Configures the use of the RADIUS server applied timeout interval for interim updates to default (enabled).

Viewing RADIUS interim accounting updates information using ACLI

Use this procedure to display information about RADIUS interim accounting updates configuration information.

Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure RADIUS interim accounting updates by using the following command:

show radius accounting interim-updates

Job aid: show radius accounting interim-updates command output

The following shows sample output for the **show radius accounting interim-updates** command.

```
ERS-4524GT(config)#show radius accounting interim-updates
RADIUS accounting interim-updates: Disabled
RADIUS accounting interim-updates interval: 600
RADIUS accounting use-server-interval: Enabled
ERS-4524GT(config)#
```

Figure 6: show radius accounting interim-updates command output

TACACS+ configuration using ACLI

This section describes how you configure TACACS+ to perform AAA services for system users.

Configuring switch TACACS+ server settings using ACLI

Configure switch TACACS+ server settings to add a TACACS+ server to your system.

Prerequisites

- Configure the TACACS+ server to be added to your system.
- Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure switch TACACS+ server settings by using the following command:

tacacs server

Variable definitions

The following table describes variables that you use with the tacacs server command.

Variable	Value
host <ipaddr></ipaddr>	Specifies the IP address of the primary server you want to add or configure.
key <key></key>	Specifies the secret authentication and encryption key used for all communications between the NAS and the TACACS+ server. The key, also referred to as the shared secret, must be the same as the one defined on the server. You are prompted to confirm the key when you enter it.
	Important: The key parameter is a required parameter when you create a new server entry. The parameter is optional when you are modifying an existing entry.
port <port></port>	Specifies the TCP port for TACACS+. <port> is an integer in the range of 1 to 65535. The default port number is 49.</port>
secondary host <ipaddr></ipaddr>	Specifies the IP address of the secondary server. The secondary server is used only if the primary server does not respond.

Disabling switch TACACS+ server settings using ACLI

Disable switch TACACS+ server settings to discontinue using TACACS+ services in your system.

Comments? infodev@avaya.com

Log on to the Global Configuration mode in ACLI.

Procedure steps

Disable switch TACACS+ server settings by using one of the following command:

no tacacs

OR

default tacacs

These commands erase settings for the TACACS+ primary and secondary servers and secret key; and restore default port settings.

Enabling remote TACACS+ services using ACLI

Enable remote TACACS+ services to provide services to remote users over serial or Telnet connections.

Prerequisites

- Log on to the Global Configuration mode in ACLI.
- Configure a TACACS+ server on the switch before you can enable remote TACACS+ services. For information see Configuring switch TACACS+ server settings using ACLI on page 197.

Procedure steps

1. Enable remote TACACS+ services for serial connections by using the following command:

cli password serial tacacs

2. Enable remote TACACS+ services for Telnet connections by using the following command:

cli password telnet tacacs

Enabling or disabling TACACS+ authorization using ACLI

You can enable or disable TACACS+ authorization globally on the switch by following this procedure.

TACACS+ authorization is disabled by default.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

1. Enable TACACS+ authorization by using the following command:

tacacs authorization enable

2. Disable TACACS+ authorization by using the following command:

tacacs authorization disable

Configuring TACACS+ authorization privilege levels using ACLI

Configure TACACS+ authorization privilege levels to specify the privilege levels to which TACACS+ authorization applies.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure TACACS+ authorization privilege levels by using the following command:

tacacs authorization level

Variable definitions

The following table defines the parameters, which you can enter after the tacacs authorization level command.

Variable	Value
ALL	Enables authorization for all privilege levels.
LINE	Enables authorization for a specific privilege level. LINE is a numerical value in the range of 0–15.
NONE	Authorization is not enabled for privilege levels. All users can execute commands available on the switch. The default authorization level is NONE

Enabling or disabling TACACS+ accounting using ACLI

Enable or disable TACACS+ accounting globally on the switch by following this procedure.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

- 1. Enable TACACS+ accounting by using the following command:
 - tacacs accounting enable
- 2. Disable TACACS+ accounting by using the following command:

tacacs accounting disable

Configuring the switch TACACS+ level using ACLI

Configure the switch TACACS+ level to select a new level for a switch or use the last configured level.

Log on to the Global Configuration mode in ACLI.

Procedure steps

1. Configure a new TACACS+ level for a switch by using the following command:

tacacs switch level

2. Use the last configured TACACS+ level for a switch by using the following command:

tacacs switch back

Variable definitions

The following table defines optional parameters that you enter after the tacacs switch level command.

Variable	Value
<ci></ci>	Selects the default switch TACACS+ level (15).
<1-15>	Defines the new TACACS+ level for the switch. Values range from 1 to 15.

Viewing TACACS+ information using ACLI

View TACACS+ information to display TACACS+ configuration status by following this procedure.

Prerequisites

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

View TACACS+ information by using the following command:

show tacacs

Configuring IP Manager

To configure the IP Manager to control management access to the do the following:

- Enable IP Manager.
- Configure the IP Manager list.

Enabling IP Manager

To enable IP Manager to control Telnet, SNMP, or HTTP access, use the following command in Global Configuration mode:

```
ipmgr {telnet|snmp|web|ssh} [source-ip]
```

where

telnet enables the IP Manager list check for Telnet access

snmp enables the IP Manager list check for SNMP, including Enterprise Device Manager

web enables the IP Manager list check for Web connections

ssh enables IP manager control over SSH sessions

source-ip sets the source IP address from which connections are allowed: 1-50 for address/mask pair and 51-100 for IPv6 address/prefix

To disable IP Manager for a management system, use the **no** keyword at the start of the command.

Configuring the IP Manager list

To specify the source IP addresses or address ranges that have access the switch or the stack when IP Manager is enabled, use the following command in Global Configuration mode:

```
ipmgr source-ip <list ID> <IPaddr> [mask <mask>]
  where
```

< ID> is an integer in the range of 1 to 50 that uniquely identifies an ipv4 entry in the IP Manager list or in the range of 51 to 100 that uniquely identifies an ipv6 entry in the IP Manager list.

The ipmgr source-ip <list ID> command contains the following parameters for configuring the IP Manager list:

Parameter	Description
<ipaddr></ipaddr>	Specifies the source IP address from which access is allowed. Enter the IP address either as an integer or in dotted-decimal notation.
[mask <mask>]</mask>	Specifies the subnet mask from which access is allowed. Enter the IP mask in dotted-decimal notation.

Removing IP Manager list entries

To deny access to the switch or stack for specified source IP addresses or address ranges, use the following command in Global Configuration mode:

```
no ipmgr source-ip [<list ID>]
```

where

< ID> is an integer in the range of 1 to 50 that uniquely identifies an ipv4 entry in the IP Manager list or in the range of 51 to 100 that uniquely identifies an ipv6 entry in the IP Manager list.

The command sets both the IP address and mask for the specified entry to 255.255.255. If you do not specify a st ID> value, the command resets the whole list to factory defaults.

Viewing IP Manager settings

To view IP Manager settings, use the following command:

show ipmgr

The command displays:

- whether Telnet, SNMP, SSH, and Web access are enabled
- whether the IP Manager list is being used to control access to Telnet, SNMP, SSH, and the Web-based management system
- the current IP Manager list configuration

Setting the user name and password

The username authentication feature enhances the security level of the Avaya ERS 4000 series by adding a user name field to the existing security infrastructure. This feature integrates the local authentication methods in a general and commonly accepted user name — password framework.

username command

Use the username command in Global command mode to configure the system user name and password for serial console port, Telnet, and EDM access to a switch. The username command supports just one read-only and one read-write user identification on the switch or stack.

The syntax for the username command is:

username <username> <password> [ro|rw]

The following table describes the parameters and variables for the username command.

Table 72: username command parameters and variables

Parameters and variables	Description
<username> <password></password></username>	Enter your user name for the first variable, and your password for the second variable. The default user name values are RO for read-only access and RW for read/write access.
ro rw	Sets the read-only (ro) user name or the read-write (rw) user name. The ro rw variable is optional. If you omit this variable, the command applies to both read-only and read-write users.

🖖 Important:

After you configure the user name and password with the username command, you can update the password without changing the username, by using the cli password command, the console interface, or EDM.

Setting the system user to default using ACLI

Use this procedure to set the read-only and read-write user name for serial console port, Telnet, and EDM access to a switch to default values.

Log on to the Global Configuration mode in ACLI.

Procedure steps

Set the read-only or read-write user name to default values by using the following command:

default username [ro|rw]

Variable definitions

Variable	Value
ro rw	Sets the read-only (ro) user name or the read-write (rw) user name to default. The ro rw variable is optional. If you omit this variable, the command applies to both read-only and read-write users.

Setting ACLI password

You can assign passwords using the cli password command for selected types of access using ACLI, Telnet, or RADIUS security.

cli password command

The cli password command has two forms and performs the following functions:

- Change the read-only and read-write passwords for serial console port and Telnet access to a switch.
- Change the password authentication type for serial console port or Telnet access to a switch.

🖖 Important:

The cli password command changes only the password does not effect the configured username.

The syntax for the cli password command is

```
cli password [serial | telnet] [local | none | radius | tacacs]
cli password {read-only | read-write} [<password>]
```

Run the cli password command in Global Configuration command mode.

<u>Table 73: cli password command parameters and variables</u> on page 207 describes the parameters and variables for the cli password command.

Table 73: cli password command parameters and variables

Parameters and variables	Description
read-only read-write	Modify the read only password or the read/write password.
<password></password>	Enter your password.
	Important:
	This parameter is not available when Password Security is enabled, in which case the switch prompts you to enter and confirm the new password.
serial telnet	Modify the password for serial console access or for Telnet access.
switch stack	Modify the password for a standalone switch or switches in a stack.
none local radius	Indicates the password type you are modifying:
	none: disable the password
	local: uses the locally defined password for serial console or Telnet access.
	radius: uses RADIUS authentication for serial console or Telnet access.
	tacacs: uses TACACS+ authentication, authorization, and accounting (AAA) services for serial console or Telnet access.

Viewing the user name and password configuration using ACLI

Use this procedure to display the current user name and password authentication configuration for a switch.

Prerequisites

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

Display the current user name and password authentication configuration by using the following command:

show cli password [type]

Variable definitions

Variable	Value
[type]	Displays the current password type configured for serial console and Telnet access to the stack, or standalone switch. Values include:
	local—the system local password is used
	• none—no password is used
	radius—RADIUS password authentication is used
	• tacacs—TACACS+ AAA services are used

Job aid: show cli password type command output

The following figure displays sample output for the show cli password type command.

```
4524GT-PWR>en
4524GT-PWR#show cli password type
Console Password Type: Local Password
Telnet Password Type: None
4524GT-PWR#
```

Configuring password security

ACLI commands detailed in this section are used to manage password security features. These commands can be used in the Global Configuration and Interface Configuration command modes.

password security command

The password security command enables the Password Security feature on the Avaya Ethernet Routing Switch 4000 Series.

The syntax of the password security command is

password security

no password security command

The no password security command disables the Password Security feature on the Avaya Ethernet Routing Switch 4000 Series.

The syntax for the no password security command is

no password security

Configuring the number of retries

To configure the number of times a user can retry a password, use the following command in Global or Interface Configuration mode:

telnet-access retry <number>

where

number is an integer in the range 1 to 100 that specifies the allowed number of failed log on attempts. The default is 3.

Password history configuration using ACLI

You can configure the Avaya Ethernet Routing Switch 4000 to keep a maximum history of ten passwords. The default password history configuration is three.

Configuring password history using ACLI

Configure password history to select the number of last-used passwords the switch keeps a record of.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure password history by using the following command:

password password-history <3-10>

Variable definitions

The following table defines variable parameters that you enter with the password password-history <3-10> command.

Variable	Value
<3-10>	Defines the number of passwords the switch records a history of. Values range from 3 to 10. The default value is 3.

Configuring password history to default using ACLI

Configure the password history to default to select the default value of 3 for the number of last-used passwords the switch keeps a record of by following this procedure.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Configure the password history to default by using the following command:

default password password-history

Viewing password history using ACLI

View password history to display the password history configuration by following this procedure.

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

View password history by using the following command:

show password password-history

ACLI Audit log configuration

ACLI Audit provides a means for tracking ACLI commands.

Displaying ACLI audit log

Perform this procedure to display ACLI audit log.

Prerequisites

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

To display ACLI audit log enter the following command:

show audit log [asccfg | serial | telnet |config]

Variable definitions

The following table defines variable parameters that you enter with the **show audit log** command.

Variable	Value
asccfg	Displays the audit log for ASCII configuration.
serial	Displays the audit log for serial connections.

Variable	Value
telnet	Displays the audit log for Telnet and SSH connections.
config	Displays the status of activation of the Audit log.

Enabling and disabling ACLI audit log

Perform this procedure to enable or disable ACLI audit log.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

1. To enable ACLI audit enter the following command:

audit log save

2. To disable ACLI audit enter the following command:

no audit log

3. To verify ACLI audit setting enter the following command:

show audit log config

The following response appears:

Audit Log Save To NVRAM:: Disabled

Configuring ACLI audit log to default

Perform this procedure to set ACLI audit log to default.

Log on to the Global Configuration mode in ACLI.

Procedure steps

1. To set ACLI audit log to default mode enter the following command:

```
default audit log
```

2. To verify ACLI audit settings enter the following command:

```
show audit log config
```

The following response appears:

```
Audit Log Save To NVRAM:: Enabled
```

Clearing the ACLI audit log

Perform this procedure to erase the contents of the ACLI audit log.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

To clear the ACLI audit log, enter the following command:

```
clear audit log
```

Job aid:

If the contents of the ACLI audit log is successfully erased, the following message appears:

```
% Audit log was successfully erased
```

If the no-erase audit log flag is set on the switch or your are running the secure software image, the following message appears:

% Clearing audit log is not authorized

Preventing erasure of the ACLI audit log

Perform this procedure to prevent erasure of the ACLI audit log contents when using the standard software image, by applying the no-erase flag.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

To prevent erasure of the ACLI audit log, enter the following command:

audit log noerase enable

🔼 Warning:

Applying the audit log noerase enable command on a switch is a one time function which is non-reversible and is only applicable when the switch is running the standard software image. After the no-erase audit log flag is set, you cannot clear the audit log, even if the switch is re-configured to factory defaults. When you enter the command for the first time on a switch running the standard software image, the following warning message appears:

% WARNING: Setting the audit log noerase is a non-reversible command Do you want to continue (y/n) ?

If the no-erase flag is already set on the switch, the following message appears:

% Audit log noerase is already enabled

Secure Socket Layer services

The following table lists ACLI commands available for working with Secure Socket Layer (SSL).

Table 74: SSL commands

Command	Description
[no] ssl	Enables or disables SSL. The Web server operates in a secure mode when SSL is enabled and in non secure mode when the SSL server is disabled.

Comments? infodev @avaya.com

Command	Description
[no] ssl certificate	Creates or deletes a certificate. The new certificate is used only on the next system reset or SSL server reset. The new certificate is stored in the NVRAM with the file name SSLCERT.DAT. The new certificate file replaces the existing file. On deletion, the certificate in NVRAM is also deleted. The current SSL server operation is not affected by the create or delete operation.
ssl reset	Resets the SSL server. When SSL is enabled: existing SSL connections are closed, the SSL server is restarted and initialized with the certificate that is stored in the NVRAM. When SSL is not enabled: existing non secure connections are closed, the server is restarted, and non secure operation resumes.
show ssl	Shows the SSL server configuration and SSL server state. Refer to <u>Table 75: Server state information</u> on page 215 for more information.
show ssl certificate	Displays the certificate which is stored in the NVRAM and is used by the SSL server.

The following table describes the output for the show ssl command.

Table 75: Server state information

Field	Description
WEB Server SSL secured	Shows whether the Web server is using an SSL connection.
SSL server state	Displays one of the following states:
	Un-initialized: The server is not running.
	Certificate Initialization: The server is generating a certificate during its initialization phase.
	Active: The server is initialized and running.
SSL Certificate: Generation in progress	Shows whether SSL is in the process of generating a certificate. The SSL server generates a certificate during server startup initialization, or ACLI user can regenerate a new certificate.
SSL Certificate: Saved in NVRAM	Shows whether an SSL certificate exists in the NVRAM. The SSL certificate is not present if the system is being initialized for the first time or ACLI user has deleted the certificate.

Configuring the Web server for client browser requests using ACLI

Use this procedure to configure the Web server to respond to HTTPS only, or both HTTPS and HTTP client browser requests when SSL is enabled.

Prerequisites

Enable SSL.

Procedure steps

- 1. Log on to the Global Configuration mode in ACLI.
- 2. To configure the Web server to respond to HTTPS client browser requests only, use the following command:

```
https-only
```

3. To configure the Web server to respond to both HTTPS and HTTP client browser requests, use the following command:

```
no https-only
```


https-only is enabled by default.

Viewing the Web server client browser request configuration using ACLI

Use this procedure to display whether the Web server is configured to respond to HTTPS only, or both HTTPS and HTTP client browser requests when SSL is enabled.

Prerequisites

Enable SSL.

Procedure steps

- 1. Log on to the Privileged EXEC mode in ACLI.
- 2. To display whether the Web server is configured to respond to HTTPS only, or both HTTPS and HTTP client browser requests, use the following command:

216 Configuration — Security

Job aid: show https-only command output

The following figure shows sample output for the **show** https-only command.

4524GT-PWR#show https-only HTTPS only:disabled

Secure Shell protocol configuration using ACLI

Secure Shell (SSH) protocol is used to improve Telnet and provide a secure access to the ACLI interface. There are two versions of the SSH Protocol (SSH1 and SSH2). The Avaya Ethernet Routing Switch 4000 Series supports SSH2.

You can use the information in this section to configure and manage SSH.

Displaying SSH information using ACLI

Use this procedure to display general SSH settings and information about all active SSH sessions.

Prerequisites

Use this command in the Privileged Exec mode.

Procedure steps

Enter the following command:

show ssh {download-auth-key | global | session}

Variable definitions

Variable	Value
download-auth-key	Displays authorization key and TFTP server IP address
global	Displays general SSH settings
session	Displays SSH session info

Job aid: sample SSH information display output

The following example displays sample output for the show ssh global command:

4548GT-PWR#show ssh global Active SSH Sessions : 0

```
Version : Version 2 only
Port : 22
Authentication Timeout : 60
DSA Authentication : False
RSA Authentication : False
Password Authentication : True
Auth Key TFTP Server : 172.16.3.2
DSA Auth Key File Name :
RSA Auth Key File Name :
DSA Host Keys : Exist
RSA Host Keys : Exist
Enabled : True
```

The following example displays sample output for the **show ssh download-auth-key** command:

```
4548GT-PWR#show ssh download-auth-key
Auth Key TFTP Server : 172.16.3.2
DSA Auth Key File Name :
RSA Auth Key File Name :
Last Transfer Result : None
```

Enabling SSH using ACLI

Use this procedure to enable SSH in a non-secure mode. If the host keys do not exist, they are generated.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

ssh

Disabling SSH using ACLI

Use this procedure to disable SSH for the switch.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

no ssh {dsa-auth|dsa-auth-key|dsa-host-key| rsa-auth | rsaauth-key | rsa-host-key | pass-auth}

Variable definitions

Variable	Value
dsa-auth	Disables SSH DSA authentication.
dsa-auth-key	Deletes the SSH DSA authentication key.
dsa-host-key	Deletes the SSH DSA host key.
rsa-auth	Disables SSH RSA authentication.
rsa-auth-key	Deletes the SSH RSA authentication key.
rsa-host-key	Deletes the SSH RSA host key.
pass-auth	Disables SSH password authentication.

Generating a new SSH DSA host key using ACLI

Use this procedure to generate a new SSH DSA host key for the switch.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

ssh dsa-host-key

Deleting the SSH DSA host key using ACLI

Use this procedure to delete the switch SSH DSA host key.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

no ssh dsa-host-key

Generating a new SSH RSA host key using ACLI

Use this procedure to generate a new SSH RSA host key in the switch.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

ssh rsa-host-key

Deleting the SSH RSA host key using ACLI

Use this procedure to delete the SSH RSA host key in the switch.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

no ssh rsa-host-key

Downloading DSA or RSA authentication keys using ACLI

Use this procedure to download the DSA or RSA authentication key into the switch.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

ssh download-auth-key {[address <A.B.C.D > | <WORD>] usb [unit <1-8>]}[key-name <WORD>][dsa | rsa]

Variable definitions

Variable	Value
address <a.b.c.d> <word></word></a.b.c.d>	Specifies the address of the TFTP server.
	A.B.C.D—specifies the IP address
	WORD—specifies the IPv6 address
dsa rsa	Specifies DSA or RSA authentication key to be downloaded.
key-name <word></word>	Specifies the TFTP or USB filename.
unit <1-8>	Specifies the unit number in a stack from which to download the SSH auth key using USB.

Deleting the SSH DSA authentication key using ACLI

Use this procedure to delete the SSH DSA authentication key in the switch.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

no ssh dsa-auth-key

Deleting the SSH RSA authentication key using ACLI

Use this procedure to delete the SSH RSA authentication key in the switch.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

```
no ssh rsa-auth-key
```

Enabling user log-on with an SSH DSA key using ACLI

Use this procedure to enable user log-on with SSH DSA key authentication.

Prerequisites

Use these commands in the Global Configuration mode.

Procedure steps

Enter either of the following commands:

ssh dsa-auth

OR

default ssh dsa-auth

Disabling user log-on with an SSH DSA key using ACLI

Use this procedure to disable user log-on with SSH DSA key authentication.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

no ssh dsa-auth

Enabling user log-on with an SSH RSA key using ACLI

Use this procedure to enable user log-on with SSH RSA key authentication.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter either of the following commands:

ssh rsa-auth

OR

default ssh rsa-auth

Disabling user log-on with an SSH RSA key using ACLI

Use this procedure to disable user log-on with SSH RSA key authentication.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

no ssh rsa-auth

Enabling user log-on with SSH password authentication using ACLI

Use this procedure to enable user log-on using the SSH password authentication method.

Prerequisites

Use these commands in the Global Configuration mode.

Procedure steps

Enter either of the following commands:

ssh pass-auth

OR

default ssh pass-auth

Disabling user log-on with SSH password authentication using **ACLI**

Use this procedure to disable user log-on using the SSH password authentication method.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter either of the following commands:

no ssh pass-auth

Disabling SNMP and Telnet With SSH using ACLI

Use this procedure to disable SNMP and Telnet management interfaces permanently.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

ssh secure [force]

Variable definitions

Variable	Value
force	Skips the confirmation step.

Setting the TCP port for SSH daemon using ACLI

Use this procedure to set the TCP port for the SSH daemon.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

ssh port <1-65535>

Variable definitions

Variable	Value
<1-65535>	Specifies the number of the TCP port to use.

Setting the default TCP port for the SSH daemon using ACLI

Use this procedure to set the default TCP port for the SSH daemon.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

default ssh port

Setting the SSH timeout using ACLI

Use this procedure to set the SSH authentication timeout, in seconds.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

ssh timeout <1-120>

Variable definitions

Variable	Value
<1-120>	Specifies the desired timeout value in seconds.

Setting the SSH timeout to default using ACLI

Use this procedure to sets the SSH authentication timeout to the default value of 60 seconds.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

default ssh timeout

Secure Shell Client configuration using ACLI

Use the procedures in this section to configure and manage Secure Shell Client.

Opening and closing an SSH session involves three actions:

- Connect make the connection from the CLI user interface.
- Authenticate the SSH Client uses DSA or RSA authentication keys. If key authentication fails due to non-existent or unaccepted DSA/RSA keys, you can enter a username and password (three tries allowed).
- Close the session end the SSH session and return to CLI by using by typing a '~' followed by a period (~.).

Configuring SFTP authentication for SSH Client using ACLI

Use this procedure to configure the SFTP authentication method SSH Client uses for transferring files.

Prerequisites

Use the following command in the Global Configuration mode.

Procedure steps

Enter the following command:

sshc authentication {dsa | password | rsa}

Variable definitions

Variable	Value
dsa	Enables SFTP DSA authentication for SSH Client (default).

Variable	Value
password	Enables SFTP password authentication for SSH Client.
rsa	Enables SFTP RSA authentication for SSH Client.

Setting SFTP authentication for SSH Client to default using ACLI

Use this procedure to set the SFTP authentication method SSH Client to uses for transferring files to the default value of *dsa*.

Prerequisites

Use the following command from Global Configuration mode.

Procedure steps

Enter either of the following commands:

default sshc authentication

OR

no sshc authentication

Closing an SSH Client session using ACLI

Use this procedure to close a specific SSH Client session.

Prerequisites

Use this command in the Global Configuration mode.

Procedure steps

Enter the following command:

sshc close-session <0-8>

Variable definitions

Variable	Value
<0-8>	Specifies the SSH Client session ID.

Generating an SSH client DSA host key using ACLI

Use the following procedure to generate public and private DSA SSH client host keys for user access authentication.

Prerequisites

Use the following command from Global Configuration mode.

Procedure steps

Enter the following command:

sshc dsa-host-key [force]

If you use the sshc dsa-host-key command without the force option you must remove the current key before you can generate the new key. If a DSA key exists and you use the command without the force option the system does not generate a new key. If you use the force option, the system generates a new, active DSA key, even in the presence of an existing DSA key. The authentication method remains unchanged.

Variable definitions

Variable	Value
force	Creates a new DSA key, even in the presence of an existing DSA key.

Deleting DSA host keys using ACLI

Use the following procedure to delete the public or private DSA host keys from NVRAM.

Comments? infodev @avaya.com

Prerequisites

Use the following command from Global Configuration mode.

Procedure steps

Enter the following command:

no sshc dsa-host-key

The DSA authentication state remains unchanged

Generating an SSH client RSA host key using ACLI

Use the following procedure to generate public and private SSH client RSA host keys for user access authentication.

Prerequisites

Use the following command from Global Configuration mode.

Procedure steps

Enter the following command:

sshc rsa-host-key [force]

If you use the sshc rsa-host-key command without the force option you must remove the current key before you can generate the new key. If an RSA key exists and you use the command without the force option the system does not generate a new key. If you use the force option, the system generates a new, active RSA key, even in the presence of an existing RSA key. The authentication method remains unchanged.

Variable definitions

Variable	Value
force	Creates a new RSA key, even in the presence of an existing RSA key.

Deleting RSA host keys using ACLI

Use the following procedure to delete public and private RSA host keys from the NVRAM.

Prerequisites

Use the following command from Global Configuration mode.

Procedure steps

Enter the following command:

no sshc rsa-host-key

The RSA authentication state remains unchanged.

Connecting SSH to a host using ACLI

Use the following procedure to establish a SSH connection to a host.

Prerequisites

Use the following command from Privileged EXEC mode .

Procedure steps

Enter the following command

ssh <A.B.C.D. | host_name> [username <user_name>] [port <0-65535>]

When the SSH client connects to a host, if the host is not known to the client, the following message is displayed on the console:

The authenticity of host '<host's ip>' can't be established. RSA Key with the following SHA256 fingerprint: 4:90:56:E6:F8:9D:E3:BC: 88:10:4F:B4:9B:CD:F4:26:84:6:D6:E1:10:64: DD:2E:99:7A:93:27:3B: 15:9E:7E. Are you sure you want to continue connecting (yes/no)?

Important:

The first time a user connects to a host, the console displays **fingerprint** and **yes/no** questions for read-write access only. Type yes only if the host IP address is reliable (no man-in-the-middle attack happens). After you type yes, the following message appears:

Warning: Permanently added '<host's IP>' (RSA) to the list of known hosts.

Variable definitions

Variable	Value
<a.b.c.d. host_name="" =""></a.b.c.d.>	Specifies either the host IP address, or the host name.
username <user_name></user_name>	Specifies the user name.
port <0-65535>	Specifies the TCP port number. Values range from 0 to 65535.

Configuration example

This example displays sample steps for connecting an SSH Client to a host.

```
4550T#ssh 10.100.54.35
4550T#ssh 10.100.54.35 username laur
4550T#ssh 10.100.54.35 username RW port 22
```

Displaying current SSH client sessions

Use the following procedure to display current SSH client sessions.

Prerequisites

Use the following command from Privileged Exec mode.

Procedure steps

Enter the following command:

show sshc sessions

Job aid: sample SSH session display output

The following example shows sample output for the show sshc sessions command.

Displaying SSH client known hosts

Use this procedure to display information about SSH client known hosts configuration on the switch.

Prerequisites

Use the following command from Privileged Exec mode.

Procedure steps

show sshc known-hosts

The show sshc known-hosts command is present only on terminals with Read-Write

Job aid: sample SSH client known hosts display output

The following example shows sample output for the show sshc known-hosts command.

4826GTS-PWR+#show sshc knc IP Address	wn-hosts SHA-256 Fingerprint
10.100.54.200	B1:E1:C4:4D:8C:72:3:D:C:16:D6:F7:20:C1:3:C2: DF:83:70:BE:42:EA:AC:6A:5:6F:59:4F:F5:B0:DF:3B
10.100.54.35	98:62:1:15:90:FD:51:33:98:14:28:DF:BF:28:1B:97: EA:FA:6E:2:75:E9:63:16:69:79:62:DB:8D:CC:2C:55

Clearing SSH Client known hosts using ACLI

Use the following procedure to clear the public key of a known host.

Prerequisites

Use the following command from Global Configuration mode.

Procedure steps

Enter the following command:

```
clear sshc known-host {<A.B.C.D> | <host_name> | <ipv6_address>
| all}
```

Variable definitions

Variable	Value
all	Specifies the public keys of all known hosts
<a.b.c.d></a.b.c.d>	Specifies the host IP address.
<host_name></host_name>	Specifies the host name.
<ipv6_address></ipv6_address>	Specifies the host IPv6 address.

Configuration example

The following example displays a sample step for clearing the public key of a known host.

4550T#clear sshc known-host 172.16.1.12

Configuration examples for configuring Secure Shell connections

Establishing an SSH connection to another switch using public key authentication

- 1. Switch #1: generate a public key using the sshc dsa-host-key command.
- 2. On Switch #1: upload the generated public key using the sshc upload-auth-key command.
- 3. On Switch #2: obtain the public key using the ssh download-auth-key command.
- 4. On Switch #2: verify that SSH DSA authentication is enabled by default by entering the show sshc command. If necessary, enable SSH DSA authentication by entering the ssh dsa-auth command. Then, enable SSH by entering the ssh command.
- 5. On Switch #1: enter the <ssh switch two IP> username RW command.

Establishing an SSH connection to a Linux-PC using public key authentication

- 1. Generate a public key using the sshc dsa-host-key command.
- 2. Upload the generated public key using the sshc upload-auth-key command.
- 3. On the remote PC, append the public key in the ~user/.ssh/authorized_keys file.
- 4. On the switch, enter the following command to establish SSH on the PC: ssh <PC IP> username <user>

Establishing an IPv6 SSH connection to another switch

1. Configure an IPv6 address for each switch, .

For Switch #1 enter the following commands:

```
ipv6 enable
int vlan 1
ipv6 interface enable
ipv6 address 3000::1000/64
```

For Switch #2 enter the following commands:

```
ipv6 enable int vlan 1
```

```
ipv6 interface enable
ipv6 address 3000::2000/64
```

- 2. Establish a SSH connecting using the IPv6 address.
 - Establish a SSH connection from Switch #1 to Switch #2.
 - On Switch #1: ssh 3000::2000 user RW
 - SSH from Switch #1 to Switch #2:
 - On Switch #2: ssh 3000::1000 user RO

DHCP snooping configuration using ACLI

This section describes how you can configure DHCP snooping to provide security to your network by preventing DHCP spoofing, using ACLI.

🔼 Warning:

In layer 3 mode, you must enable DHCP snooping on the layer 3 VLANs spanning towards the DHCP server. DHCP-relay is also required for the correct functionality.

Configuring DHCP snooping globally using ACLI

Before DHCP snooping can function on a VLAN or port, you must enable DHCP snooping globally. If DHCP snooping is disabled globally, the switch forwards DHCP reply packets to all applicable ports, regardless of whether the port is trusted or untrusted.

Use this procedure to enable or disable DHCP snooping for the switch.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Enable DHCP globally by using the following command:

[default] [no] ip dhcp-snooping <enable> <option82>

Variable definitions

The following table defines optional parameters that you can enter with the [default] [no] ip dhcp-snooping [enable] <option82> command.

Variable	Value
<enable></enable>	Enables DHCP snooping globally on the switch.
[default]	Configures DHCP snooping on the switch to default values.
[no]	Disables DHCP snooping globally on the switch.
<option82></option82>	When selected, enables DHCP snooping with Option 82 globally on the switch.

Viewing the global DHCP snooping configuration ACLI

View the global DHCP snooping configuration to review and confirm the DHCP snooping configuration for the switch.

Prerequisites

Log on to the User EXEC mode in ACLI.

Procedure steps

View the global DHCP snooping configuration by using the following command:

show ip dhcp-snooping

Configuring VLAN-based DHCP snooping using ACLI

You must enable DHCP snooping separately for each VLAN. If DHCP snooping is disabled on a VLAN, the switch forwards DHCP reply packets to all applicable ports, regardless of whether the port is trusted or untrusted.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Enable DHCP snooping on a VLAN by using the following command:

[default] [no] ip dhcp-snooping vlan <vlanID> <option82>

Variable definitions

The following table defines parameters that you can enter with the [default] [no] ip dhcp-snooping vlan <vlanID> <option82> command.

Variable	Value
[default]	Configures DHCP snooping on a VLAN to the default value (disabled).
[no]	Disables DHCP snooping on a VLAN. If you do not specify a VLAN ID, DHCP snooping is disabled on all VLANs.
<option82></option82>	When selected, enables DHCP snooping with Option 82 on a VLAN.
<vlanid></vlanid>	an integer in the range 1–4094 specifying the preconfigured VLAN on which you want to enable DHCP snooping

Viewing the VLAN-based DHCP snooping configuration using ACLI

View the VLAN-based DHCP snooping configuration to review and confirm the DHCP snooping configuration for a VLAN.

236 Configuration — Security December 2011

Prerequisites

Log on to the User EXEC mode in ACLI.

Procedure steps

View the VLAN-based DHCP snooping configuration by using the following command:

```
show ip dhcp-snooping vlan
```

The output displays only the VLANs enabled for DHCP snooping.

Configuring port-based DHCP snooping using ACLI

Configure port-based DHCP snooping to specify whether a port or group of ports are trusted (DHCP replies are forwarded automatically) or untrusted (DHCP replies are filtered through DHCP snooping), and to assign an Option 82 subscriber ID to the port or ports.

Prerequisites

Log on to the Interface Configuration mode in ACLI.

Procedure steps

1. Configure port-based DHCP snooping by using the following command:

```
[default] [no] ip dhcp-snooping [port <portlist>] <trusted |
untrusted> option82-subscriber-id <WORD>
```

2. Return DHCP snooping for all interface ports to default values by using the following command:

```
default ip dhcp-snooping port all
```

Variable definitions

The following table defines parameters that you can enter with the [default] [no] ip dhcp-snooping [port <portlist>] [<trusted|untrusted>] option82subscriber-id <WORD> command.

Variable	Value
[default]	Returns a port or range of ports to default DHCP snooping values.
[no]	Removes the Option 82 for DHCP snooping subscriber Id from a port.
<word></word>	Specifies the DHCP Option 82 subscriber Id for the port. Value is a character string between 0 and 64 characters.
<portlist></portlist>	Specifies a port or group of ports.
<trusted></trusted>	When selected, the port or ports automatically forward DHCP replies.
<untrusted></untrusted>	When selected, the port or ports filter DHCP replies through DHCP snooping.

Viewing the port-based DHCP snooping configuration using ACLI

View the port-based DHCP snooping configuration to review and confirm the DHCP snooping configuration for a port or group of ports.

Prerequisites

Log on to the User EXEC mode in ACLI.

Procedure steps

View the port-based DHCP snooping configuration by using the following command:

show ip dchp-snooping interface [<interface type>] [<portlist>]

Variable definitions

The following table defines optional parameters that you can enter with the show ip dchpsnooping interface [<interface type>] [<portlist>] command.

Variable	Value
<interface type=""></interface>	Specifies the interface type for the port or ports.
<portlist></portlist>	Specifies an individual port or list of ports.

Comments? infodev @avaya.com

Adding static entries to the DHCP binding table using ACLI

Use this procedure to add entries for devices with static IP addresses to the DHCP binding table.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Add entries to the DHCP binding table by using the following command:

ip dhcp-snooping binding <1-4094> <MAC_addr> [ip <IP_addr>]
[port <LINE>] [expiry <1-4294967295>]

Variable definitions

The following table defines parameters that you enter with the ip dhcp-snooping binding <1-4094> <MAC_addr> [ip <IP_addr>] [port <LINE>] [expiry <1-4294967295>1 command.

Variable	Value
<1-4094>	Specifies the ID of the VLAN that the DHCP client is a member of.
expiry <1-4294967295>	Specifies the time, in seconds, before the DHCP client binding expires.
ip <ip_addr></ip_addr>	Specifies the IP address of the DHCP client.
<mac_addr></mac_addr>	Specifies the MAC address of the DHCP client.
port <line></line>	Specifies the switch port that the DHCP client is connected to.

Deleting static entries from the DHCP binding table using ACLI

Use this procedure to delete entries for devices with static IP addresses from the DHCP binding table.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Delete entries from the DHCP binding table by using the following command:

no ip dhcp-snooping binding <1-4094> <MAC_addr>

Variable definitions

The following table defines parameters that you enter with the no ip dhcp-snooping binding <1-4094> <MAC addr> command.

Variable	Value
<1-4094>	Specifies the ID of the VLAN that the DHCP client is a member of.
<mac_addr></mac_addr>	Specifies the MAC address of the DHCP client.

Viewing the DHCP binding table using ACLI

Use this procedure to display DHCP binding table entries.

Prerequisites

Log on to the User EXEC mode in ACLI.

Procedure steps

View the DHCP binding table by using the following command:

Comments? infodev @avaya.com

show ip dhcp-snooping binding

If you apply the show ip dhcp-snooping binding command on a large stack with complex configuration, you can experience slow output if this command is executed within 4-5 minutes of the stack being booted or power-cycled. If you wait 5 minutes after the stack is booted or power-cycled before executing this show command, the normal response times will be observed.

Configuring DHCP Snooping external save using ACLI

Use this procedure to save the DHCP Snooping database to an external USB drive or TFTP server.

Prerequisites

- Log on to the Global Configuration mode in ACLI.
- Synchronize the switch with an NTP server.

Procedure steps

Configure DHCP Snooping external save by using the following command:

Variable definitions

Variable	Value
[enable]	Enables DHCP Snooping external save.
[tftp <ipv4address> <ipv6address> { <filename>}]</filename></ipv6address></ipv4address>	Specifies an IPv4 or IPv6 address for the TFTP server on which to save the DHCP Snooping database, and the name of the file to save.
[usb <1-8>]	Specifies to save the DHCP Snooping database on a USB device and the unit on which the USB drive is located.
filename <filename></filename>	Specifies the filename to apply to the saved DHCP Snooping database.

Disabling DHCP Snooping external save using ACLI

Use this procedure to disable DHCP Snooping external save for the switch.

Prerequisites

Log on to the Global Configuration mode in ACLI.

Procedure steps

Disable DHCP Snooping external save by using one of the following commands:

no ip dhcp-snooping external-save enable

default ip dhcp-snooping external-save

Restoring the externally saved DHCP Snooping database using ACLI

Use this procedure to force a restoration of the DHCP Snooping database on the switch from the file previously saved to an external USB drive or TFTP server.

Prerequisites

Log on to the Privileged EXEC mode in ACLI.

Procedure steps

Restore the externally saved DHCP Snooping database by using the following command:

ip dhcp-snooping external-save restore

Viewing DHCP Snooping external save information using ACLI

Use this procedure to display DHCP Snooping external save configuration information for the switch.

Prerequisites

Log on to the User EXEC mode in ACLI.

Procedure steps

Display DHCP Snooping external save configuration information by using the following command:

show ip dhcp-Snooping external-save

Job aid: show ip dhcp-snooping external-save command output


The following figure displays sample output for the show ip dhcp-snooping external-save command.

```
4524GT-PWR>show ip dhcp-snooping external-save
DHCP Snooping external save: Disabled
DHCP Snooping external device: USB
DHCP Snooping external filename: test1
DHCP Snooping external last sync:
DHCP Snooping external sync flag: True (changes will be synchronized at next wr ite)
4524GT-PWR>
```

242 Configuration — Security

DHCP Snooping layer 2 configuration using ACLI example

<u>Figure 7: Layer 2 configuration example</u> on page 243 depicts the network setup for this example. PC1 and PC2 act as DHCP clients. The device under test (DUT) is in layer 2 mode and must be configured with DHCP Snooping to increase network security. The DHCP server and clients must belong to the same L2 VLAN (VLAN #1 by default). You can configure the DHCP client lease time on the DHCP server.

DHCP Server IP: 192.168.1.1/24

Figure 7: Layer 2 configuration example

The DHCP server port must always be Trusted, because Untrusted DHCP ports drop DHCP replies coming from the DHCP server. All ports are DHCP Untrusted by default. You must connect DHCP clients to Untrusted DHCP ports, however, PC1 is connected to a Trusted port for this configuration example case.

This configuration example illustrates a security hole that permits PC1 to install a fake DHCP Server. Port10 (DHCP Trusted) allows DHCP replies to be forwarded to PC2 in this case.

DHCP Snooping configuration commands

The following section describes the detailed ACLI commands required to configure DHCP Snooping for this example.

```
#configure terminal
(config)#ip dhcp-snooping
(config)# ip dhcp-snooping vlan 1
(config)#interface fastEthernet 1,10
(config-if)#ip dhcp-snooping trusted
(config-if)#exit
```

Verifying the DHCP Snooping settings

This section describes the commands used to verify the settings and the expected response to each command.

```
(config) #show ip dhcp-snooping
Global DHCP snooping state: Enabled
DHCP
VLAN Snooping
1 Enabled
(config) #show ip dhcp-snooping interface 1,10,11
DHCP
Port Snooping
1 Trusted
10 Trusted
11 Untrusted
(config) #show ip dhcp-snooping binding
MAC IP Lease (sec) VID Port
_____
Total Entries: 0
4526GTX-PWR#sho running-config
! Embedded ASCII Configuration Generator Script
! Model = Ethernet Routing Switch 4526GTX-PWR
! Software version = v5.1.0.1
enable
configure terminal
```

```
! *** CORE ***
autosave enable
mac-address-table aging-time 300
autotopology
no radius-server
radius-server host 0.0.0.0
radius-server secondary-host 0.0.0.0
radius-server port 1812
! radius-server key ******
radius-server timeout 2
telnet-access login-timeout 1
telnet-access retry 3
telnet-access inactive-timeout 15
telnet-access logging all
cli password stack serial none
cli password stack telnet local
! *** IP ***Note information in this section.
ip default-gateway 0.0.0.0
ip address netmask 0.0.0.0
ip address stack 0.0.0.0
ip address switch 0.0.0.0
ip bootp server disable
! . . . .
*** DHCP SNOOPING *** Note information in this section.
ip dhcp-snooping
no ip dhcp-snooping vlan
ip dhcp-snooping vlan 1
interface FastEthernet ALL
default ip dhcp-snooping
ip dhcp-snooping port 1,10 trusted
exit
! *** ARP INPSECTION *** Note information in this section
no ip arp-inspection vlan
interface FastEthernet ALL
default ip arp-inspection
exit
```

Renew the IP addresses for PC1 and PC2. Both PCs obtain IP addresses from the DHCP server. A DHCP binding entry for PC2 appears in the DHCP binding table. No binding entry for PC1 exists because port 10 is DHCP Trusted.

```
(config) #show ip dhcp-snooping binding
MAC IP Lease (sec) VID Port -----
______
00-02-44-ab-2d-f4 192.168.1.10 86460 1 11
Total Entries: 1
```

Configuring dynamic ARP inspection

For more information about the function and operation of dynamic Address Resolution Protocol (ARP) inspection in a network, see Dynamic ARP inspection on page 80.

To configure dynamic ARP inspection, do the following:

- 1. Enable dynamic ARP inspection on the VLANs. For more information, see Enabling dynamic ARP inspection on the VLANs on page 246.
- 2. Identify the ports as trusted (ARP traffic is not subjected to dynamic ARP inspection) or untrusted (ARP traffic is filtered through dynamic ARP inspection). For more information, see Configuring trusted and untrusted ports on page 247.

For dynamic ARP inspection to function, DHCP snooping must be globally enabled. For more information about configuring DHCP snooping, see DHCP snooping configuration using ACLI on page 234 or Configuring global DHCP snooping using EDM on page 332.

Enabling dynamic ARP inspection on the VLANs

You must enable dynamic ARP inspection separately for each VLAN.

To enable dynamic ARP inspection on a VLAN, use the following command in Global Configuration mode:

```
ip arp-inspection vlan <vlanID>
```

where

<vlanID> is an integer in the range 1-4094 that specifies the preconfigured VLAN on which you want to enable dynamic ARP inspection.

The default is disabled.

To disable dynamic ARP inspection on a VLAN, use the following command in Global Configuration mode:

```
no ip arp-inspection vlan <vlanID>
```

where

<vlanID> is an integer in the range 1–4094 that specifies the preconfigured VLAN on which you want to disable dynamic ARP inspection.

Configuring trusted and untrusted ports

To specify whether a particular port or range of ports is trusted (ARP traffic is not subject to dynamic ARP inspection) or untrusted (ARP traffic is subject to dynamic ARP inspection), use the following command in Interface configuration mode:

```
ip arp-inspection [port <portlist>] <trusted | untrusted>
```

where

<portlist> is the physical port number of the port you want to configure. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port number, the command applies to the ports specified upon entering the Interface configuration mode.

The default is untrusted.

To return a port or range of ports to default values, use the following command in Interface configuration mode:

```
default ip arp-inspection port <portlist>
```

where

<portlist> is the physical port number of the port you want to configure. You can enter a single port, a range of ports, several ranges, or all. If you do not specify a port number, the command applies to the ports specified upon entering the Interface configuration mode.

To return all ports in the interface to default values, use the following command in Interface configuration mode:

default ip arp-inspection port ALL

Viewing dynamic ARP inspection settings

To view the VLANs on which dynamic ARP inspection has been enabled, use the following command in the Global or Interface Command mode:

```
show ip arp-inspection vlan
```

The output lists only the VLANs enabled for dynamic ARP inspection.

To view port settings, use the following command in the Global or Interface Command mode:

```
show ip arp-inspection interface [<interface type>] [<port>]
```

The output lists the ports and their associated dynamic ARP inspection status (trusted or untrusted). If you specify the interface type or port as part of the command, the output includes

only the ports specified. If you do not specify the interface type or port as part of the command, the output displays all ports.

Dynamic ARP inspection layer 2 configuration example

This configuration example uses the same network setup and configuration created in the DHCP snooping configuration using ACLI on page 234 section and illustrated by the Figure 7: Layer 2 configuration example on page 243. To increase security in this network, you must enable Dynamic ARP inspection. If the device under test (DUT) has no IP address assigned, BOOTP must be DISABLED in order for ARP Inspection to work. The DHCP Server port must be ARP Trusted also.

Dynamic ARP inspection configuration commands

The following section details the commands required to configure Dynamic ARP Inspection for this example. The following commands are in addition to those specified in the DHCP snooping configuration using ACLI on page 234 section.

```
configure terminal
(config)#ip bootp server disable
(config)#ip arp-inspection vlan 1
(config)#interface fastEthernet 1,10
(config-if)#ip arp-inspection trusted
(config-if)#exit
```

Verifying Dynamic ARP Inspection settings

This section describes the commands used to verify settings, and the expected response to each command.

```
(config) #show ip arp-inspection
ARP
VLAN Inspection
1 Enabled
(config) #show ip arp-inspection interface 1,10,11
ARP
Port Inspection
1 Trusted
10 Trusted
11 Untrusted
4526GTX-PWR#sho running-config
```

```
! Embedded ASCII Configuration Generator Script
! Model = Ethernet Routing Switch 4526GTX-PWR
! Software version = v5.1.0.0
enable
configure terminal
! *** CORE ***
1
autosave enable
mac-address-table aging-time 300
autotopology
no radius-server
radius-server host 0.0.0.0
radius-server secondary-host 0.0.0.0
radius-server port 1812
! radius-server key ******
radius-server timeout 2
telnet-access login-timeout 1
telnet-access retry 3
telnet-access inactive-timeout 15
telnet-access logging all
cli password stack serial none
cli password stack telnet local
! *** IP *** Note information in this section.
ip default-gateway 0.0.0.0
ip address netmask 0.0.0.0
ip address stack 0.0.0.0
ip address switch 0.0.0.0
ip bootp server disable
! *** DHCP SNOOPING *** Note information in this section.
ip dhcp-snooping
no ip dhcp-snooping vlan
ip dhcp-snooping vlan 1
interface FastEthernet ALL
default ip dhcp-snooping
ip dhcp-snooping port 1,10 trusted
exit
! *** ARP INPSECTION *** Note information in this section.
no ip arp-inspection vlan
ip arp-inspection vlan 1
interface FastEthernet ALL
default ip arp-inspection
ip arp-inspection port 1,10 trusted
exit
! . . .
```

Renew the IP addresses for PC1 and PC2. Both PCs will obtain IP addresses from the DHCP server. A DHCP binding entry for PC2 appears in the DHCP binding table although it is ARP

Untrusted. No binding entry for PC1 exists because port10 is DHCP Trusted even though it is ARP Trusted.

Now clear the ARP cache on both PCs.

```
>arp -a
>arp -d <IP-address>
```

Attempt to start communication (use ping) between PCs or between the PCs and the DHCP server. You can establish communication in any direction because ARPs are allowed on port10 (PC1) (that port is ARP Trusted) and on port 11 (PC2) because ARP packets coming from PC2 have an entry for ARP Untrusted port 11 that matches the IP-MAC from the DHCP binding table.

Next make a link-down/link-up for port 11 (PC2) or change PC2's IP address to a static one and set port10(PC1) as ARP Untrusted. Clear the ARP cache on both PCs and the DHCP server. Attempt to start communication (use ping) between PCs or between the PCs and the DHCP server. The PCs and DHCP server are unable to communicate with one another.

IP Source Guard configuration using ACLI

This section describes how you configure IP Source Guard using the Avaya Command Line Interface (ACLI).

Avaya recommends that you do not enable IP Source Guard on trunk ports.

Avaya recommends that you carefully manage the number of applications running on the Avaya Ethernet Routing Switch 4000 that use filters. For example, if you configure NSNA on ports and attempt to configure IP Source Guard on those same ports, the IP Source Guard configuration can fail due to the limited number of filters available.

Prerequisites

Before you can configure IP Source Guard, you must ensure the following:

- Dynamic Host Control Protocol (DHCP) snooping is globally enabled.
 For information see Configuring DHCP snooping globally using ACLI on page 234.
- The port is a member of a Virtual LAN (VLAN) configured with DHCP snooping and dynamic Address Resolution Protocol (ARP) Inspection.
- The port is an untrusted DHCP snooping and dynamic ARP Inspection port.

• The bsSourceGuardConfigMode MIB object exists.

This MIB object is used to control the IP Source Guard mode on an interface.

- The following applications are not enabled:
 - Baysecure
 - Extensible Authentication Protocol over LAN (EAPOL)

lmportant:

Hardware resources can run out if IP Source Guard is enabled on trunk ports with a large number of VLANs that have DHCP snooping enabled. If this happens, traffic sending can be interrupted for some clients. Avaya recommends that IP Source Guard not be enabled on trunk ports.

Enabling IP Source Guard using ACLI

Enable IP Source Guard to add a higher level of security to the desired port by preventing IP spoofing.

The IP addresses are obtained from DHCP binding table entries defined automatically for the port. A maximum of 10 IP addresses from the binding table are allowed. The rest are dropped.

Prerequisites

Log on to the Ethernet, FastEthernet, or GigabitEthernet Interface Configuration mode in ACLI.

Procedure steps

Enable IP Source Guard by using the following command:

ip verify source interface {<interface type>] [<interface id>]}

Variable definitions

The following table defines variables that you enter with the ip verify source [interface {<interface type>] [<interface id>] command.

Variable	Value
<interface id=""></interface>	Identifies the ID of the interface on which you want IP Source Guard enabled.
<interface type=""></interface>	Identifies the interface on which you want IP Source Guard enabled.

Viewing IP Source Guard port configuration information using ACLI

To view IP Source Guard port configuration information, open the Tacacs configuration screen by selecting Applications configuration settings for interfaces.

Prerequisites

Log on to the Privileged Exec mode in ACLI.

Procedure steps

View IP Source Guard port configuration information by using the following command:

show ip verify source [interface {<interface type>] [<interface
id>]

Variable definitions

The following table defines variables that you enter with the **show** ip **verify source** [interface {<interface type>] [<interface id>] command.

Variable	Value
<interface id=""></interface>	Identifies the ID of the interface for which you want to view IP Source Guard information.
<interface type=""></interface>	Identifies the interface for which you want to view IP Source Guard information.

Viewing IP Source Guard-allowed addresses using ACLI

View IP Source Guard-allowed addresses to display a single IP address or a group of IP addresses that IP Source Guard allowed.

Log on to the Privileged Exec mode in ACLI.

Procedure steps

View IP Source Guard-allowed addresses by using the following command:

```
show ip source binding [<A.B.C.D.>] [interface {[<interface</pre>
type>] [<interface id>]}]
```

Variable definitions

The following table defines variables that you enter with the show ip source binding [<A.B.C.D.>] [interface {[<interface type>] [<interface id>]}] command.

Variable	Value
<a.b.c.d></a.b.c.d>	Identifies the IP address or group of addresses that IP Source Guard allowed.
<interface id=""></interface>	Identifies the ID of the interface for which you want IP Source Guard-allowed addresses displayed.
<interface type=""></interface>	Identifies the type of interface for which you want IP Source Guard-allowed addresses displayed.

Disabling IP Source Guard using ACLI

Disable IP Source Guard to allow all IP traffic to go through without being filtered by following this procedure.

Log on to the Ethernet, FastEthernet, or GigabitEthernet Interface Configuration mode in ACLI.

Procedure steps

Disable IP Source Guard by using the following command:

no ip verify source interface {<interface type>] [<interface id>]}

Variable definitions

The following table defines variables that you enter with the no ip verify source interface {<interface type>] [<interface id>]} command.

Variable	Value
<interface id=""></interface>	Identifies the ID of the interface on which you want IP Source Guard disabled.
<interface type=""></interface>	Identifies the interface on which you want IP Source Guard disabled.

RADIUS Request use Management IP configuration using **ACLI**

You can enable or disable the use of Management VLAN IP by RADIUS requests, using ACLI.

Enabling the RADIUS Request use Management IP

Perform this procedure to enable the RADIUS requests to use the Management VLAN IP address.

Comments? infodev @avaya.com

Log on to the Global configuration mode.

Procedure steps

1. To enable RADIUS Request use Management IP enter the following command:

```
radius use-management-ip
```

2. To verify the settings enter the following command:

```
show radius use-management-ip
```

Disabling the RADIUS Request use Management IP

Perform this procedure, to disable the RADIUS requests to use the Management VLAN IP address.

Prerequisites

Log on to the Global configuration mode.

Procedure steps

1. To disable the RADIUS Request use Management IP, enter the following command:

```
no radius use-management-ip
```

2. To verify the settings enter the following command:

```
show radius use-management-ip
```

Setting the RADIUS Request use Management IP to default mode

Perform this procedure to set the RADIUS Request use Management IP to default mode.

Log on to the Global configuration mode.

Procedure steps

1. To set the RADIUS Request use Management IP to default mode, enter the following command:

```
default radius use-management-ip
```

2. To verify the settings enter the following command:

show radius use-management-ip

Chapter 5: Ignition Server configuration using ACLI

This chapter describes how to configure the Avaya Ethernet Routing Switch 4000 Series as a network access device in the Identity Engine Ignition Server solution using ACLI.

Configuring Ignition Server as a RADIUS server using ACLI

Use this procedure to configure Ignition Server to act as the RADIUS server for your switches and access points. For more information about configuring the Ignition Server for RADIUS, see Avaya Identity Engines Ignition Server Configuration, NN47280-500.

Prerequisites

- Ignition Server installed and configured in your network
- Configure the following policies for your switch on Ignition Server
 - Access
 - User Authentication
 - User Authorization
- Configure the following optional policies for your switch on Ignition Server:
 - Provisioning Polices that set network session and switch parameters for users
 - Client Posture Policies that require that laptops meet a minimum standard of system health
 - VLAN Assignments that assign each user to an appropriate VLAN
 - Windows machine authentication that checks connecting devices to ensure they are known to the Active Directory before the system permits connection
 - MAC authentication that allows operator-less devices to connect and records which device a user connected with
- Log on to the Global Configuration mode in ACLI.

Procedure steps

1. To configure the reachability of the RADIUS server, enter:

radius reachability use-radius [username <username> password
<password>]

2. To configure RADIUS server account information on the switch enter:

radius server host $\{<A.B.C.D> \mid <WORD>\}$ [acct-enable] [acct-port <1-65535>] [key $\{key\}$] [port <1-65535>] [retry <1-5>] [secondary] [timeout <1-60>]

Variable definitions

The following table describes variables that you use with the radius reachability command

Variable	Value
password <password></password>	Specifies a password for the RADIUS request.
use-radius	Uses dummy RADIUS requests to determine reachability of the RADIUS server.
username <username></username>	Specifies a user name for the RADIUS request.

Variable definitions

The following table describes variables that you use with the radius server host command

Variable	Value
<a.b.c.d></a.b.c.d>	Specifies the IPv4 address of the primary server you want to add or configure.
	● Important:
	A value of 0.0.0.0 indicates that a primary RADIUS server is not configured.
<word></word>	Specifies the IPv6 address of the primary server you want to add or configure.
	● Important:
	A value of 0.0.0.0 indicates that a primary RADIUS server is not configured.
acct-enable	Enables RADIUS accounting for a RADIUS server instance.

Variable	Value
acct-port <1-65535>	Specifies the UDP accounting port number for clients to use when trying to contact the RADIUS server at the corresponding Global RADIUS Server IP address. Values range from 1 to 65535.
key <key></key>	Specifies the secret authentication and encryption key used for all communications between the NAS and the RADIUS server. The key, also referred to as the shared secret, must be the same as the one defined on the server. You are prompted to enter and confirm the key.
port <1-65535>	Specifies the UDP port number for clients to use when trying to contact the RADIUS server at the corresponding RADIUS server IP address. Values range from 1 to 65535. The default port number is 1812.
retry <1-5>	Specifies the number of RADIUS retry attempts for a RADIUS Server instance. Values range from 1 to 5.
secondary	Specifies the RADIUS server you are configuring as the secondary server. The system uses the secondary server only if the primary server is not configured or is not reachable.
timeout <1-60>	Specifies the timeout interval between each retry for service requests to the RADIUS server. Values range from 1 to 60 seconds. The default value is 2 seconds.

Configuring Ignition Server as an EAP RADIUS server using **ACLI**

Use this procedure to configure Ignition Server to act as the EAP RADIUS server for your switches and access points. For more information about configuring the Ignition Server for RADIUS, see Avaya Identity Engines Ignition Server Configuration, NN47280-500.

Prerequisites

- Ignition Server installed and configured in your network
- Configure the following policies for your switch on Ignition Server

- Access
- User Authentication
- User Authorization
- Configure the following optional policies for your switch on Ignition Server:
 - Provisioning Polices that set network session and switch parameters for users
 - Client Posture Policies that require that laptops meet a minimum standard of system health
 - VLAN Assignments that assign each user to an appropriate VLAN
 - Windows machine authentication that checks connecting devices to ensure they are known to the Active Directory before the system permits connection
 - MAC authentication that allows operator-less devices to connect and records which device a user connected with
- EAP configured on your switch.
- Log on to the Global Configuration mode in ACLI.

Procedure steps

1. To configure the reachability of the EAP RADIUS server, enter:

```
radius reachability use-radius [username <username> password
<password>]
```

2. To configure EAP RADIUS server account information on the switch enter:

```
radius server host {<A.B.C.D> | <WORD>} [acct-enable] [acct-port <1-65535>] [key{key}] [port <1-65535>] [retry <1-5>] [secondary] [timeout <1-60>] used-by eapol
```

Variable definitions

The following table describes variables that you use with the radius reachability command

Variable	Value
password <password></password>	Specifies a password for the RADIUS request.
use-radius	Uses dummy RADIUS requests to determine reachability of the RADIUS server.
username <username></username>	Specifies a user name for the RADIUS request.

Variable definitions

The following table describes variables that you use with the radius server host command

Variable	Value
<a.b.c.d></a.b.c.d>	Specifies the IPv4 address of the primary server you want to add or configure.
	Important: A value of 0.0.0.0 indicates that a primary
	RADIUS server is not configured.
<word></word>	Specifies the IPv6 address of the primary server you want to add or configure.
	Important:
	A value of 0.0.0.0 indicates that a primary RADIUS server is not configured.
acct-enable	Enables RADIUS accounting for a RADIUS server instance.
acct-port <1-65535>	Specifies the UDP accounting port number for clients to use when trying to contact the RADIUS server at the corresponding RADIUS Server IP address. Values range from 1 to 65535.
key <key></key>	Specifies the secret authentication and encryption key used for all communications between the NAS and the RADIUS server. The key, also referred to as the shared secret, must be the same as the one defined on the server. You are prompted to enter and confirm the key.
port <1-65535>	Specifies the UDP port number for clients to use when trying to contact the RADIUS server at the corresponding RADIUS server IP address. Values range from 1 to 65535. The default port number is 1812.
retry <1–5>	Specifies the number of RADIUS retry attempts for a RADIUS Server instance. Values range from 1 to 5.
secondary	Specifies the RADIUS server you are configuring as the secondary server. The system uses the secondary server only if the

Variable	Value
	primary server is not configured or is not reachable.
timeout <1-60>	Specifies the timeout interval between each retry for service requests to the RADIUS server. Values range from 1 to 60 seconds. The default value is 2 seconds.
used-by eapol	Specifies the RADIUS server as an EAP RADIUS Server to process EAP client request only.

Configuring Ignition Server as a non-EAP RADIUS server using ACLI

Use this procedure to configure Ignition Server to act as the non-EAP RADIUS server for your switches and access points. For more information about configuring the Ignition Server for RADIUS, see Avaya Identity Engines Ignition Server Configuration, NN47280-500.

Prerequisites

- Ignition Server installed and configured in your network
- Configure the following policies for your switch on Ignition Server
 - Access
 - User Authentication
 - User Authorization
- Configure the following optional policies for your switch on Ignition Server:
 - Provisioning Polices that set network session and switch parameters for users
 - Client Posture Policies that require that laptops meet a minimum standard of system health
 - VLAN Assignments that assign each user to an appropriate VLAN
 - Windows machine authentication that checks connecting devices to ensure they are known to the Active Directory before the system permits connection
 - MAC authentication that allows operator-less devices to connect and records which device a user connected with
- Non-EAP configured on your switch.
- Log on to the Global Configuration mode in ACLI.

December 2011 Configuration — Security

Procedure steps

1. To configure the reachability of the non-EAP RADIUS server, enter:

radius reachability use-radius [username <username> password <password>]

2. To configure non-EAP RADIUS server account information on the switch enter:

radius server host {<A.B.C.D> | <WORD>} [acct-enable] [acctport <1-65535>] [key{key}] [port <1-65535>] [retry <1-5>] [secondary] [timeout <1-60>] used-by non-eapol

Variable definitions

The following table describes variables that you use with the radius reachability command

Variable	Value
password <password></password>	Specifies a password for the RADIUS request.
use-radius	Uses dummy RADIUS requests to determine reachability of the RADIUS server.
username <username></username>	Specifies a user name for the RADIUS request.

Variable definitions

The following table describes variables that you use with the radius server host command

Variable	Value
<a.b.c.d></a.b.c.d>	Specifies the IPv4 address of the primary server you want to add or configure.
	● Important:
	A value of 0.0.0.0 indicates that a primary RADIUS server is not configured.
<word></word>	Specifies the IPv6 address of the primary server you want to add or configure.
	● Important:
	A value of 0.0.0.0 indicates that a primary RADIUS server is not configured.

Variable	Value
acct-enable	Enables RADIUS accounting for a RADIUS server instance.
acct-port <1-66535>	Specifies the UDP accounting port number for clients to use when trying to contact the RADIUS server at the corresponding RADIUS Server IP address. Values range from 1 to 65535.
key <key></key>	Specifies the secret authentication and encryption key used for all communications between the NAS and the RADIUS server. The key, also referred to as the shared secret, must be the same as the one defined on the server. You are prompted to enter and confirm the key.
port <1-65535>	Specifies the UDP port number for clients to use when trying to contact the RADIUS server at the corresponding RADIUS server IP address. Values range from 1 to 65535. The default port number is 1812.
retry <1–5>	Specifies the number of RADIUS retry attempts for a RADIUS Server instance. Values range from 1 to 5.
secondary	Specifies the RADIUS server you are configuring as the secondary server. The system uses the secondary server only if the primary server is not configured or is not reachable.
timeout <1-60>	Specifies the timeout interval between each retry for service requests to the RADIUS server. Values range from 1 to 60 seconds. The default value is 2 seconds.
used-by non-eapol	Specifies the RADIUS server as an non-EAP (NEAP) RADIUS Server to process Non—EAP client request only.

Configuring Ignition Server as a TACACS+ server using ACLI

You can configure Ignition Server to act as the TACACS+ authentication and authentication server, and you can use it as the TACACS+ accounting server. For more information, see *Avaya Identity Engines Ignition Server Configuration*, NN47280-600.

December 2011

264 Configuration — Security

- Ignition Server installed and configured in your network
- Configure the following policies for your switch on Ignition Server
 - Access
 - User Authentication
 - User Authorization
- Configure the following optional policies for your switch on Ignition Server:
 - Provisioning Polices that set network session and switch parameters for users
 - Client Posture Policies that require that laptops meet a minimum standard of system health
 - VLAN Assignments that assign each user to an appropriate VLAN
 - Windows machine authentication that checks connecting devices to ensure they are known to the Active Directory before the system permits connection
 - MAC authentication that allows operator-less devices to connect and records which device a user connected with
- Configure an Ignition Server authentication record with a TACACS+ policy

If you use Ignition Server for TACACS+ authorization, you must use Ignition Server for TACACS+ authentication.

- Configure the TACACS+ server to be added to your system.
- Log on to the Global Configuration mode in ACLI.

Procedure steps

To configure switch TACACS+ server settings enter the following command:

tacacs server host <A.B.C.D> port <1-65535> secondary-host
<A.B.C.D> key <key>

Variable definitions

The following table describes variables that you use with the tacacs server command

Variable	Value
host <a.b.c.d></a.b.c.d>	Specifies the IP address of the primary server you want to add or configure
key <key></key>	Specifies the secret authentication and encryption key used for all communications between the NAS and the TACACS+ server.

Variable	Value
	The key, also referred to as the shared secret, must be the same as the one defined on the server. You are prompted to enter and confirm the key when you enter it.
	● Important:
	The key parameter is a required parameter when you create a new server entry. The parameter is optional when you are modifying an existing entry.
port <1-65535>	Specifies the TCP port for TACACS+. <port> is an integer in the range of 1 to 65535. The default port number is 49.</port>
secondary host <a.b.c.d></a.b.c.d>	Specifies the IP address of the secondary server. The secondary server is used only if the primary server does not respond.

Chapter 6: NSNA configuration using ACLI

This chapter describes how to configure the Avaya Ethernet Routing Switch 4000 as a network access device in the NSNA solution using the Command Line Interface (ACLI).

lmportant:

When using NSNA along with other applications, such as IP Source Guard, you must ensure resources are available for each application. It is recommended that applications such as IP Source Guard be applied to a small number of ports when used along with the QoS SNA solution.

For an overview of the steps required to configure a network access device in the NSNA solution, see Basic switch configuration for NSNA on page 94.

Configuring the NSNAS 4050/4070 subnet

To configure the NSNAS 4050/4070 subnet, use the following command from the Global Configuration mode:

nsna nsnas <ipaddr/mask>

where

<ipaddr/mask> is the NSNAS 4050/4070 portal Virtual IP (pVIP) address and network mask (a.b.c.d./<0-32>)

This command includes the following parameters:

nsna nsnas <ipaddr mask=""> followed by:</ipaddr>	
port <value></value>	Defines the TCP port number for the Switch to NSNAS 4050/4070 Communication Protocol (SSCP) server. Values are in the range 1024–65535. The default setting is 5000.

🖖 Important:

The pVIP address is used in the default Red filter set to restrict the communication of clients in the Red state to the NSNAS 4050/4070. If you are using one NSNAS 4050/4070 in the network, you can use a 32-bit mask to further restrict traffic flow. The subnet you specify is added to the filters (Red, Yellow, and VoIP). If you change the NSNAS 4050/4070 subnet after you have associated the filters with the NSNA VLANs, you must manually update the NSNAS 4050/4070 subnet in the filters.

Viewing NSNAS 4050/4070 subnet information

To view information related to the NSNAS 4050/4070 pVIP subnet you configured, enter the following command from the Privileged EXEC configuration mode:

show nsna nsnas 10.4	10.40.0/24	
NSNAS IP Address	NSNAS NetMask	NSNAS Port
10.40.40.0	255.255.255.0	5000

Removing the NSNAS 4050/4070 subnet

To remove the NSNAS 4050/4070 pVIP subnet, enter the following command from Global Configuration mode:

no nsna nsnas <ipaddr/mask>
where
<ipaddr/mask> is the pVIP address and network mask (a.b.c.d./<0-32>)

This command will work if nsnas subnet is removed from nsna filters.

Configuring QoS for the NSNA solution

For general information about configuring filters and Quality of Service (QoS) in the NSNA solution, see <u>Filters in the NSNA solution</u> on page 86. For more information about configuring the filters, see *Avaya Ethernet Routing Switch 4000 Series Configuration* — *Quality of Service* (NN47205-504).

Configuring NSNA per VLAN

Important:

VLANs that you plan to configure as NSNA VLANs must be empty (that is, they have no assigned port members). No non NSNA ports can be associated with NSNA VLANs.

Ensure that:

- the VLANs that you plan to configure as NSNA VLANs have no port numbers assigned.
- no non NSNA ports are associated with NSNA VLANs.
- the filter name does not begin with a number.

To configure the NSNA VLANs, use the following command from the Global Configuration mode:

nsna vlan <vid> color <red|yellow|green|voip>

where

<vid> is the VLAN ID in the range 1–4094. The NSNA VLAN is assigned the color you specify in the command.

This command includes the following parameters:

<pre>nsna vlan <vid> color <red yellow green voip> followed by:</red yellow green voip></vid></pre>		
filter <filter name=""></filter>	Sets the NSNA filter set name. The string length is 0–255 characters.	
	Important:	
	This parameter is not allowed for configuration of a VoIP VLAN. VoIP filters are part of the Red/Yellow filter sets. If the filter set with this name does not already exist, it is created when you specify it with this command. If a filter set with the name you specify does exist, that filter set is used.	
yellow-subnet <ipaddr mask=""></ipaddr>	Sets the Yellow VLAN subnet IP and mask (a.b.c.d/ <0-32>)	
	Important: This parameter is only allowed for configuration of the Yellow VLAN.	

Viewing NSNA VLAN information

To view information related to the NSNA VLANs, use the following command from the Privileged EXEC configuration mode:

show nsna vlan <vid>

where

<vid> is the VLAN ID in the range 1-4094

Removing a NSNA VLAN

To remove a NSNA VLAN, use the following command from the Global Configuration mode:

no nsna vlan <vid>

where

<vid> is the VLAN ID in the range 1-4094

VOIP VLANs can only be removed if the corresponding entries from NSNA red and yellow filters are removed.

Configuration example: Configuring the NSNA per VLANs

This example includes configuration of the VoIP, Red, Yellow, and Green VLANs. It is assumed that VLANs 110, 120, 130, and 140 (used in this example) were previously created as portbased VLANs. For more information about creating VLANs using the Avaya Ethernet Routing Switch 4000, refer to Avaya Ethernet Routing Switch 4000 Series Configuration — VLANs, Spanning Tree, and MultiLink Trunking (NN47205-502).

You must configure the NSNAS 4050/4070 pVIP subnet before you configure the NSNA VLANs.

VoIP VLANs are optional. If you are using VoIP VLANs, you must configure them before configuring the Red, Yellow, and Green VLANs.

In this example, the following parameters are used:

VLAN	Parameters	
Red VLAN ID: 110 Color: Red Filter name: red		
Yellow	VLAN ID: 120 Color: Yellow Filter name: yellow Subnet IP: 10.120.120.0/24	

VLAN	Parameters	
Green	VLAN ID: 130 Color: Green Filter name: green	
VolP	VLAN ID: 140 Color: VoIP	

Important:

If filters are not manually configured prior to configuring the NSNA VLANs, the switch automatically generates default filters when the Red, Yellow, and Green VLANs are configured.

Configuring the VolP VLAN

To configure the VoIP VLAN, use the following command:

```
nsna vlan 140 color voip
show nsna vlan 140
VLAN ID Color Filter Set Name Yellow Subnet
140 VOIP
                                   0.0.0.0/0
```

Configuring the Red VLAN

To configure the Red VLAN, use the following command:

```
nsna vlan 110 color red filter red
show nsna vlan 110
VLAN ID Color Filter Set Name Yellow Subnet
110 Red red
                                0.0.0.0/0
```

Configuring the Yellow VLAN

To configure the Yellow VLAN, use the following command:

nsna vlan 120 color yellow filter yellow yellow-subnet 10.120.120.0/24

show nsna	vlan 120		
VLAN ID	Color	Filter Set Name	Yellow Subnet
120	Yellow	yellow	10.120.120.0/24

Configuring the Green VLAN

To configure the Green VLAN, use the following command:

nsna vlan	130 color gr	een filter green	
show nsna	vlan 130		
VLAN ID	Color	Filter Set Name	Yellow Subnet
130	Green	green	0.0.0.0/0

Enabling NSNA on ports using ACLI

The following sections describe how to enable NSNA on the ports. For more information about port modes, refer to <u>Port modes</u> on page 86.

The NSNA solution introduces the uplink port. Uplink ports are members of the NSNA VLANs. For more information about the uplink port, refer to NSNA Solution Guide (320817-A).

The Avaya Ethernet Routing Switch 4526GTX has two XFP GBICs. You can configure these as uplink ports only. You cannot configure these as dynamic ports. Therefore, you must specify ports 1–24 in a NSNA command where you configure dynamic ports. For example, if you enter the nsna port all dynamic voip-vlans <vidlist> command, it fails because the two 10-Gbit ports cannot be configured as dynamic ports.

To configure NSNA on ports, use the following command from the Ethernet Interface configuration mode:

nsna

This command includes the following parameters:

nsna]
followed by:	

port <portlist></portlist>	Identifies a port other than that specified when entering the Ethernet Interface configuration mode. The parameter <portlist> uses the convention {port[-port] [,]}.</portlist>
dynamic voip-vlans <vidlist></vidlist>	Sets the NSNAS 4050/4070 dynamic port configuration, where <vidlist> is the VoIP VLAN IDs (vlan-id[-vlan-id] [,]).</vidlist>
uplink vlans <vidlist></vidlist>	Defines the NSNAS 4050/4070 uplink VLAN list, where <vidlist> is the NSNA VLAN IDs (vlan-id[-vlan-id][,]).</vidlist>

Viewing NSNA port information

To view information related to the NSNA interfaces, use the following command from the Privileged EXEC configuration mode:

show nsna interface [<interface-id>]

where

<interface-id> is the port number. Appropriate entries are {port[-port][,...]}, all, and none.

Removing an NSNA port

To remove a NSNA port, enter the following command from the Ethernet Interface configuration mode:

no nsna

Removing NSNA ports

To disable NSNA on ports 20–24, enter the following commands:

interface fastethernet 20-24 no nsna exit

Configuration example: Adding the uplink port

To add the uplink port to the VLANs, use the following command from the Ethernet Interface configuration mode:

nsna uplink vlans <vidlist>
 where

<vidlist> is the uplink VLAN IDs, entered using the convention {vlan-id[-vlan-id][,...]}

All VLANs specified in the <vidlist> must be NSNA VLANs. You can add the uplink port to or delete it from non NSNA VLANs (including the management VLAN) using the vlan members add command. For more information, see Avaya Ethernet Routing Switch 4000 Series Configuration — VLANs, Spanning Tree, and MultiLink Trunking (NN47205-502).

The membership of NSNA uplink ports in non NSNA VLANs is not affected by globally enabling or disabling NSNA.

In this example, the following parameters are used:

- uplink port is 20
- NSNA VLAN IDs are 110, 120, 130, 140

Configuration example: Adding client ports

In this example, the following parameters are used:

- Client ports are 3, 4, and 5.
- VoIP VLAN ID is 140.

```
interface fastEthernet 3-5
nsna dynamic voip-vlans 140
show nsna interface 3-5
Unit
      NSNA Mode
                    VLAN IDs
                              VLAN State DHCP State
Port
                    140
                                              Unblocked
      Dynamic
                                   Red
                                              Unblocked
      Dynamic
                    140
                                   Red
       Dynamic
                    140
                                   Red
                                              Unblocked
exit
```

Important:

If the pre-NSNA STP state of a port is Normal Learning, when you specify that port as a NSNA dynamic port and you enable NSNA, the STP state of the port is changed to Fast Learning automatically. You can change this to be disabled. You cannot set the state to Normal Learning for NSNA.

Viewing information about NSNA clients

To view information about NSNA clients, enter the following command from the Privileged EXEC configuration mode:

```
show nsna client [interface [<interface-id>] | mac-address <H.H.H.>]
where
```

<interface-id> is the port number

<H.H.H.> is the MAC address of the host

The following is an example of the command to view information about NSNA clients:

```
show nsna client interface 5
Total Number of Clients: 2
Unit/ Client MAC
                    Device Type VLAN Id Filter IP Address
                                                         Exp
Port
                                      VLAN Id
5
     110 (R) 10.100.140.11
                                                         No
     00:0f:ea:88:be:7a
                   PC
5
                              110 (R)
                                     110 (R) 10.100.110.116 No
```

Entering phone signatures for NSNA

To specify Avaya IP phone signatures for the NSNA solution, enter the following command from the Global Configuration mode:

```
nsna phone-signature <LINE>
 where
  <LINE> is the Avaya IP phone signature string (for example: Avaya-i2007-A)
```

Removing NSNA phone signatures

To remove a NSNA phone signature, enter the following command from the Global Configuration mode:

```
no nsna phone-signature <LINE>
 where
 <LINE> is the phone signature string
```

Viewing NSNA phone signatures

To view configured NSNA phone signatures, enter the following command from the Privileged EXEC mode where:

```
show nsna phone-signature [<LINE>]
 where
```

<LINE> is the phone signature string. Use an asterisk (*) at the end of the string to display all signatures that start with the specified string. For example, if you enter Nort* as the LINE parameter, output displays signatures that start with the string Nort.

Configuring NSNA Fail Open

Fail-open is a new feature for the 4000 and does not require NSNAS support. If the connection to the NSNAS is lost or is never established, new users can still have access to the network. If fail-open is enabled, existing authenticated clients will not have their access to the network interrupted. A fail-open vlan and filter can be configured on the switch so that if the connection to the NSNAS is lost, new clients can move directly into the fail-open vlan and filter. The fail-open vlan and filter must be a valid NSNA vlan id either red, yellow or green A red fail-open vlan can be paired with a red, yellow or green filter. A yellow fail-open vlan can only be paired with a green filter.

To configure the NSNA Fail Open, use the following command from the Global Configuration mode:

```
nsna fail-open vlan-id <vlan-id> filter-vlan-id <filter-id> nsna fail-open enable
```

Configuration example

```
nsna fail-open vlan-id 120 filter-vlan-id 120 nsna fail-open enable
```

Enabling NSNA

To enable NSNA, use the following command from the Global Configuration mode:

nsna enable

You must enable SSH before you enable NSNA globally. The command to enable NSNA fails if SSH is not enabled. For more information, see <u>Configuring SSH on the 4000 Series switch for NSNA</u> on page 96.

Disabling NSNA

To disable NSNA, use the following command from the Global Configuration mode:

no nsna enable

Viewing the NSNA state

Use the following command from the Privileged EXEC configuration mode for information about the state of NSNA on the switch:

show nsna

Display NSNA Configuration

Example:

show nsna

```
NSNA Enabled: Yes
NSNAS Connection State: Connected
NSNAS Address: 10.200.200.22
NSNAS Hello Interval: 60
NSNAS Inactivity Interval: 120
```

NSNAS Inactivity Interval: 120 NSNAS Connection Version: SSCPv1 NSNAS Status-Quo Interval: 30

Fail-Open Enabled: Yes Fail-Open Vlan ID: 210 Fail-Open Filter Vlan ID: 230

Example: Viewing NSNA and NSNAS 4050/4070 information

If the NSNAS 4050/4070 is connected, the output is the following:

if the NSNAS 4030/4070 is connected, the output is the following

show nsna

```
NSNA Enabled: Yes
NSNAS Connection State: Connected
NSNAS Address: 10.200.200.22
NSNAS Hello Interval: 60 seconds
NSNAS Inactivity Interval: 120 seconds
NSNAS Connection Version: SSCPv1
NSNAS Status-Quo Interval: 30 seconds
Fail-Open Enabled: Yes
Fail-Open Vlan ID: 210
Fail-Open Filter Vlan ID: 230
```

If the NSNAS 4050/4070 is not connected, the output is the following:

show nsna

NSNA Enabled: Yes

NSNAS Connection State: Not Connected

NSNAS Status-Quo Interval: 0 Fail-Open Enabled: Yes Fail-Open Vlan ID: 210

Fail-Open Filter Vlan ID: 230

Configuration example

The configuration example is based on the following assumptions:

- You are starting with an installed switch that is not currently configured as part of the network.
- You have installed, Software Release 5.1 or higher.
- You have configured basic switch connectivity.
- You have initialized the switch and it is ready to accept configuration.

Default NSNA filters are used in this example.

Scenario

Figure 8: Basic network scenario on page 280 shows the basic network configuration used in this example. The Avaya Ethernet Routing Switch 8600 functions as the core router.

The following table describes the devices connected in this environment and their respective VLAN IDs and IP addresses.

Table 76: Network devices

Device/Service	VLAN ID	VLAN IP	Device IP	Ethernet Routing Switch 8600 port
DNS	20	10.20.20.1	10.20.20.2	1/1
DHCP	30	10.30.30.1	10.30.30.2	1/11
NSNAS 4050/4070	40	10.40.40.1	10.40.40.2	1/7
Remediation server	120	10.120.120.1	10.120.120.2	1/31
Call server	50	10.11.11.1	10.11.11.254	1/23

The following table describes the VLANs for the Avaya Ethernet Routing Switch 4000.

Table 77: VLANs for the Avaya Ethernet Routing Switch 4000

VLAN	VLAN ID	Yellow subnet
Management	1	N/A
Red	210	N/A
Yellow	220	10.120.120.0/24
Green	230	N/A
VoIP	240	N/A

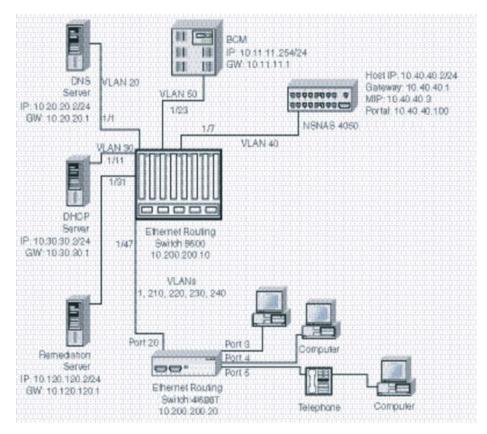


Figure 8: Basic network scenario

Steps

The example illustrates the following required configuration steps:

- 1. Setting the switch IP address on page 281
- 2. Configuring SSH on page 281
- 3. Configuring the NSNAS 4050/4070 pVIP subnet on page 281

- 4. Creating port-based VLANs on page 281
- 5. Configuring the VoIP VLANs on page 281
- 6. Configuring the Red, Yellow, and Green VLANs on page 282
- 7. Configuring the log on domain controller filters on page 282
- 8. Configuring the NSNA ports on page 282
- 9. Enabling NSNA globally on page 282

Setting the switch IP address

```
ip address 10.200.200.20 netmask 255.255.255.0 ip default-gateway 10.200.200.10
```

Configuring SSH

This example assumes that the NSNAS 4050/4070 public key has already been uploaded to the TFTP server (10.20.20.20).

```
ssh download-auth-key address 10.20.20.20 key-name sac_key.1.pub ssh
```


You must import the switch SSH key on the NSNAS 4050/4070 after enabling SSH on the switch. For more information, see <u>Configuring SSH on the 4000 Series switch for NSNA</u> on page 96. Also, refer to *NSNA Switch 4050 User Guide* (320818-A) for more information about configuring SSH on the NSNAS 4050/4070.

Configuring the NSNAS 4050/4070 pVIP subnet

```
nsna nsnas 10.40.40.0/24
```

Creating port-based VLANs

```
vlan create 210 type port
vlan create 220 type port
vlan create 230 type port
vlan create 240 type port
```

Configuring the VolP VLANs

```
nsna vlan 240 color voip
```

Configuring the Red, Yellow, and Green VLANs

nsna vlan 210 color red filter red nsna vlan 220 color yellow filter yellow yellow-subnet 10.120.120.0/24 nsna vlan 230 color green filter green

Configuring the log on domain controller filters

Important:

This step is optional.

The PC client must be able to access the log on domain controller you configure (that is, clients using the log on domain controller must be able to ping that controller).

qos nsna classifier name red dst-ip 10.200.2.12/32 ethertype 0x0800 drop-action disable block wins-prim-sec eval-order 70

qos nsna classifier name red dst-ip 10.200.224.184/32 ethertype 0x0800 drop-action disable block wins-prim-sec eval-order 71

Configuring the NSNA ports

Add the uplink port:

interface fastEthernet 20
nsna uplink vlans 210,220,230,240
exit

Add the client ports:

interface fastEthernet 3-5 nsna dynamic voip-vlans 240

Enabling NSNA globally

nsna enable

Important:

After configuring NSNA it is recommended to disable autosave. To disable use the following command: no autosave enable After that, if configuration changes are done use copy config nvram.

Certain applications can delay saving data to nonvolatile storage, for a short period of time, to optimize access to nonvolatile storage. To account for these applications, following

completion of configuration commands, wait 30 seconds before using the **copy** command to save configuration data. This ensures that no configuration data is lost.

NSNA configuration using ACLI

Chapter 7: Security configuration and management using Enterprise Device Manager

This chapter describes the methods and procedures necessary to configure security on the Avaya Ethernet Routing Switch 4000 using Enterprise Device Manager (EDM).

EAPOL configuration using EDM

This section describes how you can configure network access control on an internal Local Area Network (LAN) with Extensible Authentication Protocol over LAN (EAPOL), using EDM.

Important:

You must enable EAPOL before you enable UDP Forwarding, IP Source Guard, and other features that use QoS policies.

Configuring EAPOL globally using EDM

Use the following procedure to configure EAPOL globally to configure EAPOL parameters for the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click 802.1X/EAP.
- 3. On the **EAPOL** tab, configure the EAPOL parameters as required.
- 4. On the toolbar, click Apply.

Variable definitions

Use the data in the following table to configure EAPOL globally.

Variable	Value
SystemAuthControl	Enables or disables port access control on the switch.
GuestVlanEnabled	Enables or disables the Guest VLAN.

Variable	Value
GuestVlanId	Sets the VLAN ID of the Guest VLAN.
MultiHostAllow NonEapClient	Enables or disables support for non EAPOL hosts on EAPOL-enabled ports.
MultiHostSingle AuthEnabled	Enables or disables Multiple Host Single Authentication (MHSA). When selected, non EAPOL hosts are allowed on a port if there is one authenticated EAPOL client on the port.
MultiHostRadiusAuth NonEapClient	Enables or disables RADIUS authentication of non EAPOL hosts on EAPOL-enabled ports.
MultiHostAllowNonEapPhones	Enables or disables Avaya IP Phone clients as another non-EAP type.
MultiHostAllowRadiusAssignedVI an	Enables or disables the use of RADIUS-assigned VLAN values in the Multihost mode.
MultiHostAllowNonEapRadius AssignedVlan	Enables or disables support for RADIUS-assigned VLANs in multihost-eap mode for non-EAP clients.
MultiHostUseMostRecentRadius AssignedVlan	Enables or disables the Last Assigned VLAN on a port.
MultiHostMultiVlan	Enables or disables the multiple VLAN capability for EAP and non-EAP hosts. The default is disabled.
MultiHostEapPacketMode	Enables or disables the choice of packet mode (unicast or multicast) in the Multihost mode.
MultiHostFailOpenVlanEnabled	Enables or disables the EAPOL multihost Fail Open VLAN.
	Important:
	The switch does not validate that RADIUS Assigned VLAN attribute is not the same as the Fail_Open VLAN. This means that if you configure the Fail_Open VLAN name or ID the same as one of the VLAN names or IDs which can be returned from the RADIUS server, then EAP or NEAP clients cannot be assigned to the Fail_Open VLAN even though no failure to connect to the RADIUS server has occurred.
MultiHostFailOpenVlanId	Sets the VLAN ID of the Fail Open VLAN.
NonEapRadiusPasswordAttribut eFormat	Enables or disables setting the format of the RADIUS Server password attribute for non-EAP clients.

Enabling or disabling non-EAP client re-authentication using EDM

Use this procedure to enable or disable Non-EAP (NEAP) re-authentication for the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click 802.1X/EAP.
- 3. In the work area, click the **EAPOL** tab.
- 4. Select the **MultiHstNeapReauthenticationEnabled** checkbox to enable NEAP reauthentication.

OR

Clear the **MultiHstNeapReauthenticationEnabled** checkbox to disable NEAP reauthentication.

5. On the toolbar, click Apply.

Configuring port-based EAPOL using EDM

Use the following procedure to configure port-based EAPOL to configure EAPOL security parameters for an individual port or multiple ports.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **802.1X/EAP**.
- 3. In the work area, click the **EAPOL Ports** tab.
- 4. In a port row, double-click a cell under the column heading for the parameter you want to change.
- 5. Select a parameter or value from the drop-down list.
- 6. You can repeat the previous two steps until you have amended all of the parameters you want to change.
- 7. On the toolbar, click **Apply**.

Variable definitions

Variable	Value
dot1xPaePortNumber	Indicates the port number.
AdminControlledDirections	Indicates the current value of the administrative controlled directions parameter for the port.
OperControlledDirections	Indicates the current value of the operational controlled directions parameter for the port.

Variable	Value
AuthControlledPortStatus	Indicates the current value of the controlled port status parameter for the port.
AuthControlledPortControl	Indicates the current value of the controlled port control parameter for the port.
QuietPeriod	Indicates the current value of the time interval between authentication failure, and the start of a new authentication.
TransmitPeriod	Indicates the time to wait for response from supplicant for EAP requests/Identity packets.
SupplicantTimeout	Indicates the time to wait for response from supplicant for all EAP packets except EAP Request/Identity.
ServerTimeout	Indicates the time to wait for a response from the RADIUS server
MaximumRequests	Indicates the number of times to retry sending packets to the supplicant.
ReAuthenticationPeriod	Indicates the time interval between successive reauthentications.
ReAuthenticationEnabled	Indicates whether to reauthenticate or not. Setting this object to Enabled causes reauthentication of existing supplicant at the time interval specified in the Reauthentication Period field.
PortProtocolVersion	Indicates the EAP Protocol version that is running on this port.
PortCapabilities	Indicates the PAE functionality that is implemented on this port. Always returns dot1xPaePortAuthCapable (0).
PortInitialize	Indicates wether to initialize the EAPOL state of the port. Setting this attribute to True causes this port EAPOL state to be initialized.
PortReauthenticateNow	Indicates the current reauthentication state of the machine. Setting this attribute to True causes the reauthentication of the client.
PaeState	Indicates the current authenticator PAE state machine stat value.
BackendAuthState	Indicates the current state of the Backend Authentication state machine.
KeyTxEnabled	Indicates the value of the KeyTranmissionEnabled constant currently in use by the Authenticator PAE state

Variable	Value
	machine. This always returns False as key transmission is irrelevant.
LastEapolFrameVersion	Indicates the protocol version number carried in the most recently received EAPOL frame.
LastEapolFrameSource	Indicates the source MAC address carried in the most recently received EAPOL frame.

Configuring advanced port-based EAPOL using EDM

Use the following procedure to configure advanced port-based EAPOL to configure advanced EAPOL security parameters for an individual port or multiple ports.

Procedure steps

- 1. From the Device Physical View, click one or more ports.
- 2. From the navigation tree, double-click Edit.
- 3. In the Edit tree, double-click Chassis.
- 4. In the Chassis tree, click Ports.
- 5. In the work area, click the **EAPOL Advance** tab.

Variable definitions

Variable	Value
Portnumber	Indicates the port number.
GuestVlanEnabled	Enables or disables Guest VLAN functionality.
GuestVlanId	Specifies the VLAN ID of the VLAN that acts as the Guest VLAN. The default is 0. The Guest VLAN ID can be between 0 and 4094.
	Important: Use 0 to indicate a global Guest VLAN ID.
MultiHostEnabled	Enables or disables Multiple Host/MAC support with Multiple Authentication (MHMA).
MultiHostEapMaxNumMacs	Specifies the maximum number of EAPOL-authenticated clients allowed on this port.

Variable	Value
	The default is 1. The maximum number can be between 1 and 32
MultiHostAllowNonEapClient	Enables or disables support for non EAPOL clients using local authentication.
MultiHostNonEapMaxNumMacs	Specifies the maximum number of non EAPOL clients allowed on this port. The default is 1. The maximum number can be between 1 and 32.
MultiHostSingleAuthEnabled	Enables or disables Multiple Host with Single Authentication (MHSA) support for non EAPOL clients.
MultiHostRadiusAuthNonEapClient	Enables or disables support for non EAPOL clients using RADIUS authentication.
MultiHostAllowNonEapPhones	Enables or disables support for Avaya IP Phone clients as another non-EAP type.
MultiHostAllowRadiusAssignedVlan	Enables or disables support for VLAN values assigned by the RADIUS server.
MultiHostAllowNonEapRadiusAssignedVlan	Enables or disables support for RADIUS-assigned VLANs in multihost-EAP mode for non-EAP clients.
MultiHostEapPacketMode	Specifies the mode of EAPOL packet transmission (multicast or unicast).
ProcessRadiusRequestsServerPackets	Enables or disables the processing of RADIUS requests-server packets that are received on this port.
MultiHostClearNeap	Clears authenticated NEAP clients from a specified port. To clear a specific authenticated NEAP client from the specified port, type the MAC address of that client in the box. To clear all authenticated NEAP clients from the specified port, type a MAC address of 00:00:00:00:00:00:00 in the box.

Graphing port EAPOL statistics using EDM

Use this procedure to display and graph port EAPOL statistics.

Procedure steps

- 1. From the Device Physical View, click a port.
- 2. From the navigation pane, double-click Graph .
- 3. In the Graph tree, double-click Port .
- 4. In the work area, click the **EAPOL Stats** tab.
- 5. On the toolbar, select a **Poll Interval** from the list.
- 6. On the toolbar, you can click **Clear Counters** to reset the IP statistics counters.
- 7. To select statistics to graph, click a statistic type row under a column heading.
- 8. On the toolbar, click Line Chart, Area Chart, Bar Chart, or Pie Chart.

Variable definitions

Use the data in the following table to help you understand port EAPOL statistics.

Variable	Value
EapolFramesRx	The number of valid EAPOL frames of any type that are received by this authenticator.
EapolFramesTx	The number of EAPOL frame types of any type that are transmitted by this authenticator.
EapolStartFramesRx	The number of EAPOL start frames that are received by this authenticator.
EapolLogoffFramesRx	The number of EAPOL Logoff frames that are received by this authenticator.
EapolRespldFramesRx	The number of EAPOL Resp/ld frames that are received by this authenticator.
EapolRespFramesRx	The number of valid EAP Response frames (Other than Resp/Id frames) that are received by this authenticator.
EapolReqIdFramesTx	The number of EAPOL Req/Id frames that are transmitted by this authenticator.
EapolReqFramesTx	The number of EAP Req/ld frames (Other than Req/ld frames) that are transmitted by this authenticator.
InvalidEapolFramesRx	The number of EAPOL frames that are received by this authenticator in which the frame type is not recognized.
EapLengthError FramesRx	The number of EAPOL frames that are received by this authenticator in which the packet body length field is not valid.

Graphing port EAPOL diagnostics using EDM

Use this procedure to display and graph port EAPOL diagnostic statistics.

Procedure steps

- 1. From the Device Physical View, click a port.
- 2. From the navigation pane, double-click Graph.
- 3. In the Graph tree, double-click Port.
- 4. In the work area, click the **EAPOL Diag** tab.
- 5. On the toolbar, select a **Poll Interval** from the list.
- 6. On the toolbar, you can click **Clear Counters** to reset the IP statistics counters.
- 7. To select statistics to graph, click a statistic type row under a column heading.
- 8. On the toolbar, click Line Chart, Area Chart, Bar Chart, or Pie Chart.

Variable definitions

Use the data in the following table to help you understand EAPOL diagnostic statistics.

Variable	Value
EntersConnecting	Counts the number of times that the state machine transitions to the connecting state from any other state.
EapLogoffsWhileConnecting	Counts the number of times that the state machine transitions from connecting to disconnecting because of receiving an EAPOL-Logoff message.
EntersAuthenticating	Counts the number of times that the state machine transitions from connecting to authenticating, because of an EAP-Response or Identity message being received from the Supplicant.
AuthSuccessWhile Authenticating	Counts the number of times that the state machine transitions from authenticating to authenticated, because of the Backend Authentication state machine indicating a successful authentication of the Supplicant.
AuthTimeoutsWhile Authenticating	Counts the number of times that the state machine transitions from authenticating to aborting, because

Variable	Value
	of the Backend Authentication state machine indicating an authentication timeout.
AuthFailWhileAuthenticating	Counts the number of times that the state machine transitions from authenticating to held, because of the Backend Authentication state machine indicating an authentication failure.
AuthReauthsWhile Authenticating	Counts the number of times that the state machine transitions from authenticating to aborting, because of a reauthentication request.
AuthEapStartsWhile Authenticating	Counts the number of times that the state machine transitions from authenticating to aborting, because of an EAPOL-Start message being received from the Supplicant.
AuthEapLogoffWhile Authenticating	Counts the number of times that the state machine transitions from authenticating to aborting, because of an EAPOL-Logoff message being received from the Supplicant.
AuthReauthsWhile Authenticated	Counts the number of times that the state machine transitions from authenticated to connecting, because of a reauthentication request.
AuthEapStartsWhile Authenticated	Counts the number of times that the state machine transitions from authenticated to connecting, because of an EAPOL-Start message being received from the Supplicant.
AuthEapLogoffWhile Authenticated	Counts the number of times that the state machine transitions from authenticated to disconnected, because of an EAPOL-Logoff message being received from the Supplicant.
BackendResponses	Counts the number of times that the state machine sends an initial Access-Request packet to the Authentication server. Indicates that the Authenticator attempted communication with the Authentication Server.
BackendAccessChallenges	Counts the number of times that the state machine receives an initial Access-Challenge packet from the Authentication server. Indicates that the Authentication Server has communication with the Authenticator.
BackendOtherRequestsTo Supplicant	Counts the number of times that the state machine sends an EAP-Request packet, other than an Identity, Notification, Failure or Success message, to the Supplicant. Indicates that the Authenticator chooses an EAP-method.

Variable	Value
BackendNonNakResponses FromSupplicant	Counts the number of times that the state machine receives a response from the Supplicant to an initial EAP-Request, and the response is something other than EAP-NAK. Indicates that the Supplicant can respond to the EAP-method that the Authenticator chooses.
BackendAuthSuccesses	Counts the number of times that the state machine receives an EAP-Success message from the Authentication Server. Indicates that the Supplicant has successfully authenticated to the Authentication Server.
BackendAuthFails	Counts the number of times that the state machine receives an EAP-Failure message from the Authentication Server. Indicates that the Supplicant has not authenticated to the Authentication Server.

Viewing Multihost status information using EDM

Use the following procedure to view Multihost status information to display multiple host status for a port.

Important:

The Multi Hosts button is not available when you select multiple ports before clicking the EAPOL Advance tab. You can select only one port to use the Multi Hosts option.

Procedure steps

- 1. From the navigation tree, double-click Edit
- 2. In the Edit tree, double-click Chassis
- 3. In the Chassis tree, double-click Ports.
- 4. In the work area, click the **EAPOL Advance** tab.
- 5. On the toolbar, click Multi Hosts.

Variable definitions

Use the data in the following table to view Multihost status information.

Variable	Value
PortNumber	Indicates the port number in use.
ClientMACAddr	Indicates the MAC address of the client.
PaeState	Indicates the current state of the authenticator PAE state machine.
BackendAuthState	Indicates the current state of the Backend Authentication state machine.
Reauthenticate	Indicates the current reauthentication state of the machine. When the reauthenticate attribute is set to True, the client reauthenticates.

Viewing Multihost session information using EDM

Use the following procedure to view Multihost session information to display multiple host session information for a port.

Important:

The **Multi Hosts** button is not available when you select multiple ports before clicking the EAPOL Advance tab. You can select only one port to use the Multi Hosts option.

Procedure steps

- 1. From the navigation tree, double-click Edit
- 2. In the Edit tree, double-click Chassis
- 3. In the Chassis tree, double-click Ports.
- 4. In the work area, click the EAPOL Advance tab.
- 5. On the toolbar, click Multi Hosts Multi Host Session tab.

Variable definitions

Use the data in the following table to view Multihost session information.

Variable	Value
PortNumber	Indicates the port number in use.
ClientMACAddr	Indicates the MAC address of the client.

Variable	Value
Id	Indicates the unique identifier for the session, in the form of a printable ASCII string of at least three characters.
AuthenticMethod	Indicates the authentication method used to establish the session.
Time	Indicates the elapsed time of the session.
TerminateCause	Indicates the cause of the session termination.
UserName	Indicates the user name representing the identity of the supplicant PAE.

Allowed non-EAP MAC address list configuration using EDM

Use the following procedure to configure the allowed non-EAP MAC address list to view and configure the list of MAC addresses for non-EAPOL clients that are authorized to access the port.

Allowed non-EAP MAC address list configuration using EDM navigation

- Adding a MAC address to the allowed non-EAP MAC address list using EDM on page 296
- Deleting a MAC address from the allowed non-EAP MAC address list using EDM on page 297

Adding a MAC address to the allowed non-EAP MAC address list using EDM

Use the following procedure to add a MAC address to the allowed non-EAP MAC address list to insert a new MAC address to the list of MAC addresses for non-EAPOL clients that are authorized to access the port.

Procedure steps

The **Non-EAP MAC** button is not available when you select multiple ports before clicking the EAPOL Advance tab. You can select only one port to use the Non-EAP MAC option.

- 1. From the navigation tree, double-click Edit
- 2. In the Edit tree, double-click Chassis
- 3. In the Chassis tree, double-click **Ports**.
- 4. In the work area, click the **EAPOL Advance** tab.

296 Configuration — Security

- 5. In the table, click the port you want to edit.
- 6. In the tool bar, Click the Non-EAP MAC button.
- 7. On the Allowed non-EAP MAC table, in the ClientMACAddr column, click a client MAC Address to insert.
- 8. In the ClientMACAddr box, enter a MAC address to add to the list of allowed non-EAPOL clients
- 9. Click Insert.
- 10. On the tool bar, click **Apply** to confirm the addition..
- 11. On the tool bar, you can click **Refresh** to see the results of your addition.

Deleting a MAC address from the allowed non-EAP MAC address list using EDM

Use the following procedure to remove an existing MAC address from the list of MAC addresses for non-EAPOL clients that are authorized to access the port.

Procedure steps

- 1. From the navigation tree, double-click Edit
- 2. In the Edit tree, double-click Chassis
- 3. In the Chassis tree, double-click Ports.
- 4. In the work area, click the **EAPOL Advance** tab.
- 5. In the table, click the port you want to edit.
- 6. In the tool bar, Click the Non-EAP MAC button.

The **Non-EAP MAC** button is not available when you select multiple ports before clicking the EAPOL Advance tab. You can select only one port to use the Non-EAP MAC option.

- 7. On the Allowed non-EAP MAC table, in the ClientMACAddr column, click a client MAC Address to insert.
- 8. On the toolbar, click **Delete**.
- 9. Click **Yes** to confirm the deletion.
- 10. On the tool bar, you can click **Refresh** to see the results of your addition.

Variable definitions

Use the data in the following table to delete a MAC address from the allowed non-EAP MAC address list.

Variable	Value
PortNumber	Indicates the port number in use.

Variable	Value
ClientMACAddr	Indicates the MAC address of the client.

Viewing port non-EAP host support status using EDM

Use the following procedure to display the status of non-EAP host support on the port.

Procedure steps

- 1. From the navigation tree, double-click Edit
- 2. In the Edit tree, double-click Chassis
- 3. In the Chassis tree, double-click Ports.
- 4. In the work area, click the **EAPOL Advance** tab.
- 5. In the tool bar, click the **Non-EAP MAC** button.
- 6. Click the Non-EAP Status tab.

Variable definitions

Variable	Value
PortNumber	Indicates the port number in use.
ClientMACAddr	Indicates the MAC address of the client.
State	Indicates the authentication status. Possible values are:
	rejected: the MAC address cannot be authenticated on this port
	locallyAuthenticated: the MAC address was authenticated using the local table of allowed clients
	radiusPending: the MAC address is awaiting authentication by a RADIUS server
	radiusAuthenticated: the MAC address was authenticated by a RADIUS server
	adacAuthenticated: the MAC address was authenticated using ADAC configuration tables
	mhsaAuthenticated: the MAC address was autoauthenticated on a port following a successful authentication of an EAP client

298 Configuration — Security

Variable	Value
Reauthenticate	Indicates the value used to reauthenticate the MAC address of the client on the port.

Enabling VolP VLAN using EDM

Use the following procedure to activate the VoIP VLAN.

Procedure steps

- 1. From the navigation tree, double-click**Security**.
- 2. In the Security tree, double-click 802.1X/EAP.
- 3. In the work area, click the EAP VoIP VIan tab.
- 4. In the table, double-click the cell under the column header you want to edit.
- Select a parameter or value from the drop-down list.
 You can repeat the previous two steps until you have amended all of the parameters you want to change.
- 6. On the toolbar, click Apply.

Variable Definitions

The following table defines variables you can use to enable VoIP VLAN.

Variable	Value
MultiHostVoipVlanIndex	Indicates the multihost VoIP VLAN index. Range is 1–5.
MultiHostVoipVlanEnabled	Enables (true) or disables (false) the multihost VoIP VLAN.
MultiHostVoipVlanId	Indicates the VLAN ID; value ranges from 1–4094.

Configuring general switch security using EDM

Use the following procedure to configure general switch security and to configure and manage general security parameters for the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click MAC Security.
- 3. On the **MAC Security** tab, configure general switch security parameters as required.
- 4. On the toolbar, click Apply.

Variable definitions

Use the data in the following table to configure general switch security.

Variable	Value
AuthSecurityLock	If this parameter is listed as locked, the agent refuses all requests to modify the security configuration. Entries also include:
	• other
	• notlocked
AuthCtlPartTime	Indicates the duration of time for port partitioning in seconds. Default: 0 (zero). When the value is zero, port remains partitioned until it is manually reenabled.
SecurityStatus	Indicates whether or not the switch security feature is enabled.
SecurityMode	Indicates the mode of switch security. Entries include:
	 macList—Indicates that the switch is in the MAC- list mode. You can configure more than one MAC address for a port.
	autoLearn—Indicates that the switch learns the MAC addresses on each port as allowed addresses of that port.
SecurityAction	Indicates the actions performed by the software when a violation occurs (when SecurityStatus is enabled). The security action specified here applies to all ports of the switch. A blocked address causes the port to be partitioned when unauthorized access is attempted. Selections include:

Variable	Value
	noAction—Port does not have security assigned to it, or the security feature is turned off.
	• trap—Listed trap.
	partitionPort—Port is partitioned.
	partitionPortAndsendTrap—Port is partitioned and traps are sent to the trap receive station.
	daFiltering—Port filters out the frames where the destination address field is the MAC address of unauthorized Station.
	daFilteringAndsendTrap—Port filters out the frames where the destination address field is the MAC address of unauthorized station. Traps are sent to trap receive stations.
	 partitionPortAnddaFiltering— Port is partitioned and filters out the frames where the destination address field is the MAC address of unauthorized station.
	 partitionPortdaFilteringAndsendTrap—Port is partitioned and filters out the frames where the destination address field is the MAC address of unauthorized station. Traps are sent to trap receive stations.
	Important:
	da means destination addresses.
CurrNodesAllowed	Indicates the current number of entries of the nodes allowed in the AuthConfig tab.
MaxNodesAllowed	Indicates the maximum number of entries of the nodes allowed in the AuthConfig tab.
PortSecurityStatus	Indicates the set of ports for which security is enabled.
PortLearnStatus	Indicates the set of ports where autolearning is enabled.
CurrSecurityLists	Indicates the current number of entries of the Security listed in the SecurityList tab
MaxSecurityLists	Indicates the maximum entries of the Security listed in the SecurityList tab.
AutoLearningAgingTime	Indicates the MAC address age-out time, in minutes, for the autolearned MAC addresses. A value of zero (0) indicates that the address never ages out.

Variable	Value
AutoLearningSticky (sticky-mac)	Enables or disables MAC security auto-learning sticky mode.

Security list configuration using EDM

Use the procedures in this section to configure the security list to manage the port members in a security list.

Security list configuration using EDM navigation

- Adding ports to a security list using EDM on page 302
- Deleting specific ports from a security list using EDM on page 303
- Deleting all ports from a security list using EDM on page 304

Adding ports to a security list using EDM

Use the following procedure to add ports to the security list to insert new port members into a security list.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **MAC Security**.
- 3. In the work area, click the **Security List** tab.
- 4. On the toolbar, click the **Insert** button.

The Insert SecurityList dialog box appears.

5. Type a number for the security list in the **SecurityListIndx** box.

Comments? infodev @avaya.com

6. Click the SecurityListMembers ellipsis [...], and select ports to add to the security list.

OR

Click All to select all ports.

- 7. Click **Ok**.
- 8. Click Insert.

Variable definitions

Use the data in the following table to add ports to the security list.

Variable	Value
SecurityListIndx	Indicates a numerical identifier for a security list. Values range from 1–32.
SecurityListMembers	Defines the security list port members.

Deleting specific ports from a security list using EDM

Use the following procedure to delete specific ports from a security list to remove specific existing port members from a security list.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click MAC Security.
- 3. In the work area, click the **SecurityList** tab.
- 4. Double-click the **SecurityListMembers** box for a security list.
- 5. Deselect security list port members as required.
- 6. Click Ok.
- 7. Click Apply.

Variable definitions

Use the data in the following table to delete specific ports from a security list.

Variable	Value
SecurityListIndx	Indicates the numerical identifier for a security list. Values range from 1–32.
SecurityListMembers	Defines the security list port members.

Deleting all ports from a security list using EDM

Use the following procedure to delete all ports from a security list to remove all existing port members from a security list.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click MAC Security.
- 3. In the work area, click the SecurityList tab.
- 4. Click the **SecurityListMembers** box for a security list.
- 5. Click Delete.
- 6. Click Yes.

Variable definitions

Use the data in the following table to delete all ports from a security list.

Variable	Value
SecurityListIndx	Indicates the numerical identifier for a security list. Values range from 1–32.
SecurityListMembers	Defines the security list port members.

AuthConfig list configuration using EDM

This section describes how you can add entries to or remove entries from a list of boards, ports and MAC addresses that have the security configuration.

AuthConfig list configuration using EDM navigation

- Adding entries to the AuthConfig list using EDM on page 305
- Deleting entries from the AuthConfig list using EDM on page 306

304 Configuration — Security

Adding entries to the AuthConfig list using EDM

Use the following procedure to add information to the list of boards, ports and MAC addresses that have the security configuration.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click MAC Security.
- 3. In the work area, click the **AuthConfig** tab.
- 4. On the toolbar, click Insert.

The Insert AuthConfig dialog box appears.

- 5. Type a value in the **BrdIndx** box.
- 6. Type a value in the **PortIndx** box.
- 7. Type a value in the **MACIndx** box.
- 8. Select the **AutoLearningSticky** check box to enable Sticky MAC address.

OR

Clear the **AutoLearningSticky** check box, if selected, to disable Sticky MAC address.

Select the AccessCtrlType radio button to allow a MAC address on multiple ports.

OR

Clear the **AccessCtrlType** radio button to disallow a MAC address on multiple ports.

- 10. Type a value in the **SecureList** box.
- 11. Click Insert.

Variable definitions

Use the data in the following table to add entries to the list of boards, ports and MAC addresses that have the security configuration.

Variable	Value
BrdIndx	Indicates the index of the board. This corresponds to the unit.

Variable	Value
	Important: If a BrdIndx is specified, the SecureList field is 0.
PortIndx	Indicates the index of the port.
	Important: If a Portlndx is specified, the SecureList field is 0.
MACIndx	Indicates the index of MAC addresses that are designated as allowed (station).
AutoLearningSticky (sticky-mac)	Enables or disables the storing of automatically learned MAC addresses across switch reboots.
	Important: When the AutoLearningSticky check box is selected, you cannot modify AccessCtrlType and SecureList.
AccessCtrlType	Displays the node entry node allowed . A MAC address can be allowed on multiple ports.
SecureList	Indicates the index of the security list. This value is meaningful only if BrdIndx and PortIndx values are set to zero. For other board and port index values, this field can also have the value of zero. The corresponding MAC address of this entry is allowed or blocked on all ports of this port list.
Lifetime	Indicates the time period before the system automatically deletes an AuthConfig entry.

Deleting entries from the AuthConfig list using EDM

Use the following procedure to remove information from the list of boards, ports, and MAC addresses that have security configuration.

Procedure steps

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click MAC Security.
- 3. In the work area, click the AuthConfig tab.
- 4. Select a list entry.

- 5. Click Delete.
- 6. Click Yes.

Configuring MAC Address AutoLearn using EDM

Use the following procedure to configure MAC Address AutoLearn to configure the MAC Address auto learning properties of switch ports.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click MAC Security.
- 3. In the work area, click the AutoLearn tab.
- 4. Double-click the **Enabled** box for a port.
- 5. Select **true** to enable AutoLearn on the port.

OR

Select **false** to disable AutoLearn on the port.

- 6. Double-click the **MaxMacs** box for a port.
- 7. Type a value between 1 and 25.
- 8. Click Apply.

Variable definitions

Use the data in the following table to configure MAC Address AutoLearn.

Variable	Value
Unit	Identifies the unit.
Port	Identifies the port.
Enabled	Enables or disables AutoLearning on a port. Values are true or false.
MaxMacs	Defines the maximum number of MAC Addresses that the port can learn.

Viewing AuthStatus information using EDM

Use the following procedure to view AuthStatus information to display authorized boards and port status data collection information. Displayed information includes actions to be performed when an unauthorized station is detected and the current security status of a port.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **MAC Security**.
- 3. Click the AuthStatus tab to view the status information.

Variable definitions

Use the data in the following table to view AuthStatus information.

Variable	Value
AuthStatusBrdIndx	Indicates the index of the board. This corresponds to the index of the slot containing the board if the index is greater than zero.
AuthStatusPortIndx	Indicates the index of the port on the board. This corresponds to the index of the last manageable port on the board if the index is greater than zero.
AuthStatusMACIndx	Indicates the index of MAC address on the port. This corresponds to the index of the MAC address on the port if the index is greater than zero.
CurrentAccessCtrlType	Displays whether the node entry is node allowed or node blocked type.
CurrentActionMode	Indicates the value representing the type of information contained, including:
	 noAction—Port does not have security assigned to it, or the security feature is turned off.
	partitionPort—Port is partitioned.
	partitionPortAndsendTrap— Port is partitioned and traps are sent to the trap receive station.

308 Configuration — Security December 2011

Variable	Value
	Filtering—Port filters out the frames, where the destination address field is the MAC address of unauthorized station.
	FilteringAndsendTrap—Port filters out the frames, where the destination address field is the MAC address of unauthorized station. Trap are sent to trap receive station.
	sendTrap—A trap is sent to trap receive stations.
	 partitionPortAnddaFiltering— Port is partitioned and will filter out the frames where the destination address field is the MAC address of unauthorized station.
	 partitionPortdaFilteringAndsendTrap—Port is partitioned and will filter out the frames where the destination address field is the MAC address of unauthorized station. Traps are sent to trap receive stations.
CurrentPortSecurStatus	Displays the security status of the current port, including:
	If the port is disabled, notApplicable is returned.
	If the port is in a normal state, portSecure is returned.
	If the port is partitioned, portPartition is returned.

Viewing AuthViolation information using EDM

Use the following procedure to view AuthViolation information to display a list of boards and ports where network access violations have occurred, and to display the identity of the offending MAC addresses.

Procedure steps

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **MAC Security**.
- 3. Click the **AuthViolation** tab to view the AuthViolation information.

Variable definitions

Use the data in the following table to view AuthViolation information.

Variable	Value
BrdIndx	Indicates the index of the board. This corresponds to the slot containing the board. The index is 1 where it is not applicable.
PortIndx	Indicates the index of the port on the board. This corresponds to the port on that a security violation was seen.
MACAddress	Indicates the MAC address of the device attempting unauthorized network access (MAC address-based security).

Viewing MacViolation information using EDM

Use the following procedure to view MacViolation information to display a list of boards and ports where network access violations have occurred, and to display the identity of the offending MAC addresses.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click MAC Security.
- 3. Click the **MacViolation** tab.

Variable definitions

Use the data in the following table to view MacViolation information.

Variable	Value
Address	Indicates the MAC address of the device attempting unauthorized network access (MAC address-based security).

Variable	Value
Brd	Indicates the index of the board. This corresponds to the slot containing the board. The index is 1 when it is not applicable.
Port	Indicates the index of the port on the board. This corresponds to the port on which a security violation was seen.

Configuring Secure Shell protocol using EDM

Use the following procedure to configure the Secure Shell (SSH) protocol to replace Telnet and provide secure access to the ACLI interface.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click SSH/SSL.
- 3. In the work area, click the **SSH** tab.
- 4. Configure SSH parameters as required.
- 5. On the toolbar, click Apply.

Variable definitions

Variable	Value
Enable	Enables, disables, or selects secure mode for SSH authentication.
	• false
	• true
	• secure
Version	Displays the SSH version.
Port	Defines the SSH connection port. Values range from 1 to 65535.
Timeout	Defines the SSH connection timeout in seconds. Values range from 1 to 120 seconds.

Variable	Value
KeyAction	Specifies the SSH key action.
	generateDsa
	generateRsa
	deleteDsa
	deleteRsa
RsaAuth	Enables or disables SSH RSA authentication
DsaAuth	Enables or disables SSH DSA authentication.
PassAuth	Enables or disables SSH password authentication.
RsaHostKeyStatus	Indicates the current status of the SSH RSA host key. Values include:
	noSuchInstance_OID
	notGenerated
	generated
	generating
DsaHostKeyStatus	Indicates the current status of the SSH DSA host key. Values include:
	noSuchInstance_OID
	notGenerated
	generated
	generating
TftpServerInetAddressType	Indicates the type of address stored in the TFTP server. Values include:
	• ipv4
	• 1pv6
TftpServerInetAddress	Specifies the IP address of the TFTP server for all TFTP operations.
TftpFile	Indicates the name of file for the TFTP transfer.
TftpAction	Specifies the action for the TFTP transfer. Values include:
	• none
	downloadSshPublicKeys
	deleteSshDsaAuthKey

Variable	Value
	downloadSshRsaPublicKeys
	deleteSshRsaAuthKey
TftpResult	Displays the result of the last TFTP action request.
SshAuthKeyFilename	Specifies the SSH authentication key file to download.
UsbTargetUnit	Specifies the unit number of the USB port to use for file uploads and downloads. Values range from 1 to 9. Values 1 to 8 apply to a USB port in a switch stack. Value 9 applies to a standalone switch.
Action	DnldSshAuthKeyFromUsb—when selected, specifies to download the SSH authentication key using the USB port.
Status	Indicates the status of the latest SSH authentication key download using the USB port. Values include the following:
	other—no action taken since the switch boot up
	inProgress—authentication key download is in progress
	success—authentication key download completed successfully
	fail—authentication key download failed

Viewing SSH Sessions information using EDM

Use the following procedure to display currently active SSH session information.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click SSH/SSL.
- 3. In the work area, click the **SSH Sessions** tab.

Variable definitions

Variable	Value
SshSessionInetAddressType	Indicates the type of IP address of the SSH client that opened the SSH session.
SshSessionInetAddress	Indicates the IP address of the SSH client that opened the SSH session.

Configuring an SSH Client using EDM

Use this procedure to configure and manage a Secure Shell (SSH) Client.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click SSH/SSL.
- 3. In the work area, click the **SSHC/SFTP** tab.
- 4. Configure SSHC parameters as required.
- 5. Click Apply.

Variable definitions

Variable	Value
KeyAction:	Specifies the action to take for the SSH Client host key. Values include:
	none—take no host key action.
	 generateDsa—generates a DSA host key for the SSH Client.
	generateRsa—generates an RSA host key for the SSH Client.
	deleteDsa—deletes the SSH Client DSA host key.
	deleteRsa—deletes the SSH Client RSA host key.

314 Configuration — Security

Variable	Value
KeyFileName:	Specifies the a SSH Client host key file name.
TftpAction:	Specifies the type of SSH Client authentication key to upload using TFTP. Values include:
	none—do not upload an SSH Client authentication key using TFTP.
	uploadSshcDsaAuthKey—uploads a DSA SSH Client authentication key using TFTP.
	uploadSshcRsaAuthKey—uploads an RSA SSH Client authentication key using TFTP.
UsbAction	Specifies the type of SSH Client authentication key to upload using USB. Values include:
	none—do not upload an SSH Client authentication key using USB.
	uploadSshcDsaAuthKey—uploads a DSA SSH Client authentication key using USB.
	uploadSshcRsaAuthKey—uploads an RSA SSH Client authentication key using USB.
DsaKeySize:	Specifies the DSA key size. Values range from 512 to 1024.
RsaKeySize:	Specifies the RSA key size. Values range from 512 to 1024.
DsaHostKeyStatus:	Indicates the current status of the SSH Client DSA host key. Values include:
	notGenerated
	generated
	• generating
RsaHostKeyStatus:	Indicates the current status of the SSH Client RSA host key. Values include:
	notGenerated
	generated
	generating
SFTP	
Port:	Specifies the TCP port number for the SFTP file transfer. Values range from 1 to 65535.
DsaAuthentication	When selected, enables SFTP DSA authentication for SSH Client (default).

Variable	Value
RsaAuthentication	When selected, enables SFTP password authentication for SSH Client.
PasswordAuthentication	When selected, enables SFTP RSA authentication for SSH Client.
UserName	Specifies the user name.
SftpServerAddress	Specifies the IP address of the SFTP server.

Configuring SSL using EDM

Use the following procedure to configure Secure Socket Layer (SSL) to provide your network with a secure Web management interface.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click SSH/SSL.
- 3. In the work area, click the SSL tab.
- 4. Configure SSL parameters as required.
- 5. Click Apply.

Variable definitions

Variable	Value
Enabled	Indicates whether SSL is enabled or disabled
CertificateControl	Creates or deletes SSL certificates. The last value set is displayed until you change the selection. The default value is other , which indicates that the object was never set.
CertificateExists	Indicates whether a valid SSL certificate is created. Values include:
	true—indicates that a valid certificate is created.
	false—indicates that no valid certificate is created, or that the certificate is deleted.

316 Configuration — Security December 2011

Variable	Value
CertificateControlStatus	Indicates the status of the most recent attempt to create or delete a certificate. The possible status messages are as follows:
	inProgress—the operation is not yet completed
	success—the operation is complete
	failure—the operation failed
	other—CertificateControl was never set
ServerControl	Resets the SSL server. Values are reset and other. The default is other.
	Important:
	You cannot reset the SSL server while creating the SSL certificate.

Configuring RADIUS globally using EDM

Use the following procedure to enable or disable RADIUS security for the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click RADIUS.
- 3. In the work area, click the Globals tab.
- 4. In the RADIUS section, select the **UseMgmtlp** checkbox, to enable RADIUS request use management, .

OR

In the RADIUS section, clear the **UseMgmtlp** checkbox. to disable RADIUS request use management.

5. In the RADIUS section, select the **PasswordFallbackEnabled** checkbox. to enable RADIUS password fallback.

OR

In the RADIUS section, clear the **PasswordFallbackEnabled** checkbox, to disable RADIUS password fallback.

6. In the RADIUS section, select the **DynAuthReplayProtection** checkbox, to enable RADIUS replay protection .

OR

In the RADIUS section, clear the **DynAuthReplayProtection** checkbox, to disable RADIUS replay protection .

- 7. In the RADIUS section, click a **RadiusReachability** radio button.
- 8. On the toolbar, click **Apply**.

Variable definitions

Variable	Value
UseMgmtlp	When selected, RADIUS uses the system management IP address as the source address for RADIUS requests.
PasswordFallbackEnabled	When selected, enables RADIUS password fallback.
DynAuthReplayProtection	When selected, enables RADIUS replay protection.
Reachability	Specifies the RADIUS server reachability mode. Values include:
	use-radius—uses dummy RADIUS requests to determine reachability of the RADIUS server.
	use-icmp—uses ICMP packets to determine reachability of the RADIUS server (default).

Configuring RADIUS accounting using EDM

Use the following procedure to enable or disable RADIUS accounting and to configure RADIUS accounting interim updates for the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click RADIUS.
- 3. In the work area, click the Globals tab.
- 4. In the RADIUS Accounting section, select the **InterimUpdates** checkbox, to enable RADIUS accounting interim updates.

OR

In the RADIUS Accounting section, clear the **InterimUpdates** checkbox, to disable RADIUS accounting interim updates.

5. In the RADIUS Accounting section, type an interval value in the **InterimUpdatesInterval** dialog box.

318 Configuration — Security December 2011

- 6. In the RADIUS Accounting section, select a radio button in the **InterimUpdatesIntervalSource** section.
- 7. On the toolbar, click **Apply**.

Variable definitions

Variable	Value
InterimUpdates	Enables or disables RADIUS accounting interim updates for the switch.
InterimUpdatesInterval	Specifies the time interval (in seconds) before RADIUS accounting interim updates times out. Values range from 60–3600 seconds. The default is 600 seconds.
InterimUpdatesIntervalSource	Specifies the source of the interim updates timeout interval. • configuredValue—uses the value in the RadiusAccountingInterimUpdatesInterval dialog box
	radiusServer—uses the value applied by the RADIUS server

Configuring the Global RADIUS Server using EDM

Use this procedure to configure a Global RADIUS Server for processing client requests without designating separate EAP or Non-EAP requests.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click RADIUS.
- 3. In the work area, click the Global RADIUS Server tab.
- 4. Choose an address type in the **PrimaryRadiusServerAddressType** box.
- 5. Type an IP address in the **PrimaryRadiusServer** box.
- 6. Choose an address type in the **SecondaryRadiusServerAddressType** box.
- 7. Type an IP address in the **SecondaryRadiusServer** box.
- 8. Type a UDP port number in the **RadiusServerUdpPort** box.
- 9. Type a timeout value In the RadiusServerTimeout field.
- 10. To change the shared secret key, type a value in the **SharedSecret(Key)** box.
- 11. Confirm the new shared secret value in the ConfirmSharedSecret(Key) box.

12. To enable accounting, check the **AccountingEnabled** checkbox.

OR

To disable accounting, clear the **AccountingEnabled** checkbox.

- 13. Type a value in the **AccountingPort** box.
- 14. Type a value in the **RetryLimit** box.
- 15. On the toolbar, click Apply.

Variable definitions

Variable	Value
PrimaryRadiusServerAddressType	Specifies the type of IP address type for the primary Global RADIUS server. Values include unknown, ipv4, and ipv6.
PrimaryRadiusServer	Specifies the IPv4 or IPv6 address for the primary Global RADIUS Server. The default address is 0.0.0.0.
	Important:
	An IPv4 address value of 0.0.0.0 indicates that a primary Global RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a primary Global RADIUS Server is not configured.
SecondaryRadiusServerAddressTyp e	Specifies the IP address type for the secondary Global RADIUS Server. Values include unknown, ipv4, and ipv6.
SecondaryRadiusServer	Specifies the IP address for the secondary Global RADIUS Server. The default address is 0.0.0.0. The secondary Global RADIUS Server is used only if the primary Global RADIUS Server is unavailable or unreachable.
	Important:
	An IPv4 address value of 0.0.0.0 indicates that a secondary Global RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a secondary Global RADIUS Server is not configured.
RadiusServerUdpPort	Specifies the UDP port number for clients to use when trying to contact the Global RADIUS Server at the corresponding Global RADIUS Server IP address. Values range from 1 to 65535. The default port number is 1812.
RadiusServerTimeout	Specifies the timeout interval between each retry for service requests to the Global RADIUS Server. The

Variable	Value
	default is 2 Seconds. Values range from 1 to 60 seconds.
SharedSecret(Key)	Specifies a new value for the Global RADIUS Server shared secret key, to a maximum of 16 characters.
ConfirmedSharedSecret(key)	Confirms the value typed in the shared secret key box. If you do not change the Global RADIUS Server shared secret key, you do not have to type a value in this box.
AccountingEnabled	Enables or disables RADIUS accounting for a Global RADIUS Server instance.
AccountingPort	Specifies the UDP accounting port number for clients to use when trying to contact the RADIUS server at the corresponding Global RADIUS Server IP address. Values range from 0 to 65535.
RetryLimit	Specifies the number of RADIUS retry attempts for a Global RADIUS Server instance. Values range from 1 to 5.

Configuring the EAP RADIUS server using EDM

Use this procedure to configure an EAP RADIUS Server for processing EAP client requests only.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click **RADIUS**.
- 3. In the work area, click the **EAP RADIUS Server** tab.
- 4. Choose an address type in the **PrimaryRadiusServerAddressType** box.
- 5. Type an IPv4 or IPv6 address in the **PrimaryRadiusServer** field.
- 6. Choose an address type in the **SecondaryRadiusServerAddressType** box.
- 7. Type an IPv4 or IPv6 address in the **SecondaryRadiusServer** box.
- 8. Type a UDP port number in the **RadiusServerUdpPort** box.
- 9. Type a timeout value In the **RadiusServerTimeout** box.
- 10. Type a value in the **SharedSecret(Key)** box, to change the shared secret key.
- 11. Confirm the new shared secret value in the ConfirmSharedSecret(Key) box.
- 12. Check the **AccountingEnabled** checkbox, to enable accounting.

OR

Clear the **AccountingEnabled** checkbox, to disable accounting.

- 13. Type a value in the **AccountingPort** box.
- 14. Type a value in the **RetryLimit** box.
- 15. On the toolbar, click Apply.

Variable definitions

Variable	Value
PrimaryRadiusServerAddressType	Specifies the type of IP address type for the primary EAP RADIUS Server. Values include unknown, ipv4, and ipv6.
PrimaryRadiusServer	Specifies the IPv4 or IPv6 address for the primary EAP RADIUS Server. The default address is 0.0.0.0.
	Important: An IPv4 address value of 0.0.0.0 indicates that a primary EAP RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a primary EAP RADIUS Server is not configured.
SecondaryRadiusServerAddressTyp e	Specifies the IP address type for the secondary EAP RADIUS Server. Values include unknown, ipv4, and ipv6.
SecondaryRadiusServer	Specifies the IP address for the secondary EAP RADIUS Server. The default address is 0.0.0.0. The secondary EAP RADIUS Server is used only if the primary EAP RADIUS Server is unavailable or unreachable.
	Important:
	An IPv4 address value of 0.0.0.0 indicates that a secondary EAP RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a secondary EAP RADIUS Server is not configured.
RadiusServerUdpPort	Specifies the UDP port number for clients to use when trying to contact the EAP RADIUS Server at the corresponding EAP RADIUS Server IP address. Values range from 1 to 65535. The default port number is 1812.
RadiusServerTimeout	Specifies the timeout interval between each retry for service requests to the EAP RADIUS Server. The default is 2 Seconds. Values range from 1 to 60 seconds.

322 Configuration — Security

Variable	Value
SharedSecret(Key)	Specifies a new value for the EAP RADIUS Server shared secret key, to a maximum of 16 characters.
ConfirmedSharedSecret(key)	Confirms the value typed in the shared secret key box. If you do not change the EAP RADIUS Server shared secret key, you do not have to type a value in this box.
AccountingEnabled	Enables or disables RADIUS accounting for an EAP RADIUS Server instance.
AccountingPort	Specifies the UDP accounting port number for clients to use when trying to contact the EAP RADIUS Server at the corresponding EAP RADIUS Server IP address. Values range from 1 to 65535.
RetryLimit	Specifies the number of RADIUS retry attempts for an EAP RADIUS Server instance. Values range from 1 to 5.

Configuring the NEAP RADIUS server using EDM

Use this procedure to configure a Non-EAP (NEAP) RADIUS Server for processing NEAP client requests only.

Procedure steps

- 1. From the navigation tree, double-click **Security** .
- 2. In the Security tree, double-click RADIUS.
- 3. In the work area, click the **NEAP RADIUS Server** tab.
- 4. Choose an address type in the **PrimaryRadiusServerAddressType** box.
- 5. Type an IPv4 or Ipv6 address in the **PrimaryRadiusServer** box.
- 6. Choose an address type in the **SecondaryRadiusServerAddressType** box.
- 7. Type an Ipv4 or Ipv6 address in the **SecondaryRadiusServer** box.
- 8. Type a UDP port number in the **RadiusServerUdpPort** box.
- 9. Type a timeout value In the **RadiusServerTimeout** box.
- 10. To change the shared secret key, type a value in the **SharedSecret(Key)** box.
- 11. Confirm the new shared secret value in the **ConfirmSharedSecret(Key)** box.
- 12. To enable accounting, check the **AccountingEnabled** checkbox.

OR

To disable accounting, clear the **AccountingEnabled** checkbox.

- 13. Type a value in the **AccountingPort** box.
- 14. Type a value in the box **RetryLimit**.
- 15. On the toolbar, click Apply.

Variable definition

Variable	Value
PrimaryRadiusServerAddressType	Specifies the type of IP address type for the primary NEAP RADIUS server. Values include unknown, ipv4, and ipv6.
PrimaryRadiusServer	Specifies the IPv4 or IPv6 address for the primary NEAP RADIUS Server. The default address is 0.0.0.0. Important:
	Important:
	An IPv4 address value of 0.0.0.0 indicates that a primary NEAP RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a primary NEAP RADIUS server is not configured.
SecondaryRadiusServerAddressType	Specifies the IP address type for the secondary NEAP RADIUS Server. Values include unknown, ipv4, and ipv6.
SecondaryRadiusServer	Specifies the IP address for the secondary NEAP RADIUS Server. The default address is 0.0.0.0. The secondary NEAP RADIUS Server is used only if the primary NEAP RADIUS Server is unavailable or unreachable.
	Important:
	An IPv4 address value of 0.0.0.0 indicates that a secondary NEAP RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a secondary NEAP RADIUS server is not configured.
RadiusServerUdpPort	Specifies the UDP port number for clients to use when trying to contact the NEAP RADIUS Server at the corresponding NEAP RADIUS Server IP address. Values range from 1 to 65535. The default port number is 1812.
RadiusServerTimeout	Specifies the timeout interval between each retry for service requests to the NEAP RADIUS Server. The default is 2 Seconds. Values range from 1 to 60 seconds.

324 Configuration — Security

Variable	Value
SharedSecret(Key)	Specifies a new value for the NEAP RADIUS Server shared secret key, to a maximum of 16 characters.
ConfirmedSharedSecret(key)	Confirms the value typed in the shared secret key box. If you do not change the NEAP RADIUS Server shared secret key, you do not have to type a value in this box.
AccountingEnabled	Enables or disables RADIUS accounting for a NEAP RADIUS Server instance.
AccountingPort	Specifies the UDP accounting port number for clients to use when trying to contact the NEAP RADIUS Server at the corresponding NEAP RADIUS Server IP address. Values range from 0 to 65535.
RetryLimit	Specifies the number of RADIUS retry attempts for a NEAP RADIUS Server instance. Values range from 1 to 5.

Viewing RADIUS Dynamic Authorization server information using EDM

Use the following procedure to display RADIUS Dynamic Authorization server information for the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click 802.1X/EAP.
- 3. In the work area, click the **RADIUS Dynamic Auth. Server** tab.

Variable definitions

Use the data in the following table to view the number of Disconnect and CoA Requests received from unknown addresses.

Variable	Value
Identifier	Indicates the Network Access Server (NAS) identifier of the RADIUS Dynamic Authorization Server.
DisconInvalidClientAddresses	Indicates the number of Disconnect-Request packets received from unknown addresses.
CoAlnvalidClientAddresses	Indicates the number of CoA-Request packets received from unknown addresses.

Creating an 802.1X dynamic authorization extension (RFC 3576) client using EDM

Use the following procedure to create an RADIUS Dynamic Authorization client for the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click 802.1X/EAP.
- 3. In the work area, click the RADIUS Dynamic Auth. Client tab.
- 4. Click Insert.

The Insert RADIUS Dynamic Auth. Client dialog box appears.

- 5. In the **AddressType** section, select a radio button.
- 6. In the **Address** dialog box, type an IP address.
- 7. To enable the RADIUS Dynamic Authorization client, select the **Enabled** checkbox.

OR

To disable the RADIUS Dynamic Authorization client, clear the **Enabled** checkbox.

- 8. In the **UdpPort** dialog box, type a port number.
- 9. To enable change of authorization request processing, select the **ProcessCoARequests** checkbox.

OR

To disable change of authorization request processing, clear the **ProcessCoARequests** checkbox.

10. To enable disconnect request processing, select the **ProcessDisconnectRequests** checkbox.

OR

To disable disconnect request processing, clear the **ProcessDisconnectRequests** checkbox.

- 11. In the **Secret** dialog box, type a shared secret word.
- 12. Click Insert.
- 13. On the toolbar, click **Apply**.

Variable definitions

Use the data in the following table to configure the RADIUS Dynamic Authorization client.

Variable	Value
AddressType	Defines the IP address type for the RADIUS Dynamic Authorization Client.
Address	Defines the IP address of the RADIUS Dynamic Authorization Client.
Enabled	Enables or disables packet receiving from the RADIUS Dynamic Authorization Client.
UdpPort	Configures the server and NAS UDP port to listen for requests from the RADIUS Dynamic Authorization Client. Values range from 1025–65535.
ProcessCoARequests	Enables or disables change of authorization (CoA) request processing.
ProcessDisconnectRequests	Enables or disables disconnect request processing.
Secret	Defines the secret word shared between the RADIUS Dynamic Authorization Client and the RADIUS server.

Deleting an 802.1X dynamic authorization extension (RFC 3576) client configuration using EDM

Use the following procedure to delete an existing RADIUS Dynamic Authorization client configuration.

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click 802.1X/EAP.
- 3. In the work area, click the **RADIUS Dynamic Auth. Client** tab.

- 4. To select a RADIUS Dynamic Authorization client to delete, click the client row.
- 5. Click Delete.

Viewing the 802.1X dynamic authorization extension (RFC 3576) client configuration using EDM

Use the following procedure to display existing RADIUS Dynamic Authorization client configurations for the switch.

Procedure steps

- 1. From the navigation tree, double-click Security.
- 2. In the Security tree, click 802.1X/EAP.
- 3. In the work area, click the RADIUS Dynamic Auth. Client tab.

Variable definitions

Use the data in the following table to understand the RADIUS Dynamic Authorization client display.

Variable	Value
AddressType	Indicates the IP address type for the RADIUS Dynamic Authorization Client.
Address	Indicates the IP address of the RADIUS Dynamic Authorization Client.
Enabled	Indicates whether packet receiving from the RADIUS Dynamic Authorization Client is enabled (true) or disabled (false).
UdpPort	Indicates the server and NAS UDP port to listen for requests from the RADIUS Dynamic Authorization Client. Values range from 1025–65535.
ProcessCoARequests	Indicates whether change of authorization (CoA) request processing is enabled or disabled.
ProcessDisconnectRequests	Indicates whether disconnect request processing is enabled or disabled.
Secret	Indicates the secret word shared between the RADIUS Dynamic Authorization Client and the RADIUS server.

328 Configuration — Security December 2011

Modifying the 802.1X dynamic authorization extension (RFC 3576) client configuration using EDM

Use the following procedure to edit an existing RADIUS Dynamic Authorization client configuration.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **802.1X/EAP**.
- 3. In the work area, click the **RADIUS Dynamic Auth. Client** tab.
- 4. To select a RADIUS Dynamic Authorization client to edit, click the client row.
- 5. In the client row, double-click the cell in the **Enabled** column.
- 6. Select a value from the list—**true** to enable RADIUS Dynamic Authorization client, or **false** to disable RADIUS Dynamic Authorization client for the VLAN.
- 7. In the client row, double-click the cell in the **UdpPort** column.
- 8. Edit the UDP port number as required.
- 9. In the client row, double-click the cell in the **ProcessCoARequests** column.
- 10. Select a value from the list—**true** to enable CoA request processing, or **false** to disable CoA request processing.
- 11. In the client row, double-click the cell in the **ProcessDisconnectRequests** column.
- 12. Select a value from the list—**true** to enable disconnect request processing, or **false** to disable disconnect request processing.
- 13. On the toolbar, click **Apply**.

Variable definitions

Use the data in the following table to modify an existing RADIUS Dynamic Authorization client configuration.

Variable	Value
AddressType	Indicates the IP address type for the RADIUS Dynamic Authorization Client. This is a readonly cell.
Address	Indicates the IP address of the RADIUS Dynamic Authorization Client. This is a read- only cell.
Enabled	Enables or disables packet receiving from the RADIUS Dynamic Authorization Client.

Variable	Value
	enable—true disable—false
UdpPort	Defines the server and NAS UDP port to listen for requests from the RADIUS Dynamic Authorization Client. Values range from 1024 to 65535.
ProcessCoARequests	Enables or disables change of authorization (CoA) request processing.
ProcessDisconnectRequests	Enables or disables disconnect request processing.
Secret	The RADIUS Dynamic Authorization Client secret word. This cell remains empty.

Changing the 802.1X dynamic authorization extension (RFC 3576) client secret word using EDM

Use the following procedure to change the existing RADIUS Dynamic Authorization client secret word.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click 802.1X/EAP.
- 3. In the work area, click the **RADIUS Dynamic Auth. Client** tab.
- 4. Click Change Secret.
- 5. In the **Secret** dialog box, type a new secret word.
- 6. In the **Confirmed Secret** dialog box, retype the new secret word.
- 7. Click Apply.

Viewing RADIUS Dynamic Server statistics using EDM

Use the following procedure to display RADIUS Dynamic Server statistical information.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click 802.1X/EAP.
- 3. In the work area, click the RADIUS Dynamic Server Stats tab.

Variable definitions

Use the data in the following table to help you understand the RADIUS Dynamic Server statistics display.

Variable	Value
ClientIndex	Indicates the RADIUS Dymanic Server client index.
ClientAddressType	Indicates the type of RADIUS Dymanic Server address. Values are ipv4 or ipv6.
ClientAddress	Indicates the IP address of the RADIUS Dymanic Server.
ServerCounterDiscontinuity	Indicates a count of RADIUS Dymanic Server discontinuity instances.

Graphing RADIUS Dynamic Server statistics using EDM

Use the following procedure to graph statistics for a RADIUS Dynamic Server client.

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click 802.1X/EAP.
- 3. In the work area, click the RADIUS Dynamic Server Stats tab.
- 4. To select a VLAN to edit, click the client row.
- 5. On the toolbar, click Graph.

- 6. Click and drag your cursor to highlight all RADIUS Dynamic Server statistical information to graph.
- 7. Click Line Chart, Area Chart, Bar Chart, or Pie Chart.

DHCP snooping configuration using EDM

This section describes how you can configure DHCP snooping to provide security to your network by preventing DHCP spoofing, using Enterprise EDM (EDM).

Configuring global DHCP snooping using EDM

Use the following procedure to configure global DHCP snooping to enable or disable DHCP snooping parameters for the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click **DHCP Snooping**.
- 3. In the work area, click the **DHCP Snooping Globals** tab.
- 4. To enable DHCP snooping globally, select the **Enabled** checkbox in the DHCP Snooping section.

OR

To disable DHCP Snooping globally, clear the **Enabled** checkbox in the DHCP Snooping section.

5. To enable Option 82 for DHCP snooping, select the **Option82Enabled** checkbox in the DHCP Snooping section.

OR

To Disable Option 82 for DHCP Snooping, clear the Option82Enabled checkbox in the DHCP Snooping section.

6. On the toolbar, click Apply.

DHCP snooping must be enabled on Layer 3 VLANs spanning toward DHCP servers in Layer 3 mode. DHCP relay is also required for correct operation.

December 2011 332 Configuration — Security

Configuring DHCP Snooping external save using EDM

Use this procedure to store the DHCP Snooping database to an external TFTP server or USB drive.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click DHCP Snooping.
- 3. In the work area, click the **DHCP Snooping Globals** tab.
- 4. In the DHCP Snooping External Save section, select the **Enabled** checkbox, to enable DHCP Snooping external save.

OR

In the DHCP Snooping External Save section, clear the **Enabled** checkbox, to disable DHCP Snooping external save.

- 5. Click a TftpServerAddressType button.
- 6. Type a value in the **TftpServerAddress** box.
- 7. Type a value in the **UsbTargetUnit** box.
- 8. Type a value in the **Filename** box.
- 9. To force a binding table restore, click the **ForceRestore** button.
- 10. On the toolbar, click Apply.

Variable definitions

Variable	Value
DHCP Snooping External Save	
Enabled	Enables or disables DHCP Snooping External Save.
SyncFlag	Indicates if changes in the DHCP Snooping binding table are synchronized on the external device. Values include:
	true—changes will be synchronized at the next write operation
	false—changes will not be synchronized at the next write operation
LastSyncTime	Displays the UTC time when the switch last backed up the DHCP Snooping binding table.

Variable	Value
TftpServerAddressType	Specifies the IP address type of the TFTP server on which to save the DHCP Snooping binding file. Values include ipv4 or ipv6.
TftpServerAddress	Specifies the IPv4 or IPv6 address of the TFTP server on which to save the DHCP Snooping binding file.
UsbTargetUnit	Specifies the unit number of the USB port to use in file save or restore operations.
Filename	Specifies the name of the DHCP Snooping database that is saved externally.
ForceRestore	Forces the restoration of the DHCP Snooping database on the switch from the file previously saved to an external USB drive or TFTP server.

Configuring DHCP snooping on a VLAN using EDM

Use the following procedure to configure DHCP snooping on a VLAN through to enable or disable DHCP snooping and DHCP snooping with Option 82 for a VLAN.

Important:

You must enable DHCP snooping separately for each Vlan ID.

Important:

If DHCP snooping is disabled on a VLAN, the switch forwards DHCP reply packets to all applicable ports, whether the port is trusted or untrusted.

- 1. From the Device Physical View, select a port.
- From the navigation tree, double-click Security.
- 3. In the Security tree, double-click **DHCP Snooping**.
- 4. In the work area, click the **DHCP Snooping-VLAN** tab.
- 5. To select a VLAN to edit, click the VLAN ID.
- 6. In the VLAN row, double-click the cell in the **DhcpSnoopingEnabled** column.
- 7. Select a value from the list—true to enable DHCP snooping for the VLAN, or false to disable DHCP snooping for the VLAN.
- 8. In the VLAN row, double-click the cell in the VlanOtion82Enabled column.

- 9. Select a value from the list—**true** to enable DHCP snooping with Option 82 for the VLAN, or **false** to disable DHCP snooping with Option 82 for the VLAN.
- 10. Click Apply.

Configuring DHCP snooping on a port using EDM

Use the following procedure to configure DHCP snooping on a port to configure port trust and to enable or disable DHCP snooping with Option 82 for a port. Ports are untrusted by default.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **DHCP Snooping**.
- 3. In the work area, click the **DHCP Snooping-port** tab.
- 4. To select a port to edit, click a **Port** row.
- 5. In the Port row, double-click the cell in the **DhcpSnoopinglfTrusted** column.
- 6. Select a value from the list—trusted or untrusted.
- 7. Double-click the **DhcpSnoopinglfOption82SubscriberId** for a port.
- 8. Type a subscriber Id value for the port.
- 9. Click Apply.

Variable definitions

Use the data in the following table to configure DHCP snooping on ports.

Variable	Value
Port	Indicates the port on the switch.
DhcpSnoopinglfTrusted	Specifies whether the port is trusted or untrusted. Default is false.
DhcpSnoopinglfOption82Su bscriberId	Specifies the DHCP Option 82 subscriber ld for the port. Value is a character string between 0 and 64 characters.

DHCP binding configuration using EDM

Use the information in this section to view and manage DHCP client lease static entries.

DHCP binding configuration using EDM navigation

- Viewing DHCP binding information using EDM on page 336
- Creating static DHCP binding table entries using EDM on page 337
- Deleting DHCP binding table entries using EDM on page 338

Viewing DHCP binding information using EDM

Use the following procedure to display DHCP binding information.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security Routing tree, double-click **DHCP Snooping**.
- 3. In the work area, click the **DHCP Bindings** tab.

Variable definitions

Use the data in the following table to help you understand the DHCP binding information display.

Variable	Value
VlanId	Indicates the ID of the VLAN that the DHCP client is a member of.
MacAddress	Indicates the MAC address of the DHCP client.
AddressType	Indicates the MAC address type of the DHCP client.
Address	Indicates IP address of the DHCP client.

336 Configuration — Security December 2011

Variable	Value
Interface	Indicates the interface to which the DHCP client is connected.
LeaseTime(sec)	Indicates the lease time (in seconds) of the DHCP client binding. Values range from 0 to 4294967295.
TimeToExpiry(sec)	Indicates the time (in seconds) before a DHCP client binding expires.
Source	Indicates the source of the binding table entry

Creating static DHCP binding table entries using EDM

Use the following procedure to add entries for devices with static IP addresses to the DHCP binding table.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **DHCP Snooping**.
- 3. In the work area, click the **DHCP Bindings** tab.
- 4. Click Insert.

The Insert DHCP Bindings dialog box appears.

- 5. Click the VlanId elipsis (...), and select the DHCP client VLAN ID.
- 6. Click Ok.
- 7. In the **MacAddress** dialog box, type the DHCP client MAC address.
- 8. In the **AddressType** section, select a radio button.
- 9. In the **Address** dialog box, type the DHCP client IP address.
- 10. Click the Interface elipsis (...).
- 11. From the list, select an interface port.
- 12. Click Ok.
- 13. In the **Lease Time(sec)** field, type a lease time.
- 14. Click Insert.
- 15. On the toolbar, click Apply.

Variable definitions

Use the data in the following table to add static entries to the DHCP binding table.

Variable	Value
VlanId	Specifies the ID of the VLAN that the DHCP client is a member of.
MacAddress	Specifies the MAC address of the DHCP client.
AddressType	Specifies the IP address type of the DHCP client.
Address	Specifies IP address of the DHCP client.
Interface	Specifies the interface to which the DHCP client is connected.
LeaseTime(sec)	Specifies the lease time (in seconds) for the DHCP client binding. Values range from 0 to 4294967295.

Deleting DHCP binding table entries using EDM

Use the following procedure to delete static IP addresses from the DHCP binding table.

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **DHCP Snooping**.
- 3. Select the **DHCP Bindings** tab.
- 4. Click the VLAN ID.
- 5. On the toolbar, click **Delete**.
- 6. Click **Yes** to confirm that you want to delete the entry.

Configuring dynamic ARP inspection on VLANs using EDM

Use the following procedure to configure ARP inspection on a VLAN to enable or disable ARP inspection on one or more VLANs.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **Dynamic ARP Inspection (DAI)**.
- 3. In the work area, click the ARP Inspection-VLAN tab.
- 4. Double-click the **ARPInspectionEnabled** box for a VLAN.
- 5. Select **true** to enable ARP Inspection-VLAN.

OR

Select false to disable ARP Inspection-VLAN.

- 6. Repeat steps **3** and **4** for additional VLANs as required.
- 7. Click Apply.

Configuring dynamic ARP inspection on ports using EDM

Use this procedure to configure dynamic ARP inspection for one or more switch ports as *trusted* (ARP traffic is not subject to dynamic ARP inspection) or *untrusted* (ARP traffic is subject to dynamic ARP inspection).

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click **Dynamic ARP Inspection (DAI)**.
- 3. In the work area, click the ARP Inspection-Port tab.
- 4. Double-click the **ARPInspectionIfTrusted** cell for a port.
- 5. From the list, select trusted or untrusted.

- 6. Repeat steps 3 and 4 for additional ports as required.
- Click Apply.

IP Source Guard configuration using EDM

This section describes how to configure IP Source Guard to add a higher level of security to a port or ports by preventing IP spoofing

lmportant:

Avaya recommends that you do not enable IP Source Guard on trunk ports.

lmportant:

Avaya recommends that you carefully manage the number of applications running on the Avaya Ethernet Routing Świtch 4000 that use filters. For example, if you configure NSNA on ports and attempt to configure IP Source Guard on those same ports, the IP Source Guard configuration can fail due to the limited number of filters available.

Prerequisites

- Open one of the supported browsers.
- Enter the IP address of the switch to open an EDM session.
- Dynamic Host Control Protocol (DHCP) snooping is globally enabled.

For more information, see DHCP snooping configuration using EDM on page 332.

- The port is a member of a Virtual LAN (VLAN) configured with DHCP snooping and dynamic Address Resolution Protocol (ARP) Inspection.
- The port is an untrusted DHCP snooping and dynamic ARP Inspection port.
- The bsSourceGuardConfigMode MIB object exists.

This MIB object is used to control the IP Source Guard mode on an interface.

- The following applications are not enabled:
 - Baysecure
 - Extensible Authentication Protocol over LAN (EAPOL)

lmportant:

Hardware resources can run out if IP Source Guard is enabled on trunk ports with a large number of VLANs, which have DHCP snooping enabled. If this happens, traffic sending can

December 2011 340 Configuration — Security

be interrupted for some clients. Avaya recommends that IP Source Guard not be enabled on trunk ports.

Configuring IP Source Guard on a port using EDM

Configure IP Source Guard to enable or disable a higher level of security on a port or ports.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click IP Source Guard (IPSG).
- 3. In the work area, click the **IP Source Guard-port** tab.
- 4. Double-click the **Mode** box for a port.
- 5. Select **ip** from the list to enable IP Source Guard.

OR

Select disabled from the list to disable IP Source Guard.

- 6. On the toolbar, click Apply.
- 7. On the toolbar, click **Refresh** to update the IP Source Guard-port dialog box display.

Variable definitions

Use the data in the following table to enable IP Source Guard on a port.

Variable	Value
Port	Identifies the port number.
Mode	Identifies the Source Guard mode for the port. The mode can be disabled or ip. The default mode is disabled.

Filtering IP Source Guard addresses using EDM

Use the following procedure to filter IP Source Guard addresses to display IP Source Guard information for specific IP addresses.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click IP Source Guard (IPSG).
- 3. In the work area, click the IP Source Guard-addresses tab.
- 4. Select an entry in the table.
- 5. On the toolbar, click Filter.
- 6. In the IP Source Guard-addresses Filter dialog box, select the required parameters for displaying port IP Source Guard information.
- 7. Click Filter.

IP Source Guard information for the specified IP addresses appears in the IP Source Guard-addresses dialog box.

Variable definitions

Use the data in the following table to filter IP Source Guard addresses.

Variable	Value
Condition	Defines the search condition. Values are:
	AND: Includes keywords specified in both the Port and Address fields while filtering results.
	OR: Includes either one of the keywords specified in the Port and Address fields while filtering results.
Ignore Case	Ignores the letter case while searching.
Column	Specifies the content of the column search. Values are
	Contains
	Does not contain
	• Equals to
All records	Displays all entries in the table.
Port	Searches for the specified port.
Address	Searches for the specified IP address.

Use the data in the following table to display IP Source Guard information for filtered addresses.

Variable	Value
Port	Indicates the port number.
Туре	Indicates the internet address type.
Address	Indicates the IP address allowed by IP Source Guard.
Source	Indicates the source of the address.

Viewing IP Source Guard port statistics using EDM

View IP Source Guard port statistics to display dropped packet statistics for IP Source Guard enabled ports.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click IP Source Guard (IPSG).
- 3. In the work area, click the **IP Source Guard-stats** tab to view the IP Source Guard port statistics.

Variable definitions

Use the data in the following table to understand the IP Source Guard statistics display.

Variable	Value
IfIndex	Identifies the slot and port number of the IP Source Guard enabled ports.
DroppedPackets	Displays the number of instances of dropped packets that occur on IP Source Guard enabled ports.

TACACS+ configuration using EDM

This section describes how to configure, enable, and disable TACACS+ servers in the system.

Configuring TACACS+ services using EDM

Use the following procedure to configure a TACACS+ services.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click TACACS+ .
- 3. In the **Globals** tab, configure the parameters as required.
- 4. On the toolbar, click Apply.

Variable definitions

Use the data in the following table to configure TACACS+ services.

Variable	Value
Accounting	Enables or disables TACACS+ accounting.
Authentication	Indicates the authentication status.
AuthorizationEnabled	Enables or disables TACACS+ authorization.
AuthorizationLevels	Indicates the TACACS+ authorization level.

Adding a TACACS+ server using EDM

Use the following procedure to add TACACS+ server in the system.

Procedure steps

- 1. From the navigation tree, double-click Security.
- 2. In the Security tree, double-click TACACS+.
- 3. In the work area, click the **TACACS+ Server** tab.
- 4. On the toolbar, click Insert.

The Insert TACACS+ Server dialog box appears.

5. Type the address in the **Address** field.

- 6. Type the port number in the **PortNumber** field.
- 7. Type the key in the **Key** field.
- 8. Retype the key in the **Confirm Key** field.
- 9. Choose the priority in the **Priority** field.
- 10. Click Insert.

Variable definitions

Use the data in the following table to add a TACACS+ server.

Variable	Value
AddressType	Specifies the type of IP address used on the TACACS+ server.
Address	Indicates the IP address of the TACACS+ server in use.
PortNumber	Indicates the TCP port on which the client establishes a connection to the server.
Key	Indicates the secret key to be shared with this TACACS+ server. Key length zero indicates no encryption is being used.
Confirm Key	Indicates the key in use.
Priority	Determines the order in which the TACACS+ servers are used. Available options are— primary or secondary.

Deleting a TACACS+ server using EDM

Use the following procedure to delete a TACACS+ server from the system.

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click TACACS+.
- 3. In the work area, click the TACACS+ Server tab.
- 4. In the table, select the TACACS+ server entry you want to delete.
- 5. On the toolbar, click **Delete**.
- 6. Click Yes to confirm.

Configuring the Web and Telnet password using EDM

Use the following procedure to configure a password for Web and Telnet access to a stack, or standalone switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, click Web/Telnet/Console.
- 3. In the work area, click the **Web/Telnet** tab.
- 4. Click the arrow on the Web/Telnet Switch Password Type box.
- 5. Select a password type from the list.
- 6. Type the password for read-only access in the **Read-Only Stack Password** box.
- 7. Type the same password for read-only access in the **Re-enter to verify** box.
- Type the password for read-write access in the Read-Write Switch Password box.
- 9. Type the same password for read-write access in the **Re-enter to verify** box.
- 10. On the toolbar, click Apply.

Variable definitions

Variable	Value
Web/Telnet Stack Password Type	Specifies the type of the password to use. Values include:
	none—disables the password
	Local Password— uses the locally defined password for Web and Telnet access.
	RADIUS Authentication— uses RADIUS password authentication for Web and Telnet access.
Read-Only Stack Password	Specifies the read-only password for stack or switch access.

346 Configuration — Security December 2011

Variable	Value
Read-Write Switch Password	Specifies the read-write password for stack or switch access.

Configuring the console password using EDM

Use the following procedure to configure a password for serial console access to a stack, or standalone switch.

Procedure steps

- 1. From the navigation tree, double-click Security.
- 2. In the Security tree, double-click Web/Telnet/Console.
- 3. In the work area, click the Console Password tab.
- 4. Click the arrow on the Console Stack Password Type box.
- 5. Select a password type from the list.
- 6. Type the password for read-only access in the **Read-Only Stack Password** box.
- 7. Type the same password for read-only access in the **Re-enter to verify** box.
- 8. Type the password for read-write access in the **Read-Write Stack Password** box.
- 9. Type the same password for read-write access in the **Re-enter to verify** box.
- 10. On the toolbar, click Apply.

Variable definitions

Use the data in the following table to configure the console switch password.

Variable	Value
Console Stack Password Type	Specifies the type of password to use. Values include:
	none—disables the password
	Local Password— uses the locally defined password for serial console access.
	RADIUS Authentication— uses RADIUS authentication for serial console access.
Read-Only Stack Password	Specifies the read-only password for stack or switch access.
Read-Write Stack Password	Specifies the read-write password for stack or switch access.

SNMP configuration using EDM

This section details the configuration options available for SNMP in EDM.

Viewing the SNMP configuration using EDM

Use the following procedure to display information about SNMP on your switch.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. In the Edit tree, double-click **Chassis**.
- 3. In the Chassis tree, double-click Chassis.
- 4. In the work area, click the **SNMP** tab.

Variable definitions

The following table describes fields on the SNMP tab.

Table 78: SNMP tab fields

Field	Description
LastUnauthenticatedInetAddressType	Indicates the type of IP address that was not authenticated by the device last.
LastUnauthenticatedInetAddress	Indicates the last IP address that was not authenticated by the device.
LastUnauthenticatedCommunityString	Indicates the last community string that was not authenticated by the device.
RemoteLoginInetAddressType	Indicates the type of IP address to last remotely log on to the system.
RemoteLoginInetAddress	Indicates the last IP address to remotely log on to the system.
TrpRcvrMaxEnt	Indicates the maximum number of trap receiver entries.
TrpRcvrCurEnt	Indicates the current number of trap receiver entries.
TrpRcvrNext	Indicates the next trap receiver entry to be created.

Creating a user using EDM

User the following procedure to create an SNMP user.

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Snmp Server**.
- 3. In the Snmp Server tree, double-click **User**.
- 4. On the toolbar, click Insert to open the Insert User dialog.
- 5. Configure the parameters as required.
- 6. Click Insert.

Variable definitions

Use the data in the following table to create an SNMP user.

Variable	Value
EngineID	Indicates the administratively-unique identifier of SNMP engine.
Name	Indicates the user name.
Auth Protocol	Indicates the registration point for standards-track authentication protocols used in SNMP Management Frameworks.
AuthPassword	Specifies the current authorization password.
ConfirmPassword	Reenter the password to confirm.
Priv Protocol	To assign a privacy protocol, select one of the following from the list:
	• None
	• DES
	• 3DES
	• AES
PrivacyPassword	Specifies the current privacy password.
ConfirmPassword	Re-enter the password to confirm.
ReadViewName	Specifies the name of the MIB View to which the user is assigned read access.
WriteViewName	Specifies the name of the MIB View to which the user is assigned write access.
NotifyViewName	Specifies the name of the MIB View from which the user receives notifications.
Storage Type	Specifies whether this table entry is stored in one of the following memory types:
	volatile—entry does not persist if switch loses power
	nonVolatile—entry persists if switch loses power

Viewing the user details using EDM

User the following procedure to view information about an SNMP user.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. In the Edit tree, double-click Snmp Server.
- 3. In the Snmp Server tree, double-click User.
- 4. In the table, select the user you want to view.
- 5. On the toolbar, click **Details** to view the details of selected user.

Variable definitions

The following table describes the fields of User Details tab.

Field	Value
Name	Indicates the user name.
ContextPrefix	Indicates the context prefix in use.
SecurityModel	Indicates the security model in use.
SecurityLevel	Indicates the minimum level of security in use.
ReadViewName	Indicates name of the MIB view of the SNMP context that has read access.
WriteViewName	Indicates the name of the MIB view of the SNMP context that has write access.
NotifyViewName	Indicates the name of the MIB view of the SNMP context that has access for notifications.
Storage Type	Indicates the memory storage type.

Viewing MIBs assigned to an object using EDM

Use the following procedure to view the MIBs assigned to an object.

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Snmp Server**.
- 3. In the Snmp Server tree, double-click MIB View.

- 4. On the toolbar, click **Insert** to open the Insert MIB View dialog.
- 5. Configure the parameter as required.
- 6. Click Insert.

Variable definitions

The following table describes the fields of MIB View tab.

Field	Value
ViewName	Indicates the name of the family of view subtrees.
Subtree	Indicates the MIB subtree.
Туре	Indicates whether the subtree is included or excluded from the MIB view.
Storage Type	Indicates the storage type.

Creating a community using EDM

Use the following procedure to create an SNMP community.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. In the Edit tree, double-click **Snmp Server**.
- 3. In the Snmp Server tree, double-click **Community**.
- 4. On the toolbar, click **Insert**.

The Insert Community dialog box appears.

- 5. Configure the parameter as required.
- 6. Click Insert.

Variable definitions

The following table describes the fields of Community tab.

Field	Value
Index	Indicates the unique identifier of community.

Field	Value
Name	Indicates the name of the community.
ContextEngineID	Indicates the engine ID of the context.
Storage Type	Indicates the storage type.

Deleting a community using EDM

Use the following procedure to delete a community.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Snmp Server**.
- 3. In the Snmp Server tree, double-click Community.
- 4. In the table, select the community you want to delete.
- 5. On the toolbar, click **Delete**.

Viewing the details of a community using EDM

Use the following procedure to view the details of a community.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. In the Edit tree, double-click **Snmp Server**.
- 3. In the Snmp Server tree, double-click **Community**.
- 4. In the table, select the community you want to view.
- 5. On the toolbar, click **Details** to view the details of the selected community.

Variable definitions

The following table describes the fields on the Community Details tab.

Field	Value
Name	Indicates the community name.
ContextPrefix	Indicates the context prefix in use.

Field	Value
SecurityModel	Indicates the security model in use.
SecurityLevel	Indicates the minimum level of security in use.
ReadViewName	Indicates name of the community that has read access.
WriteViewName	Indicates the name of the community that has write access.
NotifyViewName	Indicates the name of the community has access for notifications.
Storage Type	Indicates the storage type.

Configuring an SNMP host using EDM

Use the following procedure to configuring an SNMP host notification control.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Snmp Server**.
- 3. In the Snmp Server tree, double-click Host.
- 4. On the toolbar, click **Insert** to open the Insert Host dialog.
- 5. Configure the parameter as required.
- 6. Click Insert.

Variable definitions

The following table describes the fields on the Community Details tab.

Field	Value
Domain	Indicates the transport type of the address in the snmpTargetAddrTAddress object.
DestinationAddr : Port	Indicates the transport address (in IPv4 Address : port format).
Timeout	Indicates the time interval that an application waits for a response.
RetryCount	Indicates the number of retries to be attempted when a response is not received for a generated message.
Туре	Indicates the type of the message.
Storage Type	Indicates the storage type.

Configuring notifications (traps) from the list using EDM

Use the following procedure to enable and disable SNMP trap control.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Snmp Server**.
- 3. In the Snmp Server tree, double-click Host.
- 4. In the table, select an entry.
- 5. On the toolbar, click **Notification** to display a list of traps.
- Clear the trap that you do not want the switch to send.By default all the traps are selected.
- 7. Click Apply.

Configuring SNMP notification control using EDM

Use the following procedure to enable or disable SNMP traps.

Notification Control is the Trap Web Page.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. From the Edit tree, double-click **Snmp Server**.
- 3. From the Snmp Server tree, double-click **Notification Control**.
- 4. To select an SNMP trap to edit, click a **NotifyControlType** row.
- 5. In the NotifyControlType row, double-click the cell in the **NotifyControlEnabled** column.
- 6. Select a value from the list **true** to enable the trap, **false** to disable the trap.
- 7. On the toolbar, click the **Enable All** button to enable all SNMP traps available on the switch.

OR

On the toolbar, click the **Disable All** button to disable all SNMP traps available on the switch.

8. On the toolbar, click Apply.

Variable definitions

Use the data in the following table to configure SNMP notification control

Variable	Value
NotifyControlType	Lists the SNMP trap names.
Notify Control Type (oid)	Lists the object identifiers for the SNMP traps.
NotifyControlEnabled	Enables (true) or disables (false) the SNMP trap.
NotifyControlPortListE nabled	Indicates the port list for which the notification is enabled or disabled. Whether or not this field is configurable is dependent on the NotifyControlType value.

Configuring SNMP traps for ports using EDM

Use this procedure to enable or disable SNMP traps for specific ports, or for all switch ports.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. From the Edit tree, double-click **Snmp Server**.
- 3. From the Snmp Server tree, click Notification Control.
- 4. In the work area, click a **NotifyControlType** row for supported notifications, to select an SNMP trap.
- 5. Double-click the cell in the **NotifyControlPortListEnabled** column.
- 6. To enable or disable the trap for specific ports, select or deselect one or more port numbers.

OR

To enable or disable the trap for all switch ports, click All.

- 7. Click **Ok**.
- 8. On the toolbar, click Apply.

Variable definition

Variable	Value
NotifyControlType	Lists the SNMP trap names.
Notify Control Type (OID)	Lists the object identifiers for the SNMP traps.
NotifyControlEnabled	Enables (true) or disables (false) the SNMP trap.

Variable	Value
NotifyControlPortListEnabled	Specifies the port list for which the SNMP trap is enabled or disabled. Whether or not this field is configurable is dependent on the NotifyControlType value.

Graphing SNMP statistics using EDM

Use this procedure to display and graph SNMP statistics.

Procedure steps

- 1. From the navigation pane, double click **Graph** to open the navigation tree.
- 2. In the Graph tree, double-click Chassis.
- 3. In the work area, click the **SNMP** tab.
- 4. On the toolbar, select a Poll Interval from the list.
- 5. On the toolbar, you can click **Clear Counters** to reset the IP statistics counters.
- 6. To select statistics to graph, click a statistic type row under a column heading.
- 7. On the toolbar, click Line Chart, Area Chart, Bar Chart, or Pie Chart.

Variable definitions

Use the data in the following table to help you understand SNMP statistics.

Variable	Value
InPkts	The total number of messages delivered to the SNMP from the transport service.
OutPkts	The total number of SNMP messages passed from the SNMP protocol to the transport service.
InTotalReqVars	The total number of MIB objects retrieved successfully by the SNMP protocol as the result of receiving valid SNMP Get-Request and Get-Next PDUs.
InTotalSetVars	The total number of MIB objects altered successfully by the SNMP protocol as the result of receiving valid SNMP Set-Request PDUs.
InGetRequests	The total number of SNMP Get-Request PDUs that are accepted and processed by the SNMP protocol.

Variable	Value
InGetNexts	The total number of SNMP Get-Next PDUs that are accepted and processed by the SNMP protocol.
InSetRequests	The total number of SNMP Set-Request PDUs that are accepted and processed by the SNMP protocol.
InGetResponses	The total number of SNMP Get-Response PDUs that are accepted and processed by the SNMP protocol.
OutTraps	The total number of SNMP Trap PDUs generated by the SNMP protocol.
OutTooBigs	The total number of SNMP PDUs generated by the SNMP protocol for which the value of the error-status field is tooBig.
OutNoSuchNames	The total number of SNMP PDUs generated by the SNMP protocol for which the value of the error-status field is noSuchName.
OutBadValues	The total number of SNMP PDUs generated by the SNMP protocol for which the value of the error-status field is badValue.
OutGenErrs	The total number of SNMP PDUs generated by the SNMP protocol for which the value of the error-status field is genErr.
InBadVersions	The total number of SNMP messages delivered to the SNMP protocol for an unsupported SNMP version.
InBadCommunity Names	The total number of SNMP messages delivered to the SNMP protocol that used an unknown SNMP community name.
InBadCommunity Uses	The total number of SNMP messages delivered to the SNMP protocol that represented an SNMP operation not allowed by the SNMP community named in the message.
InASNParseErrs	The total number of ASN.1 or BER errors encountered by the SNMP protocol when decoding received SNMP messages.
InTooBigs	The total number of SNMP PDUs delivered to the SNMP protocol for which the value of the error-status field is tooBig.
InNoSuchNames	The total number of SNMP PDUs delivered to the SNMP protocol for which the value of the error-status field is noSuchName.
InBadValues	The total number of SNMP PDUs delivered to the SNMP protocol for which the value of the error-status field is badValue.
InReadOnlys	The total number of SNMP PDUs delivered to the SNMP protocol for which the value of the error-status field is readOnly. It is a protocol error to generate an SNMP PDU containing the value readOnly in the error-status field. This object is provided to detect incorrect implementations of the SNMP.

Variable	Value
InGenErrs	The total number of SNMP PDUs delivered to the SNMP protocol for which the value of the error-status field is genErr.

Chapter 8: Ignition Server configuration using Enterprise Device Manager

This chapter describes how to configure the Avaya Ethernet Routing Switch 4000 Series as a network access device in the Identity Engine Ignition Server solution using Enterprise Device Manager (EDM).

Configuring Ignition Servers as a RADIUS server using EDM

You can configure Ingition Server to act as the RADIUS server for your switches and access points. For more information about configuring the Ignition Server for RADIUS, see Avaya Identity Engines Ignition Server Configuration, NN47280-500.

Prerequisites

- Ignition Server installed and configured in your network
- Configure the following policies for your switch on Ignition Server
 - Access
 - User Authentication
 - User Authorization
- Configure the following optional policies for your switch on Ignition Server:
 - Provisioning Polices that set network session and switch parameters for users
 - Client Posture Policies that require that laptops meet a minimum standard of system health
 - VLAN Assignments that assign each user to an appropriate VLAN
 - Windows machine authentication that checks connecting devices to ensure they are known to the Active Directory before the system permits connection
 - MAC authentication that allows operator-less devices to connect and records which device a user connected with

Procedure steps

- 1. From the Configuration tree, double-click **Security**.
- From the Security tree, click RADIUS.
- 3. On the work area, click the Globals tab.
- 4. In the **Reachability** box select **useRadius**.
- 5. Optional: in the **RADIUS Accounting** section, select values to configure RADIUS Accounting.
- 6. On the work area, click the Global RADIUS Server tab.
- 7. In the PrimaryRadiusServerAddressType field, select the address type
- In the PrimaryRadiusServer field, enter the Ignition Server RADIUS service IP address.
- 9. Optional: In the **SecondaryRadiusServerAddressType**, select the address type.
- Optional: In the SecondaryRadiusServer field, enter the Ignition Server secondary RADIUS service IP address.
- 11. In the RadiusServerUdpPort field, enter the port number for the UDP port.
- 12. In the **RadiusServerTimeout** field, enter a timeout value.
- 13. In the **SharedSecret(Key)** field, enter the RADIUS shared secret (also known as the *key* or *encryption key*).
- 14. Optional: In the **Confirm SharedSecret(Key)** field, re-enter the RADIUS shared secret from above.
- 15. Optional: Select the **AccountingEnabled** field to enable RADIUS Accounting.
- 16. Optional: In the **AccountingPort** field, enter a port number.
- 17. Optional: In the **RetryLimit** field, enter a value.
- 18. On the tool bar, click **Apply**.

Variable definitions

The following table describes the Globals tab fields.

Variable	Value
UseMgmtlp	When selected, RADIUS uses the system management IP address as the source address for RADIUS requests.
PasswordFallbackEnabled	When selected, enables RADIUS password fallback.
DynAuthReplayProtection	When selected, enables RADIUS replay protection.

Variable	Value
Reachability	Specifies the RADIUS server reachability mode. Values include:
	use-radius — uses dummy RADIUS requests to determine reachability of the RADIUS server.
	use-icmp — uses ICMP packets to determine reachability of the RADIUS server (default).
InterimUpdates	Enables or disables RADIUS accounting interim updates for the switch.
InterimUpdatesInterval	Specifies the time interval (in seconds) before RADIUS accounting interim updates times out. Values range from 60–3600 seconds. DEFAULT: 600 seconds.
InterimUpdatesIntervalSource	Specifies the source of the interim updates timeout interval.
	configuredValue — uses the value in the RadiusAccoutingInterimUpdatesInterval dialog box
	radiusServer — uses the value applied by the RADIUS server

Variable definitions

The following table describes the Global RADIUS Server tab fields.

Variable	Value
PrimaryRadiusServerAddressType	Specifies the type of IP address type for the primary Global RADIUS server. Values include unknown, ipv4, and ipv6.
PrimaryRadiusServer	Specifies the IPv4 or IPv6 address for the primary Global RADIUS Server. The default address is 0.0.0.0.
	Important: An IPv4 address value of 0.0.0.0 indicates that a primary Global RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a
	primary Global RADIUS Server is not configured.

Variable	Value
SecondaryRadiusServerAddressType	Specifies the IP address type for the secondary Global RADIUS Server. Values include unknown, ipv4, and ipv6.
SecondaryRadiusServer	Specifies the IP address for the secondary Global RADIUS Server. The default address is 0.0.0.0. The secondary Global RADIUS Server is used only if the primary Global RADIUS Server is unavailable or unreachable.
	Important: An IPv4 address value of 0.0.0.0 indicates that a secondary Global RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00 indicates that a secondary Global RADIUS Server is not configured.
RadiusServerUdpPort	Specifies the UDP port number for clients to use when trying to contact the Global RADIUS Server at the corresponding Global RADIUS Server IP address. Values range from 1 to 65535. The default port number is 1812.
RadiusServerTimeout	Specifies the timeout interval between each retry for service requests to the Global RADIUS Server. The default is 2 Seconds. Values range from 1 to 60 seconds.
SharedSecret(Key)	Specifies a new value for the Global RADIUS Server shared secret key, to a maximum of 16 characters.
ConfirmedSharedSecret(key)	Confirms the value typed in the shared secret key box. If you do not change the Global RADIUS Server shared secret key, you do not have to type a value in this box.
AccountingEnabled	Enables or disables RADIUS accounting for a Global RADIUS Server instance
AccountingPort	Specifies the UDP accounting port number for clients to use when trying to contact the RADIUS server at the corresponding Global RADIUS Server IP address. Values range from 0 to 65535.
RetryLimit	Specifies the number of RADIUS retry attempts for a Global RADIUS Server instance. Values range from 1 to 5

Configuring Ignition Server as an EAP RADIUS server using EDM

You can configure Ingition Server to act as the EAP RADIUS server for your switches and access points. For more information about configuring the Ignition Server for RADIUS, see Avaya Identity Engines Ignition Server Configuration, NN47280-500.

Prerequisites

- Ignition Server installed and configured in your network
- Configure the following policies for your switch on Ignition Server
 - Access
 - User Authentication
 - User Authorization
- Configure the following optional policies for your switch on Ignition Server:
 - Provisioning Polices that set network session and switch parameters for users
 - Client Posture Policies that require that laptops meet a minimum standard of system health
 - VLAN Assignments that assign each user to an appropriate VLAN
 - Windows machine authentication that checks connecting devices to ensure they are known to the Active Directory before the system permits connection
 - MAC authentication that allows operator-less devices to connect and records which device a user connected with
- EAP configured on your switch.

Procedure steps

- 1. From the Configuration tree, double-click **Security**.
- 2. From the Security tree, click **RADIUS**.
- 3. On the work area, click the Globals tab.
- 4. In the **Reachability** box select **useRadius**.
- 5. Optional: in the **RADIUS Accounting** section, select values to configure RADIUS Accounting.
- 6. On the work area, click the EAP RADIUS Server tab.
- 7. In the PrimaryRadiusServerAddressType field, select the address type
- 8. In the **PrimaryRadiusServer** field, enter the Ignition Server RADIUS service IP address.

- 9. Optional: In the **SecondaryRadiusServerAddressType**, select the address type.
- Optional: In the SecondaryRadiusServer field, enter the Ignition Server secondary RADIUS service IP address.
- 11. In the RadiusServerUdpPort field, enter the port number for the UDP port.
- 12. In the **RadiusServerTimeout** field, enter a timeout value.
- 13. In the **SharedSecret(Key)** field, enter the RADIUS shared secret (also known as the *key* or *encryption key*).
- 14. Optional: In the **Confirm SharedSecret(Key)** field, re-enter the RADIUS shared secret from above.
- 15. Optional: Select the AccountingEnabled field to enable RADIUS Accounting.
- 16. Optional: In the **AccountingPort** field, enter a port number.
- 17. Optional: In the **RetryLimit** field, enter a value.
- 18. On the tool bar, click **Apply**.

Variable definitions

The following table describes the Globals tab fields.

Variable	Value
UseMgmtlp	When selected, RADIUS uses the system management IP address as the source address for RADIUS requests.
PasswordFallbackEnabled	When selected, enables RADIUS password fallback.
DynAuthReplayProtection	When selected, enables RADIUS replay protection.
Reachability	Specifies the RADIUS server reachability mode. Values include:
	use-radius — uses dummy RADIUS requests to determine reachability of the RADIUS server.
	use-icmp — uses ICMP packets to determine reachability of the RADIUS server (default).
InterimUpdates	Enables or disables RADIUS accounting interim updates for the switch.
InterimUpdatesInterval	Specifies the time interval (in seconds) before RADIUS accounting interim updates

Variable	Value
	times out. Values range from 60–3600 seconds. DEFAULT: 600 seconds.
InterimUpdatesIntervalSource	Specifies the source of the interim updates timeout interval.
	configuredValue — uses the value in the RadiusAccoutingInterimUpdatesInterval dialog box
	radiusServer — uses the value applied by the RADIUS server

Variable definitions

The following table describes the EAP RADIUS Server tab fields.

Variable	Value
PrimaryRadiusServerAddressType	Specifies the type of IP address type for the primary EAP RADIUS server. Values include unknown, ipv4, and ipv6.
PrimaryRadiusServer	Specifies the IPv4 or IPv6 address for the primary EAP RADIUS Server. The default address is 0.0.0.0.
	Important:
	An IPv4 address value of 0.0.0.0 indicates that a primary EAP RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a primary EAP RADIUS Server is not configured.
SecondaryRadiusServerAddressType	Specifies the IP address type for the secondary EAP RADIUS Server. Values include unknown, ipv4, and ipv6.
SecondaryRadiusServer	Specifies the IP address for the secondary EAP RADIUS Server. The default address is 0.0.0.0. The secondary EAP RADIUS Server is used only if the primary EAP RADIUS Server is unavailable or unreachable.
	Important:
	An IPv4 address value of 0.0.0.0 indicates that a secondary EAP RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a

Variable	Value
	secondary EAP RADIUS Server is not configured.
RadiusServerUdpPort	Specifies the UDP port number for clients to use when trying to contact the EAP RADIUS Server at the corresponding EAP RADIUS Server IP address. Values range from 1 to 65535. The default port number is 1812.
RadiusServerTimeout	Specifies the timeout interval between each retry for service requests to the EAP RADIUS Server. The default is 2 Seconds. Values range from 1 to 60 seconds.
SharedSecret(Key)	Specifies a new value for the EAP RADIUS Server shared secret key, to a maximum of 16 characters.
ConfirmedSharedSecret(key)	Confirms the value typed in the shared secret key box. If you do not change the EAP RADIUS Server shared secret key, you do not have to type a value in this box.
AccountingEnabled	Enables or disables RADIUS accounting for an EAP RADIUS Server instance
AccountingPort	Specifies the UDP accounting port number for clients to use when trying to contact the RADIUS server at the corresponding EAP RADIUS Server IP address. Values range from 0 to 65535.
RetryLimit	Specifies the number of RADIUS retry attempts for a EAP RADIUS Server instance. Values range from 1 to 5

Configuring Ignition Server as a non-EAP RADIUS server using EDM

You can configure Ingition Server to act as the non-EAP RADIUS server for your switches and access points. For more information about configuring the Ignition Server for RADIUS, see Avaya Identity Engines Ignition Server Configuration, NN47280-500.

Prerequisites

- Ignition Server installed and configured in your network
- Configure the following policies for your switch on Ignition Server

- Access
- User Authentication
- User Authorization
- Configure the following optional policies for your switch on Ignition Server:
 - Provisioning Polices that set network session and switch parameters for users
 - Client Posture Policies that require that laptops meet a minimum standard of system health
 - VLAN Assignments that assign each user to an appropriate VLAN
 - Windows machine authentication that checks connecting devices to ensure they are known to the Active Directory before the system permits connection
 - MAC authentication that allows operator-less devices to connect and records which device a user connected with
- Non-EAP configured on your switch.

Procedure steps

- 1. From the Configuration tree, double-click **Security**.
- 2. From the Security tree, click RADIUS.
- 3. On the work area, click the Globals tab.
- 4. In the **Reachability** box select **useRadius**.
- 5. Optional: in the **RADIUS Accounting** section, select values to configure RADIUS Accounting.
- 6. On the work area, click the **NEAP RADIUS Server** tab.
- 7. In the PrimaryRadiusServerAddressType field, select the address type
- 8. In the **PrimaryRadiusServer** field, enter the Ignition Server RADIUS service IP address.
- 9. Optional: In the **SecondaryRadiusServerAddressType**, select the address type.
- 10. Optional: In the **SecondaryRadiusServer** field, enter the Ignition Server secondary RADIUS service IP address.
- 11. In the **RadiusServerUdpPort** field, enter the port number for the UDP port.
- 12. In the RadiusServerTimeout field, enter a timeout value.
- 13. In the **SharedSecret(Key)** field, enter the RADIUS shared secret (also known as the *key* or *encryption key*).
- 14. Optional: In the **Confirm SharedSecret(Key)** field, re-enter the RADIUS shared secret from above.
- 15. Optional: Select the **AccountingEnabled** field to enable RADIUS Accounting.
- 16. Optional: In the **AccountingPort** field, enter a port number.

- 17. Optional: In the RetryLimit field, enter a value.
- 18. On the tool bar, click Apply.

Variable definitions

The following table describes the Globals tab fields.

Variable	Value
UseMgmtlp	When selected, RADIUS uses the system management IP address as the source address for RADIUS requests.
PasswordFallbackEnabled	When selected, enables RADIUS password fallback.
DynAuthReplayProtection	When selected, enables RADIUS replay protection.
Reachability	Specifies the RADIUS server reachability mode. Values include:
	use-radius — uses dummy RADIUS requests to determine reachability of the RADIUS server.
	use-icmp — uses ICMP packets to determine reachability of the RADIUS server (default).
InterimUpdates	Enables or disables RADIUS accounting interim updates for the switch.
InterimUpdatesInterval	Specifies the time interval (in seconds) before RADIUS accounting interim updates times out. Values range from 60–3600 seconds. DEFAULT: 600 seconds.
InterimUpdatesIntervalSource	Specifies the source of the interim updates timeout interval.
	configuredValue — uses the value in the RadiusAccoutingInterimUpdatesInterval dialog box
	radiusServer — uses the value applied by the RADIUS server

Variable definitions

The following table describes the NEAP RADIUS Server tab fields.

Variable	Value
PrimaryRadiusServerAddressType	Specifies the type of IP address type for the primary NEAP RADIUS server. Values include unknown, ipv4, and ipv6.
PrimaryRadiusServer	Specifies the IPv4 or IPv6 address for the primary NEAP RADIUS Server. The default address is 0.0.0.0.
	Important:
	An IPv4 address value of 0.0.0.0 indicates that a primary NEAP RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a primary NEAP RADIUS Server is not configured.
SecondaryRadiusServerAddressType	Specifies the IP address type for the secondary NEAP RADIUS Server. Values include unknown, ipv4, and ipv6.
SecondaryRadiusServer	Specifies the IP address for the secondary NEAP RADIUS Server. The default address is 0.0.0.0. The secondary NEAP RADIUS Server is used only if the primary NEAP RADIUS Server is unavailable or unreachable.
	Important: An IPv4 address value of 0.0.0.0 indicates that a secondary NEAP RADIUS Server is not configured. An IPv6 value of 00:00:00:00:00:00:00:00 indicates that a secondary NEAP RADIUS Server is not configured.
RadiusServerUdpPort	Specifies the UDP port number for clients to use when trying to contact the NEAP RADIUS Server at the corresponding NEAP RADIUS Server IP address. Values range from 1 to 65535. The default port number is 1812.
RadiusServerTimeout	Specifies the timeout interval between each retry for service requests to the NEAP RADIUS Server. The default is 2 Seconds. Values range from 1 to 60 seconds.
SharedSecret(Key)	Specifies a new value for the NEAP RADIUS Server shared secret key, to a maximum of 16 characters.
ConfirmedSharedSecret(key)	Confirms the value typed in the shared secret key box. If you do not change the NEAP

Variable	Value
	RADIUS Server shared secret key, you do not have to type a value in this box.
AccountingEnabled	Enables or disables RADIUS accounting for a NEAP RADIUS Server instance
AccountingPort	Specifies the UDP accounting port number for clients to use when trying to contact the NEAP RADIUS server at the corresponding NEAP RADIUS Server IP address. Values range from 0 to 65535.
RetryLimit	Specifies the number of RADIUS retry attempts for a NEAP RADIUS Server instance. Values range from 1 to 5

Configuring Ignition Server as a TACACS+ server using EDM

You can configure Ingition Server to act as the TACACS+S authentication and authentication server, and you can use it as the TACACS+ accounting server. For more information, see Avaya Identity Engines Ignition Server Configuration, NN47280-600.

Prerequisites

- Ignition Server installed and configured in your network
- Configure the following policies for your switch on Ignition Server
 - Access
 - User Authentication
 - User Authorization
- Configure the following optional policies for your switch on Ignition Server:
 - Provisioning Polices that set network session and switch parameters for users
 - Client Posture Policies that require that laptops meet a minimum standard of system health
 - VLAN Assignments that assign each user to an appropriate VLAN
 - Windows machine authentication that checks connecting devices to ensure they are known to the Active Directory before the system permits connection

372 Configuration — Security December 2011

- MAC authentication that allows operator-less devices to connect and records which device a user connected with
- Configure an Ignition Server authentication record with a TACACS+ policy **NOTE**: If you use Ignition Server for TACACS+ authorization, you must use Ignition Server for TACACS+ authentication.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click TACACS+.
- 3. In the work area, click the TACACS+ Server tab.
- 4. On the toolbar, click **Insert**.

The Insert TACACS+ Server dialog box appears.

- 5. Type the address in the **Address** field.
- 6. Type the port number in the **PortNumber** field.
- 7. Type the key in the **Key** field.
- 8. Retype the key in the **Confirm Key** field.
- 9. Choose the priority in the **Priority** field.
- 10. Click Insert.

Variable definitions

Variable	Value
AddressType	Specifies the type of IP address used on the TACACS+ server.
Address	Indicates the IP address of the TACACS+ server in use.
PortNumber	Indicates the TCP port on which the client establishes a connection to the server.
Key	Indicates the secret key to be shared with this TACACS+ server. Key length zero indicates no encryption is being used.
Confirm Key	Indicates the key in use.
Priority	Determines the order in which the TACACS + servers are used. Available options are—primary or secondary.

Chapter 9: NSNA configuration using **Enterprise Device Manager**

This chapter describes how to configure the Avaya Ethernet Routing Switch 4000 Series as a network access device in the NSNA solution using Enterprise Device Manager (EDM).

lmportant:

When using NSNA along with other applications, such as IP Source Guard, you must ensure resources are available for each application. It is recommended that applications such as IP Source Guard be applied to a small number of ports when used along with the QoS SNA solution.

For an overview of the steps required to configure a network access device in the NSNA solution, see Basic switch configuration for NSNA on page 94.

Configuring the NSNAS 4050/4070 subnet using EDM

Use the following procedure to configure the NSNAS 4050/4070 portal Virtual IP (pVIP) subnet.

🖖 Important:

In Avaya Ethernet Routing Switch 4000 Series only one entry for the NSNAS 4050/4070 subnet can be configured.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **NSNA**.
- 3. On the work area, click NSNAS tab
- 4. On the toolbar, click **Insert**.

The Insert NSNAS dialog box appears.

- 5. Type the pVIP address of the NSNAS 4050/4070 in the Address field.
- 6. Type the subnet mask of the NSNAS 4050/4070 in the **AddressMask** field.

! Important

The pVIP address is used in the default Red filter set to restrict the communication of clients in the Red state to the NSNAS 4050/4070. If you are using one NSNAS 4050/4070 in the network, you can use a 32-bit mask to further restrict traffic flow. The subnet you specify is added to the filters (Red, Yellow, and VoIP). If you change the NSNAS 4050/4070 subnet after you have associated the filters with the NSNA VLANs, you must manually update the NSNAS 4050/4070 subnet in the filters.

- 7. Enter the port number (if it is different than the default value) in the Port field.
- 8. Click Insert.

The information for the configured NSNAS 4050/4070 pVIP subnet appears in the NSNAS tab of the NSNA dialog box.

Variable definitions

The following table describes the NSNAS tab fields.

Table 79: NSNA -- NSNAS tab fields

Field	Description
AddressType	Specifies the type of IP address used by the NSNAS 4050/4070. IPv4 is the only available option at this time.
Address	Specifies the pVIP address of the NSNAS 4050/4070.
AddressMask	Specifies the NSNAS 4050/4070 pVIP address subnet mask.
Port	Specifies the TCP port number for the Switch to NSNAS 4050/4070 Server Communication Protocol (SSCP). Values are in the range of 1024–65535. The default setting is 5000.

Removing the NSNAS 4050/4070 subnet using EDM

Use the following procedure to remove the currently configured NSNAS 4050/4070:

376 Configuration — Security

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **NSNA**.
- 3. On the workarea, click the **NSNAS** tab.
- 4. In the table, select the row that contains the NSNAS 4050/4070 subnet information.
- 5. On the tool bar, click **Delete**.

The NSNAS 4050/4070 pVIP subnet information is removed from the NSNA configuration.

Configuring QoS for the NSNA solution using EDM

For general information about configuring filters and Quality of Service (QoS) in the NSNA solution, see <u>Filters in the NSNA solution</u> on page 86. For more information about configuring the filters, see *Avaya Ethernet Routing Switch 4000 Series Configuration - Quality of Service* (NN47205-504).

Configuring NSNA per VLAN using EDM

VLANs that you plan to configure as NSNA VLANs must be empty (that is, they have no port members assigned). NSNA VLANs cannot be associated with non NSNA ports.

After you configure NSNA, Avaya recommends that you disable the autosave to NVRAM function. Configuration changes must be saved to NVRAM.

Use the following procedure to configure the NSNA VLANs.

Procedure steps

- 1. From the navigation tree, double-click **VLAN**.
- 2. In the VLAN tree, double-click VLANs.
- 3. In the work area create the VLANs that you want to configure as NSNA VLANs.

For more information about creating the VLANs, see Avaya Ethernet Routing Switch 4000 Series Configuration — VLANs, Spanning Tree, and MultiLink Trunking (NN47205-502).

After you have created a VLAN, the VLAN information appears in the Basic tab of the VLAN dialog box.

- 4. Click the **NSNA** tab.
- 5. On the work area double-click the **NsnaColor** field for each VLAN to select the color from the drop-down menu.
- 6. On the work area double-click the FilterSetName field for each VLAN to enter the filter set name of your choice.
- 7. On the tool bar click Apply.

🖖 Important:

Each switch must have one, and only one, Red VLAN. Each switch can, however, have multiple Yellow, multiple Green, and multiple VoIP VLANs. With the Avaya Ethernet Routing Switch 4000, each switch supports up to five Yellow, five Green, and five VoIP VLANs. If IP Phones are intended for use in the system, create the VoIP VLAN first and then create the Red, Green, and Yellow VLANs.

Variable definitions

The following table describes the VLAN NSNA tab fields.

Table 80: VLAN NSNA tab fields

Field	Description
Id	Specifies the VLAN ID.
NsnaColor	Specifies the color of the NSNA VLAN (red, yellow, green, voip, or none).
FilterSetName	Specifies the name of the filter set. Important: This field is applicable only when the NsnaColor field is set to red, yellow, or green.
YellowSubnetType	Specifies the Ethernet type for the Yellow VLAN subnet (IPv4 is currently the only available option). Important: This field is applicable only when the NsnaColor field is set to yellow.
YellowSubnet	Specifies the subnet of the Yellow VLAN.

378 Configuration — Security

Field	Description
	Important: This field is applicable only when the NsnaColor field is set to yellow.
YellowSubnetMask	Specifies the mask for the Yellow VLAN subnet. Important: This field is applicable only when the NsnaColor field is set to yellow.

Removing a NSNA VLAN using EDM

Use the following procedure to remove a NSNA VLAN:

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **NSNA**.
- 3. In the work area, click the Globals tab.
- 4. Clear the **Enabled** check box if selected.

NSNA must be globally disabled before deleting the NSNA VLAN.

- 5. On the tool bar, click Apply.
- 6. From the navigation tree, double-click **VLAN**.
- 7. In the VLAN tree, double-click VLANs.
- 8. The VLAN dialog box appears with the Basic tab selected.
- 9. In the work area, click the **NSNAS** tab.
- 10. Double-click the **NsnaColor** field of the VLAN to be deleted.
- 11. Select the color **none** from the drop-down list.
- 12. On the tool bar, click Apply.
- 13. From the navigation tree, double-click **VLAN**.
- 14. In the VLAN tree, double-click **VLANs**.
- 15. The VLAN dialog box appears
- 16. In the work area, select the **Basic** tab.

- 17. Select the row containing the VLAN for which you have changed the NSNA color to none.
- 18. On the tool bar, click **Delete**.

Enabling NSNA on ports using EDM

Use the following procedure to enable NSNA on ports:

Procedure steps

- 1. Select a port that you want to add to the NSNA solution.
- 2. From the navigation tree, double-click **Edit**.
- 3. In the Edit tree, double-click Chassis.
- 4. In the Chassis tree, double-click Ports.
- 5. In the work area, click the **NSNA** tab.
- 6. In a port row, double-click the cell under the column heading; **Voip Vlans**, **Uplink Vlans**.
- 7. Select a parameter or value from the drop-down list.
- 8. On the tool bar, click Apply.

Variable definitions

The following table describes the NSNA tab fields.

Field	Description
IfIndex	Indicates the index.
Mode	Specifies the NSNA mode for the port. Options are the following:
	disabled
	dynamic
	• uplink
	Important: When you specify a port as dynamic, it is changed to Spanning Tree Protocol (STP) Fast Learning

Field	Description
	automatically. You can change this to be disabled. It cannot be set to Normal Learning for NSNA.
VoipVlans	Specifies the VoIP VLANs to which this port belongs.
	Important: This field is only available when the port mode is dynamic.
UplinkVlans	Specifies the NSNA uplink VLANs to which this port belongs.
	Important: This field is only available when the port mode is uplink.
State	Specifies the current NSNA color of the port. Possible states are the following:
	• none
	• red
	• yellow
	• green
DhcpState	Specifies the DHCP state of the port. Possible DHCP states are the following:
	• blocked
	• unblocked

Viewing information about NSNA clients using EDM

Use the following procedure to view information about NSNA clients currently connected to the network access device:

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click NSNA.
- 3. In the work area, click the Nsna Client tab.

Variable definitions

Use the data in the following table to help you with the Nsna Client tab fields.

Table 81: NSNA -- Nsna client tab fields

Field	Description
IfIndex	Specifies the ifIndex of the port on which the client is attached.
MacAddress	Specifies the MAC address of the client.
DeviceType	Specifies the type of client device (pc, ipPhone, or a passive device).
VlanId	Specifies the Vlan ID of the client.
FilterVlanId	Specifies the Vlan ID whose associated filter set is installed in the selected port.
AddressType	Specifies the type of IP address used by this client (IPv4 is currently the only option available).
Address	Specifies the IP address of the client.
Expired	Indicates whether this client is aged-out.

Entering phone signatures for NSNA using EDM

Use the following procedure to specify IP phone signatures for NSNA:

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click NSNA.
- 3. In the work area, click the **IP Phone Signature** tab.
- 4. On the toolbar, click **Insert**.
- 5. Enter the IP phone signature string in the field (for example, Avaya-i2007-A).
- 6. On the tool bar, click **Insert**.

The IP phone signature you entered appears in the IP Phone Signature tab of the NSNA dialog box.

Removing NSNA phone signatures using EDM

Use the following procedure to remove an NSNA phone signature:

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **NSNA**.
- 3. In the work area, click the **IP Phone Signature** tab.
- 4. Select the row containing the IP phone signature you want to remove.
- 5. On the tool bar, click **Delete**.

Configuring Fail Open using EDM

Use the following procedure to configure Fail Open to enable and configure Fail Open on the switch.

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click NSNA.
- 3. In the work area, click the **Fail Open** tab.
- 4. Select the FailOpenEnabled box to enable Fail Open.
- 5. In the **FailOpenVlan** field, type a VLAN ld.
- 6. In the **FailOpenFilterVlan** field, type a VLAN filter Id.
- 7. On the tool bar, click **Apply**.

Variable definitions

Use the data in the following table to configure Fail Open.

Variable	Value
FailOpenEnabled	Enables or disables Fail Open on the switch.

Variable	Value
FailOpenVlan	Identifies the Fail Open VLAN. Values range from 1–4094. If no value is selected, the switch applies a value of 0.
FailOpenFilterVlan	Identifies the VLAN associated with Fail Open filters. Values range from 1–4094. If no value is selected, the switch applies a value of 0.

Enabling NSNA using EDM

Important:

You must enable SSH before you enable NSNA globally. The command to enable NSNA fails if SSH is not enabled.

Use the following procedure to globally enable NSNA:

Procedure steps

- 1. From the navigation tree, double-click **Security**.
- 2. In the Security tree, double-click **NSNA**.
- 3. In the work area, click the Globals tab.
- 4. Select the Enabled check box.
- 5. On the tool bar, click Apply.

Important:

It can take 2–3 minutes to globally enable/disable NSNA, especially on a fully populated stack.


Variable definitions

Use the data in this table to help you understand the NSNA Globals display.

Variable	Value
Enabled	Enables or disables NSNA globally.

Comments? infodev @avaya.com

Variable	Value
NsnasConnectionState	Indicates the connection state of the switch with a NSNAS.
	notConnected—the switch is not connected to a NSNAS
	connected—the switch is connected to a NSNAS
	connecting—the switch is in the process of connecting to a NSNAS
	closing—the switch is in the process of disconnecting from a NSNAS
NsnasInetAddressType	Indicates the type of internet address from which the NSNAS is connected to the switch.
NsnasInetAddress	Indicates the internet address from which the NSNAS is connected to the switch.
NsnasSendHelloInterval	Indicates the time interval (in seconds) before the switch generates a hello message for a connection to the NSNAS.
NsnasInactivityInterval	Indicates the time interval (in seconds) of inactivity before the switch closes a NSNAS connection.
NsnasStatusQuoInterval	Indicates the time interval (in seconds) if the NSNAS is disconnected from the switch, before the switch moves all NSNA enabled ports to the red VLAN. A value of 65535 indicates an infinite status quo time interval and NSNA enabled ports are not moved to the red VLAN if the NSNAS is disconnected from the switch. A value of 0 indicates that there is no status quo interval and all NSNA enabled ports are immediately moved to the red VLAN if the NSNAS is disconnected from the switch.
NsnasConnectionVersion	Indicates the SSCP version used in the current NSNAS connection with the switch. A value of 0 indicates that there is no connection.

Appendix A: TACACS+ server configuration examples and supported SNMP MIBs

This section contains information about the following topics:

- TACACS+ server configuration examples
- Supported SNMP MIBs and traps

TACACS+ server configuration examples

This section describes basic configuration examples of the TACACS+ server:

Configuration example: Cisco ACS (version 3.2) server

The following figure shows the main administration window.

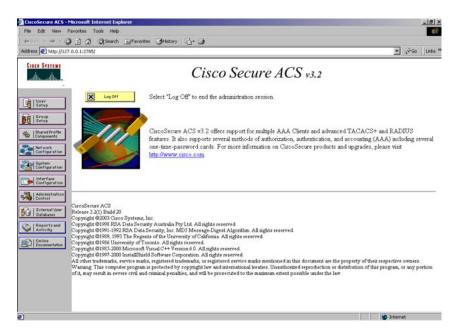


Figure 9: Cisco ACS (version 3.2) main administration window

1. Define the users and the corresponding authorization levels.

If you map users to default group settings, it is easier to remember which user belongs to each group. For example, the rwa user belongs to group 15 to match Privilege level 15. All rwa user settings are picked up from group 15 by default.

The following figure shows a sample Group Setup window.

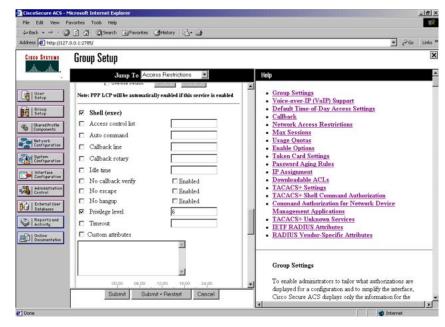


Figure 10: Group Setup window - Cisco ACS server configuration

2. Configure the server settings.

CiscoSecure ACS - Microsoft Internet Explo ## ⇒Back - → - ② ② ③ ② Search ③Favorites ③History ﴿ ﴾ • Address 1 http://127.0.0.1:2785/ **Network Configuration** AAA Server IP Address User Setup AAA Server
 Key
 Network Device Group
 Log Update/Watchdog Packets from this Remote AAA Server
 AAA Server Type
 Traffic Type AAA Server Setup For Group Setup tacacs1 Shared Profile Components AAA Server IP Address Network Configuration Kev secret_value □ Log Update/Watchdog Packets from this remote AAA
 Server System Configuration AAA Server IP Address interface Configuration AAA Server Type Type the IP address assigned to the remote AAA server. Administration Control Traffic Type [Back to Top] Databases Submit Submit + Restart Delete Delete + Restart Reports and Activity Cancel Type the shared secret that the remote AAA server and the Cisco Secure ACS use to encrypt the data. The key must be configured in the remote AAA server and the local Cisco Secure ACS server identically, including case Online Documentation [Back to Top]

The following figure shows a sample Network Configuration window to configure the authentication, authorization, and accounting (AAA) server for TACACS+.

Figure 11: Network Configuration window - server setup

3. Define the client.

The following figure shows a sample Network Configuration window to configure the client. Authenticate using TACACS+. You can use a single-connection, but this must match the configuration on the Avaya Ethernet Routing Switch 5000 Series.

Network Device Group

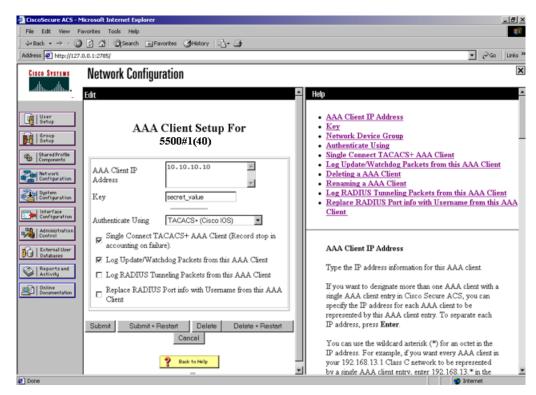


Figure 12: Network Configuration window - client setup

4. Verify the groups you have configured.

In this example, the user is associated with a user group. For more information, see Figure 13: Group Setup window - viewing the group setup on page 391. The rwa account belongs to group 15, and its privilege level corresponds to the settings for group 15. The ro accounts belong to group 0 and L1 accounts belong to group 2.

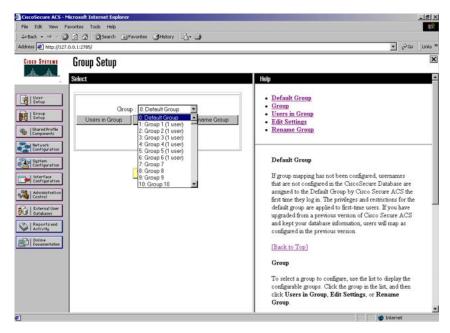


Figure 13: Group Setup window - viewing the group setup

5. Go to Shared Profile Components, Shell Command Authorization Set.

The Shell Command Authorization Set screen appears.

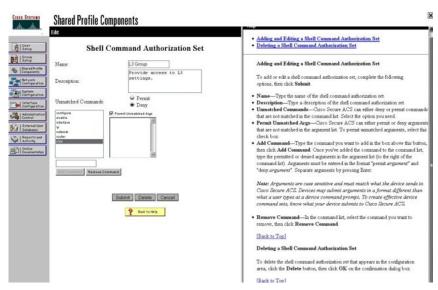


Figure 14: Shared Profile Components window - defining the command set

- 6. Select the commands to be added to the command set, and specify whether the action is permit or deny.
- 7. View users, their status, and the corresponding group to which each belongs.

The following figure shows a sample User Setup window. You can use this window to find, add, edit, and view users settings.

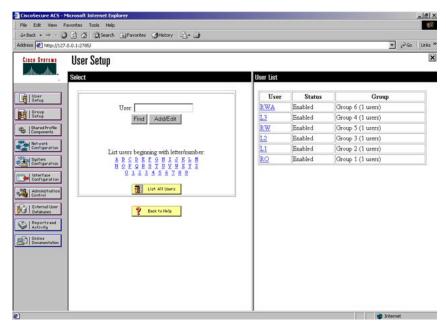


Figure 15: User Setup window - Cisco ACS server configuration

Configuration example: ClearBox server

Run the General Extension Configurator and configure the user data source.
 In this example, Microsoft Access was used to create a database of user names and authorization levels; the general mdb file needs to include these users.

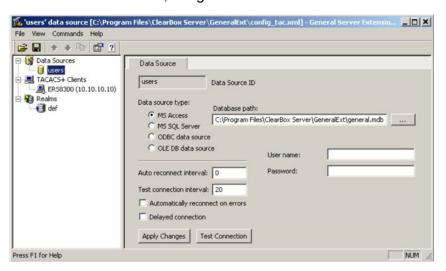


Figure 16: General Extension Configurator

2. Create a Client entry for the switch management IP address by right-clicking the **TACACS+ Clients** item.

In this case, the TACACS+ Client is the Avaya Ethernet Routing Switch 4000. Enter the appropriate information. The shared secret must match the value configured on the Avaya Ethernet Routing Switch 4000.

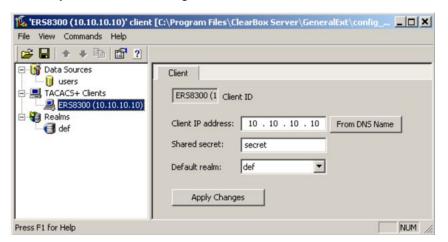


Figure 17: Creating a client entry

The default realm Authentication tab looks like the following figure.

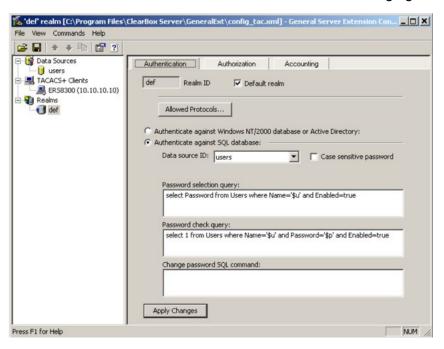


Figure 18: Default realm - Authentication tab

3. Click the **Realms**, **def**, **Authorization** tab.

A new service is required that allows the server to assign certain levels of access.

4. Click the + button to add an attribute-value pair for privilege levels.

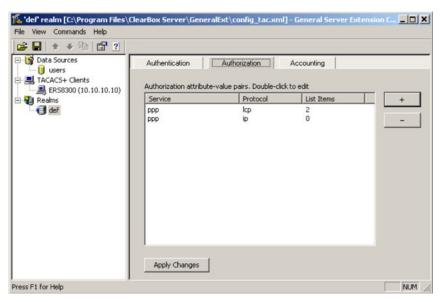


Figure 19: Default realm - Authorization tab

5. Enter information in the window as shown in the following figure to specify the query parameters.

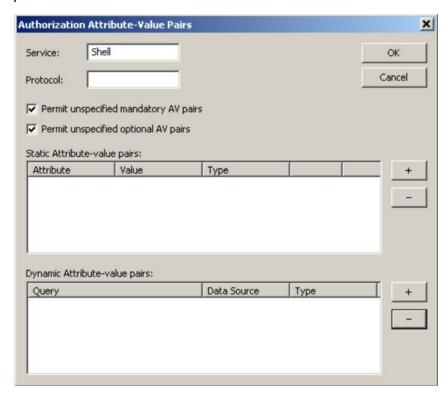


Figure 20: Adding parameters for the query

- 6. Click + to add the parameters to the query.
- 7. Use the string shown in the following figure for the authorization query.

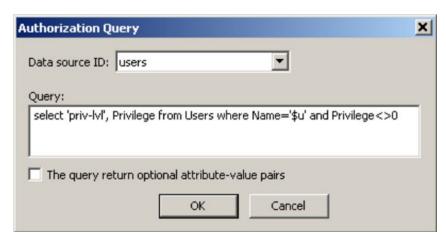


Figure 21: Authorization Query window

The following figure shows the final window.

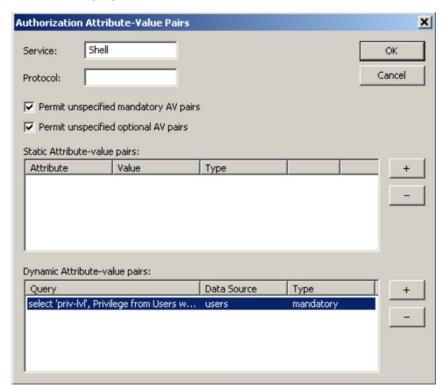


Figure 22: Query parameters added to Authorization Attribute-Value Pairs window 8. Click **OK**.

The information appears on the Authorization tab.

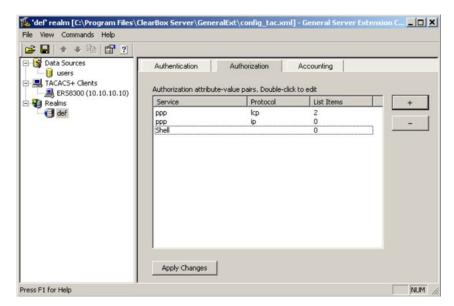


Figure 23: Authorization attribute-value pairs added to Authorization tab

9. Browse the general mdb file as specified earlier.

The user table can look like the one shown in the following figure. If the Privilege column does not exist, create one and populate it according to the desired access level.

Microsoft Access or third-party software is required to read this file.

If you use the 30-day trial for ClearBox, the user names cannot be more than four characters in length.

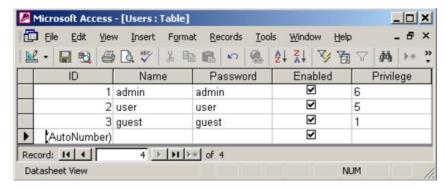


Figure 24: Users table - Microsoft Access

10. Run the Server Manager.

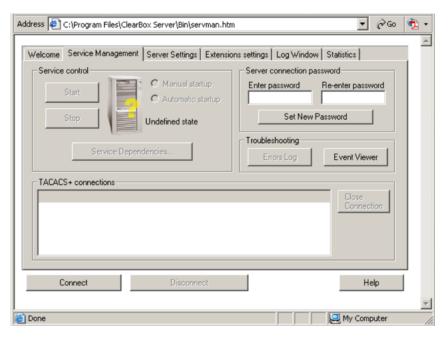


Figure 25: ClearBox Server Manager

11. Click Connect.

The Connect to... dialog box appears.

Figure 26: Connect to... dialog box

- 12. Click **OK** (do not fill in fields).
- 13. Click **OK** at the warning message.
- 14. Click Start.

The Server Manager can now look like the following figure. Changes to the General Server Extension Configurator require that the server be restarted.

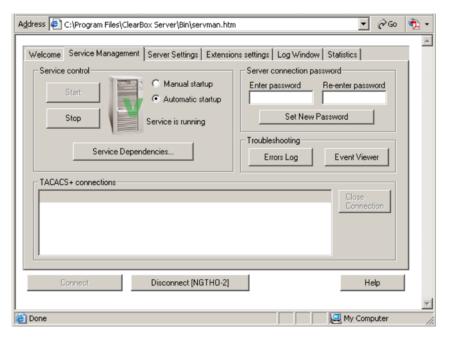


Figure 27: TACACS+ server connected

Configuration example: Linux freeware server

1. After TACACS+ is installed on the Linux server, change the directory to

\$cd /etc/tacacs

2. Open the configuration file tac_plus.cfg:

```
$vi tac_plus.cfg
```

3. Comment out all the existing lines in the configuration file. Add new lines similar to the following:

```
# Enter your NAS key and user name
key = <secret key>
user = <user name> {
default service = permit
service = exec {
priv-lvl = <Privilege level 1 to 15>
login = <Password type> <password>
# Set the location to store the accounting records
```

where

<secret key> is the key that is to be configured on the switch when creating the TACACS+ server entry

<user name> is the user name used to log on to the switch

- <Privilege level> specifies the privilege level (for example rwa = 6; rw = 5; ro = 1)
- <Password type> specifies the type of password -- for example, the password can be clear text or from the Linux password file, and so on
- <Password> if the password type is clear text, the password itself

The following is a sample config file.

```
$vi tac_plus.cfg

# Created by Joe SMITH(jsmit@isp.net)
# Read user_guide and tacacs+ FAQ for more
information
#
# Enter your NAS key
key = secretkey u
user = smithJ {

default service = permit
service = exec {
priv-lvl = 15
}
login = cleartext M5xyH8
```

- 4. Save the changes to the tac_plus.cfg file.
- 5. Run the TACACS+ daemon using the following command:

```
$/usr/local/sbin/tac_plus -C /etc/tacacs/tac_plus.cfg &
where
```

- tac_plus is stored under /usr/local/sbin
- the configuration file you just edited is stored at /etc/tacacs/

The TACACS+ server on Linux is ready to authenticate users.

Supported SNMP MIBs and traps

This section contains information about:

- Supported MIBs on page 399
- Supported traps on page 402

Supported MIBs

The following tables list supported SNMP MIBs.

Table 82: SNMP Standard MIB support

MIB name	RFC	File name
RMON-MIB	2819	rfc2819.mib
RFC1213-MIB	1213	rfc1213.mib
IF-MIB	2863	rfc2863.mib
SNMPv2-MIB	3418	rfc3418.mib
EtherLike-MIB	2665	rfc2665.mib
ENTITY-MIB	2737	rfc2737.mib
BRIDGE-MIB	4188	rfc4188.mib
P-BRIDGE-MIB	4363	rfc4363-p.mib
Q-BRIDGE-MIB	4363	rfc4363-q.mib
IEEE8021-PAE-MIB	n/a	eapol-d10.mib
SMIv2-MIB	2578	rfc2578.mib
SMIv2-TC-MIB	2579	rfc2579.mib
SNMPv2-MIB	3418	rfc3418.mib
SNMP-FRAMEWORK-MIB	3411	rfc3411.mib
SNMP-MPD-MIB	3412	rfc3412.mib
SNMP-NOTIFICATION-MIB	3413	rfc3413-notif.mib
SNMP-TARGET-MIB	3413	rfc3413-tgt.mib
SNMP-USER-BASED-MIB	3414	rfc3414.mib
SNMP-VIEW-BASED-ACM-MIB	3415	rfc3415.mib
SNMP-COMMUNITY-MIB	3584	rfc3584.mib

Table 83: SNMP proprietary MIB support

MIB name	File name
S5-AGENT-MIB	s5age.mib
S5-CHASSIS.MIB	s5cha.mib
S5-CHASSIS-TRAP.MIB	s5ctr.trp
S5-ETHERNET-TRAP.MIB	s5etr.trp
RAPID-CITY-MIB	rapidCity.mib
S5-SWITCH-BAYSECURE-MIB	s5sbs.mib
BN-IF-EXTENSIONS-MIB	s5ifx.mib

MIB name	File name
BN-LOG-MESSAGE-MIB	bnlog.mib
S5-ETH-MULTISEG-TOPOLOGY-MIB	s5emt.mib
NTN-QOS-POLICY-EVOL-PIB	pibNtnEvol.mib
BAY-STACK-NOTIFICATIONS-MIB	bsn.mib

Table 84: Application and related MIBs

Application	Related MIBs	File name
Autotopology	S5-ETH-MULTISEG- TOPOLOGY-MIB	s5emt.mib
BaySecure	S5-SWITCH-BAYSECURE-MIB	s5sbs.mib
Extensible Authentication Protocol over LAN (EAPOL)	IEEE8021-PAE-MIB	eapol-d10.mib
IP multicast (IGMP snooping/proxy)	RAPID-CITY-MIB (rcVlanIgmp group)	rcVlan.mib
Link Aggregation Control Protocol (LACP)	IEEE8023-LAG-MIB; BAY- STACK-LACP-EXT-MIB	ieee8023-lag.mib; bayStackLacpExt.mib
Link Layer Discovery Protocol (LLDP)	LLDP-MIB; LLDP-EXT-DOT1- MIB; LLDP-EXT-DOT3-MIB;	Ildp.mib; IldpExtDot1.mib; IldpExtDot3.mib;
MIB-2	RFC1213-MIB	rfc1213.mib
MultiLink Trunking (MLT)	RAPID-CITY-MIB (rcMlt group)	rcMlt.mib
Policy management	NTN-QOS-POLICY-EVOL-PIB	pibNtnEvol.mib
RMON-MIB	RMON-MIB	rfc2819.mib
SNMPv3	SNMP-FRAMEWORK-MIB	rfc3411.mib
	SNMP-MPD-MIB	rfc3412.mib
	SNMP-NOTIFICATION-MIB	rfc3413-notif.mib
	SNMP-TARGET-MIB	rfc3413-tgt.mib
	SNMP-USER-BASED-SM-MIB	rfc3414.mib
	SNMP-VIEW-BASED-ACM-MIB	rfc3415.mib
	SNMP-COMMUNITY-MIB	rfc3584.mib
Spanning Tree	BRIDGE-MIB	rfc4188.mib
for MSTP	NORTEL-NETWORKS- MULTIPLE-SPANNING-TREE- MIB	nnmst.mib

Application	Related MIBs	File name
for RSTP	NORTEL-NETWORKS-RAPID- SPANNING-TREE-MIB	nnrst.mib
System log	BN-LOG-MESSAGE-MIB	bnlog.mib
VLAN	RAPID-CITY-MIB (rcVlan group)	rcVlan.mib

Supported traps

The following table lists supported SNMP traps.

Table 85: Supported SNMP traps

Trap name	Configurable	Sent when
RFC 2863 (industry standard):		
linkUp	Per port	A port link state changes to up.
linkDown	Per port	A port link state changes to down.
RFC 3418 (industry standard):		
authenticationFailure	System wide	There is an SNMP authentication failure.
coldStart	Always on	The system is powered on.
warmStart	Always on	The system restarts due to a management reset.
s5CtrMIB (Avaya proprietary traps)):	
s5CtrUnitUp	Always on	A unit is added to an operational stack.
s5CtrUnitDown	Always on	A unit is removed from an operational stack.
s5CtrHotSwap	Always on	A unit is hot-swapped in an operational stack.
s5CtrProblem	Always on	Base unit fails
		AC power fails or is restored
		RPSU (DC) power fails or is restored
		Fan fails or is restored
s5EtrSbsMacAccessViolation	Always on	A MAC address security violation is detected.

Trap name	Configurable	Sent when
entConfigChange	Always on	A hardware change—unit added or removed from stack, GBIC inserted or removed.
risingAlarm fallingAlarm	Always on	An RMON alarm threshold is crossed.
bsnConfigurationSavedToNvram	Always on	Each time the system configuration is saved to NVRAM.
bsnEapAccessViolation	Always on	An EAP access violation occurs.
bsnStackManagerReconfiguration	System-wide	There has been a stack configuration.
LLDP-MIB		
IldpRemTablesChange	System-wide	The value of IldpStatsRemTableLast ChangeTime changes.
NORTEL-NETWORKS-RAPID-SPA	NNING-TREE-MIB	
nnRstGeneralEvent	Always on	A general event, such as protocol up or protocol down, occurs.
nnRstErrorEvent	System-wide	An error event occurs. Error events include memory failure, buffer failure, protocol migration, new root, and topology change.
nnRstNewRoot	System-wide	A new root bridge is selected in the topology.
nnRstTopologyChange	System-wide	A topology change is detected.
nnRstProtocolMigration	Per port	Port protocol migration occurs.
NORTEL-NETWORKS-MULTIPLE-S	SPANNING-TREE-I	MIB:
nnMstGeneralEvent	Always on	A general event, such as protocol up or protocol down, occurs.
nnMstErrorEvent	System-wide	An error event occurs. Error events include memory failure, buffer failure, protocol migration, new root, and topology change.
nnMstNewRoot	System-wide	A new root bridge is selected in the topology.
nnMstTopologyChange	System-wide	A topology change is detected.
nnMstProtocolMigration	Per port	Port protocol migration occurs.

TACACS+ server configuration examples and supported SNMP MIBs

Trap name	Configurable	Sent when
nnMstRegionConfigChange	System-wide	The MST region configuration identifier changes.

Comments? infodev @avaya.com

Appendix B: Supported EAP modes and configuration examples

This appendix provides configuration examples that are compatible with various operating modes and scenarios as described in each section.

SHSA authentication mode with or without RADIUS additional attributes with or without Multihost MultiVLAN

The configuration example in this section applies to the following client port settings when:

- 802.1X is disabled on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- an unauthenticated client is on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- an authenticated client is on the port—the port is included in the initial VLAN ID, and the
 port uses one of the initial VLAN PVIDs but no RADIUS attribute is received, or an invalid
 RADIUS attribute is received. for the client
- an authenticated client is on the port—the port is included in the RADIUS VLAN ID and
 it uses the RADIUS VLAN PVID so that valid RADIUS attributes are received for the client

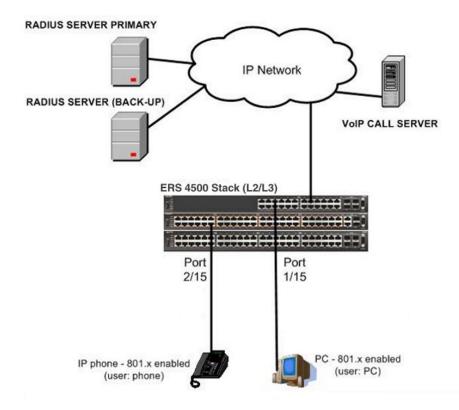


Figure 28: SHSA authentication mode with or without RADIUS additional attributes with or without Multihost MultiVLAN

Scenario

Assume the following settings:

- Primary RADIUS server configured with two users:
 - user: phone with attribute VLAN ID: 200, Port priority: 6
 - user: PC with attribute VLAN ID: 300, Port priority: 2
- Backup RADIUS server configured with the same two users:
 - user: phone with attribute VLAN ID: 200, Port priority: 6
 - user: PC with attribute VLAN ID: 300, Port priority: 2
- Port 2/15—801.x enabled IP phone connected (user: phone)
 - Initial VLAN ID = 100
 - RADIUS VLAN ID = 200

- Port 1/15—801.x enabled PC connected (user: PC)
 - Initial VLAN ID = 50
 - RADIUS VLAN ID = 300
- 802.1x phone client VLAN ID/PVID port 2/15 settings:
 - 801.x disabled on port 100/100
 - Unauthenticated client on port 100/100
 - Authenticated (user: phone):
 - 100/100 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - 200/200 (Valid RADIUS attributes received)
- 802.1x PC client VLAN ID/PVID port 1/15 settings:
 - 801.x disabled on port 50/50
 - Unauthenticated client on port 50/50
 - Authenticated client on port (user: PC):
 - 50/50 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - 300/300 (Valid RADIUS attributes received)

Configuration example

1. Configure the RADIUS servers and VLAN settings.

```
ERS4000(config)#ip address 10.100.68.254 netmask 255.255.255.0

default-gateway 10.100.68.1

ERS4000(config)#radius-server host 10.100.68.2

ERS4000(config)#radius-server secondary-host 10.100.68.3

ERS4000(config)#radius-server key

Enter key: RadiusKey

Enter key: RadiusKey

ERS4000(config)#vlan configcontrol automatic

ERS4000(config)#vlan create 50 type port

ERS4000(config)#vlan create 100 type port

ERS4000(config)#vlan create 200 type port

ERS4000(config)#vlan create 300 type port

ERS4000(config)#vlan members add 50 1/15

ERS4000(config)#vlan members add 100 2/15
```

2. Confirm the VLAN interface settings.

```
ERS4000(config)#sho vlan interface info 1/15,2/15
```

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2, Port 15

3. Confirm the VLAN inteface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

4. Verify connectivity with the Primary RADIUS server and back-up RADIUS server (if back-up server is used). Firewalls may filter ICMP packets. In this case it is recommended to verify RADIUS server logs for authentication request sent by device.

```
ERS4000(config)#ping 10.100.68.2
  (Host is reachable)
ERS4000(config)#ping 10.100.68.3
  (Host is reachable)
```

5. Set the EAPOL status.

```
ERS4000(config)#interface fastEthernet 1/15,2/15
ERS4000(config-if)#eapol status auto
ERS4000(config-if)#exit
ERS4000(config)#eapol enable
```

6. After EAP clients are authenticated, confirm the EAPOL MultiHost status.

ERS4000(config)#show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

7. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1, Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2, Port 15

8. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

9. Enable EAPOL MultiHost MultiVLAN.

```
ERS4000(config)#eapol disable
ERS4000(config)#eapol multihost multivlan enable
ERS4000(config)#eapol enable
```

10. Confirm EAPOL MultiHost status.

ERS4000(config) #show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

11. Confirm the VLAN interface settings.

ERS4000(config) #show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15 N	No	Yes	300	2	UntagAll	Unit 1,
					111	Port 15
2/15 N	No	Yes	200	6	UntagAll	Unit2,
						Port 15

12. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit1,
					-	Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2, Port 15

13. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

Alternate configuration

The following operation applies to SHSA authentication mode (Multihost MultiVLAN option disabled) without valid RADIUS attributes, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 200 with VLAN ID 123, and VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL MultiHost MultiVLAN.

```
ERS4000(config)#eapol disable
ERS4000(config)#no eapol multihost multivlan enable
ERS4000(config)#eapol enable
```

Confirm EAPOL MultiHost status.

ERS4000(config)#show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15 No	Yes	50	0	UntagAll	Unit 1,	
						Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2,
						Port 15

4. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

						VLAN
Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

SHSA authentication mode (with Guest VLAN enabled) with or without RADIUS additional attributes, with or without Multihost MultiVLAN

The configuration example in this section applies to the following client port settings when:

- 801.x disabled on port—the port is included in the initial VLAN ID, and the port uses one
 of the initial VLAN PVIDs
- an unauthenticated client is on the port—the port is included in the Guest VLAN ID, and the port uses the Guest VLAN PVID
- an authenticated client is on the port—the port is included in the initial VLAN ID, and the
 port uses one of the initial VLAN PVIDs but no RADIUS attribute is received, or an invalid
 RADIUS attribute is received, for the client
- an authenticated client is on the port—the port is included in the RADIUS VLAN ID and it uses the RADIUS VLAN PVID so that valid RADIUS attributes are received for the client

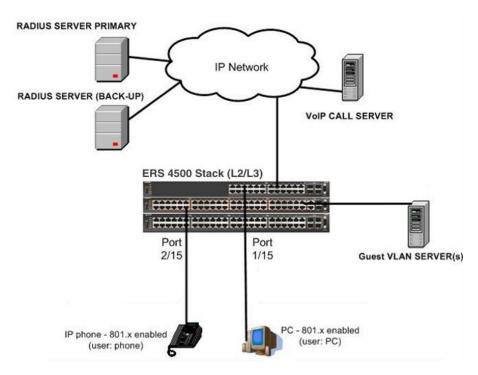


Figure 29: SHSA authentication mode (with Guest VLAN enabled) with or without RADIUS additional attributes, with or without Multihost MultiVLAN

Scenario

Assume the following settings:

1. RADIUS server configurations.

A primary server is mandatory. If a back-up server is used, the back-up server configuration must be the same as the primary server configuration.

- 2. Clients settings:
 - Port 2/15—801.x enabled IP phone connected (user: phone)
 - Initial VLAN ID = 100
 - Guest VLAN ID = 20
 - RADIUS VLAN ID = 200
 - Port 1/15—801.x enabled PC connected (user: PC)
 - Initial VLAN ID = 50
 - Guest VLAN ID = 20

- RADIUS VLAN ID = 300
- Port settings:
 - VLAN ID/PVID port settings for 2/15:
 - 801.x disabled VLAN ID/PVID = port 100/100
 - Unauthenticated client VLAN ID/PVID = port 20/20
 - Authenticated (user: phone):
 - VLAN ID/PVID = 100/100 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - VLAN ID/PVID = 200/200 (Valid RADIUS attributes received)
 - VLAN ID/PVID port settings for 1/15:
 - 801.x disabled VLAN ID/PVID = port 50/50
 - Unauthenticated client VLAN ID/PVID = port 20/20
 - Authenticated client on port (user: PC):
 - VLAN ID/PVID = 50/50 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - VLAN ID/PVID = 300/300 (Valid RADIUS attributes received)

Configuration example

1. Configure the RADIUS servers and VLAN settings

```
ERS4000(config)# ip address 10.100.68.254 netmask 255.255.255.0 default-gateway
10.100.68.1
ERS4000(config)# radius-server host 10.100.68.2
ERS4000(config)# radius-server secondary-host 10.100.68.3
ERS4000(config)# radius-server key
Enter key: RadiusKey
Enter key: RadiusKey
ERS4000(config)# vlan configcontrol automatic
ERS4000(config)# vlan create 20 type port
ERS4000(config)# vlan create 50 type port
ERS4000(config)# vlan create 100 type port
ERS4000(config)# vlan create 200 type port
ERS4000(config)# vlan create 300 type port
ERS4000(config)# vlan create 300 type port
ERS4000(config)# vlan members add 50 1/15
ERS4000(config)# vlan members add 100 2/15
```

Confirm the VLAN interface settings.

```
ERS4000(config)# sho vlan interface info 1/15,2/15
```

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2, Port 15

3. Confirm the VLAN inteface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

4. Verify connectivity with the Primary RADIUS server and back-up RADIUS server (if back-up server is used). Firewalls may filter ICMP packets. In this case it is recommended to verify RADIUS server logs for authentication request sent by device.

```
ERS4000(config)# ping 10.100.68.2
(Host is reachable)

ERS4000(config)# ping 10.100.68.3
(Host is reachable)
```

5. Set the EAPOL status.

```
ERS4000(config)# eapol guest-vlan vid 20
ERS4000(config)# eapol guest-vlan enable
ERS4000(config)# interface fastEthernet 1/15,2/15
ERS4000(config-if)# eapol guest-vlan enable
ERS4000(config-if)# eapol status auto
ERS4000(config-if)# exit
ERS4000(config)# eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

6. Before EAP clients are authenticated, confirm the EAPOL MultiHost status.

ERS4000(config)# show eapol multihost status

			Backend		
	Client		Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri

7. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
						Name
1/15	No	Yes	20	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	20	0	UntagAll	Unit 2, Port 15

8. Confirm the VLAN interface VIDs.

show vlan interface vids 1/15,2/15ERS4000(config)#

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	20	VLAN #20				
2/15	20	VLAN #200				

9. After EAP clients are authenticated, confirm the EAPOL MultiHost status.

ERS4000(config)# show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

10. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15 N	No	Yes	300	2	UntagAll	Unit 1,
						Port 15
2/15 No	No	Yes	200	6	UntagAll	Unit 2,
						Port 15

11. Confirm the VLAN interface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

12. Enable EAPOL MultiHost MultiVLAN.

```
ERS4000(config)# eapol disable
ERS4000(config)# eapol multihost multivlan enable
ERS4000(config)# eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

13. Confirm EAPOL MultiHost status.

ERS4000(config)# show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

14. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1
2/15	No	Yes	200	6	UntagAll	Unit 2

15. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit1, Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2,

16. Confirm the VLAN interface VIDs.

ERS4000(config) # show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

Alternate configuration

The following operation applies to SHSA authentication mode with Guest VLAN (Multihost MultiVLAN option disabled) without valid RADIUS attributes, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 200 with VLAN ID 123, and VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL MultiHost MultiVLAN.

```
ERS4000(config)# eapol disable
ERS4000(config)# no eapol multihost multivlan enable
ERS4000(config)# eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

2. Confirm EAPOL MultiHost status.

ERS4000(config)# show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

3. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregister ed Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2, Port 15

4. Confirm the VLAN interface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

						VLAN
Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

SHSA authentication mode (with Guest VLAN and Fail Open VLAN enabled) with or without RADIUS additional attributes with or without Multihost MultiVLAN

The configuration example in this section applies to the following client port settings when:

- 801.x disabled on port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- an unauthenticated client is on the port—the port is included in the Guest VLAN ID, and the port uses the Guest VLAN PVID
- an authenticated client is on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs but no RADIUS attribute is received, or an invalid RADIUS attribute is received, for the client
- an authenticated client is on the port—the port is included in the RADIUS VLAN ID and it uses the RADIUS VLAN PVID so that valid RADIUS attributes are received for the client
- RADIUS Server Unreachable (801.x enabled)—the port is included in the Fail Open VLAN, and the port uses the Fail Open VLAN PVID

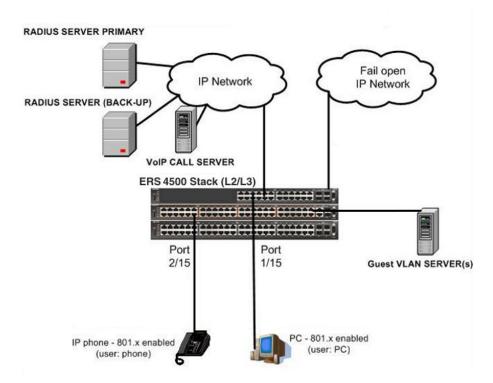


Figure 30: SHSA authentication mode (with Guest VLAN and Fail Open VLAN enabled) with or without RADIUS additional attributes with or without Multihost MultiVLAN

Scenario

Assume the following settings:

1. RADIUS server configurations.

Primary server is mandatory. If a back-up server is also used then the back-up server configurations must be the same as for primary server.

- Clients settings:
 - Port 2/15—801.x enabled IP phone connected (user: phone)
 - Initial VLAN ID = 100
 - Guest VLAN ID = 20
 - Fail Open VLAN ID = 30
 - RADIUS VLAN ID = 200
 - Port 1/15—801.x enabled PC connected (user: PC)
 - Initial VLAN ID = 50
 - Guest VLAN ID = 20

- Fail Open VLAN ID = 30
- RADIUS VLAN ID = 300
- 3. Port settings:
 - VLAN ID/PVID port settings for 2/15:
 - 801.x disabled on port VLAN ID/PVID = 100/100
 - Unauthenticated client on port VLAN ID/PVID = 20/20
 - Authenticated (user: phone):
 - VLAN ID/PVID = 100/100 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - VLAN ID/PVID = 200/200 (Valid RADIUS attributes received)
 - Radius Server Unreachable (801.x enabled) VLAN ID/PVID = 30/30
 - VLAN ID/PVID port settings for 1/15:
 - 801.x disabled on port VLAN ID/PVID = 50/50
 - Unauthenticated client on port VLAN ID/PVID = 20/20
 - Authenticated client on port (user: PC):
 - VLAN ID/PVID = 50/50 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - VLAN ID/PVID = 300/300 (Valid RADIUS attributes received)
 - Radius Server Unreachable (801.x enabled) VLAN ID/PVID = 30/30

Configuration example

1. Configure the RADIUS servers and VLAN settings.

```
ERS4000(config)# ip address 10.100.68.254 netmask 255.255.255.0 default-gateway
10.100.68.1
ERS4000(config) # radius-server host 10.100.68.2
ERS4000(config)# radius-server secondary-host 10.100.68.3
ERS4000(config)# radius-server key
Enter key: RadiusKey
Enter key: RadiusKey
ERS4000(config)# vlan configcontrol automatic
ERS4000(config)# vlan create 20 type port
ERS4000(config)# vlan create 30 type port
ERS4000(config)# vlan create 50 type port
ERS4000(config)# vlan create 100 type port
ERS4000(config)# vlan create 200 type port
ERS4000(config)# vlan create 300 type port
ERS4000(config)# vlan members add 50 1/15
ERS4000(config)# vlan members add 100 2/15
```

2. Confirm the VLAN interface settings.

ERS4000(config)# sho vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2, Port 15

3. Confirm the VLAN inteface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

4. Verify connectivity with the Primary RADIUS server and back-up RADIUS server (if back-up server is used). Firewalls may filter ICMP packets. In this case it is recommended to verify RADIUS server logs for authentication request sent by device.

```
ERS4000(config)# ping 10.100.68.2
(Host is reachable)

ERS4000(config)# ping 10.100.68.3
(Host is reachable)
```

5. Set the EAPOL status.

```
ERS4000(config)# eapol guest-vlan vid 20
ERS4000(config)# eapol guest-vlan enable
ERS4000(config)# eapol multihost fail-open-vlan vid 30
ERS4000(config)# eapol multihost fail-open-vlan enable
ERS4000(config)# interface fastEthernet 1/15,2/15
ERS4000(config-if)# eapol guest-vlan enable
ERS4000(config-if)# eapol status auto
ERS4000(config-if)# exit
ERS4000(config)# eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

6. Before EAP clients are authenticated, confirm the EAPOL MultiHost status.

ERS4000(config)# show eapol multihost status

			Backend		
	Client		Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri

7. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15 No	No	Yes	20	0	UntagAll	Unit 1,
						Port 15
2/15 No	No	Yes	20	0	UntagAll	Unit 2,
					terrore and the sale	Port 15

8. Confirm the VLAN interface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	20	VLAN #20				
2/15	20	VLAN #20				

9. After EAP clients are authenticated, confirm the EAPOL MultiHost status.

ERS4000(config)# show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

10. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
OHIC/ POIC	rrames	rrames	EVID	FILL	ragging	Manie
1/15	No	Yes	300	2	UntagAll	Unit 1,
					The state of the s	Port 15
2/15 No	No	Yes	200	6	UntagAll	Unit 2,
					-	Port 15

11. Confirm the VLAN interface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

- 12. Disconnect both primary and back-up RADIUS servers from the network (unplug cables from server side).
- 13. Attempt to reach the primary and back-up RADIUS servers.

```
ERS4000(config)# ping 10.100.68.2
(Host is not reachable)
ERS4000(config)# ping 10.100.68.3
(Host is not reachable)
```

14. After approximately 3 minutes, confirm the EAPOL MultiHost status again.

ERS4000(config)# show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

15. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	30	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	30	0	UntagAll	Unit 2, Port 15

16. Confirm the VLAN interface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	30	VLAN #30				
2/15	30	VLAN #30				

- 17. Connect primary or back-up RADIUS server to network (plug in cables from server side). For this example, the primary RADIUS server is connected.
- 18. After approximately 1 minute, attempt to reach the primary RADIUS server.

```
ERS4000(config)# ping 10.100.68.2
(Host is reachable)
```

19. Confirm the EAPOL MultiHost status again.

ERS4000(config)# show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

20. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1, Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2, Port 15

21. Confirm the VLAN interface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

22. Enable EAPOL MultiHost MultiVLAN.

```
ERS4000(config)# eapol disable
ERS4000(config)# eapol multihost multivlan enable
ERS4000(config)# eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

23. After EAP clients are authenticated, confirm EAPOL MultiHost status.

ERS4000(config)# show eapol multihost status

			Backend		
	Client		Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

24. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit1
2/15	No	Yes	200	6	UntagAll	Unit 2

25. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit1,
						Port 15
2/15	No	Yes	200	6	UntagAll	Unit2,
						Port 15

26. Confirm the VLAN interface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

Alternate configuration

The following operation applies to SHSA authentication mode with Guest VLAN, Fail Open VLAN (Multihost MultiVLAN option enabled) without valid RADIUS attributes, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL.

ERS4000(config)# eapol disable
ERS4000(config)# eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.

2. After EAP clients are authenticated, confirm EAPOL MultiHost status.

ERS4000(config)# show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

3. Confirm the VLAN interface settings.

ERS4000(config)# show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2, Port 15

4. Confirm the VLAN interface VIDs.

ERS4000(config)# show vlan interface vids 1/15,2/15

						VLAN
Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

MHSA authentication mode (with or without RADIUS VLAN and with or without Multihost MultiVLAN enabled)

The configuration example in this section applies to the following client port settings when:

- 802.1X is disabled on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- an unauthenticated client is on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- an authenticated client is on the port—the port is included in the initial VLAN ID, and the
 port uses one of the initial VLAN PVIDs but no RADIUS attribute is received, or an invalid
 RADIUS attribute is received, for the client
- an authenticated client is on the port—the port is included in the RADIUS VLAN ID and it uses the RADIUS VLAN PVID so that valid RADIUS attributes are received for the client

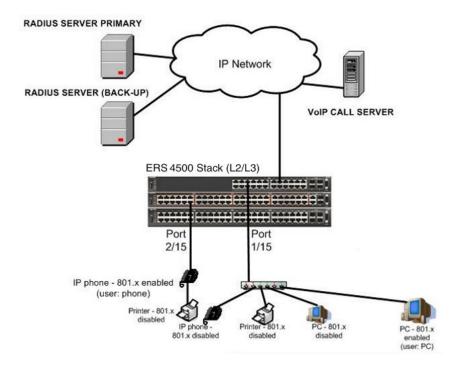


Figure 31: MHSA authentication mode (with or without RADIUS VLAN and with or without Multihost MultiVLAN enabled)

Scenario

Assume the following settings:

- Primary RADIUS server configured with two users:
 - user: phone with attribute VLAN ID: 200. Port priority: 6
 - user: PC with attribute VLAN ID: 300, Port priority: 2
- Backup RADIUS server configured with the same two users:
 - user: phone with attribute VLAN ID: 200, Port priority: 6
 - user: PC with attribute VLAN ID: 300, Port priority: 2
- Port 2/15—801.x enabled IP phone connected (user: phone)
 - Initial VLAN ID = 100
 - RADIUS VLAN ID = 200
- Port 1/15—801.x enabled PC connected (user: PC)
 - Initial VLAN ID = 50
 - RADIUS VLAN ID = 300
- 802.1x phone client VLAN ID/PVID port 2/15 settings:
 - 801.x disabled on port 100/100
 - Unauthenticated client on port 100/100
 - Authenticated (user: phone):
 - 100/100 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - 200/200 (Valid RADIUS attributes received)
- 802.1x PC client VLAN ID/PVID port 1/15 settings:
 - 801.x disabled on port 50/50
 - Unauthenticated client on port 50/50
 - Authenticated client on port (user: PC):
 - 50/50 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - 300/300 (Valid RADIUS attributes received)

Configuration example

Configure the RADIUS servers and VLAN settings

```
ERS4000(config)# ip address 10.100.68.254 netmask 255.255.255.0 default-gateway
10.100.68.1
ERS4000(config)# radius-server host 10.100.68.2
ERS4000(config)# radius-server secondary-host 10.100.68.3
ERS4000(config)# radius-server key
Enter key: RadiusKey
Enter key: RadiusKey
ERS4000(config)# vlan configcontrol automatic
ERS4000(config)# vlan create 50 type port
ERS4000(config)# vlan create 100 type port
ERS4000(config)# vlan create 200 type port
ERS4000(config)# vlan create 300 type port
ERS4000(config)# vlan members add 50 1/15
ERS4000(config)# vlan members add 100 2/15
```

2. Confirm the VLAN interface settings

ERS4000(config)# sho vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered		1.000		N210014
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2, Port 15

Confirm the VLAN interface VIDs

ERS4000(config)#sho vlan interface info 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

4. Confirm that you can reach the RADIUS server

```
ERS4000(convig)#ping 10.100.68.2 (Host is reachable)
```

5. Set the EAPOL status

```
ERS4000(config)#interface fastEthernet 1/15,2/15
ERS4000(config-if)#eapol multihost auto-non-eap-mhsa-enable
ERS4000(config-if)#eapol multihost non-eap-mac-max 4
ERS4000(config-if)#eapol multihost enable
ERS4000(config-if)#eapol status auto
ERS4000(config-if)#exit
```

ERS4000(config)#eapol multihost auto-non-eap-mhsa-enable ERS4000(config)#eapol enable

6. Confirm the EAPOL MultiHost status

ERS4000(config) #show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

ERS450(config)#sho eapol multihost non-eap-mac status

Unit/Port	Client MAC Address	State	Vid	Pri
1/15	00:1C:9C:2B:CE:04	Auto-Learned For MHSA	N/A	N/A
2/15	00:1D:3E:4A:BC:01	Auto-Learned For MHSA	N/A	N/A

7. Confirm the VLAN interface settings

ERS4000(config)# show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1, Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2, Port 15

8. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

9. Enable EAPOL MultiHost MultiVLAN.

ERS4000(config)#eapol disable ERS4000(config)#eapol multihost multivlan enable ERS4000(config)#eapol enable

10. Confirm EAPOL MultiHost status.

ERS4000(config) #show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

11. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1, Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2,

12. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interfce info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1,
						Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2,
					-	Port 15

13. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/14,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

Alternate configuration

The following operation applies to MHSA authentication mode (Multihost MultiVLAN enabled) without valid RADIUS attributes, when the RADIUS server has no special

attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 200 with VLAN ID 123, and VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL MultiHost MultiVLAN

```
ERS4000(config)#eapol disable
ERS4000(config)#eapol multihost multivlan enable
ERS4000(config)#eapol enable
```

2. Confirm EAPOL MultiHost status.

ERS4000(config)#show eapol multihost status

Unit/Port	Client MAC Address	Pae State	Backend Auth State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

ERS4000(config) #sho eapol multihost non-eap-mac status

	Client			
Unit/Port	MAC Address	State	Vid	Pri
1/15	00:1C:9C:2B:CE:04	Auto-Learned For MHSA	N/A	N/A
2/15	00:1D:3E:4A:BC:01	Auto-Learned For MHSA	N/A	N/A

3. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregister ed Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit1, Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2, Port 15

4. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

		VLAN		VLAN		VLAN
Unit/Port	VLAN	Name	VLAN	Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

MHSA authentication mode (Guest VLAN option enabled) with or without RADIUS additional attributes with or without Multihost MultiVLAN

The configuration example in this section applies to the following client port settings when:

- 801.x disabled on port—the port is included in the initial VLAN ID, and the port uses one
 of the initial VLAN PVIDs
- an unauthenticated client is on the port—the port is included in the Guest VLAN ID, and the port uses the Guest VLAN PVID
- an authenticated client is on the port—the port is included in the initial VLAN ID, and the
 port uses one of the initial VLAN PVIDs but no RADIUS attribute is received, or an invalid
 RADIUS attribute is received for the client
- an authenticated client is on the port—the port is included in the RADIUS VLAN ID and it uses the RADIUS VLAN PVID so that valid RADIUS attributes are received for the client

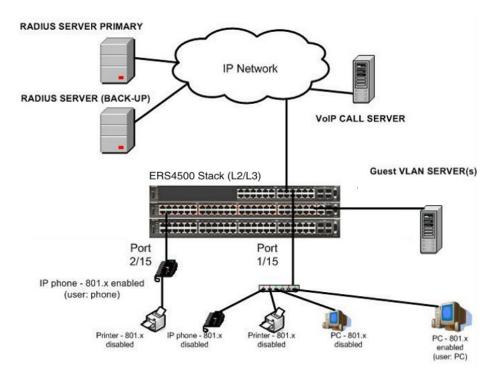


Figure 32: MHSA authentication mode (Guest VLAN option enabled) with or without RADIUS additional attributes with or without Multihost MultiVLAN

Scenario

Assume the following settings:

- Primary RADIUS server configured with two users:
 - user: phone with attribute VLAN ID: 200, Port priority: 6
 - user: PC with attribute VLAN ID: 300, Port priority: 2
- Backup RADIUS server configured with the same two users:
 - user: phone with attribute VLAN ID: 200, Port priority: 6
 - user: PC with attribute VLAN ID: 300, Port priority: 2
- Port 2/15—801.x enabled IP phone connected (user: phone)
 - Initial VLAN ID = 100
 - Guest VLAN ID = 20
 - RADIUS VLAN ID = 200
- Port 1/15—801.x enabled PC connected (user: PC)
 - Initial VLAN ID = 50

- Guest VLAN ID = 20
- RADIUS VLAN ID = 300
- 802.1x phone client VLAN ID/PVID port 2/15 settings:
 - 801.x disabled on port 100/100
 - Unauthenticated client on port 20/20
 - Authenticated (user: phone):
 - 100/100 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - 200/200 (Valid RADIUS attributes received)
- 802.1x PC client VLAN ID/PVID port 1/15 settings:
 - 801.x disabled on port 50/50
 - Unauthenticated client on port 20/20
 - Authenticated client on port (user: PC):
 - 50/50 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - 300/300 (Valid RADIUS attributes received)

Configuration example

1. Configure the RADIUS servers and VLAN settings

```
ERS4000(config)#ip address10.100.68.254 netmask 255.255.255.0 default-gateway 10.100.68.1

ERS4000(config)#radius-serverhost 10.100.68.2

ERS4000(config)#radius-server secondary-host 10.100.68.3

ERS4000(config)#radius-server key

Enter key: RadiusKey

Enter key: RadiusKey

ERS4000(config)#vlan configcontrol automatic

ERS4000(config)#vlan create 20 type port

ERS4000(config)#vlan create 50 type port

ERS4000(config)#vlan create 100 type port

ERS4000(config)#vlan create 200 type port

ERS4000(config)#vlan create 300 type port

ERS4000(config)#vlan create 300 type port

ERS4000(config)#vlan members add 50 1/15

ERS4000(config)#vlan members add 100 2/15
```

Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interfaceinfo 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit 1,
						Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2,
					_	Port 15

ERS4000(config)#show vlan interface vids 1/15,2/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN	VLAN	VLAN
				Name		Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

4. Confirm that you can reach the RADIUS server.

```
ERS4000(config)#ping 10.100.68.2
(Host is reachable)
```

5. Set the EAPOL status.

```
ERS4000(config)#eapol guest-vlanvid 20
ERS4000(config)#eapol guest-vlan enable
ERS4000(config)#interface fastEthernet 1/15,2/15
ERS4000(config-if)#eapol multihost auto-non-eap-mhsa-enable
ERS4000(config-if)#eapolmultihost non-eap-mac-max 4
ERS4000(config-if)#eapol multihost enable
ERS4000(config-if)#eapol status auto
ERS4000(config-if)#eapol status auto
ERS4000(config-if)#eapol multihost auto-non-eap-mhsa-enable
ERS4000(config)#eapol multihost auto-non-eap-mhsa-enable
ERS4000(config)#eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

Before EAP clients are authenticated, confirm the EAPOL MultiHost status

ERS4000(config) #show eapol multihost status

			Backend		
	Client		Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri

7. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	20	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	20	0	UntagAll	Unit 2, Port 15

ERS4000(config)#show vlan interface vids 1/15,2/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN	VLAN	VLAN
				Name		Name
1/15	20	VLAN #20				
2/15	20	VLAN #20				

9. After EAP clients are authenticated, confirm the EAPOL MultiHost status.

ERS4000(config)#show eapol multihost status

			Backend		
	Client		Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authentic ated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authentic ated	Idle	N/A	N/A

ERS4000(config)#sho eapol multihost non-eap-mac status

	Client			
Unit/Port	MAC Address	State	Vid	Pri
1/15	00:1C:9C:2B:CE:04	Auto-Learned For MHSA	N/A	N/A
2/15	00:1D:3E:4A:BC:01	Auto-Learned For MHSA	N/A	N/A

10. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1, Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2, Port 15

ERS4000(config)#show vlan interface vids 1/15,2/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN	VLAN	VLAN
				Name		Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

12. Enable EAPOL MultiHost MultiVLAN.

```
ERS4000(config)#eapol disable
ERS4000(config)#eapol multihost multivlan enable
ERS4000(config)#eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

13. Confirm EAPOL MultiHost status.

ERS4000(config) #show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authentic ated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authentic ated	Idle	N/A	N/A

ERS4000(config) #sho eapol multihost non-eap-mac status

Unit/Port	Client MAC Address	State	Vid	Pri
1/15	00:1C:9C:2B:CE:04	Auto-Learned For MHSA	N/A	N/A
2/15	00:1D:3E:4A:BC:01	Auto-Learned For MHSA	N/A	N/A

14. Confirm the VLAN interface settings.

ERS4000(config) #show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1,Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2,Port 15

ERS4000(config) #show vlan interface vids 1/15,2/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN	VLAN	VLAN
				Name		Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

Alternate configuration

The following operation applies to MHSA authentication mode with Guest VLAN (Multihost MultiVLAN enabled) without valid RADIUS attributes, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 200 with VLAN ID 123, and VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL MultiHost MultiVLAN.

```
ERS4000(config)#eapol disable
ERS4000(config)#eapol multihost multivlan enable
ERS4000(config)#eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

2. Confirm EAPOL MultiHost status.

ERS4000(config)#show eapol multihost status

			Backend		
	Client		Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authentic ated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authentic ated	Idle	N/A	N/A

ERS4000(config) #sho eapol multihost non-eap-mac status

	Client			
Unit/Port	MAC Address	State	Vid	Pri
1/15	00:1C:9C:2B:CE:04	Auto-Learned For MHSA	N/A	N/A
2/15	00:1D:3E:4A:BC:01	Auto-Learned For MHSA	N/A	N/A

Confirm the VLAN interface settings.

ERS4000(config) #show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregister				
Unit/Port	Frames	ed	PVID	PRI	Tagging	Name
		Frames				
1/15	No	Yes	50	0	UntagAll	Unit 1,Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2,Port 15

4. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

						VLAN
Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

MHSA authentication mode (Guest VLAN and Fail Open VLAN options enabled) with or without RADIUS additional attributes and with or without Multihost MultiVLAN option

The configuration example in this section applies to the following client port settings when:

- 801.x disabled on port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- an unauthenticated client is on the port—the port is included in the Guest VLAN ID, and the port uses the Guest VLAN PVID
- an authenticated client is on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs but no RADIUS attribute is received, or an invalid RADIUS attribute is received, for the client

- an authenticated client is on the port—the port is included in the RADIUS VLAN ID and it uses the RADIUS VLAN PVID so that valid RADIUS attributes are received for the client
- RADIUS Server Unreachable (801.x enabled)—the port is included in the Fail Open VLAN, and the port uses the Fail Open VLAN PVID

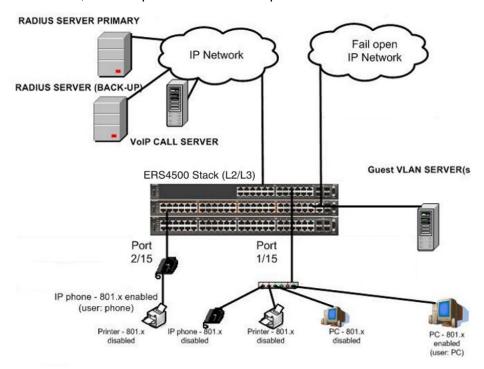


Figure 33: MHSA authentication mode (Guest VLAN and Fail Open VLAN options enabled) with or without RADIUS additional attributes and with or without Multihost MultiVLAN option

Scenario

Assume the following settings:

- Primary RADIUS server configured with two users:
 - user: phone with attribute VLAN ID: 200, Port priority: 6
 - user: PC with attribute VLAN ID: 300, Port priority: 2
- Backup RADIUS server configured with the same two users:
 - user: phone with attribute VLAN ID: 200, Port priority: 6
 - user: PC with attribute VLAN ID: 300, Port priority: 2
- Port 2/15—801.x enabled IP phone connected (user: phone)
 - Initial VLAN ID = 100
 - Guest VLAN ID = 20

- Fail Open VLAN ID = 30
- RADIUS VLAN ID = 200
- Port 1/15—801.x enabled PC connected (user: PC)
 - Initial VLAN ID = 50
 - Guest VLAN ID = 20
 - Fail Open VLAN ID = 30
 - RADIUS VLAN ID = 300
- 802.1x phone client VLAN ID/PVID port 2/15 settings:
 - 801.x disabled on port 100/100
 - Unauthenticated client on port 20/20
 - Authenticated (user: phone):
 - 100/100 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - 200/200 (Valid RADIUS attributes received)
 - Radius Server Unreachable (801.x enabled) 30/30
- 802.1x PC client VLAN ID/PVID port 1/15 settings:
 - 801.x disabled on port 50/50
 - Unauthenticated client on port 20/20
 - Authenticated client on port (user: PC):
 - 50/50 (No RADIUS attribute received or Invalid RADIUS attributes received)
 - 300/300 (Valid RADIUS attributes received)
 - Radius Server Unreachable (801.x enabled) 30/30

Configuration example

1. Configure the RADIUS servers and VLAN settings

```
ERS4000(config)#ip address 10.100.68.254 netmask 255.255.255.0 default-gateway 10.100.68.1

ERS4000(config)#radius-server host 10.100.68.2

ERS4000(config)#radius-server secondary-host 10.100.68.3

ERS4000(config)#radius-server key

Enter key: RadiusKey

Enter key: RadiusKey

ERS4000(config)#vlan configcontrol automatic

ERS4000(config)#vlan create 20 type port

ERS4000(config)#vlan create 30 type port

ERS4000(config)#vlan create 50 type port

ERS4000(config)#vlan create 200 type port

ERS4000(config)#vlan create 200 type port

ERS4000(config)#vlan create 200 type port

ERS4000(config)#vlan create 300 type port
```

```
ERS4000(config)#vlan members add 50 1/15
ERS4000(config)#vlan members add 100 2/15
```

2. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	50	0	UntagAll	Unit 1,
2/15	No	Yes	100	0	UntagAll	Port 15 Unit 2,
						Port 15

Confirm the VLAN inteface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

4. Confirm that you can reach the RADIUS server.

```
ERS4000(config)#ping 10.100.68.2
(Host is reachable)
```

5. Set the EAPOL status.

```
ERS4000(config)#eapol guest-vlan vid 20
ERS4000(config)#eapol guest-vlan enable
ERS4000(config)#eapol multihost fail-open-vlan vid 30
ERS4000(config)#eapol multihost fail-open-vlan enable
ERS4000(config)#interface fastEthernet 1/15,2/15
ERS4000(config-if)#eapol multihost auto-non-eap-mhsa-enable
ERS4000(config-if)#eapol multihost non-eap-mac-max 4
ERS4000(config-if)#eapol multihost enable
ERS4000(config-if)#eapol status auto
ERS4000(config-if)#eapol multihost auto-non-eap-mhsa-enable
ERS4000(config)#eapol multihost auto-non-eap-mhsa-enable
ERS4000(config)#eapol multihost auto-non-eap-mhsa-enable
ERS4000(config)#eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

6. Before EAP clients are authenticated, confirm the EAPOL MultiHost status.

ERS4000(config)#show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri

7. Confirm the VLAN interface settings.

ERS4000(config) #show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	20	0	UntagAll	Unit 1,
						Port 15
2/15	No	Yes	20	0	UntagAll	Unit 2,
						Port 15

8. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	20	VLAN #20				
2/15	20	VLAN #20				

9. After EAP clients are authenticated, confirm the EAPOL MultiHost status.

ERS4000(config) # show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

ERS4000(config)#sho eapol multihost non-eap-mac status

	Client			
Unit/Port	MAC Address	State	Vid	Pri
1/15	00:1C:9C:2B:CE:04	Auto-Learned For MHSA	N/A	N/A
2/15	00:1D:3E:4A:BC:01	Auto-Learned For MHSA	N/A	N/A

10. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1, Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2, Port 15

ERS4000(config)#show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

- 12. Disconnect both primary and back-up RADIUS servers from the network (unplug cables from server side).
- 13. Attempt to reach the primary and back-up RADIUS servers.

```
ERS4000(config)#ping 10.100.68.2
(Host is not reachable)
ERS4000(config)#ping 10.100.68.3
(Host is not reachable)
```

14. After approximately 3 minutes, confirm the EAPOL MultiHost status again.

ERS4000(config) #show eapol multihost status

			Backend		
	Client		Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri

15. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	30	0	UntagAll	Unit 1, Port 15
2/15	No	Yes	30	0	UntagAll	Unit 2, Port 15

16. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	30	VLAN #30				
2/15	30	VLAN #30				

- 17. Connect primary or back-up RADIUS server to network (plug in cables from server side). For this example, the primary RADIUS server is connected.
- 18. After approximately 1 minute, attempt to reach the primary RADIUS server.

```
ERS4000(config)#ping 10.100.68.2
(Host is reachable)
```

19. Confirm the EAPOL MultiHost status again.

ERS4000(config) #show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
	(
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

20. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1, Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2, Port 15

21. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

22. Enable EAPOL MultiHost MultiVLAN.

ERS4000(config)#eapol disable ERS4000(config)#eapol multihost multivlan enable ERS4000(config)#eapol enable

- % Depending on your stack configuration it may take up to 4 minutes for
- % port vlan membership and vid to take effect on all guest-vlan enabled ports.

23. After EAP clients are authenticated, confirm EAPOL MultiHost status.

ERS4000(config)#show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

ERS4000(config) #sho eapol multihost non-eap-mac status

	Client			
Unit/Port	MAC Address	State	Vid	Pri
1/15	00:1C:9C:2B:CE:04	Auto-Learned For MHSA	N/A	N/A
2/15	00:1D:3E:4A:BC:01	Auto-Learned For MHSA	N/A	N/A

24. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
1/15	No	Yes	300	2	UntagAll	Unit 1,Port 15
2/15	No	Yes	200	6	UntagAll	Unit 2,Port 15

25. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 1/15,2/15

				VLAN		VLAN
Unit/Port	VLAN	VLAN Name	VLAN	Name	VLAN	Name
1/15	300	VLAN #300				
2/15	200	VLAN #200				

Alternate configuration

The following operation applies to MHSA authentication mode with Guest VLAN and Fail Open VLAN options enabled (Multihost MultiVLAN option enabled) without valid RADIUS additional attributes, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 200 with VLAN ID 123, and VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL MultiHost MultiVLAN.

```
ERS4000(config)#eapol disable
ERS4000(config)#eapol multihost multivlan enable
ERS4000(config)#eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

2. After EAP clients are authenticated, confirm EAPOL MultiHost status.

ERS4000(config) # show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
1/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/15	00:1E:CA:FF:C2:94	Authenticated	Idle	N/A	N/A

ERS4000(config)#sho eapol multihost non-eap-mac status

	Client			
Unit/Port	MAC Address	State	Vid	Pri
1/15	00:1C:9C:2B:CE:04	Auto-Learned For MHSA	N/A	N/A
2/15	00:1D:3E:4A:BC:01	Auto-Learned For MHSA	N/A	N/A

3. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 1/15,2/15

	Filter Untagged	Filter Unregister				
Unit/Port	Frames	ed	PVID	PRI	Tagging	Name
		Frames				
1/15	No	Yes	50	0	UntagAll	Unit 1,Port 15
2/15	No	Yes	100	0	UntagAll	Unit 2,Port 15

ERS4000(config)#show vlan interface vids 1/15,2/15

		VLAN		VLAN		VLAN
Unit/Port	VLAN	Name	VLAN	Name	VLAN	Name
1/15	50	VLAN #50				
2/15	100	VLAN #100				

MHMA authentication mode (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes

For this EAP operational mode the port and client will have the following settings:

- when 802.1X is disabled on the port—the port is included in the initial VLAN one or multiple initial VLANs are supported, and the port uses one of the initial VLAN PVIDs specified by the user.
- when 802.1X is enabled on the port:
 - an unauthenticated client is on the port with Guest VLAN enabled—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
 - an 802.1X authenticated client is on the port
 - the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs. In this case no RADIUS attribute is received or an invalid RADIUS attribute is received for the client.
 - the port is included in RADIUS VLAN Id and the port uses a RADIUS VLAN PVID (Valid RADIUS attributes received)
 - an 802.1X authenticated client is on the port
 - the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs. In this case no RADIUS attribute is received, or an invalid RADIUS attribute is received for the client.

- the port is included in RADIUS VLAN Id and the port uses a RADIUS VLAN PVID (Valid RADIUS attributes received)
- a non-802.1X authenticated static MAC client—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- a non-802.1X authenticated client is on the port using a DHCP signature—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs

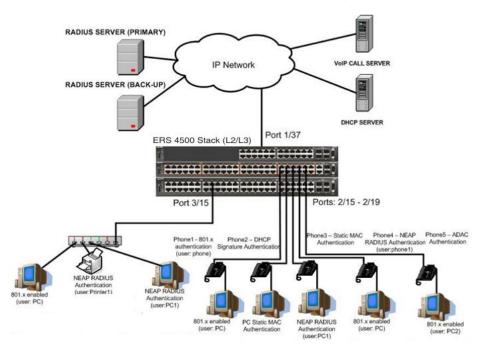


Figure 34: MHMA authentication mode (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes

Scenario

Assume the following settings:

1. RADIUS servers configuration.

A primary server is mandatory. If a back-up server is used, the back-up server configuration must be the same as for primary server configuration.

- 2. Configure all IP Phones to send tag traffic with proper VoIP VLAN ID.
- 3. Clients settings:
 - Port 2/15:
 - 801.x authenticated user Phone1connected
 - 801.x enabled user PC connected

- Initial VLAN ID = 50, 200
- PC RADIUS VLAN ID = 300

• Port 2/16:

- DHCP signature authenticated user Phone2 connected
- Static MAC authenticated user PC connected
- Initial VLAN ID = 50, 200
- Phone EAP VOIP VLAN ID = 200

• Port 2/17:

- Static MAC authenticated user Phone3 connected
- NEAP RADIUS authenticated user PC1 connected
- Initial VLAN ID = 50, 200
- PC RADIUS VLAN ID = 300

• Port 2/18:

- NEAP RADIUS authenticated user Phone1 connected
- 801.x enabled user PC connected
- Initial VLAN ID = 50, 200
- PC RADIUS VLAN ID = 300
- Phone RADIUS VLAN ID = none

• Port 2/19:

- ADAC authenticated user Phone5 connected
- 801.x enabled user PC2 connected
- Initial VLAN ID = 50, 300
- PC RADIUS VLAN ID = none
- Phone ADAC VLAN ID = 201

• Port 3/15:

- 801.x enabled user PC connected
- NEAP RADIUS authenticated user Printer1 connected
- NEAP RADIUS authenticated user PC1 connected
- Initial VLAN ID = 50

- RADIUS VLAN ID = 300

- 4. Port settings:
 - VLAN ID/PVID port settings for 2/15:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,200/50
 - Authenticated (user phone authenticated, user PC unauthenticated):

VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)

- Authenticated (user phone authenticated, user PC authenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/ 300 (Valid RADIUS attributes received)
- VLAN ID/PVID port settings for 2/16:
 - 801.x disabled VLAN ID/PVID = 50,300/300
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,300/300
 - Authenticated (Phone DHCP signature OK, EAP VOIP VLAN ID 200 assigned):

VLAN ID/PVID = 50,200,300/300

 Authenticated (PC MAC defined in static list, PC MAC learned in MAC address table, Phone DHCP signature OK):

VLAN ID/PVID = 50,200,300/300

- VLAN ID/PVID port settings for 2/17:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 50.200/50
 - Authenticated (Phone MAC defined in static list, Phone MAC learned in MAC address table):

VLAN ID/PVID = 50, 200/ 50

- Authenticated (user PC1 authenticated; Phone MAC defined in static list, Phone MAC learned in MAC address table):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes) received)
 - VLAN ID/PVID = 50, 200, 300/ 300 (Valid RADIUS attributes received)

VLAN ID/PVID port settings for 2/18:

- 801.x disabled VLAN ID/PVID = 50,200/50
- Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,200/50
- Authenticated (user phone1 authenticated, user PC unauthenticated):

VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)

- Authenticated (user PC authenticated, user phone1 authenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/ 300 (Valid RADIUS attributes received)

VLAN ID/PVID port settings for 2/19:

- 801.x disabled VLAN ID/PVID = 50,300/300
- Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,300/300
- Authenticated (phone is ADAC authenticated, user PC unauthenticated):

VLAN ID/PVID = 50, 300, 201/300 (No RADIUS attribute received/ Invalid RADIUS attributes received)

- Authenticated (user PC2 authenticated, phone is ADAC authenticated):

VLAN ID/PVID = 50, 300, 201/300 (No RADIUS attribute received/ Invalid RADIUS attributes received)

VLAN ID/PVID port settings for 3/15:

- 801.x disabled VLAN ID/PVID = 50/50
- Unauthenticated client with 801.x enabled VLAN ID/PVID = 50/50
- Authenticated (at least one user authenticated from : PC, PC1, Printer1):
 - VLAN ID/PVID = 50/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 300/ 300 (Valid RADIUS attributes received)

Configuration example

1. Configure the RADIUS servers and VLAN settings

```
ERS4000(config)#ip address 10.100.68.254 netmask 255.255.255.0 default-gateway 10.100.68.1
ERS4000(config)#radius-server host 10.100.68.2
ERS4000(config)#radius-server secondary-host 10.100.68.3
ERS4000(config)#radius-server key
Enter key: RadiusKey
```

```
Enter key: RadiusKey
ERS4000(config)#vlan configcontrol automatic
ERS4000(config)#vlan create 50 type port
ERS4000(config)#vlan create 200 type port
ERS4000(config)#vlan create 300 type port
ERS4000(config)#vlan members add 50 2/15-19,3/15
ERS4000(config)#vlan members add 100 2/15
ERS4500(config)#vlan create 201 voice-vlan
```

2. Confirm the VLAN interface settings.

ERS4000(config) #sho vlan interface info 2/15-19,3/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	50	0	UntagAll	Unit 2, Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2, Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2, Port 18
2/19	No	Yes	50	0	UntagAll	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

3. Confirm the VLAN inteface VIDs.

ERS4000(config)#show vlan interface vids 2/15-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50				
2/16	50	VLAN #50				
2/17	50	VLAN #50				
2/18	50	VLAN #50				
2/19	50	VLAN #50				
3/15	50	VLAN #50				

4. Change VLAN config control mode to flexible mode in order to add same port in multiple initial VLANs.

ERS4000(config)#vlan configcontrol flexible

5. Add IP phone ports to the voice vlan, VLAN ID 200.

```
ERS4000(config)#vlan members add 200 2/15,2/17,2/18
ERS4000(config)#vlan members add 300 2/16
ERS4000(config)#vlan members add 300 2/19
```

ERS4000(config)#vlan port 2/16 pvid 300
ERS4000(config)#vlan port 2/19 pvid 300

6. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15,2/16,2/17,2/18

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	300	0	UntagAll	Unit 2, Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2, Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2, Port 18

7. Confirm the VLAN inteface VIDs.

ERS4000(config) #show vlan interface vids 2/15,2/16,2/17,2/18

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		

8. Since all IP Phones will be sending tagged traffic and only the PC will need to receive untagged traffic, set the port to untagpvidOnly.

ERS4000(config)#vlan ports 2/15,2/16,2/17,2/18,2/19 tagging untagpvidOnly

9. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15,2/16,2/17,2/18

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	50	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
2/19	No	Yes	300	0	UntagPvid Only	Unit 2, Port 19

ERS4000(config) #show vlan interface vids 2/15,2/16,2/17,2/18

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
2/19	50	VLAN #50	300	VLAN #300		

11. Configure the uplink port 1/37 to transport traffic from all VLANs (1,50,200,300).

ERS4000(config)#vlan members add 50,200,300 1/37
ERS4000(config)#vlan ports 1/37 tagging tagal1

12. Confirm the VLAN interface settings for uplink port 1/37.

ERS4000(config)#sho vlan interface info 1/37

	Filter Untagged	Filter Unregister	red			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/37	No	Yes	1	0	TagAll	Unit 1, Port 37

13. Confirm the VLAN inteface VIDs for uplink port 1/37.

ERS4000(config)#show vlan interface vids 1/37

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
1/37	1	VLAN #1	50	VLAN #50	200	VLAN #200
	300	VLAN #300				

14. Configure ADAC. Use Voice VLAN 201.

```
ERS4000(config)#interface fastEthernet 2/19
ERS4000(config-if) #adac detection mac lldp
ERS4000(config-if)#adac enable
ERS4000(config-if)#exit
ERS4000(config) #adac uplink-port 1/37
ERS4000(config)#adac voice-vlan 201
```

💔 Important:

Select only the ADAC mode that allows multiple MACs (clients) on a port. ADAC modes untagged-frames-basic and untagged-frames-advanced, support only one MAC per port (the IP phone MAC).

```
ERS4000(config) #adac op-mode tagged-frames
```

15. Add the MAC address of the IP phone connected on port 2/19 if the IP phone does not support the LLDP protocol.

```
ERS4000(config)#adac mac-range-table low-end 00-1C-9C-4A-BC-01 high-end 00-1C-9C-4A-
BC-02
```

16. Verify connectivity with the Primary RADIUS server and back-up RADIUS server (if backup server is used). Firewalls may filter ICMP packets. In this case it is recommended to verify RADIUS server logs for authentication request sent by device.

```
ERS4000(config)#ping 10.100.68.2
(Host is reachable)
ERS4000(config)#ping 10.100.68.3
(Host is reachable)
```

17. Set the EAPOL status for port 2/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/15 enable
ERS4000(config-if)#eapol port 2/15 status auto
ERS4000(config-if)#eapol multihost port 2/15 eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/15 use-radius-assigned-vlan
ERS4000(config-if)#exit
```

18. Set the EAPOL status for port 2/16.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/16 enable
ERS4000(config-if)#eapol port 2/16 status auto
ERS4000(config-if)#eapol multihost port 2/16 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/16 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/16 non-eap-phone-enable
ERS4000(config-if)#eapol multihost non-eap-mac port 2/16 00-19-E1-A2-4D-36
ERS4000(config-if)#exit
```

19. Set the EAPOL status for port 2/17.

```
ERS4000(config)#interface fastEthernet all

ERS4000(config-if)#eapol multihost port 2/17 enable

ERS4000(config-if)#eapol port 2/17 status auto

ERS4000(config-if)#eapol multihost port 2/17 non-eap-mac-max 2

ERS4000(config-if)#eapol multihost port 2/17 allow-non-eap-enable

ERS4000(config-if)#eapol multihost port 2/17 radius-non-eap-enable

ERS4000(config-if)#eapol multihost port 2/17 non-eap-use-radius-assigned- vlan

ERS4000(config-if)#eapol multihost non-eap-mac port 2/17 00-19-E1-E5-52-4A

ERS4000(config-if)#exit
```

20. Set the EAPOL status for port 2/18.

```
ERS4000(config)#interface fastEthernet all

ERS4000(config-if)#eapol multihost port 2/18 enable

ERS4000(config-if)#eapol port 2/18 status auto

ERS4000(config-if)#eapol multihost port 2/18 eap-mac-max 1

ERS4000(config-if)#eapol multihost port 2/18 non-eap-mac-max 1

ERS4000(config-if)#eapol multihost port 2/18 allow-non-eap-enable

ERS4000(config-if)#eapol multihost port 2/18 radius-non-eap-enable

ERS4000(config-if)#eapol multihost port 2/18 use-radius-assigned-vlan

ERS4000(config-if)#exit
```

21. Set the EAPOL status for port 2/19.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/19 enable
ERS4000(config-if)#eapol port 2/19 status auto
ERS4000(config-if)#eapol multihost port 2/19 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/19 non-eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/19 allow-non-eap-enable
```

22. To confirm that VLAN modifications are not performed by EAP on ADAC enabled ports, disable the VLAN assignment on port 2/19 for EAP and NON-EAP clients.

```
ERS4000(config-if)#no eapol multihost port 2/19 use-radius-assigned-vlan ERS4000(config-if)#no eapol multihost port 2/19 non-eap-use-radius-assigned-vlan ERS4000(config-if)#exit
```

23. Set the EAPOL status for port 3/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 3/15 enable
ERS4000(config-if)#eapol port 3/15 status auto
ERS4000(config-if)#eapol multihost port 3/15 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 3/15 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 3/15 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 3/15 use-radius-assigned-vlan
ERS4000(config-if)#eapol multihost port 3/15 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 3/15 non-eap-use-radius-assigned- vlan
ERS4000(config-if)#eapol multihost port 3/15 non-eap-use-radius-assigned- vlan
ERS4000(config-if)#exit
```

24. Set the EAPOL MultiHost status.

```
ERS4000(config)#eapol multihost voip-vlan 1 vid 200

ERS4000(config)#eapol multihost voip-vlan 1 enable

ERS4000(config)#eapol multihost allow-non-eap-enable

ERS4000(config)#eapol multihost non-eap-phone-enable

ERS4000(config)#eapol multihost non-eap-use-radius-assigned-vlan

ERS4000(config)#eapol multihost use-radius-assigned-vlan

ERS4000(config)#eapol multihost radius-non-eap-enable

ERS4000(config)#eapol enable
```

25. Enable ADAC.

ERS4000(config) #adac enable

After ADAC is enabled (for tagged-frames and untagged-frames-advanced modes), uplink port, and telephony ports (detected IP phones) are added to the ADAC voice VLAN.

26. Confirm the ADAC interface status for port 2/19.

ERS4000(config)#show adac interface 2/19

		Auto	Oper	Auto	T-F	T-F
Unit/Port	Type	Detection	State	Configuration.	PVID	Tagging
2/19	T	Enabled	Enabled	Applied	No	Untag
					Change	PVID
						Only

27. Confirm the VLAN status.

ERS4000(config)#show vlan

Id	Name	Туре	Protocol	User PID	Active	IVL/SVL	Mgmt
1	VLAN #1	Port	None	0x0000	Yes	IVL	Yes
	Port Members:	1/2-34,1	/39-50,2/	1-14,2/20)-26,3/1-	14,3/16-2	6
50	VLAN #50	Port	None	0x0000	Yes	IVL	No
	Port Members:	Port Meml	bers: 1/1	,1/35,2/1	15-19,3/1	.5	
200	VLAN #200	Port	None	0x0000	Yes	IVL	No
	Port Members:	Port Meml	bers: 1/3	6,2/15-18	3		
201	Voice_VLAN	Port	None	0x0000	Yes	IVL	No
	Port Members:	Port Meml	bers: 1/3	7,2/19			
300	VLAN #300	Port	None	0x0000	Yes	IVL	No
	Port Members:	1/37-38,	2/15-19,3	/15			

28. Confirm the EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

Unit/Port	Client MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	N/A	N/A
2/17	00:19:E1:E5:52:4A	Authenticated Locally	N/A	N/A
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	N/A	N/A
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	N/A	N/A
2/19	00:1E:CA:FF:C2:94	Authenticated For IP Telephony	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	N/A	N/A

ERS4000(config)#show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
2/15	00:19:E1:E5:52:92	Authenticated	Idle	N/A	N/A
2/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/18	00:AB:CD:03:00:12		Idle	N/A	N/A
2/19	00:AB:CD:04:00:13	Authenticated	Idle	N/A	N/A
3/15	00:AB:CD:01:00:10	Authenticated	Idle	N/A	N/A
	Neap Phones	=========			
2/16	00:19:E1:E6:09:B1				
Total number	er of authenticated cl	lients: 6			

29. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/16-19,3/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/16	No	Yes	50	0	UntagPvid	Unit 2,
					Only	Port 16
2/17	No	Yes	300	0	UntagPvid	Unit 2,
					Only	Port 17
2/18	No	Yes	300	0	UntagPvid	Unit 2,
					Only	Port 18
2/19	No	Yes	300	0	UntagPvid	Unit 2,
					Only	Port 19
3/15	No	Yes	300	0	UntagAll	Unit 3,
						Port 15

ERS4000(config)#show vlan interface vids 2/16-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/18	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/19	50	VLAN #50	201	Voice_VLAN	300	VLAN #300
3/15	50	VLAN #50	300	VLAN #300		

Alternate configuration

The following operation applies to MHMA authentication mode (Multihost MultiVLAN option disabled) without valid additional RADIUS attributes, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL.

ERS4000(config)#eapol disable
ERS4000(config)#eapol enable

2. Confirm EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

Supported EAP modes and configuration examples

Unit/Port	MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	N/A	N/A
2/17	00:19:E1:E5:52:4A	Authenticated Locally	N/A	N/A
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	N/A	N/A
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	N/A	N/A
2/19	00:1E:CA:FF:C2:94	Authenticated For IP Telephony	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	N/A	N/A

ERS4000(config)#show eapol multihost status

Client		Backend Auth		
MAC Address	Pae State	State	Vid	Pri
00:19:E1:E5:52:92	Authenticated	Idle	N/A	N/A
00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
00:AB:CD:03:00:12	Authenticated	Idle	N/A	N/A
00:AB:CD:04:00:13	Authenticated	Idle	N/A	N/A
00:AB:CD:01:00:10	Authenticated	Idle	N/A	N/A
Neap Phones	========			
00:19:E1:E6:09:B1				
	MAC Address 00:19:E1:E5:52:92 00:50:BF:B8:09:AF 00:AB:CD:03:00:12 00:AB:CD:04:00:13 00:AB:CD:01:00:10 Neap Phones	MAC Address Pae State 00:19:E1:E5:52:92 Authenticated 00:50:BF:B8:09:AF Authenticated 00:AB:CD:03:00:12 Authenticated 00:AB:CD:04:00:13 Authenticated 00:AB:CD:01:00:10 Authenticated Neap Phones ==============	MAC Address	Client MAC Address Pae State O0:19:E1:E5:52:92 Authenticated Idle N/A 00:50:BF:B8:09:AF Authenticated Idle N/A 00:AB:CD:03:00:12 Authenticated Idle N/A 00:AB:CD:04:00:13 Authenticated Idle N/A 00:AB:CD:01:00:10 Authenticated Idle N/A Neap Phones ====================================

3. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/16-19,3/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
2/16	No	Yes	50	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
2/19	No	Yes	300	0	UntagPvid Only	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

4. Confirm the VLAN interface settings.

ERS4000(config) #show vlan interface info 2/15-19,3/15

	Filter Untagged	Filter Unregister	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	50	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
2/19	No	Yes	300	0	UntagPvid Only	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

5. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
2/19	50	VLAN #50	201	Voice_VLAN	300	VLAN #300
3/15	50	VLAN #50				

MHMA authentication mode (Multihost MultiVLAN option enabled) with or without additional RADIUS attributes

When you operate in MHMA mode with MHMV support activated each client can have its own VLAN ID and PVID. MAC type VLANs are used to achieve this new functionality.

For this EAP operational mode the port and client will have the following settings:

- when 802.1X is disabled on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- when 802.1X is enabled on the port:
 - an unauthenticated client is on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
 - an 801.x authenticated client is on the port
 - the port is added to an initial VLAN and the port PVID is the initial VLAN PVID

 the client uses the initial VLAN PVIDs (client traffic can be sent in multiple initial VLANs). In this case no RADIUS attribute is received, or an invalid RADIUS attribute is received for the 801.x client.
 - the port is added to RADIUS VLAN and the port PVID is the initial VLAN PVID

 the client PVID is set to RADIUS VLAN PVID (Valid RADIUS attributes received for 801.x client)
 - an authenticated non-801.x radius client is on the port with Guest VLAN enabled

 - the port is added to the RADIUS VLAN and the port PVID is the initial VLAN PVID - the client PVID is set to RADIUS VLAN PVID (Valid RADIUS attributes received for non-801.x radius client)
 - an authenticated non-801.x static MAC client is on the port (client MAC was learned in the MAC address table). In this case the port is added to an initial VLAN, and the port PVID is the initial VLAN PVID the client uses the initial VLAN PVIDs (client traffic can be sent in multiple initial VLANs)
 - an authenticated non-801.x DHCP client is on the port and using a DHCP signature
 —the port remains in the initial VLAN, and the port uses the initial VLAN PVID the
 DHCP client uses tagged traffic, with the VOIP VLANs (DHCP client traffic can be
 sent desired VOIP VLAN is tagged traffic is used for the IP phone)

464 Configuration — Security December 2011

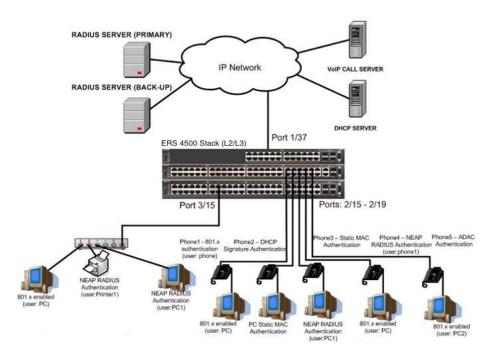


Figure 35: MHMA authentication mode (Multihost MultiVLAN option enabled) with or without additional RADIUS attributes

Scenario

Assume the following settings:

1. RADIUS server configuration.

A primary server is mandatory. If a back-up server is used, the back-up server configuration must be the same as for primary server configuration.

- 2. Configure all IP Phones to send tag traffic with proper VoIP VLAN ID.
- 3. Clients settings:
 - Port 2/15:
 - 801.x authenticated user Phone1connected
 - 801.x enabled user PC connected
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300
 - Phone RADIUS VLAN ID = none
 - Port 2/16:
 - DHCP signature authenticated user Phone2 connected

- Static MAC authenticated user PC connected
- Initial VLAN ID = 50, 300
- Phone EAP VOIP VLAN ID = 200

• Port 2/17:

- Static MAC authenticated user Phone3 connected
- NEAP RADIUS authenticated user PC1 connected
- Initial VLAN ID = 50, 200
- PC RADIUS VLAN ID = 300

• Port 2/18:

- NEAP RADIUS authenticated user Phone1 connected
- 801.x enabled user PC connected
- Initial VLAN ID = 50, 200
- PC RADIUS VLAN ID = 300
- Phone RADIUS VLAN ID = none

• Port 2/19:

- ADAC authenticated user Phone5 connected
- 801.x enabled user PC2 connected
- Initial VLAN ID = 50, 300
- PC RADIUS VLAN ID = none
- Phone ADAC VLAN ID = 201

• Port 3/15:

- 801.x enabled user PC connected
- NEAP RADIUS authenticated user Printer1 connected
- NEAP RADIUS authenticated user PC1 connected
- Initial VLAN ID = 50
- RADIUS VLAN ID = 300

4. Port settings:

- VLAN ID/PVID port settings for 2/15:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,200/50

- Authenticated (user phone authenticated, user PC unauthenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - EAP port vid for phone client: 50
- Authenticated (user phone authenticated, user PC authenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/50 (Valid RADIUS attributes received)
 - EAP port vid for PC client: 300
 - EAP port vid for phone client: 50
- VLAN ID/PVID port settings for 2/16:
 - 801.x disabled VLAN ID/PVID = 50,300/300
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,300/300
 - Authenticated (Phone DHCP signature OK, EAP VOIP VLAN ID 200 assigned):
 - VLAN ID/PVID = 50,200,300/300
 - Authenticated (PC MAC defined in static list, PC MAC learned in MAC address table, Phone DHCP signature OK):
 - VLAN ID/PVID = 50,200,300/300
 - EAP port vid for PC client: 300
 - EAP port vid for phone client: 200
- VLAN ID/PVID port settings for 2/17:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,200/50
 - Authenticated (Phone MAC defined in static list, Phone MAC learned in MAC address table):
 - VLAN ID/PVID = 50, 200/ 50
 - EAP port vid for phone client: 50
 - Authenticated (user PC1 authenticated; Phone MAC defined in static list, Phone MAC learned in MAC address table):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/ 300 (Valid RADIUS attributes received)
 - EAP port vid for PC client: 300

• EAP port vid for phone client: 50

VLAN ID/PVID port settings for 2/18:

- 801.x disabled VLAN ID/PVID = 50,200/50
- Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,200/50
- Authenticated (user phone1 authenticated, user PC unauthenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - EAP port vid for phone client: 50
- Authenticated (user PC authenticated, user phone1 authenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/ 300 (Valid RADIUS attributes received)
 - EAP port vid for PC client: 300
 - EAP port vid for phone client: 50

VLAN ID/PVID port settings for 2/19:

- 801.x disabled VLAN ID/PVID = 50,300/300
- Unauthenticated client with 801.x enabled VLAN ID/PVID = 50,300/300
- Authenticated (phone is ADAC authenticated, user PC unauthenticated):
 - VLAN ID/PVID = 50, 300, 201/300 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - EAP port vid for phone client: NA
- Authenticated (user PC2 authenticated, phone is ADAC authenticated):
 - VLAN ID/PVID = 50, 300, 201/ 300 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - EAP port vid for PC client: 300
 - EAP port vid for phone client: NA

VLAN ID/PVID port settings for 3/15:

- 801.x disabled VLAN ID/PVID = 50/50
- Unauthenticated client with 801.x enabled VLAN ID/PVID = 50/50
- Authenticated (at least one user authenticated from : PC, PC1, Printer1):
 - VLAN ID/PVID = 50/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 300/ 300 (Valid RADIUS attributes received)

• EAP port vid for PC client: 300

EAP port vid for printer NEAP client: 300

• EAP port vid for NEAP PC client: 300

Configuration example

1. Configure the RADIUS servers and VLAN settings

```
ERS4000(config)#ip address 10.100.68.254 netmask 255.255.255.0 default-gateway
10.100.68.1
ERS4000(config)#radius-server host 10.100.68.2
ERS4000(config)#radius-server secondary-host 10.100.68.3
ERS4000(config)#radius-server key
Enter key: RadiusKey
Enter key: RadiusKey
ERS4000(config)#vlan configcontrol automatic
ERS4000(config)#vlan create 50 type port
ERS4000(config)#vlan create 200 type port
ERS4000(config)#vlan create 300 type port
ERS4000(config)#vlan create 300 type port
ERS4000(config)#vlan members add 50 2/15-19,3/15
```

2. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-19,3/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	50	0	UntagAll	Unit 2, Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2, Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2, Port 18
2/19	No	Yes	50	0	UntagAll	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

3. Confirm the VLAN inteface VIDs.

ERS4000(config)#show vlan interface vids 2/15-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50				
2/16	50	VLAN #50				
2/17	50	VLAN #50				
2/18	50	VLAN #50				
2/19	50	VLAN #50				
3/15	50	VLAN #50				

4. Change VLAN config control mode to flexible mode in order to add same port in multiple initial VLANs.

ERS4000(config)#vlan configcontrol flexible

5. Add IP phone ports to the voice vlan, VLAN ID 200.

```
ERS4000(config)#vlan members add 200 2/15,2/17,2/18
ERS4000(config)#vlan members add 300 2/16
ERS4000(config)#vlan members add 300 2/19
ERS4000(config)#vlan port 2/16 pvid 300
ERS4000(config)#vlan port 2/19 pvid 300
```

6. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-19

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	300	0	UntagAll	Unit 2, Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2, Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2, Port 18
2/19	No	Yes	300	0	UntagAll	Unit 2, Port 19

7. Confirm the VLAN interace VIDs.

ERS4000(config)#show vlan interface vid 2/15-19

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
2/19	50	VLAN #50	300	VLAN #300		

8. Since all IP Phones will be sending tagged traffic and only the PC will need to receive untagged traffic, set the port to untaggvidOnly.

ERS4000(config)#vlan ports 2/15,2/16,2/17,2/18,2/19 tagging untagpvidOnly

9. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15,2/16,2/17,2/18,2/19

	Filter Untagged	Filter Unregistered	l.			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	50	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
2/19	No	Yes	300	0	UntagPvid Only	Unit 2, Port 19

10. Confirm the VLAN inteface VIDs.

ERS4000(config) #show vlan interface vids 2/15,2/16,2/17,2/18,2/19

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
2/19	50	VLAN #50	300	VLAN #300		

11. Configure the uplink port 1/37 to transport traffic from all VLANs (1,50,200,300). VLAN 201 is automatically added by ADAC.

```
ERS4000(config)#vlan members add 50,200,300 1/37
ERS4000(config)#vlan ports 1/37 tagging tagall
```

12. Confirm the VLAN interface settings for uplink port 1/37.

ERS4000(config)#sho vlan interface info 1/37

	Filter Untagged	Filter Unregistere	d			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/37	No	Yes	1	0	TagAll	Unit 1, Port 37

13. Confirm the VLAN inteface VIDs for uplink port 1/37.

ERS4000(config)#show vlan interface vid 1/37

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
1/37 1	1	VLAN #1	50	VLAN #50	200	VLAN #200
	300	VLAN #300				

14. Configure ADAC.

```
ERS4000(config)#interface fastEthernet 2/19
ERS4000(config-if) #adac detection mac lldp
ERS4000(config-if)#adac enable
ERS4000(config-if)#exit
ERS4000(config)#adac uplink-port 1/37
ERS4000(config)#adac voice-vlan 201
```

💔 Important:

Select only the ADAC mode that allows multiple MACs (clients) on a port. ADAC modes untagged-frames-basic and untagged-frames-advanced, support only one MAC per port (the IP phone MAC).

```
ERS4000(config) #adac op-mode tagged-frames
```

15. Add the MAC address of the IP phone connected on port 2/19 if the IP phone does not support the LLDP protocol.

```
ERS4000(config)#adac mac-range-table low-end 00-1C-9C-4A-BC-01 high-end 00-1C-9C-4A-
BC-02
```

16. Verify connectivity with the Primary RADIUS server and back-up RADIUS server (if backup server is used). Firewalls may filter ICMP packets. In this case it is recommended to verify RADIUS server logs for authentication request sent by device.

```
ERS4000(config)#ping 10.100.68.2
(Host is reachable)
ERS4000(config)#ping 10.100.68.3
(Host is reachable)
```

17. Set the EAPOL status for port 2/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/15 enable
ERS4000(config-if)#eapol port 2/15 status auto
ERS4000(config-if)#eapol multihost port 2/15 eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/15 use-radius-assigned-vlan
ERS4000(config-if)#exit
```

18. Set the EAPOL status for port 2/16.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/16 enable
ERS4000(config-if)#eapol port 2/16 status auto
ERS4000(config-if)#eapol multihost port 2/16 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/16 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/16 non-eap-phone-enable
```

```
ERS4000(config-if)#eapol multihost non-eap-mac port 2/16 00-19-E1-A2-4D-36 ERS4000(config-if)#exit
```

19. Set the EAPOL status for port 2/17.

```
ERS4000(config)#interface fastEthernet all

ERS4000(config-if)#eapol multihost port 2/17 enable

ERS4000(config-if)#eapol port 2/17 status auto

ERS4000(config-if)#eapol multihost port 2/17 non-eap-mac-max 2

ERS4000(config-if)#eapol multihost port 2/17 allow-non-eap-enable

ERS4000(config-if)#eapol multihost port 2/17 radius-non-eap-enable

ERS4000(config-if)#eapol multihost port 2/17 non-eap-use-radius-assigned- vlan

ERS4000(config-if)#eapol multihost non-eap-mac port 2/17 00-19-E1-E5-52-4A

ERS4000(config-if)#exit
```

20. Set the EAPOL status for port 2/18.

```
ERS4000(config)#interface fastEthernet all

ERS4000(config-if)#eapol multihost port 2/18 enable

ERS4000(config-if)#eapol port 2/18 status auto

ERS4000(config-if)#eapol multihost port 2/18 eap-mac-max 1

ERS4000(config-if)#eapol multihost port 2/18 non-eap-mac-max 1

ERS4000(config-if)#eapol multihost port 2/18 allow-non-eap-enable

ERS4000(config-if)#eapol multihost port 2/18 radius-non-eap-enable

ERS4000(config-if)#eapol multihost port 2/18 use-radius-assigned-vlan

ERS4000(config-if)#exit
```

21. Set the EAPOL status for port 2/19.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/19 enable
ERS4000(config-if)#eapol port 2/19 status auto
ERS4000(config-if)#eapol multihost port 2/19 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/19 non-eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/19 allow-non-eap-enable
```

22. To confirm that VLAN modifications are not performed by EAP on ADAC enabled ports, disable the VLAN assignment on port 2/19 for EAP and NON-EAP clients.

```
ERS4000(config-if)#no eapol multihost port 2/19 use-radius-assigned-vlan ERS4000(config-if)#no eapol multihost port 2/19 non-eap-use-radius-assigned-vlan ERS4000(config-if)#exit
```

23. Set the EAPOL status for port 3/15.

```
ERS4000(config)#interface fastEthernet all

ERS4000(config-if)#eapol multihost port 3/15 enable

ERS4000(config-if)#eapol port 3/15 status auto

ERS4000(config-if)#eapol multihost port 3/15 eap-mac-max 1

ERS4000(config-if)#eapol multihost port 3/15 non-eap-mac-max 2

ERS4000(config-if)#eapol multihost port 3/15 allow-non-eap-enable

ERS4000(config-if)#eapol multihost port 3/15 use-radius-assigned-vlan

ERS4000(config-if)#eapol multihost port 3/15 radius-non-eap-enable

ERS4000(config-if)#eapol multihost port 3/15 non-eap-use-radius-assigned- vlan

ERS4000(config-if)#eapol multihost port 3/15 non-eap-use-radius-assigned- vlan

ERS4000(config-if)#exit
```

24. Set the EAPOL MultiHost status.

```
ERS4000(config)#eapol multihost voip-vlan 1 vid 200
ERS4000(config)#eapol multihost voip-vlan 1 enable
ERS4000(config)#eapol multihost allow-non-eap-enable
ERS4000(config)#eapol multihost non-eap-phone-enable
ERS4000(config)#eapol multihost non-eap-use-radius-assigned-vlan
ERS4000(config)#eapol multihost use-radius-assigned-vlan
ERS4000(config)#eapol multihost radius-non-eap-enable
```


You can enable the MutiVlan option only when EAPOL is globally disabled and Fail Open VLAN is not used. The use-most-recent-radius-vlan option is mutually exclusive with the MutiVlan option because the MultiVlan option provides multiple VLAN support on one EAPOL enabled port.

ERS4000(config)#eapol multihost multivlan enable
ERS4000(config)#eapol enable

25. Enable ADAC.

ERS4000(config) #adac enable

After ADAC is enabled (for tagged-frames and untagged-frames-advanced modes), the ADAC voice VLAN is automatically created and the uplink port, and telephony ports (detected IP phones) are added to the ADAC voice VLAN.

26. Confirm the ADAC interface status for port 2/19.

ERS4000(config)#show adac interface 2/19

		Auto	Oper	Auto	T-F	T-F
Unit/Port	Type	Detection	State	Configuration	PVID	Tagging
2/19	Т	Enabled	Enabled	Applied	No Change	Untag PVID Only

27. Confirm the VLAN status.

ERS4000(config)#show vlan

Id	Name	Time	Protocol	Heer	Active	TVI./CVI	Mamt
				PID	Accive		
1	VLAN #1	Port	None	0x0000	Yes	IVL	Yes
	Port Members:	1/2-34,1	/39-50,2/1	-14,2/20-	26,3/1-14	,3/16-26	
50	VLAN #50	Port	None	0x0000	Yes	IVL	No
	Port Members:	1/1,1/35	,2/15-19,3	/15			
200	VLAN #200	Port	None	0x0000	Yes	IVL	No
	Port Members:	1/36,2/1	5-18				
201	Voice_VLAN	Port	None	0x0000	Yes	IVL	No
	Port Members:	1/37,2/1	9				
300	VLAN #300	Port	None	0x0000	Yes	IVL	No
	Port Members:	1/37-38,	2/15-19,3/	15			

28. Confirm the EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

Unit/Port	MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	50	0
2/17	00:19:E1:E5:52:4A	Authenticated Locally	50	0
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	300	0
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	50	0
2/19	00:1E:CA:FF:C2:94	Authenticated For IP Telephony	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	300	0
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	300	0

ERS4000(config)#show eapol multihost status

		Backend		
Client		Auth		
MAC Address	Pae State	State	Vid	Pri
00:19:E1:E5:52:92	Authenticated	Idle	50	0
00:50:BF:B8:09:AF	Authenticated	Idle	300	0
00:AB:CD:03:00:12		Idle	3000	N/A
00:AB:CD:04:00:13	Authenticated	Idle	300	0
00:AB:CD:01:00:10	Authenticated	Idle	300	0
Neap Phones	========			
00:19:E1:E6:09:B1				
	00:19:E1:E5:52:92 00:50:BF:B8:09:AF 00:AB:CD:03:00:12 00:AB:CD:04:00:13 00:AB:CD:01:00:10 Neap Phones	MAC Address Pae State 00:19:E1:E5:52:92 Authenticated 00:50:BF:B8:09:AF Authenticated 00:AB:CD:03:00:12 00:AB:CD:04:00:13 Authenticated 00:AB:CD:01:00:10 Authenticated Neap Phones ====================================	Client MAC Address Pae State State 00:19:E1:E5:52:92 Authenticated Idle 00:50:BF:B8:09:AF Authenticated Idle 00:AB:CD:03:00:12 Idle 00:AB:CD:04:00:13 Authenticated Idle 00:AB:CD:01:00:10 Authenticated Idle Neap Phones ====================================	Client MAC Address Pae State State Vid 00:19:E1:E5:52:92 Authenticated Idle 50 00:50:BF:B8:09:AF Authenticated Idle 300 00:AB:CD:03:00:12 Idle 3000 00:AB:CD:04:00:13 Authenticated Idle 300 Neap Phones ====================================

29. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/15-19,3/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
2/19	No	Yes	300	0	UntagPvid Only	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

30. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/18	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/19	50	VLAN #50	201	Voice_VLAN	300	VLAN #300
3/15	50	VLAN #50	300	VLAN #300		

Alternate configuration

The following operation applies to MHMA authentication mode (Multihost MultiVLAN option enabled) without valid additional RADIUS attributes, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL.

ERS4000(config)#eapol disable
ERS4000(config)#eapol enable

2. Confirm EAPOL MultiHost status.

ERS4000(config) #sho eapol multihost non-eap-mac status

Supported EAP modes and configuration examples

Unit/Port	Client MAC Address	State	Vid	Pri
	MAC Address			
2/16	00:19:E1:A2:4D:36	Authenticated Locally	50	0
2/17	00:19:E1:E5:52:4A	Authenticated Locally	50	0
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	50	0
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	50	0
2/19	00:1E:CA:FF:C2:94	Authenticated For IP Telephony	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	50	0
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	50	0

ERS4000(config) #show eapol multihost status

AC Address	D Ot			
	Pae State	State	Vid	Pri
0:19:E1:E5:52:92	Authenticated	Idle	50	0
0:50:BF:B8:09:AF	Authenticated	Idle	50	0
0:AB:CD:03:00:12	Authenticated	Idle	50	0
0:AB:CD:04:00:13	Authenticated	Idle	300	0
0:AB:CD:01:00:10	Authenticated	Idle	50	0
Neap Phones	========			
0:19:E1:E6:09:B1				
11	0:50:BF:B8:09:AF 0:AB:CD:03:00:12 0:AB:CD:04:00:13 0:AB:CD:01:00:10 Neap Phones 0:19:E1:E6:09:B1	0:50:BF:B8:09:AF Authenticated 0:AB:CD:03:00:12 Authenticated 0:AB:CD:04:00:13 Authenticated Authenticated 0:AB:CD:01:00:10 Neap Phones =========	0:50:BF:B8:09:AF Authenticated Idle 0:AB:CD:03:00:12 Authenticated Idle 0:AB:CD:04:00:13 Authenticated Idle Authenticated Idle 0:AB:CD:01:00:10 Idle Neap Phones ====================================	0:50:BF:B8:09:AF Authenticated Idle 50 0:AB:CD:03:00:12 Authenticated Idle 50 0:AB:CD:04:00:13 Authenticated Idle 300 Authenticated Idle 50 Neap Phones ====================================

3. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/15-19,3/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
2/19	No	Yes	300	0	UntagPvid Only	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

4. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/15-19,3/15

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	50	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
2/19	No	Yes	300	0	UntagPvid Only	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

5. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
2/19	50	VLAN #50	201	Voice_VLAN	300	VLAN #300
3/15	50	VLAN #50				

MHMA authentication mode with Guest VLAN (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes

The configuration example in this section applies to the following client port settings when:

- when 802.1X is disabled on the port—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
- when 802.1X is enabled on the port:
 - an unauthenticated client is on the port with Guest VLAN enabled—the port is included in the Guest VLAN ID, and the port uses one of the Guest VLAN PVIDs
 - an authenticated client is on the port with Guest VLAN enabled
 - the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs but no RADIUS attribute is received, or an invalid RADIUS attribute is received, for the client
 - the port is included in RADIUS VLAN Id and the port uses a RADIUS VLAN PVID (Valid RADIUS attributes received)
 - an authenticated client is on the port with Guest VLAN enabled
 - the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs but no RADIUS attribute is received, or an invalid RADIUS attribute is received, and Static MAC is defined for the client
 - the port is included in RADIUS VLAN Id and the port uses a RADIUS VLAN PVID (Valid RADIUS attributes received)
 - an authenticated client is on the port with Guest VLAN enabled and a static defined MAC—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs
 - an authenticated client is on the port with Guest VLAN enabled and using a DHCP signature—the port is included in the initial VLAN ID, and the port uses one of the initial VLAN PVIDs

480 Configuration — Security December 2011

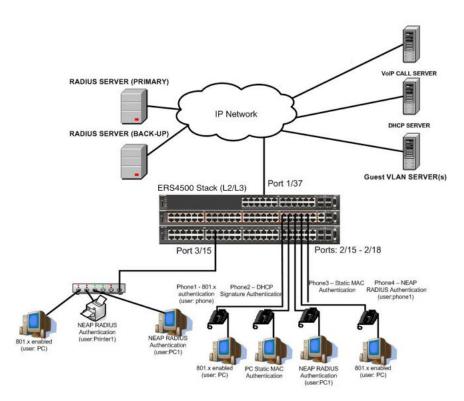


Figure 36: MHMA authentication mode with Guest VLAN (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes

Scenario

Assume the following settings:

- Primary RADIUS server configured with six users:
 - EAP user: phone with no VLAN ID radius attribute
 - EAP user: PC with attribute VLAN ID: 300
 - EAP user: PC2 with no VLAN ID radius attribute
 - RADIUS user for phone1 with no VLAN ID radius attribute
 - RADIUS user for PC1 with attribute VLAN ID: 300
 - RADIUS user for Printer1 with attribute VLAN ID: 300
- Backup RADIUS server configured with the same six users:
 - EAP user: phone with no VLAN ID radius attribute
 - EAP user: PC with attribute VLAN ID: 300
 - EAP user: PC2 with no VLAN ID radius attribute
 - RADIUS user for phone1 with no VLAN ID radius attribute

- RADIUS user for PC1 with attribute VLAN ID: 300
- RADIUS user for Printer1 with attribute VLAN ID: 300

All IP Phones are configured to send tag traffic with a VoIP VLAN ID.

- Port 2/15:
 - 801.x authenticated user Phone1connected
 - 801.x enabled user PC connected
 - Guest VLAN ID = 20
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300
 - Phone RADIUS VLAN ID = none
- Port 2/16:
 - DHCP signature authenticated user Phone2 connected
 - Static MAC authenticated user PC connected
 - Guest VLAN ID = 20
 - Initial VLAN ID = 50, 300
 - Phone EAP VOIP VLAN ID = 200
- Port 2/17:
 - Static MAC authenticated user Phone3 connected
 - NEAP RADIUS authenticated user PC1 connected
 - Guest VLAN ID = 20
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300
- Port 2/18:
 - Phone4 NEAP RADIUS Authentication (user:phone1)
 - 801.x enabled user PC connected
 - Guest VLAN ID = 20
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300
 - Phone RADIUS VLAN ID = none
- Port 3/15:
 - 801.x enabled user PC connected
 - NEAP RADIUS authenticated user Printer1 connected

- NEAP RADIUS authenticated user PC1 connected
- Guest VLAN ID = 20
- Initial VLAN ID = 50
- RADIUS VLAN ID = 300
- 802.1x phone client VLAN ID/PVID port 2/15 settings:
 - 801.x disabled on 50,200/50
 - Unauthenticated client with 801.x enabled on 20/20
 - Authenticated (user phone authenticated, user PC unauthenticated):

50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)

- Authenticated (user phone authenticated, user PC authenticated):
 - 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - 50, 200, 300/ 300 (Valid RADIUS attributes received)
- 802.1x PC client VLAN ID/PVID port 2/16 settings:
 - 801.x disabled on 50,300/300
 - Unauthenticated client with 801.x enabled on 20/20
 - Authenticated (Phone DHCP signature OK, EAP VOIP VLAN ID 200 assigned):

50,200,300/300

- Authenticated (PC MAC defined in static list, PC MAC learned in MAC address table, Phone DHCP signature OK):

50,200,300/300

- 802.1x PC client VLAN ID/PVID port 2/17 settings:
 - 801.x disabled on 50,200/50
 - Unauthenticated client with 801.x enabled on 20/20
 - Authenticated (Phone MAC defined in static list, Phone MAC learned in MAC address table):

50, 200/50

- Authenticated (user PC1 authenticated; Phone MAC defined in static list, Phone MAC learned in MAC address table):
 - 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes) received)
 - 50, 200, 300/300 (Valid RADIUS attributes received)

802.1x PC client VLAN ID/PVID port 2/18 settings:

- 801.x disabled on 50,200/50
- Unauthenticated client with 801.x enabled on 20/20
- Authenticated (user phone1 authenticated, user PC unauthenticated):
 - 50, 200/50 (No RADIUS attribute received/Invalid RADIUS attributes received)
- Authenticated (user PC authenticated, user phone1 authenticated):
 - 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - 50, 200, 300/300 (Valid RADIUS attributes received)

802.1x PC client VLAN ID/PVID port 3/15 settings:

- 801.x disabled on 50/50
- Unauthenticated client with 801.x enabled on 20/20
- Authenticated (at least one user authenticated from : PC, PC1, Printer1):
 - 50/50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - 300/ 300 (Valid RADIUS attributes received)

Configuration example

1. Configure the RADIUS servers and VLAN settings

```
ERS4000(config)#ip address 10.100.68.254 netmask 255.255.255.0 default-gateway 10.100.68.1

ERS4000(config)#radius-server host 10.100.68.2

ERS4000(config)#radius-server secondary-host 10.100.68.3

ERS4000(config)#radius-server key

Enter key: RadiusKey

Enter key: RadiusKey

ERS4000(config)#vlan configcontrol automatic

ERS4000(config)#vlan create 20 type port

ERS4000(config)#vlan create 50 type port

ERS4000(config)#vlan create 200 type port

ERS4000(config)#vlan create 300 type port

ERS4000(config)#vlan create 300 type port

ERS4000(config)#vlan members add 50 2/15-19,3/15
```

Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-19,3/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	50	0	UntagAll	Unit 2, Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2, Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2, Port 18
2/19	No	Yes	50	0	UntagAll	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

3. Confirm the VLAN inteface VIDs.

ERS4000(config)#show vlan interface vids 2/15-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50				
2/16	50	VLAN #50				
2/17	50	VLAN #50				
2/18	50	VLAN #50				
2/19	50	VLAN #50				
3/15	50	VLAN #50				

4. Change VLAN config control mode to flexible mode in order to add same port in multiple initial VLANs.

ERS4000(config)#vlan configcontrol flexible

5. Add IP phone ports to the voice vlan, VLAN ID 200.

```
ERS4000(config)#vlan members add 200 2/15,2/17,2/18
ERS4000(config)#vlan members add 300 2/16
ERS4000(config)#vlan port 2/16 pvid 300
```

6. Confirm the VLAN interface settings.

ERS4000(config) #sho vlan interface info 2/15,2/16,2/17,2/18

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2,
						Port 15
2/16	No	Yes	300 0 Un	UntagAll	Unit 2,	
						Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2,
						Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2,
						Port 18

7. Confirm the VLAN inteface VIDs.

ERS4000(config) #show vlan interface vids 2/15,2/16,2/17,2/18

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		

8. Since all IP Phones will be sending tagged traffic and only the PC will need to receive untagged traffic, set the port to untagpvidOnly.

ERS4000(config)#vlan ports 2/15,2/16,2/17,2/18 tagging untagpvidOnly

9. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15,2/16,2/17,2/18

	Filter Untagged	Filter Unregistered	i			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15 No	Yes	50	0	UntagPvid	Unit 2,	
					Only	Port 15
2/16 No	No	Yes	50	0	UntagPvid	Unit 2,
					Only	Port 16
2/17	No	Yes	50	0	UntagPvid	Unit 2,
					Only	Port 17
2/18 No	No	Yes	50	0	UntagPvid	Unit 2,
					Only	Port 18

10. Confirm the VLAN inteface VIDs.

ERS4000(config) #show vlan interface vids 2/15,2/16,2/17,2/18

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		

11. Configure the uplink port 1/37 to transport traffic from all VLANs (1,50,200,300).

```
ERS4000(config)#vlan members add 50,200,300 1/37
ERS4000(config)#vlan ports 1/37 tagging tagall
```

12. Confirm the VLAN interface settings for uplink port 1/37.

ERS4000(config)#sho vlan interface info 1/37

	Filter Untagged	Filter Unregister	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/37	No	Yes	1	0	TagAll	Unit 1, Port 37

13. Confirm the VLAN inteface VIDs for uplink port 1/37.

ERS4000(config)#show vlan interface vids 1/37

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
1/37	1	VLAN #1	50	VLAN #50	200	VLAN #200
	300	VLAN #300				

14. Verify connectivity with the Primary RADIUS server and back-up RADIUS server (if back-up server is used). Firewalls may filter ICMP packets. In this case it is recommended to verify RADIUS server logs for authentication request sent by device.

```
ERS4000(config)#ping 10.100.68.2
(Host is reachable)

ERS4000(config)#ping 10.100.68.3
(Host is reachable)
```

15. Set the EAPOL status for port 2/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/15 enable
ERS4000(config-if)#eapol port 2/15 status auto
ERS4000(config-if)#eapol multihost port 2/15 eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/15 use-radius-assigned-vlan
ERS4000(config-if)#eapol guest-vlan port 2/15 enable
ERS4000(config-if)#exit
```

16. Set the EAPOL status for port 2/16.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/16 enable
```

```
ERS4000(config-if)#eapol port 2/16 status auto
ERS4000(config-if)#eapol multihost port 2/16 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/16 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/16 non-eap-phone-enable
ERS4000(config-if)#eapol multihost non-eap-mac port 2/16 00-19-E1-A2-4D-36
ERS4000(config-if)#eapol guest-vlan port 2/16 enable
ERS4000(config-if)#exit
```

17. Set the EAPOL status for port 2/17.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/17 enable
ERS4000(config-if)#eapol port 2/17 status auto
ERS4000(config-if)#eapol multihost port 2/17 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/17 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/17 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/17 non-eap-use-radius-assigned- vlan
ERS4000(config-if)#eapol multihost non-eap-mac port 2/17 00-19-E1-E5-52-4A
ERS4000(config-if)#eapol guest-vlan port 2/17 enable
ERS4000(config-if)#exit
```

18. Set the EAPOL status for port 2/18.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/18 enable
ERS4000(config-if)#eapol port 2/18 status auto
ERS4000(config-if)#eapol multihost port 2/18 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/18 non-eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/18 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/18 use-radius-assigned-vlan
ERS4000(config-if)#eapol quest-vlan port 2/18 enable
ERS4000(config-if)#exit
```

19. Set the EAPOL status for port 3/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 3/15 enable
ERS4000(config-if)#eapol port 3/15 status auto
ERS4000(config-if)#eapol multihost port 3/15 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 3/15 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 3/15 use-radius-assigned-vlan
ERS4000(config-if)#eapol multihost port 3/15 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 3/15 non-eap-use-radius-assigned- vlan
ERS4000(config-if)#eapol quest-vlan port 3/15 enable
ERS4000(config-if)#exit
```

20. Set the Guest VLAN

```
ERS4000(config)#eapol guest-vlan vid 20
ERS4000(config)#eapol guest-vlan enable
```

21. Set the EAPOL MultiHost status.

```
ERS4000(config)#eapol multihost voip-vlan 1 vid 200
ERS4000(config)#eapol multihost voip-vlan 1 enable
ERS4000(config)#eapol multihost allow-non-eap-enable
ERS4000(config)#eapol multihost non-eap-phone-enable
ERS4000(config)#eapol multihost non-eap-use-radius-assigned-vlan
ERS4000(config)#eapol multihost use-radius-assigned-vlan
ERS4000(config)#eapol multihost radius-non-eap-enable
```

22. Confirm the VLAN interface settings.

```
ERS4000(config) #show vlan interface info 2/15-18,3/15
```

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

23. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
3/15	50	VLAN #50				

24. Enable EAPOL globally.

ERS4000(config)#eapol enable

- % Depending on your stack configuration it may take up to 4 minutes for
- % port vlan membership and vid to take effect on all guest-vlan enabled ports.

Before any clients authenticate on ports:

25. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregister	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	20	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	20	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	20	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	20	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	20	.0	UntagAll	Unit 3, Port 15

26. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	20	VLAN #20				
2/16	20	VLAN #20				
2/17	20	VLAN #20				
2/18	20	VLAN #20				
3/15	20	VLAN #20				

After all clients authenticate on ports:

27. Confirm the EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

Unit/Port	Client MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	N/A	N/A
2/17	00:19:E1:E5:52:4A	Authenticated Locally	N/A	N/A
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	N/A	N/A
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	N/A	N/A

ERS4000(config) #show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
2/15	00:19:E1:E5:52:92	Authenticated	Idle	N/A	N/A
2/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/18	00:AB:CD:03:00:12		Idle	N/A	N/A
3/15	00:AB:CD:01:00:10	Authenticated	Idle	N/A	N/A
	Neap Phones				
2/16	00:19:E1:E6:09:B1				

28. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregister	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	300	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	300	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	300	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	300	0	UntagAll	Unit 3, Port 15

29. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/18	50	VLAN #50	200	VLAN #200	300	VLAN #300
3/15	50	VLAN #50	300	VLAN #300		

Alternate configuration

The following operation applies to MHMA authentication mode with Guest VLAN (Multihost MultiVLAN option disabled) without valid additional RADIUS attributes, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL.

ERS4000(config)#eapol disable
ERS4000(config)#eapol enable

- % Depending on your stack configuration it may take up to 4 minutes for
- % port vlan membership and vid to take effect on all guest-vlan enabled ports.

2. Confirm EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

Unit/Port	MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	N/A	N/A
2/17	00:19:E1:E5:52:4A	Authenticated Locally	N/A	N/A
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	N/A	N/A
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	N/A	N/A

ERS4000(config) #show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
2/15	00:19:E1:E5:52:92	Authenticated	Idle	N/A	N/A
2/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/18	00:AB:CD:03:00:12	Authenticated	Idle	N/A	N/A
3/15	00:AB:CD:01:00:10	Authenticated	Idle	N/A	N/A
=======	Neap Phones	========			
2/16	00:19:E1:E6:09:B1				
Total numb	er of authenticated cl	ients: 5			

3. Confirm the VLAN interface settings.

ERS4000(config) #show vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregister	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

4. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
3/15	50	VLAN #50				

MHMA authentication mode with Guest VLAN (Multihost MultiVLAN option enabled) with or without additional RADIUS attributes

For this EAP operational mode the port and client will have the following settings:

- when 802.1X is disabled on the port—the port is included in an initial VLAN one or multiple initial VLANs are supported, and the port uses one of the initial VLAN PVIDs specified by the user
- when 802.1X is enabled on the port:
 - an unauthenticated client is on the port with Guest VLAN enabled—the port is included only in the Guest VLAN ID, and the port uses the Guest VLAN PVID
 - an authenticated 801.x client is on the port with Guest VLAN enabled
 - the port is added to an initial VLAN and port PVID is the Guest VLAN PVID the client uses the initial VLAN PVIDs (client traffic can be sent in multiple initial
 VLANs). In this case no RADIUS attribute is received, or an invalid RADIUS
 attribute is received. for the 801.x client.
 - the port is added to the RADIUS VLAN and the port PVID is the Guest VLAN PVID - the client PVID is set to the RADIUS VLAN PVID (Valid RADIUS attributes received for 801.x client)
 - an authenticated non-801.x client is on the port with Guest VLAN enabled
 - the port is added to an initial VLAN, and the port PVID is the Guest VLAN PVID

 the client uses the initial VLAN PVIDs (client traffic can be sent in multiple initial VLANs). In this case no RADIUS attribute is received, or an invalid RADIUS attribute is received for the non-801.x radius client.
 - the port is added to the RADIUS VLAN and the port PVID is the Guest VLAN PVID - the client PVID is set to the RADIUS VLAN PVID (Valid RADIUS attributes received for non-801.x radius client)

494 Configuration — Security

- an authenticated non-801.x static MAC client is on the port with Guest VLAN enabled (client MAC was learned in the MAC address table). In this case the port is added to an initial VLAN, and the port PVID is the Guest VLAN PVID the client uses the initial VLAN PVIDs (client traffic can be sent in multiple initial VLANs)
- an authenticated non-801.x client is on the port with Guest VLAN enabled and using a DHCP signature—the port remains in the Guest VLAN, and the port uses the Guest VLAN PVID - the DHCP client uses the first VOIP VLAN PVIDs (DHCP client traffic cannot be sent in multiple VOIP VLANs, only the fist VOIP VLAN defined is used)

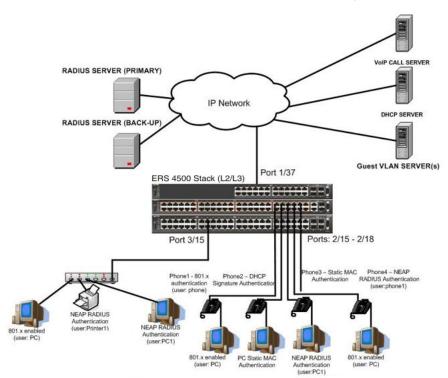


Figure 37: MHMA authentication mode with Guest VLAN (Multihost MultiVLAN option enabled) with or without additional RADIUS attributes

Scenario

Assume the following settings:

- 1. RADIUS server(s) configurations.
 - A primary server is mandatory. If a back-up server is used, the back-up server configuration must be the same as for primary server configuration.
- 2. Configure all IP Phones to send tag traffic with proper VoIP VLAN ID.

3. Clients settings:

- Port 2/15:
 - 801.x authenticated user Phone1connected
 - 801.x enabled user PC connected
 - Guest VLAN ID = 20
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300
 - Phone RADIUS VLAN ID = none
- Port 2/16:
 - DHCP signature authenticated user Phone2 connected
 - Static MAC authenticated user PC connected
 - Guest VLAN ID = 20
 - Initial VLAN ID = 50, 300
 - Phone EAP VOIP VLAN ID = 200
- Port 2/17:
 - Static MAC authenticated user Phone3 connected
 - NEAP RADIUS authenticated user PC1 connected
 - Guest VLAN ID = 20
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300
- Port 2/18:
 - Phone4 NEAP RADIUS Authentication (user:phone1)
 - 801.x enabled user PC connected
 - Guest VLAN ID = 20
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300
 - Phone RADIUS VLAN ID = none
- Port 3/15:
 - 801.x enabled user PC connected
 - NEAP RADIUS authenticated user Printer1 connected
 - NEAP RADIUS authenticated user PC1 connected
 - Guest VLAN ID = 20

- Initial VLAN ID = 50
- RADIUS VLAN ID = 300
- 4. Port settings:
 - VLAN ID/PVID port settings for 2/15:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
 - Authenticated (user phone authenticated, user PC unauthenticated):

VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)

- Authenticated (user phone authenticated, user PC authenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/300 (Valid RADIUS attributes received)
- VLAN ID/PVID port settings for 2/16:
 - 801.x disabled VLAN ID/PVID = 50,300/300
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
 - Authenticated (Phone DHCP signature OK, EAP VOIP VLAN ID 200 assigned):

VLAN ID/PVID = 50,200,300/300

- Authenticated (PC MAC defined in static list, PC MAC learned in MAC address table, Phone DHCP signature OK):

VLAN ID/PVID = 50,200,300/300

- VLAN ID/PVID port settings for 2/17:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
 - Authenticated (Phone MAC defined in static list, Phone MAC learned in MAC address table):

VLAN ID/PVID = 50, 200/ 50

- Authenticated (user PC1 authenticated; Phone MAC defined in static list, Phone MAC learned in MAC address table):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes) received)

 VLAN ID/PVID = 50, 200, 300/ 300 (Valid RADIUS attributes received)

VLAN ID/PVID port settings for 2/18:

- 801.x disabled VLAN ID/PVID = 50,200/50
- Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
- Authenticated (user phone1 authenticated, user PC unauthenticated):

VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)

- Authenticated (user PC authenticated, user phone1 authenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/300 (Valid RADIUS attributes received)

VLAN ID/PVID port settings for 3/15:

- 801.x disabled VLAN ID/PVID = 50/50
- Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
- Authenticated (at least one user authenticated from : PC, PC1, Printer1):
 - VLAN ID/PVID = 50/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 300/ 300 (Valid RADIUS attributes received)

Configuration example

1. Configure the RADIUS servers and VLAN settings

```
ERS4000(config)#ip address 10.100.68.254 netmask 255.255.255.0 default-gateway 10.100.68.1

ERS4000(config)#radius-server host 10.100.68.2

ERS4000(config)#radius-server secondary-host 10.100.68.3

ERS4000(config)#radius-server key

Enter key: RadiusKey

Enter key: RadiusKey

ERS4000(config)#vlan configcontrol automatic

ERS4000(config)#vlan create 20 type port

ERS4000(config)#vlan create 50 type port

ERS4000(config)#vlan create 200 type port

ERS4000(config)#vlan create 300 type port

ERS4000(config)#vlan create 300 type port

ERS4000(config)#vlan members add 50 2/15-19,3/15
```

2. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-19,3/15

	Filter Untagged	Filter Unregistered	ì			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	50	0	UntagAll	Unit 2, Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2, Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2, Port 18
2/19	No	Yes	50	0	UntagAll	Unit 2, Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

3. Confirm the VLAN inteface VIDs.

ERS4000(config)#show vlan interface vids 2/15-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50				
2/16	50	VLAN #50				
2/17	50	VLAN #50				
2/18	50	VLAN #50				
2/19	50	VLAN #50				
3/15	50	VLAN #50				

4. Change VLAN config control mode to flexible mode in order to add same port in multiple initial VLANs.

ERS4000(config)#vlan configcontrol flexible

5. Add IP phone ports to the voice vlan, VLAN ID 200.

```
ERS4000(config)#vlan members add 200 2/15,2/17,2/18
ERS4000(config)#vlan members add 300 2/16
ERS4000(config)#vlan port 2/16 pvid 300
```

6. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15,2/16,2/17,2/18

Unit/Port	Filter Untagged Frames	Filter Unregistered Frames	PVID	PRI	Tagging	Name
	riames					
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	300	0	UntagAll	Unit 2, Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2, Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2, Port 18

7. Confirm the VLAN inteface VIDs.

ERS4000(config)#show vlan interface vids 2/15,2/16,2/17,2/18

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/15	50	VLAN #50 VLAN #50	300	VLAN #200 VLAN #300		
2/16	50	VLAN #50 VLAN #50	200	VLAN #300 VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		

8. Since all IP Phones will be sending tagged traffic and only the PC will need to receive untagged traffic, set the port to untagpvidOnly.

ERS4000(config)#vlan ports 2/15,2/16,2/17,2/18 tagging untagpvidOnly

9. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15,2/16,2/17,2/18

	Filter Untagged	Filter Unregister	red			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	50	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18

10. Confirm the VLAN inteface VIDs.

ERS4000(config) #show vlan interface vids 2/15,2/16,2/17,2/18

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		

11. Configure the uplink port 1/37 to transport traffic from all VLANs (1,50,200,300).

```
ERS4000(config)#vlan members add 50,200,300 1/37
ERS4000(config)#vlan ports 1/37 tagging tagall
```

12. Confirm the VLAN interface settings for uplink port 1/37.

ERS4000(config)#sho vlan interface info 1/37

	Filter Untagged	Filter Unregister	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/37	No	Yes	1	0	TagAll	Unit 1,
						Port 37

13. Confirm the VLAN inteface VIDs for uplink port 1/37.

ERS4000(config) #show vlan interface vids 1/37

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
1/37	1	VLAN #1	50	VLAN #50	200	VLAN #200
	300	VLAN #300				

14. Verify connectivity with the Primary RADIUS server and back-up RADIUS server (if back-up server is used). Firewalls may filter ICMP packets. In this case it is recommended to verify RADIUS server logs for authentication request sent by device.

```
ERS4000(config)#ping 10.100.68.2
(Host is reachable)
ERS4000(config)#ping 10.100.68.3
(Host is reachable)
```

15. Set the EAPOL status for port 2/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/15 enable
ERS4000(config-if)#eapol port 2/15 status auto
ERS4000(config-if)#eapol multihost port 2/15 eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/15 use-radius-assigned-vlan
ERS4000(config-if)#eapol guest-vlan port 2/15 enable
ERS4000(config-if)#exit
```

16. Set the EAPOL status for port 2/16.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/16 enable
ERS4000(config-if)#eapol port 2/16 status auto
ERS4000(config-if)#eapol multihost port 2/16 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/16 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/16 non-eap-phone-enable
ERS4000(config-if)#eapol multihost non-eap-mac port 2/16 00-19-E1-A2-4D-36
ERS4000(config-if)#eapol quest-vlan port 2/16 enable
ERS4000(config-if)#exit
```

17. Set the EAPOL status for port 2/17.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/17 enable
ERS4000(config-if)#eapol port 2/17 status auto
ERS4000(config-if)#eapol multihost port 2/17 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/17 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/17 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/17 non-eap-use-radius-assigned- vlan
ERS4000(config-if)#eapol multihost non-eap-mac port 2/17 00-19-E1-E5-52-4A
ERS4000(config-if)#eapol quest-vlan port 2/17 enable
ERS4000(config-if)#exit
```

18. Set the EAPOL status for port 2/18.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/18 enable
ERS4000(config-if)#eapol port 2/18 status auto
ERS4000(config-if)#eapol multihost port 2/18 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/18 non-eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/18 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/18 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/18 use-radius-assigned-vlan
ERS4000(config-if)#eapol guest-vlan port 2/18 enable
ERS4000(config-if)#exit
```

19. Set the EAPOL status for port 3/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 3/15 enable
ERS4000(config-if)#eapol port 3/15 status auto
ERS4000(config-if)#eapol multihost port 3/15 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 3/15 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 3/15 allow-non-eap-enable ERS4000(config-if)#eapol multihost port 3/15 use-radius-assigned-vlan
ERS4000(config-if)#eapol multihost port 3/15 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 3/15 non-eap-use-radius-assigned- vlan
ERS4000(config-if)#eapol guest-vlan port 3/15 enable
ERS4000(config-if)#exit
```

Set the Guest VLAN.

```
ERS4000(config)#eapol guest-vlan vid 20
ERS4000(config)#eapol quest-vlan enable
```

Set the EAPOL MultiHost status.

```
ERS4000(config)#eapol multihost multivlan enable
ERS4000(config)#eapol multihost voip-vlan 1 vid 200
ERS4000(config)#eapol multihost voip-vlan 1 enable
ERS4000(config)#eapol multihost allow-non-eap-enable
ERS4000(config)#eapol multihost non-eap-phone-enable
ERS4000(config)#eapol multihost non-eap-use-radius-assigned-vlan
```

ERS4000(config)#eapol multihost use-radius-assigned-vlan
ERS4000(config)#eapol multihost radius-non-eap-enable

22. Confirm the VLAN interface settings.

ERS4000(config) #show vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid	Unit 2,
					Only	Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
		2200			0007000	
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

23. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
3/15	50	VLAN #50				

24. Enable EAPOL globally.

ERS4000(config)#eapol enable

- % Depending on your stack configuration it may take up to 4 minutes for
- % port vlan membership and vid to take effect on all guest-vlan enabled ports.

Before any clients authenticate on ports:

25. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregistered					
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name	
2/15	No	Yes	20	0	UntagPvid Only	Unit 2, Port 15	
2/16	No	Yes	20	0	UntagPvid Only	Unit 2, Port 16	
2/17	No	Yes	20	0	UntagPvid Only	Unit 2, Port 17	
2/18	No	Yes	20	0	UntagPvid Only	Unit 2, Port 18	
3/15	No	Yes	20	0	UntagAll	Unit 3, Port 15	

26. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	20	VLAN #20				
2/16	20	VLAN #20				
2/17	20	VLAN #20				
2/18	20	VLAN #20				
3/15	20	VLAN #20				

After all clients authenticate on ports:

27. Confirm the EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

	Client			
Unit/Port	MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	300	0
2/17	00:19:E1:E5:52:4A	Authenticated Locally	50	0
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	300	0
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	50	0
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	300	0
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	300	0

ERS4000(config) #show eapol multihost status

Unit/Port	Client MAC Address	Pae State	Backend Auth State	Vid	Pri
2/15	00:19:E1:E5:52:92	Authenticated	Idle	50	0
2/15	00:50:BF:B8:09:AF	Authenticated	Idle	300	2
2/18	00:AB:CD:03:00:12		Idle	300	3
3/15	00:AB:CD:01:00:10	Authenticated	Idle	300	2
	Neap Phones	=======================================			
2/16	00:19:E1:E6:09:B1				
2/16 Total numb	AND THE ACTUAL AND A SECOND	ients: 5			

All Guest VLAN enabled ports will service unauthenticated clients (new clients or old clients failing authentication) with Guest VLAN access even if authenticated clients are present on the same port. This behavior is different from MHMA mode with Guest VLAN having Multihost MultiVLAN option disabled, where Guest VLAN was available only until the first client is authenticated on the port.

28. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregistere	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	20	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	20	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	20	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	20	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	20	0	UntagAll	Unit 3, Port 15

29. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	20 300	VLAN #20 VLAN #300	50	VLAN #50	200	VLAN #200
2/16	20	VLAN #20	200	VLAN #200	300	VLAN #300
2/17	20 300	VLAN #20 VLAN #300	50	VLAN #50	200	VLAN #200
2/18	20 300	VLAN #20 VLAN #300	50	VLAN #50	200	VLAN #200
3/15	20	VLAN #20	50	VLAN #50	300	VLAN #300

Alternate configuration

The following operation applies to the MHMA authentication mode with Guest VLAN (Multihost MultiVLAN option enabled) without valid additional RADIUS attributes configuration example, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL.

```
ERS4000(config)#eapol disable
ERS4000(config)#eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

2. Confirm EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

Unit/Port	MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	300	0
2/17	00:19:E1:E5:52:4A	Authenticated Locally	50	0
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	50	0
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	50	0
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	50	0
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	50	0

ERS4000(config) #show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
2/15	00:19:E1:E5:52:92	Authenticated	Idle	50	0
2/15	00:50:BF:B8:09:AF	Authenticated	Idle	50	0
2/18	00:AB:CD:03:00:12	Authenticated	Idle	50	0
3/15	00:AB:CD:01:00:10	Authenticated	Idle	50	0
	Neap Phones				
2/16	00:19:E1:E6:09:B1				
Total numb	er of authenticated cl	ients: 5			

3. Confirm the VLAN interface settings.

ERS4000(config) #show vlan interface info 2/15-18,3/15

	Filter	Filter				
Unit/Port	Untagged Frames	Unregistered Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	20	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	20	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	20	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	20	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	20	0	UntagAll	Unit 3, Port 15

4. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	20	VLAN #20	50	VLAN #50	200	VLAN #200
2/16	20	VLAN #20	200	VLAN #200	300	VLAN #300
2/17	20	VLAN #20	50	VLAN 50	200	VLAN #200
2/18	20	VLAN #20	50	VLAN 50	200	VLAN #200
3/15	20	VLAN #20	50	VLAN 50		

MHMA authentication mode with Guest VLAN and Fail Open VLAN (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes

The Ethernet Routing Switch 4000 does not support Multihost MultiVLAN in combination with Fail Open VLAN for software release 5.4.

For this EAP operational mode the port and client will have the following settings:

- when 802.1X is disabled on the port—the port is included in an initial VLAN one or multiple initial VLANs are supported and the port uses one of the initial VLAN PVIDs specified by the user
- when 802.1X is enabled on the port:
 - an unauthenticated client is on the port with Guest VLAN enabled—the port is included in the Guest VLAN ID and the port uses one of the Guest VLAN PVIDs
 - an authenticated 801.x client is on the port with Guest VLAN enabled
 - the port is added to an initial VLAN and uses one of the initial VLAN PVIDs (port is removed from Guest VLAN). In this case no RADIUS attribute is received, or an invalid RADIUS attribute is received, for the client.

508 Configuration — Security

- the port is moved to the RADIUS VLAN (port is removed from Guest VLAN) and the port uses a RADIUS VLAN PVID (Valid RADIUS attributes received).
- a non-801.x authenticated client is on the port with Guest VLAN enabled
 - the port is added to an initial VLAN (port is removed from Guest VLAN), and the port uses one of the initial VLAN PVIDs. In this case no RADIUS attribute is received, or an invalid RADIUS attribute is received for the client.
 - the port is moved to the RADIUS VLAN and the port uses a RADIUS VLAN PVID (Valid RADIUS attributes received).
- an authenticated non-801.x client is on the port with Guest VLAN enabled and a non-801.x static MAC client defined MAC—the port is included in an initial VLAN (port is removed from Guest VLAN), and the port uses one of the initial VLAN PVIDs
- an authenticated non-801.x DHCP client is on the port with Guest VLAN enabled and using a DHCP signature—the port remains in the Guest VLAN and the port uses the Guest VLAN PVID. The port is member of any EAP VOIP VLANs that have been created.
- RADIUS Server Unreachable (801.x enabled)—the port is moved to the Fail Open VLAN (port is removed from Guest VLAN), and the port uses the Fail Open VLAN PVID.

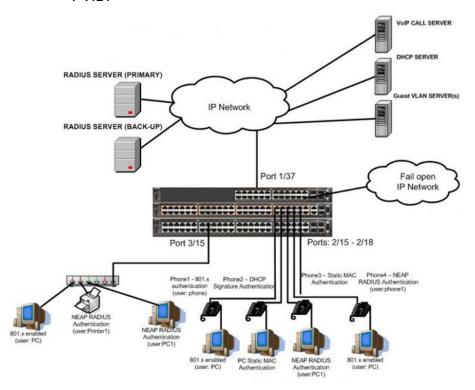


Figure 38: MHMA authentication mode with Guest VLAN and Fail Open VLAN (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes

Scenario

Assume the following settings:

1. RADIUS server configuration.

A primary server is mandatory. If a back-up server is used, the back-up server configuration must be the same as for primary server configuration.

- 2. Configure all IP Phones to send tag traffic with proper VoIP VLAN ID.
- 3. Clients settings:
 - Port 2/15:
 - 801.x authenticated user Phone1connected
 - 801.x enabled user PC connected
 - Guest VLAN ID = 20
 - Fail Open VLAN ID = 30
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300
 - Phone RADIUS VLAN ID = none
 - Port 2/16:
 - DHCP signature authenticated user Phone2 connected
 - Static MAC authenticated user PC connected
 - Guest VLAN ID = 20
 - Fail Open VLAN ID = 30
 - Initial VLAN ID = 50, 300
 - Phone EAP VOIP VLAN ID = 200
 - Port 2/17:
 - Static MAC authenticated user Phone3 connected
 - NEAP RADIUS authenticated user PC1 connected
 - Guest VLAN ID = 20
 - Fail Open VLAN ID = 30
 - Initial VLAN ID = 50, 200
 - PC RADIUS VLAN ID = 300

• Port 2/18:

- Phone4 NEAP RADIUS Authentication (user:phone1)
- 801.x enabled user PC connected
- Guest VLAN ID = 20
- Fail Open VLAN ID = 30
- Initial VLAN ID = 50, 200
- PC RADIUS VLAN ID = 300
- Phone RADIUS VLAN ID = none

• Port 3/15:

- 801.x enabled user PC connected
- NEAP RADIUS authenticated user Printer1 connected
- NEAP RADIUS authenticated user PC1 connected
- Guest VLAN ID = 20
- Fail Open VLAN ID = 30
- Initial VLAN ID = 50
- RADIUS VLAN ID = 300

4. Port settings:

- VLAN ID/PVID port settings for 2/15:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
 - Authenticated (user phone authenticated, user PC unauthenticated):

VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)

- Authenticated (user phone authenticated, user PC authenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/ 300 (Valid RADIUS attributes received)
- RADIUS Server Unreachable (801.x enabled) VLAN ID/PVID = 30/30
- VLAN ID/PVID port settings for 2/16:
 - 801.x disabled VLAN ID/PVID = 50,300/300
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20

- Authenticated (Phone DHCP signature OK, EAP VOIP VLAN ID 200 assigned):

VLAN ID/PVID = 50,200,300/300

- Authenticated (PC MAC defined in static list, PC MAC learned in MAC address table, Phone DHCP signature OK):

VLAN ID/PVID = 50,200,300/300

- RADIUS Server Unreachable (801.x enabled) VLAN ID/PVID = 30/30
- VLAN ID/PVID port settings for 2/17:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
 - Authenticated (Phone MAC defined in static list, Phone MAC learned in MAC address table):

VLAN ID/PVID = 50, 200/50

- Authenticated (user PC1 authenticated; Phone MAC defined in static list, Phone MAC learned in MAC address table):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes) received)
 - VLAN ID/PVID = 50, 200, 300/ 300 (Valid RADIUS attributes received)
- RADIUS Server Unreachable (801.x enabled) VLAN ID/PVID = 30/30 VLAN ID/PVID port settings for 2/18:
 - 801.x disabled VLAN ID/PVID = 50,200/50
 - Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
 - Authenticated (user phone1 authenticated, user PC unauthenticated):

VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)

- Authenticated (user PC authenticated, user phone1 authenticated):
 - VLAN ID/PVID = 50, 200/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 50, 200, 300/300 (Valid RADIUS attributes received)
- RADIUS Server Unreachable (801.x enabled) VLAN ID/PVID = 30/30 VLAN ID/PVID port settings for 3/15:
 - 801.x disabled VLAN ID/PVID = 50/50

- Unauthenticated client with 801.x enabled VLAN ID/PVID = 20/20
- Authenticated (at least one user authenticated from : PC, PC1, Printer1):
 - VLAN ID/PVID = 50/ 50 (No RADIUS attribute received/Invalid RADIUS attributes received)
 - VLAN ID/PVID = 300/ 300 (Valid RADIUS attributes received)
- RADIUS Server Unreachable (801.x enabled) VLAN ID/PVID = 30/30

Configuration example

1. Configure the RADIUS servers and VLAN settings

```
ERS4000(config)#ip address 10.100.68.254 netmask 255.255.255.0 default-gateway 10.100.68.1

ERS4000(config)#radius-server host 10.100.68.2

ERS4000(config)#radius-server secondary-host 10.100.68.3

ERS4000(config)#radius-server key

Enter key: RadiusKey

Enter key: RadiusKey

ERS4000(config)#vlan configcontrol automatic

ERS4000(config)#vlan create 20 type port

ERS4000(config)#vlan create 30 type port

ERS4000(config)#vlan create 50 type port

ERS4000(config)#vlan create 200 type port

ERS4000(config)#vlan create 300 type port

ERS4000(config)#vlan members add 50 2/15-19,3/15
```

Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-19,3/15

	Filter Untagged	Filter Unregister	red			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15 No	No	Yes	50	0	UntagAll	Unit 2,
						Port 15
2/16	No	Yes	50	0	UntagAll	Unit 2,
						Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2,
						Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2,
						Port 18
2/19	No	Yes	50	0	UntagAll	Unit 2,
						Port 19
3/15	No	Yes	50	0	UntagAll	Unit 3,
						Port 15

3. Confirm the VLAN inteface VIDs.

ERS4000(config)#show vlan interface vids 2/15-19,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50				
2/16	50	VLAN #50				
2/17	50	VLAN #50				
2/18	50	VLAN #50				
2/19	50	VLAN #50				
3/15	50	VLAN #50				

4. Change VLAN config control mode to flexible mode in order to add same port in multiple initial VLANs.

ERS4000(config)#vlan configcontrol flexible

5. Add IP phone ports to the voice vlan, VLAN ID 200.

```
ERS4000(config) #vlan members add 200 2/15,2/17,2/18
ERS4000(config)#vlan members add 300 2/16
ERS4000(config)#vlan port 2/16 pvid 300
```

6. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15,2/16,2/17,2/18

	Filter Untagged	Filter Unregistere	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagAll	Unit 2, Port 15
2/16	No	Yes	300	0	UntagAll	Unit 2, Port 16
2/17	No	Yes	50	0	UntagAll	Unit 2, Port 17
2/18	No	Yes	50	0	UntagAll	Unit 2, Port 18

7. Confirm the VLAN inteface VIDs.

ERS4000(config) #show vlan interface vids 2/15,2/16,2/17,2/18

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		

8. Since all IP Phones will be sending tagged traffic and only the PC will need to receive untagged traffic, set the port to untaggvidOnly.

ERS4000(config)#vlan ports 2/15,2/16,2/17,2/18 tagging untagpvidOnly

9. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15,2/16,2/17,2/18

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	50	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18

10. Confirm the VLAN inteface VIDs.

ERS4000(config) #show vlan interface vids 2/15,2/16,2/17,2/18

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		

11. Configure the uplink port 1/37 to transport traffic from all VLANs (50,200,300).

ERS4000(config)#vlan members add 50,200,300 1/37
ERS4000(config)#vlan ports 1/37 tagging tagal1

12. Confirm the VLAN interface settings for uplink port 1/37.

ERS4000(config)#sho vlan interface info 1/37

	Filter Untagged	Filter Unregistered				
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
1/37	No	Yes	1	0	TagAll	Unit 1, Port 37

13. Confirm the VLAN inteface VIDs for uplink port 1/37.

ERS4000(config) #show vlan interface vid 1/37

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
1/37	1	VLAN #1	50	VLAN #50	200	VLAN #200
	300	VLAN #300				

14. Verify connectivity with the Primary RADIUS server and back-up RADIUS server (if backup server is used). Firewalls may filter ICMP packets. In this case it is recommended to verify RADIUS server logs for authentication request sent by device.

```
ERS4000(config)#ping 10.100.68.2
(Host is reachable)
ERS4000(config)#ping 10.100.68.3
(Host is reachable)
```

15. Set the EAPOL status for port 2/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/15 enable
ERS4000(config-if)#eapol port 2/15 status auto
ERS4000(config-if)#eapol multihost port 2/15 eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/15 use-radius-assigned-vlan
ERS4000(config-if)#eapol guest-vlan port 2/15 enable
ERS4000(config-if)#exit
```

16. Set the EAPOL status for port 2/16.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/16 enable
ERS4000(config-if)#eapol port 2/16 status auto
ERS4000(config-if)#eapol multihost port 2/16 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/16 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/16 non-eap-phone-enable
ERS4000(config-if)#eapol multihost non-eap-mac port 2/16 00-19-E1-A2-4D-36
ERS4000(config-if)#eapol guest-vlan port 2/16 enable
ERS4000(config-if)#exit
```

17. Set the EAPOL status for port 2/17.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/17 enable
ERS4000(config-if)#eapol port 2/17 status auto
ERS4000(config-if)#eapol multihost port 2/17 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 2/17 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/17 radius-non-eap-enable ERS4000(config-if)#eapol multihost port 2/17 non-eap-use-radius-assigned- vlan
ERS4000(config-if)#eapol multihost non-eap-mac port 2/17 00-19-E1-E5-52-4A
ERS4000(config-if)#eapol guest-vlan port 2/17 enable
ERS4000(config-if)#exit
```

18. Set the EAPOL status for port 2/18.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 2/18 enable
ERS4000(config-if)#eapol port 2/18 status auto
ERS4000(config-if)#eapol multihost port 2/18 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/18 non-eap-mac-max 1
ERS4000(config-if)#eapol multihost port 2/18 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/18 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 2/18 use-radius-assigned-vlan
```

```
ERS4000(config-if)#eapol guest-vlan port 2/18 enable
ERS4000(config-if)#exit
```

19. Set the EAPOL status for port 3/15.

```
ERS4000(config)#interface fastEthernet all
ERS4000(config-if)#eapol multihost port 3/15 enable
ERS4000(config-if)#eapol port 3/15 status auto
ERS4000(config-if)#eapol multihost port 3/15 eap-mac-max 1
ERS4000(config-if)#eapol multihost port 3/15 non-eap-mac-max 2
ERS4000(config-if)#eapol multihost port 3/15 allow-non-eap-enable
ERS4000(config-if)#eapol multihost port 3/15 use-radius-assigned-vlan
ERS4000(config-if)#eapol multihost port 3/15 radius-non-eap-enable
ERS4000(config-if)#eapol multihost port 3/15 non-eap-use-radius-assigned- vlan
ERS4000(config-if)#eapol guest-vlan port 3/15 enable
ERS4000(config-if)#exit
```

20. Set the Guest VLAN and Fail Open VLAN.

```
ERS4000(config)#eapol guest-vlan vid 20
ERS4000(config)#eapol guest-vlan enable
ERS4000(config)#eapol multihost fail-open-vlan vid 30
ERS4000(config)#eapol multihost fail-open-vlan enable
```

Set the EAPOL MultiHost status.

```
ERS4000(config)#eapol multihost voip-vlan 1 vid 200
ERS4000(config)#eapol multihost voip-vlan 1 enable
ERS4000(config)#eapol multihost allow-non-eap-enable
ERS4000(config)#eapol multihost non-eap-phone-enable
ERS4000(config)#eapol multihost non-eap-use-radius-assigned-vlan
ERS4000(config)#eapol multihost use-radius-assigned-vlan
ERS4000(config)#eapol multihost radius-non-eap-enable
```

Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/15-18,3/15

	Filter	Filter				
Unit/Port	Untagged Frames	Unregistered rrames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

23. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	300	VLAN #300		
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
3/15	50	VLAN #50				

24. Enable EAPOL globally.

ERS4000(config)#eapol enable

- % Depending on your stack configuration it may take up to 4 minutes for
- % port vlan membership and vid to take effect on all guest-vlan enabled ports.

25. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregistere	d			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15 No	No	Yes	20	0	UntagPvid	Unit 2,
				Only Port 15		
2/16 No	Yes	20	0	UntagPvid	Unit 2,	
					Only	Port 16
2/17	No	Yes	20	0	UntagPvid	Unit 2,
					Only	Port 17
2/18	No	Yes	20	0	UntagPvid	Unit 2,
					Only	Port 18
3/15	No	Yes	20	0	UntagAll	Unit 3,
						Port 15

26. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	20	VLAN #20				
2/16	20	VLAN #20				
2/17	20	VLAN #20				
2/18	20	VLAN #20				
3/15	20	VLAN #20				

After all clients authenticate on ports:

27. Confirm the EAPOL MultiHost status.

ERS4000(config) #sho eapol multihost non-eap-mac status

Unit/Port	MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	N/A	N/A
2/17	00:19:E1:E5:52:4A	Authenticated Locally	N/A	N/A
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	N/A	N/A
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By	N/A	N/A
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	N/A	N/A

ERS4000(config)#show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
2/15	00:19:E1:E5:52:92	Authenticated	Idle	N/A	N/A
2/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/18	00:AB:CD:03:00:12	Authenticated	Idle	N/A	N/A
3/15	00:AB:CD:01:00:10	Authenticated	Idle	N/A	N/A
=======	Neap Phones	========			
2/16	00:19:E1:E6:09:B1				
Total number	er of authenticated cl	ients: 5			

28. Confirm the VLAN interface settings.

ERS4000(config)#sho vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregistere	d			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	300	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	300	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	300	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	300	0	UntagAll	Unit 3, Port 15

29. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/18	50	VLAN #50	200	VLAN #200	300	VLAN #300
3/15	50	VLAN #50	300	VLAN #300		

- 30. Disconnect both primary and back-up RADIUS servers from the network (unplug cables from server side).
- 31. Attempt to reach the primary and back-up RADIUS servers.

```
ERS4000(config)#ping 10.100.68.2
(Host is not reachable)
ERS4000(config)#ping 10.100.68.3
(Host is not reachable)
```

32. After approximately 3 minutes, confirm the EAPOL MultiHost status again.

ERS4000(config) #show eapol multihost status

Comments? infodev @avaya.com

ERS4000(config) #show eapol multihost non-eap-mac status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri

33. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/15-18,3/15

	Filter Untagged	Unregister	ed			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	30	0	UntagPvid	Unit 2,
					Only	Port 15
2/16	No	Yes	30	0	UntagPvid	Unit 2,
					Only	Port 16
2/17	No	Yes	30	0	UntagPvid	Unit 2,
					Only	Port 17
2/18	No	Yes	30	0	UntagPvid	Unit 2,
					Only	Port 18
3/15	No	Yes	30	0	UntagPvid	Unit 3,
					Only	Port 15

34. Confirm the VLAN interface VIDs.

ERS4000(config) #show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	30	VLAN #30				
2/16	30	VLAN #30				
2/17	30	VLAN #30				
2/18	30	VLAN #30				
3/15	30	VLAN #30				

- 35. Connect primary or back-up RADIUS server to network (plug in cables from server side). For this example, the primary RADIUS server is connected.
- 36. After approximately 1 minute, attempt to reach the primary RADIUS server.

```
ERS4000(config)#ping 10.100.68.2 (Host is reachable)
```

37. Confirm the EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

Unit/Port	Client MAC Address	State	Vid	Pri
2/16	00:19:E1:A2:4D:36	Authenticated Locally	N/A	N/A
2/17	00:19:E1:E5:52:4A	Authenticated Locally	N/A	N/A
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	N/A	N/A
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	N/A	N/A

ERS4000(config)#show eapol multihost status

	Client		Backend Auth		
Unit/Port	MAC Address	Pae State	State	Vid	Pri
2/15	00:19:E1:E5:52:92	Authenticated	Idle	N/A	N/A
2/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/18	00:AB:CD:03:00:12	Authenticated	Idle	N/A	N/A
3/15	00:AB:CD:01:00:10	Authenticated	Idle	N/A	N/A
=======	Neap Phones	=========			
2/16	00:19:E1:E6:09:B1				
Total numb	er of authenticated cl	ients: 5			

38. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregistere	đ			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	300	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	300	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	300	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	300	0	UntagAll	Unit 3, Port 15

Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-18,3/15

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/18	50	VLAN #50	200	VLAN #200	300	VLAN #300
3/15	50	VLAN #50	300	VLAN #300		

Alternate configuration

The following operation applies to the MHMA authentication mode with Guest VLAN and Fail Open VLAN (Multihost MultiVLAN option disabled) without valid additional RADIUS attributes configuration example, when the RADIUS server has no special attributes configured or the RADIUS server uses misconfigured attributes (not matching the device configuration).

This configuration example modifies EAP and NEAP client attributes on the RADIUS server, replacing VLAN ID 300 with VLAN ID 124, which is not configured on the device.

1. Enable EAPOL.

```
ERS4000(config)#eapol disable
ERS4000(config)#eapol enable
% Depending on your stack configuration it may take up to 4 minutes for
% port vlan membership and vid to take effect on all guest-vlan enabled ports.
```

2. Confirm EAPOL MultiHost status.

ERS4000(config)#sho eapol multihost non-eap-mac status

	Client			
Unit/Port	MAC Address	State	Vid	Pri
	X-5-6-6-6-6-7			
2/16	00:19:E1:A2:4D:36	Authenticated Locally	N/A	N/A
2/17	00:19:E1:E5:52:4A	Authenticated Locally	N/A	N/A
2/17	00:AB:CD:02:00:20	Authenticated By RADIUS	N/A	N/A
2/18	00:19:E1:E2:40:46	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:20	Authenticated By RADIUS	N/A	N/A
3/15	00:AB:CD:01:00:21	Authenticated By RADIUS	N/A	N/A

ERS4000(config)#show eapol multihost status

Unit/Port	Client MAC Address	Pae State	Backend Auth State	Vid	Pri
2/15	00:19:E1:E5:52:92	Authenticated	Idle	N/A	N/A
2/15	00:50:BF:B8:09:AF	Authenticated	Idle	N/A	N/A
2/18	00:AB:CD:03:00:12	Authenticated	Idle	N/A	N/A
3/15	00:AB:CD:01:00:10	Authenticated	Idle	N/A	N/A
	Neap Phones	========			
2/16	00:19:E1:E6:09:B1				

3. Confirm the VLAN interface settings.

ERS4000(config)#show vlan interface info 2/15-18,3/15

	Filter Untagged	Filter Unregister	red			
Unit/Port	Frames	Frames	PVID	PRI	Tagging	Name
2/15	No	Yes	50	0	UntagPvid Only	Unit 2, Port 15
2/16	No	Yes	300	0	UntagPvid Only	Unit 2, Port 16
2/17	No	Yes	50	0	UntagPvid Only	Unit 2, Port 17
2/18	No	Yes	50	0	UntagPvid Only	Unit 2, Port 18
3/15	No	Yes	50	0	UntagAll	Unit 3, Port 15

4. Confirm the VLAN interface VIDs.

ERS4000(config)#show vlan interface vids 2/15-18,3/15

MHMA authentication mode with Guest VLAN and Fail Open VLAN (Multihost MultiVLAN option disabled) with or without additional RADIUS attributes

Unit/Port	VLAN	VLAN Name	VLAN	VLAN Name	VLAN	VLAN Name
2/15	50	VLAN #50	200	VLAN #200		
2/16	50	VLAN #50	200	VLAN #200	300	VLAN #300
2/17	50	VLAN #50	200	VLAN #200		
2/18	50	VLAN #50	200	VLAN #200		
3/15	50	VLAN #50				

Supported EAP modes and configuration examples 526 Configuration — Security December 2011

Appendix C: Sticky MAC address configuration examples

For the sticky MAC address feature to function properly, you must enable MAC security and auto-learning sticky mode globally, and for the specific interfaces on which you are configuring sticky MAC address.

The following configuration examples describe the basic steps required to configure a device to learn sticky MAC addresses on a range of ports, and to manually configure sticky MAC address on and individual port.

Example 1: Configuring a device to learn sticky MAC addresses on a range of ports :

(Ports 1/6 through 1/14 are used for this example.)

1. Enable MAC security and auto-learning globally.

```
mac-security auto-learning stickyERS4000(config)#
Avaya recommends disabling autosave when sticky mac is enabled
ERS4000(config)#mac-security enable
ERS4000(config)#no autosave enable
ERS4000(config)#copy config nvram
```

2. Enable MAC security and auto-learning on ports 1/6-14.

```
ERS4000(config)#interface fastEthernet 1/6-14
ERS4000(config-if)#mac-security auto-learning enable
ERS4000(config-if)#mac-security auto-learning max-addrs <1-25>
ERS4000(config-if)#mac-security enable
ERS4000(config-if)#exit
```

3. Verify the MAC security configuration for the interfaces.

ERS4000(config) #show mac-security port 1/6-14

Unit	Port	Trunk	Security	Auto-Learning	MAC Number
1	6		Enabled	Enabled	2
1	7		Enabled	Enabled	2
1	8		Enabled	Enabled	2
1	9		Enabled	Enabled	2
1	10		Enabled	Enabled	2
1	11		Enabled	Enabled	2
1	12		Enabled	Enabled	2
1	13		Enabled	Enabled	2
1	14		Enabled	Enabled	2

4. Connect a PC to port 1/8 and verify the configuration by displaying the MAC security MAC address table.

ERS4000#show mac-security mac-address-table
Number of addresses: 1

Number of addresses:		1	
Unit	Port	Allowed MAC Address	Туре
1	8	00-02-A5-E9-00-28	Sticky
Security List		Allowed MAC Address	Туре

Example 2: Manually configuring sticky MAC address on and individual port:

(Port 1/6 is used for this example.)

1. Enable MAC security and auto-learning globally.

```
ERS4000(config)#mac-security auto-learning sticky
Avaya recommends disabling autosave when sticky mac is enabled
ERS4000(config)#copy config nvram
ERS4000(config)#mac-security enable
ERS4000(config)#no autosave enable
ERS4000(config)#mac-security mac-address-table sticky-address 00-02-A5-E9-00-27 port 1/6
```

2. Enable MAC security and auto-learning on port 1/6.

```
ERS4000(config)#interface fastEthernet 1/6
ERS4000(config-if)#mac-security auto-learning enable
ERS4000(config-if)#mac-security auto-learning max-addrs <1-25>
ERS4000(config-if)#mac-security enable
ERS4000(config-if)#exit
```

3. Verify the configuration by displaying the MAC security MAC address table.

```
ERS4000#show mac-security mac-address-table
Number of addresses: 1
```

Number or a	ddresses: 1		
Unit	Port	Allowed MAC Address	Туре
Trunk	25	00-02-A5-E9-00-27	Sticky
Security List		Allowed MAC Address	Туре

Sticky MAC address configuration examples