

Configuring VLANs, Spanning Tree, and Link Aggregation on Avaya Ethernet Routing Switch 5000 Series

Release 6.6 NN47200-502 Issue 08.03 October 2015

Notice

While reasonable efforts have been made to ensure that the information in this document is complete and accurate at the time of printing, Avaya assumes no liability for any errors. Avaya reserves the right to make changes and corrections to the information in this document without the obligation to notify any person or organization of such changes.

Documentation disclaimer

"Documentation" means information published by Avaya in varying mediums which may include product information, operating instructions and performance specifications that Avaya may generally make available to users of its products and Hosted Services. Documentation does not include marketing materials. Avaya shall not be responsible for any modifications, additions, or deletions to the original published version of documentation unless such modifications, additions, or deletions were performed by Avaya. End User agrees to indemnify and hold harmless Avaya, Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation, to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked websites referenced within this site or documentation provided by Avaya. Avaya is not responsible for the accuracy of any information, statement or content provided on these sites and does not necessarily endorse the products, services, or information described or offered within them. Avaya does not guarantee that these links will work all the time and has no control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on Avaya hardware and software. Refer to your sales agreement to establish the terms of the limited warranty. In addition, Avaya's standard warranty language, as well as information regarding support for this product while under warranty is available to Avaya customers and other parties through the Avaya Support website: <u>http://support.avaya.com</u> or such successor site as designated by Avaya. Please note that if You acquired the product(s) from an authorized Avaya Channel Partner outside of the United States and Canada, the warranty is provided to You by said Avaya Channel Partner and not by Avaya.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE. HTTP://SUPPORT.AVAYA.COM/LICENSEINFO OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA, ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AVAYA CHANNEL PARTNER (AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH AVAYA OR AN AVAYA CHANNEL PARTNER. UNLESS OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN AVAYA CHANNEL PARTNER; AVAYA RESERVES THE RIGHT TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE SOFTWARE (HEREINAFTER REFERRED TO INTERCHANGEABLY AS "YOU" AND "END USER"), AGREE TO THESE TERMS AND CONDITIONS AND CREATE A BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE AVAYA AFFILIATE ("AVAYA").

Avaya grants you a license within the scope of the license types described below, with the exception of Heritage Nortel Software, for which the scope of the license is detailed below. Where the order documentation does not expressly identify a license type, the applicable license will be a Designated System License. The applicable number of licenses and units of capacity for which the license is granted will be one (1), unless a different number of licenses or units of capacity is specified in the documentation or other materials available to you. "Designated Processor" means a single stand-alone computing device. "Server" means a Designated Processor that hosts a software application to be accessed by multiple users.

Licence types

Designated System(s) License (DS). End User may install and use each copy or an Instance of the Software only on a number of Designated Processors up to the number indicated in the order. Avaya may require the Designated Processor(s) to be identified in the order by type, serial number, feature key, Instance, location or other specific designation, or to be provided by End User to Avaya through electronic means established by Avaya specifically for this purpose.

Heritage Nortel Software

"Heritage Nortel Software" means the software that was acquired by Avaya as part of its purchase of the Nortel Enterprise Solutions Business in December 2009. The Heritage Nortel Software currently available for license from Avaya is the software contained within the list of Heritage Nortel Products located at <u>http://support.avaya.com/ LicenseInfo</u> under the link "Heritage Nortel Products" or such successor site as designated by Avaya. For Heritage Nortel Software, Avaya grants You a license to use Heritage Nortel Software provided hereunder solely to the extent of the authorized activation or authorized usage level, solely for the purpose specified in the Documentation, and solely as embedded in, for execution on, or for communication with Avaya equipment. Charges for Heritage Nortel Software may be based on extent of activation or use authorized as specified in an order or invoice.

Copyright

Except where expressly stated otherwise, no use should be made of materials on this site, the Documentation, Software, Hosted Service, or hardware provided by Avaya. All content on this site, the documentation, Hosted Service, and the product provided by Avaya including the selection, arrangement and design of the content is owned either by Avaya or its licensors and is protected by copyright and other intellectual property laws including the sui generis rights relating to the protection of databases. You may not modify, copy, reproduce, republish, upload, post, transmit or distribute in any way any content, in whole or in part, including any code and software unless expressly authorized by Avaya. Unauthorized reproduction, transmission, dissemination, storage, and or use without the express written consent of Avaya can be a criminal, as well as a civil offense under the applicable law.

Third Party Components

"Third Party Components" mean certain software programs or portions thereof included in the Software or Hosted Service may contain software (including open source software) distributed under third party agreements ("Third Party Components"), which contain terms regarding the rights to use certain portions of the Software ("Third Party Terms"). As required, information regarding distributed Linux OS source code (for those products that have distributed Linux OS source code) and identifying the copyright holders of the Third Party Components and the Third Party Terms that apply is available in the products, Documentation or on Avaya's website at: http:// support.avaya.com/Copyright or such successor site as designated by Avaya. You agree to the Third Party Terms for any such Third Party Components.

Preventing Toll Fraud

"Toll Fraud" is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not a corporate employee, agent, subcontractor, or is not working on your company's behalf). Be aware that there can be a risk of Toll Fraud associated with your system and that, if Toll Fraud occurs, it can result in substantial additional charges for your telecommunications services.

Avaya Toll Fraud intervention

If You suspect that You are being victimized by Toll Fraud and You need technical assistance or support, call Technical Service Center Toll Fraud Intervention Hotline at +1-800-643-2353 for the United

States and Canada. For additional support telephone numbers, see the Avaya Support website: http://support.avaya.com or such successor site as designated by Avaya. Suspected security vulnerabilities with Avaya products should be reported to Avaya by sending mail to: securityalerts@avaya.com.

Trademarks

The trademarks, logos and service marks ("Marks") displayed in this site, the Documentation, Hosted Service(s), and product(s) provided by Avaya are the registered or unregistered Marks of Avaya, its affiliates, or other third parties. Users are not permitted to use such Marks without prior written consent from Avaya or such third party which may own the Mark. Nothing contained in this site, the Documentation, Hosted Service(s) and product(s) should be construed as granting, by implication, estoppel, or otherwise, any license or right in and to the Marks without the express written permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners. $\mathsf{Linux}^{\circledast}$ is the registered trademark of Linus Torvalds in the U.S. and other countries.

Downloading Documentation

For the most current versions of Documentation, see the Avaya Support website: <u>http://support.avaya.com</u>, or such successor site as designated by Avaya.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for product or Hosted Service notices and articles, or to report a problem with your Avaya product or Hosted Service. For a list of support telephone numbers and contact addresses, go to the Avaya Support website: http://support.avaya.com (or such successor site as designated by Avaya), scroll to the bottom of the page, and select Contact Avaya Support.

Contents

Chapter 1: Introduction	14
Purpose	
Related resources	14
Support	15
Chapter 2: New in this Release	
Features	
Link-state tracking	
Other changes	16
LACP over SMLT	16
CLI interface change from FastEthernet to Ethernet	17
Removal of NSNA support	17
Chapter 3: VLAN fundamentals	
· VLANs	
IEEE 802.1Q tagging	
VLANs spanning multiple switches	
VLAN summary	
VLAN configuration rules	
VCC	
Multinetting	
MLT DMLT LAG dynamic VLAN changes	
DHCP	
Voice VLAN Integration	
Chapter 4: STP fundamentals	
STP groups	
STG configuration guidelines	
Spanning Tree Fast Learning	
STG port membership mode	
802.1t path cost calculation	
RSTP	
MSTP	
Interoperability with legacy STP	
Differences in STP and RSTP port roles	
Rapid convergent	
Spanning Tree BPDU Filtering	
Configuring Spanning Tree using the Console Interface	
Spanning Tree configuration in STPG mode	
Spanning Tree configuration in RSTP mode	
Spanning Tree configuration in MSTP mode	
Spanning Tree VLAN Membership in MSTP mode	

MLT. 60 Client-server configuration using MLT	Chapter 5: MLT fundamentals	60
Before configuring trunks 61 MLT configuration rules 62 Port management for existing MLTs 63 Spanning Tree Considerations for MLTs 65 Port membership in MLT 67 SMLT 68 Overview 68 Advantages of SMLT 69 How does SMLT work? 69 SMLT with SLT 69 SLT 89 SMLT with SLT 90 SMLT and SLT configuration steps. 91 SLPP. 102 LACP over SMLT. 103 SMLT with Routing protocol support. 103 SMLT onsistency with the Ethernet Routing Switch 8800/8600. 103 IEEE 802.3ad Link Aggregation rules. 105 LACP port mode 106 Chapter 6: VLACP Fundamentals. 107 VLACP overview 107 VLACP features. 109 Chapter 7: Link-State Tracking information using ACLI. 112	MLT	60
MLT configuration rules 62 Port management for existing MLTs 63 How a MLT reacts to losing distributed trunk members 63 Spanning Tree Considerations for MLTs 65 Port membership in MLT 67 SMLT 68 Overview 68 Advantages of SMLT 69 How does SMLT work? 69 SLT 89 SMLT with SLT 89 SMLT with SLT 90 SMLT work? 69 SLT 89 SLPP 012 SLPP 102 SLPP 102 SLPP Guard 102 LACP over SMLT 103 SMLT with Routing protocol support. 103 SMLT consistency with the Ethernet Routing Switch 8800/8600 103 IEEE 802.3ad Link Aggregation 104 Link aggregation rules 105 LACP port mode 106 Chapter 6: VLACP Fundamentals 107 VLACP features 107 VLACP features 1	Client-server configuration using MLT	60
Port management for existing MLTs. 63 How a MLT reacts to losing distributed trunk members. 63 Spanning Tree Considerations for MLTs. 65 Port membership in MLT. 67 SMLT. 68 Overview. 69 Advantages of SMLT. 69 How does SMLT work? 69 SLT. 89 SMLT and SLT configuration steps. 91 SLPP. 102 SLPP. 102 SLPP. 102 SLPP. 102 SLPP. 103 SMLT with SLT. 90 SMLT with Routing protocol support. 103 SMLT with Routing protocol support. 103 SMLT consistency with the Ethernet Routing Switch 8800/8600. 103 IEEE 802.3ad Link Aggregation. 104 Link aggregation rules. 105 LACP over SMLT. 106 Chapter 6: VLACP Fundamentals. 107 VLACP overview. 107 VLACP features. 109 Chapter 7: Link-State Tracking fundamentals. 111 Link-State Tracking using ACLI. <	Before configuring trunks	61
How a MLT reacts to losing distributed trunk members. 63 Spanning Tree Considerations for MLTs. 65 Port membership in MLT. 67 SMLT. 68 Overview. 68 Advantages of SMLT 69 How does SMLT work? 69 SLT. 89 SMLT with SLT. 90 SLPP Guard. 102 LACP over SMLT 103 SMLT with Routing protocol support. 103 SMLT consistency with the Ethernet Routing Switch 8800/8600. 103 IEEE 802.3ad Link Aggregation. 104 Link aggregation rules. 105 LACP port mode. 106 Chapter 6: VLACP Fundamentals. 107 VLACP. 107 VLACP destures. 107 VLACP ereview. 107 VLACP rowerview. 107 VLACP features. 109 Configuring link-state tracking using ACLI. 112 Configuring link-state tracking using ACLI. 112 Configuring link-state tracking using ACLI. 112 Configuring link-state tracking using ACLI. 113	MLT configuration rules	62
Spanning Tree Considerations for MLTs. 65 Port membership in MLT. 67 SMLT. 68 Overview. 68 Advantages of SMLT. 69 How does SMLT work? 69 SIT. 89 SMLT with SLT. 90 SMLT and SLT configuration steps. 91 SLPP 102 SLPP Guard. 102 LACP over SMLT. 103 SMLT with Routing protocol support. 103 SMLT consistency with the Ethernet Routing Switch 8800/8600. 103 IEEE 802.3ad Link Aggregation. 104 Link aggregation rules. 105 LACP port mode. 106 Chapter 6: VLACP Fundamentals. 107 VLACP overview. 107 VLACP features. 109 Chapter 7: Link-State Tracking fundamentals. 111 Displaying link-state tracking using ACLI. 112 Configuring link-state tracking using ACLI. 112 Configuring link-state tracking using ACLI. 112 Configuring link-state tracking using ACLI.	Port management for existing MLTs	63
Port membership in MLT. 67 SMLT 68 Overview	How a MLT reacts to losing distributed trunk members	63
SMLT. 68 Overview. 68 Advantages of SMLT. 69 How does SMLT work? 69 SLT. 89 SMLT with SLT. 90 SLPP. 102 SLPP Guard. 102 LACP over SMLT. 103 SMLT with Routing protocol support. 103 SMLT with Routing protocol support. 103 SMLT consistency with the Ethernet Routing Switch 8800/8600. 103 IEEE 802.3ad Link Aggregation. 104 Link aggregation rules. 105 LACP port mode. 106 Chapter 6: VLACP Fundamentals. 107 VLACP overview. 107 VLACP features. 109 Chapter 7: Link-State Tracking fundamentals. 111 Link-State Tracking using ACLI. 112 Configuring link-state tracking using ACLI. 112 Configuring link-state tracking using EDM. 113 Chapter 8: ADAC fundamentals. 116 ADAC operation. 116 Auto-detection of Avaya IP Phones. 117 Auto-detection by MAC address. 117	Spanning Tree Considerations for MLTs	65
Overview	Port membership in MLT	67
Advantages of SMLT	SMLT	68
How does SMLT work?69SLT.89SMLT with SLT.90SMLT and SLT configuration steps.91SLPP.102SLPP Guard.102LACP over SMLT103SMLT with Routing protocol support.103SMLT consistency with the Ethernet Routing Switch 8800/8600.103IEEE 802.3ad Link Aggregation.104Link aggregation rules.105LACP port mode.106Chapter 6: VLACP Fundamentals.107VLACP107VLACP features.109Chapter 7: Link-State Tracking fundamentals.111Link-state tracking information using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by MAC address.112Operating modes.120Initial user settings.121Operating modes.122ADAC and stacking.125	Overview	68
SLT	Advantages of SMLT	69
SMLT with SLT90SMLT and SLT configuration steps91SLPP102SLPP Guard102LACP over SMLT103SMLT with Routing protocol support.103SMLT consistency with the Ethernet Routing Switch 8800/8600.103IEEE 802.3ad Link Aggregation104Link aggregation rules105LACP port mode.106Chapter 6: VLACP Fundamentals.107VLACP107VLACP features.109Chapter 7: Link-State Tracking fundamentals.111Link-State tracking information using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116ADAC operation116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.119Auto-configuration of Avaya IP Phones.122ADAC and stacking.124Operating modes.122ADAC and stacking.124Operating modes.122ADAC and stacking.125	How does SMLT work?	69
SMLT and SLT configuration steps.91SLPP.102SLPP Guard102LACP over SMLT103SMLT with Routing protocol support.103SMLT consistency with the Ethernet Routing Switch 8800/8600103IEEE 802.3ad Link Aggregation104Link aggregation rules.105LACP port mode.106Chapter 6: VLACP Fundamentals.107VLACP overview.107VLACP features.109Chapter 7: Link-State Tracking fundamentals.111Link-State Tracking information using ACLI.112Configuring link-state tracking using ACLI.112Configuring link-state tracking using ACLI.113Chapter 8: ADAC fundamentals.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection of Avaya IP Phones.117Auto-configuration of Avaya IP Phones.112Operating modes.122ADAC and stacking.124Operating modes.122ADAC and stacking.122ADAC and stacking.125	SLT	
SLPP.102SLPP Guard.102LACP over SMLT103SMLT with Routing protocol support.103SMLT consistency with the Ethernet Routing Switch 8800/8600103IEEE 802.3ad Link Aggregation104Link aggregation rules.105LACP port mode.106Chapter 6: VLACP Fundamentals.107VLACP.107VLACP features.109Chapter 7: Link-State Tracking fundamentals.111Link-State Tracking information using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection of Avaya IP Phones.112Operating works.120Initial user settings.121Operating modes.122ADAC and stacking.122ADAC and stacking.124Operating modes.122ADAC and stacking.125	SMLT with SLT	90
SLPP Guard.102LACP over SMLT.103SMLT with Routing protocol support.103SMLT consistency with the Ethernet Routing Switch 8800/8600.103IEEE 802.3ad Link Aggregation104Link aggregation rules.105LACP port mode.106Chapter 6: VLACP Fundamentals.107VLACP.107VLACP overview.107VLACP features.109Chapter 7: Link-State Tracking fundamentals.111Link-State Tracking using ACLI.112Configuring link-state tracking using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.124Doperating modes.122ADAC and stacking.125	SMLT and SLT configuration steps	91
LACP over SMLT103SMLT with Routing protocol support103SMLT consistency with the Ethernet Routing Switch 8800/8600103IEEE 802.3ad Link Aggregation104Link aggregation rules105LACP port mode106Chapter 6: VLACP Fundamentals107VLACP107VLACP overview107VLACP features109Chapter 7: Link-State Tracking fundamentals111Link-State Tracking information using ACLI112Configuring link-state tracking using ACLI112Configuring link-state tracking using EDM113Chapter 8: ADAC fundamentals116ADAC operation117Auto-detection by MAC address117Auto-detection by MAC address117Auto-detection by MAC address119Auto-configuration of Avaya IP Phones120Initial user settings.122ADAC and stacking122ADAC and stacking125	SLPP	102
SMLT with Routing protocol support.103SMLT consistency with the Ethernet Routing Switch 8800/8600.103IEEE 802.3ad Link Aggregation104Link aggregation rules.105LACP port mode.106Chapter 6: VLACP Fundamentals.107VLACP.107VLACP overview.107VLACP features.109Chapter 7: Link-State Tracking fundamentals.111Link-State Tracking.111Displaying link-state tracking information using ACLI.112Configuring link-state tracking using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-configuration of Avaya IP Phones.112Operating modes.120Initial user settings.122ADAC and stacking.122ADAC and stacking.125	SLPP Guard	102
SMLT consistency with the Ethernet Routing Switch 8800/8600.103IEEE 802.3ad Link Aggregation104Link aggregation rules105LACP port mode106Chapter 6: VLACP Fundamentals107VLACP107VLACP overview107VLACP features109Chapter 7: Link-State Tracking fundamentals111Link-State Tracking111Displaying link-state tracking information using ACLI112Configuring link-state tracking using ACLI112Configuring link-state tracking using EDM113Chapter 8: ADAC fundamentals116ADAC operation116Auto-detection of Avaya IP Phones117Auto-detection by MAC address117Auto-detection of Avaya IP Phones120Initial user settings120Initial user settings121Operating modes122ADAC and stacking125	LACP over SMLT	103
IEEE 802.3ad Link Aggregation104Link aggregation rules105LACP port mode106Chapter 6: VLACP Fundamentals107VLACP107VLACP overview107VLACP features109Chapter 7: Link-State Tracking fundamentals111Link-State Tracking.111Displaying link-state tracking information using ACLI112Configuring link-state tracking using ACLI112Configuring link-state tracking using EDM113Chapter 8: ADAC fundamentals116AUC-detection of Avaya IP Phones117Auto-detection by MAC address117Auto-configuration of Avaya IP Phones120Initial user settings120Initial user settings121Operating modes122ADAC and stacking125	SMLT with Routing protocol support	103
Link aggregation rules105LACP port mode.106Chapter 6: VLACP Fundamentals107VLACP107VLACP overview.107VLACP features.109Chapter 7: Link-State Tracking fundamentals111Link-State Tracking.111Displaying link-state tracking information using ACLI112Configuring link-state tracking using ACLI112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals116ADAC operation.116Auto-detection of Avaya IP Phones117Auto-detection by MAC address.117Auto-configuration of Avaya IP Phones120Initial user settings.121Operating modes122ADAC and stacking.122ADAC and stacking.125	SMLT consistency with the Ethernet Routing Switch 8800/8600	103
LACP port mode106Chapter 6: VLACP Fundamentals107VLACP107VLACP overview107VLACP features109Chapter 7: Link-State Tracking fundamentals111Link-State Tracking information using ACLI112Configuring link-state tracking using ACLI112Configuring link-state tracking using EDM113Chapter 8: ADAC fundamentals116ADAC operation116Auto-detection of Avaya IP Phones117Auto-detection by MAC address117Auto-configuration of Avaya IP Phones120Initial user settings121Operating modes122ADAC and stacking122ADAC and stacking125	IEEE 802.3ad Link Aggregation	104
Chapter 6: VLACP Fundamentals107VLACP107VLACP overview107VLACP features109Chapter 7: Link-State Tracking fundamentals111Link-State Tracking111Displaying link-state tracking information using ACLI112Configuring link-state tracking using ACLI112Configuring link-state tracking using EDM113Chapter 8: ADAC fundamentals116ADAC operation116Auto-detection of Avaya IP Phones117Auto-detection by MAC address117Auto-configuration of Avaya IP Phones120Initial user settings121Operating modes122ADAC and stacking125	Link aggregation rules	105
VLACP107VLACP overview107VLACP features109Chapter 7: Link-State Tracking fundamentals111Link-State Tracking111Displaying link-state tracking information using ACLI112Configuring link-state tracking using ACLI112Configuring link-state tracking using EDM113Chapter 8: ADAC fundamentals116ADAC operation116Auto-detection of Avaya IP Phones117Auto-detection by MAC address117Auto-detection by LDP (IEEE 802.1ab)119Auto-configuration of Avaya IP Phones120Initial user settings121Operating modes122ADAC and stacking125	LACP port mode	106
VLACP overview.107VLACP features.109Chapter 7: Link-State Tracking fundamentals.111Link-State Tracking.111Displaying link-state tracking information using ACLI.112Configuring link-state tracking using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125	Chapter 6: VLACP Fundamentals	107
VLACP features.109Chapter 7: Link-State Tracking fundamentals.111Link-State Tracking.111Displaying link-state tracking information using ACLI.112Configuring link-state tracking using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125	VLACP	107
Chapter 7: Link-State Tracking fundamentals111Link-State Tracking111Displaying link-state tracking information using ACLI112Configuring link-state tracking using ACLI112Configuring link-state tracking using EDM113Chapter 8: ADAC fundamentals116ADAC operation116Auto-detection of Avaya IP Phones117Auto-detection by MAC address117Auto-detection by LLDP (IEEE 802.1ab)119Auto-configuration of Avaya IP Phones120Initial user settings121Operating modes122ADAC and stacking125	VLACP overview	107
Link-State Tracking.111Displaying link-state tracking information using ACLI.112Configuring link-state tracking using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125	VLACP features	109
Link-State Tracking.111Displaying link-state tracking information using ACLI.112Configuring link-state tracking using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals.116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125	Chapter 7: Link-State Tracking fundamentals	111
Displaying link-state tracking information using ACLI.112Configuring link-state tracking using ACLI.112Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125	•	
Configuring link-state tracking using ACLI.112Configuring link-state tracking using EDM.113 Chapter 8: ADAC fundamentals 116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125	0	
Configuring link-state tracking using EDM.113Chapter 8: ADAC fundamentals116ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125		
Chapter 8: ADAC fundamentals116ADAC operation116Auto-detection of Avaya IP Phones117Auto-detection by MAC address117Auto-detection by LLDP (IEEE 802.1ab)119Auto-configuration of Avaya IP Phones120Initial user settings121Operating modes122ADAC and stacking125	Configuring link-state tracking using EDM	113
ADAC operation.116Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125		
Auto-detection of Avaya IP Phones.117Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125	•	
Auto-detection by MAC address.117Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125		
Auto-detection by LLDP (IEEE 802.1ab).119Auto-configuration of Avaya IP Phones.120Initial user settings.121Operating modes.122ADAC and stacking.125		
Auto-configuration of Avaya IP Phones120Initial user settings121Operating modes122ADAC and stacking125		
Initial user settings.121Operating modes.122ADAC and stacking.125		
Operating modes	•	
ADAC and stacking 125	-	
5	· · ·	
	ADAC and LACP enabled on an Uplink port	

ADAC and EAP configuration	127
ADAC user restrictions	127
Chapter 9: LLDP fundamentals	129
LLDP overview	
LLDP operational modes	
Connectivity and management information	130
802.1AB MED network policies	133
802.1AB integration	134
ADAC and LLDP policy interaction	136
Chapter 10: VLAN configuration using ACLI	137
Displaying VLAN information	
Displaying VLAN interface information	138
Displaying VLAN port membership	
Setting the management VLAN	139
Resetting the management VLAN to default	139
Displaying voice VLAN information	139
Creating a VLAN	139
Deleting a VLAN	141
Disabling a voice VLAN	
Modifying VLAN MAC address flooding	142
Configuring VLAN name	
Enabling automatic PVID	
Configuring VLAN port settings	
Configuring VLAN members	
Configuring VLAN Configuration Control	
Displaying VLAN Configuration Control settings	
Modifying VLAN Configuration Control settings	
Managing the MAC address forwarding database table	
Displaying MAC address forwarding table	
Configuring MAC address retention.	
Setting MAC address retention time to default	
Clearing the MAC address table	
Clearing the MAC address table on a VLAN Clearing the MAC address table on an Ethernet interface	
Clearing the MAC address table on a trunk	
Removing a single address from the MAC address table	
IP directed broadcasting	
Enabling IP directed broadcast	
Chapter 11: STP configuration using ACLI	
Configuring the STP mode	
Configuring STP BPDU Filtering	
Creating and managing STGs.	
Configuring path cost calculation mode	
Configuring pair cost calculation mode	100

Configuring STG port membership mode	15	50
Displaying STP configuration information	15	51
Creating a Spanning Tree Group	15	51
Deleting a Spanning Tree Group	15	51
Enabling a Spanning Tree Group	15	52
Disabling a Spanning Tree Group	15	52
Configuring STP values	15	52
Restoring default Spanning Tree values	15	53
Adding a VLAN to a STG	15	54
Removing a VLAN from a STG	15	54
Configuring STP and MSTG participation	15	54
Resetting Spanning Tree values for ports to default	15	55
Managing RSTP	15	56
Configuring RSTP parameters	15	56
Configuring RSTP on a port	15	56
Displaying RSTP configuration	15	57
Displaying RSTP port configuration	15	57
Managing MSTP	15	58
Configuring MSTP parameters	15	58
Configuring MSTP on a port	15	59
Configuring MSTP region parameters	16	30
Configuring MSTP parameters	16	30
Disabling a MSTP bridge instance	16	31
Deleting a MSTP bridge instance	16	31
Displaying MSTP status	16	31
Displaying MSTP Cist port information	16	32
Displaying MSTP MSTI settings	16	32
Chapter 12: MLT Configuration using the ACLI	16	34
Displaying MLT configuration and utilization		
Job aid: show mlt command output	16	ծ4
Configuring a Multi-Link trunk	16	35
Disabling an MLT	16	6
Displaying MLT properties		
Displaying IP address-based MLT load-balance link calculation	16	6
Variable definitions	16	37
Displaying MAC address-based MLT load-balance link calculation	16	37
Variable definitions		
Configuring MLT port shutdown when MLT is disabled	16	37
Enabling shutdown on MLT ports when MLT is disabled		
Disabling MLT port shutdown when MLT is disabled	16	38
Setting default value to the MLT port shutdown when MLT is disabled	16	38
Displaying the MLT port shutdown status when MLT is disabled	16	38
Configuring STP participation for MLTs	16	39

Configuring	SMLT using the ACLI	169
Setting	command mode to MLT Interface mode	170
Creatin	g an SMLT	170
	g an IST	
Creatin	g an SLT on a port	171
	ng SMLT	
	ng IST	
Disablir	ng an SLT on a port	172
Resetti	ng SMLT to default	172
	ng an IST to default	
	ng a SMLT to default	
	/ing IST parameters	
	ring IST statistics	
	ring SLT and SMLT configurations	
	JSLPP using the ACLI	
• •	uring SLPP transmitting list	
•	ng SLPP	
	uring SLPP PDU transmit interval	
	uring SLPP PDU ether type	
•	uring SLPP port auto enable	
•	ng SLPP PDU receive function per port	
	uring the SLPP PDU receipt threshold	
•	SLPP Guard using ACLI	
Selectir	ng an SLPP Guard Ethernet type using ACLI	176
	uring SLPP Guard using ACLI	
•	g the SLPP Guard status using ACLI	
	gation Control Protocol over SMLT using the ACLI	
	uring an SMLT MAC address	
Configu	uring the default SMLT MAC address	180
Binding	an MLT group to an administrative key and to an SMLT	180
	an MLT group	
Troublesho	oting IST problems	182
	ACP and VLACP Configuration using the ACLI	
-	Link Aggregation using the ACLI	
• •	ring LACP system settings	
• •	ring LACP per port configuration	
	ring LACP port mode	
	ring LACP port statistics	
	g LACP port statistics	
	ing LACP port debug information	
	/ing LACP aggregators	
	uring LACP system priority	
•	ng LACP port aggregation mode	

Configuring the LACP administrative key	186
Configuring LACP operating mode	. 186
Configuring per port LACP priority	187
Configuring LACP periodic transmission timeout interval	187
Configuring LACP port mode	187
Configuring VLACP using the ACLI	188
Enabling VLACP globally	188
Configuring VLACP multicast MAC address	. 188
Configuring VLACP port parameters	188
Displaying VLACP status	190
Displaying VLACP port configuration	. 190
Chapter 14: ADAC Configuration using ACLI	192
Configuring ADAC for Avaya IP Phones using ACLI	
Configuring global ADAC settings	
Restoring default ADAC settings	. 193
Configuring ADAC per port settings	193
Resetting ADAC per port settings to default	194
Configuring autodetection method	
Resetting autodetection method to default	195
Configuring autodetection for ports	195
Restoring ADAC port settings	195
Adding a range to ADAC MAC address table	196
Restoring ADAC MAC range table	196
Displaying global ADAC settings	. 196
Displaying ADAC port settings	197
Displaying ADAC MAC ranges	
Displaying configured detection mechanism	
ADAC UFA configuration example	
ADAC configuration commands	
Verifying new ADAC settings	
ADAC and EAP configuration commands	
Chapter 15: LLDP Configuration using ACLI	203
Configuring LLDP transmit properties	
Configuring LLDP Timers using ACLI	204
Configuring LLDP port parameters	205
Configuring management TLVs for LLDP ports	
Configuring dot1 TLVs for LLDP ports	
Configuring dot3 TLVs for LLDP ports	
Configuring TLVs for MED devices	
Configuring parameters for LLDP location identification	
Configuring LLDP civic address parameters	
Configuring the LLDP emergency call service emergency location identification number	
Setting LLDP transmission parameters to default values	. 210

	Setting port parameters to default values	. 211
	Setting Management TLVs to default values	
	Setting the IEEE 802.1 organizationally-specific TLVs to default values	
	Setting the IEEE 802.3 organizationally-specific TLVs to default values	
	Setting optional TLVs for MED devices to default values	
	Disabling LLDP features on the port	. 216
	Configuring Management TLVs	216
	Configuring the IEEE 802.1 TLVs	
	Configuring the IEEE 802.3 TLVs	217
	Configuring optional TLVs for MED devices	
	Displaying configuration data for LLDP	
	Configuring LLDP MED policies for switch ports	
	Setting Ildp med-network-policies to the default values	
	Disabling LLDP MED policies for switch ports	
	Viewing Ildp med-network-policies	
	Configuring LLDP	
	802.1AB Integration configuration	
Ch	apter 16: VLANs Configuration using Enterprise Device Manager	
•	Displaying VLAN configuration	
	Creating a VLAN	
	Modifying a VLAN	
	Deleting VLANs	
	Clearing DHCP statistics counters on a VLAN	
	Configuring VLAN Snoop	
	Configuring VLAN Ports	
	Enabling AutoPVID	
	Configuring ports for VLAN membership	
	MAC address table maintenance.	
	Flushing the MAC address table	
	Selecting VLAN configuration control.	
Ch	apter 17: Spanning Tree Configuration using Enterprise Device Manager	
	Setting the STP mode	
	Resetting the switch.	
	Configuring STP BPDU filtering for specific ports	
	Spanning Tree STG configuration	
	Configuring STG Global properties	
	Creating an STG	
	Adding a VLAN to an STG	
	Moving a VLAN between STGs	
	Deleting an STG	
	Displaying STG Status	
	Displaying STG ports	
	Configuring STG port properties	
		200

Rapid Spanning Tree Protocol	252
Viewing RSTP general information	252
Displaying RSTP ports information	254
Displaying RSTP status	255
Graphing RSTP port statistics	256
Multiple Spanning Tree Protocol	257
Displaying MSTP general information	257
Displaying CIST port information	259
Graphing CIST Port statistics	261
Displaying MSTI Bridges	
Inserting MSTI Bridges	263
Deleting MSTP MSTI Bridges	263
Associating a VLAN with the CIST or an MSTI instance	264
Modifying VLAN CIST or MSTI association	
Viewing MSTP MSTI Ports	
Graphing MSTP MSTI Port Statistics	265
Chapter 18: MLT Configuration using Enterprise Device Manager	267
MultiLink Trunks configuration	267
Configuring Multi-Link Trunks	267
Filtering the Multi-Link Trunks tab display	268
Adding MLT Ports	269
Disabling MLT ports on Shutdown	269
Configuring SMLT	270
Adding an MLT-based SMLT	270
Viewing SLTs configured on your switch	
Configuring an SLT	
Deleting an SLT	
Configuring an IST MLT	
Removing an IST MLT	
Viewing IST statistics	273
Chapter 19: LACP and VLACP Configuration using Enterprise Device Manager	275
LACP Configuration	
Configuring the LACP port compatibility mode	
Configuring Link Aggregation Groups	
Configuring LACP ports	
Mapping the LACP key mapping	
VLACP Configuration	
Viewing VLACP Global information	
VLACP tab for ports	
Chapter 20: SLPP Configuration using Enterprise Device Manager	
Configuring SLPP transmitting list	
Enabling SLPP	
Configuring SLPP PDU transmit interval	283

Configuring SLPP PDU ether type	283
Configuring SLPP port auto enable	283
Enabling SLPP PDU received function per port	284
Configuring the SLPP PDU receipt threshold	284
Configuring SLPP Guard using Enterprise Device Manager	284
Selecting an SLPP Guard Ethernet type using EDM	
Configuring SLPP Guard using EDM	
Viewing the SLPP Guard configuration using EDM	286
Chapter 21: ADAC Configuration using Enterprise Device Manager	
Configuring ADAC settings	
Configuring ADAC MAC address ranges using EDM	
Deleting MAC address ranges using Device Manager	
Configuring ADAC settings on a port	
Chapter 22: Bridge configuration using Enterprise Device Manager	
Displaying basic system bridge information	
Viewing transparent bridge information	
Viewing forwarding bridge information	
Chapter 23: LLDP configuration using Enterprise Device Manager	
Configuring LLDP transmit properties.	
Viewing LLDP remote properties	
Configuring LLDP ports	
Displaying LLDP transmit statistics	
Graphing LLDP transmit statistics	
Displaying LLDP receive statistics	
Graphing LLDP receive statistics	
Viewing LLDP local system properties	
Viewing LLDP local port properties	
Viewing LLDP management properites	
Viewing LLDP remote management properties	
Viewing LLDP organizationally-specific properties	
LLDP Port dot1 configuration using Enterprise Device Manager	308
Viewing LLDP VLAN ID properties	309
Viewing LLDP protocol properties	311
Viewing LLDP VLAN ID properties	311
Viewing LLDP Neighbor Protocol VLAN properties	312
Viewing LLDP VLAN Name properties	
Viewing LLDP Neighbor Protocol properties	313
LLDP Port dot3 configuration using Enterprise Device Manager	314
Viewing LLDP auto-negotiation properties	314
Viewing LLDP PoE porperties	315
Viewing LLDP link aggregation properties	316
Viewing LLDP maximum frame size properties	317
Viewing LLDP neighbor auto-negotiation properties	317

Viewing LLDP neighbor PoE properties	318
Viewing LLDP neighbor link aggregation properties	319
Viewing LLDP neighbor maximum frame size properties	
LLDP Port MED configuration using Enterprise Device Manager	320
Viewing local policy properties	321
Viewing local location properties	322
Viewing coordinate-based location details	323
Viewing civic address location details	324
Viewing LLDP local PoE PSE properties	325
Viewing LLDP neighbor capabilities properties	326
Viewing LLDP neighbor policy properties	326
Viewing LLDP neighbor location properties	327
Viewing coordinate-based location details	328
Viewing civic address location details	328
Viewing LLDP neighbor PoE properties	329
Viewing LLDP neighbor PoE PSE properties	330
Viewing LLDP neighbor PoE PD properties	330
Viewing LLDP neighbor inventory properties	
LLDP MED policy management using Enterprises Device Manager	332
Viewing LLDP MED policies	333
Creating LLDP MED policies	
Editing LLDP MED policies	335
Deleting LLDP MED policies	
Configuring LLDP Timers using EDM	
Enabling or disabling Avaya TLV transmit flags	
Configuring the PoE conservation level request TLV	
Configuring the 802.1Q framing TLV	
Configuring the switch call server IP address TLV	
Configuring the switch file server IP address TLV	
Viewing Avaya IP phone power level TLV information	
Viewing remote call server IP address TLV information	
Viewing remote file server IP address TLV information	
Viewing PoE conservation level support TLV information	
Viewing remote 802.1Q Framing TLV information	
Viewing remote IP TLV information	347
Appendix A: LACP over SMLT configuration example	
LACP over SMLT configuration example	348
Switch A configuration	348
Switch B configuration	
Switch C configuration	350

Chapter 1: Introduction

Related links

<u>Purpose</u> on page 14 <u>Related resources</u> on page 14 <u>Support</u> on page 15

Purpose

This document provides information you need to configure VLANs, Spanning Tree and Link Aggregation for the Ethernet Routing Switch 5600 Series.

Related resources

Documentation

See the *Documentation Reference for Avaya Ethernet Routing Switch 5000 Series*, NN47200–103 for a list of the documentation for this product.

Training

Ongoing product training is available. For more information or to register, you can access the Web site at <u>http://avaya-learning.com</u>.

Avaya Mentor videos

Avaya Mentor videos provide technical content on how to install, configure, and troubleshoot Avaya products.

About this task

Videos are available on the Avaya Support website, listed under the video document type, and on the Avaya-run channel on YouTube.

Procedure

- To find videos on the Avaya Support website, go to http://support.avaya.com, select the product name, and check the videos checkbox to see a list of available videos.
- To find the Avaya Mentor videos on YouTube, go to <u>http://www.youtube.com/AvayaMentor</u> and perform one of the following actions:
 - Enter a key word or key words in the Search Channel to search for a specific product or topic.
 - Scroll down Playlists, and click the name of a topic to see the available list of videos posted on the site.

😵 Note:

Videos are not available for all products.

Support

Visit the Avaya Support website at <u>http://support.avaya.com</u> for the most up-to-date documentation, product notices, and knowledge articles. You can also search for release notes, downloads, and resolutions to issues. Use the online service request system to create a service request. Chat with live agents to get answers to questions, or request an agent to connect you to a support team if an issue requires additional expertise.

Related links

Introduction on page 14

Chapter 2: New in this Release

The following sections detail what's new in *Configuring VLANs, Spanning Tree, and Multi-Link Trunking on Avaya Ethernet Routing Switch 5000 Series*, NN47200–502for Release 6.6.

Features

See the following sections for information about feature changes:

Link-state tracking

The link-state tracking feature binds the link state of multiple interfaces, so that if a specified interface or its Virtual Link Aggregation Protocol (VLACP) state goes down, all the other interfaces in that group are placed in a temporary down state.

For more information, see in this guide:

Link-State Tracking fundamentals on page 111

Other changes

See the following sections for information about changes that are updates to previously existing information.

LACP over SMLT

Deleted the following note because SLPP packet-rx configuration on ports is not supported when LACP aggregation is enabled:

Avaya recommends you to enable SLPP to protect the network from broadcast storms.

CLI interface change from FastEthernet to Ethernet

The CLI interface command interface FastEthernet is changed to interface Ethernet. The FastEthernet interface command remains available, but hidden so as to provide backward compatibility.

Removal of NSNA support

NSNA support has been removed for Avaya ERS 5600 Series starting in Release 6.6.

Chapter 3: VLAN fundamentals

The following sections describe Virtual Local Area Network (VLAN) fundamentals.

VLANs

The Avaya Ethernet Routing Switch 5000 Series supports up to 1024 Virtual Local Area Networks (VLANs).

Important:

The target scaling number is up to 4096 concurrent VLAN IDs with the scaling capacity limited to 1024 simultaneous VLANs. The ERS 5000 Series supports a maximum of 1024 VLANs.

You can group ports into broadcast domains by assigning them to the same VLAN. Frames received in one VLAN can only be forwarded within that VLAN, and multicast frames and unknown unicast frames are flooded only to ports in the same VLAN.

Setting up VLAN is a method to segment networks to increase network capacity and performance without changing the physical network topology (Figure 1: Port-based VLAN on page 18). With network segmentation, each switch port connects to a segment that is a single broadcast domain. When you configure a switch port to be a member of a VLAN, you add it to a group of ports (workgroup) that belong to one broadcast domain.

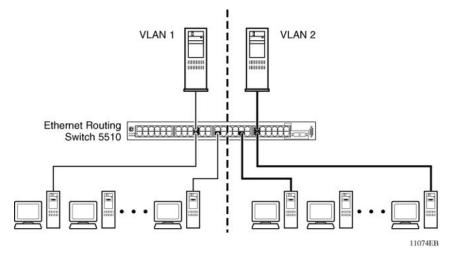
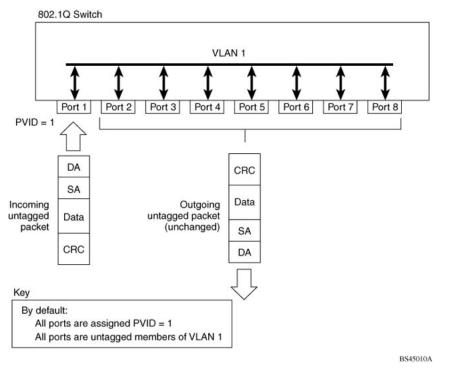


Figure 1: Port-based VLAN

You can assign ports to a VLANs using ACLI, or EDM. Different ports (and their devices) can be assigned to different broadcast domains. VLANs can be reassigned to accommodate network moves, additions, and changes, eliminating the need to change physical cabling.


IEEE 802.1Q tagging

The Avaya Ethernet Routing Switch 5000 Series operates in accordance with the IEEE 802.1Q tagging rules. Important terms used with the 32-bit 802.1Q tagging feature are:

- VLAN identifier (VID) -- the 12-bit portion of the VLAN tag in the frame header that identifies an
 explicit VLAN. When other types of VLANs are enabled, this default value can be overridden by
 the values enabled in the management interfaces.
- Port VLAN identifier (PVID) -- a classification mechanism that associates a port with a specific VLAN. For example, a port with a PVID of 3 (PVID =3) assigns all untagged frames received on this port to VLAN 3.
- Tagged frame -- a frame that contains the 32-bit 802.1q field (VLAN tag). This field identifies the frame as belonging to a specific VLAN.
- Untagged frame -- a frame that does not carry any VLAN tagging information in the frame header.
- VLAN port members -- a group of ports that are all members of a particular VLAN. A port can be a member of one or more VLANs.
- Untagged member -- a port that has been configured as an untagged member of a specific VLAN. When an untagged frame exits the switch through an untagged member port, the frame header remains unchanged. When a tagged frame exits the switch through an untagged member port, the tag is stripped and the tagged frame is changed to an untagged frame.
- Tagged member -- a port that has been configured as a tagged member of a specific VLAN. When an untagged frame exits the switch through a tagged member port, the frame header is modified to include the 32-bit tag associated with the ingress port PVID. When a tagged frame exits the switch through a tagged member port, the frame header remains unchanged (original VID remains).
- User priority -- a three-bit field in the header of a tagged frame. The field is interpreted as a binary number, therefore has a value of 0 7. This field allows the tagged frame to carry the user-priority across bridged LANs where the individual LAN segments may be unable to signal priority information.
- Port priority -- the priority level assigned to untagged frames received on a port. This value becomes the user priority for the frame. Tagged packets get their user priority from the value contained in the 32-bit 802.1Q frame header.
- Unregistered packet -- a tagged frame that contains a VID where the receiving port is not a member of that VLAN.
- Filtering database identifier (FID) -- the specific filtering/forwarding database within the Avaya Ethernet Routing Switch 5000 Series switch that is assigned to each VLAN. Each VLAN has its

own filtering database, which is called independent VLAN learning (IVL). IVLs can have duplicate MAC addresses in different VLANs.

The default configuration settings for the Avaya Ethernet Routing Switch 5000 Series have all ports set as untagged members of VLAN 1 with all ports configured as PVID = 1. Every VLAN is assigned a unique VLAN identifier (VID) that distinguishes it from all other VLANs. In the default configuration example shown in Figure 2: Default VLAN settings on page 20, all incoming packets are assigned to VLAN 1 by the default port VLAN identifier (PVID =1). Untagged packets enter and leave the switch unchanged.

Figure 2: Default VLAN settings

You can configure switch ports to transmit frames tagged on some VLANs, and untagged on other VLANs.

When you configure VLANs, the egress tagging of each switch port can be configured as *Untag All*, *Untag PVID Only*, *Tag All* or *Tag PVID Only*.

In <u>Figure 3: Port-based VLAN assignment</u> on page 21, untagged incoming packets are assigned directly to VLAN 2 (PVID = 2). Port 5 is configured as a *tagged* member of VLAN 2, and port 7 is configured as an *untagged* member of VLAN 2.

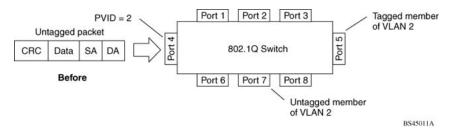


Figure 3: Port-based VLAN assignment

As shown in Figure 4: 802.1Q tagging (after port-based VLAN assignment) on page 21, the untagged packet is marked (tagged) as it leaves the switch through port 5, which is configured as a tagged member of VLAN 2. The untagged packet remains unchanged as it leaves the switch through port 7, which is configured as an untagged member of VLAN 2.

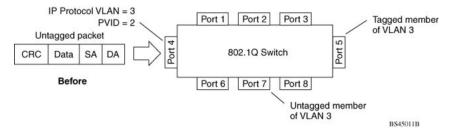
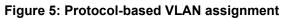




Figure 4: 802.1Q tagging (after port-based VLAN assignment)

In <u>Figure 5: Protocol-based VLAN assignment</u> on page 21, untagged incoming packets are assigned to VLAN 3 (protocol-based VLAN = 3, PVID = 2). Port 5 is configured as a tagged member of VLAN 3, and port 7 is configured as an untagged member of VLAN 3.

In Figure 6: 802.1Q tagging (after protocol-based VLAN assignment) on page 22, the untagged packet is marked (tagged) as it leaves the switch through port 5, which is configured as a tagged member of VLAN 3. The untagged packet remains unchanged as it leaves the switch through port 7, which is configured as an untagged member of VLAN 3.

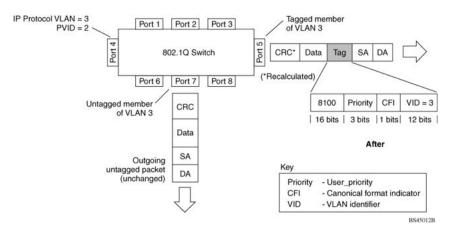
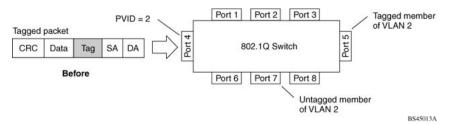



Figure 6: 802.1Q tagging (after protocol-based VLAN assignment)

In Figure 7: 802.1Q tag assignment on page 22, tagged incoming packets are assigned directly to VLAN 2 because of the tag assignment in the packet. Port 5 is configured as a tagged member of VLAN 2, and port 7 is configured as an untagged member of VLAN 2.

Figure 7: 802.1Q tag assignment

In Figure 8: 802.1Q tagging (after 32-bit 802.1Q tag assignment) on page 22, the tagged packet remains unchanged as it leaves the switch through port 5, which is configured as a tagged member of VLAN 2. However, the tagged packet is stripped (untagged) as it leaves the switch through port 7, which is configured as an untagged member of VLAN 2.

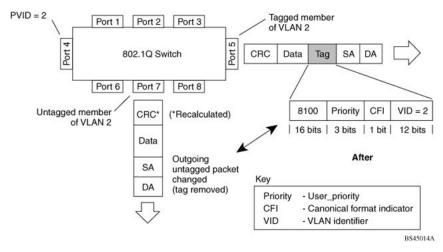
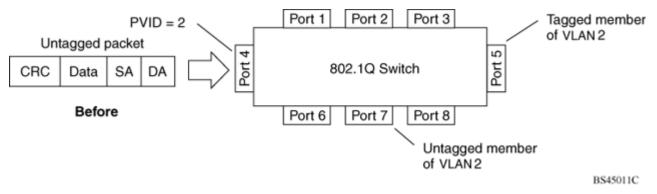



Figure 8: 802.1Q tagging (after 32-bit 802.1Q tag assignment)

In <u>Figure 9: 802.1Q tag assignment</u> on page 23, untagged incoming packets are assigned directly to VLAN 2. Port 5 is configured as a tagged member of VLAN 2, and port 7 is configured as an untagged member of VLAN 2.

Figure 9: 802.1Q tag assignment

In <u>Figure 10: 802.1Q tagging (after 32-bit 802.1Q tag assignment)</u> on page 23, the untagged packet is marked (tagged) as it leaves the switch through port 5, which is configured as a tagged member of VLAN 2. The untagged packet remains unchanged as it leaves the switch through port 7, which is configured as an untagged member of VLAN 2.

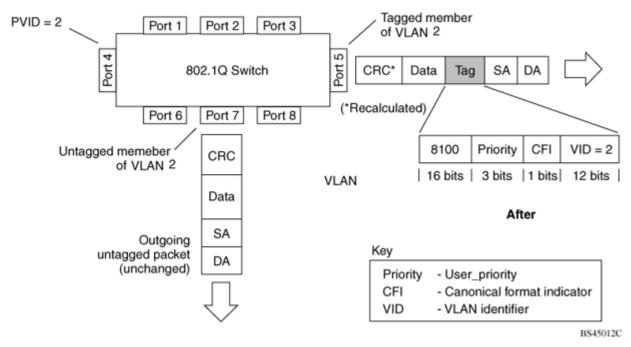


Figure 10: 802.1Q tagging (after 32-bit 802.1Q tag assignment)

VLANs spanning multiple switches

You can use VLANs to segment a network within a switch. When multiple switches are connected, you can connect users of one VLAN with users of that same VLAN in another switch. However, the configuration guidelines depend on both switches supporting 32-bit 802.1Q tagging.

With 32-bit 802.1Q tagging enabled on a VLAN port, all frames leaving the port are marked as belonging to that specific VLAN. You can assign specific switch ports as members of one or more VLANs that span multiple switches, without interfering with the Spanning Tree Protocol.

VLANs spanning multiple 802.1Q tagged switches

Figure 11: VLANs spanning multiple 802.1Q tagged switches on page 24 shows VLANs spanning two Avaya Ethernet Routing Switch 5000 Series switches. The 32-bit 802.1Q tagging is enabled on S1, port 14 and on S2, port 13 for VLAN 1 and VLAN 2. Both ports are tagged members of VLAN 1 and VLAN 2.

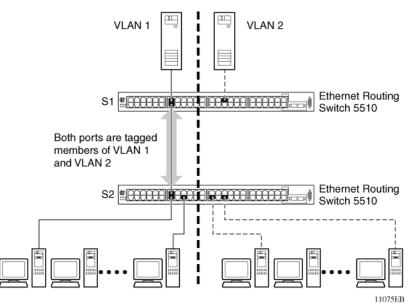


Figure 11: VLANs spanning multiple 802.1Q tagged switches

Because only one link exists between the two switches, the Spanning Tree Protocol (STP) treats this configuration as any other switch-to-switch connection. For this configuration to work properly, both switches must support the 32-bit 802.1Q tagging protocol.

VLANS spanning multiple untagged switches

Figure 12: VLANs spanning multiple untagged switches on page 25 shows VLANs spanning multiple untagged switches. In this configuration, Switch S2 does not support 32-bit 802.1Q tagging and you must use a single switch port on each switch for each VLAN.

For this configuration to work properly, you must set spanning tree participation to Disabled (the STP is not supported across multiple LANs).

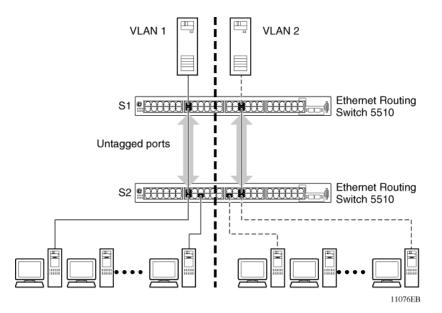
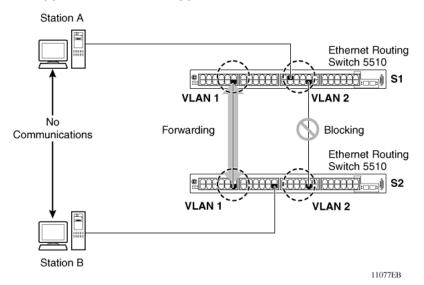



Figure 12: VLANs spanning multiple untagged switches

When the STP is enabled on these switches, only one link between the pair of switches forwards traffic. Because each port can belong only to one VLAN at a time, connectivity on the other VLAN is lost. Exercise care when configuring the switches to ensure that the VLAN configuration does not conflict with spanning tree configuration.

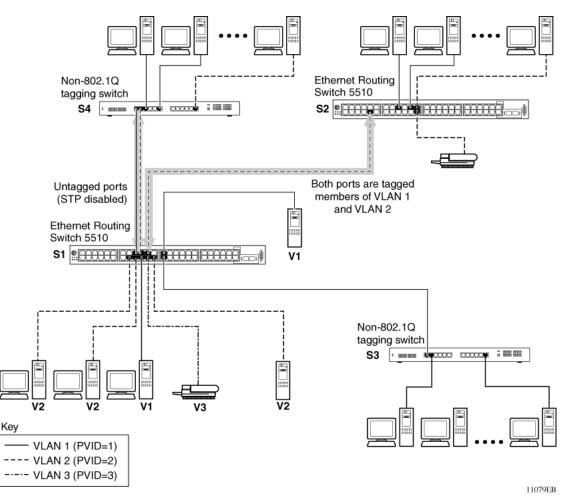
To connect multiple VLANs across switches with redundant links, you must disable the STP on all participating switch ports. Figure 13: Possible problems with VLANs and Spanning Tree Protocol on page 25 shows possible consequences of enabling the STP when using VLANs between untagged (non-802.1Q tagged) switches.

As shown in Figure 13: Possible problems with VLANs and Spanning Tree Protocol on page 25, with STP enabled, only one connection between Switch S1 and Switch S2 is forwarding at any time.

Communications failure occurs between VLAN 2 of S1 and VLAN 2 of S2, blocking communications between Stations A and B.

The STP selects the link connecting VLAN 1 on Switches S1 and S2 as the forwarding link based on port speed, duplex-mode, and port priority. Because the other link connecting VLAN 2 is in Blocking mode, stations on VLAN 2 in Switch S1 cannot communicate with stations in VLAN 2 on Switch S2. With multiple links only one link can be forwarding.

VLAN summary


This section summarizes the VLAN examples discussed in the previous sections.

As shown in <u>Figure 14</u>: <u>VLAN configuration spanning multiple switches</u> on page 27, Switch S1 (Avaya Ethernet Routing Switch 5510) is configured with multiple VLANs:

- Ports 17, 20, 25, and 26 are in VLAN 1.
- Ports 16, 18, 19, 21, and 24 are in VLAN 2.
- Port 22 is in VLAN 3.

Because S4 does not support 32-bit 802.1Q tagging, a single switch port on each switch must be used for each VLAN (see Figure 12: VLANs spanning multiple untagged switches on page 25).

The connection to S2 requires only one link between the switches because S1 and S2 are both Avaya Ethernet Routing Switch 5000 Series switches that support 32-bit 802.1Q tagging (see <u>VLANs spanning multiple 802.1Q tagged switches</u> on page 24).

VLAN configuration rules

VLANs operate according to specific configuration rules. When creating VLANs, consider the following rules that determine how the configured VLAN reacts in any network topology:

- If a port is a trunk group member, all trunk members are added or deleted from the VLAN.
- All ports involved in trunking must have the same VLAN configuration.
- VLANs are not dependent on Rate Limiting settings.
- If a port is an Internet Gateway Management Protocol (IGMP) member on any VLAN, and the port is removed from a VLAN, the port's IGMP membership is also removed.
- If you add a port to a different VLAN, and the port is already configured as a static router port, you configure the port as an IGMP member on that specific VLAN.

VCC

VLAN Configuration Control (VCC) allows a switch administrator to control how VLANs are modified. VCC is a superset of the existing AutoPVID functionality and incorporates this functionality for backwards compatibility. VCC is globally applied to all VLANs on the switch.

VCC offers four options for controlling VLAN modification:

 Strict -- This option restricts the addition of an untagged port to a VLAN if the port is already a member of another VLAN. To add an untagged port to a new VLAN, the switch administrator must remove the port from all other VLANs before adding it to the new VLAN. The PVID of the port changes to the new VID of the VLAN it joins.

😵 Note:

Strict is the factory default setting.

- Automatic -- This option automatically adds an untagged port to a new VLAN and automatically removes the port from any previous VLAN membership. The PVID of the port automatically changes to the VID of the VLAN it joins. Since the port is added to the new VLAN first, and then is removed from any previous membership, the Spanning Tree Group participation of the port can not be disabled if the VLANs involved are in the same Spanning Tree Group.
- 3. **AutoPVID** -- This option functions in the same manner as previous AutoPVID functionality. When an untagged port is added to a new VLAN, the port is added to the new VLAN and the PVID is assigned to the new VID without removing it from any previous VLAN memberships. Using this option an untagged port can have membership in multiple VLANs.
- 4. Flexible -- This option functions in a similar manner to disabling AutoPVID functionality. When this option is used, an untagged port can belong to an unlimited number of VLANs. Any new additions of an untagged port to a new VLAN does not change the PVID of that port.

VCCI is only applied to ports with the tagging modes of **Untag All** and **Tag PVID Only**. Ports with the tagging modes of **Tag All** and **Untag PVID Only** are not governed by VCC. Ports with the tagging modes of **Tag All** and **Untag PVID Only** can belong to multiple VLANs regardless of VCC settings and you must change the PVID manually.

Multinetting

The Avaya Ethernet Routing Switch 5000 Series supports the definition and configuration of secondary interfaces on each VLAN. For more information about IP Multinetting, see *Configuring IP Routing and Multicast on Avaya Ethernet Routing Switch 5000 Series*, NN47200-503.

MLT DMLT LAG dynamic VLAN changes

Enhancements to Link Aggregation Groups (LAG) provides consistent operation of Multi-Link Trunk (MLT), Distributed Multi-Link Trunk (DMLT), and LAGs so that you can make VLAN changes on trunks without disabling the trunk first.

The switch allows you to move a LAG member into a VLAN and all ports that have LACP enabled with the same LACP key are moved. This behavior is similar to MLT and DMLT.

If you attempt to remove all VLANs from an active MLT, DMLT, or LAG, the system outputs a message warning you of possible loss of connectivity to the switch, and requests a confirmation to continue. If you remove all MLT, DMLT, or LAG ports from all VLANs, the trunk is disabled.

When you add a port to a new STG, consider using STG port membership in auto mode. In auto mode STP is automatically enabled on the port to prevent loops.

DHCP

Dynamic Host Configuration Protocol (DHCP) is defined by the RFC 2131. DHCP allows individual TCP/IP hosts on an IP network to obtain configuration information from a DHCP server (or servers). DHCP reduces the work of system administrators, especially in larger IP networks, by eliminating the need to manually set every IP address. The most significant pieces of information distributed through DHCP are:

- the IP address
- · the network mask
- the IP address of the gateway

In many networks, DHCP must coexist with VLANs, and the DHCP client can make its broadcasts only in the trusted VLANs. The DHCP client runs at startup just like the BootP client. The DHCP client restricts its discovery broadcasts to the management VLAN.

The DHCP modes supported by the Avaya Ethernet Routing Switch 5000 Series are:

- DHCP or Last Address mode
- DHCP When Needed.
- DHCP Always
- DHCP Disabled. Disable DHCP by setting BootP Disabled.

The host cannot act as a DHCP relay while the DHCP client is running.

Voice VLAN Integration

Voice VLAN is enhanced to provide centralized creation and management of Voice VLAN using VLAN-specific commands. The enhancement also includes the option to configure a statically allocated port that you can permanently assign to the Voice VLAN, where that port will still persist after a system boot. Another advantage of a statically allocated port is that it does not have to participate in the ADAC or 802.1AB discovery processes, when this behavior is desired. With Voice VLAN Integration, the switch creates static Voice VLANs and Layer 3 configurations can be applied as per standard operational procedures. Voice VLAN integration is specifically useful when Layer 3 configurations are needed for ADAC Voice VLAN.

When an application such as ADAC, EAP or LLDP requires a Voice VLAN, you need to create the Voice VLAN with the new VLAN commands before configuring this Voice VLAN in the required application. For ADAC and EAP, an error message is displayed if the VLAN ID does not exist or is not configured as a Voice VLAN. ADAC and EAP require a VLAN which is voice enabled.

When you manually create an LLPD MED network policy, LLDP checks that the specified VLAN ID corresponds to a voice VLAN created inside the VLAN application. If the VLAN is not a voice VLAN or the VLAN does not exist, the switch displays a warning message. The switch creates the policy even if the VLAN is not voice enabled or does not exist. The switch may display one of the following messages:

% Policy will be set on port x with vlan-id of a non-existent vlan y % Policy will be set on port x member of the non-voice vlan y

When you delete a Voice VLAN, the system ensures it is not used by any of the dependent applications before proceeding with the deletion. An error message is displayed if the Voice VLAN is in use.

😵 Note:

Avaya recommends you do not use the same Voice VLAN for different features.

You can configure up to 6 Voice VLANs.

Chapter 4: STP fundamentals

The following sections describe Spanning Tree Protocol (STP) fundamentals.

STP groups

The Avaya Ethernet Routing Switch 5000 Series supports the Spanning Tree Protocol (STP) as defined in IEEE 802.1D. The Spanning Tree Protocol detects and eliminates logical loops in a bridged or switched network. When multiple paths exist, the spanning tree algorithm configures the network so that a bridge or switch uses only the most efficient path. If that path fails, the protocol automatically reconfigures the network to make another path become active, sustaining network operations.

The Avaya Ethernet Routing Switch 5000 Series supports multiple spanning tree groups (STG). The Avaya Ethernet Routing Switch 5000 Series supports a maximum of 8 STGs, either all in one standalone switch or across a stack. Multiple STGs provide multiple data paths, which can be used for load balancing and redundancy. You can enable load balancing between two switches using multiple STGs by configuring each path with a different VLAN and assigning each VLAN to a separate STG. Each STG is independent. Each STG sends its own Bridge Protocol Data Units (BPDU), and you must independently configure each STG.

The STG, or bridge group, forms a loop-free topology that includes one or more Virtual Local Area Network (VLAN). The Avaya Ethernet Routing Switch 5000 Series supports multiple instances (8) of STGs running simultaneously.

The Avaya Ethernet Routing Switch 5000 Series supports a maximum of 1024 VLANs. With a maximum of 8 STGs, on average, each STG can have 128 VLANs.

In the default configuration of the Avaya Ethernet Routing Switch 5000 Series, a single STG with the ID of 1 includes all ports on the switch. This STG is the default STG. Although you can add or delete ports from the default STG, you cannot delete the default STG (STG1) from the system. Also you cannot delete the default VLAN (VLAN1) from STG1.

The tagging for the BPDUs from STG1, or the default STG, is user-configurable (as are tagging settings for all STGs). However, by default STG1 sends out only untagged BPDUs to operate with all devices that support only one instance of STP. (The default tagging of STG2 through STG8 is tagged.) The tagging setting for each STG is user-configurable.

Note:

If the STG is tagging a BPDU, the BPDU packet is tagged only on a tagged port. Also, ensure that the Filter Unregistered Frames option for the tagged port is disabled for this to function properly.

You must create all other STGs, except the Default STG. To become active, you must enable each STG after creation. Each STG is assigned an ID number from 2 to 8 (the Default STG is assigned the ID number 1). Ports or VLANs are assigned to an active STG. However, a port that is not a member of a VLAN is not allowed to join an STG.

When you create an STG, all ports belonging to any assigned VLAN are automatically added to the STG.

When an STG is no longer needed, disable and delete it. The procedure is to disable the STG, delete all VLAN and port memberships, and then delete the STG.

A unique multicast address can be configured for STGs 1 to 4.

😵 Note:

If you configure a unique multicast address for an STG, you must also configure each device in the STG with the same spanning tree multicast address.

😵 Note:

If Virtual LACP is enabled, the number of unique multicast addresses you can configure for STGs is reduced to 3 (1 to 3).

STG configuration guidelines

This section provides important information about configuring STGs:

- · You must create an STG by following these steps:
 - Create the STG
 - Add the existing VLAN and port memberships
 - Enable the STG
- When you create a VLAN, that VLAN automatically belongs to STG 1, the default STG. If the VLAN is to be in another STG, you must assign it to another STG.
- You can move a newly created VLAN to an existing STG by following these steps:
 - Create the VLAN
 - Add the VLAN to an existing STG
- VLAN1 cannot be moved or deleted from STG1.
- You can create and add VLAN X directly to STG Y with vlan create X type port Y from ACLI if STG Y exists.
- VLANs must be contained within a single STG; a VLAN cannot span multiple STGs. By confining VLANs within a single STG, you avoid problems with spanning tree blocking ports and causing a loss of connectivity within the VLAN. When a VLAN spans multiple switches, the VLAN must be within the same spanning tree group (have the same STG ID) across all the switches.
- A port that is not a member of any VLAN cannot be added to any STG. You can add the port to a VLAN, and add that VLAN to the desired STG.

- Tagged ports can belong to more than one STG, but untagged ports can belong to only one STG.
- When a tagged port belongs to more than one STG, the egress BPDUs are tagged to distinguish the BPDUs of one STG from those of another STG.
- Because some STP-compliant devices do not support tagging, you can configure whether to send tagged or untagged BPDUs, even from tagged ports. The VLAN ID for the tagged BPDUs is 4000+STG ID.
- The default VLAN ID for tagged BPDUs is as follows:
 - 4001--STG1
 - 4002--STG2
 - 4003--STG3
 - 4004--STG4
 - 4005--STG5
 - 4006--STG6
 - 4007--STG7
 - 4008--STG8
- A VLAN ID can be selected for tagged BPDUs for each STG. Valid VLAN IDs are 1 to 4094.
- Tagged BPDUs cannot use the same VID as an active VLAN.
- An untagged port cannot span multiple STGs.
- When you remove a port from a VLAN that belongs to an STG, that port is also removed from the STG. However, if that port belongs to another VLAN in the same STG, the port remains in the STG.
- As an example, assume that port 1 belongs to VLAN1, and that VLAN1 belongs to STG1. When you remove port 1 from VLAN1, port 1 is also removed from STG1.

However, if port 1 belongs to both VLAN1 and VLAN2 and both VLANs belong to STG1, removing port 1 from VLAN1 does not remove port 1 from STG1 because VLAN2 is still a member of STG1.

You cannot delete an STG until you disable it.

• You can configure a unique multicast address for STGs 1 to 4 only.

Spanning Tree Fast Learning

Spanning Tree Fast Learning is an enhanced port mode supported by the Avaya Ethernet Routing Switch 5000 Series. If Spanning Tree Fast Learning is enabled on a port with no other bridges, the port is brought up quicker after a switch initialization or a spanning tree change. The port goes through the normal blocking and learning states before the forwarding state, but the hold times for these states is the bridge hello timer (2 seconds by default) instead of the bridge forward delay timer (15 seconds by default).

The port configured with Fast Learning can forward data immediately, as soon as the switch learns that the port is enabled.

Fast Learning is intended for access ports in which only one device is connected to the switch (as in workstations with no other spanning tree devices). For these ports, it is not desirable to wait the usual 30 to 35 seconds for spanning tree initialization and bridge learning.

😵 Note:

Use Spanning Tree Fast Learning with caution. This procedure is contrary to that specified in the IEEE 802.1D standard for Spanning Tree Protocol (STP) in which a port enters the blocking state after the initialization of the bridging device, or after a return from the disabled state when the port is enabled through configuration.

STG port membership mode

IEEE 802.1D STGs support two different STP port membership modes: normal and auto. In the normal mode, when you assign a port to VLAN X and VLAN X is in STP group Y, the port does not automatically become a member of STP group Y. In the auto mode, when you assign a port to VLAN X and VLAN X and VLAN X is in STP group Y, the port automatically becomes a member of STP group Y.

To set the STG port membership mode using the ACLI, see <u>Configuring STG port membership</u> <u>mode</u> on page 150 and using EDM, see <u>Configuring STG Global properties</u> on page 246.

802.1t path cost calculation

You can set the switch to calculate the STG path cost using either the IEEE 802.1d standard or the IEEE 802.1t standard. The 802.1t standard is a maintenance extension to the 802.1d standard.

To set the path cost calculation mode for the switch, see <u>Configuring path cost calculation mode</u> on page 150.

RSTP

The standard Spanning Tree implementation in 5000 Series switches is based on IEEE 802.1d, which is slow to respond to a topology change in the network (for example, a dysfunctional link in a network).

The Rapid Spanning Tree Protocol (RSTP or IEEE 802.1w) reduces recovery time after a network breakdown. It also maintains a backward compatibility with the IEEE 802.1d, which was the Spanning Tree implementation prior to RSTP. In certain configurations, the recovery time of RSTP can be reduced to less than 1 second. The backward compatibility is maintained by configuring a port to be in STP-compatible mode. A port operating in the STP-compatible mode transmits and receives only STP BPDUs and drops any RSTP BPDUs.

RSTP also reduces the amount of flooding in the network by enhancing the way the Topology Change Notification (TCN) packet is generated.

MSTP

You can use the Multiple Spanning Tree Protocol (MSTP or IEEE 802.1s) to configure multiple instances of RSTP on the same switch. Each RSTP instance can include one or more VLANs. The operation of the MSTP is similar to the current Avaya proprietary MSTP.

RSTP and MSTP enable the 5000 Series switch to achieve the following:

- Reduction of converging time from 30 seconds to less than 1 or 2 seconds when a topology change occurs in the network (ports going up or down).
- Elimination of unnecessary flushing of the MAC database and flooding of traffic to the network with a new Topology Change mechanism.
- Backward compatibility with other switches running legacy 802.1d STP or Avaya MSTP (STP group 1 only).
- Under MSTP mode, simultaneous support of eight instances of RSTP. Instance 0 or CIST is the default group, which includes default VLAN 1. Instances 1 to 7 are called MSTIs 1-7.
- Ability to run Avaya MSTP, RSTP, or MSTP.

Interoperability with legacy STP

RSTP provides a new parameter ForceVersion for backward compatibility with legacy STP. You can configure a port in either STP-compatible or RSTP mode.

- An STP compatible port transmits and receives only STP BPDUs. Any RSTP BPDU that the port receives in this mode is discarded.
- An RSTP compatible port transmits and receives only RSTP BPDUs. If an RSTP port receives an STP BPDU, it becomes an STP port. User intervention is required to bring this port back to RSTP mode. This process is called Port Protocol Migration.

Differences in STP and RSTP port roles

RSTP is an enhanced version of STP. These two protocols have almost the same set of parameters.

Table 1: Differences in port roles for STP and RSTP on page 36 lists the differences in port roles for STP and RSTP. STP supports 2 port roles, while RSTP supports four port roles.

Port Role	STP	RSTP	Description
Root	Yes	Yes	This port is receiving a better BPDU than its own and has the best path to reach the Root. Root port is in Forwarding state.
Designated	Yes	Yes	This port has the best BPDU on the segment. The Designated port is in Forwarding state.
Alternate	No	Yes	This port is receiving a better BPDU than its own and a Root port exists within the same switch. The Alternate port is in Discarding state.
Backup	No	Yes	This port is receiving a better BPDU than its own from another port within the same switch. The Backup port is in Discarding state.

Table 1: Differences in port roles for STP and RSTP

Edge port

Edge port is a new parameter supported by RSTP. When a port is connected to a non-switch device such as a PC or a workstation, it must be configured as an Edge port for fast convergence. An active Edge port goes directly to forwarding state without any delay. An Edge port becomes a non-Edge port if it receives a BPDU.

Path cost values

RSTP and MSTP recommend new path cost values that support a wide range of link speeds. <u>Table</u> <u>2: Recommended path cost values</u> on page 36 lists the recommended path cost values.

 Table 2: Recommended path cost values

Link speed	Recommended value
Less than or equal to 100 Kbit/s	200 000 000
1 Mbit/s	20 000 000
10 Mbit/s	2 000 000
100 Mbit/s	200 000
1 Gbit/s	20 000
10 Gbit/s	2 000
100 Gbit/s	200
1 Tbit/s	20
10 Tbit/s	2

Rapid convergent

In RSTP and MSTP, the environment root port or the designated port can ask its peer for permission to go to the Forwarding State. If the peer agrees, then the root port moves to the Forwarding State without any delay. This procedure is called the Negotiation Process.

RSTP and MSTP also allow information received on a port to be sent immediately if the port becomes dysfunctional, instead of waiting for the Maximum Age time.

The following example illustrates how an RSTP port state moves rapidly to Forwarding state without the risk of creating a loop in the network.

Switch A: ports 1 and 2 are in full duplex. Port 2 is an Edge port.

Switch B: ports 1, 2, and 3 are in full duplex. Port 2 is an Edge port.

Switch C: ports 1 and 2 are in full duplex. Port 2 is an Edge port.

Switch A is the Root.

Negotiation Process

After powering up, all ports assume the role as Designated ports. All ports are in the Discarding state, except for Edge ports. Edge ports go directly to the Forwarding state without delay.

Switch A port 1 and switch B port 1 exchange BPDUs, and switch A knows that it is the Root and that switch A port 1 is the Designated port. Switch B learns that switch A has better priority. Switch B port 1 becomes the Root port. Both switch A port 1 and switch B port 1 are still in the Discarding state.

Switch A starts the negotiation process by sending a BPDU with a proposal bit set.

Switch B receives the proposal BPDU and sets its non-Edge ports to the Discarding state. This operation is the sync process.

Switch B sends a BPDU with the agreement bit set to switch A.

Switch A sets port 1 to Forwarding, and switch B sets port 1 to Forwarding. PC 1 and PC 2 can talk to each other.

- The negotiation process now moves down to switch B port 3 and its partner port.
- PC 3 cannot talk to either PC 1 or PC 2 until the negotiation process between switch B and switch C is complete.

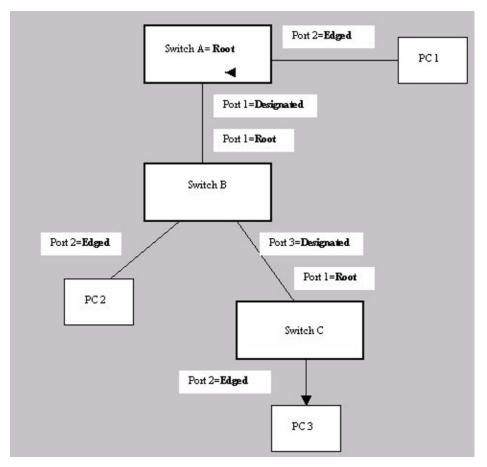


Figure 15: Negotiation process

The RSTP convergent time depends on how quickly the switch can exchange BPDUs during the negotiation process, and the number of switches in the network. For a 5000 Series switch, the convergent time depends on the hardware platform and the number of active applications running on the switch.

Spanning Tree BPDU Filtering

The Ethernet Routing Switch 5000 Series supports the Bridge Protocol Data Unit (BPDU) Filtering feature for STPG, RSTP, and MSTP.

The Spanning Tree Protocol detects and eliminates logical loops in a bridged or switched network. Any bridge that participates in the spanning tree exchanges information with other bridges using configuration messages known as BPDU. Based on the BPDU information exchange, the bridge with the lowest bridge ID becomes the root. This process is called the root selection process.

Typically, when a new bridge joins the spanning tree or an existing bridge leaves the spanning tree, the root selection process is repeated and a new root is selected.

The BPDU Filtering feature allows you to achieve the following:

- Block an unwanted root selection process when an edge device, such as a laptop running Linux and enabled with STP, is added to the network. This prevents unknown devices from influencing an existing spanning tree topology.
- Block the flooding of BPDUs from an unknown device.

😵 Note:

The STP BPDU Filtering feature is not supported on Multi-Link Trunk (MLT) ports.

When a port with BPDU Filtering enabled receives an STP BPDU, the following actions occur:

- The port immediately enters operational disabled state.
- A trap is generated and the following log message is written to the log: BPDU received on port with BPDU-Filtering enabled. Port <x> has been disabled
- The port timer starts.
- The port remains in the operational disabled state until the port timer expires.

If you disable the timer, or the switch resets before the timer expires, the port remains in the disabled state. Similarly, if BPDU-Filtering is disabled while the timer is running, the timer stops and that port remains in the disabled state. In this case, you must manually enable the port to restore the port to the normal mode.

You can enable and disable the BPDU Filtering feature for each port. The BPDU Filtering timer is user-configurable for each port and has a valid range of between 10 and 65535 seconds. The port timer is disabled if you configure as 0.

For details on configuring BPDU Filtering, see: Configuring STP BPDU Filtering on page 149.

Configuring Spanning Tree using the Console Interface

The following sections provide instructions for configuring Spanning Tree in the three modes using the Console Interface main menu.

Spanning Tree configuration in STPG mode

From the Spanning Tree Configuration Menu screen in the STPG mode (IEEE 802.1d), you can view Spanning Tree parameters and configure individual switch ports to participate in the Spanning Tree algorithm.

To open the Spanning Tree Configuration Menu screen from the Main Menu:

 \rightarrow Choose Spanning Tree Configuration (or press p).

Table 3: Spanning Tree Configuration Menu options in STPG mode. on page 40 describes the **Spanning Tree Configuration Menu** options.

Option	Description
Spanning Tree Group	Displays the Spanning Tree Group Configuration screen. (See <u>Spanning</u>
Configuration	<u>Tree Group Configuration in STPG mode</u> on page 40.)
Spanning Tree Port	Displays the Spanning Tree Port Configuration screen. (See <u>Spanning</u>
Configuration	<u>Tree Port Configuration in STPG mode</u> on page 42.)
Display Spanning Tree	Displays the Spanning Tree Switch Settings screen. (See <u>Spanning Tree</u>
Switch Settings	<u>Switch Settings in STPG mode</u> on page 44.)
Display Spanning Tree VLAN Membership	Displays the Spanning Tree VLAN Membership screen.

Table 3: Spanning Tree Configuration Menu options in STPG mode.

Spanning Tree Group Configuration in STPG mode

To open the Spanning Tree Group Configuration:

1. Choose **Spanning Tree Group Configuration** (or press g) from the Spanning Tree Configuration Menu screen.

Parameter	Description		
STP Mode	Shows the current STP operational mode for switch/stack. The modes available are:		
	• STPG (Avaya MSTP)		
	• RSTP (IEEE 802.1w)		
	• MSTP (IEEE 802.1s)		
Create STP Group	Creates a spanning tree group.		
	Default value	1	
	Range	1 to 8	
Delete STP Group	Deletes a spanning tree group.		
	Default value	Blank	
	Range	Configured STP groups from 1 to 8	
which is the most signifi parameter to determine		ty value of the bridge ID in hexadecimal notation, nificant byte of the bridge ID. STP uses this ine the root bridge (or designated bridge). For with the lowest bridge ID becomes the root riority values.	
	Default value	0x8000	
	Range	0x0000 to 0xF000	

Table 4: Spanning Tree Group Configuration parameters in STPG mode

Parameter	Description		
Bridge Hello Time	Configures the Hello Interval (the amount of time between transmissions of BPDUs) for the STP Group. This parameter takes effect only when this bridge becomes the root bridge.		
	🛪 Note:		
	management software, after the process is complete, all bridge tree network use the root bridge If any bridge becomes the root parameter value becomes the	es participating in the spanning ge Hello Interval parameter value.	
	Default value	2 seconds	
	Range	1 to 10 seconds	
Bridge Max. Age Time	Configures the maximum age (in seattain before being discarded. This the bridge becomes the root bridge	parameter takes effect only when	
	😿 Note:		
	If this bridge becomes the root bridge, its Maximum Age Time parameter value becomes the Actual Maximum Age Time parameter value for all bridges participating in the spanning tree network.		
	Default value	20 seconds	
	Range	6 to 40 seconds	
Bridge Forward Delay Time	Configures the Forward Delay parameter value for this bridge. This parameter takes effect only when this bridge becomes the root bridge.		
	The Forward Delay parameter value specifies the amount of time that the bridge ports remain in the Listening and Learning states before entering the Forwarding state.		
	😢 Note:		
	All bridges participating in the spanning tree network use the root bridge Forward Delay parameter value.		
	Default value	15 seconds	
	Range	4 to 30 seconds	
Add VLAN Membership	Adds a VLAN to the specified spanning tree group.		
	Default value	1	
		1 to 1001	
	Range	1 to 4094.	
Delete VLAN Membership	Range Deletes a VLAN from the specified		

Parameter	Description	
	Range	Configured VLANs from 1 to 4094
Tagged BPDU on tagged port	Specifies whether to send tagged or untagged BPDUs from a tagged port.	
	Default value	STP Group 1: No; Other STP Groups: Yes
	Range	No or Yes
VID used for tagged BPDU	Specifies the VLAN ID (VID) for tagged BPDU for the specified spanning tree group.	
	Default value	4001 to 4008 for STGs 1 through 8, respectively
	Range	1 to 4094
STP Multicast Address	Specifies the STP Multicast Address.	
	Default value	01-80-C2-00-00-00
STP Group State	Sets the STP Group to active or inactive. Note : You cannot set the default STG (STG 1) to Inactive.	
	Default value	Active for STG 1; Inactive for STGs 2 to 8
	Range	Active or Inactive

Spanning Tree Port Configuration in STPG mode

With the Spanning Tree Port Configuration, you can configure individual switch ports or all switch ports to participate in the Spanning Tree.

😵 Note:

If spanning tree participation of any trunk member is changed (enabled or disabled), the spanning tree participation of all members of that trunk is changed similarly.

<u>Table 5: Spanning Tree Port Configuration parameters in STPG mode</u> on page 42 describes the Spanning Tree Port Configuration fields.

Table 5: Spanning Tree Port Configuration parameters in STPG mode

Field	Description		
STP Group	Specifies the number of the spanning tree group (STG) to view. To view another STG, type that STG ID number and press Enter, or press the spacebar on your keyboard to toggle the STP Group numbers.		
	Default value	1	
	Range	Configured STP Groups from 1 to 8	
STP Mode	Indicates the STP mode in which the	Indicates the STP mode in which the switch or stack is operating.	

Field	Description		
Unit	The field specifies the nur type its unit number and p	This field only appears if the switch is participating in a stack configuration. The field specifies the number of the unit to view. To view another unit, type its unit number and press Enter, or press the spacebar on your keyboard to toggle the unit numbers.	
Port		numbers that correspond to the field values in that I values in row 2 apply to switch port 2).	
	😵 Note:		
		itch row affect all switch ports and, when the ck, the values in the Stack row affect all ports in	
Trunk		yed in this column indicates the trunks that ports specified in the Trunk Members fields of the en.	
Participation	Configures any (or all) of participation.	ports on the switch for Spanning tree	
	trunk member changes th	When an individual port is a trunk member, changing this setting for one trunk member changes the setting for all members of that trunk. Consider how this can change your network topology before you change this setting.	
		The Fast Learning parameter is the same as Normal Learning, except that the state transition timer is shortened to 2 seconds.	
	Default value	Normal Learning	
	Range	Normal Learning, Fast Learning, Disabled	
Priority	lowest port path cost to th	ridge spanning tree parameter that prioritizes the e root. When one or more ports have the same e path with the highest priority (lowest numerical	
	Default value	128	
	Range	0 to 255	
Path Cost	This read-only field is a br the lowest path cost to the	ridge spanning tree parameter that determines e root.	
	Default value	in 802.1d mode:	
		 Path cost = 1000 / LAN speed in Mbyte/s 	
		1 for 1 Gigabit port	
		in 802.1t mode:	
		 Path cost = 2*10^10 / LAN speed in Kbyte/s 	
		20 000 for 1 Gigabit port (default on ERS5000)	

Field	Description	Description	
		The higher the LAN speed, the lower the path cost.	
	Range	in 802.1d mode: 1 to 65535 in 802.1t mode: 1 to 200 000 000	
State	network. Each port can transition to Participation field setting. For exam Disabled, the port does not particip to the Forwarding state (the default Enabled, the port transitions from t	This read-only field indicates the current port state within the spanning tree network. Each port can transition to various states, as determined by the Participation field setting. For example, when the Participation field is set to Disabled, the port does not participate in the spanning tree and transitions to the Forwarding state (the default). When the Participation field is set to Enabled, the port transitions from the Disabled state through the Blocking, Listening, and Learning states before entering the Forwarding state.	
	Default value	Topology dependent	
	Range	Disabled, Blocking, Listening, Learning, Forwarding	

Spanning Tree Switch Settings in STPG mode

With the Spanning Tree Switch Settings, you can view spanning tree parameter values for the Ethernet Routing Switch 5000 Series.

To open the Spanning Tree Switch Settings:

1. Choose **Display Spanning Tree Switch Settings** (or press d) from the Spanning Tree Configuration Menu screen.

Parameter	Description		
STP Group	view another STG, type th	Specifies the number of the spanning tree group (STG) to view. To view another STG, type that STG ID number and press Enter, or press the spacebar on your keyboard to toggle the STP Group numbers.	
	Default value	1	
	Range	Configured STP Groups from 1 to 8	
STP Mode	Shows the current STP or	Shows the current STP operational mode for switch/stack: • Avaya MSTP (STPG)	
	Avaya MSTP (STPG)		
	• IEEE 802.1w (RSTP)	• IEEE 802.1w (RSTP)	
	• IEEE 802.1s (MSTP)	• IEEE 802.1s (MSTP)	
Bridge Priority	hexadecimal notation, whi ID. STP uses this parame	Indicates the management-assigned priority value of the bridge ID in hexadecimal notation, which is the most significant byte of the bridge ID. STP uses this parameter to determine the root bridge (or designated bridge). For example, the bridge with the lowest bridge ID	

Table 6: Spanning Tree Switch Settings parameters in STPG mode

Parameter	Description		
		becomes the root bridge, with Bridge Priority values compared first, followed by the hardware addresses.	
	Default value	0x8000	
	Range	HEX: 0x0000 - 0xF000	
Designated Root	Indicates the bridge ID of the r tree.	root bridge, as determined by spanning	
Root Port	Indicates the switch port numb the root bridge.	per that offers the lowest path cost to	
Root Path Cost	Indicates the path cost from th	nis switch port to the root bridge.	
	Default value	0	
	Range	Unit 1-8	
		Port 1-50 (in stack mode)	
		Port 1-50 (in standalone mode)	
Hello Time	Defines the amount of time be	tween transmissions of BPDUs.	
	Range	1 to 10 seconds	
Maximum Age Time	 bridge is currently using. This a Hello message can attain be Note: The root bridge Maximum the actual Maximum Age 	 Indicates the Maximum Age Time parameter value that the root bridge is currently using. This value specifies the maximum age that a Hello message can attain before being discarded. Note: The root bridge Maximum Age Time parameter value becomes the actual Maximum Age Time parameter value for all bridges participating in the spanning tree network. 	
	Default value	20 seconds	
	Range	6 to 40 seconds	
Forward Delay Indicates the Forward Delay parameter value that the root currently using. This value specifies the amount of time to bridge ports remain in each of the Listening and Learning before entering the Forwarding state.		ecifies the amount of time that the the Listening and Learning states	
	Note: The root bridge Forward Delay parameter value becomes t actual Forward Delay parameter value for all bridges participating in the spanning tree network.		
	Default value	15 seconds	
	Range	4 to 30 seconds	
	Defines the time interval (in seconds) for sending the BPDUs from the bridge.		
Bridge Hello Time		econds) for sending the BPDUs from	

Parameter	Description	
Bridge Maximum Age Time	Specifies the maximum age (in sec attain before being discarded. This management for this bridge, takes becomes the root bridge.	parameter, specified by
	😵 Note:	
	If this bridge becomes the root bridge, its Maximum Age Time parameter value becomes the Actual Maximum Age Time parameter value for all bridges participating in the spanning tree network.	
	Default value	20 seconds
	Range	6 to 40 seconds
Bridge Forward Delay	Indicates the Forward Delay parameter value specified by management for this bridge. This parameter takes effect only when this bridge becomes the root bridge.	
The Forward Delay parameter value specifies the bridge ports remain in each of the Listening before entering the Forwarding state.		he Listening and Learning states
	↔ Note:	
	All bridges participating in the root bridge Forward Delay part	
	Default value	15 seconds
	Range	4 to 30 seconds

Spanning Tree VLAN Membership in STPG mode

With the Spanning Tree VLAN Membership, you can view which VLANs belong to the selected STP Group. (STP Group 1 is the default STP group.)

To open the Spanning Tree VLAN Membership:

1. Choose **Spanning Tree VLAN Membership** (or press v) from the Spanning Tree Configuration Menu screen.

Parameter	Description	
STP Group	Specifies the number of the Spanning Tree Group instances to view. To view another instance, press the spacebar on your keyboard to toggle the STP instances.	
	Default value 1	
	Range 1 - 8. Only created STPs are displayed.	
VLAN Membership	Displays the total number of VLANs in the specified STP Group, as well as the VLAN IDs of the VLAN members.	

Table 7: Spanning Tree VLAN Membership parameters

Spanning Tree configuration in RSTP mode

With the Spanning Tree Configuration Menu, you can view spanning tree parameters and configure individual switch ports to participate in the Spanning Tree Algorithm (STA).

To open the Spanning Tree Configuration Menu:

1. Choose **Spanning Tree Configuration** (or press p) from the Main Menu.

Table 8: Spanning Tree Configuration main menu options

Menu option	Description
Spanning Tree Group Configuration	Displays the Spanning Tree Group Configuration screen. (See <u>Spanning Tree Group Configuration in</u> <u>RSTP mode</u> on page 47.)
Spanning Tree Port Configuration	Displays the Spanning Tree Port Configuration screen. (See <u>Spanning Tree Port Configuration in</u> <u>RSTP mode</u> on page 48.)
Display Spanning Tree Switch Settings	Displays the Spanning Tree Switch Settings screen. (See <u>Spanning Tree Switch Settings in RSTP</u> mode on page 50.)

Spanning Tree Group Configuration in RSTP mode

With the Spanning Tree Group Configuration, you can create and configure spanning tree groups (STGs).

To open the Spanning Tree Group Configuration:

1. Choose **Spanning Tree Group Configuration** (or press g) from the Spanning Tree Configuration Menu screen.

Table 9: Spanning Tree	e Group Configuration	parameters in RSTP mode
------------------------	-----------------------	-------------------------

Parameter	Description	
STP Mode	Shows the current STP operational mode for switch/stack:	
	• Avaya MSTP (STPG)	
	• IEEE 802.1w (RSTP)	
	• IEEE 802.1s (MSTP)	
Bridge Priority (in Hex)	For the STP Group, configures the priority value of the bridge ID in hexadecimal notation, which is the most significant byte of the bridge ID. STP uses this parameter to determine the root bridge (or designated bridge). For example, the bridge with the lowest bridge ID becomes the root bridge, with Bridge Priority values.	
Default value 0x8000		0x8000

Parameter	Description		
	Range	0x0000 to 0xF000	
Bridge Hello Time	For the STP Group, configures the Hello Interval (the amount of time between transmissions of BPDUs). This parameter takes effect only when this bridge becomes the root bridge. Although you can set the Hello Interval for a bridge using bridge management software, after the spanning tree computation process is complete, all bridges participating in the spanning tree network use the root bridge Hello Interval parameter value. If any bridge becomes the root bridge, its Hello Interval parameter value becomes the Actual Hello Interval parameter value for all bridges participating in the spanning tree network.		
	Default value	2 seconds	
	Range	1 to 10 seconds	
Bridge Max. Age Time	For the STP Group, configures the maximum age (in seconds) that a Hello message can attain before being discarded. This parameter takes effect only when the bridge becomes the root bridge. If this bridge becomes the root bridge, its Maximum Age Time parameter value becomes the Actual Maximum Age Time parameter value for all bridges participating in the spanning tree network.		
	Default value	20 seconds	
	Range	6 to 40 seconds	
Bridge Forward Delay Time	For the STP Group, configures the Forward Delay parameter value for this bridge. This parameter takes effect only when this bridge becomes the root bridge. The Forward Delay parameter value specifies the amount of time that the bridge ports remain in the Listening and Learning states before entering the Forwarding state. Note that all bridges participating in the spanning tree network use the root bridge Forward Delay parameter value.		
	Default value	15 seconds	
	Range	4 to 30 seconds	
Bridge Tx Hold Count	Indicates the number of BPDUs that are sent in each Hello Time interval. This number limits the maximum transmission rate.		
Default Path Cost Type	Indicates the default representation of path costs.		
	32 bits (default in MSTP/RSTP mode, supported in STPG mode)		
	16 bits (default in STPG mode, supported in MSTP/RSTP mode).		
	Default value	32 bits in MSTP/RSTP mode 16 bits in legacy STPG mode	

Spanning Tree Port Configuration in RSTP mode

With the Spanning Tree Port Configuration, you can configure individual switch ports or all switch ports for participation in the spanning tree.

Note:

If you change the spanning tree participation of any trunk member (enabled or disabled), the spanning tree participation of all members of that trunk changes similarly.

1. Choose **Spanning Tree Port Configuration** (or press c) from the **Spanning Tree Configuration Menu** to open the Spanning Tree Port Configuration.

Field	Description		
Unit	This field appears only if the switch is participating in a stack configuration. The field specifies the number of the unit to view. To view another unit, type its unit number and press Enter, or press the spacebar on your keyboard to toggle the unit numbers.		
Port	row (for example, the field values in r values in the Switch row affect all swi	Indicates the switch port numbers that correspond to the field values in that row (for example, the field values in row 2 apply to switch port 2). The values in the Switch row affect all switch ports, and when the switch is part of a stack, the values in the Stack row affect all ports in the entire stack.	
Trunk		The read-only data displayed in this column indicates the trunks that correspond to the switch ports specified in the Trunk Members fields of the Trunk Configuration screen.	
Learning	Indicates the port states of Spanning	Tree.	
	Range	Enabled, Disabled	
Edge	Indicates if a port is an Edge port. When a port is connected to a non- switch device such as a PC or a workstation, configure it as an Edge port. An active Edge port goes directly to Forwarding state without any delay.		
Priority	This read-only field is a bridge spanning tree parameter that prioritizes the lowest port path cost to the root. When one or more ports have the same path cost, STP selects the path with the highest priority (lowest numerical value).		
	Default value	128	
	Range	0 to 255	
Path Cost	This read-only field is a bridge spanning tree parameter that determines the lowest path cost to the root.		
	Default value	20000 for 1 Gigabit port	
		Path cost = 2*10^10/LAN speed (in Kbits/s)	
		The higher the LAN speed, the lower the path cost.	
	Range 1 to 200 000 000		
Role	A role represents a functionality characteristic or capability of a resource to which policies are applied. The role of a port can be Root, Designated, Alternate, or Backup.		

Field	Description
State	Indicates the current state of the Port as defined by the Rapid Spanning Tree Protocol. The state of a Port can be Forwarding in one instance and Discarding (Blocking) in another.

Spanning Tree Switch Settings in RSTP mode

With the Spanning Tree Switch Settings, you can view spanning tree parameter values for the Ethernet Routing Switch 5000 Series.

To open the Spanning Tree Switch Settings:

1. Choose **Display Spanning Tree Switch Settings** (or press d) from the Spanning Tree Configuration Menu.

Field	Description	Description		
STP Mode		Indicates the mode of the STP operation for the switch. The possible values for the STP mode are:		
	• STPG (Avaya MSTP)			
	• RSTP (IEEE 802.1w)			
	• MSTP (IEEE 802.1s)			
Bridge Priority	hexadecimal notation, will ID. STP uses this param designated bridge). For e becomes the root bridge	Indicates the management-assigned priority value of the bridge ID in hexadecimal notation, which is the most significant byte of the bridge ID. STP uses this parameter to determine the root bridge (or designated bridge). For example, the bridge with the lowest bridge ID becomes the root bridge, with Bridge Priority values compared first, followed by the hardware addresses.		
	Default value	0x8000		
	Range	HEX: 0x0000 - 0xF000		
Designated Root		This field specifies the unique Bridge Identifier of the bridge. It is recorded as the CIST Root in the configuration BPDUs that are transmitted.		
Root Port		Indicates the switch port number that offers the lowest path cost to the root bridge. The local switch is the root bridge when this value is 0 (path cost).		
	Default value	0		
	Range	Unit: 1-8, Port 1-50 (in stack mode)		
		Port: 1-98 (in standalone mode)		
Root Path Cost	Indicates the path cost fr	om this switch port to the root bridge.		
	Default value	0		
Range Not applica		Not applicable		

 Table 11: Spanning Tree Switch Settings parameters in RSTP mode

Field	Description		
Hello Time	Defines the amount of time between transmissions of BPDUs.		
	Range	1 to 10 seconds	
Maximum Age Time	Indicates the Maximum Age Time parameter value that the root bridge is currently using. This value specifies the maximum age that a Hello message can attain before being discarded. The root bridge Maximum Age Time parameter value becomes the actual Maximum Age Time parameter value for all bridges participating in the spanning tree network.		
	Default value	20 seconds	
	Range	6 to 40 seconds	
Forward Delay	Indicates the Forward Delay parameter value that the root bridge is currently using. This value specifies the amount of time that the bridge ports remain in each of the Discarding and Learning states before entering the Forwarding state. The root bridge Forward Delay parameter value becomes the actual Forward Delay parameter value for all bridges participating in the spanning tree network.		
	Default value	15 seconds	
	Range	4 to 30 seconds	
Bridge Hello Time	 For the STP Group, configures the Hello Interval. This parameter takes effect only when this bridge becomes the root bridge. Although you can set the Hello Interval for a bridge using the bridge management software, after the spanning tree computation process is complete, all bridges participating in the spanning tree network use the root bridge Hello Interval parameter value. If any bridge becomes the root bridge, its Hello Interval parameter value becomes the Actual Hello Interval parameter value for all bridges participating in the spanning tree network. 		
	Default value	2 seconds	
	Range	1 to 10 seconds	
Bridge Maximum Age Time	 Specifies the maximum age (in seconds) that a Hello message can attain before being discarded. This parameter, specified by management for this bridge, takes effect only when the bridge becomes the root bridge. If this bridge becomes the root bridge, its Maximum Age Time parameter value becomes the Actual Maximum Age Time parameter value for all bridges participating in the spanning tree network. 		
	Default value	20 seconds	
	Range	6 to 40 seconds	
Bridge Forward Delay	Indicates the Forward Delay parameter value specified by management for this bridge. This parameter takes effect only when this bridge becomes the root bridge.		

Field	Description	
	The Forward Delay parameter value specifies the amount of time that the bridge ports remain in each of the Discarding and Learning states before entering the Forwarding state. All bridges participating in the spanning tree network use the root bridge Forward Delay parameter value.	
	Default value 15 seconds	
	Range4 to 30 seconds	
Tx Hold Count	This is the value used by the Port Transmit state machine to limit the maximum transmission rate. The value can range from 1 to 10	
Default Path Cost Type	Indicates the way that path cost is represented and used.	

Spanning Tree configuration in MSTP mode

With the Spanning Tree Configuration Menu, you can view spanning tree parameters and configure individual switch ports to participate in the Spanning Tree Algorithm (STA).

To open the Spanning Tree Configuration Menu:

1. Choose **Spanning Tree Configuration** (or press p) from the Main Menu.

Table 12: Spanning Tree Configuration Menu options in MSTP mode

Option	Description
Spanning Tree Group Configuration	Displays the Spanning Tree Group Configuration screen.
Spanning Tree Port Configuration	Displays the Spanning Tree Port Configuration screen.
Display Spanning Tree Switch Settings	Displays the Spanning Tree Switch Settings screen.
Display Spanning Tree VLAN Membership	Displays the Spanning Tree VLAN Membership screen.

Spanning Tree Group Configuration in MSTP mode

With the Spanning Tree Group Configuration, you can create and configure Spanning Tree Groups (STGs).

To open the Spanning Tree Group Configuration:

1. Choose **Spanning Tree Group Configuration** (or press g) from the Spanning Tree Configuration Menu.

Parameter	Description		
STP mode	Indicates the STP mode in which the switch is operating. The available modes are:		
	• STPG (Avaya MSTP)		
	• RSTP (IEEE 802.1w)		
	• MSTP (IEEE 802.1s)		
Create STP Group	Creates a spanning Tree group. You the STP Group information to display	can also use this parameter to select	
	Default value	CIST	
	Range	1 to 7 (MSTIs)	
Delete STP Group	Deletes a spanning tree group. You c and you can delete only nonactive ST		
	Default Value	Blank	
	Range	1 to 8; only created STP Groups are available	
Bridge Priority	For the STP Group, configures the priority value of the bridge ID in hexadecimal notation, which is the most significant byte of the bridge ID. STP uses this parameter to determine the root bridge (or designated bridge). For example, the bridge with the lowest bridge ID becomes the root bridge, with Bridge Priority values.		
	Default value	0x8000	
	Range	0x0000 -0xF000	
Bridge Max. Age Time	For the STP Group, configures the maximum age (in seconds) that a Hello message can attain before being discarded. This parameter takes effect only when the bridge becomes the root bridge.		
	If this bridge becomes the root bridge, its Maximum Age Time parameter value becomes the Actual Maximum Age Time parameter value for all bridges participating in the spanning tree network.		
	Default value	20 seconds	
	Range	6 to 40 seconds	
Bridge Forward Delay Time	For the STP Group, configures the Forward Delay parameter value for the bridge. This parameter takes effect only when this bridge becomes the root bridge.		
	The Forward Delay parameter value specifies the amount of time that the bridge ports remain in each of the Discarding and Learning states before entering the Forwarding state.All bridges participating in the spanning tree network use the root bridge Forward Delay parameter value.		
	Default value 15 seconds		
		Table continues	

Table 13: Spanning	Tree Group	Configuration	parameters in MSTP mode
--------------------	------------	---------------	-------------------------

Parameter	Description		
	Range	4 to 30 seconds	
Bridge Tx Hold Count	Indicates the number of BPDUs that are sent in each Hello Time interval. The value used by the Port Transmit state machine to limit the maximum transmission rate.		
	Default value	3	
	Range	1 to 10	
Max. Hop Count	The Maximum Hop Count value in 1/100 seconds. The specified value must be a multiple of 100.		
	Default value	2000	
	Range	600 to 4000, measured in 1/100 second	
Default Path Cost Type	The version of the Spanning Tree default Path Costs that are used by this Bridge. A value of 16 Bits specifies the 16-bit default path costs from IEEE Standard 802.1D-1998. A value of 32 Bits specifies the 32-bit default path costs from IEEE Standard 802.1t.		
	Default value	32 Bits	
	Range	16 Bits, 32 Bits	
Add VLAN Membership	 Adds a VLAN to the specified spanning tree group. Note: This field is updated with active VLANs currently defined in the system. A newly created and active VLAN is assigned to STP Group 1 by default. 		
	Default value	1	
	Range	1 to 4094	
Delete VLAN Membership	 Deletes a VLAN from the specified STP group. Note: You cannot remove VLAN 1 from STP Group 1. 		
	Default value	Blank	
	Range	1 to 4094; but only configured ones are available	
STP Group State	Specifies whether the MSTI is active	or inactive.	
	 Note: You cannot set the default STG (CIST) to inactive. To enable an STP Group, at least one active VLAN must be assigned to that STP Group (MSTI). Default value Active for CIST; Inactive for MSTIs 1 to 7. 		
	Range	Active or Inactive	

Spanning Tree Port Configuration in MSTP mode

With the Spanning Tree Port Configuration, you can configure individual switch ports or all switch ports for participation in the spanning tree.

Note:

If you change the spanning tree participation of any trunk member (enabled or disabled), the spanning tree participation of all members of that trunk changes similarly.

To open the Spanning Tree Port Configuration:

1. Choose **Spanning Tree Port Configuration** (or press c) from the **Spanning Tree Configuration Menu** to open the Spanning Tree Port Configuration.

Field	Description	Description		
STP Group	Specifies the MSTP instance for which to display the port properties. Press the spacebar to toggle between the CIST and the configured MSTI instances.			
Port	that row (for example The values in the Sw	Indicates the switch port numbers that correspond to the field values in that row (for example, the field values in row 2 apply to switch port 2). The values in the Switch row affect all switch ports, and when the switch is part of a stack, the values in the Stack row affect all ports in the entire stack.		
Trunk	correspond to the sw	The read-only data displayed in this column indicates the trunks that correspond to the switch ports specified in the Trunk Members fields of the Trunk Configuration screen.		
Learning	Configures any (or a	Configures any (or all) of the switch ports for Spanning tree participation.		
	When an individual port is a trunk member (see Trunk field), changing this setting for one of the trunk members changes the setting for all members of that trunk. Consider how this will change your network topology before you change this setting.			
	Default value	Enabled		
Edge A value of Yes indicates that this port is to be assumed a and a value of No indicates that this port is to be assume port.				
	Default value	No		
	Range	No, Yes		
Priority	the lowest port path	s a bridge spanning tree parameter that prioritizes cost to the root. When one or more ports have the selects the path with the highest priority (lowest		
	Default value	128		
	Range	0 to 255		

Table 14: Spanning Tree Port Configuration screen fields in MSTP mode

Field	Description	
Path Cost	This read-only field is a bridge spanning tree parameter that determines the lowest path cost to the root.	
	Default value	Default value is 20000 for 1 Gigabit port
		Path Cost = 2*10^10/LAN speed (in Kbit/s)
		The higher the LAN speed, the lower the path cost.
	Range	1 to 200 000 000
Role The current role of the port as defined by Multiple Spanning T Protocol.		e port as defined by Multiple Spanning Tree
	Default	Disabled
	Range	Disabled, Root, Designated, Alternate, Backup
State	This read-only field indicates the current port state within the spanning tree network. Each port can transition to various states, as determined by the Participation field setting. For example, when the Participation field is set to Disabled, the port does not participate in the spanning tree and transitions to the Forwarding state (the default). When the Participation field is set to Enabled, the port transitions from the Disabled state through the Blocking, Listening, and Learning states before entering the Forwarding state.	
	Default value	Topology dependent
	Range	Discarding, Learning, Forwarding

Spanning Tree Switch Settings in MSTP mode

With the Spanning Tree Switch Settings, you can view spanning tree parameter values for the Ethernet Routing Switch 5000 Series.

To open the Spanning Tree Switch Settings:

1. Choose **Display Spanning Tree Switch Settings** (or press d) from the Spanning Tree Configuration menu.

Parameter	Description	
STP Group	Specifies the MSTP instance for which to display the properties. Press the spacebar to toggle between the CIST and the configured MSTI instances.	
Bridge Priority	Indicates the management-assigned priority value of the bridge ID in hexadecimal notation, which is the most significant byte of the bridge ID. STP uses this parameter to determine the root bridge (or designated bridge). For example, the bridge with the lowest bridge ID becomes the root bridge, with Bridge Priority values compared first, followed by the hardware addresses.	
	Default value 8000	

Table 15: Spanning Tree Switch Settings parameters in MSTP mode

Parameter	Description		
	Range	0x0000 - 0xF000	
CIST Root	Common and Internal Spanning Tree (CIST) Root field shows the CIST External or Internal Root elected between devices. CIST Internal Root is used only on devices from the same region. CIST External (Common Spanning Tree) Root is elected between devices from different regions or between devices with different STP modes. This parameter displays these values depending on network configuration.		
Regional Root	Shows the CIST Regional Root brid same region (in other words, the ro	lge elected between devices from the ot for the Region).	
Root Port Indicates the switch port number that offers the lowest path of root bridge. The local switch is the root bridge when this value cost).			
	Range	Unit: 1-8, Port 1-50 (in stack mode)	
		Port: 1-50 (in standalone mode)	
Root Path Cost	Indicates the path cost from this sw	itch port to the root bridge.	
	Default value	0	
	Range	Not applicable	
Regional Root Path Cost	Indicates the Path Cost to CIST Regional Root seen from this device.		
Maximum Age Time	Indicates the Maximum Age Time parameter value that the root bridge is currently using. This value specifies the maximum age that a Hello message can attain before being discarded.		
	The root bridge Maximum Age Time parameter value becomes the actual Maximum Age Time parameter value for all bridges participating in the spanning tree network.		
	Default value	20 seconds	
	Range	6 to 40 seconds	
Forward Delay	Indicates the Forward Delay parameter value that the root bridge is currently using. This value specifies the amount of time that the bridge ports remain in the Listening and Learning states before entering the Forwarding state.		
	The root bridge Forward Delay parameter value becomes the actual Forward Delay parameter value for all bridges participating in the spanning tree network.		
	Default value	15 seconds	
	Range	4 to 30 seconds	
Bridge Hold Time	This value determines the time interval during which no more than two configuration BPDUs can be transmitted by this node.		

Parameter	Description		
Bridge Maximum Age Time	Age Specifies the maximum age (in seconds) that a Hello message can before being discarded. This parameter, specified by management f this bridge, takes effect only when the bridge becomes the root bridge		
	If this bridge becomes the root bridge, its Maximum Age Time parameter value becomes the Actual Maximum Age Time parameter value for all bridges participating in the spanning tree network.		
	Default value	20 seconds	
	Range	6 to 40 seconds	
Bridge Forward Delay	Indicates the Forward Delay parameter value specified by manageme for this bridge. This parameter takes effect only when this bridge becomes the root bridge.		
	specifies the amount of time that the and Learning states before entering		
	All bridges participating in the spanning tree network use the root bridge Forward Delay parameter value.		
	Default value	15 seconds	
	Range	4 to 30 seconds	
Tx Hold Count	Indicates the number of BPDUs that are sent in each Hello Time into This number limits the maximum transmission rate.		
	Default value	3	
	Range	1 to 10	
Hop Count (Max)	This value is decremented by each device (inside a region) starting from Regional Root switch. When it reaches 0 (zero), STP information is discarded, and a new root is elected. The Root port on this device becomes a Designated port.		
	Default value	2000 (20 hops)	
	Range	600 to 4000 (6 to 40 hops).	
Default Path Cost Type	Indicates the default representation of	of path costs.	
	32 bits (default in MSTP/RSTP mode	e, supported in STPG mode)	
	16 bits (default in STPG mode, supp	orted in MSTP/RSTP mode).	
	Default value	32 bits in MSTP/RSTP mode 16 bits in legacy STPG mode	
Region Name	Name of the Region. CIST External I same region as a single switch.	Root interprets devices from the	
	Default value	The MAC address of the device	
	Range	1 to 32 chars (string)	

Spanning Tree VLAN Membership in MSTP mode

With the Spanning Tree VLAN Membership, you can view which VLANs belong to the selected STP Group. (The CIST is displayed by default.)

To open the Spanning Tree VLAN Membership:

1. Choose **Spanning Tree VLAN Membership** (or press v) from the Spanning Tree Configuration Menu.

Parameter	Description	Description	
STP Group	Specifies the number of the Spanning Tree Group instances (CIST/MSTI) you want to view. To view another instance, press the spacebar on your keyboard to toggle the STP instances (MSTIs).		
	Default value	Default value CIST	
	Range	CIST, MSTI-1 to MSTI-7. Only created MSTIs are displayed.	
VLAN Membership	Displays the total number of VLANs in the specified STP Group, as well as the VLAN IDs of the VLAN members.		

Table 16: Spanning Tree VLAN Membership parameters

Chapter 5: MLT fundamentals

The following sections contain fundamental information regarding Multi-Link Trunking (MLT).

MLT

With Multi-Link trunks (MLTs), you can group up to eight switch ports together to form a link to another switch or server, thus increasing aggregate throughput of the interconnection between the devices (up to 8 Gigabits in full-duplex mode). Up to 32 MLTs can be configured. The trunk members can reside on a single unit or on multiple units within the same stack configuration as a distributed trunk. MLT software detects misconfigured (or broken) trunk links and redirects traffic on the misconfigured or broken trunk link to other trunk members within that trunk.

You can use Avaya Command Line Interface (ACLI) or Enterprise Device Manager (EDM) to create switch-to-switch and switch-to-server MLT links.

Client-server configuration using MLT

Figure 16: Client/server configuration example on page 61 shows an example of how Multi-Link Trunking can be used in a client/server configuration. In this example, both servers connect directly to Switch S1. FS2 is connected through a trunk configuration. The switch-to-switch connections are through trunks.

Clients accessing data from the servers (FS1 and FS2) are provided with maximized bandwidth through trunks T1, T2, T3, T4, and T5. Trunk members (the ports making up each trunk) do not have to be consecutive switch ports; ports can be selected randomly, as shown by T5.

With spanning tree enabled, one of the trunks (T2 or T3) acts as a redundant (backup) trunk to Switch S2. With spanning tree disabled, you must configure trunks T2 and T3 into separate VLANs for the configuration to function properly.

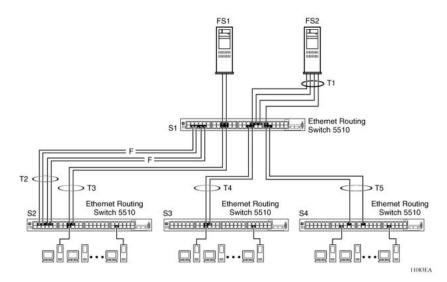


Figure 16: Client/server configuration example

Before configuring trunks

When a trunk is created and enabled, the trunk members (switch ports) take on certain settings necessary for the correct operation of the Multi-Link Trunking feature.

Before configuring a MLT, consider these settings, along with specific configuration rules, as follows:

- 1. Read the configuration rules provided in the next section, <u>MLT configuration rules</u> on page 62.
- 2. Determine which switch ports (up to eight) are to become trunk members (the specific ports making up the trunk). A minimum of two ports are required for each trunk.
 - Note:

Disabled ports can belong to MLTs. For traffic to flow to your configured MLT ports, be sure they are enabled.

- 3. Ensure that the trunk member ports have the same VLAN configuration.
- 4. To avoid configuration errors, all network cabling must be complete and stable before configuring any trunks.
 - 😵 Note:

If trunk ports are STP enabled, ensure that all potential trunk members are connected to their corresponding members and the same STP group learning mode is configured on both ends of the trunk; otherwise, STP cannot converge correctly, and traffic loss can result.

5. Consider how the existing spanning tree will react to the new trunk configuration.

😵 Note:

If potential trunk ports are connected and STP is disabled on these ports, a loop is formed; to avoid this situation, enable the trunk before you disable STP.

6. Consider how existing VLANs will be affected by the addition of a trunk.

MLT configuration rules

The Multi-Link Trunking feature operates according to specific configuration rules. When you create trunks, consider the following rules that determine how the MLT reacts in any network topology:

- Disabled ports can belong to MLTs. For traffic to flow to your configured MLT ports, they must be enabled (configure to enabled using ACLI or EDM port configuration).
- If the spanning tree participation of any trunk member is changed to Enabled or Disabled, the spanning tree participation of all members of that trunk changes similarly.
- If the VLAN settings of any trunk member is changed, the VLAN settings of all members of that trunk change similarly.
- A trunk member cannot be configured as a monitor port.
- Entire trunks cannot be monitored by a monitor port; however, trunk members can be monitored.
- All trunk members must have identical Internet Gateway Management Protocol (IGMP) configurations.
- If you change the IGMP snooping configuration for any trunk member, the IGMP snooping settings for all trunk members change.
- Avaya recommends that you do not enable MAC Address Security on trunk ports.
- MLT ports can be set to participate in different STGs. They must have the same spanning tree learning in every group but not necessarily have the same learning between different groups to consistently update their state in the port driver.
- Like normal ports, MLT ports can be set to participate with different spanning tree learning for different spanning tree groups. Trunk ports that are in multiple spanning tree groups must be tagged, and all MLT members must belong to the same spanning tree groups.
- You can disable the lowest numbered port in the trunk. Avaya does not recommend disabling the lowest numbered port if Spanning Tree is enabled on the trunk.

MLT load-balancing

With the Ethernet Routing Switch 5000 Series you can choose between MAC-based (basic) or IP-based (advanced) load balancing. You can configure this option using ACLI.

The 5000 Series switch uses the following formula to perform MLT load-balancing:

{(A XOR B) MOD x}

If A and B are the same, the XOR is false, and if they are different, it is true.

The variables used in the formula represent different parameters for each load-balancing mode:

- MAC-based (basic): In the basic mode, A and B represent the three least significant bits in the source and destination MAC addresses, respectively, and x represents the number of active links in the MLT.
- IP-based (advanced): In the advanced mode, A and B represent the three least significant bits in the source and destination IP addresses, respectively, and x represents the number of active links in the MLT.

For example, consider MAC-based load balancing with an Ethernet frame that has the following source and destination MAC addresses:

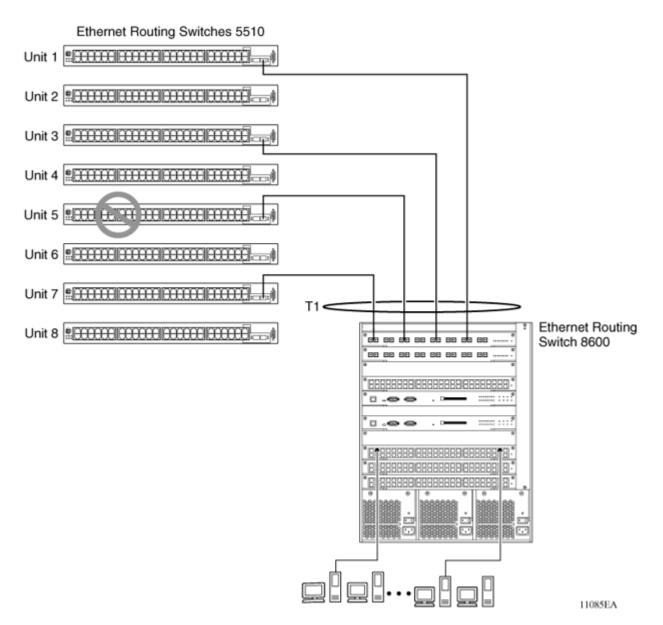
- Source MAC: 0x0000A4F8B321
- Destination MAC: 0x0000A2123456

Assume that the MLT is comprised of four ports. In this example, the last byte of the source MAC address is 0x21, the binary representation of which is 00100001. The three least significant bits are 001. Likewise, the binary representation of the last byte in the destination MAC address, 0x56, is 01010110, of which 110 are the bits of least significance. The formula is {(A XOR B) MOD x}, where A and B are the three least significant bits in the source and destination MAC addresses, and x is the number of active links in the MLT. Thus:

{(001 XOR 110) MOD 4} = 7 MOD 4 = 3

Therefore, because the ports in the MLT are numbered 0 through 3, this Ethernet frame will traverse the fourth port of the MLT.

😵 Note:


Avaya recommends that you configure the same MLT load-balance mode at both ends of the trunk. Configuring different modes may result in traffic loss.

Port management for existing MLTs

When MLT is disabled, the ports assigned to the MLT are not disabled if trunk loop prevention is disabled. If trunk loop prevention is enabled then all ports except the first port from the MLT are disabled.

How a MLT reacts to losing distributed trunk members

A Multi-Link trunk (Figure 17: Loss of distributed trunk member on page 64) can cover separate units in a stack configuration. If a unit in the stack becomes inactive due to loss of power or unit failure, the unaffected trunk members remain operational.

Figure 17: Loss of distributed trunk member

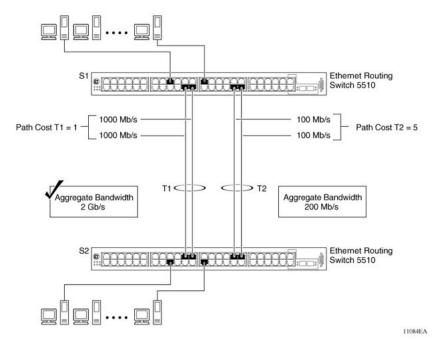
However, until the cause of the failure is corrected or the trunk Status field is changed to Disabled, any of the following parameters for the affected trunk cannot be modified:

- VLAN configuration
- Spanning Tree configuration
- Port configuration
- IGMP configuration

In addition, Avaya recommends that you do not modify Rate Limiting until the cause of failure is corrected or the trunk is disabled.

Spanning Tree Considerations for MLTs

The spanning tree Path Cost parameter is recalculated based on the aggregate bandwidth of the trunk. For example, <u>Figure 18: Path Cost Arbitration</u> on page 65 shows a two-port trunk (T1) with two port members operating at an aggregate bandwidth of 2 GB, with a comparable Path Cost of 1. Trunk 2 has two ports at 100 Mbit/s with a Path Cost of 5.


When the Path Cost calculations for both trunks are equal, the software chooses the trunk containing the lowest numbered port as the forwarding path.

😵 Note:

The default spanning tree Path Cost for all gigabit ports is always equal to 1.

When configuring trunks, be careful to not add one gigabit link physically in front of another trunk; the trunk is blocked because they both have a Path Cost of 1. You can also change the STP priority of the port to avoid blocking of the trunk, though another gigabit port is physically connected in front of the trunk.

Alternatively, spanning-tree 802.1t calculation mode can be used. This mode assures a better cost for trunk in the situation described.

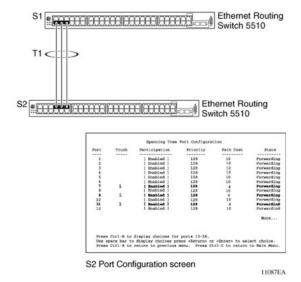


Figure 18: Path Cost Arbitration

The switch can also detect trunk member ports that are physically misconfigured. For example, in <u>Figure 19: Correctly Configured Trunk</u> on page 66, trunk member ports 2, 4, and 6 of Switch S1 are configured correctly to trunk member ports 7, 9, and 11 of Switch S2. The Spanning Tree Port Configuration screen for each switch shows the port state field for each port in the Forwarding state.

Post.	Trunk	Participation	Priority	Fath Cost.	State
		*************		********	********
1		[Boddard]	120	10	Forwardin
2	1	[Hnabled]	128	4	Forwarding
3		[Enabled]	128	10	Forwardine
4	1	[Snabled]	128	4	Forwarding
5		1 Resident 1	128	10	Porwardine
6	1	[Booldand]	130	4	Forwarding
7		[Enabled]	128	10	Forwardin
		[Enabled]	128	10	Porwardine
		[Bashled]	128	10	Forwarding
8 9 10		[Enabled]	128	10	Forwarding
11		[Bushled]	128	10	Forwarding
1.2		Enabled	128	10	Forwarding
					Nore

S1 Port Configuration screen

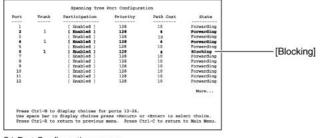
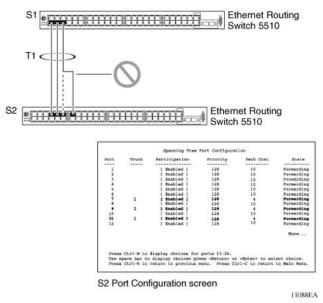


Figure 19: Correctly Configured Trunk


Note:

Cost varies with port speed. For example, the cost for a 1 Gbit/s port is 1, while the cost for a 100 Mbit/s port is 3.

If trunk member port 11 of root Switch S2 is physically disconnected and then reconnected to port 13, the Spanning Tree Port Configuration screen for Switch S1 changes to show port 6 in the Blocking state (Figure 20: Detecting a Misconfigured Port on page 67)

S1 Port Configuration screen

Figure 20: Detecting a Misconfigured Port

😵 Note:

If the port speed is 100 Mbit/s, then the STP cost for trunk members on S2 is 5.

Port membership in MLT

When a Multi-Link trunk is created, the individual trunk members (the specific ports that make up the trunk) logically connect and react as a single entity. For example, if you change spanning tree parameters for any trunk member, the spanning tree parameters for all trunk members change.

To change port membership in Multi-Link Trunking:

- 1. Disable the trunk.
- 2. Make the change.
- 3. Re-enable the trunk.

All configured trunks are indicated in the Spanning Tree Configuration screen. The Trunk field lists the active trunks, adjacent to the port numbers that correspond to the specific trunk member for that trunk.

When you change a Spanning Tree parameter for one trunk member, the modification affects all trunk members.

The trunk is also viewed by management stations as a single spanning tree port. The spanning tree port is represented by the trunk member with the lowest port number. For example, if ports 13, 14, 15, and 16 are trunk members of trunk T1, the management station views trunk T1 as spanning tree port 13.

SMLT

This section describes the Split Multi-Link Trunking (SMLT) feature and includes the following topics:

Overview

Split Multi-Link Trunking (SMLT) is an extension of MLT that allows edge switches using MLT to dual-home to two SMLT aggregation switches. SMLT is transparent to the edge switches supporting MLT. In addition to link failure protection and flexible bandwidth scaling, SMLT improves the level of Layer 2/Layer 3 resiliency by providing nodal protection.

Because SMLT inherently avoids loops, SMLT networks do not require the use of IEEE 802.1D Spanning Tree protocols to enable loop free triangle topologies.

SMLT avoids loops by allowing two aggregation switches to appear as a single device to edge switches, which are dual-homed to the aggregation switches. The aggregation switches are interconnected using an Inter-Switch Trunk (IST), which allows them to exchange addressing and state information (permitting rapid fault detection and forwarding path modification). Although SMLT is primarily designed for Layer 2, it also provides benefits for Layer 3 networks as well.

Important:

For SMLT to function properly, STP is automatically disabled on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. However, you must manually disable STP on all edge switch MLT ports that are connected to the SMLT or SLT

You can configure a maximum of 32 SMLT trunks on one device.

SMLT is supported on standalone or stacked units in triangle, square, or full mesh configuration (see <u>Figure 21: SMLT in triangle configuration</u> on page 70 and <u>Figure 23: SMLT in square</u> <u>configuration</u> on page 74) and on stacks in triangle configuration.

You cannot configure SMLT data when SMLT is running. To modify an SLT or SMLT, you must disable SMLT on that port or trunk. Starting with Release 6.3 IGMP over SMLT is supported.

😵 Note:

The Ethernet Routing Switch 5000 Series offer support for LACP (IEEE 802.3ad) over SMLT in a triangle topology only. Layer 2 Edge switches must support Multi-Link Trunking to allow communications with SMLT aggregation switches.

😵 Note:

To enable SMLT on the Ethernet Routing Switch 5000 Series, you must first enable Global IP Routing.

😵 Note:

With release 5.0 software and above, PIM-SM is not supported over an IST link.

Advantages of SMLT

SMLT improves the reliability of Layer 2 networks that operate between user access switches and the network center aggregation switch by providing:

- Load sharing among all links
- Fast failover in case of link failures
- · Elimination of single point of failure
- · Fast recovery in case of nodal failure
- A transparent and interoperable solution
- Removal of STP convergence issues

SMLT compared to Spanning Tree Protocol

Networks that are designed with non-SMLT access switches dual-homed to two aggregation switches have the following design constraints:

- · Spanning Tree must be used to detect loops
- No load sharing exists over redundant links
- · Slow network convergence exists in case of failure

SMLT helps eliminate all single points of failure and, unlike STP, creates multiple paths from all access switches to the core of the network. Furthermore, in case of failure, SMLT recovers as quickly as possible so that no unused capacity is created. Finally, SMLT provides a transparent and interoperable solution that requires no modification on the part of the majority of existing user access devices.

How does SMLT work?

SMLT can be set up in triangle, square or full-mesh configuration. All configurations of SMLT rely on pairs of aggregation switches connected by IST links. These links are usually MLT or DMLT links.

Triangle SMLT configuration

Triangle SMLT configuration requires one pair of aggregation switches as shown in <u>Figure 21</u>: <u>SMLT in triangle configuration</u> on page 70. Triangle SMLT can be set up with standalone switches or in a stack configuration.

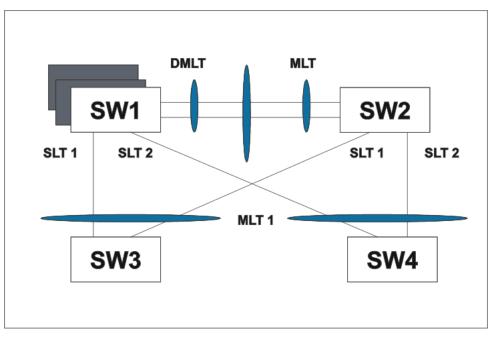


Figure 21: SMLT in triangle configuration

Detailed configuration example for SMLT triangle configuration

The following illustration and command set provides an example of SMLT triangle configuration.

Figure 22: SMLT triangle configuration

Table 17: SMLT triangle configuration

VLAN	Components
VLAN10	DUT1 10.10.10.2 DUT2 10.10.10.3 VRRPIP1 10.10.10.1 PC1: 10.10.10.5
VLAN100	DUT1 100.100.100.3 DUT2 100.100.100.2 VRRPIP2 100.100.100.1 PC2: 100.100.100.5
VLAN200	DUT1: 200.200.200.1 DUT2: 200.200.200.2
VLAN20	DUT2: 20.20.20.1 PC3: 20.20.20.5

Configure DUT1

```
vlan create 10 type port
vlan create 100 type port
vlan create 200 type port
vlan port 1/20,2/5,1/16,3/22,2/15 tag enable
vlan mem add 100 1/20,1/16,2/5
vlan mem add 200 1/16,2/5
vlan mem add 10 2/15,3/22,1/16,2/5
vlan mem rem 1 1/20,2/5,1/16,3/22,2/15
ip routing
in vlan 200
ip add 200.200.200.1 255.255.255.0
exit
in vlan 10
ip add 10.10.10.2 255.255.255.0
exit
in vlan 100
ip add 100.100.100.3 255.255.255.0
exit
mlt 10 ena mem 2/15,3/22
mlt 30 ena mem 1/16,2/5
in mlt 30
ist peer-ip 200.200.200.2
ist vlan 200
ist ena
exit
in mlt 10
smlt 10
exit
in fast 1/20
smlt 20
exit
in vlan 100
ip vrrp address 2 100.100.100.1
ip vrrp 2 enable backup-master enable
ip ospf enable
exit
in vlan 10
ip vrrp address 1 10.10.10.1
ip vrrp 1 enable backup-master enabl
```

ip ospf enable exit in vlan 200 ip ospf enable exit router vrrp ena router ospf ena

Configure DUT2.

vlan create 10 type port vlan create 100 type port vlan create 200 type port vlan create 20 type port vlan port 2/10,4/5,3/15,1/10,2/3 tag enable vlan mem add 200 4/5,3/15 vlan mem add 10 2/3,1/10,4/5,3/15 vlan mem add 100 2/10,3/15,4/5 vlan mem rem 1 2/10,4/5,3/15,1/10,2/3 vlan mem rem 1 4/3 vlan mem add 20 4/3 vlan port 4/3 pvid 20 ip routing in vlan 200 ip add 200.200.200.2 255.255.255.0 exit in vlan 10 ip add 10.10.10.3 255.255.255.0 exit in vlan 100 ip add 100.100.100.2 255.255.255.0 exit in vlan 20 ip add 20.20.20.1 255.255.255.0 exit mlt 10 ena mem 2/3,1/10 mlt 30 ena mem 4/5,3/15 in mlt 30 ist peer-ip 200.200.200.1 ist vlan 200 ist ena exit in mlt 10 smlt 10 exit in fast 2/10 smlt 20 exit in vlan 100 \ip vrrp address 2 100.100.100.1 ip vrrp 2 enable backup-master enable ip ospf enable exit in vlan 10 ip vrrp address 1 10.10.10.1 ip vrrp 1 enable backup-master enable

ip ospf enable
exit
in vlan 200
ip ospf enable
exit
in vlan 20
ip ospf enable
exit
router vrrp ena
router ospf ena

Configure DUT3.

vlan create 10 type port vlan port 1/11,2/10,2/12,3/20 tag enable vlan mem add 10 1/11,2/10,2/12,3/20 vlan mem rem 1 1/11,2/10,2/12,3/20,3/10 vlan mem add 10 3/10 vlan port 3/10 pvid 10

mlt 10 ena mem 1/11,2/10,2/12,3/20
mlt spanning-tree 10 stp all learning disable

Configure DUT4.

```
vlan create 100 type port
vlan port 1/20,2/10 tag enable
vlan mem add 100 1/20,2/10
vlan mem rem 1 1/20,2/10,1/10
vlan mem add 100 1/10
vlan port 1/10 pvid 100
mlt 20 ena mem 1/20,2/10
```

mlt spanning-tree 20 stp all learning disable

😵 Note:

Valid license should be present on aggregation DUTs: DUT1 and DUT2.

Square SMLT configuration

Square SMLT configuration requires two pairs of aggregation switches connected back to back (see <u>Figure 23: SMLT in square configuration</u> on page 74). Square configuration supports standalone switches.

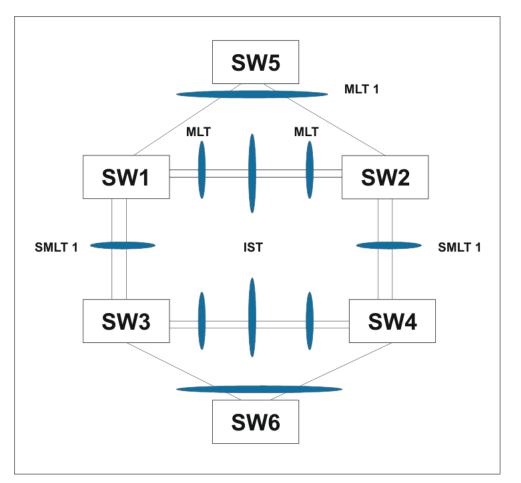


Figure 23: SMLT in square configuration

Detailed configuration example for SMLT in square configuration

The following three diagrams describe the setup of SMLT in square configuration using VRRP for L3 routing. All devices are assumed to be 5000 Series devices.

Vlan 20 comprises Edge Device 1, SMLT 1 ports (MLT 1 ports) on 'A' and 'B' and the IST Ports (MLT 3 ports) on 'A' and 'B'.

Vlan 30 comprises Edge Device 2, SMLT 3 ports (MLT 1 ports) on 'C' and 'D' and IST Ports (MLT 3 ports) on 'C' and 'D'.

Vlan 40 comprises SMLT 2 ports on 'A', 'B', 'C', 'D' (MLT 2 ports) and IST ports (MLT 3 ports) on 'A', 'B', 'C', 'D'.

IST Vlans (vlan 10 and all IST switches) have not been mentioned in figure 1 since they are internal to the system. These comprise only the IST ports in each IST switch.

IST ports on all switches must be tagged ports. SMLT ports can be tagged or untagged.

Each of the IST switches is running 2 VRRP instances.

• On switches 'A' and 'B', one VRRP instance is running for VIan 20 (VRID 20) and one for VIan 40 (VRID 41).

- On switches 'C' and 'D', one VRRP instance is running for VIan 30 (VRID 30) and one for VIan 40 (VRID 42).
- On switches 'A' and 'B', VRIP 40.0.0.42 (VRIP on 'C' and 'D') is the next hop to reach the 30.0.0.0/24 network.
- On switches 'C' and 'D', VRIP 40.0.0.41 (VRIP on 'A' and 'B') is the next hop to reach the 20.0.0.0/24 network.

Additionally, backup-master must be enabled on all switches for all VRs.

If MLTs or ports are part of multiple Vlans, ensure that their PVID is configured appropriately.

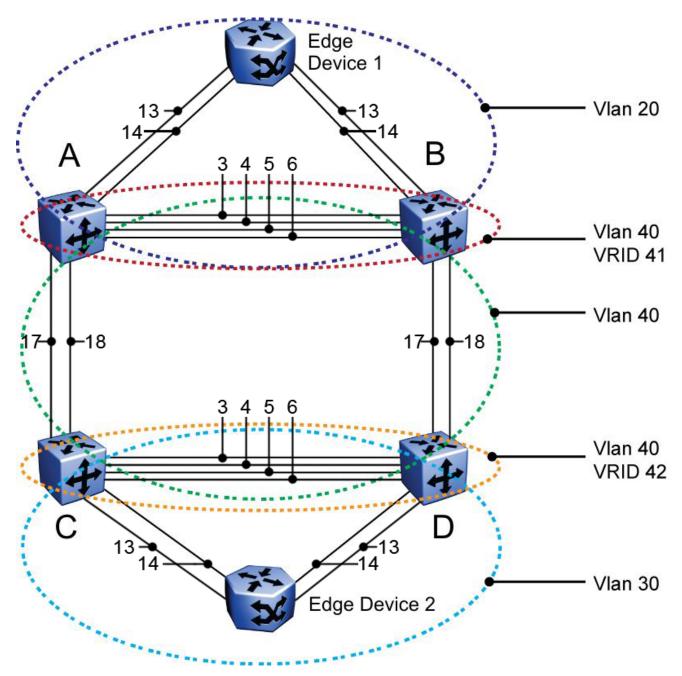


Figure 24: Square VRRP SMLT setup. Vlans and VRRP (IST vlans not indicated)

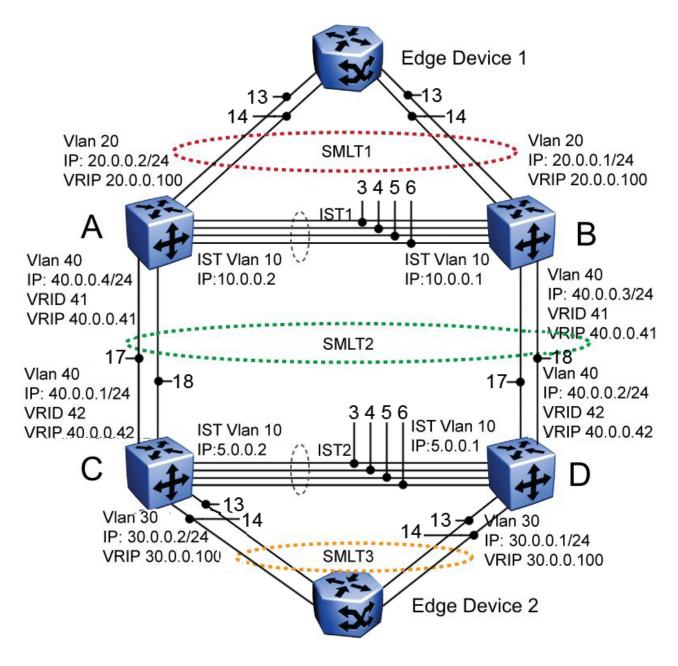
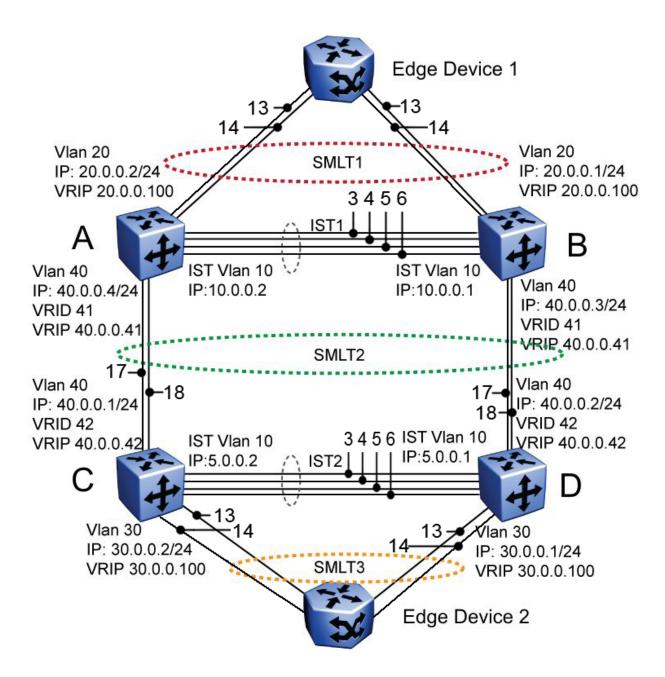



Figure 25: Square VRRP SMLT setup. SMLTs and ISTs

Figure 26: Square VRRP SMLT setup. Interface and VRRP IP addresses

The following paragraphs provide the configuration commands.

Edge Device 1

```
enable
configure terminal
vlan members remove 1 all
vlan create 20 type port
vlan members add 20 all
mlt 1 enable members 5-8 learning disable
```

Edge Device 2

enable configure terminal vlan members remove 1 all vlan create 30 type port vlan members add 30 all mlt 1 enable members 5-8 learning disable

IST switch A

enable configure terminal vlan configcontrol autopvid ip routing router vrrp enable vlan create 10 type port vlan members add 10 3,4,5,6 interface vlan 10 ip address 10.0.0.2 255.255.255.0 exit

vlan create 20 type port vlan members add 20 3,4,5,6,13,14 interface vlan 20 ip address 20.0.0.2 255.255.255.0 ip vrrp address 20 20.0.0.100 ip vrrp 20 enable backup-master enable exit

mlt 1 enable members 13,14
interface mlt 1
smlt 1
exit

```
vlan create 40 type port
vlan members add 40 3,4,5,6,17,18
interface vlan 40
ip address 40.0.0.4 255.255.255.0
ip vrrp address 41 40.0.0.41
iip vrrp 41 enable backup-master enable
exit
```

mlt 2 enable members 17,18
interface mlt 2
smlt 2
exit

ip route 30.0.0.0 255.255.255.0 40.0.0.42 1

IST switch B

```
enable
configure terminal
vlan configcontrol autopvid
ip routing
router vrrp enable
vlan create 10 type port
vlan members add 10 3,4,5,6
interface vlan 10
ip address 10.0.0.1 255.255.255.0
exit
vlan port 3,4,5,6 tagging enable pvid 10
mlt 3 enable members 3,4,5,6
```

```
interface mlt 3
ist enable peer-ip 10.0.0.2 vlan 10
exit
vlan create 20 type port
vlan members add 20 3,4,5,6,13,14
interface vlan 20
ip address 20.0.0.1 255.255.255.0
ip vrrp address 20 20.0.0.100
ip vrrp 20 enable backup-master enable
exit
mlt 1 enable members 13,14
interface mlt 1
smlt 1
exit.
vlan create 40 create type port
vlan members add 40 3,4,5,6,17,18
interface vlan 40
ip address 40.0.0.3 255.255.255.0
ip vrrp address 41 40.0.0.41
ip vrrp 41 enable backup-master enable
exit
mlt 2 enable members 17,18
interface mlt 2
smlt 2
exit.
```

ip route 30.0.0.0 255.255.255.0 40.0.0.42 1

IST switch C

enable configure terminal vlan configcontrol autopvid ip routing

router vrrp enable vlan create 10 type port vlan members add 10 3,4,5,6 interface vlan 10 ip address 5.0.0.1 255.255.255.0 exit

vlan port 3,4,5,6 tagging enable pvid 10
mlt 3 enable members 3,4,5,6 learning disable
interface mlt 3
ist enable peer-ip 5.0.0.2 vlan 10
exit

vlan create 30 type port vlan members add 30 3,4,5,6,13,14 interface vlan 30 ip address 30.0.0.1 255.255.255.0 ip vrrp address 30 30.0.0.100 ip vrrp 30 enable backup-master enable exit

```
mlt 1 enable members 13,14 learning disable
interface mlt 1
smlt 1
exit
```

```
vlan create 40 create type port
vlan members add 40 3,4,5,6,17,18
interface vlan 40
```

ip address 40.0.0.2 255.255.255.0
ip vrrp address 42 40.0.0.42
ip vrrp 42 enable backup-master enable
mlt 2 enable members 17,18
exit
interface mlt 2

smlt 2 exit

ip route 20.0.0.0 255.255.255.0 40.0.0.41 1

IST switch D

enable configure terminal vlan configcontrol autopvid ip routing router vrrp enable vlan create 10 type port vlan members add 10 3,4,5,6 interface vlan 10 ip address 5.0.0.2 255.255.255.0 exit vlan port 3,4,5,6 tagging enable pvid 10 mlt 3 enable members 3,4,5,6 interface mlt 3 ist enable peer-ip 5.0.0.1 vlan 10 exit vlan create 30 type port vlan members add 30 3,4,5,6,13,14 interface vlan 30 ip address 30.0.0.2 255.255.255.0 ip vrrp address 30 30.0.0.100 ip vrrp 30 enable backup-master enable exit mlt 1 enable members 13,14 interface mlt 1 smlt 1 exit vlan create 40 create type port vlan members add 40 3,4,5,6,17,18 interface vlan 40 ip address 40.0.0.1 255.255.255.0 ip vrrp address 42 40.0.0.42 ip vrrp 42 enable backup-master enable exit mlt 2 enable members 17,18 interface mlt 2 smlt 2 exit

ip route 20.0.0.0 255.255.255.0 40.0.0.41 1

SMLT in full mesh configuration

The following section outlines the setup of SMLT in a full mesh configuration and provides the configuration commands.

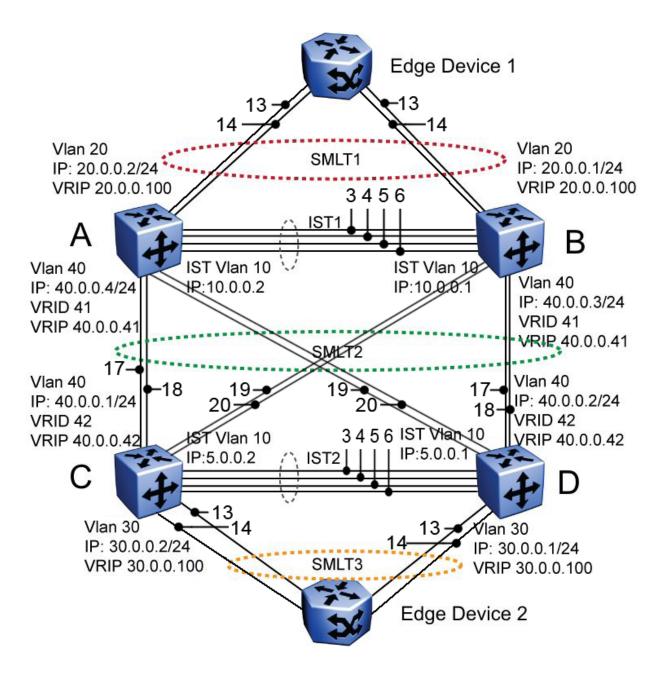


Figure 27: Full mesh SMLT configuration

Edge Device 1

```
enable
configure terminal
vlan members remove 1 all
vlan create 20 type port
vlan members add 20 all
mlt 1 enable members 5-8 learning disable
```

Edge Device 2

enable configure terminal vlan members remove 1 all vlan create 30 type port vlan members add 30 all mlt 1 enable members 5-8 learning disable

IST switch A

enable configure terminal vlan configcontrol autopvid

ip routing router vrrp enable

vlan create 10 type port vlan members add 10 3,4,5,6 interface vlan 10 ip address 10.0.0.2 255.255.255.0 exit vlan port 3,4,5,6 tagging enable pvid 10 mlt 3 enable members 3,4,5,6

interface mlt 3
ist enable peer-ip 10.0.0.1 vlan 10
exit

vlan create 20 type port vlan members add 20 3,4,5,6,13,14 interface vlan 20 ip address 20.0.0.2 255.255.255.0 ip vrrp address 20 20.0.0.100 ip vrrp 20 enable backup-master enable exit

```
mlt 1 enable members 13,14
interface mlt 1
smlt 1
exit
vlan create 40 type port
vlan members add 40 3,4,5,6,17,18,19,20
interface vlan 40
ip address 40.0.0.4 255.255.255.0
ip vrrp address 41 40.0.0.41
ip vrrp 41 enable backup-master enable
exit
```

mlt 2 enable members 17,18,19,20
interface mlt 2
smlt 2
exit

ip route 30.0.0.0 255.255.255.0 40.0.0.42 1

IST switch B

enable configure terminal vlan configcontrol autopvid

ip routing router vrrp enable

vlan create 10 type port vlan members add 10 3,4,5,6

```
interface vlan 10
ip address 10.0.0.1 255.255.255.0
exit
vlan port 3,4,5,6 tagging enable pvid 10
mlt 3 enable members 3,4,5,6
interface mlt 3
ist enable peer-ip 10.0.0.2 vlan 10
exit
vlan create 20 type port
vlan members add 20 3,4,5,6,13,14
interface vlan 20
ip address 20.0.0.1 255.255.255.0
ip vrrp address 20 20.0.0.100
ip vrrp 20 enable backup-master enable
exit
mlt 1 enable members 13,14
```

```
interface mlt 1
smlt 1
exit
```

```
vlan create 40 create type port
vlan members add 40 3,4,5,6,17,18,19,20
interface vlan 40
ip address 40.0.0.3 255.255.255.0
ip vrrp address 41 40.0.0.41
ip vrrp 41 enable backup-master enable
exit
```

```
mlt 2 enable members 17,18,19,20
interface mlt 2
smlt 2
exit
```

ip route 30.0.0.0 255.255.255.0 40.0.0.42 1

IST switch C

enable configure terminal vlan configcontrol autopvid

```
ip routing
router vrrp enable
```

```
vlan create 10 type port
vlan members add 10 3,4,5,6
interface vlan 10
ip address 5.0.0.1 255.255.255.0
vlan port 3,4,5,6 tagging enable pvid 10
mlt 3 enable members 3,4,5,6
interface mlt 3
ist enable peer-ip 5.0.0.2 vlan 10
exit
```

```
vlan create 30 type port
vlan members add 30 3,4,5,6,13,14
interface vlan 30
ip address 30.0.0.1 255.255.255.0
ip vrrp address 30 30.0.0.100
ip vrrp 30 enable backup-master enable
exit
```

```
mlt 1 enable members 13,14 interface mlt 1
```

smlt 1 exit

```
vlan create 40 create type port
vlan members add 40 3,4,5,6,17,18,19,20
interface vlan 40
ip address 40.0.0.2 255.255.255.0
ip vrrp address 42 40.0.0.42
ip vrrp 42 enable backup-master enable
exit
mlt 2 enable members 17,18,19,20
interface mlt 2
smlt 2
exit
```

ip route 20.0.0.0 255.255.255.0 40.0.0.41 1

IST switch D

```
enable
configure terminal
vlan configcontrol autopvid
```

```
ip routing
router vrrp enable
```

vlan create 10 type port vlan members add 10 3,4,5,6 interface vlan 10 ip address 5.0.0.2 255.255.255.0 exit vlan port 3,4,5,6 tagging enable pvid 10 mlt 3 enable members 3,4,5,6 interface mlt 3 ist enable peer-ip 5.0.0.1 vlan 10 exit

```
vlan create 30 type port
vlan members add 30 3,4,5,6,13,14
interface vlan 30
ip address 30.0.0.2 255.255.255.0
ip vrrp address 30 30.0.0.100
ip vrrp 30 enable backup-master enable
exit
```

```
mlt 1 enable members 13,14
interface mlt 1
smlt 1]
exit
```

```
vlan create 40 create type port
vlan members add 40 3,4,5,6,17,18,19,20
interface vlan 40
ip address 40.0.0.1 255.255.255.0
ip vrrp address 42 40.0.0.42
ip vrrp 42 enable backup-master enable
exit
```

```
mlt 2 enable members 17,18,19,20
interface mlt 2
smlt 2
exit
```

```
ip route 20.0.0.0 255.255.255.0 40.0.0.41 1
```

SMLT in stack configuration

The SMLT aggregation switches can be a single switch or a stack. There is no restriction on the number of units in the SMLT stack, but for better recovery in case of failure, the stack should contain at least three units. If you use a stack of just two units, one unit leaving the stack leaves two isolated single units because all IST, SMLT, and SLT ports on these two units is disabled. For fastest recovery, SMLT should have at least one link connected to the base unit.

In a stack, the SMLT can be active only on the base unit or the temporary base unit, and it is solely responsible for the peer to peer switch communication. In stack mode, only the base unit or the temporary base unit can take ownership of the SMLT IST operations. The base unit keeps the master copy of the SMLT configuration and propagates the configuration during the data exchange cycle as it forms a stack. The base unit distributes the following information to the non-base unit:

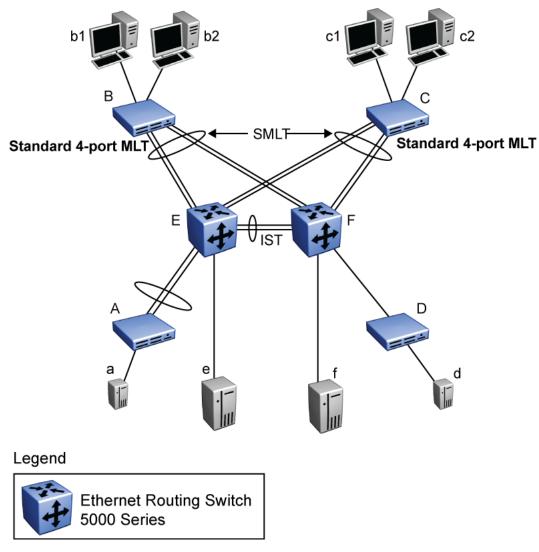
- peer IP address
- IST MLT ID
- IST VLAN ID
- SMLT port information
- SLT port information

Each non base unit receives the SMLT configuration data from the base unit and saves to its own NVRAM.

When a new unit joins the stack, the following checks must be successful:

- SMLT settings on the base unit can be configured on the new unit.
- The SMLT configuration programmed on the unit matches the SMLT configuration programmed on the base unit.
- The IST trunk is still enabled and active on the stack.

If one or more of these checks is not successful, the SMLT application stops running, but SMLT remains administratively enabled.


When a unit leaves the stack, SMLT stops running on that unit and IST, SMLT and SLT is disabled on all ports. The base unit relays all of the resulting port down events to its SMLT peer.

When one unit in the stack becomes inactive, the stack responds as follows:

- If the base unit becomes inactive, the temporary base takes over.
- If a non base unit becomes inactive, the base unit notifies the rest of the stack with a list of all SMLT and SLT ports lost.
- If all of the IST ports were on the inactive unit, SMLT stops running.

SMLT aggregation switches

The following figure illustrates an SMLT configuration with a pair of Ethernet Routing Switch 5000 Series devices (E and F) operating as aggregation switches. Also included are four separate user access switches (A, B, C, and D).

Figure 28: ERS 5000 Series switches as SMLT aggregation switches

Refer to the following sections for a description of the components shown in this SMLT example:

IST

To support this SMLT configuration, the aggregation switches must be connected through an Interswitch trunk (IST). The implementation of SMLT only requires two SMLT-capable aggregation switches. User access switches B and C do not support SMLT. They are connected to the aggregation switches E and F using standard Multi-Link trunks (MLT) split between the two aggregation switches.

Important:

For SMLT to function properly, STP is automatically disabled on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. However, you must manually disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

SMLT

Aggregation switches use the IST to:

- Confirm that they are alive and exchange MAC address forwarding tables.
- Send traffic between single switches attached to the aggregation switches.
- Serve as a backup if one SMLT link fails.

Because the IST is required for the proper operation of the SMLT, you must use multiple links aggregated in an IST MLT to ensure reliability and high availability.

Avaya recommends that IST-linked switches run identical hardware. When the hardware is the same at both ends, you can more easily modify and maintain the IST configurations.

In addition to the IST VLAN, IST ports must also belong to all SMLT VLANs (as well as any other non-SMLT VLANs that require the IST to carry traffic between the switches.) As a result, IST ports must be tagged ports because they span these multiple VLANs.

Other SMLT aggregation switch connections

In this example, a, b1, b2, c1, c2, and d are clients and printers, while e and f can be servers or routers.

User-access switches B and C can use any method for determining which link of their Multi-Link trunk connections to use for forwarding a packet, as long as the same link is used for a given Source Address/Destination Address (SA/DA) pair. This is true, regardless of whether the DA is known by B or C. SMLT aggregation switches always send traffic directly to a user access switch and only use the IST for traffic that they cannot forward in another more direct way.

The examples that follow explain the process in more detail.

Example 1- Traffic flow from a to b1 or b2

Assuming a and b1/b2 are communicating through Layer 2, traffic flows from A to switch E and is then forwarded over the direct link from switch E to B. Traffic coming from b1 or b2 to a is sent by B on one of its MLT ports.

B can send traffic from b1 to a on the link to switch E, and send traffic from b2 to a on the link to F. In the case of traffic from b1, switch E forwards the traffic directly to switch A, while traffic from b2, which arrives at F, is forwarded across the IST to E and then on to A.

Example 2- Traffic flow from b1/b2 to c1/c2

Traffic from b1/b2 to c1/c2 is always sent by switch B down its MLT to the core. No matter which switch (E or F) the traffic arrives at, the switch directs traffic to C through the local link.

Example 3- Traffic flow from a to d

Traffic from a to d and vice versa is forwarded across the IST because it is the shortest path. This path is treated purely as a standard link with no account taken of SMLT or the fact that the link is an IST.

Example 4- Traffic flow from f to c1/c2

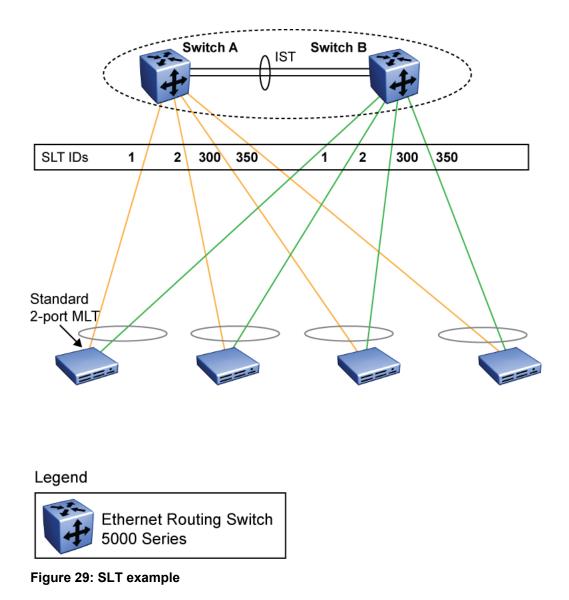
Traffic from f to c1/c2 is sent out directly from F. Return traffic from c1/c2 can flow directly to f if switch C forwards the traffic to F. Otherwise, the return traffic passes across the IST after switch C sends it down the link to E.

SLT

With Single Link Trunking (SLT) you can configure a split Multi-Link trunk using a single port. The single port SLT behaves like an MLT-based SMLT and can coexist with SMLTs in the same system. With SLT, you can scale the number of split Multi-Link trunks on a switch to the maximum number of available ports.

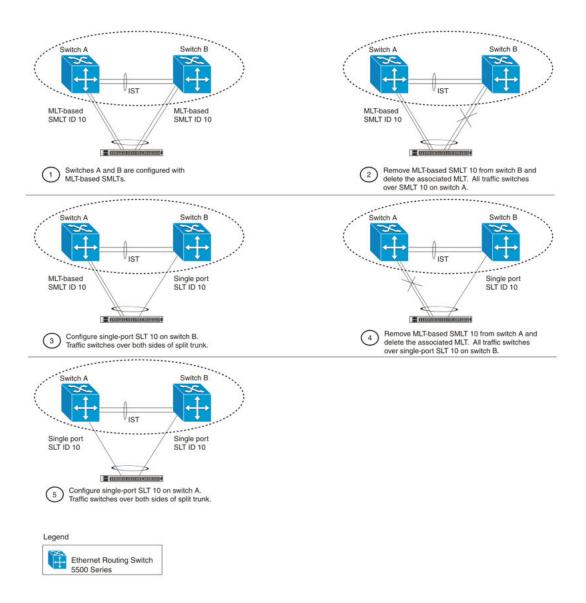
Important:

For SMLT to function properly, STP is automatically disabled on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. However, you must manually disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.


SMLT and SLT links can exist in the following combinations on the SMLT aggregation switch pair:

- MLT-based SMLT + MLT-based SMLT
- MLT-based SMLT + SLT
- SLT + SLT

Rules for configuring SLTs:


- The dual-homed device connected to the aggregation switches must be capable of supporting MLT.
- Each SLT is assigned an SMLT ID from 1 to 512. (The actual number of SLTs is limited only by the number of available ports on the device, minus two that must be reserved for the IST connection. For example, with a 48-port unit, you can configure a maximum of 46 SLTs.)
- SLT ports can be designated as Access or Trunk (that is, IEEE 802.1Q tagged or not tagged) and changing the type does not affect their behavior.
- You cannot change an SLT into an MLT-based SMLT by adding more ports. You must first delete the SLT, and then reconfigure the port as SMLT/MLT.
- You cannot change an MLT-based SMLT into a SLT by deleting all ports but one. You must first remove the SMLT, delete the MLT, and then reconfigure the port as an SLT.
- A port cannot be configured as an MLT-based SMLT and as an SLT at the same time.

<u>Figure 29: SLT example</u> on page 90 shows a configuration in which both aggregation switches have single port SLTs with the same IDs. This configuration allows as many SLTs, as available ports exist on the switch.

SMLT with SLT

You can configure a split trunk with an SLT on one side and an MLT-based SMLT on the other. Both must have the same SMLT ID. In addition to general use, Figure 30: Changing a split trunk from MLT-based SMLT to SLT on page 91 shows how this configuration can be used for upgrading an MLT-based SMLT to an SLT without taking down the split trunk.

Figure 30: Changing a split trunk from MLT-based SMLT to SLT

Important:

When you perform the steps listed in Figure 30: Changing a split trunk from MLT-based SMLT to SLT on page 91 and you remove the MLT-based SMLTs (steps 2 and 4), physically disable the ports by removing the cables or by shutting the ports down using the ACLI. Otherwise, a loop can form as soon as the SMLT is removed since STP is disabled on the ports.

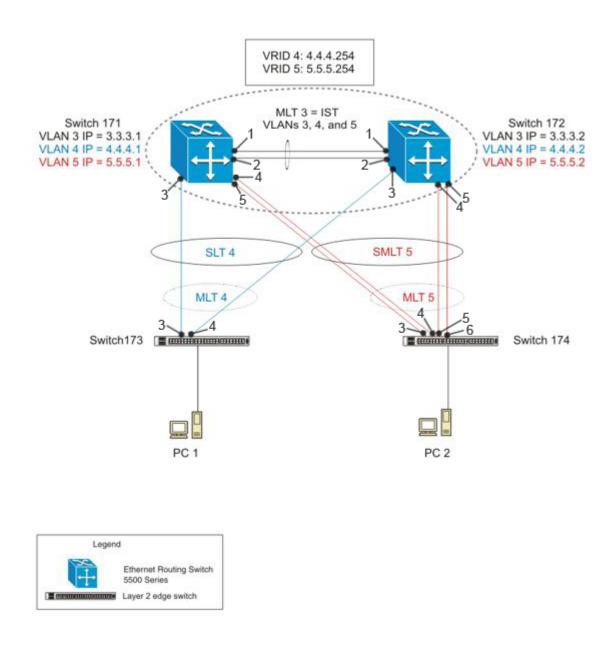
SMLT and SLT configuration steps

To enable SMLTs, ISTs, and SLTs on the ERS 5000 Series switches, you must complete the following steps in the order indicated.

Important:

For SMLT to function properly, STP is automatically disabled on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. However, you must manually disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

- 1. Configure VLANs, including port membership, VLAN IP, and port tagging.
- 2. Configure STP groups:
 - a. Create STP groups.
 - b. Assign VLAN membership.
 - c. Enable STP groups.
 - d. Set STP port participation.
- 3. Enable Global IP Routing on the devices (always required).
- 4. If the switches are to be used for Layer 3 routing, enable VRRP on the units (required for Layer 3 only).
- 5. Configure MLTs on the devices:
 - a. Create MLT groups by assigning trunk members.
 - b. Disable STP participation on all trunk member ports (required only on edge switch MLT ports that are connected to the SMLT or SLT).
 - c. Enable the MLTs.
- 6. Configure SMLTs on the devices:
 - a. Assign the Peer IP address and VLAN ID to the IST MLT.
 - b. Enable the IST.
 - c. Create the SMLTs.
 - d. Create the SLTs (if applicable).
- 7. Make IST connections and ensure IST session is running.
- 8. Make SMLT/SLT connections and check SMLT/SLT status.


😵 Note:

These are the recommended steps for a new installation. For existing networks, perform steps 1 through 6 as closely as possible. To minimize loops, you can perform step 5 before steps 1 through 4.

To disable SMLTs and SLTs, perform the same steps in reverse order.

SMLT configuration example with VRRP and OSPF

<u>Figure 31: SMLT configuration example with VRRP and OSPF</u> on page 93 shows an example of aggregation switches configured with SMLT, VRRP, and OSPF. For more information on VRRP and OSPF, see *Configuring IP Routing and Multicast on Avaya Ethernet Routing Switch 5000 Series*, NN47200-503.

Figure 31: SMLT configuration example with VRRP and OSPF

To configure the example shown in <u>Figure 31: SMLT configuration example with VRRP and</u> <u>OSPF</u> on page 93, you must perform the following tasks:

For aggregation switch 171

- 1. Create VLANs 3, 4, and 5.
- 2. Set ports 1-5 as tagging.

- 3. Assign ports 1 and 2 to VLAN 3.
- 4. Assign ports 1, 2 and 3 to VLAN 4.
- 5. Assign ports 1, 2, 4 and 5 to VLAN 5.
- 6. Set VLAN 3 IP to 3.3.3.1 .
- 7. Set VLAN 4 IP to 4.4.4.1 .
- 8. Set VLAN 5 IP to 5.5.5.1 .
- 9. Enable IP routing globally.
- 10. Create MLT 3 with ports 1 and 2.
- 11. Set IST = MLT 3, Peer IP=3.3.3.2, VLAN 3.
- 12. Configure port 3 as SLT with SMLT ID 4.
- 13. Create MLT 5 with ports 4 to 5.
- 14. Set MLT 5 as SMLT 5.
- 15. Enable VRRP globally.
- 16. Enable VRRP on VLAN 4 with VRID 4 and VRIP 4.4.4.254.
- 17. Enable VRRP back up master.
- 18. Enable VRRP on VLAN 5 with VRID 5 and VRIP 5.5.5.254.
- 19. Enable VRRP back up master.
- 20. Enable OSPF globally.
- 21. Enable OSPF on VLANs 3,4 and 5.

For aggregation switch 172

- 1. Create VLANs 3, 4, and 5.
- 2. Set ports 1 to 5 as tagging.
- 3. Assign ports 1 and 2 to VLAN 3.
- 4. Assign ports 1, 2 and 3 to VLAN 4.
- 5. Assign ports 1, 2, 4 and 5 to VLAN 5.
- 6. Set VLAN 3 IP to 3.3.3.2.
- 7. Set VLAN 4 IP to 4.4.4.2.
- 8. Set VLAN 5 IP to 5.5.5.2.
- 9. Enable IP routing.
- 10. Create MLT 3 with ports 1 and 2.
- 11. Set IST = MLT 3, Peer IP=3.3.3.1, VLAN 3.
- 12. Configure port 3 as SLT with SMLT ID 4.
- 13. Create MLT 5 with ports 4 to 5.
- 14. Set MLT 5 as SMLT 5.
- 15. Enable VRRP globally.

- 16. Enable VRRP on VLAN 4 with VRID 4 and VRIP 4.4.4.254.
- 17. Enable VRRP back up master.
- 18. Enable VRRP on VLAN 5 with VRID 5 and VRIP 5.5.5.254.
- 19. Enable VRRP back up master.
- 20. Enable OSPF globally.
- 21. Enable OSPF on VLAN 3, 4, and 5

For edge switch 173

- 1. Create Vlan 4.
- 2. Assign ports 3 to 4 to Vlan 4.
- 3. Create MLT 4 with ports 3 to 4.
- 4. Disable STP on MLT 4.

For edge switch 174

- 1. Create Vlan 5.
- 2. Assign ports 3 to 6 to Vlan 5.
- 3. Create MLT 5 with ports 3 to 6.
- 4. Disable STP on MLT 5.

Detailed configuration commands

Aggregation switch 171 configuration

IST, SMLT and SLT configuration

```
5650TD-PWR(config) #vlan create 3 type port
5650TD-PWR(config) #vlan create 4 type port
5650TD-PWRR(config) #vlan create 5 type port
5650TD-PWR(config) #vlan port 1-5 tagging enable
5650TD-PWR(config) #vlan member add 3 1-2
5650TD-PWR(config) #vlan member add 4 1-2
5650TD-PWR(config) #vlan member add 5 1-2
5650TD-PWR(config) #vlan member remove 1 1-5
5650TD-PWR(config) #vlan member add 4 3
5650TD-PWR(config) #vlan member add 5 4,5
5650TD-PWR (config) #ip routing
5650TD-PWR(config)#interface vlan 3
5650TD-PWR(config-if) #ip routing
5650TD-PWR(config-if)#ip address 3.3.3.1 255.255.255.0
5650TD-PWR (config-if) #exit
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if) #ip routing
5650TD-PWR(config-if) #ip address 4.4.4.1 255.255.255.0
5650TD-PWR(config-if)#exit
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if) #ip routing
5650TD-PWR(config-if) #ip address 5.5.5.1 255.255.255.0
5650TD-PWR(config-if) #exit
```

5650TD-PWR(config)#mlt 3 member 1-2 5650TD-PWR(config)#mlt 3 enable 5650TD-PWR(config)#interface mlt 3

```
5650TD-PWR(config-if)#ist enable peer-ip 3.3.3.2 vlan 3
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface Ethernet 3
5650TD-PWR(config-if)#smlt 4
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#mlt 5 member 4-5
5650TD-PWR(config)#mlt 5 enable
5650TD-PWR(config-if)#interface mlt 5
5650TD-PWR(config-if)#smlt 5
5650TD-PWR(config-if)#exit
```

VRRP and **OSPF**

```
5650TD-PWR(config) #router vrrp enable
5650TD-PWR(config) #router ospf enable
5650TD-PWR(config) #interface vlan 4
5650TD-PWR(config-if) #ip vrrp address 4 4.4.4.254
5650TD-PWR(config-if) #ip vrrp 4 enable backup-master enable
5650TD-PWR(config-if) #ip ospf enable
5650TD-PWR(config-if) #ip exit
```

```
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if)#ip vrrp address 5 5.5.5.254
5650TD-PWR(config-if)#ip vrrp 5 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#exit
```

Aggregation switch 172 configuration

IST, SMLT and SLT configuration

```
5650TD-PWR(config) #vlan create 3 type port
5650TD-PWR(config) #vlan create 4 type port
5650TD-PWR(config) #vlan create 5 type port
5650TD-PWR(config) #vlan port 1-5 tagging enable
5650TD-PWR(config) #vlan member add 3 1-2
5650TD-PWR(config) #vlan member add 4 1-2
5650TD-PWR(config) #vlan member add 5 1-2
5650TD-PWR(config) #vlan member remove 1 1-5
5650TD-PWR(config) #vlan member add 4 3
5650TD-PWR(config) #vlan member add 4 3
5650TD-PWR(config) #vlan member add 5 4,5
5650TD-PWR(config) #vlan member add 5 4,5
```

```
5650TD-PWR(config)#interface vlan 3
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 3.3.3.2 255.255.255.0
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 4.4.4.2 255.255.255.0
5650TD-PWR(config-if)#exit
```

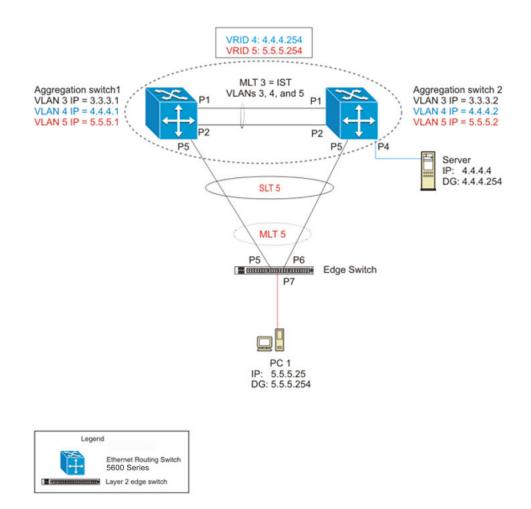
```
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 5.5.5.2 255.255.255.0
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#mlt 3 member 1-2
5650TD-PWR(config)#mlt 3 enable
5650TD-PWR(config)#interface mlt 3
```

5650TD-PWR(config-if)#ist enable peer-ip 3.3.3.1 vlan 3 5650TD-PWR(config-if)#exit

```
5650TD-PWR(config)#interface Ethernet 3
5650TD-PWR(config-if)#smlt 4
5650TD-PWR(config-if)#exit
```

5650TD-PWR(config)#mlt 5 member 4-5 5650TD-PWR(config)#mlt 5 enable 5650TD-PWR(config-if)#interface mlt 5 5650TD-PWR(config-if)#smlt 5 5650TD-PWR(config-if)#exit


VRRP and OSPF

```
5650TD-PWR(config)#router vrrp enable
5650TD-PWR(config)#router ospf enable
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip vrrp address 4 4.4.4.254
5650TD-PWR(config-if)#ip vrrp 4 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#exit
```

5650TD-PWR(config)#interface vlan 5 5650TD-PWR(config-if)#ip vrrp address 5 5.5.5.254 5650TD-PWR(config-if)#ip vrrp 5 enable backup-master enable 5650TD-PWR(config-if)#ip ospf enable 5650TD-PWR(config-if)#exit

SLT configuration example with VRRP and OSPF

<u>Figure 32: SLT configuration example with VRRP and OSPF</u> on page 98 shows an example of aggregation switches configured with SLT, VRRP and OSPF. For more information on VRRP and OSPF, see *Configuring IP Routing and Multicast on Avaya Ethernet Routing Switch 5000 Series*, NN47200-503.

Figure 32: SLT configuration example with VRRP and OSPF

To configure the example shown in <u>Figure 32: SLT configuration example with VRRP and OSPF</u> on page 98, you must perform the following tasks.

For aggregation switch 1:

- 1. Create VLANs 3, 4, and 5.
- 2. Set ports 1 to 5 as tagging.
- 3. Assign ports 1 and 2 to VLAN 3.
- 4. Assign ports 1 and 2 to VLAN 4.
- 5. Assign ports 1, 2, and 5 to VLAN 5.
- 6. Set VLAN 3 IP to 3.3.3.1.
- 7. Set VLAN 4 IP to 4.4.4.1 .

- 8. Set VLAN 5 IP to 5.5.5.1 .
- 9. Enable IP routing globally.
- 10. Create MLT 3 with ports 1-2.
- 11. Set IST = MLT 3, Peer IP=3.3.3.2, VLAN 3.
- 12. Set port 5 as SLT 5.
- 13. Enable VRRP globally
- 14. Enable VRRP on VLAN 4 with VRID 4 and VRIP 4.4.4.254.
- 15. Enable VRRP back up master.
- 16. Enable VRRP on VLAN 5 with VRID 5 and VRIP 5.5.5.254 .
- 17. Enable VRRP back up master.
- 18. Enable OSPF globally.
- 19. Enable OSPF on VLANs 3,4 and 5.

For aggregation switch 2:

- 1. Create VLANs 3, 4, and 5.
- 2. Set ports 1,2 and 5 as tagging.
- 3. Assign ports 1 and 2 to VLAN 3.
- 4. Assign ports 1, 2 and 4 to Vlan 4.
- 5. Assign ports 1, 2 and 5 to Vlan 5.
- 6. Set Vlan 3 IP to 3.3.3.2.
- 7. Set Vlan 4 IP to 4.4.4.2.
- 8. Set Vlan 5 IP to 5.5.5.2.
- 9. Enable IP routing.
- 10. Create MLT 3 with ports 1 and 2.
- 11. Set IST = MLT 3, Peer IP=3.3.3.1, Vlan 3.
- 12. Set port 5 as SLT 5.
- 13. Enable VRRP globally.
- 14. Enable VRRP on Vlan 4 with VRID 4 and VRIP 4.4.4.254.
- 15. Enable VRRP back up master.
- 16. Enable VRRP on Vlan 5 with VRID 5 and VRIP 5.5.5.254.
- 17. Enable VRRP back up master.
- 18. Enable OSPF globally.
- 19. Enable OSPF on Vlan 3, 4 and 5.

For edge switch 1:

- 1. Create Vlan 5.
- 2. Set ports 5 and 6 as tagging.

- 3. Assign ports 5 to 7 to Vlan 5.
- 4. Create MLT 5 with ports 5 and 6.
- 5. Disable STP on ports 5 and 6.

Detailed configuration commands

The following sections describe the detailed ACLI commands required to carry out the configuration described in Figure 32: SLT configuration example with VRRP and OSPF on page 98

Aggregation switch 1 configuration

IST, SMLT and SLT configuration

```
5650TD-PWR(config)#vlan create 3 type port
5650TD-PWR(config)#vlan create 4 type port
5650TD-PWR(config)#vlan create 5 type port
5650TD-PWR(config)#vlan port 1,2,4,5 tagging enable
5650TD-PWR(config)#vlan member add 3 1-2
5650TD-PWR(config)#vlan member add 4 1-2,4
5650TD-PWR(config)#vlan member add 5 1,2,5
5650TD-PWR(config)#vlan member remove 1 1-5
5650TD-PWR(config)#ip routing
```

```
5650TD-PWR(config)#interface vlan 3
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 3.3.3.1 255.255.255.0
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 4.4.4.1 255.255.255.0
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 5.5.5.1 255.255.255.0
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#mlt 3 member 1-2
5650TD-PWR(config)#mlt 3 enable
5650TD-PWR(config)#interface mlt 3
5650TD-PWR(config-if)#ist enable peer-ip 3.3.3.2 vlan 3
5650TD-PWR(config-if)#exit
5650TD-PWR(config)#interface Ethernet 5
5650TD-PWR(config-if)#smlt 5
5650TD-PWR(config-if)#exit
```

VRRP and OSPF

```
5650TD-PWR(config)#router vrrp enable
5650TD-PWR(config)#router ospf enable
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip vrrp address 4 4.4.4.254
5650TD-PWR(config-if)#ip vrrp 4 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#ip exit
```

```
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if)#ip vrrp address 5 5.5.5.254
5650TD-PWR(config-if)#ip vrrp 5 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#exit
```

Aggregation switch 2 configuration

IST, SMLT and SLT configuration

```
5650TD-PWR(config) #vlan create 3 type port
5650TD-PWR(config) #vlan create 4 type port
5650TD-PWR(config) #vlan create 5 type port
5650TD-PWR(config) #vlan port 1-5 tagging enable
5650TD-PWR(config) #vlan member add 3 1-2
5650TD-PWR(config) #vlan member add 4 1,2,4
5650TD-PWR(config) #vlan member add 5 1,2,5
5650TD-PWR(config) #vlan member remove 1 1,2,4,5
5650TD-PWR(config) #vlan member remove 1 1,2,4,5
```

5650TD-PWR(config)#interface vlan 3 5650TD-PWR(config-if)#ip routing 5650TD-PWR(config-if)#ip address 3.3.3.2 255.255.255.0 5650TD-PWR(config-if)#exit

```
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 4.4.4.2 255.255.255.0
5650TD-PWR(config-if)#exit
```

5650TD-PWR(config)#interface vlan 5 5650TD-PWR(config-if)#ip routing 5650TD-PWR(config-if)#ip address 5.5.5.2 255.255.255.0 5650TD-PWR(config-if)#exit

```
5650TD-PWR(config)#mlt 3 member 1-2
5650TD-PWR(config)#mlt 3 enable
5650TD-PWR(config)#interface mlt 3
5650TD-PWR(config-if)#ist enable peer-ip 3.3.3.1 vlan 3
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface Ethernet 5
5650TD-PWR(config-if)#smlt 5
5650TD-PWR(config-if)#exit
```

VRRP and OSPF

```
5650TD-PWR(config)#router vrrp enable
5650TD-PWR(config)#router ospf enable
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip vrrp address 4 4.4.4.254
5650TD-PWR(config-if)#ip vrrp 4 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#ip exit
```

5650TD-PWR(config)#interface vlan 5 5650TD-PWR(config-if)#ip vrrp address 5 5.5.5.254 5650TD-PWR(config-if)#ip vrrp 5 enable backup-master enable 5650TD-PWR(config-if)#ip ospf enable 5650TD-PWR(config-if)#exit

Edge switch configuration (5000 Series)

```
5510-48T(config)#vlan create 5 type port
5510-48T(config)#vlan member add 5 5-7
5510-48T(config)#vlan port 5-6 tagging enable
5510-48T(config)#vlan member remove 1 5-7
5510-24T(config)#mlt 5 member 5-6
5510-24T(config)#mlt spanning-tree 5 stp all learning disable
5510-24T(config)#mlt 5 enable
```

SLPP

Simple Loop Prevention Protocol (SLPP) is a new feature designed to detect loops in a SMLT network. Not intended to replace STP as a comprehensive loop detection mechanism, SLPP acts as a secondary mechanism for detection and prevention of looping in a SMLT environment and can only be configured on SMLT networks. Since SMLT requires that STP be disabled on IST, SMLT and SLT ports for normal operation, loops may be introduced to a network. SLPP was designed to prevent such loops and resulting traffic disruptions.

When enabled, SLPP causes the switch to send a periodic SLPP PDU on the transmitting VLAN at a user defined or default (500 ms) transmission interval. If a loop is active in the network, the SLPP PDU is returned to the switch and the affected port is shutdown after the specified number of PDU has been received (Default is 5). If a port is shutdown as the result of a detected loop, it must be manually returned to an active state by the network administrator unless auto enable is configured. SLPP only sends a PDU to VLANs specified in the transmitting list configured by the user.

😵 Note:

When configured in addition to STP, STP operation will take precedence leaving SLPP as a supplementary measure for loop detection.

SLPP Guard

Simple Loop Prevention Protocol (SLPP) is used to detect loops in the SMLT network. Because SMLT networks, by design, disable Spanning Tree (STP), Rapid Spanning Tree (RSTP), or Multiple Spanning Tree Protocol (MSTP) for participating ports, you need a method to prevent loops involving these ports.

When you use the ERS 5000 in combination with other Avaya switches that support Simple Loop Protection Protocol (SLPP) and Avaya's Switch Clustering (SMLT) - for example, ERS 4000 Series or ERS 8300 - the SLPP Guard feature provides additional network loop protection.

When you enable SLPP Guard on switch ports, they can receive SLPP packets. When the system receives the SLPP packet it can generate a local log message, syslog message, and SNMP traps. When you enable SLPP Guard on a switch port and the switch receives an SLPP packet on that port, SLPP Guard can immediately disable the port administratively, for a predetermined interval.

For example: ERS 5000 port 1 connects to ERS8300 port 1/1, the links are configured for SMLT, and a loop is created. With SLPP enabled on port 1/1, the ERS 8300 transmits SLPP packets from that port. With SLPP Guard enabled on ERS 5000 port 1, when ERS 5000 port 1 receives an SLPP packet the system automatically shuts ERS 5000 port 1 down, preventing the possibility of data looping between ERS 5000 port 1 and ERS 8300 port 1/1. After the predetermined interval expires, SLPP Guard re-enables the port. As an option, you can configure SLPP Guard to administratively disable the port indefinitely.

Avaya recommends that you enable SLPP Guard only on the edge switches of an SMLT setup and SLPP on the aggregation layer switches.

When an SLPP packet is received on an SLPP Guard enabled port, the port is disabled only if the Ethertype field from the received SLPP packet is equal to the value of the SLPP Guard Ethertype configured on the receiving switch.

Note:

You cannot enable SLPP Guard on ports that are members of MLTs, DMLTs, LACPs, or LAGs.

LACP over SMLT

Link Aggregation Control Protocol (LACP) over SMLT results in better recovery for SMLT and SLTconfigured trunks in fail-over scenarios such as when a stack link breaks.

LACP dynamically creates and removes trunk groups. In the absence of STP on the SMLT network, configuration errors can easily introduce a loop. To limit loops, IST links do not support LACP: only SMLT and SLT links support LACP.

To prevent the formation of a loop, you must configure the same speed (10/100/1000) for LAC ports on an edge switch and LAC ports on an SMLT aggregation switch. If port speeds do not match, multiple LAC trunks form which can create a loop on the network.

Two SMLT aggregation switches act as a single, logical LACP peer to the edge switch; therefore, both switches must use the same Link Aggregation Control (LAC) system-ID in transmit Protocol Data Units (PDU) for SMLT and SLT ports. You can configure the LAC system-ID.

For a configuration example, see <u>LACP over SMLT configuration example</u> on page 348.

SMLT with Routing protocol support

This feature uses Open Shortest Path First (OSPF) to distribute routes across the SMLT/SLT network. This route distribution reduces the administrative load route distribution in a large network and routes some Layer (L) 3 traffic across the IST depending on which port the traffic was received and on which route the OSPF selects as the best one.

SMLT consistency with the Ethernet Routing Switch 8800/8600

The SMLT consistency with the Ethernet Routing Switch 8800/8600 configuration feature reduces the confusion of the configuration of SMLT on the Ethernet Routing Switch Series 5000 with that of the Ethernet Routing Switch 8800/8600. In release 6.2 or later, when you enable SMLT, the following actions occur automatically:

- 1. The current Spanning Tree Protocol (STP) administrative state of Inter Switch Trunk (IST), SMLT, and Split Link Trunk (SLT) ports is saved on the NVRAM.
- 2. STP is disabled on IST, SMLT, and SLT ports.

IEEE 802.3ad Link Aggregation

With IEEE 802.3ad-based link aggregation, you can aggregate one or more links together to form Link Aggregation Groups (LAG) so that a MAC client can treat the Link Aggregation Group as if it were a single link. Link aggregation increases the aggregate throughput of the interconnection between the devices while also providing link redundancy.

Although IEEE 802.3ad-based link aggregation and Multi-Link Trunking (MLT) features provide similar services, MLT is statically defined, whereas IEEE 802.3ad-based link aggregation is dynamic and provides more functionality.

Link Aggregation Control Protocol (LACP), defined by the IEEE 802.3ad standard, allows a switch to learn the presence and capabilities of a remote switch by exchanging information with the remote switch before a trunk group is formed. Either switch can accept or reject the aggregation request with the far end on a per-port basis. A link that cannot join a trunk group operates as an individual link.

The main purpose of LACP is to manage switch ports and their port memberships to link aggregation trunk groups (LAGs). LACP can dynamically add or remove LAG ports, depending on their availability and states. By default, Link Aggregation is set to disabled on all ports

Link aggregation employs the following principles and concepts:

- A MAC client communicates with a set of ports through an Aggregator, which presents a standard IEEE 802.3 service interface to the MAC client. The Aggregator binds to one or more ports within a system.
- The Aggregator is responsible for distributing frame transmissions from the MAC client to the various ports, and to collect received frames from the ports and pass them to the MAC client transparently.
- A system can contain multiple aggregators, serving multiple MAC clients. A given port will bind to (at most) a single Aggregator at any time. A MAC client is served by a single Aggregator at a time.
- The binding of ports to aggregators within a system is managed by the Link Aggregation Control function for that system, which is responsible for determining which links can be aggregated, aggregating them, binding the ports within the system to an appropriate Aggregator, and monitoring conditions to determine when a change in aggregation is needed.

The network manager can control the determination and binding directly through the manipulation of the state variables of Link Aggregation (for example, Keys). In addition, automatic determination, configuration, binding, and monitoring can occur through the use of a Link Aggregation Control Protocol (LACP).

The LACP uses peer exchanges across the links to determine, on an ongoing basis, the aggregation capability of the various links, and continuously provides the maximum level of aggregation capability achievable between a given pair of systems.

• Each port is assigned a unique, globally administered MAC address.

The MAC address is used as the source address for frame exchanges that are initiated by entities within the Link Aggregation sublayer itself (for example, LACP and Marker protocol exchanges).

• Each Aggregator is assigned a unique, globally administered MAC address, which is used as the MAC address of the aggregation from the perspective of the MAC Client, both as a source address for transmitted frames and as the destination address for received frames.

The MAC address of the Aggregator can be one of the MAC addresses of a port in the associated Link Aggregation Group.

Link aggregation rules

The 5000 Series switch link aggregation groups operate under the following rules:

- Link aggregation groups are formed using LACP.
- All ports in a link aggregation group must be connected to the same far-end system.
- All ports in a link aggregation group must be operating in full-duplex mode.
- All ports in a link aggregation group must be configured to the same port speed.
- All ports in a link aggregation group must be in the same VLANs.
- In stack mode, ports in a link aggregation group can be on different units to form a distributed LAG (DLAG).
- LACPDUs are transmitted and received on all ports in the link aggregation group.
- Link aggregation is compatible with the Spanning Tree Protocol (STP).
- Link aggregation group(s) must be in the same STP groups.
- STP BPDUs are transmitted and received only on the first link in the group.
- A maximum of 32 link aggregation groups are supported.
- A maximum of 8 active links are supported per LAG.
- Unlimited standby links that are supported per LAG (for example, if a switch or stack is configured with one LAG, all nonactive LAG link ports can be configured as standby ports for that LAG).

The maximum number of LAGs is 32, and the maximum number of active links per group is eight. Link Aggregation allows more than eight links to be configured in one LAG. The first eight high-priority links are active links, and together, they form a trunk group. The ninth low-priority link remains in standby mode. When one of the active links goes down, the standby link becomes active and is added to the trunk group.

The failover process is as follows:

- The down link is removed from the trunk group.
- The highest priority standby link is added to the trunk group.

There can be a temporary delay in traffic flow due to the switching of links. If the active link goes down and no standby link exists, the traffic is rerouted to the remaining active links with a minimal delay in time.

LACP port mode

The IEEE 802.1ax standard specifies that links that are not successful candidates for aggregation (for example, links to devices that cannot perform aggregation, or links that are manually set as non-aggregatable) can continue to operate as individual LACP links. However, LACP-enabled, STP-disabled ports that operate as individual links can potentially cause network loops.

You can specify the desired behavior of non-aggregatable LACP links on the switch:

- **Default mode:** In the default mode, if an LACP-enabled port is connected to a non-LACP partner port and the link fails to converge with the link partner, the port state moves to the forwarding state. This is the standard behavior from earlier software releases. The default mode is compatible with standard LACP.
- Advance mode: In the Advance mode, if an LACP-enabled port is connected to a non-LACP partner port and the link fails to converge with the link partner, the port state remains in the blocking state. This behavior is applied only to LACP-enabled ports that have STP disabled and prevents potential loops from forming in the network.

😵 Note:

The Advance mode is not compatible with IEEE 802.1ax standard LACP.

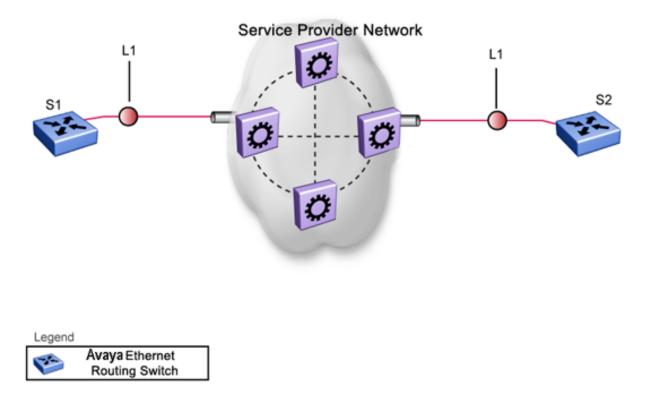
The Advance mode is also useful when a trunk port is removed from a trunk configuration. Currently, an active LACP trunk port can be removed from the trunk configuration if the link partner disables LACP or if PDU reception times out. Each LACP mode handles this scenario as follows:

- **Default mode:** The default mode implementation removes the active LACP trunk port from the active trunk configuration, and the port functions as a regular standalone active port. The port state is determined by STP when you enable STP, but is set to forwarding when you disable STP on the port.
- Advance mode: In the Advance mode, LACP-enabled ports that have STP disabled remain in the blocking state. This prevents potential loops from forming in the network.

Chapter 6: VLACP Fundamentals

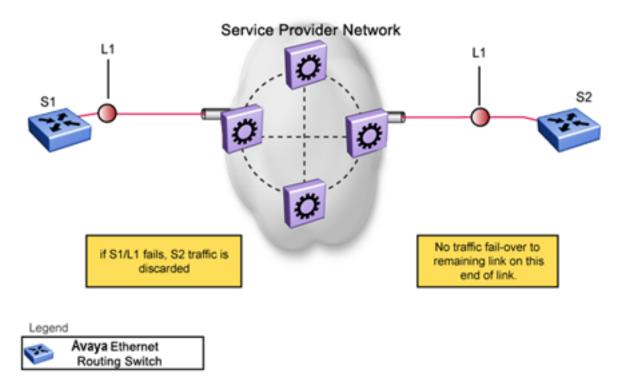
VLACP

Virtual Link Aggregation Control Protocol (VLACP), an LACP extension, is a Layer 2 handshaking protocol that provides end-to-end failure detection between two physical Ethernet interfaces. It allows the switch to detect unidirectional or bidirectional link failures.


Many enterprise networks require that trunk links provide subsecond failover to the redundant link when a failure occurs at the local or remote endpoint. This requirement can be met when both ends of the link are informed of any loss of communication.

VLACP overview

While Ethernet has been extended to detect remote link failures through functions such as Remote Fault Indication and Far End Fault Indication mechanisms, a limitation of these functions is that they terminate at the next Ethernet hop. Therefore, failures cannot be determined on an end-to-end basis.


Figure 33: Problem description (1 of 2) on page 108 provides an illustration of these limitations. While the Enterprise networks shown can connect their aggregated Ethernet trunk groups through a service provider network connection (for example, through a VPN), far-end failures cannot be signaled with Ethernet-based functions that operate end-to-end through the service provider cloud.

In <u>Figure 33: Problem description (1 of 2)</u> on page 108, the link (between Enterprise switches S1 and S2) extends through the service provider (SP) network.

Figure 33: Problem description (1 of 2)

As shown in <u>Figure 34: Problem description (2 of 2)</u> on page 109, if the L2 link on S1 (S1/L1) fails, the link-down failure is not propagated over the SP network to S2. Therefore, S2 continues to send traffic over the S2/L1 link, which is black-holed because the S1/L1 link has failed.

Figure 34: Problem description (2 of 2)

Note that LACP, as defined by IEEE, is a protocol that exists between two bridge endpoints; therefore, the LACPDUs are terminated at the next (SP) interface.

Avaya developed VLACP, which is an extension to LACP. This extension can provide an end-to-end failure detection mechanism. With VLACP, far-end failures can be detected allowing an MLT to fail over properly when end-to-end connectivity is not guaranteed for certain links in an aggregation group. VLACP prevents the failure scenario shown in Figure 34: Problem description (2 of 2) on page 109.

VLACP features

VLACP on the Ethernet Routing Switch 5000 Series provides the following:

- VLACP is configured per port. A port can be an individual port or a member of an MLT.
- When you set VLACP parameters for a trunk port, the settings are applied to all trunk members.
- For VLACP to operate properly, there must be a logical point-to-point connection (Layer 2 tunnel) between the two endpoints.
- VLACP does not work for point-to-multipoint connections.
- On each port that has VLACP enabled, VLACPDUs are sent periodically. If VLACPDUs are not received on a particular link, that link is taken down after a configurable timeout period.

- For the current software release, VLACP is supported on Ethernet interfaces only.
- VLACP can run independently as a port-to-port protocol or on top of MLT or LACP protocol.
- VLACP packets are untagged because they operate at the port level and not the VLAN level.
- The Destination Mac Address used in VLACPDUs is configurable. The MAC Address must be a multicast MAC Address so that it is always flooded. This allows the exchange of VLACPDUs from end to end.
- Both VLACP partners must have same multicast address, timers, and ethertype configured for VLACP to work properly.
- A unicast MAC address (destination MAC address) can be configured per port for end-to-end connectivity between units, when VLACP packets travel through an ISP network.
- The VLACP PDU transmission interval changes when an LACP partner is lost. This aids detection in certain failure scenarios.
- VLACP PDU messages are processed so as to prevent false VLACP state recovery.
- VLACP defaults to an IEEE reserved multicast MAC address for sourcing LACP PDU packets.
- VLACP can be configured on MLT ports only if the MLT directly connects two switches. VLACP doesn't function if another Layer 2 device exists between the switches.

Troubleshooting

Error logs are created for the following failures and errors:

- An incorrect PDU, such as wrong destination MAC addresses received
- An inability to enable VLACP on a port due to unallowable Destination MAC addresses
- A port index that is out of range
- A port was blocked by VLACP (a log message is also generated when the port is unblocked)

Chapter 7: Link-State Tracking fundamentals

Related links

Link-State Tracking on page 111 Displaying link-state tracking information using ACLI on page 112 Configuring link-state tracking using ACLI on page 112 Configuring link-state tracking using EDM on page 113

Link-State Tracking

Link-state tracking binds the link state of multiple interfaces, creating so-called link-state groups with upstream (to-be-followed) and downstream (to-follow) interfaces. The association between the upstream set and the downstream set is a link-state tracking group. If all interfaces in the upstream set have a 'down' operational status, all interfaces in the downstream set must be disabled also. If at least one upstream interface is considered up, the downstream interfaces are enabled.

By default, each link-state tracking group is disabled and both upstream and downstream member sets are empty.

Valid interfaces are ports and trunks (both statically defined and formed by link aggregation).

For the operational status, both the physical link state and VLACP state (if VLACP is enabled on the interface) are considered as follows:

- When VLACP is disabled on the interface, up and down correspond directly to the interface operational state (physical link). In the case of trunks, a last-link-down event triggers a down state for the corresponding group entry. Similarly, a first-link-up triggers an up state.
- If VLACP is enabled, the interface is considered up if it has link-up and VLACP partner, and down otherwise.

Limitations

- The feature currently supports two link-state groups.
- The maximum number of upstream members is eight.
- The maximum number of downstream members is 384.
- Interfaces can belong to only one link-state group.

- An interface cannot be an upstream and downstream member simultaneously.
- · You cannot add a trunk-member port to a link-state tracking group by itself.
- Only enabled trunks can be tracking group members. You cannot disable a trunk which is a tracking group member.
- You cannot add ports with link aggregation enabled to a tracking group. You cannot enable link aggregation on a tracking group member port.
- Operational states for interfaces and tracking groups are dynamically determined during switch operation and are not saved in binary/ASCII configuration.

Related links

Link-State Tracking fundamentals on page 111

Displaying link-state tracking information using ACLI

Use this procedure to display link-state tracking information.

Procedure

- 1. Log on to ACLI to enter User EXEC mode.
- 2. At the command prompt, enter the following command:

```
show link-state [group <1-2>] [detail]
```

Variable definitions

The following table describes the parameters for the **show link-state** command.

Variable	Value
group <1-2>	Specifies the group. If this parameter is not specified, both groups are displayed.
detail	Displays tracking group detailed information. If this parameter is not specified, the switch displays tracking group status (enabled/disabled) and operational status (up/down).

Configuring link-state tracking using ACLI

Use this procedure to configure link-state tracking.

Procedure

1. Enter Global Configuration mode:

```
enable
configure terminal
```

2. At the command prompt, enter the following command:

```
[default][no] link-state group <1-2> {{upstream | downstream}
interface {Ethernet <portlist> | mlt <1-32>} | enable}
```

Variable definitions

The following table describes the parameters for the link-state command.

Variable	Value
default	Disable link-state setting.
no	Remove interface from group.
group <1-2>	Specifies the group id.
downstream	Specifies to configure interface to downstream set.
upstream	Specifies to configure interface to the upstream set.
interface Ethernet <portlist></portlist>	Specifies the list of ports in the interface.
interface mlt <1-32>	Specifies the trunk number in the interface.
enable	Enables or disables (when used with the no parameter) link-state tracking for the specified group.

Configuring link-state tracking using EDM

Use this procedure to configure link-state tracking using EDM.

Procedure

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click Link State Tracking.
- 3. To enable or disable the group, double-click the cell in the **Enabled** column.
- 4. To modify the upstream port list for the group, double-click the cell in the **UpstreamPortList** column.
- 5. Click the buttons that correspond to the ports that are to be added or deleted. Click **All** to select all ports.
- 6. Click Ok.
- 7. To modify the downstream port list for the group, double-click the cell in the **DownstreamPortList** column.

- 8. Click the buttons that correspond to the ports that are to be added or deleted. Click **All** to select all ports.
- 9. Click Ok.
- 10. To modify the upstream MLT list for the group, double-click the cell in the **UpstreamMItList** column.
- 11. Click the buttons that correspond to the trunks that are to be added or deleted. Click **All** to select all ports.
- 12. Click Ok.
- 13. To modify the downstream MLT list for the group, double-click the cell in the **DownstreamMltList** column.
- 14. Click the buttons that correspond to the trunks that are to be added or deleted. Click **All** to select all ports.
- 15. Click **Ok**.
- 16. Click Apply.

Link State Tracking field descriptions

Name	Description
GroupId	Specifies the link-state tracking group id.
Enabled	Specifies whether the link-state tracking group is enabled (true) or disabled (false). DEFAULT: Disabled (false)
UpstreamPortList	Specifies the upstream port list for the group instance.
DownstreamPortList	Specifies the downstream port list for the group instance.
UpstreamMltList	Specifies the upstream MLT list for the group instance.
DownstreamMltList	Specifies the downstream MLT list for the group instance.
OperState	Specifies the operational status of the group instance. When the link-state tracking group is disabled, and no upstream or downstream interfaces are configured, the value of this object must be notConfigured . When the group has upstream or downstream interfaces configured but the state is administratively disabled, the value of OperState object is N/A . Values include:
	• up

Table continues...

Name	Description
	• down
	notConfigured
	• N/A

Chapter 8: ADAC fundamentals

The ERS 5000 Series switch supports the Auto-Detection and Auto-Configuration (ADAC) of Avaya IP Phones. With ADAC, you can automatically configure the switch to support and prioritize IP Phone traffic.

When ADAC is enabled and an Avaya IP Phone is connected to the switch, the switch automatically configures the VLAN, port, and Quality of Service (QoS) settings necessary for the transmission of signal and voice between the Avaya IP Phone and the switch.

ADAC can configure the switch directly connected to the Call Server (through the Call Server port) or indirectly connected to the Call Server using a network uplink (through the Uplink port).

ADAC has three separate operating modes to meet the requirements of different networks:

· Untagged-Frames-Basic:

Use this mode when you want a basic configuration only and the IP Phones are sending untagged traffic.

Untagged-Frames-Advanced:

Use this mode when you want an advanced configuration and the IP Phones are sending untagged traffic. In this mode, ADAC dynamically configures the Call Server or Uplink port, as applicable, and all telephony ports. All tagging, PVID settings, port vlan membership and traffic prioritization are configured automatically.

Tagged Frames:

Use this mode when you want an advanced configuration and the IP Phones are sending tagged traffic. You can also use tagged frames to support devices other than IP Phones. This mode provides the same configuration as the Untagged-Frames-Advanced mode, but with tagged frames. ADAC dynamically configures the Call Server or Uplink port, as applicable, and all telephony ports. All tagging, PVID settings, port vlan membership, and traffic prioritization are configured automatically.

ADAC operation

The following sections provide detailed explanations of ADAC operation.

Auto-detection of Avaya IP Phones

When a Avaya IP Phone is powered on and connected to a switch, the switch automatically detects the IP Phone and begins the auto-configuration of the IP Phone. An ADAC lookup is also performed each time a MAC address is learned, migrated, or aged-out and removed.

When you enable auto-detection on a port, the port becomes operationally enabled. Similarly, when you disable auto-detection on a port, the port is operationally disabled. A port can also be operationally disabled if the port maximum of 32 devices is reached. If the port limit is reached, a trap is sent (if ADAC traps are enabled) and autoconfiguration is removed. To put the port back into the operational state, disable and then re-enable auto-detection on the affected port. ADAC supports a maximum of 32 devices (both IP phones and non-phones) per port.

There are two ways to use ADAC to automatically detect IP Phones. You can enable one or the other or both of these methods on a port-by-port basis, as long as at least one detection mechanism remains enabled.

The detection mechanism can be selected

- · before enabling auto-detection on the port, or
- if ADAC is globally disabled.

The two methods of auto-detection are by MAC address, or LLDP (IEEE 802.1ab). Auto-detection by MAC address is based on using predefined MAC addresses to determine that the specified port is connected to a Avaya IP phone. For more information and the list of defined MAC address ranges, see <u>Auto-detection by MAC address</u> on page 117.

Auto-detection by LLDP allows the system to detect IP phones with MAC addresses outside the list of default MAC address ranges as long as they can be identified as an IP phone by LLDP, regardless of their MAC addresses. For more information about auto-detection by LLDP, see <u>Auto-detection by LLDP (IEEE 802.1ab)</u> on page 119.

You can enable either of these detection mechanisms or both on individual ports. At least one of these detection methods must be enabled on each port. By default, both detection methods are enabled on Avaya ERS 5000 Series switches.

Auto-detection by MAC address

When auto-detection by MAC address is enabled on a port, the switch checks all the MAC addresses of packets received on the port. If a received MAC address is within the range of known Avaya IP Phone MAC addresses, ADAC determines that the specified port is connected to a Avaya IP Phone and initiates the required configuration. ADAC is supported for a maximum of 32 devices per port, but in most cases, there will be only one IP phone and one PC on each port.

The ERS 5000 Series switch has a default range of MAC addresses configured to be recognized as Avaya IP Phones by ADAC.

Table 18: Default ADAC MAC address ranges on page 118shows a list of the default MAC address ranges.

Table 18: Default ADAC MAC address range
--

Lower End	Higher End
00-0A-E4-01-10-20	00-0A-E4-01-23-A7
00-0A-E4-01-70-EC	00-0A-E4-01-84-73
00-0A-E4-01-A1-C8	00-0A-E4-01-AD-7F
00-0A-E4-01-DA-4E	00-0A-E4-01-ED-D5
00-0A-E4-02-1E-D4	00-0A-E4-02-32-5B
00-0A-E4-02-5D-22	00-0A-E4-02-70-A9
00-0A-E4-02-D8-AE	00-0A-E4-02-FF-BD
00-0A-E4-03-87-E4	00-0A-E4-03-89-0F
00-0A-E4-03-90-E0	00-0A-E4-03-B7-EF
00-0A-E4-04-1A-56	00-0A-E4-04-41-65
00-0A-E4-04-80-E8	00-0A-E4-04-A7-F7
00-0A-E4-04-D2-FC	00-0A-E4-05-48-2B
00-0A-E4-05-B7-DF	00-0A-E4-06-05-FE
00-0A-E4-06-55-EC	00-0A-E4-07-19-3B
00-0A-E4-08-0A-02	00-0A-E4-08-7F-31
00-0A-E4-08-B2-89	00-0A-E4-09-75-D8
00-0A-E4-09-BB-9D	00-0A-E4-09-CF-24
00-0A-E4-09-FC-2B	00-0A-E4-0A-71-5A
00-0A-E4-0A-9D-DA	00-0A-E4-0B-61-29
00-0A-E4-0B-BB-FC	00-0A-E4-0B-BC-0F
00-0A-E4-0B-D9-BE	00-0A-E4-0C-9D-0D
00-13-65-FE-F3-2C	00-13-65-FF-ED-2B
00-15-9B-FE-A4-66	00-15-9B-FF-24-B5
00-16-CA-00-00-00	00-16-CA-01-FF-FF
00-16-CA-F2-74-20	00-16-CA-F4-BE-0F
00-17-65-F6-94-C0	00-17-65-F7-38-CF
00-17-65-FD-00-00	00-17-65-FF-FF
00-18-B0-33-90-00	00-18-B0-35-DF-FF
00-19-69-83-25-40	00-19-69-85-5F-FF

You can change the default known MAC address ranges using ACLI or EDM.

ADAC checks a MAC address against the supported ranges only when the MAC address is learned on the port. If you change the supported MAC address ranges, it does not effect on the previously learned MAC addresses. For example, if the address of a configured device is no longer in an ADAC range, the IP phone remains configured until its MAC address is aged out (by disconnecting the cable, for example) or until ADAC is disabled, either globally or on the port.

In a similar fashion, if the MAC address of an IP Phone—a MAC address that's not recognized by ADAC—is learned on a port and the MAC address is added to the supported ranges later, the IP Phone won't be detected and configured until the address is aged out or ADAC is disabled.

The maximum number of ranges that ADAC supports is 128.

Auto-detection by LLDP (IEEE 802.1ab)

Auto-detection by LLDP extends the auto-detection that relies on MAC addresses. This feature allows devices identified as IP phones through LLDP to be detected by ADAC even if their MAC addresses are outside the list of ADAC MAC address ranges.

LLDP-based auto-detection supports a maximum of 16 devices per port.

Detailed configuration example

The following commands provide a detailed configuration example.

- · Default a switch.
- Disable on port 5 MAC detection.

Enable ADAC on port 5 and globally.

```
5698TFD(config)#adac enable
5698TFD(config)#in fa 5
5698TFD(config-if)#adac enable
```

 Define the uplink port, and voice VLAN port, then change operating mode to Untagged Frames Advanced.

5698TFD(config) #vlan create 200 voice-vlan 5698TFD(config) #adac voice-vlan 200 5698TFD(config) #adac uplink-port 10 5698TFD(config) #adac op-mode untagged-frames-advanced

😵 Note:

Configure the voice-vlan 200 before setting ADAC; as described in the <u>Voice VLAN</u> <u>Integration</u> on page 30.

• Verify the settings are applied.

```
5698TFD(config)#sho adac
ADAC Global Configuration
------ADAC Admin State: Enabled
ADAC Oper State: Enabled
```

```
Operating Mode: Untagged Frames Advanced
Voice-VLAN ID: 200
Call Server Port: None
Uplink Port: 10
```

 Connect your phone on port 5 and verify that the phone is detected and the configuration is applied.

 5698TFD(config-if)#show adac in 5

 Auto
 Oper
 Auto

 Port
 Type
 Detection
 State
 Configuration
 T-F PVID
 T-F Tagging

 --- --- --- --- ---- ----

 5
 T
 Enabled
 Applied
 No Change
 Untag PVID Only

Auto-configuration of Avaya IP Phones

You can configure the ADAC port participation independently by enabling or disabling ADAC for specific ports.

When a new MAC address of an IP phone is learned on a port with ADAC enabled, ADAC immediately performs the auto-configuration for that port (this operation is dependent on the configured ADAC operating mode and on whether other MAC addresses are learned on that port). This includes the required configuration of ports, VLANs, and QoS settings and involves minimal intervention by the user.

Auto-configuration is automatically removed or applied based on the port state, the state of the MAC addresses and the phones detected on the port.

The ports are polled every two seconds for their auto-configuration state and to see whether or not auto-configuration should be applied based on the current ADAC settings, both the global setting and the port setting. Auto-configuration is applied on the port when the port is operational (operational state is enabled) and if one of these conditions is true:

- Op-mode = Untagged-Frames-Basic or Untagged-Frames-Advanced, at least one IP phone is detected on the port, and no non-IP phones are detected on the port
- Op-mode = Tagged-Frames and at least one IP phone is detected on the port

Auto-configuration is removed if any of these conditions becomes true:

- · auto-detect becomes disabled on the port
- · the ports operational state becomes disabled
- Op-mode = Untagged-Frames-Basic or Untagged-Frames-Advanced, and at least one non-IP device is detected on the port
- there are no IP phones detected on the port and the link is down.

If the link is still up but there are no IP phones on the port, auto-configuration is disabled after an aging period of about 90 seconds.

If all MAC addresses belonging to Avaya IP Phones on a port age out, the auto-configuration settings are removed from the port.

Initial user settings

Before enabling the ADAC feature, you must set the operating mode according to how the IP Phones are configured to send frames: tagged or untagged.

When running ADAC in Untagged-Frames-Advanced or Tagged-Frames operating modes, you must also specify:

- · the ID of the VLAN to be used for voice packets
- at least one of the following:
 - Call Server port, if connected directly to the switch
 - Uplink port, if used

😵 Note:

You must ensure that you manually create the Voice VLAN prior to enabling its use with ADAC operation.

Tag voice traffic entering the Uplink port with the Voice VLAN ID. This configuration must be made on all switches on the path to the Call Server.

Port restrictions

The following restrictions apply to the Call Server, Uplink, and Telephony ports.

The Call Server port must not be:

- part of a trunk (MLT, LAG)
- a Monitor Port in port mirroring
- a Telephony port
- the Uplink port
- an EAP port

The **Uplink port** must not be:

- a Monitor Port in port mirroring
- · a Telephony port
- an EAP port
- the Call Server port

The Telephony port must not be:

- part of a trunk (MLT, LAG)
- a Monitor Port in port mirroring
- an IGMP static router port
- · the Call Server port
- the Uplink port

Operating modes

ADAC can be configured to apply settings depending on how the Avaya IP Phones are configured to send traffic (tagged or untagged) and depending on the desired complexity level of the Auto-Configuration. The following sections provide detailed descriptions of the configurations applied for each ADAC operating mode.

QoS settings used by ADAC

ADAC QoS configuration is applied to:

- traffic coming from the IP Phones
- traffic coming from the Call Server port
- · traffic coming from the Uplink port

To configure the switch appropriately for IP Phones, the ADAC operating modes use two QoS policies, each associated with one of the following classifiers:

• all-IP-traffic

The all-IP-traffic classifier filters all IPv4 traffic and remarks it with DSCP 0x2E and 802.1p priority 0x06.

tagged-with-VoiceVLAN-traffic

The tagged-with-VoiceVLAN-traffic classifier filters only the traffic tagged with the Voice VLAN ID and remarks it with DSCP 0x2E and 802.1p priority 0x06.

Untagged-Frames-Basic operating mode

In the Untagged-Frames-Basic operating mode, the Call Server and Uplink ports are not used, so QoS settings are applied only for traffic coming from the IP Phones. The VLAN configuration is minimal.

To properly configure the Untagged-Frames-Basic mode, you must perform the following:

- · Configure the IP Phones to send untagged frames.
- Connect only IP Phones to a port. (You cannot connect a device that is not an Avaya IP Phone to the same port.)

QoS configuration

In the Untagged-Frames-Basic mode, Auto-Configuration performs the following QoS configuration:

• Adds the telephony ports to the all-IP-traffic classifier (because only IP Phones are connected to the telephony ports).

VLAN configuration

In the Untagged-Frames-Basic mode, Auto-Configuration also performs the following VLAN configuration:

• Tagging of Telephony ports is set to Untagged.

Untagged-Frames-Advanced operating mode

To properly configure the Untagged-Frames-Advanced operating mode, you must perform the following:

- Configure the IP Phones to send untagged frames.
- Connect only IP Phones to a port. (You cannot connect a device that is not an Avaya IP Phone to the same port.)
- Specify the Voice-VLAN ID and either the Call Server port or the Uplink port, as applicable.
- If the switch is not directly connected to the Call Server, ensure that the telephony packets coming from the Call Server through the Uplink port are tagged with the Voice-VLAN ID.

QoS configuration

In the Untagged-Frames-Advanced mode, Auto-Configuration performs the following QoS configuration:

- For traffic coming from the Telephony ports:
 - Adds the telephony ports to the all-IP-traffic classifier (because only IP Phones are connected to the telephony ports).
- For traffic coming from the Call Server port (if any):
 - Adds the Call Server port to the all-IP-traffic classifier (because only Call Server traffic enters that port).
- For traffic coming from the Uplink port (if any):
 - Adds the Uplink port to the tagged-with-VoiceVLAN-traffic classifier. (As the Uplink port connects to the network, packets with different tagging can enter this port; this ensures that only voice traffic is remarked.)

VLAN configuration

In the Untagged-Frames-Advanced mode, Auto-Configuration also performs the following VLAN configurations:

- · Telephony port:
 - Membership = adds to Voice-VLAN; removes from other VLANs (The port does not need to be a member of other VLANs.)
 - Tagging = Untagged
 - PVID = Voice-VLAN
- Call Server port (if any):
 - Membership = adds to Voice-VLAN; not removed from other VLANs
 - Tagging = Untagged
 - PVID = Voice-VLAN
- Uplink port (if any):
 - Membership = adds to Voice-VLAN; not removed from other VLANs
 - Tagging = Tagged

- PVID = no change (All VLAN changes made by ADAC are as if VCC=flexible, so the Auto-PVID setting is ignored.)

Tagged-Frames operating mode

To properly configure the Tagged-Frames operating mode, you must perform the following:

- Configure the IP Phones to send tagged frames with the ID of the Voice-VLAN.
- Connect at least one Avaya IP Phone to a telephony port. (In this mode, other devices can be connected to the same port; for example, when a PC is connected directly to the IP phone.)
- Ensure that the Filter Unregistered Frames option is set to disabled on the ADAC-enabled ports. (Otherwise, no source MAC address can be learned for incoming packets tagged with the Voice VLAN ID, meaning that no phone can be detected.)
- Specify the Voice-VLAN ID and either the Call Server port or the Uplink port, as applicable.
- If the switch is not directly connected to the Call Server, ensure that the telephony packets coming from the Call Server through the Uplink port are tagged with the Voice-VLAN ID.

QoS configuration

In the Tagged-Frames mode, Auto-Configuration performs the following QoS configuration:

- For traffic coming from the telephony ports:
 - Adds the telephony ports to the tagged-with-VoiceVLAN-traffic classifier. (In this way, only the voice traffic is remarked.)
- For traffic coming from the Call Server port (if any):
 - Adds the Call Server port to the all-IP-traffic classifier (because only Call Server traffic enters that port).
- For traffic coming from the Uplink port (if any):
 - Adds the Uplink port to the tagged-with-VoiceVLAN-traffic classifier. (As the Uplink port connects to the network, packets with different tagging can enter this port; applying this classifier ensures that only voice traffic is remarked.)

In this way, all traffic tagged with the Voice-VLAN ID is prioritized.

VLAN configuration

In the Tagged-Frames mode, Auto-Configuration also performs the following VLAN configurations:

- · Telephony port:
 - Membership = adds to Voice-VLAN; not removed from other VLANs
 - Tagging = UntagPVIDOnly
 - PVID = no change or changed to Default-VLAN(1) if the current value equals the Voice-VLAN (must be different from the Voice-VLAN ID)
- Call Server port (if any):
 - Membership = adds to Voice-VLAN; not removed from other VLANs
 - Tagging = Untagged
 - PVID = Voice-VLAN

- Uplink port (if any):
 - Membership = adds to Voice-VLAN; not removed from other VLANs
 - Tagging = Tagged
 - PVID = no change (All VLAN changes made by ADAC are as if VCC =flexible, so the Auto-PVID setting is ignored.)

Dynamic VLAN auto-configuration

The following describes the details of the ADAC VLAN configuration:

- You must manually create the Voice VLAN to be used by ADAC prior to configuration for ADAC.
- The ADAC ports membership to the ADAC Voice VLAN are dynamic, the settings do not save to NVRAM. The dynamic settings are lost on reboot or when ADAC is disabled.
- From the moment ADAC is enabled on a port configured as a telephony port or a call server port, (but not an uplink port), all VLAN configuration is dynamic (including user configuration). When removing the configuration for a port (for example, when changing a port so that it is no longer a call server port or a telephony port), the configuration from NVRAM is restored. Once restored, the user configuration is permanent again. For an uplink port, any user configuration made while ADAC was enabled on the port is saved.
- For telephony ports, the NVRAM VLAN configuration is restored in two cases: when the ADAC configuration is removed due to the removal of the IP Phone, or when ADAC is disabled for that port.
- The VLAN Configuration Control (VCC) rules, other than those for the Flexible mode, are skipped internally by ADAC configuring VLANs. Any VLAN settings made automatically by ADAC follow the rules of the Flexible mode, regardless of the current value of VCC. Any settings that you modify manually on ADAC ports follow the current VCC mode, as for a non-ADAC port.
- If you change the preset values of Tagging and PVID when ADAC is running in Tagged-Frames mode, future auto-configurations apply the new values. Changing the preset has no effect on current configured Tagging and PVID values.
- You can change the nonADAC VLANs on a port without disabling ADAC.

ADAC and stacking

In a stack, global ADAC settings of the base unit applies across the stack, except for port settings (for Call Server port, Uplink port and Telephony ports).

The ADAC port states are taken from each unit. Therefore, unit ports have the same ADAC status in a stack as in standalone mode.

If two or more units each have Call Server ports configured in standalone mode and are then joined together in a stack, the Call Server ports with the lowest interface number in the stack are elected as the stack Call Server ports, until the available 8 call-server slots are configured, or all the available call-server ports from all units are elected.

This same scenario occurs for the Uplink port.

The Ethernet Routing Switch 5000 Series supports up to 8 ADAC call-server links and 8 uplinks. The call-server ports are individual ports. The uplink ports can be individual ports or any combination of MLT, DMLT or LAG, for each switch or stack.

Call Server Ports or Uplink Ports

If ADAC is operating in either the Untagged-Frames-Advanced or Tagged-Frames operating mode and you reset the unit that provides all the Call Server and Uplink ports, the feature does not remain operational, since a minimum of one call-server or uplink port required in this mode. In this scenario, the feature temporarily disables until the unit with the Call Server and/or Uplink port(s) rejoins the stack and the configuration becomes valid again.

If the ADAC global configuration changes on the base unit while the feature is temporarily disabled, the feature stays disabled regardless of where the Call Server or Uplink port are located when their unit rejoins the stack. Changing Auto-Detection on Telephony ports has no effect on the global settings.

Uplink port as part of MLT in a stack

To configure the Uplink port to be part of a distributed MLT in a stack, you must first configure and enable the MLT, and then you can select one of the MLT members as the Uplink port. More ports from the same MLT cannot be configured as different uplink ports.

If the unit containing the Uplink port in a stack is removed from the stack, the lowest port from the same MLT becomes the new original Uplink port.

After joining the stack, the lowest Uplink port is elected as the original uplink port from the given DMLT.

When you disable the MLT, the Uplink configuration is removed for all trunk members except for the original Uplink port.

ADAC and LACP enabled on an Uplink port

To set the Uplink port as LACP-enabled, you must first configure and enable LACP on the port, and then you can set the port as the Uplink port. You cannot set up more ports from the same LAG as different Uplink ports.

Due to the dynamic configuration of VLANs, you are not allowed to:

- enable LACP on a preconfigured Uplink port
- enable LACP on a port with the same admin key as the ADAC Uplink ports
- change the admin key of any member of the ADAC Uplink ports
- · set the admin key for a LACP-enabled port to the same value as the Uplink port

When ADAC sets the configuration for the Uplink port, the VLAN and QoS configuration is applied for all LACP-enabled (active or passive) ports belonging to the same LAG as the Uplink port.

Any changes to the LAG mode, from Active to Passive or from Passive to Active, have no effect on ADAC.

Uplink port as part of LACP in a stack

In a stack, LAGs containing the Uplink port operate similarly to MLTs containing the Uplink port.

If the unit containing the Uplink port in a stack is removed from the stack, the lowest port from the same LAG becomes the new original Uplink port.

After rebooting a stack, each unit that has a port member belonging to the Uplink LAG is configured as an Uplink port on the unit. After joining the stack, the lowest Uplink port becomes the new original stack Uplink port.

When you disable the LAG, the Uplink configuration is removed for all trunk members except for the original Uplink port.

After you remove the LAG, you cannot re-enable the configuration for the Uplink port. You must remove the Uplink, reconfigure the LAG, and then set the Uplink port again.

ADAC and EAP configuration

ADAC and EAP are mutually exclusive on the Call Server port and the Uplink port.

You can enable both ADAC and EAP on telephony ports. Users connected behind phone can be authenticated either locally, as non-EAPOL clients or by a RADIUS server as EAPOL or Non-EAPOL clients. Also Guest VLAN is allowed on ports with ADAC and EAPOL/Non-EAPOL enabled

When you configure ADAC and EAP, the following restrictions apply:

- When ADAC is enabled, you cannot enable or disable EAP or EAP Multihost on the port.
- You can enable ADAC on the port only if:
 - EAP is disabled per port

OR

- EAP and Multihost are enabled per port

EAP does not change the VLAN configuration for ADAC-enabled ports. ADAC changes to the VLAN configuration take priority.

EAP makes its own VLAN configurations on a port, depending on whether use of Radius Assigned VLAN, Guest VLAN or Fail Open VLAN are enabled, however, the ADAC VLAN settings for the port are not removed or affected in any way. The port will remain in the voice VLAN configured for ADAC.

ADAC user restrictions

Once ADAC is enabled, you cannot:

- Delete the Voice-VLAN.
- Remove auto-configured ports from Voice-VLAN.

- View or remove any QoS setting made by ADAC (auto-configured settings).
- Set the Voice-VLAN as Management VLAN.

You can:

- Add non-ADAC ports to and remove non-ADAC ports from the Voice-VLAN. (Configuration is static.)
- Change the tagging and PVID of all non-ADAC ports in the Voice-VLAN. (Configuration is static.)
- Change the tagging and PVID of all ADAC-enabled ports in the Voice-VLAN (Configuration is dynamic.)

Disabling ADAC

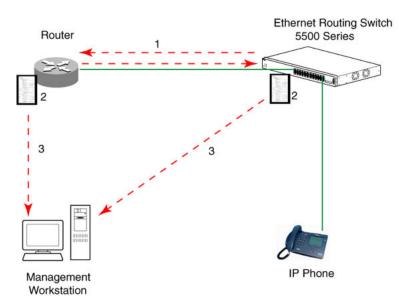
Disabling the ADAC feature deletes all configurations and restores the pre-ADAC port configurations saved in NVRAM for all ADAC-enabled ports (Telephony, Call Server, and Uplink).

Chapter 9: LLDP fundamentals

The information in this section provides an overview of LLDP fundamentals.

LLDP overview

Release 6.3 software supports the Link Layer Discovery Protocol (LLDP) (IEEE 802.1ab), which enables stations connected to a LAN to advertise their capabilities to each other, enabling the discovery of physical topology information for network management. LLDP-compatible stations can consist of any interconnection device including PCs, IP Phones, switches, and routers. Each LLDP station stores LLDP information in a standard Management Information Base (MIB), making it possible for a network management system (NMS) or application to access the information.


Each LLDP station:

- advertises connectivity and management information about the local station to adjacent stations on the same 802 LAN (802.3 Ethernet with 5000 Series).
- receives network management information from adjacent stations on the same LAN.

LLDP also allows for the discovery of certain configuration inconsistencies or malfunctions that can result in impaired communications at higher layers. For example, LLDP can be used to discover duplex mismatches between an IP Phone and the connected switch.

LLDP is compatible with IETF PROTO MIB (IETF RFC 2922).

The following figure shows an example of how LLDP works in a network.

Figure 35: LLDP: how it works

- 1. The Ethernet Routing Switch and LLDP-enabled router advertise chassis and port IDs and system descriptions (if enabled) to each other.
- 2. The devices store the information about each other in local MIB databases, accessible by using SNMP.
- 3. A network management system retrieves the data stored by each device and builds a network topology map.

LLDP operational modes

LLDP is a one-way protocol. An LLDP agent can transmit information about the capabilities and current status of the system associated with its MAC service access point (MSAP) identifier. The LLDP agent also can receive information about the capabilities and current status of the system associated with a remote MSAP identifier. However, LLDP agents cannot solicit information from each other.

You can configure the local LLDP agent to transmit only, receive only, or to both transmit and receive LLDP information. You can configure the state for LLDP reception and transmission using SNMP or ACLI commands.

Connectivity and management information

The information fields in each LLDP frame are contained in a Link Layer Discovery Protocol Data Unit (LLDPDU) as a sequence of short, variable length information elements known as TLVs (type, length, value).

Each LLDPDU includes the following four mandatory TLVs:

- Chassis ID TLV
- Port ID TLV
- Time To Live TLV
- End Of LLDPDU TLV

The chassis ID and the port ID values concatenate to form a logical MSAP identifier that the recipient uses to identify the sending LLDP agent and port.

A non-zero value in the Time to Live (TTL) field of the TTL TLV indicates to the receiving LLDP agent how long the LLDPDU information from the MSAP identifier remains valid. The receiving LLDP agent automatically discards all LLDPDU information, if the sender fails to update it in a timely manner. A zero value in TTL field of Time To Live TLV tells the receiving LLDP agent to discard the information associated with the LLDPDU MSAP identifier.

In addition to the four mandatory TLVs, Release 6.3 software supports the TLV extension set consisting of Management TLVs and organizationally-specific TLVs. Organizationally-specific TLVs are defined by either the professional organizations or the individual vendors that are involved with the particular functionality being implemented. You can specify which of these optional TLVs to include in the transmitted LLDPDUs for each port.

Management TLVs

The optional management TLVs are as follows:

- Port Description TLV
- System Name TLV
- System Description TLV
- System Capabilities TLV (indicates both the system supported capabilities and enabled capabilities, such as end station, bridge, or router)
- Management Address TLV

IEEE 802.1 organizationally-specific TLVs

The optional IEEE 802.1 organizationally-specifc TLVs are:

- Port VLAN ID TLV contains the local port PVID.
- Port And Protocol VLAN ID TLV contains the VLAN IDs of the port and protocol VLANs that contain the local port.
- VLAN Name TLV contains the VLAN names of the VLANs that contain the local port.
- Protocol Identity TLV advertises the protocol supported. The following values are used for supported protocols on the 5000 Series:
 - Stp protocol {0x00,0x26,0x42,0x42,0x03, 0x00, 0x00, 0x00}

- Rstp protocol string {0x00,0x27,0x42,0x42,0x03, 0x00, 0x00, 0x02}
- Mstp protocol string {0x00,0x69,0x42,0x42,0x03, 0x00, 0x00, 0x03}
- Eap protocol string {0x88, 0x8E, 0x01}
- Lldp protocol string {0x88, 0xCC}

IEEE 802.3 organizationally-specific TLVs

The optional IEEE 802.3 organizationally-specifc TLVs are:

- MAC/PHY Configuration/Status TLV indicates the autonegotiation capability and the speed and duplex status of IEEE 802.3 MAC/PHYs.
- Power-Via-MDI TLV indicates the capabilities and current status of IEEE 802.3 PMDs that can provide power over twisted-pair copper links.
- Link Aggregation TLV indicates the current link aggregation status of IEEE 802.3 MACs.
- Maximum Frame Size TLV indicates the maximum supported 802.3 frame size.

Organizationally-specific TLVs for MED devices

The optional organizationally-specific TLVs for use by Media Endpoint Devices (MED) and MED network connectivity devices are:

- Capabilities TLV enables a network element to advertise the LLDP-MED TLVs it is capable of supporting.
- Network Policy Discovery TLV is a fixed length TLV that enables both network connectivity devices and endpoints to advertise VLAN type, VLAN identifier (VID), and Layer 2 and Layer 3 priorities associated with a specific set of applications on a port. In addition, an LLDP-MED endpoint advertises this TLV for supported application types to enable the discovery of specific policy information and the diagnosis of network policy configuration mismatch issues.
- Location Identification TLV allows network connectivity devices to advertise the appropriate location identifier information for an endpoint to use in the context of location-based applications. The Location Identification Discovery extension enables the advertisement of location identifier information to Communication Endpoint Devices (Class III), based on the configuration of the Network Connectivity Device to which it is connected. This is expected to be related to wiremap or similar network topology data, such that the configuration of the Network Connectivity Device can uniquely identify the physical location of the connected MED Endpoint, and hence the correct location identifier information for it to use.
- Extended Power-via-MDI TLV enables advanced power management between an LLDP-MED endpoint and network connectivity devices. The Extended Power-via-MDI TLV enables the advertisement of fine grained power requirement details, endpoint power priority, and power status for both endpoint and network connectivity devices.
- Inventory TLVs provide switch information. The LLDP Inventory TLVs consist of the following:
 - LLDP-MED Hardware Revision TLV allows the device to advertise its hardware revision.

- LLDP-MED Firmware Revision TLV allows the device to advertise its firmware revision.
- LLDP-MED Software Revision TLV allows the device to advertise its software revision.
- LLDP-MED Serial Number TLV allows the device to advertise its serial number.
- **LLDP-MED Manufacturer Name TLV** allows the device to advertise the name of its manufacturer.
- LLDP-MED Model Name TLV allows the device to advertise its model name

You can also use the **show sys-info** command to display information about the Inventory TLVs.

Trasmitting LLDPDUs

When a transmit cycle is initiated, the LLDP manager extracts the managed objects from the LLDP local system MIB and formats this information into TLVs. TLVs are inserted into the LLDPDU.

LLDPDU are regularly transmitted at a user-configurable transmit interval (*tx-interval*) or when any of the variables contained in the LLPDU is modified on the local system (such as system name or management address).

Tx-delay is the minimum delay between successive LLDP frame transmissions.

TLV system MIBs

The LLDP local system MIB stores the information for constructing the various TLVs to be sent. The LLDP remote systems MIB stores the information received from remote LLDP agents.

LLDPDU and TLV error handling

LLDPDUs and TLVs that contain detectable errors are discarded. TLVs that are not recognized, but that also contain no basic format errors, are assumed to be validated and are stored for possible later retrieval by network management.

Time to live interval

The Time to live interval represents the tx-interval multiplied by the tx-hold-multiplier.

Med fast start

Med fast start provides a burst of LLDPDU when the system initializes an LLDP MED transmission.

802.1AB MED network policies

You can configure 802.1AB MED network policies to dynamically configure voice VLAN, DSCP, priority, and VLAN tagging on the switch for voice traffic received from an IP phone. When you enable LLDP and configure the MED network policies on the switch, the switch sends the network policies to the IP Phone. The IP phone processes the data in the LLDP PDU and transmits the voice traffic with the appropriate VLAN ID, VLAN tagging, DSCP and priority information.

You can configure MED network policies on a switch port that has ADAC enabled. The network policies have priority over the ADAC configuration on the port.

When you enable Automatic QoS, the MED network policy changes to DSCP 47 (0x2F) from the user defined DSCP. The DSCP is set to a recognizable value.

An LLDP compliant IP phone uses the received DSCP when receiving voice traffic so that the traffic is recognized by the Avaya Automatic QoS and prioritizes accordingly. This feature is automatically enabled when Avaya Automatic QoS is enabled.

802.1AB integration

802.1AB integration provides a set of LLDP TLVs for Avaya IP telephone support. You can select which Avaya IP phone support TLVs can be transmitted from individual switch ports by enabling or disabling TLV transmit flags for the port. The TLV transmit flags and TLV configuration operate independently of each other. Therefore, you must enable the transmit flag on a switch port for a specific TLV, before the port can transmit that TLV to an Avaya IP phone.

A switch port does not transmit Avaya IP phone support TLVs unless the port detects a connected Avaya IP phone.

PoE conservation level request TLV

With the PoE conservation level request TLV, you can configure the switch to request that an Avaya IP phone, connected to a switch port, operate at a specific power conservation level. The requested conservation level value for the switch can range from 0 to 255, but an Avaya IP Phone can only support a maximum of 243 levels. If you request a power conservation level higher than the maximum conservation level an Avaya IP Phone can support, the phone reverts to the maximum supported power conservation level. If you select a value of 0 for the PoE conservation level request, the switch does not request a power conservation level for an Avaya IP phone.

If you configure the PoE conservation level request TLV on a port and you enable energy-saver for the port, the TLV value is temporarily modified for maximum power savings by the switch. When you disable energy-saver for the port, the switch automatically restores the power conservation level request TLV to the previous value.

If you configure the PoE conservation level on a port while AES is active on the port and the maximum PoE Conservation level for the switch is 255, the switch replaces the PoE conservation level stored for AES restoration with the new value you configured for the port.

By default, the transmission of PoE conservation level request TLV is enabled on all PoE capable switch ports.

You can only configure the PoE conservation level request TLV on switches that support PoE.

PoE conservation level support TLV

With the PoE conservation level support TLV, an Avaya IP phone transmits information about current power save level, typical power consumption, maximum power consumption, and power conservation level of the IP phone, to a switch port.

Call server TLV

With the call server TLV, you can configure the switch to advertise the IP addresses of a maximum of eight call servers to connected Avaya IP phones. Avaya IP phones use the IP address information to connect to a call server.

Avaya IP phones use the call server TLV to report which call server it is connected to back to the switch.

The call server TLV supports IPv4 addresses only.

By default, the transmission of the call server TLV is enabled for all ports.

File server TLV

With the file server TLV, you can configure the switch to advertise the IP addresses of a maximum of four file servers to connected Avaya IP phones. Avaya IP phones use the IP address information to connect to a file server.

Avaya IP phones use the file server TLV to report which file server it is connected to back to the switch.

The file server TLV supports IPv4 addresses only.

By default, the transmission of the file server TLV is enabled for all ports.

😵 Note:

If your Avaya IP Handset uses SIP, 802.1AB (LLDP) TLVs do not provide all information for the IP Phone. You must specify a fileserver IP address TLV so the IP phone can download the SIP configuration information, because the IP Phone retrieves information related to the SIP domain, port number and transport protocol from the file server.

802.1Q framing TLV

With the 802.1Q framing TLV, you can configure the switch to exchange Layer 2 priority tagging information with Avaya IP phones.

Because the 802.1Q framing TLV operates as an extension of the LLDP Network Policy TLV, you must enable the LLDP MED Capabilities and LLDP MED Network Policy TLVs for the 802.1Q framing TLV to function.

By default, the transmission of the 802.1Q Framing TLV is enabled for all ports.

Tagging mode for this TLV works as follows:

- If "tagged" is selected, the phone uses tagging according to the value received by the phone from the LLDP-MED Network Policy TLV.
- If "non-tagged" is selected, the phone does not tag frames with 802.1Q.
- If "auto" is selected, the phone attempts what is present in the LLDP-MED. If that fails (no information available), it tries sending priority-tagged frames according to the configuration from the server. If that fails (no configuration for priority on the IP phone), the phone sends traffic untagged.

Phone IP TLV

Avaya IP phones use the phone IP TLV to advertise IP phone IP address configuration information to the switch.

The phone IP TLV supports IPv4 addresses only.

ADAC and LLDP policy interaction

You can create ADAC and LLDP policies on the same port. A user-configured LLDP-MED network policy takes precedence over an ADAC auto-configured LLDP-MED network policy, and will overwrite an existing ADAC policy.

Since ADAC policies are dynamically auto-configured, if you delete the previously configured policy, the ADAC auto-configured policy is not restored. For the ADAC auto-configured policy to be reapplied, you must unplug and then plug in the IP phone in order for the ADAC auto-discovery and auto-configuration process to take place again.

Chapter 10: VLAN configuration using ACLI

The Avaya Command Line Interface (ACLI) commands detailed in this section allow for the creation and management of VLANs. Depending on the type of VLAN being created or managed, the command mode needed to execute these commands can differ.

Displaying VLAN information

Use the following procedure to display the number, name, type, protocol, user PID, state of a VLAN and whether it is a management VLAN.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show vlan [id <vid_list>] [type {port | protocol-decEther2 |
protocol-ipEther2| protocol-ipv6Ether2 | protocol-ipx802.2 |
protocol-ipx802.3 | protocol-ipxEther2 | protocol-ipxSnap |
protocol-Netbios | protocol-RarpEther2 | protocol-sna802.2 |
protocol-snaEther2 | protocol-Userdef | protocol-vinesEther2 |
protocol-xnsEther2 ]
```

Variable definitions

Variable	Value
id <vid_list></vid_list>	Enter as an individual VLAN ID to display a single VLAN or as a range or list of VLAN IDs to display multiple VLANs simultaneously. A VLAN ID can range from 1 to 4094.
type	Enter the type of VLAN to display:
	• port - port-based
	 protocol - protocol-based (see following list)
Protocol Parameter	Description

Table continues...

Variable	Value
protocol-ipEther2	Specifies an ipEther2 protocol-based VLAN.
protocol-ipx802.3	Specifies an ipx802.3 protocol-based VLAN.
protocol-ipx802.2	Specifies an ipx802.2 protocol-based VLAN.
protocol-ipxSnap	Specifies an ipxSnap protocol-based VLAN.
protocol-ipxEther2	Specifies an ipxEther2 protocol-based VLAN.
protocol-decEther2	Specifies a decEther2 protocol-based VLAN.
protocol-sna802.2	Specifies an sna802.2 protocol-based VLAN.
protocol-snaEther2	Specifies an snaEther2 protocol-based VLAN.
protocol-Netbios	Specifies a NetBIOS protocol-based VLAN.
protocol-xnsEther2	Specifies an xnsEther2 protocol-based VLAN.
protocol-vinesEther2	Specifies a vinesEther2 protocol-based VLAN.
protocol-ipv6Ether2	Specifies an ipv6Ether2 protocol-based VLAN.
protocol-Userdef	Specifies a user-defined protocol-based VLAN.
protocol-RarpEther2	Specifies a RarpEther2 protocol-based VLAN.

Displaying VLAN interface information

Use the following procedure to display VLAN settings associated with a port, including tagging information, PVID number, priority, and filtering information for tagged, untagged, and unregistered frames.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show vlan interface info [<portlist>]
```

Displaying VLAN port membership

Use the following procedure to display port memberships in VLANs.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show vlan interface vids [<portlist>]
```

Setting the management VLAN

Use the following procedure to set a VLAN as the management VLAN.

Procedure steps

1. Use the following command from Global Configuration mode.

```
vlan mgmt <1-4094>
```

Resetting the management VLAN to default

Use the following procedure to reset the management VLAN to VLAN1.

Procedure steps

1. Use the following command from Global Configuration mode.

default vlan mgmt

Displaying voice VLAN information

Use this procedure to display voice VLAN information.

Procedure steps

- 1. Log on to the Privileged EXEC mode in ACLI.
- 2. At the command prompt, enter the following command:

```
show vlan voice-vlan
```

Creating a VLAN

Use the following procedure to create a VLAN. A VLAN is created by setting the state of a previously nonexistent VLAN.

Procedure steps

```
1. Use the following command from Global Configuration mode.
```

```
vlan create <vid_list> [name <line>] type {port [cist | msti |
remote-span | voice-vlan] | protocol-decEther2 [cist | msti] |
protocol-decOtherEther2 [cist | msti]| protocol-ipEther2 [cist |
msti] | protocol-ipv6Ether2 [cist | msti]| protocol-ipx802.2 [cist |
msti]| protocol-ipx802.3 [cist | msti]| protocol-ipxEther2 [cist |
msti]| protocol-ipxSnap [cist | msti]| protocol-Netbios [cist |
msti]| protocol-RarpEther2 [cist | msti] | protocol-sna802.3 [cist |
msti] | protocol-snaEther2 [cist | msti] | protocol-Userdef {ether
<4096-65534> | llc <1-65534> | snap <1-65534> | protocol-
vinesEther2 [cist | msti] | protocol-
voice-vlan }
```

Variable definitions

Variable	Value
<vid_list></vid_list>	Enter as an individual VLAN ID to create a single VLAN or enter as a range or list of VLAN IDs to create multiple VLANs simultaneously. A VLAN ID can range from 1 to 4094.
name <line></line>	Enter the name of the VLAN to create.
	😵 Note:
	Do not enter a value for this parameter when you are creating multiple VLANs simultaneously.
type	Enter the type of VLAN to create:
	• port - port-based
	- remote-span - specifies an RSPAN vlan
	- voice-vlan - specifies a voice vlan
	 protocol - protocol-based (see following list)
	 voice-vlan - specify as a voice VLAN
protocol-decEther2	Specifies a decEther2 protocol-based VLAN.
protocol-decOtherEther2	Specifies a decOtherEther2 protocol-based VLAN.
protocol-ipEther2	Specifies an ipEther2 protocol-based VLAN.
protocol-ipv6Ether2	Specifies an ipv6Ether2 protocol-based VLAN.
protocol-ipx802.2	Specifies an ipx802.2 protocol-based VLAN.
protocol-ipx802.3	Specifies an ipx802.3 protocol-based VLAN.

Table continues...

Variable	Value
protocol-ipxEther2	Specifies an ipxEther2 protocol-based VLAN.
protocol-ipxSnap	Specifies an ipxSnap protocol-based VLAN.
protocol-Netbios	Specifies a NetBIOS protocol-based VLAN.
protocol-RarpEther2	Specifies a RarpEther2 protocol-based VLAN.
protocol-sna802.3	Specifies an sna802.3 protocol-based VLAN.
protocol-snaEther2	Specifies an snaEther2 protocol-based VLAN.
protocol-Userdef {ether <4096–65534> llc <1–65534> snap <1–65534>}	Specifies a user-defined protocol-based VLAN.
protocol-vinesEther2	Specifies a vinesEther2 protocol-based VLAN.
protocol-xnsEther2	Specifies a user-defined protocol-based VLAN.
[cist msti]	Specifies to add the VLAN to CIST or MSTI. These options are available only when the Spanning Tree administration operating mode is MSTP.

Deleting a VLAN

Use the following procedure to delete a VLAN.

Procedure steps

1. Use the following command from Global Configuration mode.

```
vlan delete <2-4094>
```

Disabling a voice VLAN

Use this procedure to disable a VLAN or a list of VLANs as a voice VLAN.

Procedure steps

- 1. Log on to the Global Configuration mode in ACLI.
- 2. At the command prompt, enter the following command:

```
no vlan <vid_list> voice-vlan
```

Variable definitions

The following table describes the parameters for the no vlan command.

Variable	Value
<vid_list></vid_list>	Enter as an individual VLAN ID to disable a single VLAN or enter as a range or list of VLAN IDs to disable multiple VLANs simultaneously. A VLAN ID can range from 1 to 4094.
voice-vlan	Disable the specified VLAN(s) as a voice VLAN

Modifying VLAN MAC address flooding

Use the following procedure to remove MAC addresses from the list of addresses for which flooding is allowed. This procedure can also be used as an alternate method of deleting a VLAN.

Procedure steps

1. Use the following command from Global Configuration mode.

no vlan [<2-4094>][igmp unknown-mcast-allow-flood <H.H.H>]

Configuring VLAN name

Use the following procedure to configure or modify the name of an existing VLAN.

Procedure steps

1. Use the following command from Global Configuration mode.

```
vlan name <1-4094> <line>
```

Enabling automatic PVID

Use the following procedure to enable the automatic PVID feature.

Procedure steps

1. To enable automatic PVID, use the following command from Global Configuration mode.

```
[no] auto-pvid
```

Use the no form of this command to disable

Configuring VLAN port settings

Use the following procedure to configure VLAN-related settings for a port.

Procedure steps

1. Use the following command from Global Configuration mode.

```
vlan ports [<portlist>] [tagging {enable | disable | tagAll |
untagAll | tagPvidOnly | untagPvidOnly}] [pvid <1-4094>] [filter-
untagged-frame {enable | disable}] [filter-unregistered-frames
{enable | disable}] [priority <0-7>] [name <line>]
```

Variable definitions

Variable	Value
<portlist></portlist>	Enter the port numbers to be configured for a VLAN.
tagging {enable disable tagAll untagAll tagPvidOnly untagPvidOnly}	Enables or disables the port as a tagged VLAN member for egressing packet.
pvid <1-4094>	Sets the PVID of the port to the specified VLAN.
filter-untagged-frame {enable disable}	Enables or disables the port to filter received untagged packets.
filter-unregistered-frames {enable disable}	Enables or disables the port to filter received unregistered packets. Enabling this feature on a port means that any frames with a VID to which the port does not belong to are discarded.
priority <0-7>	Sets the port as a priority for the switch to consider as it forwards received packets.
name <line></line>	Enter the name you want for this port.
	😣 Note:
	This option can only be used if a single port is specified in the <portlist>.</portlist>

Configuring VLAN members

Use the following procedure to add or delete a port from a VLAN.

Procedure steps

1. Use the following command from Global Configuration mode.

```
vlan members [add | remove] <1-4094> <portlist>
```

Variable definitions

Variable	Value
add remove	Adds a port to or removes a port from a VLAN.
	😸 Note:
	If this parameter is omitted, set the exact port membership for the VLAN; the prior port membership of the VLAN is discarded and replaced by the new list of ports.
<1-4094>	Specifies the target VLAN.
portlist	Enter the list of ports to be added, removed, or assigned to the VLAN.

Configuring VLAN Configuration Control

VLAN Configuration Control (VCC) allows a switch administrator to control how VLANs are modified. VLAN Configuration Control is a superset of the existing AutoPVID functionality and incorporates this functionality for backwards compatibility. VLAN Configuration Control is globally applied to all VLANs on the switch.

VLAN Configuration Control offers four options for controlling VLAN modification:

- Strict
- Automatic
- AutoPVID
- Flexible

😵 Note:

The factory default setting is Strict.

VLAN Configuration Control is only applied to ports with the tagging modes of **Untag All** and **Tag PVID Only**.

To configure VCC using the ACLI, refer to the following commands:

Displaying VLAN Configuration Control settings

Use the following procedure to display the current VLAN Configuration Control setting.

Procedure steps

1. Use the following command from Global Configuration mode.

```
show vlan configcontrol
```

Modifying VLAN Configuration Control settings

Use the following procedure to modify the current VLAN Configuration Control setting. This command applies the selected option to all VLANs on the switch.

Procedure steps

1. Use the following command from Global Configuration mode.

```
vlan configcontrol <vcc_option>
```

Variable definitions

Variable	Value
<vcc_option></vcc_option>	This parameter denotes the VCC option to use on the switch. The valid values are:
	 automatic Changes the VCC option to Automatic.
	 autopvid Changes the VCC option to AutoPVID.
	 flexible Changes the VCC option to Flexible.
	 strict Changes the VCC option to Strict. This is the default VCC value.
	For more information about these options, refer to <u>Configuring</u> <u>VLAN Configuration Control</u> on page 144.

Managing the MAC address forwarding database table

This section shows you how to view the contents of the MAC address forwarding database table, as well as setting the age-out time for the addresses. The following topics are covered:

The MAC flush feature is a direct way to flush MAC addresses from the MAC address table. The MAC flush commands allow flushing of:

- a single MAC address (see <u>Removing a single address from the MAC address table</u> on page 148)
- all addresses from the MAC address table (see Clearing the MAC address table on page 147

- a port or list of ports (see <u>Clearing the MAC address table on an Ethernet interface</u> on page 147)
- a trunk (see Clearing the MAC address table on a trunk on page 148)
- a VLAN (see <u>Clearing the MAC address table on a VLAN</u> on page 147)

MAC flush deletes dynamically learned addresses. MAC flush commands might not be executed instantly once the command is issued. Since flushing the MAC address table is not considered an urgent task, MAC flush commands are assigned the lowest priority and placed in a queue.

The MAC flush commands are supported in ACLI, SNMP, or EDM.

Displaying MAC address forwarding table

Use the following procedure to display the current contents of the MAC address forwarding database table. You can filter the MAC Address table by port number. The MAC address table can store up to 16000 addresses.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show mac-address-table [vid <1-4094>] [aging-time] [address <H.H.H>]
[port <portlist>]
```

Variable definitions

Variable	Value
vid <1-4094>	Enter the number of the VLAN for which you want to display the forwarding database. Default is to display the management VLAN's database.
aging-time	Displays the time in seconds after which an unused entry is removed from the forwarding database.
address <h.h.h></h.h.h>	Displays a specific MAC address if it exists in the database. Enter the MAC address you want displayed.

Configuring MAC address retention

Use the following procedure to set the time during which the switch retains unseen MAC addresses.

Procedure steps

1. Use the following command from Global Configuration mode.

```
mac-address-table aging-time <10-1 000 000>
```

😵 Note:

The aging-time value defines the minimum time during which an unused MAC entry remains in the MAC address table. The maximum time is twice the value of aging-time. Therefore, an

unused MAC address expires in the interval between the value of aging-time and twice the value of aging-time.

Variable definitions

Variable	Value
vid <10-1 000 000>	Enter the aging time in seconds that you want for MAC addresses before they expire.

Setting MAC address retention time to default

Use the following procedure to set the retention time for unseen MAC addresses to 300 seconds.

Procedure steps

1. Use the following command from Global Configuration mode.

```
default mac-address-table aging-time
```

Clearing the MAC address table

Use the following procedure to clear the MAC address table.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
clear mac-address-table
```

Clearing the MAC address table on a VLAN

Use the following procedure to flush the MAC addresses for the specified VLAN.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
clear mac-address-table interface vlan <vid>
```

Clearing the MAC address table on an Ethernet interface

Use the following procedure to flush the MAC addresses for the specified ports. This command does not flush the addresses learned on the trunk.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
clear mac-address-table interface Ethernet <port-list | ALL>
```

Clearing the MAC address table on a trunk

Use the following procedure to flush the MAC addresses for the specified trunk. This command flushes only addresses that are learned on the trunk.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
clear mac-address-table interface mlt <trunk number>
```

Removing a single address from the MAC address table

Use the following procedure to flush one MAC address from the MAC address table.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
clear mac-address-table address <H.H.H>
```

IP directed broadcasting

IP directed broadcasting takes the incoming unicast Ethernet frame, determines that the destination address is the directed broadcast for one of its interfaces, and then forwards the datagram onto the appropriate network using a link-layer broadcast.

IP directed broadcasting in a VLAN forwards direct broadcast packets in two ways:

- Through a connected VLAN subnet to another connected VLAN subnet.
- Through a remote VLAN subnet to the connected VLAN subnet.

By default, this feature is disabled.

You can use the following ACLI commands to configure IP directed broadcasting:

• Enabling IP directed broadcast on page 148

Enabling IP directed broadcast

Use the following procedure to enable or disable IP directed broadcast.

Procedure steps

1. Use the following command from Global Configuration mode.

[no] ip directed-broadcast enable

Use the no variable for this command to disable.

Chapter 11: STP configuration using ACLI

The following sections provide procedures to configure Spanning Tree using ACLI.

Configuring the STP mode

Use the following procedure to configure the Spanning Tree protocol (STP) operational mode to STPG (Avaya Spanning Tree Protocol), RSTP (802.1w Rapid Spanning Tree Protocol), or MSTP (802.1s Multiple Spanning Tree Protocol).

Procedure steps

1. Use the following command from Global Configuration mode.

spanning-tree mode {stpg | rstp | mst}

Configuring STP BPDU Filtering

Use the following procedure to configure STP BPDU Filtering on a port. This command is available in all STP modes (STPG, RSTP, and MSTP).

Procedure steps

1. To enable STP BPDU Filtering, use the following command from Interface Configuration mode.

```
[no] spanning-tree bpdu-filtering [port <portlist>] [enable]
[timeout <10-65535 | 0> ]
```

Use the no form of this command to disable.

2. To default STP BPDU Filtering, use the following command from the Interface Configuration command mode:

default spanning-tree bpdu-filtering [port <portlist>] [enable]
[timeout]

3. To display STP BPDU Filtering, use the following command from the Privileged EXEC mode:

```
show spanning-tree bpdu-filtering [<interface-type>][port
<portlist>]
```

Variable definitions

Variable	Value
port <portlist></portlist>	Specifies the ports affected by the command.
enable	Enables STP BPDU Filtering on the specified ports. The default value is disabled.
timeout <10-65535 0 >	When BPDU filtering is enabled, this indicates the time (in seconds) during which the port remains disabled after it receives a BPDU. The port timer is disabled if this value is set to 0. The default value is 120 seconds.

Creating and managing STGs

To create and manage Spanning Tree Groups (STGs), see the following sections. Depending on the type of Spanning Tree Group that you want to create or manage, the command mode needed to execute these commands can differ.

In the following commands, the omission of any parameters that specify a STG results in the command operating for the default Spanning Tree Group (Spanning Tree Group 1).

Configuring path cost calculation mode

Use the following procedure to set the path cost calculation mode for all Spanning Tree Groups on the switch.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree cost-calc-mode {dot1d | dot1t}
```

Configuring STG port membership mode

Use the following procedure to set the STG port membership mode for all Spanning Tree Groups on the switch.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree port-mode {auto | normal}
```

Displaying STP configuration information

Use the following procedure to display spanning tree configuration information that is specific to either the Spanning Tree Group or to the port.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show spanning-tree [stp <1-8>] {config | port| port-mode | vlans}
```

Variable definitions

Variable	Value
stp <1-8>	Displays specified Spanning Tree Group configuration; enter the number of the group to be displayed.
config port port-mode vlans	Displays spanning tree configuration for:
	 configthe specified (or default) Spanning Tree Group
	 portthe ports within the Spanning Tree Group
	port-modethe port mode
	 vlansthe VLANs that are members of the specified Spanning Tree Group

Creating a Spanning Tree Group

Use the following procedure to create a Spanning Tree Group.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree stp <1-8> create
```

Deleting a Spanning Tree Group

Use the following procedure to delete a Spanning Tree Group.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree stp <1-8> delete
```

Enabling a Spanning Tree Group

Use the following procedure to enable a Spanning Tree Group.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree stp <1-8> enable
```

Disabling a Spanning Tree Group

Use the following procedure to disable a Spanning Tree Group.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree stp <1-8> disable
```

Configuring STP values

Use the following procedure to set STP values by STG.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree [stp <1-8>] [forward-time <4-30>] [hello-time <1-10>]
[max-age <6-40>] [priority {0*0000 | 0*1000| 0*2000 | 0*3000 | ... |
0*E000 | 0*F000}] [tagged-bpdu {enable | disable}] [tagged-bpdu-vid
<1-4094>] [multicast-address <H.H.H>] [add-vlan] [remove-vlan]
```

Variable definitions

Variable	Value
stp <1-8>	Specifies the Spanning Tree Group; enter the STG ID.
forward-time <4-30>	Specifies the forward time of the STG in seconds; the range is 4 30, and the default value is 15.

Variable	Value
hello-time <1-10>	Specifies the hello time of the STG in seconds; the range is 110, and the default value is 2.
max-age <6-40>	Specifies the max-age of the STG in seconds; the range is 6 40, and the default value is 20.
priority {0x000 0x1000 0x2000 0x3000 0xE000 0xF000}	Specifies the spanning tree priority (in Hex); if 802.1T compliant, this value must be a multiple of 0x1000.
tagged-bpdu {enable disable}	Specifies the BPDU as tagged or untagged. The default value for Spanning Tree Group 1 (default group) is untagged; the default for the other groups is tagged.
tagged-bpdu-vid <1-4094>	Specifies the VLAN ID (VID) for the tagged BPDU. The default value is 4001 4008 for STG 1 8, respectively.
multicast-address <h.h.h></h.h.h>	Specifies the spanning tree multicast address.
add-vlan	Adds a VLAN to the Spanning Tree Group.
remove-vlan	Removes a VLAN from the Spanning Tree Group.

Restoring default Spanning Tree values

Use the following procedure to restore default spanning tree values for the Spanning Tree Group.

Procedure steps

1. Use the following command from Global Configuration mode.

```
default spanning-tree [stp <1-8>] [forward-time] [hello-time] [max-
age] [priority] [tagged-bpdu] [multicast address]
```

Variable definitions

Variable	Value
stp <1-8>	Disables the Spanning Tree Group; enter the STG ID.
forward-time	Sets the forward time to the default value of 15 seconds.
hello-time	Sets the hello time to the default value of 2 seconds.
max-age	Sets the maximum age time to the default value of 20 seconds.
priority	Sets spanning tree priority (in Hex); if 802.1T compliant, this value must be a multiple of 0x1000.
tagged-bpdu	Sets the tagging to the default value. The default value for Spanning Tree Group 1 (default group) is untagged; the default for the other groups is tagged.
multicast address	Sets the spanning tree multicast MAC address to the default.

Adding a VLAN to a STG

Use the following procedure to add a VLAN to a specified Spanning Tree Group.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree [stp <1-8>] add-vlan <1-4094>
```

Removing a VLAN from a STG

Use the following procedure to remove a VLAN from a specified Spanning Tree Group.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree [stp <1-8>] remove-vlan <1-4094>
```

Configuring STP and MSTG participation

Use the following procedure to set the Spanning Tree Protocol (STP) and multiple Spanning Tree Group (STG) participation for the ports within the specified Spanning Tree Group.

Procedure steps

1. Use the following command from Interface Configuration mode.

```
[no] spanning-tree [port <portlist>] [stp <1-8>] [learning {disable
| normal | fast}] [cost <1-65535>] [priority]
```

Use the no form of this command to disable.

Variable definitions

Variable	Value
port <portlist></portlist>	Enables the spanning tree for the specified port or ports; enter port or ports you want enabled for the spanning tree.
	😵 Note:
	If you omit this parameter, the system uses the port number you specified when you issued the interface command to enter the Interface Configuration mode.
stp <1-8>	Specifies the spanning tree group; enter the STG ID.

Variable	Value
learning {disable normal fast}	Specifies the STP learning mode:
	 disable disables FastLearn mode
	 normal changes to normal learning mode
	 fast enables FastLearn mode
cost <1-65535>	Specifies the path cost of the spanning tree; range is 1 65535.
priority	Specifies the spanning tree priority for a port as a hexadecimal value. If the Spanning Tree Group is 802.1T compliant, this value must be a multiple of 0x10.

Resetting Spanning Tree values for ports to default

Use the following procedure to set the spanning tree values for the ports within the specified Spanning Tree Group to the factory default settings.

Procedure steps

1. Use the following command from Interface Configuration mode.

```
default spanning-tree [port <portlist>] [stp <1-8>] [learning]
[cost] [priority]
```

Variable	Value
port <portlist></portlist>	Defaults spanning tree for the specified port or ports; enter port or ports to be set to factory spanning tree values.
	😿 Note:
	If this parameter is omitted, the system uses the port number specified when the interface command was used to enter Interface Configuration mode.
stp <1-8>	Specifies the Spanning Tree Group to default; enter the STG ID. This command places the port into the default STG.
	DEFAULT: 1.
learning	Defaults the spanning tree learning mode.
	DEFAULT: Normal mode.
cost	Defaults the path cost.
	DEFAULT: varies depending on the type of port.
priority	Defaults the priority.
	DEFAULT: 0x8000.

Variable definitions

Managing RSTP

Use the following procedures to configure RSTP:

Configuring RSTP parameters

Use the following procedure to set the RSTP parameters which include forward delay, hello time, maximum age time, default path cost version, bridge priority, transmit holdcount, and version for the bridge.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree rstp [ forward-time <4 - 30>] [hello-time <1 - 10>]
[max-age <6 - 40>] [pathcost-type {bits16 | bits32}] [priority
{0000|1000|2000| ...| F000}] [tx-holdcount <1 - 10>] [version {stp-
compatible | rstp}]
```

Variable definitions

Variable	Value
forward-time <4- 30>	Sets the RSTP forward delay for the bridge in seconds; the default is 15.
hello-time <1- 10>	Sets the RSTP hello time delay for the bridge in seconds; the default is 2.
max-age <6 - 40>	Sets the RSTP maximum age time for the bridge in seconds; the default is 20.
pathcost-type {bits16 bits32}	Sets the RSTP default path cost version; the default is bits32.
priority {0000 1000 F000}	Sets the RSTP bridge priority (in hex); the default is 8000.
tx-hold count	Sets the RSTP Transmit Hold Count; the default is 3.
version {stp-compatible rstp}	Sets the RSTP version; the default is rstp.

Configuring RSTP on a port

Use the following procedure to set the RSTP parameters, which include path cost, edge-port indicator, learning mode, point-to-point indicator, priority, and protocol migration indicator on a single port or multiple ports.

Procedure steps

1. Use the following command from Interface Configuration mode.

```
spanning-tree rstp [port <portlist>] [cost <1 - 200000000>][edge-
port {false | true}] [learning {disable | enable}] [p2p {auto |
```

```
force-false | force-true}] [priority {00 | 10 | ... | F0}]
[protocol-migration {false | true}]
```

Variable definitions

Variable	Value
port <portlist></portlist>	Filter on list of ports.
cost <1 - 20000000>	Sets the RSTP path cost on the single or multiple ports; the default is 200000.
edge-port {false true}	Indicates whether the single or multiple ports are assumed to be edge ports. This parameter sets the Admin value of edge port status; the default is false.
learning {disable enable}	Enables or disables RSTP on the single or multiple ports; the default is enable.
p2p {auto force-false force-true}	Indicates whether the single or multiple ports are to be treated as point-to-point links. This command sets the Admin value of P2P Status; the default is force-true.
priority {00 10 F0}	Sets the RSTP port priority on the single or multiple ports; the default is 80.
protocol-migration {false true}	Forces the single or multiple port to transmit RSTP BPDUs when set to true, while operating in RSTP mode; the default is false.

Displaying RSTP configuration

Use the following procedure to display the Rapid Spanning Tree Protocol (RSTP) related bridgelevel configuration details.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show spanning-tree rstp {config | status | statistics}
```

Variable definitions

Variable	Value
config	Displays RSTP bridge-level configuration.
status	Displays RSTP bridge-level role information.
statistics	Displays RSTP bridge-level statistics.

Displaying RSTP port configuration

Use the following procedure to display the Rapid Spanning Tree Protocol (RSTP) related port-level configuration details.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show spanning-tree rstp port {config | status | statistics | role}
[<portlist>]
```

Variable definitions

Variable	Value
config	Displays RSTP port-level configuration.
status	Displays RSTP port-level role information.
statistics	Displays RSTP port-level statistics.
role	Displays RSTP port-level status.

Managing MSTP

Use the following procedures to manage MSTP using ACLI:

Configuring MSTP parameters

Use the following procedure to set the MSTP parameters, which include maximum hop count, maximum number of instances allowed, forward delay time, hello time, maximum age time, default path cost version, priority, transmit hold count, and version for the Cist Bridge.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree mstp [max-hop <600 - 4000>] [forward-time <4 - 30>]
[max-age <6 - 40>] [pathcost-type {bits16 | bits32}] [priority {0000
| 1000 | 2000 | ... | F000}] [tx-hold count <1 - 10>] [version {stp-
compatible | rstp| mstp}] [add-vlan <1 - 4094>] [remove-vlan <1 -
4094>]
```

Variable definitions

Variable	Value
max-hop <600 - 4000>	Sets the MSTP maximum hop count for the CIST bridge; the default is 2000.
forward-time <4 - 30>	Sets the MSTP forward delay for the CIST bridge in seconds; the default is 15.

Variable	Value
max-age <6 - 40>	Sets the MSTP maximum age time for the CIST bridge in seconds; the default is 20.
pathcost-type {bits16 bits32}	Sets the MSTP default path cost version; the default is bits32.
priority {0000 1000 2000 F000}	Sets the MSTP bridge priority for the CIST Bridge; the default is 8000.
tx-holdcount<1 - 10>	Sets the MSTP Transmit Hold Count; the default is 3.
version {stp-compatible rstp mstp}	Sets the MSTP version for the Cist Bridge; the default is mstp.
add-vlan <1 - 4094>	Adds a VLAN to the CIST bridge.
remove-vlan <1 - 4094>	Removes the specified VLAN from the CIST bridge.

Configuring MSTP on a port

Use the following procedure to set the MSTP parameters, which include path cost, hello time, edgeport indicator, learning mode, point-to-point indicator, priority, and protocol migration indicator on the single or multiple ports for the Common Spanning Tree.

Procedure steps

1. Use the following command from Interface Configuration mode.

```
spanning-tree mstp [port <portlist>] [cost <1 - 20000000>][edge-
port {false | true}][hello-time <1 - 10>] [learning {disable |
enable}][p2p {auto | force-false | force-true}][priority {00 | 10 |
< | F0}] [protocol-migration {false | true}]</pre>
```

Variable definitions

Variable	Value
port <portlist></portlist>	Enter a list or range of port numbers.
cost <1 - 20000000>	Sets the MSTP path cost on the single or multiple ports for the CIST; the default is 200000.
hello-time <1 - 10>	Sets the MSTP hello time on the single or multiple ports for the CIST; the default is 2.
edge-port {false true}	Indicates whether the single or multiple ports are assumed to be edge ports. This parameter sets the Admin value of edge port status; the default is false.
learning {disable enable}	Enables or disables MSTP on the single or multiple ports; the default is enable.
p2p {auto force-false force-true}	Indicates whether the single or multiple ports are treated as point-to- point links. This command sets the Admin value of P2P Status; the default is force-true.

Variable	Value
priority {00 10 F0}	Sets the MSTP port priority on the single or multiple ports; the default is 80.
protocol-migration {false true}	Forces the single or multiple ports to transmit MSTP BPDUs when set to true, while operating in MSTP mode; the default is false.

Configuring MSTP region parameters

Use the following procedure to set the MSTP parameters, which include config ID selector, region name, and region version.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree mstp region [config-id-sel <0 - 255>] [region-name <1
- 32 chars>][region-version <0 - 65535>]
```

Variable definitions

Variable	Value
[config-id-sel <0 - 255>]	Sets the MSTP config ID selector; the default is 0.
[region-name <1 - 32 chars>]	Sets the MSTP region name; the default is the bridge MAC address.
[region-version <0 - 65535>]	Sets the MSTP region version; the default is 0.

Configuring MSTP parameters

Use the following procedure to set the MSTP parameters, which include forward delay time, hellotime, maximum hop count, priority, and VLAN mapping for the bridge instance.

Procedure steps

1. Use the following command from Global Configuration mode.

```
spanning-tree mstp msti <1 - 7> [priority{0000|1000|...|F000}] [add-
vlan <vid>] [remove-vlan <vid>] [map-vlans] [enable]
```

Variable definitions

Variable	Value
<1 - 7>	Filter on MSTP instance.
priority {0000 1000 F000}	Sets the MSTP priority for the bridge instance; the default is 8000.
add-vlan <1 - 4094>	Maps the specified VLAN and MSTP bridge instance.
remove-vlan <1 - 4094>	Unmaps the specified VLAN and MSTP bridge instance.

Variable	Value
map-vlans	Map VLANs in the list to MSTP instance.
enable	Enables the MSTP bridge instances.

Disabling a MSTP bridge instance

Use the following procedure to disable a MSTP bridge instance.

Procedure steps

1. Use the following command from Global Configuration mode.

```
no spanning-tree mstp msti <1 - 7> enable
```

Deleting a MSTP bridge instance

Use the following procedure to delete a MSTP bridge-instance.

Procedure steps

1. Use the following command from Global Configuration mode.

```
no spanning-tree mstp msti <1 - 7>
```

Displaying MSTP status

Use the following procedure to display Multi Spanning Tree Protocol (MSTP) related status information known by the selected bridge.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show spanning-tree mstp {config | status | statistics}
```

Variable definitions

Variable	Value
config	Displays the MSTP-related bridge-level VLAN and region information.
status	Displays the MSTP-related bridge-level status information known by the selected bridge.
statistics	Displays the MSTP-related bridge-level statistics.

Displaying MSTP Cist port information

Use the following procedure to display Multi Spanning Tree Protocol (MSTP) Cist Port information maintained by every port of the Common Spanning Tree.

Procedure steps

1. Use the following command from Privileged EXEC mode.

```
show spanning-tree mstp port {config | role | statistics }
[<portlist>]
```

Variable definitions

Variable	Value
<portlist></portlist>	Enter a list or range of port numbers.
config	Displays the MSTP CIST port information maintained by every port of the Common Spanning Tree.
role	Displays MSTP CIST related port role information maintained by every port.
statistics	Displays the MSTP CIST Port statistics maintained by every port.

Displaying MSTP MSTI settings

Use the following procedure to display MSTP MSTI settings.

Procedure steps

1. Use the following command from Global Configuration mode.

```
show spanning-tree mstp msti [config] [statistics] [port {config |
role | statistics}] <1 - 7>
```

Variable definitions

Variable	Value
config	Displays the MSTP instance-specific configuration and the VLAN mapping port.
statistics	Displays MSTP instance-specific statistics.
port {config role statistics}	Displays MSTP instance-specific port information:
	 config: displays MSTI port configuration
	role: displays MSTI port role information

Variable	Value	
	statistics: displays MSTI port statistics	
<1 - 7>	Specifies the MSTI instance for which to display the statistics.	

Chapter 12: MLT Configuration using the ACLI

The Avaya Command Line Interface (ACLI) commands detailed in this section allow for the creation and management of Multi-Link trunks. Depending on the type of Multi-Link trunk being created or managed, the command mode needed to execute these commands can differ.

Displaying MLT configuration and utilization

Use the following procedure to display Multi-Link Trunking (MLT) configuration and utilization.

Procedure steps

1. To display MLT configuration and utilization, use the following command from Privileged EXEC mode.

show mlt [utilization <1-32>]

Job aid: show mlt command output

The following figure displays sample output for the show mlt command.

5698TFD-PWR(config)#sh mlt

Id	Name		Members	Bpdu	Mode	Status	Туре
1	Trunk	#1	NONE	All	Basic	Disabled	
2	Trunk	#2	81-82,89-90	All	Advance	Enabled	Trunk
3	Trunk	#3	NONE	All	Basic	Disabled	
4	Trunk	#4	NONE	All	Basic	Disabled	
5	Trunk	#5	91-92	All	Advance	Enabled	Trunk
6	Trunk	#6	NONE	All	Basic	Disabled	
7	Trunk	#7	NONE	All	Basic	Disabled	
8	Trunk	#8	67-68	All	Advance	Enabled	Trunk
9	Trunk	#9	NONE	All	Basic	Disabled	
10	Trunk	#10	NONE	All	Basic	Disabled	
11	Trunk	#11	NONE	All	Basic	Disabled	
12	Trunk	#12	NONE	All	Basic	Disabled	
13	Trunk	#13	NONE	All	Basic	Disabled	

Configuring a Multi-Link trunk

Use the following procedure to configure a Multi-Link trunk (MLT).

Procedure steps

1. To configure a Multi-Link trunk, use the following command from Global Configuration mode.

```
mlt <id> [name <trunkname>] [enable | disable] [member <portlist>]
[learning {disable | fast | normal}] [bpdu {all-ports | single-
port}] loadbalance {basic | advance}
```

Variable definitions

Variable	Value
id	Enter the trunk ID; the range is 1 to 32.
name <trunkname></trunkname>	Specifies a text name for the trunk; enter up to 16 alphanumeric characters.
enable disable	Enables or disables the trunk.
member <portlist></portlist>	Enter the ports that are members of the trunk.
learning <disable fast="" normal="" =""></disable>	Sets STP learning mode.
bpdu {all-ports single-port}	Sets trunk to send and receive BPDUs on either all ports or a single port.
loadbalance {basic advance}	Sets the MLT load-balancing mode: - basic: MAC-based load- balancing - advance: IP-based load-balancing

Disabling an MLT

Use the following procedure to disable a Multi-Link trunk (MLT).

Procedure steps

1. To disable an MLT, clearing all port members, use the following command from Global Configuration mode:

```
no mlt [<id>]
```

2. To disable an MLT without clearing all port members, use the following command from Global Configuration mode:

mlt [<id>] disable

Displaying MLT properties

Use the following procedure to display the properties of Multi-Link trunks (MLT) participating in Spanning Tree Groups (STG).

Procedure steps

1. To display MLT properties, use the following command from Global Configuration mode.

```
show mlt spanning-tree <1-32>
```

Displaying IP address-based MLT load-balance link calculation

Use this procedure to display MLT hashing information for specific source and destination IP addresses for IP address-based MLTs.

Procedure steps

- 1. Log on to the Privileged EXEC mode in ACLI.
- 2. At the command prompt, enter the following command:

```
show mlt hash-calc <1-32> destination-ip <dest-ip-addr> source-ip
<src-ip-addr>
```

Variable definitions

The following table describes the parameters for the **show mlt hash-calc** command.

Variable	Value
<1–32>	Specifies the MLT ID.
destination <dest-ip-addr></dest-ip-addr>	Specifies the destination IP address.
source-ip <src—ip-addr></src—ip-addr>	Specifies the source IP address.

Displaying MAC address-based MLT load-balance link calculation

Use this procedure to display MLT hashing information for specific source and destination IP addresses for MAC address-based MLTs.

Procedure steps

- 1. Log on to the Privileged EXEC mode in ACLI.
- 2. At the command prompt, enter the following command:

```
show mlt hash-calc <1-32> destination-mac <dest-mac-addr> source-ip
<src-mac-addr>
```

Variable definitions

The following table describes the parameters for the **show mlt hash-calc** command.

Variable	Value
<1–32>	Specifies the MLT ID.
destination <dest-mac-addr></dest-mac-addr>	Specifies the destination MAC address.
source <dest-mac-addr></dest-mac-addr>	Specifies the source MAC address.

Configuring MLT port shutdown when MLT is disabled

The commands listed in following section allow you to enable or disable the shutdown on MLT ports when MLT is disabled.

Enabling shutdown on MLT ports when MLT is disabled

Use the following procedure to enable MLT port shutdown:

Procedure steps

- 1. Log on to the Global Configuration Mode in ACLI
- 2. Enter the following command at the command prompt:
 - mlt shutdown-ports-on-disable [enable]

Variable definitions

Variable	Value
[enable]	Enables the trunk loop prevention on the port.

Disabling MLT port shutdown when MLT is disabled

Use the following procedure to disable a shutdown on MLT ports when MLT is disabled..

Procedure steps

- 1. Log on to the Global Configuration Mode in ACLI.
- 2. Enter the following command at the command prompt:

no mlt shutdown-ports-on-disable

Setting default value to the MLT port shutdown when MLT is disabled

Use the following procedure to set the default value to the MLT port shutdown when MLT is disabled.

Procedure steps

- 1. Log on to the Global Configuration Mode in ACLI.
- 2. Enter the following command:

```
default mlt shutdown-ports-on-disable
```

Displaying the MLT port shutdown status when MLT is disabled

Use the following procedure to display the status of MLT port shutdown when MLT is disabled.

Procedure steps

1. Log on to the PRIV EXEC Mode in ACLI.

2. Enter the following command at the command prompt:

```
show mlt shutdown-ports-on-disable
```

Configuring STP participation for MLTs

Use the following procedure to set Spanning Tree Protocol (STP) participation for Multi-Link trunks (MLT).

Procedure steps

1. To configure STP participation for MLTs, use the following command from Global Configuration mode.

```
mlt spanning-tree <1-32> [stp <1-8, ALL>] [learning {disable |
normal | fast}]
```

Variable definitions

Variable	Value	
<1 - 32>	Specifies the ID of the MLT to associate with the STG.	
stp <1 - 8>	Specifies the spanning tree group.	
learning {disable normal fast}	Specifies the STP learning mode:	
	disable disables learning	
	 normal sets the learning mode to normal 	
	fast sets the learning mode to fast	

Configuring SMLT using the ACLI

😵 Note:

To configure SMLT on the 5000 Series switch, an Advanced License must be purchased that allows this feature to be used.

Setting command mode to MLT Interface mode

Important:

For SMLT to function properly, you must manually disable STP on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. You must also disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

Use the following procedure to set ACLI command mode to MLT Interface mode from which you can configure SMLTs and ISTs.

😵 Note:

You create SLTs from the config-if command mode. For details, see <u>Creating an SLT on a</u> port on page 171.

Procedure steps

1. To set the command mode, use the following command from Global Configuration mode.

```
interface mlt [<1-32>]
```

Creating an SMLT

Important:

For SMLT to function properly, you must manually disable STP on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. You must also disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

Use the following procedure to create an SMLT from an existing MLT.

Procedure steps

1. To create an SMLT, use the following command from Interface Configuration mode.

smlt <1-32>

😵 Note:

Before you can create an SMLT, you must first create and enable an MLT (see <u>Configuring a</u> <u>Multi-Link trunk</u> on page 165).

Creating an IST

Important:

For SMLT to function properly, you must manually disable STP on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. You must also disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

Use the following procedure to create an IST from an existing MLT.

Procedure steps

1. To create an IST, use the following command from MLT Interface Configuration mode.

ist [enable] [peer-ip <A.B.C.D>] [vlan <1-4096>]

The peer IP address is the IP address of the IST VLAN on the peer aggregation switch. A VLAN created on the redundant aggregation switch must also be created on the second aggregation switch. The IST treats the two switches as a single switch. To allow the two switches to communicate, you must assign an IP address to both VLANs.

Variable definitions

Variable	Value
enable	Enables the IST on the MLT specified by the interface mlt command.
vlan <1-4096>	Specifies a VLAN ID for the IST.
peer-ip <a.b.c.d></a.b.c.d>	Specifies the peer IP address for the IST.

Creating an SLT on a port

Important:

For SMLT to function properly, you must manually disable STP on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. You must also disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

Use the following procedure to create an SLT on a port.

Procedure steps

1. To create an SLT on a port, use the following command from Interface Configuration mode.

```
smlt [port <portlist>] <1-512>
```

Variable definitions

Variable	Value
port <portlist></portlist>	Specifies the port to configure as an SLT.
<1-512>	Specifies the ID for the SLT.

Disabling SMLT

Use the following procedure to disable an SMLT.

Procedure steps

1. To disable an SMLT, use the following command from Interface Configuration mode.

```
no smlt <1-32>
```

Disabling IST

Use the following procedure to disable an IST and clear the IST settings.

Procedure steps

1. To disable an IST, use the following command from Interface Configuration mode.

```
no ist [enable] [peer-ip]
```

Variable definitions

Variable	Value
enable	Disables the IST on the MLT specified by the interface mlt command.
vlan <1-4096>	Clears the VLAN ID from the IST.
peer-ip <a.b.c.d></a.b.c.d>	Clears the peer IP address from the IST.

Disabling an SLT on a port

Use the following procedure to disable an SLT on a port.

Procedure steps

1. To disable an SLT on a port, use the following command from Interface Configuration mode.

```
no smlt [port <portlist>]
```

Resetting SMLT to default

Use the following procedure to reset an SMLT to default.

Procedure steps

1. To reset an SMLT to default, use the following command from Interface Configuration mode. default smlt <1-32>

Resetting an IST to default

Use the following procedure to reset an IST to default settings.

Procedure steps

1. To reset an IST to default settings, use the following command from MLT Interface Configuration mode.

```
default ist [enable] [peer-ip]
```

Variable definitions

Variable	Value
enable	Disables the IST on the MLT specified by the interface mlt command.
peer-ip <a.b.c.d></a.b.c.d>	Clears the peer IP address from the IST.

Resetting a SMLT to default

Use the following procedure to reset SLT settings on a port to default.

Procedure steps

1. To reset an SMLT to default, use the following command from Interface Configuration mode.

```
default smlt [port <portlist>] <1-512>
```

Displaying IST parameters

Use the following procedure to display the IST parameters on the switch.

Procedure steps

1. To display IST parameters, use the following command from Privileged EXEC mode.

Displaying IST statistics

Use the following procedure to display IST statistics on the switch.

Procedure steps

1. To display IST statistics, use the following command from Privileged EXEC mode.

show ist stat

Displaying SLT and SMLT configurations

Use the following procedure to display SMLT and SLT configurations on the switch.

Procedure steps

1. To display SLT and SMLT configurations, use the following command from Interface Configuration mode.

```
show smlt [<interface-type>]
```

Variable definitions

Variable	Value
<interface-type></interface-type>	Interface types are
	 mlt: Displays only the MLT-based SMLTs mlt id <1-32>
	 ethernet: Displays only the SLTs slt-id <1-512>

Configuring SLPP using the ACLI

This section provides procedures used to configure Simple Loop Prevention Protocol (SLPP) using the ACLI.

Configuring SLPP transmitting list

Use the following procedures to add a VLAN to the SLPP transmitting list.

Procedure steps

1. To add a VLAN to the SLPP transmitting list, use the following command from Global Configuration mode:

[no] slpp vid <1-4095>

Use the no form of this command to remove a VLAN from the list.

Enabling SLPP

Use the following procedure to globally enable SLPP.

Procedure steps

1. To globally enable SLPP, use the following command from Global Configuration mode:

```
[no] slpp enable
```

Use the **no** form of this command to disable SLPP.

Configuring SLPP PDU transmit interval

Use the following procedure to configure the SLPP PDU transmit interval in milliseconds. The default setting is 500 ms.

Procedure steps

1. To configure the SLPP PDU transmit interval, use the following command from Global Configuration mode:

```
slpp tx-interval <500-5000>
```

Configuring SLPP PDU ether type

Use the following procedure to configure the SLPP PDU ether type value. The default value is 0x8104.

😵 Note:

Values 0x0000 and 0x8100 are disallowed.

Procedure steps

1. To configure the SLPP ether type value, use the following command from Global Configuration mode:

```
slpp ethertype <0x0 - 0xffff>
```

Configuring SLPP port auto enable

Use the following procedure to configure the auto enable timer for ports shut down by SLPP. If the timeout value is 0 (not active), the port will remain disabled until manually enabled by the user. The default value is 0.

Procedure steps

1. To configure the auto enable timer, use the following command from Global Configuration mode:

```
slpp timeout <1-65535>
```

Enabling SLPP PDU receive function per port

Use the following procedure to enable the SLPP PDU received function on a port.

Procedure steps

1. To enable the SLPP PDU received function, use the following command from Ethernet Interface Configuration mode:

```
[no] slpp [port-portList] enable
```

Use the **no** form of this command to disable the function.

Configuring the SLPP PDU receipt threshold

Use the following procedure to configure the number of SLPP PDUs, in the range 1 to 500, that must be received prior to shutting down a port as a result of looping. The default threshold is 5.

Procedure steps

1. To configure the SLPP PDU receipt threshold, use the following command from Ethernet Interface Configuration mode:

slpp [port-portList] packet-rx-threshold <1-500>

2. To configure the SLPP PDU receipt threshold to default value (1), use the following command from Ethernet Interface Configuration mode:

default slpp [port-portList] packet-rx-threshold

Configuring SLPP Guard using ACLI

This section provide the procedures to configure Simple Loop Prevention Protocol (SLPP) Guard using the ACLI.

Selecting an SLPP Guard Ethernet type using ACLI

You can use this procedure to select an SLPP Guard Ethernet type for the switch.

Important:

You must configure Ethertype to match the SLPP Ethernet type on the adjacent core or distribution switches that have SLPP enabled.

Procedure steps

- 1. Enter Global Configuration mode in ACLI.
- 2. Select an SLPP Guard ethernet type by using the following command:

slpp-guard ethertype <0x0600-0xffff>

3. Set the SLPP Guard ethernet type to the default value by using the following command:

default slpp-guard ethertype

Variable definitions

Variable	Value		
<0x0600-0xffff>	Specifies a hexadecimal value ranging from 0x0600 to 0xffff. Use the prefix 0x to type the hexadecimal value.		

Configuring SLPP Guard using ACLI

Use this procedure to configure SLPP Guard for switch ports.

Procedure steps

- 1. Enter Ethernet Interface Configuration mode in ACLI.
- 2. At the command prompt, enter the following command:

```
[default][no] slpp-guard [port <portlist> ][enable][timeout {0|
<10-65535>}]
```

Variable definitions

Variable	Value	
[default]	Sets SLPP Guard parameters to default values for a port or list of ports.	
	😸 Note:	
	The default value for SLPP-guard Ethernet type is: 0x8102.	
[enable]	Enables SLPP Guard parameters for a port or list of ports	
port <portlist></portlist>	Specifies the port or list of ports on which the specified SLPP Guard parameter or parameters are configured.	
[timeout {0 <10-65535>}]	Specifies the time period, in seconds, for which SLPP Guard disables the port. After the timeout period expires, the switch re- enables the port. The timeout value can be 0 or a value ranging from 10 to 65535. With a value of 0, the port remains disabled until it is manually re-enabled. The default timeout value is 60 seconds.	

Variable	Value
[no]	Disables SLPP Guard parameters for a port or list of ports.
	🛪 Note:
	If you use no slpp-guard without parameters (enable or timeout), both settings are disabled, i.e. slpp-guard is disabled and the timeout set to 0 on the specified port(s).

Viewing the SLPP Guard status using ACLI

You can use this procedure to display the SLPP Guard configuration status for the switch or a specific list of ports.

Procedure steps

- 1. Enter User EXEC mode in ACLI.
- 2. At the command prompt, enter the following command:

```
show slpp-guard [<portlist>]
```

Variable definitions

Variable	Value		
<portlist></portlist>	Specifies a list of ports for which to display the SLPP Guard configuration status. If no ports are specified, the configuration status for all ports is displayed.		

Job aid: show slpp-guard command output

The following figure displays sample output for the show slpp-guard command.

	5530-24TFD(config-if)#show slpp-guard						
SLPP-guard Ethertype: 0x1234							
	Unit/Port	Link	Oper	SLPP-guard	State	Timeout	TimerCount
	1/1	Down	Down	Enabled	N/A	100	N/A
	1/2	Down	Down	Enabled	N/A	100	N/A
	1/3	Down	Down	Enabled	N/A	100	N/A
	1/4	Down	Down	Disabled	N/A	60	N/A
	1/5	Down	Down	Disabled	N/A	60	N/A
	1/6	Down	Down	Disabled	N/A	60	N/A
	1/7	Down	Down	Disabled	N/A	60	N/A
	1/8	Down	Down	Disabled	N/A	60	N/A
	1/9	Down	Down	Disabled	N/A	60	N/A
	1/10	Down	Down	Disabled	N/A	60	N/A
	1/11	Down	Down	Disabled	N/A	60	N/A
	1/12	Down	Down	Disabled	N/A	60	N/A
	1/13	Up	Up	Enabled	Monitoring	100	N/A
	1/14	Down	Down	Disabled	N/A	60	N/A
	1/15	Down	Down	Disabled	N/A	60	N/A
	1/16	Down	Down	Disabled	N/A	60	N/A
	1/17	Down	Down	Disabled	N/A	60	N/A
	1/18	Down	Down	Disabled	N/A	60	N/A
	1/19	Down	Down	Disabled	N/A	60	N/A
	1/20	Down	Down	Disabled	N/A	60	N/A

The following example displays sample output of ports disabled by slpp-guard.

5698TFD-PWR (config) #sh slpp-guard 1/31,1/61,2/15,2/86,3/21SLPP-guard Ethertype: 0xefefUnit/Port Link Oper SLPP-guard StateTimeout TimerCount1/31Down Down EnabledBlocking 3002181/61Down Down EnabledBlocking 3002052/15Down Down EnabledBlocking 300462/86Down Down EnabledBlocking 300463/21Down Down EnabledBlocking 30018

Note:

The TimerCount column in the preceding figure indicates the time, in seconds, that elapses after SLPP Guard disables a port. When the value TimerCount value equals the Timeout value, the switch re-enables the port.

Link Aggregation Control Protocol over SMLT using the ACLI

These sections describe commands that assist in the configuration of Link Aggregation Control Protocol (LACP) over SMLT. For more information about the procedure to configure LACP over SMLT, see <u>LACP over SMLT configuration example</u> on page 348.

Configuring an SMLT MAC address

Use the following procedure to configure the SMLT MAC address.

Prerequisites

• Configure an SMLT. For more information, see Creating an SMLT on page 170.

Procedure steps

1. To set the SMLT MAC address, use the following command in Interface Configuration mode:

```
lacp smlt-sys-id<H.H.H>
```

Important:

For information about how to use this command in the procedure to configure LACP over SMLT, see <u>LACP over SMLT configuration example</u> on page 348.

Variable definitions

The following table defines parameters for the lacp smlt-sys-id <H.H.H> command.

Variable	Value	
<h.h.h></h.h.h>	Sets the SMLT MAC address.	

Configuring the default SMLT MAC address

Use the following procedure to configure the default SMLT MAC address to return to the MAC address of the switch.

Procedure steps

1. To configure the default SMLT MAC address, use the following command in Interface Configuration mode:

```
default lacp smlt-sys-id
```

Binding an MLT group to an administrative key and to an SMLT

Use the following procedure to bind an MLT group to an administrative key and to an SMLT.

Prerequisites

- Configure an SMLT. For more information, see Creating an SMLT on page 170.
- Assign an administrative key to selected ports. For more information, see <u>Configuring the</u>
 <u>LACP administrative key</u> on page 186

• Enable LACP on the selected ports. For more information, see <u>Configuring LACP operating</u> <u>mode</u> on page 186.

Procedure steps

1. To bind an MLT group to an administrative key and to an SMLT, use the following command in Global Configuration mode:

lacp key <1-4095> mlt <1-32> smlt <1-512>

Important:

For more information about how to use this command in the procedure to configure LACP over SMLT, see <u>LACP over SMLT configuration example</u> on page 348.

Variable definitions

The following table defines parameters that you can use to Bind an MLT group to an administrative key and to an SMLT.

Variable	Value
<1-4095>	Sets the administrative key value in the range of 1 to 4095.
mlt <1-32>	Sets the ID of the MLT in the range of 1–32.
smlt <1-512>	Sets the ID of the SMLT in the range of 1–512.

Freeing an MLT group

Use the following procedure to free an MLT group from an administrative key and from an SMLT.

Procedure steps

1. To free an MLT group from an administrative key and from an SMLT, use the following command in Global Configuration mode:

```
default lacp key <1-4095>
```

Variable definitions

The following table defines optional parameters that you can use to free an MLT group from an administrative key and from an SMLT.

Variable	Value
<1-4095>	Sets the administrative key value in the range of 1 to 4095

Troubleshooting IST problems

Use the following procedure to troubleshooting IST problems and single-user problems.

Procedure steps

- 1. Ensure that Global IP Routing is enabled.
- 2. Ensure that peers can ping each other.
- 3. Enter the show ist stat command to display the IST message count.

The hello count should increment.

- 4. Enter the show mlt command to display all the MLTs in the switch and their properties, including running type, members, and status. Check the SMLT/SLT numbering: switches connected by SMLT must have the same SMLT IDs.
- 5. Ensure that the IST is up and running by using the show ist command.
- 6. If the IST is not running, ensure that:
 - a. The correct VLAN ID exists on both sides of the IST
 - b. The IST configuration contains the correct local and peer IP addresses
- 7. If IST is running, check whether the SMLT port is operating by using the show smlt command.
 - a. If the current type is SMLT, the status is correct.
 - b. If the current type is NORMAL, the link is running in a normal (single) mode and not in SMLT mode. The reasons for this can be as follows:
 - The remote SMLT link is not operational.
 - The ID is not configured on the other switch. To determine this, check to see whether the SMLT IDs match.
 - The IST is not up and running.

Chapter 13: LACP and VLACP Configuration using the ACLI

This section contains information on the following topics:

Configuring Link Aggregation using the ACLI

This section describes the commands necessary to configure and manage Link Aggregation using the Command Line Interface (ACLI).

To configure Link Aggregation using the ACLI, refer to the following:

Displaying LACP system settings

Use the following procedure to display system-wide LACP settings.

Procedure steps

1. To display system settings, use the following command from Privileged EXEC mode.

```
show lacp system
```

Displaying LACP per port configuration

Use the following procedure to display information on the per-port LACP configuration. Select ports either by port number or by aggregator value.

Procedure steps

1. To display per port configuration, use the following command from Privileged EXEC mode.

show lacp port [<portList> | aggr <1-65535>]

Variable definitions

Variable	Value
<portlist></portlist>	Enter the specific ports for which to display LACP information.
aggr <1-65535>	Enter the aggregator value to display ports that are members of it.

Displaying LACP port mode

Use the following procedure to display the current port mode (default or advanced).

Procedure steps

1. To display the port mode, use the following command from Privileged EXEC mode.

show lacp port-mode

Displaying LACP port statistics

Use the following procedure to displayLACP port statistics. Select ports either by port number or by aggregator value.

Procedure steps

1. To display port statistics, use the following command from Privileged EXEC mode.

```
show lacp stats [<portList> | aggr <1-65535>]
```

Variable definitions

Variable	Value	
<portlist></portlist>	Enter the specific ports for which to display LACP information.	
aggr <1-65535>	Enter the aggregator value to display ports that are members of it.	

Clearing LACP port statistics

Use the following procedure to clear existing LACP port statistics.

Procedure steps

1. To clear statistics, use the following command from Interface Configuration mode.

lacp clear-stats <portList>

Displaying LACP port debug information

Use the following procedure to display port debug information.

Procedure steps

1. To display port debug information, use the following command from Privileged EXEC mode. show lacp debug member [<portList>]

Displaying LACP aggregators

Use the following procedure to display LACP aggregators or LACP trunks.

Procedure steps

1. To display aggregators, use the following command from Privileged EXEC mode.

```
show lacp aggr <1-65535>
```

Configuring LACP system priority

Use the following procedure to configure the LACP system priority. It is used to set the system-wide LACP priority. The factory default priority value is 32768.

Procedure steps

1. To configure system priority, use the following command from Global Configuration mode.

```
lacp system-priority <0-65535>
```

Enabling LACP port aggregation mode

Use the following procedure to enable the port aggregation mode.

Procedure steps

1. To enable the port aggregation mode, use the following command from Interface Configuration mode.

[no] lacp aggregation [port <portList>] enable

Use the **no** form of the command to disable.

Configuring the LACP administrative key

Use the following procedure to configure the administrative LACP key for a set of ports.

Procedure steps

1. To set the administrative key, use the following command from Interface Configuration mode.

```
lacp key [port <portList>] <1-4095>
```

Variable definitions

Variable	Value
port <portlist></portlist>	The ports to configure the LACP key for.
<1-4095>	The LACP key to use.

Configuring LACP operating mode

Use the following procedure to configure the LACP mode of operations for a set of ports.

Procedure steps

1. To configure the operating mode, use the following command from Interface Configuration mode.

```
lacp mode [port <portList>] {active | passive | off}
```

Variable definitions

Variable	Value
port <portlist></portlist>	The ports for which the LACP mode is to be set.
{active passive off}	The type of LACP mode to set for the port. The LACP modes are:
	• active The port will participate as an active Link Aggregation port. Ports in active mode send LACPDUs periodically to the other end to negotiate for link aggregation.
	 passive The port will participate as a passive Link Aggregation port. Ports in passive mode send LACPDUs only when the configuration is changed or when its link partner communicates first.
	off The port does not participate in Link Aggregation.
	LACP requires at least one end of each link to be in active mode.

Configuring per port LACP priority

Use the following procedure to configure the per-port LACP priority for a set of ports.

Procedure steps

1. To configure priority, use the following command from Interface Configuration mode.

```
lacp priority [port <portList>] <0-65535>
```

Variable definitions

Variable	Value	
port <portlist></portlist>	The ports for which to configure LACP priority.	
<0-65535>	The priority value to assign.	

Configuring LACP periodic transmission timeout interval

Use the following procedure to configure the LACP periodic transmission timeout interval for a set of ports.

Procedure steps

1. To configure the interval, use the following command from Interface Configuration mode.

```
lacp timeout-time [port <portList>] {long | short}
```

Variable definitions

Variable	Value
port <portlist></portlist>	The ports for which to configure the timeout interval.
{long short}	Specify the long or short timeout interval.

Configuring LACP port mode

Use the following procedure to configure the LACP port mode on the switch.

Procedure steps

1. To configure the port mode, use the following command from Global Configuration mode.

```
lacp port-mode {default | advance}
```

Variable definitions

Variable	Value
default	Default LACP port mode.
advance	Advanced LACP port mode.

Configuring VLACP using the ACLI

To configure VLACP using the ACLI, refer to the following commands:

😵 Note:

When you set VLACP parameters for a trunk port, the settings are applied to all trunk members.

Enabling VLACP globally

Use the following procedure to globally enable VLACP for the device.

Procedure steps

- 1. To enable VLACP, use the following command from Global Configuration mode.
 - [no] vlacp enable

Use the no form of this command to disable.

Configuring VLACP multicast MAC address

Use the following procedure to set the multicast MAC address used by the device for VLACPDUs.

Procedure steps

1. To configure the multicast MAC address, use the following command from Global Configuration mode.

[no] vlacp macaddress <macaddress>

Use the no form of this command to delete the address.

Configuring VLACP port parameters

Use the following procedure to configure VLACP parameters on a port.

Procedure steps

1. To configure parameters, use the following command from Interface Configuration mode.

```
[no] vlacp port <slot/port> [enable | disable] [timeout <long/
short>] [fast-periodic-time <integer>] [slow-periodic-time
<integer>] [timeout-scale <integer>] [funcmac-addr <mac>] [ethertype
<hex>]
```

Use the no form of this command to remove parameters.

Variable definitions

Variable	Value
<slot port=""></slot>	Specifies the slot and port number.
enable disable	Enables or disables VLACP.
timeout <long short=""></long>	Specifies whether the timeout control value for the port is a long or short timeout.
	 long sets the port timeout value to: (timeout-scale value) × (slow-periodic-time value).
	 short sets the port's timeout value to: (timeout-scale value) × (fast-periodic-time value).
	For example, if the timeout is set to short while the timeout-scale value is 3 and the fast-periodic-time value is 400 ms, the timer expires after 1200 ms.
	Default is long.
fast-periodic-time <integer></integer>	Specifies the number of milliseconds between periodic VLACPDU transmissions using short timeouts.
	The range is 400-20000 milliseconds. Default is 500.
slow-periodic-time <integer></integer>	Specifies the number of milliseconds between periodic VLACPDU transmissions using long timeouts.
	The range is 10000-30000 milliseconds. Default is 30000.
timeout-scale <integer></integer>	Sets a timeout scale for the port, where timeout = (periodic time) × (timeout scale).
	The range is 1-10. Default is 3.
	Note: With VLACP, a short interval exists between a port transmitting a VLACPDU and the partner port receiving the same VLACPDU. However, if the timeout-scale is set to less than 3, the port timeout value does not take into account the normal travel time of the VLACPDU. The port expects to receive a VLACPDU at the same moment the partner port sends it. Therefore, the delayed VLACPDU results in the link being blocked, and then enabled again when the packet arrives. To prevent this scenario from

Variable	Value
	happening, set the timeout-scale to a value larger than 3. VLACP partners must also wait 3 synchronized VLACPDUs to have the link enabled. If VLACP partner miss 3 consecutive packets from the other partner, sets the link as VLACP down.
funcmac-addr <mac></mac>	Specifies the address of the far-end switch/stack configured to be the partner of this switch/stack. If none is configured, any VLACP-enabled switch communicating with the local switch through VLACP PDUs is considered to be the partner switch.
	Note: VLACP has only one multicast MAC address, configured using the vlacp macaddress command, which is the Layer 2 destination address used for the VLACPDUS. The port-specific funcmac-addr parameter does not specify a multicast MAC address, but instead specifies the MAC address of the switch or stack to which this port is sending VLACPDUS. You are not always required to configure funcmac-addr. If not configured, the first VLACP-enabled switch that receives the PDUs from a unit assumes that it is the intended recipient and processes the PDUs accordingly.
	If you want an intermediate switch to drop VLACP packets, configure the funcmac-addr parameter to the desired destination MAC address. With funcmac-addr configured, the intermediate switches do not misinterpret the VLACP packets.
ethertype <hex></hex>	Sets the VLACP protocol identification for this port. Defines the ethertype value of the VLACP frame. The range is 8101-81FF. Default is 8103.

Displaying VLACP status

Use the following procedure to display the status of VLACP on the switch.

Procedure steps

1. To display VLACP status, use the following command from Privileged EXEC mode.

show vlacp

Displaying VLACP port configuration

Use the following procedure to display the VLACP configuration details for a port or list of ports.

Procedure steps

1. To display port configuration, use the following command from Privileged EXEC mode.

show vlacp interface <slot/port>

where <slot/port> specifies a port or list of ports.

Among other properties, the show vlacp interface command displays a column called HAVE PARTNER, with possible values of yes or no .

If HAVE PARTNER is yes when ADMIN ENABLED and OPER ENABLED are true, then that port has received VLACPDUs from a port and those PDUs were recognized as valid according to the interface settings.

If HAVE PARTNER is no , when ADMIN ENABLED is true and OPER ENABLED is FALSE , then the partner for that port is down (that port received at least one correct VLACPDU, but did not receive additional VLACPDUs within the configured timeout period). In this case VLACP blocks the port. This scenario is also seen if only one unit has VLACP enabled and the other has not enabled VLACP.

The **show vlacp** interface command is in the privExec command mode.

😵 Note:

If VLACP is enabled on an interface, the interface will not forward traffic unless it has a valid VLACP partner. If one partner has VLACP enabled and the other is not enabled, the unit with VLACP enabled will not forward traffic, however the unit with VLACP disabled will continue to forward traffic.

Chapter 14: ADAC Configuration using ACLI

Configuring ADAC for Avaya IP Phones using ACLI

You can configure ADAC-related settings using the following ACLI commands.

Configuring global ADAC settings

Use the following procedure to configure the global ADAC settings for the device.

Procedure steps

1. Use the following command from Global Configuration mode.

```
[no] adac [enable] [op-mode <untagged-frames-basic | untagged-
frames-advanced| tagged-frames>][voice-vlan <1-4094>] [uplink-port
<portlist>] [call-server-port <portlist>]
```

Variable definitions

Variable	Value
enable	Enables ADAC on the device.
op-mode <i><untagged-frames-basic< i=""> <i>untagged-frames-advanced</i> <i>tagged-frames ></i></untagged-frames-basic<></i>	 Sets the ADAC operation mode to one of the following: untagged-frames-basic: IP Phones send untagged frames, and the Voice VLAN is not assigned. untagged-frames-advanced: IP Phones send untagged frames, and the Voice VLAN is assigned. tagged-frames: IP Phones send tagged frames.
traps enable	Enables ADAC trap notifications.
voice-vlan <1-4094>	Sets the Voice VLAN ID. The assigned VLAN ID must previously be created as a voice-vlan
uplink-port < <i>slot/port</i> >	Sets the Uplink port.
uplink-port <portlist></portlist>	Sets a maximum of 8 ports as Uplink ports.

Variable	Value
call-server-port < <i>slot/port</i> >	Sets the Call Server port.
call-server-port <ports></ports>	Sets a maximum of 8 ports as Call Server ports.

Restoring default ADAC settings

Use the following procedure to restore the default ADAC settings on the device.

Procedure steps

1. Use the following command from Global Configuration mode.

```
default adac [enable] [op-mode] [traps enable] [voice-vlan] [uplink-
port] [call-server-port]
```

Variable definitions

Variable	Value
enable	Restores the default ADAC administrative state (disabled).
call-server-port	Restores the default Call Server port (none).
op-mode	Restores the default ADAC operation mode (Untagged Frames Basic).
traps enable	Restores the default state for ADAC notifications (enabled).
uplink-port	Restores the default Uplink port (none).
voice-vlan	Restores the default Voice-VLAN ID (none).

Configuring ADAC per port settings

Use the following procedure to set the per port ADAC settings for the device.

Procedure steps

1. Use the following command from Interface Configuration mode.

```
[no] adac [port <portlist>] {[enable] [tagged-frames-pvid (<1-4094>|
no-change)] [tagged-frames-tagging (tagAll|tagPvidOnly|
untagPvidOnly|no-change)]}
```

Variable definitions

Variable	Value
port <portlist></portlist>	Ports to which to apply the ADAC configuration.
enable	Enables ADAC on the port or ports listed.

Variable	Value		
tagged-frames-pvid <1-4094> no-change	Sets Tagged-Frames PVID on the port or ports listed. Use <i>no-change</i> to keep the current setting.		
tagged-frames-tagging <i>tagAll</i> <i>tagPvidOnly</i> <i>untagPvidOnly</i> <i>no-change</i>	Sets Tagged-Frames Tagging to		
	• tagAll		
	tagPvidOnly		
	untagPvidOnly		
	Use no-change to keep the current setting.		

Resetting ADAC per port settings to default

Use the following procedure to set the per port ADAC defaults for the specified ports.

Procedure steps

1. Use the following command from Interface Configuration mode.

```
default adac [port <portlist>] [enable] [tagged-frames-pvid]
[tagged-frames-tagging]
```

Variable definitions

Variable	Value
port <portlist></portlist>	Ports on which to apply the ADAC defaults.
enable	Restores the port to the default ADAC state: Disabled .
tagged-frames-pvid	Restores Tagged-Frames PVID on the port or ports to the default setting: no-change .
tagged-frames-tagging	Restores Tagged-Frames Tagging to default setting: Untag PVID Only .

Configuring autodetection method

Use the following procedure to set the auto-detection method, by MAC address or using LLDP (IEEE 802.1ab).

Procedure steps

1. To configure the autodetection method, use the following command from Interface Configuration mode.

```
[no] adac detection [port <port-list>] {[mac][lldp]}
```

Variable definitions

Variable	Value
port <portlist></portlist>	Specifies the port or ports for which to set the detection mode.
mac	Enables MAC-based detection. The default setting is MAC enabled.
lldp	Enables LLDP (802.1ab) detection. The default setting is LLDP enabled.

Resetting autodetection method to default

Use the following procedure to reset the auto-detection method to its defaults. The default is to have both MAC and LLDP enabled.

Procedure steps

1. To reset the autodetection method to default, use the following command from Interface Configuration mode.

default adac detection [port <port-list>] {[mac][lldp]}

Variable definitions

Variable	Value
port <portlist></portlist>	Specifies the port or ports to be returned to the default; both MAC and LLDP are enabled.
mac	MAC is enabled by default.
lldp	LLDP is enabled by default.

Configuring autodetection for ports

Use the following procedure to enable Auto-Detection on specified ports.

Procedure steps

1. To configure autodetection, use the following command from Interface Configuration mode.

```
[no] adac port <port-list> enable
```

Restoring ADAC port settings

Use the following procedure to restore the default ADAC setting (disabled) for the specified ports.

Procedure steps

1. To restore ADAC port settings, use the following command from Global Configuration mode.

```
default adac [port <port-list>] enable
```

Adding a range to ADAC MAC address table

Use the following procedure to add a specified range to the table of MAC addresses recognized as Avaya IP Phones by the Auto-Detection process.

Procedure steps

1. To add a range, use the following command from Global Configuration mode.

[no] adac mac-range-table low-end <MACaddress> high-end <MACaddress>

Use the **no** form of the command to delete a range.

😵 Note:

If the low-end and high-end MAC address values are not provided, the switch deletes all existing MAC address ranges from the switch.

Restoring ADAC MAC range table

Use the following procedure to restore all supported MAC address ranges on the switch to their default values.

Procedure steps

1. To restore the ADAC MAC range table, use the following command in Global Configuration mode.

default adac mac-range-table

Displaying global ADAC settings

Use the following procedure to display the global ADAC settings for the device.

Procedure steps

1. To display global ADAC settings, use the following command from Privileged EXEC mode.

show adac

Displaying ADAC port settings

Use the following procedure to display the ADAC settings for a particular port.

Procedure steps

 To display ADAC port settings, use the following command from Privileged EXEC mode. show adac interface <interface-type> <slot/port>

Displaying ADAC MAC ranges

Use the following procedure to display the ADAC MAC ranges configured on the switch.

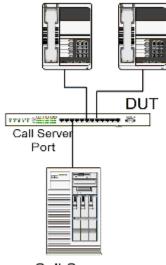
Procedure steps

1. To display ADAC MAC ranges, use the following command from Privileged EXEC mode.

```
show adac mac-range-table
```

Displaying configured detection mechanism

Use the following procedure to display the detection mechanism configured per port.


Procedure steps

1. To display the detection mechanism, use the following command from Privileged EXEC mode.

show adac detection interface [<interface-type>] [<interface-id>]

ADAC UFA configuration example

The following figure shows an example of ADAC configured in Untagged-Frames-Advanced (UFA) op-mode. (Call-server-port is used in this example, because the server is directly connected to the 5000 series switch.)

Call Server

Figure 36: ADAC UFA configuration example

Auto-Configuration (AC) is applied for call-server-port and telephony ports. On telephony ports, AC is applied only when Avaya IP Phones are detected. (Auto-detection is based on MAC Address.) VLAN configuration is made according to the selected op-mode (UFA):

- · Telephony port:
 - - Membership = remove from all other VLANs, and add to Voice-VLAN (since there is no reason for the port to be member of more than the Voice VLAN)
 - Tagging = Untagged
 - PVID = Voice-VLAN
- · Call Server port:
 - Membership = add to Voice-VLAN
 - Tagging = Untagged
 - PVID = Voice-VLAN

To configure the above example, you must perform the following tasks:

- 1. Create a voice-VLAN.
- 2. Configure the call-server port.
- 3. Configure voice-VLAN.
- 4. Configure Untagged-Frames-Advanced (UFA) op-mode.
- 5. Enable ADAC on all ports to which IP phones connect.
- 6. Configure IP phones to send untagged traffic.
- 7. Enable the LLDP-MED Capabilities TLV on the ports used by IP phones.
- 8. Enable the LLDP-MED Network Policy TLV for transmission.

This prevents configuration mismatches by enabling the IP Phone to obtain its policy settings directly from the switch.

ADAC configuration commands

The following section describes the detailed ACLI commands required to carry out the configuration shown in Figure 36: ADAC UFA configuration example on page 198.

```
(config)#vlan create 2 type voice-vlan
(config)#adac call-server-port 7
(config)#adac voice-vlan 2
(config)#adac enable op-mode untagged-frames-advanced
(config)#interface Ethernet all
(config)#interface Ethernet 16,24 enable
(config-if)#lldp tx-tlv port 16,24 med med-capabilities
(config-if)#lldp tx-tlv port 16,24 med network-policy
```

Verifying new ADAC settings

The following section includes commands used to view ADAC configuration settings and the expected responses for each.

Auto configuration settings

(config) #show adac interface 7,16,24

Port	Туре	Auto Detection	Oper State	Auto Configuration	T-I	F PVID	T-F Ta	agginq	3
7	CS	Disabled	Disabled	Applied	No	Change	Untag	PVID	Only
16	Т	Enabled	Enabled	Applied	No	Change	Untag	PVID	Only
24	Т	Enabled	Enabled	Applied		Change			-

VLAN settings

(config) #show vlan

Id	Name	Туре	Protocol	User PI	D Active	IVL/SVL	Mgmt		
	VLAN	#1 1-15,17-2	Port	None	0x0000	Yes	IVL	Yes	Port
2	Voice	•	Port	None	0x0000	Yes	IVL	No	Port

(config) #show vlan interface info 7,16,24

FilterFilterUntagged Unregistered PortFramesFramesPVID PRITaggingName7NoYes20UntagAllPort 716NoYes20UntagAllPort 1624NoYes20UntagAllPort 24

ADAC settings

(config) #show running-config ! . . . ! *** ADAC *** Note information in this section. 1 no adac enable no adac mac-range-table interface Ethernet ALL adac port 24 enable no adac port 1-23 enable exit adac mac-range-table low-end 00-0A-E4-01-10-20 high-end 00-0A-E4-01-23-A7 adac mac-range-table low-end 00-0A-E4-01-70-EC high-end 00-0A-E4-01-84-73 adac mac-range-table low-end 00-0A-E4-01-A1-C8 high-end 00-0A-E4-01-AD-7F adac mac-range-table low-end 00-0A-E4-01-DA-4E high-end 00-0A-E4-01-ED-D5 adac mac-range-table low-end 00-0A-E4-02-1E-D4 high-end 00-0A-E4-02-32-5B adac mac-range-table low-end 00-0A-E4-02-5D-22 high-end 00-0A-E4-02-70-A9 adac mac-range-table low-end 00-0A-E4-02-D8-AE high-end 00-0A-E4-02-FF-BD adac mac-range-table low-end 00-0A-E4-03-87-E4 high-end 00-0A-E4-03-89-0F adac mac-range-table low-end 00-0A-E4-03-90-E0 high-end 00-0A-E4-03-B7-EF adac mac-range-table low-end 00-0A-E4-04-1A-56 high-end 00-0A-E4-04-41-65 adac mac-range-table low-end 00-0A-E4-04-80-E8 high-end 00-0A-E4-04-A7-F7 adac mac-range-table low-end 00-0A-E4-04-D2-FC high-end 00-0A-E4-05-48-2B adac mac-range-table low-end 00-0A-E4-05-B7-DF high-end 00-0A-E4-06-05-FE adac mac-range-table low-end 00-0A-E4-06-55-EC high-end 00-0A-E4-07-19-3B adac mac-range-table low-end 00-0A-E4-08-0A-02 high-end 00-0A-E4-08-7F-31 adac mac-range-table low-end 00-0A-E4-08-B2-89 high-end 00-0A-E4-09-75-D8 adac mac-range-table low-end 00-0A-E4-09-BB-9D high-end 00-0A-E4-09-CF-24 adac mac-range-table low-end 00-0A-E4-09-FC-2B high-end 00-0A-E4-0A-71-5A adac mac-range-table low-end 00-0A-E4-0A-9D-DA high-end 00-0A-E4-0B-61-29 adac mac-range-table low-end 00-0A-E4-0B-BB-FC high-end 00-0A-E4-0B-BC-0F adac mac-range-table low-end 00-0A-E4-0B-D9-BE high-end 00-0A-E4-0C-9D-0D adac traps enable adac voice-vlan 2 adac call-server-port 7 no adac uplink-port adac enable

ADAC and EAP configuration commands

The following section describes the ACLI commands to configure ADAC with EAP on the same telephony port, with guest VLAN, Fail Open VLAN and use of RADIUS assigned VLAN enabled for EAPOL and Non-EAPOL clients.

Configure ADAC on the port. The phone is connected on port 2/9.

```
5698TFD-PWR(config)#int fa 2/9
5698TFD-PWR(config-if)#adac enable
```

Configure ADAC globally.

```
5698TFD-PWR(config)#adac voice-vlan 2001
5698TFD-PWR(config)#adac uplink-port 1/1,2/1,3/1
5698TFD-PWR(config)#adac op-mode tagged-frames
5698TFD-PWR(config)#adac enable
```

Enable EAPOL guest VLAN.

```
5698TFD-PWR(config)#vlan create 4000 name Guest_Vlan ty po 5698TFD-PWR(config)#eapol guest-vlan enable vid 4000
```

Enable EAPOL Fail Open VLAN.

```
5698TFD-PWR(config)#vlan create 4003 name Fail_Open_Vlan ty po
5698TFD-PWR(config)#eapol multihost fail-open-vlan enable
5698TFD-PWR(config)#eapol multihost fail-open-vlan vid 4003
```

Make local EAPOL setting on port.

% enable EAPOL on port

5698TFD-PWR(config)#eapol status auto

% enable EAPOL multihost on port

5698TFD-PWR(config)#eapol multihost enable

% enable authentication of NEAP users by RADIUS server

5698TFD-PWR(config)#eapol multihost radius-non-eap-enable

% enable use of RADIUS assigned VLAN for EAPOL users

5698TFD-PWR(config)#eapol multihost use-radius-assigned-vlan

% enable use of RADIUS assigned VLAN for non-EAPOL users

5698TFD-PWR(config)#eapol multihost non-eap-use-radius-assigned-vlan

```
5698TFD-PWR(config)#eapol multihost non-eap-mac-max 32
5698TFD-PWR(config)#eapol multihost eap-mac-max 32
5698TFD-PWR(config)#eapol multihost non-eap-phone-enable
5698TFD-PWR(config)#eapol guest-vlan enable vid 4000
```

Enable and configure EAPOL globally.

```
5698TFD-PWR(config)#eapol multihost non-eap-phone-enable
5698TFD-PWR(config)#eapol multihost use-radius-assigned-vlan
```

5698TFD-PWR(config)#eapol multihost non-eap-use-radius-assigned-vlan 5698TFD-PWR(config)#eapol enable

Display ADAC configuration and EAPOL settings.

5698TFD-PWR(config) #sh adac interface 2/9 Unit/ Auto Oper Auto Port Type Detection State Configuration T-F PVID T-F Tagging 2/9 T Enabled Enabled Applied No Change Untag PVID Only 5698TFD-PWR(config) #sh eapol multihost status Unit/Port Client MAC Address Pae State Backend Auth State Vid Pri =======Neap Phones========= 2/9 00:1B:4F:6D:E0:62 Total number of authenticated clients: 1 5698TFD-PWR(config) #sh eapol multihost non-eap-mac status Unit/Port Client MAC Address State Vid Pri ----- ----___ -----___ 00:13:20:13:58:0D Authenticated By RADIUS N/A N/A 2/9 Total number of authenticated clients: 1

Chapter 15: LLDP Configuration using ACLI

Use the following procedures to enable and configure LLDP with ACLI.

Configuring LLDP transmit properties

Use this procedure to set the LLDP transmission parameters.

Procedure steps

- 1. Log on to ACLI in Global Configuration command mode.
- 2. At the command prompt, enter the following command:

```
lldp [tx-interval <5-32768>] [tx-hold-multiplier <2-10>] [reinit-
delay <1-10>] [tx-delay <1-8192>] [notification-interval <5-3600>]
[med-fast-start <1-10>]
```

Variable defintions

The following table outlines the parameters of the **lldp** command.

Variable	Value
tx-interval <5–32768>	Sets the interval between successive transmission cycles
tx-hold-multiplier <2–10>	Sets the multiplier for the tx-interval used to compute the Time To Live value for the TTL TLV.
reinit-delay<1–10>	Sets the delay for the reinitialization attempt if the adminStatus is disabled.
tx-delay <1–8192>	Sets the minimum delay between successive LLDP frame transmissions.
notification—interval <5–3600>	Sets the interval between successive transmissions of LLDP notifications.
med—fast—start <1–10>	Sets the MED Fast Start repeat count value.

Configuring LLDP Timers using ACLI

Use this procedure to re-configure LLDP timers from their default values.

Procedure steps

- 1. Log on to the Global Configuration mode in ACLI.
- 2. At the command prompt, enter the following command:

```
lldp [msgTxHold][msgTxInterval] [reinitDelay][txDelay][med-fast-
start]
```

Variable definitions

The following table describes the parameters for the **lldp** command.

Variable	Value
msgTxHold	Determines TTL value used in an LLDPDU
	TTL is calculated by multiplying the transmit interval value and the transmit hold value.
	DEFAULT:
	4s
msgTxInterval	Indicates the interval at which LLDP frames are transmitted on behalf of LLDP agent.
	DEFAULT:
	30s
reinitDelay	Indicates the delay from when adminStatus becomes "disabled" until re-initialization.
	DEFAULT:
	2s
txDelay	Indicates delay between successive LLDP frame transmissions initiated by value or status changes in LLDP local systems.
	RANGE:
	msgTxInterval x 0.25
	DEFAULT:
	2s
med-fast-start	Indicates that the LLDP-MED Fast Start mechanism is active for this part. The LLDP-MED Fast Start mechanism is only intended to run on links between
L	LLDP-MED Network Connectivity Devices and

Variable	Value
	Endpoint Devices and does not apply to links between LAN infastructure elements.

Configuring LLDP port parameters

Use this procedure to set the LLDP port parameters.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the command prompt, enter the following command:

Variable definitions

The following table describes the parameters of the **lldp** port command.

Variable	Value
port <portlist></portlist>	Specifies the ports affected by the command.
config notification	Enables notification when new neighbor information is stored or when existing information is removed.
status {rxOnly txAndRx txOnly}	Sets the LLDPU transmit and receive status on the ports rxonly: enables LLDPU receive only. txAndRx: enables LLDPU transmit and receive. txOnly: enables LLDPU transmit only.

Configuring management TLVs for LLDP ports

Use the following procedure to set the optional Management TLVs to be included in the LLDPDUs transmitted by each port.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode
- 2. At the command prompt, enter the following command:

```
lldp tx-tlv [port <portlist>] [local-mgmt-addr] [port-desc] [sys-
cap] [sys-desc] [sys-name]
```

Variable definitions

The following table outlines the parameters of the lldp tx-tlv command.

Variable	Value
local-mgmt-addr	Specifies the local management address TLV.
port	Specifies the ports affected by the command.
port-desc	Specifies the port description TLV.
sys-cap	Specifies the system capabilities TLV.
sys-desc	Specifies the system description TLV.
sys-name	Specifies the system name TLV.

Configuring dot1 TLVs for LLDP ports

Use the following procedure to set the optional IEEE 802.1 organizationally-specifc TLVs to be included in the transmitted LLDPDUs.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the command prompt, enter the following command:

```
lldp tx-tlv [port <portlist>] dot1 [port-protocol-vlan-id
<vlanlist>] [port-vlan-id] {protocol-identity [EAP] [LLDP] [STP]}
[vlan-name <vlanlist>]
```

Variable definitions

The following table describes the parameters of the lldp tx-tlv dot1 command.

Variable	Value
port <portlist></portlist>	Specifies the ports affected by the command.
port-vlan-id	Port VLAN ID TLV.
vlan-name	VLAN Name TLV.
port-protocol-vlan-id	Port and Protocol VLAN ID TLV.
protocol-identity [EAP] [LLDP] [STP]	Protocol Identity TLV.

Configuring dot3 TLVs for LLDP ports

Use the following procedure to set the optional IEEE 802.3 organizationally-specifc TLVs to be included in the transmitted LLDPDUs.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the command prompt, enter the following command:

```
lldp tx-tlv [port <portlist>] dot3 [link-aggregation] [mac-phy-
config-status] [maximum-frame-size] [mdi-power-support]
```

Variable definitions

The following table describes the parameters of the lldp tx-tlv dot3 command.

Variable	Value
port <portlist></portlist>	Specifies the ports affected by the command.
mac-phy-config-status	MAC/Phy Configuration/Status TLV.
mdi-power-support	Power Via MDI TLV.
link-aggregation	Link Aggregation TLV.
maximum-frame-size	Maximum Frame Size TLV.

Configuring TLVs for MED devices

Use the following procedure to set the optional organizationally-specific TLVs for use by MED devices to be included in the transmitted LLDPDUs.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the command prompt, enter the following command:

```
lldp tx-tlv [port <portlist>] med [extendedPSE] [inventory]
[location] [med-capabilities] [network-policy]
```

Variable definitions

The following table describes the variables associated with the **lldp tx-tlv med** command.

Variable	Value
port <portlist></portlist>	Specifies the ports affected by the command.
med-capabilities	MED Capabilities TLV (the other MED TLVs can be enabled for transmission only if MED Capabilities TLV is enabled for transmission).
extendedPSE	Extended PSE TLV.
inventory	Inventory TLVs.
location	Location Identification TLV.
network-policy	Network Policy TLV.

Configuring parameters for LLDP location identification

Use the following procedure to set the coordinate-base parameters for LLDP location identification information.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the command prompt, enter the following command:

```
lldp location-identification coordinate-base [altitude] [datum]
[latitude] [longitude]
```

Variable definitions

The following table describes the parameters of the lldp location-identification coordinate-base command.

Variable	Value
altitude [+ -] [0-4194303.fracti on] [meters floors]	Altitude, in meters or floors.
datum [NAD83/MLLW NAD83/NAVD88 WGS84]	Reference datum
	The valid options are:
	 NAD83/MLLW: North American Datum 1983, Mean Lower Low Water
	 NAD83/NAVD88: North American Datum 1983, North American Vertical Datum of 1988
	 WGS84: World Geodesic System 1984, Prime Meridian Name: Greenwich

Variable	Value
latitude [0-90.00] [NORTH SOUTH]	Latitude in degrees, and relative to the equator.
longitude [0-180.00] [EAST WEST]	Longitude in degrees, and relative to the prime meridian.

Configuring LLDP civic address parameters

Use the following procedure to set the LLDP civic address parameters.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the command prompt, enter the following command:

```
lldp location-identification civic-address country-code [additional-
code] [additional-information] [apartment] [block] [building] [city]
[city-district ] [county] [floor] [house-number] [house-number-
suffix] [landmark] [leading-street-direction] [name] [p.o.box]
[place-type] [postal-community-name] [postal/zip-code] [room-number]
[state] [street] [street-suffix] [trailing-street-suffix]
```

Variable definitions

The following table describes the parameters of the 11dp location-identification civicaddress command.

Variable	Value
additional-code	Additional code
additional-information	Additional location information
apartment	Unit (apartment, suite)
block	Neighborhood, block
building	Building (structure)
city	City, township, shi (JP)
city-district	City division, city district, ward
country-code	Country code value (2 capital letters)
county	County, parish, gun (JP), district (IN)
floor	Floor
house-number	House number
house-number-suffix	House number suffix

Variable	Value
landmark	Landmark or vanity address
leading-street-direction	Leading street direction
name	Residence and office occupant
p.o.box	Post office box
place-type	Office
postal-community-name	Postal community name
postal/zip-code	Postal/Zip code
room-number	Room number
state	National subdivisions (state, canton, region)
street	Street
street-suffix	Street suffix
trailing-street-suffix	Trailing street suffix

Configuring the LLDP emergency call service emergency location identification number

Use the following procedure to set the LLDP emergency call service - emergency location identification number (ECS-ELIN).

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

lldp location-identification ecs-elin <ecs-elin>

😵 Note:

<ecs-elin> specifies a 10 to 25 digit numerical string.

Setting LLDP transmission parameters to default values

Use the following procedure to set the LLDP transmission parameters to their default values.

Procedure steps

- 1. Log on to ACLI in Global Configuration mode.
- 2. At the prompt, enter the following command:

```
default lldp [tx-interval ] [tx-hold-multiplier ] [reinit-delay]
[tx-delay] [notification-interval] [med-fast-start]
```

😵 Note:

If no parameters are specified, the **default lldp** sets all parameters to their default parameters.

Variable definitions

The following table outlines the parameters of the **default lldp** command.

Table 19: show lldp port command parameters

Variable	Value
	Sets the retransmit interval to the default value.
tx-interval	DEFAULT:
	30
	Sets the transmission multiplier to the default value.
tx-hold-multiplier	DEFAULT:
	4
	Sets the reinitialize delay to the default value.
reinit-delay	DEFAULT:
	2
	Sets the transmission delay to the default value.
tx-delay	DEFAULT:
	2
	Sets the notification interval to the default value.
notification-interval	DEFAULT:
	5
	sets the MED Fast Start repeat count value to the default value.
med-fast-start	DEFAULT:
	4

Setting port parameters to default values

Use the following procedure to set the port parameters to their default values.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

default lldp port <portlist> [config notification] [status]

Variable definitions

The following table outlines the parameters of the **default lldp** port command.

Variable	Value
port <portlist></portlist>	Specifies the ports affected by the command.
config notification	Sets the config notification to its default value (disabled)
status	Sets the LLDPU transmit and receive status to the default value (txAndRx)

Setting Management TLVs to default values

Use the following procedure to set the LLDP Management TLVs to the default values.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
default lldp tx-tlv [port <portlist>][port-desc] [sys-name] [sys-
desc] [sys-cap] [local-mgmt-addr]
```

Variable definitions

The following table describes the parameters of the default lldp tx-tlv command.

Variable	Value
<pre>port <portlist></portlist></pre>	Specifies the ports affected by the command.
port-desc	Port description TLV.
	DEFAULT:
	true (included)
sys-name	System name TLV.
	DEFAULT:
	true (included)
sys-desc	System description TLV
	DEFAULT:
	true (included)

Variable	Value
sys-cap	System capabilities TLV
	DEFAULT:
	true (included)
local-mgmt-addr	Local management address TLV
	DEFAULT:
	true (included)

Setting the IEEE 802.1 organizationally-specific TLVs to default values

Use the following procedure to set the optional IEEE 802.1 organizationally-specifc TLVs to the default values.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
default lldp tx-tlv [port <portlist>] dot1 [port-vlan-id] [vlan-
name ] [port-protocol-vlan-id] [protocol-identity [EAP] [LLDP]
[STP] ]
```

Variable definitions

The following table outlines the parameters of the default lldp tx-tlv dot1 command.

Variable	Value
port <portlist></portlist>	specifies the ports affected by the command
port-vlan-id	Port VLAN ID TLV.
	DEFAULT:
	false (not included)
vlan-name	VLAN Name TLV.
	DEFAULT:
	none
port-protocol-vlan-id	Port and Protocol VLAN ID TLV.
	DEFAULT:

Variable	Value
	none
	Protocol Identity TLV.
protocol-identity [EAP] [LLDP] [STP]	DEFAULT:
	none

Setting the IEEE 802.3 organizationally-specific TLVs to default values

Use the following procedure to set the optional IEEE 802.3 organizationally-specifc TLVs to the default values.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
default lldp tx-tlv [port <portlist>] dot3 [mac-phy-config-status]
[mdi-power-support] [link-aggregation][maximum-frame-size]
```

Variable definitions

The following table outlines the parameters of the default lldp tx-tlv dot3 command.

Variable	Value
port <portlist></portlist>	Specifies the ports affected by the command.
mac-phy-config-status	MAC/Phy Configuration/Status TLV.
	DEFAULT:
	false (not included)
	Power Via MDI TLV.
	DEFAULT:
mdi-power-support	true (included)
	Note:
	For non-PoE ports, default is false and cannot be set to true.
link-aggregation	Link Aggregation TLV.
	DEFAULT:
	false (not included)

Variable	Value
	Maximum Frame Size TLV.
maximum-frame-size	DEFAULT:
	false (not included)

Setting optional TLVs for MED devices to default values

Use the following procedure to set the optional organizationally-specifc TLVs for MED devices to the default values.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
default lldp tx-tlv [port <portlist>] med [med-capabilities]
[extendedPSE] [inventory] [location] [network-policy]
```

Variable definitions

The following table outlines the parameters of the default lldp tx-tlv med command.

Variable	Value
port <portlist></portlist>	Specifies the ports affected by the command.
med-capabilities	MED Capabilities TLV.
	DEFAULT:
	true (included)
extendedPSE	Extended PSE TLV.
	DEFAULT:
	true (included)
	Note:
	For non-PoE ports, default is false and cannot be set to true.
inventory	Inventory TLVs.
	DEFAULT:
	true (included)
location	Location Identification TLV.
	DEFAULT:

Variable	Value
	true (included)
	Network Policy TLV.
network-policy	DEFAULT:
	true (included)

Disabling LLDP features on the port

Use the following procedure to disable LLDP features on the port.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
no lldp [port <portlist>] [config notification] [status]
```

Configuring Management TLVs

Use the following procedure to specify that the optional Management TLVs are not included in the transmitted LLDPDUs.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
no lldp tx-tlv [port <portlist>] [port-desc] [sys-name] [sys-desc]
[sys-cap] [local-mgmt-addr]
```

Configuring the IEEE 802.1 TLVs

Use the following procedure to specify that the optional IEEE 802.1 TLVs are not included in the transmitted LLDPDUs.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
no lldp tx-tlv [port <portlist>] dot1 [port-vlan-id] [vlan-name]
[port-protocol-vlan-id] [protocol-identity [EAP] [LLDP] [STP] ]
```

Configuring the IEEE 802.3 TLVs

Use the following procedure to specify that the optional IEEE 802.3 TLVs are not included in the transmitted LLDPDUs.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
no lldp tx-tlv [port <portlist>] dot3 [mac-phy-config-status] [mdi-
power-support] [link-aggregation][maximum-frame-size]
```

Configuring optional TLVs for MED devices

Use the following procedure to specify that the optional Management TLVs are not included in the transmitted LLDPDUs.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

no lldp tx-tlv [port <portlist>] med [med-capabilities]
[extendedPSE] [inventory] [location] [network-policy]

😵 Note:

The transmit flag for med-capabilities TLV can be set to false only if the transmit flags for all the other MED TLVs are set to false.

Displaying configuration data for LLDP

Use the following procedure to display the LLDP parameters.

Procedure steps

- 1. Log on to ACLI in User EXEC mode.
- 2. At the prompt, enter the following command:

```
show lldp [local-sys-data {dot1 | dot3 | med | detail}] [mgmt-sys-
data] [rx-stats] [tx-stats] [stats] [pdu-tlv-size] [tx-tlv {dot1 |
dot3 | med }] [neighbor { dot1 [vlan-names | protocol-id] } | [dot3]
| { med [capabilities] [network-policy] [location] [extended-power]
[inventory] } | [detail] ] [neighbor-mgmt-addr]
```

Variable definitions

The following table describes the parameters of theshow lldp command.

Variable	Value
local-sys-data {dot1 dot3 med detail}	Displays the organizationally-specific TLV properties on the local switch:
	 dot1: displays the 802.1 TLV properties
	 dot3: displays the 802.3 TLV properties
	 med: displays the MED TLV properties
	 detail: displays all organizationally specific TLV properties
	To display the properties of the optional management TLVs, include only the local-sys-data parameter in the command.
mgmt-sys-data	Displays the local management system data.
rx-stats	Displays the LLDP receive statistics for the local system.
tx-stats	Displays the LLDP transmit statistics for the local system.
stats	Displays the LLDP table statistics for the remote system.
pdu-tlv-size	Displays the different TLV sizes and the number of TLVs in an LLDPDU.
<pre>tx-tlv {dot1 dot3 med }</pre>	Displays which TLVs are transmitted from the local switch in LLDPDUs:
	 dot1: displays status for 802.1 TLVs
	 dot3: displays status for 802.3 TLVs
	 med: displays status for MED TLVs
	To display the transmission status of the optional management TLVs, include only the tx-tlv parameter in the command.
neighbor { dot1 [vlan-names protocol-	Displays the neighbor TLVs:
<pre>id] } [dot3] { med [capabilities] [network-policy] [location] [extended-</pre>	 dot1: displays 802.1 TLVs:
<pre>power] [inventory] } [detail]</pre>	- vlan-names: VLAN Name TLV
	- protocol-id: Protocol Identity TLV
	• dot3: displays 802.3 TLVs

Table continues...

Variable	Value
	med: displays MED TLVs:
	- capabilities: Capabilities TLV
	- network-policy: Network Policy Discovery TLV
	- location: Location Identification TLV
	- extended-power: Extended Power-via-MDI TLV
	- inventory: Inventory TLVs
	detail: displays all TLVs
[neighbor-mgmtaddr]	Displays the LLDP neighbor management address.

Configuring LLDP MED policies for switch ports

Use the following procedure to configure LLDP Media Endpoint Devices (MED) policies.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
lldp med-network-policies [port <portList>] {voice|voice-signaling}
[dscp <0-63>] [priority <0-7>] [tagging {tagged|untagged}] [vlan-id
<1-4094>]
```

Variable definitions

The following table describes the parameters of the lldp med-network-policies command.

Variable	Value
<pre>port <portlist></portlist></pre>	Specifies the port or ports on which to configure LLDP MED policies.
voice	Specifies voice network policy.
voice-signaling	Specifies voice signalling network policy.
dscp <0-63>	Specifies the value of the Differentiated Service Code Point (DSCP) that is associated with the selected switch port or ports.
	0–63
priority <0-7>	Specifies the value of the 802.1p priority that applies to the selected switch port or ports.

Table continues...

Variable	Value
	RANGE:
	0–7
tagging {tagged untagged}	Specifies the type of VLAN tagging to apply on the selected switch port or ports.
	 tagged — uses a tagged VLAN
	 untagged — uses an untagged VLAN or does not support port-based VLANs.
	If you select untagged, the system ignores the VLAN ID and priority values, and recognizes only the DSCP value.
vlan-id <1-4094>	Specifies the VLAN identifier for the selected port or ports.
	RANGE:
	1–4094
	If you select priority tagged frames, the system recognizes only the 802.1p priority level and uses a value of 0 for the VLAN ID of the ingress port.

Setting IIdp med-network-policies to the default values

Use the following procedure to return lldp med-network-policies to the default values.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
default lldp med-network-policies [port <portList>] {voice|voice-
signaling}
```

Variable definitions

The following table describes the parameters of the default lldp med-network-policies command.

Variable	Value
<pre>port <portlist></portlist></pre>	Specifies the port or ports on which to configure default LLDP MED policies.
voice	Specifies the default voice network policy.
voice-signaling	Specifies the default voice signalling network policy.

Disabling LLDP MED policies for switch ports

Use the following procedure to disable LLDP MED policies for switch ports.

Procedure steps

- 1. Log on to ACLI in Interface Configuration mode.
- 2. At the prompt, enter the following command:

```
no lldp med-network-policies [port <portlist>] {voice|voice-
signaling}
```

Variable definitions

The following table describes the parameters of the no lldp med-network-policies command.

Variable	Value
<pre>port <portlist></portlist></pre>	Specifies the port or ports on which to disable LLDP MED policies.
voice	Specifies the voice network policy to disable.
voice-signaling	Specifies the voice signalling network policy to disable.

Viewing IIdp med-network-policies

Use the following procedure to display LLDP MED policy information for switch ports.

Procedure steps

- 1. Log on to ACLI in Privileged EXEC mode.
- 2. At the prompt, enter the following command:

```
show lldp med-network-policies [port <portlist>] {voice|voice-
signaling}
```

Variable definitions

The following table describes the parameters of the **show lldp med-network-policies** command.

Variable	Value
<pre>port <portlist></portlist></pre>	Specifies the port or ports for which to display LLDP MED policy information.
voice	Displays the voice network policy for which to display information.
voice-signaling	Specifies the voice signalling network policy to disable.

Configuring LLDP

Use this procedure to configure the LLDP as shown in <u>LLDP configuration example</u> on page 223.

Important:

If a switch is reset while energy-saver is activated, the PoE power saving calculation may not accurately reflect the power saving, and in some cases may display zero savings. This is because the switch did not have sufficient time to record PoE usage between the reset of the switch and energy-saver being reactivated. When energy saver is next activated, the PoE power saving calculation will be correctly updated.

Procedure steps

1. Modify the default LLDP Tx interval from (the default 30 second value) to 60 seconds.

Notice that if any modification is detected in the LLDP local-sys-data before the Tx interval expires, an LLDPDU is immediately sent on all active links in order to update the peers neighbor tables.

- 2. Enable the Port Description TLV for transmission. (contains the description of the LLPD sending port)
- 3. Enable the System Name TLV for transmission. (contains the name of the LLDP device)
- 4. Enable the System Description TLV for transmission. (contains the description of the LLDP device)
- 5. Enable the System Capabilities TLV for transmission. (contains the capabilities of the LLDP device)
- 6. Enable the Management Address TLV for transmission. (contains the management address of the LLDP device)
- 7. Enable the Port VLAN ID TLV for transmission. (contains the PVID of the LLDP sending port)
- 8. Enable the Port And Protocol VLAN ID TLV for transmission. (indicates the Port and Protocol VLANs to which the LLDP sending port belongs to).
- 9. Enable the VLAN Name TLV for transmission. (indicates the names of the VLANs to which the LLDP sending port belongs to)
- 10. Enable the Protocol Identity TLV for transmission. (indicates the supported protocols by the LLDP sending port)
- 11. Enable the MAC/PHY Configuration/Status TLV for transmission. (indicates the IEEE 802.3 duplex and bitrate capabilities and settings of the LLDP sending port)

- 12. Enable the Power Via MDI TLV for transmission. (indicates the MDI power support capabilities of the LLDP sending port)
- 13. Enable the Link Aggregation TLV for transmission. (indicates the link aggregation capability and status of the LLDP sending port)
- 14. Enable the Maximum Frame Size TLV for transmission. (indicates the maximum frame size that could be handled by the LLDP sending port)
- 15. Configure the location information for the LLDP-MED Location Identification TLV.

There are three coordinate sets available for location advertisement.

16. Enable the LLDP-MED Capabilities TLV for transmission. (indicates the supported LLDP-MED TLVs and the LLDP-MED device type of the LLDP sending device)

MED TLVs are transmitted only if MED-Capabilities TLV is transmitted

- 17. Enable the Network Policy TLV for transmission. (advertises the available MED applications available on the LLDP sending device and the policies required to use the applications)
- 18. Enable the Location Identification TLV for transmission. (indicates the physical location of the LLDP sending port; three coordinate sets are available to configure and send)
- 19. Enable the Extended Power-via-MDI TLV for transmission. (provides detailed informations regarding the PoE parameters of the LLDP sending device)
- 20. Enable the Inventory Hardware Revision TLV for transmission. (indicates the hardware revision of the LLDP sending device)
- 21. Enable the Inventory Firmware Revision TLV for transmission. (indicates the firmware revision of the LLDP sending device)
- 22. Enable the Inventory Software Revision TLV for transmission. (indicates the software revision of the LLDP sending device)
- 23. Enable the Inventory Serial Number TLV for transmission. (indicates the serial number of the LLDP sending device)
- 24. Enable the Inventory Manufacturer Name TLV for transmission. (indicates the manufacturer name of the LLDP sending device)
- 25. Enable the Inventory Model Name TLV for transmission. (indicates the model name of the LLDP sending device)

😵 Note:

The switch only transmits LLDP MED information if the neighbor is a MED-capable unit.

LLDP configuration example

By default, LLDP is enabled for Tx and Rx on all switch ports. The default value for the LLDP Tx interval is 30 seconds (LLDPDUs are sent at 30 seconds). With the default settings, only the mandatory TLVs are sent, but the switch can receive any LLDP Core, DOT1, DOT3 or MED TLV from its peers.

shows an example of LLDP configuration. For this example, the router is connected to the ERS 5000 Series port 1 and the IP Phone uses port 13.

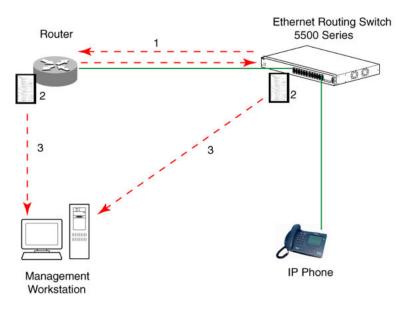


Figure 37: LLDP configuration example

Detailed configuration commands

Aggregation switch 171 configuration

IST, SMLT and SLT configuration

```
5650TD-PWR(config)#vlan create 3 type port
5650TD-PWR(config) #vlan create 4 type port
5650TD-PWRR(config) #vlan create 5 type port
5650TD-PWR(config) #vlan port 1-5 tagging enable
5650TD-PWR(config)#vlan member add 3 1-2
5650TD-PWR(config)#vlan member add 4 1-2
5650TD-PWR(config) #vlan member add 5 1-2
5650TD-PWR(config) #vlan member remove 1 1-5
5650TD-PWR(config) #vlan member add 4 3
5650TD-PWR(config)#vlan member add 5 4,5
5650TD-PWR(config) #ip routing
5650TD-PWR(config)#interface vlan 3
5650TD-PWR(config-if) #ip routing
5650TD-PWR(config-if)#ip address 3.3.3.1 255.255.255.0 5650TD-PWR(config-if)#exit
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if) #ip routing
5650TD-PWR(config-if)#ip address 4.4.4.1 255.255.255.0
5650TD-PWR(config-if)#exit
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if) #ip routing
5650TD-PWR(config-if) #ip address 5.5.5.1 255.255.255.0
```

```
5650TD-PWR(config)#mlt 3 member 1-2
5650TD-PWR(config)#mlt 3 enable
5650TD-PWR(config)#interface mlt 3
```

5650TD-PWR(config-if)#exit

```
5650TD-PWR(config-if)#ist enable peer-ip 3.3.3.2 vlan 3 5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface Ethernet 3
5650TD-PWR(config-if)#smlt 4
5650TD-PWR(config-if)#exit
```

5650TD-PWR(config)#mlt 5 member 4-5 5650TD-PWR(config)#mlt 5 enable 5650TD-PWR(config-if)#interface mlt 5 5650TD-PWR(config-if)#smlt 5 5650TD-PWR(config-if)#exit

VRRP and OSPF

```
5650TD-PWR(config)#router vrrp enable
5650TD-PWR(config)#router ospf enable
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip vrrp address 4 4.4.4.254
5650TD-PWR(config-if)#ip vrrp 4 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#ip exit
```

```
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if)#ip vrrp address 5 5.5.5.254
5650TD-PWR(config-if)#ip vrrp 5 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#exit
```

Aggregation switch 172 configuration

IST, SMLT and SLT configuration

```
5650TD-PWR(config)#vlan create 3 type port
5650TD-PWR(config)#vlan create 4 type port
5650TD-PWR(config)#vlan create 5 type port
5650TD-PWR(config)#vlan port 1-5 tagging enable
5650TD-PWR(config)#vlan member add 3 1-2
5650TD-PWR(config)#vlan member add 4 1-2
5650TD-PWR(config)#vlan member add 5 1-2
5650TD-PWR(config)#vlan member remove 1 1-5
5650TD-PWR(config)#vlan member add 4 3
5650TD-PWR(config)#vlan member add 4 3
5650TD-PWR(config)#vlan member add 5 4,5
5650TD-PWR(config)#ip routing
```

```
5650TD-PWR(config)#interface vlan 3
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 3.3.3.2 255.255.255.0
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 4.4.4.2 255.255.255.0
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if)#ip routing
5650TD-PWR(config-if)#ip address 5.5.5.2 255.255.255.0
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#mlt 3 member 1-2
5650TD-PWR(config)#mlt 3 enable
5650TD-PWR(config)#interface mlt 3
```

```
5650TD-PWR(config-if)#ist enable peer-ip 3.3.3.1 vlan 3
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#interface Ethernet 3
5650TD-PWR(config-if)#smlt 4
5650TD-PWR(config-if)#exit
```

```
5650TD-PWR(config)#mlt 5 member 4-5
5650TD-PWR(config)#mlt 5 enable
5650TD-PWR(config-if)#interface mlt 5
5650TD-PWR(config-if)#smlt 5
5650TD-PWR(config-if)#exit
```

VRRP and OSPF

```
5650TD-PWR(config)#router vrrp enable
5650TD-PWR(config)#router ospf enable
5650TD-PWR(config)#interface vlan 4
5650TD-PWR(config-if)#ip vrrp address 4 4.4.4.254
5650TD-PWR(config-if)#ip vrrp 4 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#ip exit
```

```
5650TD-PWR(config)#interface vlan 5
5650TD-PWR(config-if)#ip vrrp address 5 5.5.5.254
5650TD-PWR(config-if)#ip vrrp 5 enable backup-master enable
5650TD-PWR(config-if)#ip ospf enable
5650TD-PWR(config-if)#exit
```

Modifying the default LLDP Tx interval

Use this procedure to modify the default LLDP Tx interval.

Procedure steps

1. Use the following command from Global Configuration mode:

```
lldp tx-interval 60
```

Checking the new LLDP global settings

Use this procedure to show LLDP global settings.

Procedure steps

1. Use the following command from Global Configuration mode:

show lldp

Enabling all LLDP Core TLVs for transmission on the router and IP Phone ports

Use this procedure to enable all LLDP Core TLVs for transmission on the route and IP Phone ports.

Procedure steps

1. Use the following command from Global Configuration mode:

```
interface Ethernet 1,13
lldp tx-tlv port 1,13 port-desc
lldp tx-tlv port 1,13 sys-name
lldp tx-tlv port 1,13 sys-desc
lldp tx-tlv port 1,13 sys-cap
lldp tx-tlv port 1,13 local-mgmt-addr
```

Checking the LLDP settings of the router and IP Phone ports

Use this procedure to check the LLDP settings of the router and IP Phone ports.

Procedure steps

1. Use the following command from Interface Configuration mode:

```
show lldp port 1,13 tx-tlv
```

Enabling all LLDP DOT1 TLVs for transmission on the router and IP Phone ports

Use this procedure to enable all LLDP DOT1 TLVs for transmission on the router and IP Phone ports.

Procedure steps

1. Use the following command from Interface Configuration mode:

```
lldp tx-tlv port 1,13 dot1 port-vlan-id
lldp tx-tlv port 1,13 dot1 port-protocol-vlan-id
lldp tx-tlv port 1,13 dot1 vlan-name
lldp tx-tlv port 1,13 dot1 protocol-identity EAP
LLDP STP
```

Checking the LLDP settings of the router and IP Phone ports

Use this procedure to check the LLDP setting of the router and IP Phone ports.

Procedure steps

1. Use the following command from Interface Configuration mode:

```
show lldp port 1,13 tx-tlv dot1
```

Enabling all LLDP DOT3 TLVs for transmission on the router and IP Phone ports

Use this procedure to enable all LLDP DOT3 TLVs for transmission on the router and IP Phone ports.

Procedure steps

1. Use the following command from Interface Configuration mode:

lldp tx-tlv port 1,13 dot3 mac-phy-config-status lldp tx-tlv port 1,13 dot3 mdi-power-support lldp tx-tlv port 1,13 dot3 link-aggregation lldp tx-tlv port 1,13 dot3 maximum-frame-size

Checking the LLDP settings of the router and IP Phone ports

Use this procedure to check the LLDP settings of the router and IP Phone ports.

Procedure steps

1. Use the following command from Interface Configuration mode:

```
show lldp port 1,13 tx-tlv dot3
```

Enabling all LLDP MED TLVs for transmission on the router and IP Phone ports

Use this procedure to enable all LLDP MED TLVs for transmission on the router and IP Phone ports.

😵 Note:

The first three commands are required to configure the location identification for the LLDP-MED Location Identification TLV.

Procedure steps

1. Use the following command from Interface Configuration mode:

```
lldp location-identification civic-address country-code US city
Boston
lldp location-identification coordinate-base altitude 3 floors
lldp location-identification ecs-elin 1234567890
```

11dp tx-tlv med port 1,13 med-capabilities
11dp tx-tlv med port 1,13 network-policy
11dp tx-tlv med port 1,13 location
11dp tx-tlv med port 1,13 extendedPSE
11dp tx-tlv med port 1,13 inventory

Checking the new LLDP settings of the router and IP Phone ports

Use this procedure to check the new LLDP settings of the router and IP Phone ports.

Procedure steps

1. Use the following command from Interface Configuration mode:

```
show lldp tx-tlv med
```

802.1AB Integration configuration

Use the procedures in this section to configure the LLDP TLVs for Avaya IP telephone support.

Configuring the PoE conservation level request TLV using ACLI

Use this procedure to request a specific power conservation level for an Avaya IP phone connected to a switch port.

Procedure steps

- 1. Log on to the Interface Configuration mode in ACLI.
- 2. At the command prompt, enter the following command to configure PoE conservation level TLVs for connected Avaya IP phones

```
lldp [port <portlist>]vendor-specific avaya poeconservation-
request-level <0-255>
```

OR

```
default lldp port <portlist> vendor-specific avaya poe-conservation-
request-level
```

to set the PoE conservation level TLVs for connected Avaya IP phones.

Important:

Only Ethernet ports on switches that support PoE can request a specific power conservation level for an Avaya IP phone.

Variable definitions

The following table describes the parameters for the **lldp** command.

Variable	Value
<0–255>	Specifies the power conservation level to request for a vendor specific PD.
	RANGE:
	0–255
	DEFAULT:
	0
	With the default value of 0, the switch does not request a power conservation level for an Avaya IP phone connected to the port.
<portlist></portlist>	Specifies a port or list of ports.

Viewing the switch PoE conservation level request TLV configuration using ACLI

Use this procedure to display Poe conservation level request configuration for local switch ports.

Procedure steps

- 1. Log on to the Privileged EXEC mode in ACLI.
- 2. At the command prompt, enter the following command:

```
show lldp [port <portlist>]vendor-specific avaya poeconservation-
request-level
```

Variable definitions

The following table describes the parameters for the **show lldp** command.

Variable	Value
<portlist></portlist>	Specifies a port or list of ports.

Configuring the switch call server IP address TLV using ACLI

Use this procedure to define the local call server IP addresses that switch ports advertise to Avaya IP phones.

You can define IP addresses for a maximum of 8 local call servers.

Important:

The switch does not support the advertisement of IPv6 addresses to Avaya IP phones.

Procedure steps

- 1. Log on to the Global Configuration mode in ACLI.
- 2. At the command prompt, enter the following command:

```
lldp vendor-specific avaya call-server [<1-8>]<A.B.C.D> [[<1-8>]
<A.B.C.D>] [[<1-8>] <A.B.C.D>]
```

OR

default lldp vendor-specific avaya call-server <1-8> to delete call server IPv4 addresses configured on the switch.

Variable definitions

The following table describes the parameters for the 11dp vendor-specific avaya call-server command.

Variable	Value
<1–8>	Specifies the call server number.
	😿 Note:
	When you advertise the IPv4 address of call server 1 only, you do not have to enter a call server number before you enter the IP address.
<a.b.c.d></a.b.c.d>	Specifies the call server IPv4 address.

Viewing Avaya IP phone call server IP address TLV information using ACLI

Use this procedure to display call server IP address information received on switch ports from an Avaya IP phone.

Procedure steps

- 1. Log on to the Privileged EXEC mode in ACLI.
- 2. At the command prompt, enter the following command:

```
show lldp [port <portlist>]neighbor vendor-specific avaya call-
server
```

Variable definitions

The following table describes the parameters for the show lldp neighbor vendor-specific avaya call-server command.

Variable	Value
<portlist></portlist>	Specifies a port or list of ports.

Viewing the switch file server IP address TLV configuration using ACLI

Use this procedure to define the local file server IP addresses that switch ports advertise to Avaya IP phones.

You can define IP addresses for a maximum of 4 local file servers.

If your Avaya IP Handset uses SIP, 802.1AB (LLDP) TLVs do not provide all information for the IP Phone. You must specify a file server IP address TLV so the IP phone can download the SIP configuration information, because the IP Phone retrieves information related to the SIP domain, port number and transport protocol from the file server.

Important:

The switch does not support the advertisement of IPv6 addresses to Avaya IP phones.

Procedure steps

- 1. Log on to the Global Configuration mode in ACLI.
- 2. At the command prompt, enter the following command:

```
lldp vendor-specific avaya file-server [<1-4>] <A.B.C.D> [[<1-4>]
<A.B.C.D>] [[<1-4>] <A.B.C.D>]
```

OR

```
default lldp vendor-specific avaya file-server <1-4>
```

to delete file server IPv4 addresses configured in the switch.

Note:

To delete all file-server ip addresses configured on DUT use command default lldp vendor-specific avaya file-server.

Variable definitions

The following table describes the parameters for the 11dp vendor-specific avaya fileserver command.

Variable	Value
<1-4>	Specifies the file server number.
	😿 Note:
	When you advertise the IPv4 address of file server 1 only, you do not have to enter a file server number before you enter the IP address.
<a.b.c.d></a.b.c.d>	Specifies the file server IPv4 address.

Configuring the 802.1Q framing TLV using ACLI

Use this procedure to configure the frame tagging mode for exchanging Layer 2 priority tagging information between the switch and an Avaya IP phone.

Procedure steps

- 1. Log on to the Interface Configuration mode in ACLI.
- 2. At the command prompt, enter the following command:

```
lldp [port <portlist>]vendor-specific avaya dot1q-framing [tagged |
non-tagged | auto]
```

OR

```
default [port <portlist>]vendor-specific avaya dot1q-framing to set the
Layer 2 frame tagging mode to default.
```

Variable definitions

The following table describes the parameters for the lldp vendor-specific avaya dotlq-framing command.

Variable	Value
<portlist></portlist>	Specifies a port or list of ports.
[tagged non-tagged auto]	Specifies the frame tagging mode. Values include:
	 tagged—frames are tagged based on the tagging value the Avaya IP phone receives with the LLDP- MED Network Policy TLV.
	 non-tagged—frames are not tagged with 802.1Q priority.
	 auto—an attempt is made to tag frames based on the tagging value the Avaya IP phone receives with the LLDP-MED Network Policy TLV. If there is no LLDPMED Network Policy information available, an attempt is made to tag frames based on server configuration. If that fails, traffic is transmitted untagged.
	DEFAULT:
	Auto

Viewing Avaya IP phone 802.1Q Framing TLV information using ACLI

Use this procedure to display Layer 2 frame tagging mode information received on switch ports from connected Avaya IP phones.

Procedure steps

- 1. Log on to the Privileged EXEC mode in ACLI.
- 2. At the command prompt, enter the following command:

```
show lldp [port <portlist>] neighbor vendor-specific avaya dot1q-
framing
```

Variable definitions

The following table describes the parameters for the show lldp neighbor vendor-specific avaya dotlq-framing command.

Variable	Value
<portlist></portlist>	Specifies a port or list of ports.

Viewing Avaya IP phone file server IP address TLV information using ACLI

Use this procedure to display information about file server IP address received on switch ports from Avaya IP phones.

Procedure steps

- 1. Log on to the Privileged EXEC mode in ACLI.
- 2. At the command prompt, enter the following command:

```
show lldp [port <portlist>]neighbor vendor-specific avaya file-
server
```

Variable definitions

The following table describes the parameters for the show lldp neighbor vendor-specific avaya file-server command.

Variable	Value
<portlist></portlist>	Specifies a port or list of ports.

Chapter 16: VLANs Configuration using Enterprise Device Manager

The following sections detail how to create and manage a VLAN using the Enterprise Device Manager (EDM).

Displaying VLAN configuration

Use this procedure to display basic VLAN configuration

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **VLANs**.
- 3. Select the **Basic** tab.

Variable definitions

The following table outlines the parameters of the **Basic** tab.

Table 20: VLAN Basic tab parameters

Variable	Value
ld	The VLAN ID for the VLAN.
Name	Name of the VLAN.
lfindex	Indicates the interface index.
Туре	Indicates the type of VLAN: byPort or byProtocolld.
VoiceEnabled	Indicates whether VLAN is a voice VLAN (true) or not (false).
RspanEnabled	Indicates whether VLAN is an RSPAN VLAN (true) or not(false).
PortMembers	Ports that are members of the VLAN.
ActiveMembers	Set of ports that are currently active in the VLAN. Active ports include all static ports and any dynamic ports where the VLAN policy was met.
Stgld	Identifies the spanning tree group to which the VLAN belongs. This field is only available when the switch is running in Avaya STPG mode.

Table continues...

Variable	Value
MstpInstance	Identifies the MSTP instance associated with the VLAN. This field is only available when the switch is running in MSTP mode.
Vrfld	Identifies the numerical ID for the VRF instance. Value ranges from 0 to 3.
VrfName	Identifies the alphanumeric identifier (name) assigned to the VRF instance.
Protocolld	Protocol for protocol-based VLANs. This value is taken from the Assigned Numbers RFC. For port-based VLANs, None is the displayed value.
UserDefinedPid	When rcVlanProtocolld is set to usrDefined(15) in a protocol-based VLAN, this field represents the 16-bit user-defined protocol identifier.
Encap	The type of encapsulation. Options are ethernet2 and llc.
MacAddress	The unique hardware address of the device.
Routing	Specifies whether routing is enabled (true) or disabled (false) on the VLAN.

Creating a VLAN

Use this procedure to create a new VLAN. To add or remove ports from the VLAN, you must modify the VLAN.

Procedure steps

- 1. From the navigation tree, double-click **VLAN**.
- 2. From the VLAN tree, click **VLANs**.
- 3. Select the **Basic** tab.
- 4. Click Insert.

The Insert Basic dialog box appears with the Type field set to byPort.

- 5. Enter the identifier for the VLAN in the **Id** field. This value must be a unique number between 2 and 4094.
- 6. Optionally, enter a name for the VLAN in the Name field.
- 7. Enter the value of the Spanning Tree Group to which the VLAN will belong in the **Stgld** field.
- 8. When in Avaya STPG mode, use the **Stgld** menu to choose the spanning tree group to which the VLAN is to belong. When in MSTP mode, use the **MstpInstance** list to select the CIST or MSTI instance to which the VLAN is to belong.
- 9. Select the type of VLAN in the **Type** field.
 - a. If the VLAN is to be port-based, select the **byPort** option button.
 - b. If the VLAN is to be protocol-based, select the **byProtocolld** option button. This selection enables the **Protocolld** field. From this field select the protocol on which this VLAN will be based. If it is to be based on a user-defined protocol, select the **usrDefined** option button and enter the custom PID in the **UserDefinedPid** field.
- 10. If the VLAN is to be a voice VLAN, select the **VoiceEnabled** checkbox.
- 11. If the VLAN is to be an RSPAN VLAN, select the **RspanEnabled** checkbox.
- 12. Click Insert.

Modifying a VLAN

Use this procedure to modify a VLAN's name, member ports, or routing status without recreating the VLAN.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VALN tree, click VLANs.
- 3. Select the **Basic** tab.
- 4. To modify the VLAN name, double-click in the Name field.
- 5. To modify the Routing status, double-click in the **Routing** field and select from the dropdown list.
- 6. To modify VLAN member ports, in the row that represents the VLAN that is to be modified, double-click in the **PortMembers** field.

The Port Members screen appears.

- 7. Click the buttons that correspond to the ports that are to be added or deleted from the VLAN. Click **All** to select all switch ports.
- 8. Click **OK**.
- 9. Click Apply.

Deleting VLANs

Use this procedure to delete a VLAN.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **VLANs**.
- 3. Select the **Basic** tab.
- 4. Select the VLAN to be deleted.
- 5. Click Delete.
- 6. Select Yes to confirm.

Clearing DHCP statistics counters on a VLAN

Use this procedure to clear DHCP statistics counters.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click VLANs.

- 3. Select the Basic tab.
- 4. Highlight the VLAN for which DHCP statistics counters are to be cleared.
- 5. Click IP.

The IP VLAN screen appears.

- 6. Select the **DCHP** tab.
- 7. From the DHCP tab, select clear in the ClearCounters field and press Apply.

Variable definitions

The following table outlines the parameters of the **DHCP Graph** button.

Table 21: DHCP Graph button parameters

Variable	Value
NumRequests	The total number of DHCP requests seen on this interface.
NumReplies	The total number of DHCP replies seen on this interface.

Configuring VLAN Snoop

Use this procedure to enable or disable IGMP snooping on a switch.

For information on the IGMP snooping feature, refer to *Configuring IP Routing and Multicast on Avaya Ethernet Routing Switch 5000 Series*, NN47200-503.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **VLANs**.
- 3. Select the **Snoop** tab.

Variable definitions

The following table outlines the parameters of the **Snoop** tab.

Table 22: VLAN Snoop tab parameters

Variable	Value
ld	Specifies the ID of the VLAN.
ReportPorxyEnable	A flag to note whether IGMP Report Proxy is enabled on this VLAN.
Enable	A flag to note whether IGMP Snooping is enabled on this VLAN.
Robustness	Allows tuning for the expected packet loss on a subnet. If a subnet is expected to be <i>lossy</i> , the Robustness variable may be increased. IGMP is robust to (Robustness - 1) packet losses.

Table continues...

Variable	Value
QueryInterval	Specifies the interval (in seconds) between IGMP Host-Query packets transmitted on this interface.
MRouterPorts	Specifies the set of ports in this VLAN that provide connectivity to an IP Multicast router.
Ver1MRouterPorts	Specifies the version 1 ports in this VLAN that provide connectivity to an IP Multicast router.
Ver2RouterPorts	Specifies the version 2 ports in this VLAN that provide connectivity to an IP Multicast router.
ActiveMRouterPorts	Specifies the active ports.
ActiveQuerier	Specifies the IP address of multicast querier router
QuerierPort	Specifies the port on which the multicast querier router was heard.
MRouterExpiration	Specifies the multicast querier router aging time out

Configuring VLAN Ports

Use this procedure to configure VLAN ports.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **VLANs**.
- 3. Select the **Ports** tab.
- 4. Click **Apply** after making any changes.

Variable definitions

The following table outlines the parameters of the **Ports** tab.

Table 23: VLAN Ports tab parameters

Variable	Value
Index	Specifies the port number.
Vlanlds	Specifies the VLAN IDs of which this port is a member.
DiscardUntaggedFrames	This field only applies to trunk ports. It acts as a flag used to determine how to process untagged frames received on this port. When the flag is set, the frames are discarded by the forwarding process. When the flag is reset, the frames are assigned to the VLAN specified by rcVlanPortDefaultVlanId.

Table continues...

Variable	Value
FilterUnregisteredFrames	This field only applies to access ports. It acts as a flag used to determine how to process unregistered frames received on this port. When the flag is set, the frames are discarded by the forwarding process. When the flag is reset, the frames are processed normally.
DefaultVlanId	Indicates the VLAN ID assigned to untagged frames received on a trunk port.
PortPriority	Specifies the port priority value from the list as a value between 0 and 7.
Tagging	Indicates the type of VLAN port. A trunk port can be a member of more than one VLAN. An access port can be a member of only VLAN, if no membership conflict exists.
	There are four types of VLAN port:
	• tagAll(trunk)
	• untagAll(access)
	• tagPvidOnly
	untagPvidOnly

Enabling AutoPVID

Use this procedure to enable AutoPVID functionality on the switch.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. From the Edit tree, double-click **Chassis**.
- 3. From the Chassis tree, click **Chassis**.
- 4. Select the **System** tab.
- 5. In the AutoPVID field, select enabled.
- 6. Click Apply.

Configuring ports for VLAN membership

Use this procedure to configure one or more switch ports for VLAN membership.

Procedure

- 1. From the Device Physical View, select one or more ports.
- 2. From the navigation tree, double-click Edit.
- 3. In the Edit tree, double-click Chassis.

- 4. In the **Chassis** tree, click **Ports**.
- 5. Click the VLAN tab.

VLAN field descriptions

Name	Description
Index	Indicates the switch position in the stack and the port number. This is a read-only value.
Vlandlds	Indicates the VLAN IDs of which this port is a member. This is a read-only value.
DiscardUntaggedFrames	Indicates how untagged frames received on this port are processed.
	 true: untagged frames are discarded by the forwarding process
	 false: untagged frames are assigned to the VLAN specified by the VLAN ID.
	This column applies to trunk ports only.
FilterUnregisteredFrames	Indicates how unregistered frames received on this prot are processed.
	 true: unregistered frames are discarded by the forwarding process
	 false: unregistered frames are assigned to the VLAN specified by the VLAN ID.
	This column applies to access ports only.
DefaultVlanId	Indicates the VLAN ID assigned to untagged and unregistered frames received on a port.
PortPriority	Indicates the port priority for the switch to consider as it forwards received packets. Values range from 0 to 7.
Tagging	Indicates the type of VLAN port. Possible values are:
	untagAll (access)
	• tagAll (trunk)
	 untagPvidOnly
	 tagPvidOnly
	If the port is a trunk port, the port is often a member of more than one VLAN. If the port is an access port, the port can only be a member of one VLAN.

MAC address table maintenance

You can flush the MAC address table using Enterprise Device Manager. For more information about the MAC address table, see *Managing the MAC address forwarding database table* in *Configuring VLANs, Spanning Tree, and Multi-Link Trunking on Avaya Ethernet Routing Switch 5000 Series*, NN47200–502.

Flushing the MAC address table

Use this procedure to flush dynamically learned MAC addresses from the MAC address forwarding table:

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, click **Bridge**.
- 3. Select the MAC Flush tab.
- 4. Click **FlushMacAddrTableAll** or type the MAC address, VLAN, trunk, port, or portlist in the corresponding box.
- 5. Click Apply.

Variable definitions

Table 24: MAC Flush tab parameters

Variable	Value
FlushMacAddrTableAll	Flushes all MAC addresses from MAC address table.
FlushMacAddrTableByPortlist	Flushes the MAC addresses for port(s) specified from the MAC address table.
FlushMacAddrTableByVlan	Flushes the MAC addresses for the VLAN specified from the MAC address table.
FlushMacAddrTableByTrunk	Flushes the MAC addresses for the Multi-Link Trunk specified from the MAC address table.
FlushMacAddrTableByAddress	Flushes the specified MAC addresses from MAC address table.

Selecting VLAN configuration control

Use this procedure to select configuration control for a VLAN.

Procedure steps

1. From the navigation tree, double-click VLAN.

- 2. In the VLAN tree, click VLANs.
- 3. In the work area, click the **Settings** tab.
- 4. In the **ManagementVlanID** box, type a value.
- 5. In the **VlanConfigControl** section, click a button.
- 6. On the toolbar, click **Apply**.

Variable Definitions

Use the data in this table to select VLAN configuration control.

Variable	Value
ManagementVlanId	Specifies the identifier of the management VLAN. Values range from 1 to 4094.
VlanConfigControl	Specifies the VLAN configuration control options. The available options are:
	 automatic—This selection automatically adds an untagged port to a new VLAN and automatically removes it from any previous VLAN membership. The PVID of the port is automatically changed to the VID of the VLAN it joins. Since the port is first added to the new VLAN and then removed from any previous membership, the Spanning Tree Group participation of the port is not disabled as long as the VLANs involved are in the same Spanning Tree Group. autopvid—This selection functions in the same manner as previous AutoPVID functionality. When an untagged port is added to a new VLAN, the port is added to the new VLAN and the PVID assigned to the new VID without removing it from any previous VLAN memberships. Using this option, an untagged port can have membership in multiple VLANs. flexible—This selection functions in a similar manner to disabling AutoPVID functionality. When this option is used, an untagged port can belong to an unlimited number of VLANs. Any new additions of an untagged port to a new VLAN does not change the PVID of that port. strict—The factory default, this selection restricts the addition of an untagged port to a NLAN if it is already a member of another VLAN. To add an untagged port to a new VLAN, the switch administrator must remove the port from all other VLANs of which it is a member before adding it to the new VLAN. The PVID of the port is changed to the new VID to which it was added.

Chapter 17: Spanning Tree Configuration using Enterprise Device Manager

The following sections detail how to create and manage an STP using the Enterprise Device Manager (EDM). STP creation and management is performed in the Spanning Tree folder.

Setting the STP mode

Use this procedure to set the STP operational mode:

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, click Globals.
- 4. In the **SpanningTreeAdminMode** field, select the STP mode.
- 5. Click Apply.
- 6. Click **Yes** to the warning message reminding you that you must reset the switch for the change to take effect.
- 7. Click Close.
- 8. To reset the switch, choose **Edit > Chassis**.
- 9. From the **System** tab, choose the **reboot** option and click **Apply**.

Variable definitions

The following table outlines the parameters of the **Globals** tab.

Table 25: Spanning Tree Globals tab parameters

Variable	Value
SpanningTreeAdminMode	Indicates the desired spanning-tree mode of the system.
SpanniingTreeOperMode	This object indicates the current spanning-tree mode of the system.

Resetting the switch

Use this procedure to reset the switch.

Procedure steps

- 1. From the navigation pane, double-click Edit.
- 2. In the Edit tree, double-click **Chassis**.
- 3. In the Chassis tree, click Chassis.
- 4. In the work area, click the **System** tab.
- 5. In the ReBoot section, click the **bootPrimary** radio button.
- 6. On the toolbar, click **Apply**.

Configuring STP BPDU filtering for specific ports

Use this procedure to configure STP BPDU filtering for one or more ports.

You can configure STP BPDU filtering in either STG, RSTP, or MSTP operational mode.

STP BPDU-Filtering is not supported on MLT ports.

- 1. On the **Device Physical View** select a port, or use Ctrl-click to select more than one port.
- 2. Right-click the port or group of ports.
- 3. From the drop-down menu, click Edit.
- 4. On the work area, click the STP BPDU-Filtering tab.
- 5. If you selected a group of ports on the Device Physical View, perform the following actions for each port in the list:
 - To select a port to edit, click the cell in the **rcPortIndex** column.
 - In the port row, double-click the cell in the Admin Enabled column.
 - · Click the arrow to reveal the list.
 - Select a value from the list—**true** to enable STP BPDU filtering for the port, or **false** to disable STP BPDU filtering for the port.
 - In the port row, double-click the cell in the **Timeout** column.

- Type a value in the dialog box.
- 6. If you selected a single port on the Device Physical View:
 - Click the AdminEnabled checkbox.
 - Enter a value in the **Timeout** box.
- 7. On the toolbar, click Apply.

Variable definitions

The following table outlines the parameters of the STP BPDU-Filtering tab.

Table 26:	STP	BPDU-Filtering	tab	parameters
-----------	-----	-----------------------	-----	------------

Variable	Value
rcPortIndex	Indicates the switch and port number.
AdminEnabled	Enables and disables BPDU filtering on the port.
OperEnabled	Indicates the current operational status of BPDU filtering on the port: true (enabled) or false (disabled).
Timeout	When BPDU filtering is enabled, this parameter indicates the time, in 1/100 seconds, during which the port remains disabled after it receives a BPDU. The port timer is disabled if this value is set to 0. The default value is 12000 (120 seconds).
TimerCount	Displays the time remaining for the port to stay in the disabled state after receiving a BPDU.

Spanning Tree STG configuration

Configuring STG Global properties

Use this procedure to configure the STG global properties.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, double-click **STG**.
- 4. Select the **Globals** tab.
- 5. Select the STP path cost calculation mode:
- 6. Select the STP port mode:

- 7. Check the SpanningTreeAdminCompatibility box to enable 802.1d port learning.
- 8. Click Apply.

Variable definitions

The following table outlines the parameters of the Globals tab.

Table 27: STG Globals tab parameters

Variable	Value
SpanningTreePathCostCalcula tionMode	Specifies the current spanning-tree path cost calculation mode. The value ieee802dot1dCompatible is valid only when the switch is running in Avaya STPG mode.
SpanningTreePortMode	Specifies the STG port membership mode for all Spanning Tree Groups on the switch.
SpanningTreeAdminCompatibi lity	Specifies whether the learning mode of a port stays in the Forwarding state or changes to the Disabled state when the port operation status goes down. If the box is checked, the port goes to the disabled state when down.
SpanningTreeOperCompatibilit y	Specifies the operational compatibility mode for features controlled by the associated object.

Creating an STG

Use this procedure to create a Spanning Tree Group.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, click STG.
- 4. Click the **Configuration** tab.
- 5. Click Insert.
- 6. In the fields provided, fill in the information for the new STG.
- 7. Click Insert.

Variable definitions

The following table outlines the parameters of the **Configuration** tab.

Table 28: STG Configuration tab parameters

Variable	Value
ld	Enter an integer between 1 and 8 that identifies the STG; 1 is the default STG.

Table continues...

Variable	Value
BridgeAddress	Displays the MAC address used by this bridge; it is usually the smallest MAC address of all ports in the bridge.
NumPorts	Displays the number of ports controlled by this bridging entity.
ProtocolSpecification	Displays the version of spanning tree that is running.
Priority	Enter the first two octets of the 8-octet bridge ID; the range is 0 to 65 535.
BridgeMaxAge	Enter the maximum time you want to allow before the specified STG times out, in seconds; the range is 600 to 4 000.
BridgeHelloTime	Enter the maximum time between hellos, in seconds; the range is 100 to 1 000.
BridgeForwardDelay	Enter the maximum delay in forwarding, in seconds; the range is 400 to 3 000.
EnableStp	Enables or disables the spanning tree group.
TaggedBpduAddress	The address for the tagged BPDU.
TaggedBpduVlanId	Enter the VLAN ID for tagged BPDUs.

Adding a VLAN to an STG

When using Enterprise Device Manager, a VLAN can only be added to an STG at the time the VLAN is created.

Ensure the STG already exists, and use the procedure Creating a VLAN on page 236.

Moving a VLAN between STGs

You cannot use Enterprise Device Manager to move VLANs between STGs on the Avaya Ethernet Routing Switch 5000 Series. Instead, delete the VLAN to be moved and add a replacement VLAN in the STG to which you want to move the VLAN.

Deleting an STG

Use this procedure to delete an STG.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, click STG.
- 4. On the **Configuration** tab, select the STG to be deleted.
- 5. Click **Delete**.

Displaying STG Status

Use this procedure to display the status of an STG.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, click **STG**.
- 4. Select the Status tab.

Variable definitions

The following table outlines the parameters of the Status tab.

Table 29: STG Status tab parameters

Variable	Value
ld	Displays the STG ID.
BridgeAddress	Displays the MAC address used by this bridge.
NumPorts	Displays the number of ports controlled by this bridging entity.
ProtocolSpecification	Displays the version of spanning tree that is running.
TimeSinceTopology Change	Displays the time, in hundredths of seconds, since the last topology change.
TopChanges	Displays the number of topology changes since the switch was reset.
DesignatedRoot	Displays the MAC address of the STP designated root.
RootCost	Displays the cost of the path to the root.
RootPort	Displays the port number of the port with the lowest-cost path from this bridge to the root bridge.
MaxAge	Displays the maximum age, in hundredths of a second, of STP information learned from any port in the network before the information is discarded.
HelloTime	Displays the amount of time, in hundredths of seconds, between Hello messages.
HoldTime	Displays the interval, in hundredths of seconds, during which no more than two Hello messages can be transmitted.
ForwardDelay	Displays the interval, in hundredths of seconds, during which the switch stays in Listening or Learning mode, before moving to Forwarding mode. This value is also used to age dynamic entries in the Forwarding Database.

Displaying STG ports

Use this procedure to display the STG port status.

Procedure steps

- 1. From the navigation tree, double-click **VLAN**.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, click **STG**.
- 4. Select the **Ports** tab.

Variable definitions

The following table outlines the parameters of the Ports tab.

Table 30: STG Ports tab parameters

Variable	Value
Port	Indicates the switch position in a stack and port number. For a standalone switch, the default value of 1 is used for the switch position.
Stgld	Displays the STG ID number assigned to the port.
Priority	Specifies the port priority
State	Displays the STP state of the port: Disabled, Blocking, Listening, Learning, Forwarding.
EnableStp	Enables or disables STP on the port: True is enabled, and False is disabled.
FastStart	Enables or disables Fast Start STP on the port: True is enabled, and False is disabled.
AdminPathCost	Sets the PathCost value. The field displays 0 if no user-configured value exists.
PathCost	Displays the contribution of this port to the cost path of the spanning tree root.
DesignatedRoot	Displays the MAC address of the STP designated root.
DesignatedCost	Displays the path cost of the designated port of the segment connected to this port.
DesignatedBridge	Displays the MAC address of the designated bridge this port considers the designated bridge for this segment.
DesignatedPort	Displays the port ID of the designated bridge for this port segment.
ForwardTransitions	Displays the number of times the port transitioned from STP Learning to Forwarding state.

Configuring STG port properties

Use this procedure to display STG port properties.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Chassis.

- 3. From the Chassis tree, click **Ports**.
- 4. Select the **STG** tab.

Variable definitions

The following table outlines the parameters of the **Ports** tab.

Table 31: Chassis Ports tab parameters
--

Variable	Value
Port	Specifies the port number.
Stgld	The spanning tree group ID to which the VLAN belongs.
Priority	The value of the priority field that is contained in the first (in network byte order) octet of the (2-octet long) Port ID. The other octet of the Port ID is derived from the value of dot1dStpPort.
State	The current port state as defined by application of the Spanning Tree Protocol. This state controls the action a port takes when it receives a frame. If the bridge detects a port that is malfunctioning, it places that port into the broken state. For ports that are disabled (see EnableStp), this object has a value of Disabled.
EnableStp	Select True or False to enable or disable STP.
FastStart	Select True or False to enable or disable FastStart.
AdminPathCost	The administrative value of the PathCost. This is the value that has been configured by the user, or 0 if no user-configured value exists. If you specify the path cost in the PathCost field, the value in this field is modified as well.
PathCost	The contribution of this port to the cost of paths toward the spanning tree root, which includes this port. The IEEE 802.1D-1990 standard recommends that the default value of this parameter be in inverse proportion to the speed of the attached LAN.
DesignatedRoot	The unique Bridge Identifier of the bridge recorded as the Root in the Configuration BPDUs transmitted by the Designated Bridge for the segment to which the port is attached.
DesignatedCost	The path cost of the Designated Port of the segment connected to this port. This value is compared to the Root Path Cost field in received bridge PDUs.
DesignatedBridge	The Bridge Identifier of the bridge that this port considers to be the Designated Bridge for this port segment.
DesignatedPort	The Port Identifier of the port on the Designated Bridge for this port segment.
ForwardTransitions	The number of times this port has transitioned from the Learning state to the Forwarding state.

Rapid Spanning Tree Protocol

The Rapid Spanning Tree protocol (RSTP or IEEE 802.1w) reduces the recovery time after a network breakdown. It also maintains a backward compatibility with the IEEE 802.1d which was the Spanning Tree implementation prior to RSTP. In certain configurations, the recovery time of RSTP can be reduced to less than 1 second.

RSTP also reduces the amount of flooding in the network by enhancing the way the Topology Change Notification (TCN) packet is generated.

😵 Note:

You can access the RSTP menu command only after the switch is operating in the RSTP mode.

Viewing RSTP general information

Use this procedure to view general information about Rapid Spanning Tree Protocol (RSTP) when RSTP is in active mode.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, click **RSTP**.
- 4. Select the Globals tab.

Variable definitions

The following table outlines the parameters of the **Globals** tab.

Table 32: RSTP Globals tab parameters

Variable	Value
PathCostDefault	Sets the version of the Spanning Tree default Path Costs that the Bridge uses.
	The value of 16-bit uses the 16-bit default Path Costs from IEEE Std. 802.1D-1998.
	A value of 32-bit uses the 32-bit default Path Costs from IEEE Std. 802.1t.
TXHoldCount	The value used by the Port Transmit state machine to limit the maximum transmission rate. The value can range from 1 to 10.
Version	The version of the Spanning Tree Protocol the bridge is currently running:
	 stpCompatible: indicates that the bridge uses the Spanning Tree Protocol specified in IEEE 802.1D.
	 rstp: indicates that the bridge uses the Rapid Spanning Tree Protocol specified in IEEE 802.1w.

Table continues...

Variable	Value	
Priority	The value of the writable portion of the Bridge Identifier comprising the first two octets. The values that are set for Priority must be in steps of 4096.	
BridgeMaxAge	The value in 1/100 seconds that all bridges use for MaxAge when this bridge acts as the root. The value must be a multiple of 100. The range is 600 to 4000.	
BridgeHelloTime	The value in 1/100 seconds that all bridges use for HelloTime when this bridge acts as the root. The value must be a multiple of 100. The range is 100 to 1000.	
BridgeForward Delay	The value in 1/100 seconds that all bridges use for ForwardDelay when this bridge is acting as the root. Note that 802.1D-1990 specifies that the range for this parameter is related to the value of BridgeMaxAge. The value must be a multiple of 100. The range is 400 to 3000.	
DesignatedRoot	The unique identifier of the Bridge recorded as the Root in the Configuration BPDUs that are transmitted by the Designated Bridge for the segment to which the port is attached. Reference IEEE 802.1D-1990: Section 4.5.5.4.	
RootCost	The cost of the path to the root as seen from this bridge.	
RootPort	The port number of the port that offers the lowest cost path from this bridge to the root bridge.	
MaxAge	The maximum age of Spanning Tree Protocol information learned from the network on any port before being discarded. The maximum age is specified in units of hundredths of a second. This is the actual value that the bridge uses.	
HelloTime	The amount of time required for transmission of the configuration BPDUs by the node on any port when it is the root of the spanning tree or trying to become the root. This is specified in units of hundredths of a second. This is the actual value that the bridge uses.	
ForwardDelay	This time value, measured in units of hundredths of a second, controls how fast a port changes its spanning state when moving towards the Forwarding state. The value determines how long the port stays in each of the Listening and Learning states, which precede the Forwarding state.	
RstpUpCount	The number of times the RSTP Module has been enabled. A trap is generated on the occurrence of this event.	
RstpDownCount	The number of times the RSTP Module has been disabled. A trap is generated on the occurrence of this event	
NewRootIdCount	The number of times this Bridge has detected a Root Identifier change. A trap is generated on the occurrence of this event.	
TimeSinceTopologyChange	The time (in hundredths of a second) since the TcWhile Timer for any port in this Bridge was non-zero for the Common Spanning Tree context.	
TopChanges	The total number of topology changes detected by this bridge since the management entity was last reset or initialized.	

Displaying RSTP ports information

Use this proceudre to view RSTP ports information.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, click **RSTP**.
- 4. Select the Ports tab.

Variable definitions

The following table outlines the parameters of the **Ports** tab.

Table 33: RSTP Ports tab parameters

Variable	Value
Port	The port number.
State	Used to identify a port state in this RSTP instance. The port state is cataloged as discarding, learning, and forwarding.
Priority	The value of the priority field which is contained in the first (in network byte order) octet of the (2 octet long) Port ID.
PathCost	The contribution of this port to the cost of paths towards the spanning tree root.
ProtocolMigration	Indicates the Protocol migration state of this port. Set this field to true to force the port to transmit RSTP BPDUs. Note: If this field is set to true and the port receives an 802.1d type BPDU, the port again begins transmitting 802.1d BPDUs.
AdminEdgePort	The administrative value of the Edge Port parameter. A value of true indicates that this port is assumed to be an edge-port and a value of false indicates that this port is assumed to be a nonedge-port.
OperEdgePort	The operational value of the Edge Port parameter. The object is initialized to false on reception of a BPDU.
AdminPointToPoint	The administrative point-to-point status of the LAN segment attached to this port.
	• A value of forceTrue indicates that this port is always treated as being connected to a point-to-point link.
	 A value of forceFalse indicates that this port is treated as having a shared media connection.
	• A value of auto indicates that this port is considered to have a point-to- point link if it is an aggregator and all of its members are aggregatable, or

Variable	Value
	if the MAC entity is configured for full duplex operation, either through auto-negotiation or by management means.
OperPointToPoint	The operational point-to-point status of the LAN segment attached to this port. This field indicates whether a port is considered to have a point-to-point connection. The value is determined by management or by auto-detection.
Participating	This field specifies whether a port is participating in the 802.1w protocol.
DesignatedRoot	The bridge identifier of the old root of the Spanning Tree as determined by the Spanning Tree Protocol as executed by this node.
DesignatedCost	The path cost of the Designated Port of the segment connected to this port. This value is compared to the Root Path Cost field in received BPDUs.
DesignatedBridge	The Bridge Identifier of the bridge which this port considers to be the Designated Bridge for this port segment.
DesignatedPort	The Port Identifier for the port segment which is on the Designated Bridge.
ForwardTransitions	The number of times this port has transitioned from the Learning state to the Forwarding state.

Displaying RSTP status

Use this procedure to view RSTP status.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, click **RSTP**.
- 4. Select the **Status** tab.

Variable definitions

The following table outlines the parameters of the Status tab.

Table 34: RSTP Status tab parameters

Variable	Value
Port	The port number.
Role	A role represents a functionality characteristic or capability of a resource to which policies are applied.
OperVersion	This indicates whether the Port is operationally in the RSTP mode or the STP-compatible mode; that is, whether the Port is transmitting RSTP BPDUs or Config/TCN BPDUs.

Variable	Value
EffectivePortState	This is the effective Operational state of the port. This object is set to true only when the port is operationally up in the interface manager and when the force Port State and specified port state for this port is enabled. Otherwise, this object is set to false.

Graphing RSTP port statistics

Use this procedure to display RSTP port statistics.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, click **RSTP**.
- 4. Select the **Status** tab.
- 5. Select a port and click **Graph** to get the statistics for the selected port.

Variable definitions

The following table outlines the parameters of the **RSTP Graph** dialog box.

Table 35: RSTP Graph dialog box parameters

Variable	Value
RxRstBpduCount	The number of RST BPDUs that have been received on the port.
RxConfigBpduCount	The number of Config BPDUs that have been received on the port.
RxTcnBpduCount	The number of TCN BPDUs that have been received on the port.
TxRstBpduCount	The number of RST BPDUs that have been transmitted by this port.
TxConfigBpduCount	The number of Config BPDUs that have been transmitted by this port.
TxTcnBpduCount	The number of TCN BPDUs that have been transmitted by this port.
InvalidRstBpduRxCount	The number of invalid RSTP BPDUs that have been received on this port.
InvalidConfigBpduRxCount	The number of invalid Configuration BPDUs that have been received on this port.
InvalidTcnBpduRxCount	The number of invalid TCN BPDUs that have been received on this port.
ProtocolMigrationCount	The number of times this Port has migrated from one STP protocol version to another. The relevant protocols are STP-COMPATIBLE and RSTP.

Multiple Spanning Tree Protocol

With the Multiple Spanning Tree Protocol (MSTP or IEEE 802.1s), you can configure multiple instances of RSTP on the same switch. Each MSTP instance can include one or more VLANs. The operation of the MSTP is similar to the current Avaya proprietary STG.

In the MSTP mode, the 5000 Series switches support a maximum of one Common and Internal Spanning Tree (CIST) and seven Multiple Spanning Tree Instances (MSTI).

Within the CIST, the Internal Spanning Tree component is used only by devices from the same region (for which a regional root is elected). The Common (External) Spanning Tree component of the CIST is used by devices from different regions or between devices with different STP modes.

😵 Note:

you can access the MSTP menu command only when the switch is operating in the MSTP mode.

Displaying MSTP general information

Use this procedure to view MSTP information.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, click MSTP.
- 4. Select the **Globals** tab.

Variable definitions

The following table outlines the parameters of the **Globals** tab.

Table 36:	MSTP	Globals	tab	parameters
-----------	------	---------	-----	------------

Variable	Value
PathCostDefaultType	Specifies the version of the Spanning Tree default Path Costs that are used by this Bridge. A 16-bit value uses the 16-bit default path costs from IEEE Standard 802.1D-1998. A 32-bit value uses the 32-bit default path costs from IEEE Standard. 802.1t.
TxHoldCount	Specifies the value used by the Port Transmit state machine to limit the maximum transmission rate.
MaxHopCount	Specifies the Maximum Hop Count value in 1/100 seconds. The value must be a multiple of 100. The range is 100 to 4000.
NoOfInstancesSupported	Indicates the maximum number of spanning tree instances supported.
MstpUpCount	Specifies the number of times the MSTP Module is enabled. A trap is generated on the occurrence of this event.

Variable	Value
MstpDownCount	Specifies the number of times the MSTP Module is disabled. A trap is generated on the occurrence of this event.
ForceProtocolVersion	Signifies the version of the Spanning Tree Protocol that the bridge is currently running.
	 stpCompatible indicates that the bridge is using the Spanning Tree Protocol as specified in IEEE 802.1D.
	 rstp indicates that the bridge is using the Rapid Spanning Tree Protocol as specified in IEEE 802.1w.
	 mstp indicates that the bridge is running the Multiple Spanning Tree Protocol as specified in IEEE 802.1s.
BrgAddress	The bridge address is generated when events like protocol up or protocol down occurs.
Root	The bridge identifier of the root of the common spanning tree as determined by the Spanning Tree Protocol as executed by this node. This value is used as the CIST Root Identifier parameter in all Configuration BPDUs originated by this node.
RegionalRoot	The bridge identifier of the root of the Multiple Spanning Tree region as determined by the Spanning Tree Protocol as executed by this node. This value is used as the CIST Regional Root Identifier parameter in all Configuration Bridge PDUs originated by this node.
RootCost	Specifies the cost of the path to the CIST Root as seen from this bridge.
RegionalRootCost	Specifies the cost of the path to the CIST Regional Root as seen from this bridge.
RootPort	Indicates the port number of the port which offers the lowest path cost from the bridge to the CIST Root Bridge
BridgePriority	Indicates the value of the writable portion of the Bridge Identifier comprising the first two octets. The values that are set for Bridge Priority must be in steps of 4096.
BridgeMaxAge	Specifies the value in hundredths of a second that all bridges use for MaxAge when this bridge acts as the root. The value must be a multiple of 100. The range is 600 to 4000.
BridgeForwardDelay	Specifies the value in hundredths of a second that all bridges use for ForwardDelay when this bridge acts as the root. IEEE 802.1D specifies that the range for this parameter is related to the value of BridgeMaxAge. The value must be a multiple of 100. The range is 400 to 3000.
HoldTime	Determines the time interval during which no more than two Configuration BPDUs can be transmitted by this node. This value is measured in units of hundredths of a second.
MaxAge	Specifies the maximum age, in hundredths of a second, of the Spanning Tree Protocol information learned from the network on any port before being discarded. This value is the actual value that this bridge is currently using.

Variable	Value
ForwardDelay	Controls how fast a port changes its STP state when moving towards the Forwarding state. This value determines how long the port stays in a particular state before moving to the next state. This value is measured in units of hundredths of a second.
TimeSinceTopology Change	Specifes the time, in hundredths of a second, since the TcWhile Timer for any port in this Bridge was non-zero for the Common Spanning Tree context.
NewRootBridgeCount	Specifies the number of times this Bridge detects a Root Bridge change for the Common Spanning Tree context. A Trap is generated when this event occurs.
TopChanges	Specifies the number of times that at least one non-zero TcWhile Timer occurred on this Bridge for the Common Spanning Tree context.
RegionName	Specifies the region name of the configuration. By default, the Region Name is equal to the Bridge Mac Address.
ConfigIdSel	Specifies the Configuration Identifier Format Selector used by the Bridge. This has a fixed value of 0 which indicates RegionName, RegionVersion, as specified in the standard.
RegionVersion	Denotes the version of the MST Region.
ConfigDigest	Signifies the Configuration Digest value for this Region. This is an MD5 digest value and hence must always be 16 octets long.
RegionConfigChange Count	Specifies the number of times a Region Configuration Identifier Change is detected. A trap is generated when this event occurs.

Displaying CIST port information

Use this procedure to display the CIST port information.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, click **MSTP**.
- 4. Select the CIST Port tab.

Variable definitions

The following table outlines the parameters of the **CIST Port** tab.

Table 37: MSTP CIST Port tab parameters

Variable	Value
Port	Identifies the port number of the port containing Spanning Tree information.

Variable	Value
PathCost	SPecifies the contribution of this port to the cost of paths towards the CIST Root.
Priority	Displays the four most significant bits of the Port Identifier of the Spanning Tree instance. It can be modified by setting the CistPortPriority value. The values that are set for Port Priority must be in steps of 16.
DesignatedRoot	Specifies the unique Bridge Identifier of the bridge. Recorded as the CIST Root in the configuration BPDUs which are transmitted.
DesignatedCost	Specifies the path cost of the Designated Port of the segment connected to this port.
DesignatedBridge	Specifies the unique Bridge Identifier of the bridge which the port considers to be the Designated Bridge for the port segment.
DesignatedPort	Specifies the Port identifier of the port on the Designated Bridge which is designated for the port segment.
RegionalRoot	Displays the unique Bridge Identifier of the bridge. Recorded as the CIST Regional Root Identifier in the configuration BPDUs which are transmitted.
RegionalPathCost	Displays the contribution of this port to the cost of paths towards the CIST Regional Root.
ProtocolMigration	Indicates the Protocol migration state of this port. When operating in MSTP mode, set this field to true to force the port to transmit MSTP BPDUs without instance information.
	😠 Note:
	If this field is set to true and the port receives an 802.1d BPDU, the port begins transmitting 802.1d BPDUs. If the port receives an 802.1w BPDU, it begins transmitting 802.1w BPDUs.
AdminEdgeStatus	Specifies the administrative value of the Edge Port parameter. A value of true indicates that this port can be assumed to be an edge-port, and a value of false indicates that this port can be assumed to be a nonedge-port.
OperEdgeStatus	Signifies the operational value of the Edge Port parameter. This value is initialized to the value of AdminEdgeStatus and set to false when the port receives a BPDU.
AdminP2P	Displays the administrative point-to-point status of the LAN segment attached to this port. A value of 0 indicates that this port is always treated as being connected to a point-to-point link. A value of 1 indicates that this port is treated as having a shared media connection. A value of 2 indicates that this port is considered to have a point-to-point link if it is an Aggregator and all of its members are aggregatable, or if the MAC entity is configured for full duplex operation, either through auto-negotiation, or by management means.
OperP2P	Indicates the operational point-to-point status of the LAN segment attached to the port. It also indicates whether a port is considered to have a point-to-point connection. The value is determined by management or by auto-detection, as described in the AdminP2P object.

Variable	Value
HelloTime	Displays the amount of time between the transmission of Configuration BPDUs transmitted by this node on the port. Measured in units of hundredths of a second.
OperVersion	Indicates whether the Port is operationally in the MSTP, RSTP, or STP- compatible mode; that is, whether the port is transmitting MST BPDUs, RST BPDUs, or Config/TCN BPDUs.
EffectivePortState	Displays the effective operational state of the port for CIST. This is set to true only when the port is operationally up in the Interface level and Protocol level for CIST. This is set to false for all other times.
State	Displays the current state of the port as defined by the Common Spanning Tree Protocol.
ForcePortState	Displays the current state of the port which can be changed to either Disabled or Enabled for the base Spanning Tree instance.
SelectedPortRole	Displays the selected port role for the Spanning Tree instance.
CurrentPortRole	Displays the current port role for the Spanning Tree instance.

Graphing CIST Port statistics

Use this procedure to display CIST Port statistics

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, click **MSTP**.
- 4. Select the **CIST Port** tab.
- 5. Select a port and click Graph to get the statistics for the CIST Port.

Variable definitions

The following table outlines the parameters of the CIST Port tab.

Table 38: CIST Port Graph dialog box parameters

Variable	Value
ForwardTransitions	Displays the number of times this port transitioned to the Forwarding State.
RxMstBpduCount	Displays the number of MST BPDUs received on this port.
RxRstBpduCount	Displays the number of RST BPDUs received on this port.
RxConfigBpduCount	Displays the number of Configuration BPDUs received on this port.
RxTcnBpduCount	Displays the number of TCN BPDUs received on this port.
TxMstBpduCount	Displays the number of MST BPDUs transmitted from this port.

Variable	Value
TxRstBpduCount	Displays the number of RST BPDUs transmitted from this port.
TxConfigBpduCount	Displays the number of Configuration BPDUs transmitted from this port.
TxTcnBpduCount	Displays the number of TCN BPDUs transmitted from this port.
InvalidMstBpduRxCount	Displays the number of Invalid MST BPDUs received on this port.
InvalidRstBpduRxCount	Displays the number of Invalid RST BPDUs received on this port.
InvalidConfigBpdu RxCount	Displays the number of Invalid Configuration BPDUs received on this port.
InvalidTcnBpduRxCount	Displays the number of Invalid TCN BPDUs received on this port.
ProtocolMigrationCount	Displays the number of times this port has migrated from one STP protocol version to another. The relevant migration protocols are STP-COMPATIBLE and RSTP/MSTP. A trap is generated when the port migrates.

Displaying MSTI Bridges

Use this procedure to view the MSTI Bridges information.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, click **MSTP**.
- 4. Select the MSTI Bridges tab.

Variable definitions

The following table outlines the parameters of the **MSTI Bridges** tab.

Table 39: MSTP MSTI Bridges tab parameters

Variable	Value
Instance	Specifies the Spanning Tree Instance to which the information belongs.
RegionalRoot	Specifies the MSTI Regional Root Identifier value for the Instance. This value is used as the MSTI Regional Root Identifier parameter in all Configuration Bridge PDUs originated by this node.
Priority	Specifies the writable portion of the MSTI Bridge Identifier comprising the first two octets. The values that are set for Bridge Priority must be in steps of 4096.
RootCost	Specifies the cost of the path to the MSTI Regional Root as seen by this bridge.
RootPort	Specifies the number of the port which offers the lowest path cost from this bridge to the MSTI Region Root Bridge.

Variable	Value
Enabled	Specifies whether the bridge instance is enabled or disabled.
TimeSinceTopology Change	Specifies the time (measured in hundredths of a second) since the TcWhile Timer for any port in this Bridge was non-zero for this Spanning Tree instance.
TopChanges	Specifies the number of times that at least one non-zero TcWhile Timer occurred on this Bridge for this Spanning Tree instance.
NewRootCount	Specifies the number of times this Bridge has detected a Root Bridge change for this Spanning Tree instance. A Trap is generated on the occurrence of this event.
InstanceUpCount	Specifies the number of times a new Spanning Tree instance was created. A Trap is generated on the occurrence of this event.
InstanceDownCount	Specifies the number of times a Spanning Tree instance was deleted. A Trap is generated on the occurrence of this event.

Inserting MSTI Bridges

Use this procedure to insert MSTI Bridges.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, click **MSTP**.
- 4. Select the MSTI Bridges tab.
- 5. Click the Insert button.
- 6. Type the instance id.
- 7. Click Insert.

Deleting MSTP MSTI Bridges

Use this procedure to delete MSTI bridges.

Procedure steps

- 1. From the navigation tree, double-click **VLAN**.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, click **MSTP**.
- 4. Select the MSTI Bridges tab.
- 5. Click on one or multiple MSTI Bridges.
- 6. Click **Delete**.
- 7. Click **Yes** to confirm you wish to delete the MSTI Bridge(s).

Associating a VLAN with the CIST or an MSTI instance

Use this procedure to associate a VLAN with the CIST or an MSTI instance:

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **VLANs**.
- 3. Select the **Basic** tab.
- 4. Click Insert.
- 5. In the **Mstpinstance** field, select the CIST or an MSTI instance from the menu.
- 6. Populate the other fields as required.
- 7. Click Insert.

Modifying VLAN CIST or MSTI association

Use this procedure to modify an existing VLAN association with a CIST or MSTI:

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click VLANs.
- 3. Select the **Basic** tab.
- 4. Double-click in the **MstpInstance** field.
- 5. Select the CIST option or one of the MSTI options and click **Apply**.

Viewing MSTP MSTI Ports

Use this procedure to view MSTI Port information.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click Spanning Tree.
- 3. From the Spanning Tree folder, double-click **MSTP**.
- 4. Select the MSTI Port tab.

Variable definitions

The following table outlines the parameters of the MSTI Port tab.

Variable	Value
Port	Denotes the port number.
Instance	The number of times a Spanning Tree instance was deleted. A Trap is generated when this event occurs.
State	Indicates the current state of the port as defined by the Multiple Spanning Tree Protocol. The state of a port can be Forwarding or Discarding (Blocking).
ForcePortState	Signifies the current state of the port which can be changed to either Disabled or Enabled for the specific Spanning Tree instance.
PathCost	Specifies the contribution of this port to the cost of paths towards the MSTI Root which includes this port.
Priority	Indicates the four most significant bits of the Port Identifier for a given Spanning Tree instance. This value can be modified independently for each Spanning Tree instance supported by the Bridge. The values set for Port Priority must be in steps of 16.
DesignatedRoot	Specifies the unique Bridge Identifier of the bridge recorded as the MSTI Regional Root in the configuration BPDUs that are transmitted.
DesignatedBridge	Identifies the unique Bridge Identifier of the bridge which this port considers to be the Designated Bridge for the port segment.
DesignatedPort	Identifies the Port identifier of the port on the Designated Bridge for this port segment.
DesignatedCost	Specifies the path cost of the Designated Port of the segment connected to this port.
CurrentPortRole	Specifies the current Port Role of the port for this spanning tree instance.
EffectivePortState	Specifies the effective operational state of the port for the specific instance. This is set to true only when the port is operationally up in the interface level and Protocol level for the specific instance. This is set to false at all other times.

Table 40: MSTP MSTI Port tab parameters

Graphing MSTP MSTI Port Statistics

Use this procedure to display MSTI Port statistics.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click **Spanning Tree**.
- 3. From the Spanning Tree folder, double-click **MSTP**.
- 4. Select the **MSTI Port** tab.
- 5. Select a port and click **Graph** to get the statistics for the MSTI Port.

The following table outlines the parameters of the MSTI Port Graph dialog box.

Table 41: MSTP MSTI Port Graph dialog box parameters

Variable	Value
ForwardTransitions	Specifies the number of times this port transitioned to the Forwarding State for the specific instance.
ReceivedBPDUs	Specifies the number of BPDUs received by this port for this spanning tree instance.
TransmittedBPDUs	Specifies the number of Invalid BPDUs received on this Port for this Spanning Tree instance.
InvalidBPDUsRcvd	Specifies the number of BPDUs transmitted on this port for this Spanning Tree instance.

Chapter 18: MLT Configuration using Enterprise Device Manager

You can create and manage Multi-Link trunks using the following Enterprise Device Manager (EDM) screens:

MultiLink Trunks configuration

Use the information in this section to create a MultiLink Trunk (MLT) and to modify existing MLT port memberships.

Configuring Multi-Link Trunks

Use this procedure to display and configure MLTs.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click MLT/LACP.
- 3. Select the MultiLink Trunks tab.
- 4. To select a trunk to create, click the trunk ID.
- 5. In the trunk row, double-click the cell in the Name column.
- 6. In the field, type a name for the MLT, or accept the default name.
- 7. In the trunk row, double-click the cell in the **PortMembers** column.
- 8. From the list, select multiple ports to add to the trunk.
- 9. Click **OK**.
- 10. In the trunk row, double-click the cell in the Loadbalance(Mode) column.
- 11. From the list, select a load balancing mode.
- 12. In the trunk row, double-click in the Enable column.
- 13. From the list, select true to enable the MLT, or false to disable the MLT.
- 14. To create additional MLTs, repeat steps 4 to 13.

15. Click Apply.

Variable definitions

The following table outlines the parameters of the MultiLink Trunks tab.

Table 42: MLT/LACP MultiLink	Trunks tab parameters
------------------------------	-----------------------

Variable	Value
ID	Specifies the MLT identification number (assigned consecutively).
PortType	Specifies the port type:
	• Access
	• trunk
	UntagPvidOnly
	• TagPvidOnly
Name	Specifies the name given to the MLT.
PortMembers	Specifies the ports assigned to the MLT.
VlanIds	Specifies the VLANs assigned to the MLT.
Loadbalance(Mode)	Specifies the MLT load balancing mode:
	basic (MAC-based load balancing)
	 advanced (IP-based load balancing)
Enable	Specifies whether the Multi-Link trunk is active.
MltType	Specifies the type of MLT:
	• normalMLT
	• istMLT
	• splitMLT
RunningType	Displays the current MLT operational type:
	• normalMLT
	• istMLT
	• splitMLT
Smitid	Specifies the assigned SMLT ID. Both ends of the SMLT must have the same SMLT ID. The SmltId field is used when the MItType is splitMLT. The SmltId value should be 0 if the MItType is not splitMLT.

Filtering the Multi-Link Trunks tab display

Use this procedure to filter the display of the Multi-Link Trunks tab to display selected types of MLT.

Procedure steps

1. From the navigation tree, double-click **VLAN**.

- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the MultiLink Trunks tab.
- 4. Click Filter.
- 5. Set the properties, and click Filter.

Adding MLT Ports

Use this procedure to add ports to an MLT.

Procedure steps

- 1. From the navigation tree, double-click **VLAN**.
- 2. From the VLAN tree, click MLT/LACP.
- 3. Select the MultiLink Trunks tab.
- 4. Click Filter.
- 5. Set the properties, and click Filter.
- 6. Double-click in the **PortMembers** field for the MLT to which ports are to be added.
- 7. Click on the buttons that represent the ports that are to be added to the MLT. For the 5000 Series, up to 8 same-type ports can belong to a single MLT
- 8. Click OK.
- 9. Click Apply.

Disabling MLT ports on Shutdown

Use this procedure to configure the system to disable MLT ports on shutdown.

- 1. From the navigation tree, click **VLAN**.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the **Globals** tab.
- 4. Select the MItDisablePortsOnShutdown check box.
- 5. In the SmltSysId field, enter the LACP system ID for SMLT (MAC address).
- 6. On the tool bar, click **Apply**.

Table 43: Variable definitions

Variable	Value
MltDisablePortsOnShutdown	Specifies whether the function is enabled or disabled.
SmltSysId	Specifies the MAC address of the LACP system ID for SMLT.

Configuring SMLT

This section describes how to use Enterprise Device Manager (EDM) to configure Split Multi-Link Trunking (SMLT).

Note:

To configure SMLT on the 5000 Series switch, an Advanced License must be purchased that allows this feature to be used.

Adding an MLT-based SMLT

Use this procedure to add an MLT-based SMLT.

Important:

For SMLT to function properly, you must manually disable STP on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. You must also disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

You can create an SMLT from the MultiLink Trunks tab by selecting the MLT type as SMLT and then specifying an SMLT ID.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click MLT/LACP.
- 3. Select the MultiLink Trunks tab.
- 4. From the displayed list of MLTs, choose an available MLT to configure as an SMLT.
- 5. In the row containing the desired MLT, double-click the **PortMembers** field.
- 6. Click the ports to include in the MLT-based SMLT.

For the 5000 Series, up to eight same-type ports can belong to a single MLT.

- 7. Click **OK**.
- 8. Double-click the **MItType** field and choose **splitMLT** from the list.
- 9. In the Smitid field, type an unused SMLT ID (1 32).

😵 Note:

The corresponding SMLTs between aggregation switches must have matching SMLT IDs. The same ID number must be used on both sides.

10. Click Apply.

Viewing SLTs configured on your switch

Use this procedure to view the SLTs configured on your switch.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the Single Port SMLT tab.

Variable definitions

The following table outlines the parameters of the **Single Port SMLT** tab.

Table 44: MLT/LACP Single Port SMLT tab parameters

Variable	Value
Index	Displays the index number.
SmltId	Displays the ID number of the SLT (1 - 512).
RunningType	Read only field that displays the current port operational type:
	• normal
	smlt (single port Split MLT)

Configuring an SLT

Use this procedure to configure an SLT.

Important:

For SMLT to function properly, you must manually disable STP on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. You must also disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

Ports that are already configured as MLT or MLT-based SMLT cannot be configured as a single port SLT. You must first remove the split trunk and then reconfigure the ports as an SLT.

Procedure steps

- 1. From the Device Physical View, double-click a port.
- 2. Select the SMLT tab.

😵 Note:

If the MItId field is not zero, this indicates that the port is already configured as an MLT or MLT-based SMLT. If so, you cannot configure an SLT on the port.

- 3. Click Insert.
- 4. In the **Smitid** field, enter an unused SMLT ID number from 1 to 512.

To view the SMLT IDs that are already in use on your switch, see <u>Viewing SLTs configured</u> on your switch on page 270.

5. Click Insert.

The following table outlines the parameters of the **Port X/X** tab.

Table 45: Edit Port X/X tab parameters

Variable	Value
Index	Indicates the index number for the port.
Mitid	Read only field displaying either a value between 1 and 32 indicating that the port is part of an MLT or a value of 0 indicating the port has no MLT assigned and that it can be configured for SLT.
SmltId	Specifies the Split MLT ID, an integer from 1 to 512.

Deleting an SLT

Use this procedure to delete an SLT.

Procedure steps

- 1. From the Device Physical View, double-click a port.
- 2. Select the **SMLT** tab.
- 3. Select the Port SLT.
- 4. Click Delete .
- 5. Click Close.

Configuring an IST MLT

Use this procedure to configure an IST MLT.

Important:

For SMLT to function properly, you must manually disable STP on all SMLT, IST, and SLT ports in all spanning tree groups or instances to which the ports belong. From Release 6.2 onwards, STP is automatically disabled by software on all SMLT ports. You must also disable STP on all edge switch MLT ports that are connected to the SMLT or SLT.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the MultiLink Trunks tab.
- 4. In the row containing the desired MLT, double-click the **PortMembers** field.
- 5. Select the ports to include in the MLT and click **OK**.

For the 5000 Series, up to eight same-type ports can belong to a single MLT.

6. Double-click the **Enable** field and choose **true**.

- 7. Double-click the MItType field and choose istMLT from the list.
- 8. Click Apply.
- 9. Select any field in the IST MLT row and click the **istMlt** button.
- 10. In the **Peerlp** field, enter a peer IP address.
- 11. In the VlanId field, enter a VLAN ID.
- 12. In the **SessionEnable** field, click **enable**.
- 13. Click Apply.

The following table describes the IST MLT parameters .

Table 46: MLT/LACP IST MLT parameters

Variable	Value
Peerlp	Indicates the IST MLT peer IP address.
VlanId	Specifies an IST VLAN ID number from 1 to 4095.
SessionEnable	Displays the Enable/disable IST functionality.
Session Status	Displays the status: up or down

Removing an IST MLT

Use this procedure to remove an existing IST MLT from your switch.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the MultiLink Trunks tab.
- 4. Change the MItType field for the IST from istMLT to normalMLT.
- 5. Click Apply.

Viewing IST statistics

Use this procedure to view IST statistics on an interface.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the Ist/SMLT Stats tab.

The following table outlines the parameters of the Ist/SMLT Stats tab.

Table 47: MLT/LACP Ist/SMLT Stats tab parameters

Variable	Value
SmltIstDownCnt	Specifies the number of IST down messages.
SmltHelloTxMsgCnt	Specifies the number of hello messages transmitted.
SmltHelloRxMsgCnt	Specifies the number of hello messages received.
SmltLearnMacAddrTxMsgCnt	Specifies the number of learn MAC address messages transmitted.
SmltLearnMacAddrRxMsgCnt	Specifies the number of learn MAC address messages received.
SmltMacAddrAgeOutTxMsgCn t	Specifies the number of MAC address aging out messages transmitted.
SmltMacAddrAgeOutRxMsgCn t	Specifies the number of MAC address aging out messages received.
SmltMacAddrAgeExpTxMsgCn t	Specifies the number of MAC address age expired messages transmitted.
SmltMacAddrAgeExpRxMsgC nt	Specifies the number of MAC address age expired messages received.
SmltStgInfoTxMsgCnt	Specifies the number of SMLT STG info messages transmitted.
SmltStgInfoRxMsgCnt	Specifies the number of SMLT STG info messages received.
SmltDelMacAddrTxMsgCnt	Specifies the number of deleted MAC address messages transmitted.
SmltDelMacAddrRxMsgCnt	Specifies the number of deleted MAC address messages received.
SmltSmltDownTxMsgCnt	Specifies the number of SMLT down messages transmitted.
SmltSmltDownRxMsgCnt	Specifies the number of SMLT down messages received.
SmltSmltUpTxMsgCnt	Specifies the number of SMLT up messages transmitted.
SmltSmltUpRxMsgCnt	Specifies the number of SMLT up messages received.
SmltSendMacTblTxMsgCnt	Specifies the number of send MAC table messages transmitted.
SmltSendMacTblRxMsgCnt	Specifies the number of send MAC table messages received.
SmltIgmpTxMsgCnt	Specifies the number of IGMP messages transmitted.
SmltIgmpRxMsgCnt	Specifies the number of IGMP messages received.
SmltPortDownTxMsgCnt	Specifies the number of port down messages transmitted.
SmltPortDownRxMsgCnt	Specifies the number of port down messages received.
SmltReqMacTblTxMsgCnt	Specifies the number of request MAC table messages transmitted.
SmltReqMacTblRxMsgCnt	Specifies the number of request MAC table messages received.
SmltRxUnknownMsgTypeCnt	Specifies the number unknown SMLT messages received.

Chapter 19: LACP and VLACP Configuration using Enterprise Device Manager

LACP Configuration

You can use the following sections to configure LACP using the following Enterprise Device Manager.

Configuring the LACP port compatibility mode

Use this procedure to open to configure the LACP port compatibility mode

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the **Globals** tab.

Variable definitions

The following table outlines the parameters of the **Globals** tab.

Table 48: MLT/LACP Globals tab parameters

Variable	Value	
MLT		
MltDisablePortsOnShutdown	Specifies whether the function is enabled or disabled.	
LACP		
SmltSysId	Specifies the MAC address of the LACP system ID for SMLT.	

Variable	Value
CompatibilityMode	Specifies the port compatibility mode for LACP:
	• default
	• advanced
VLACP	
Enable	Enables or disables VLACP on the switch.
MulticastMACAddress	Identifies a multicast MAC address used exclusively for VLACPDUs. Default is 01:80:c2:00:11:00.
VlacpHoldTime	Time in seconds after restart to send PDUs with subtype HOLD. Used only when SMLT is enabled. Default is 0.

Configuring Link Aggregation Groups

Us this procedure to configure Link Aggregation Groups.

Procedure steps

- 1. From the navigation tree, double-click **VLAN**.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the **LACP** tab.

Variable definitions

The following table outlines the parameters of the LACP tab.

Table 49: MLT/LACF	LACP tab	parameters
--------------------	----------	------------

Variable	Value
Index	Specifies the unique identifier allocated to this Aggregator by the local System. This attribute identifies an Aggregator instance among the subordinate managed objects of the containing object. This value is read-only.
MacAddress	Specifies the MAC address used by this bridge when it must be referred to in a unique fashion.
AggregateOrIndividual	A read-only Boolean value indicating whether the Aggregation Port can Aggregate (TRUE) or can only operate as an Individual link (FALSE).
ActorLagID	Specifies the combined information of ActorSystemPriority, ActorSystemID, and ActorOperKey in ActorSystemPriority-ActorSystemID-ActorOperKey format.
ActorSystemPriority	A 2-octet read-write value indicating the priority value associated with the Actor's System ID.
ActorSystemID	Specifies a 6-octet read-only MAC address value that defines the value of the System ID for the System that contains this Aggregation Port.

Variable	Value
ActorOperKey	Specifies the current operational value of the Key for the Aggregation Port. This is a 16-bit read-only value.
ActorAdminKey	Specifies the current administrative value of the Key for the Aggregation Port. This is a 16-bit read-write value.
PartnerLagID	Specifies the combined information of PartnerSystemPriority, PartnerSystemID, and PartnerOperKey in PartnerSystemPriority- PartnerSystemID-PartnerOper Key format.
PartnerSystemPriority	Specifies a 2-octet read-only value that indicates the priority value associated with the Partner's System ID.
PartnerSystemID	Specifies a 6-octet read-only MAC address value consisting of the unique identifier for the current protocol Partner of this Aggregator. A value of zero indicates that no known Partner exists. If the aggregation is manually configured, this System ID value is assigned by the local System.
PartnerOperKey	Specifies the current operational value of the Key for the Aggregator's current protocol Partner. This is a 16-bit read-only value.
CollectorMaxDelay	Specifies the value of this 16-bit read-write attribute defines the maximum delay, in tens of microseconds, that can be imposed by the Frame Collector between receiving a frame from an Aggregator Parser, and either delivering the frame to its MAC Client or discarding the frame.

Configuring LACP ports

Use this procedure to view or edit the LACP Ports.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the LACP Ports tab.

Variable definitions

The following table outlines the parameters of the LACP Ports tab.

Table 50: LACP Ports tab parameters

Variable	Value
Index	Indicates the ifIndex of the port
AdminEnabled*	Specifies the current administrative setting for the port. A value of true means the port is set to participate in LACP. A value of false means the port is set to not participate in LACP.

Variable	Value	
operEnabled	Specifies the current operational state for the port. A value of true means the port is participating in LACP. A value of false means the port is not participating in LACP.	
AggregateOrIndividual	A read-only Boolean value indicating whether the Aggregator represents an Aggregate (true) or an Individual link (false).	
ActorSystemPriority	Specifies a 2-octet read-write value used to define the priority value associated with the Actor's System ID.	
ActorSystemID	Specifies a 6-octet read-only MAC address value that defines the value of the System ID for the system that contains this Port.	
ActorAdminKey	Indicates the current administrative value of the Key for the Aggregation Port.	
ActorOperKey	Indicates the current operational value of the Key for the Aggregation Port.	
SelectedAggID	Specifies the identifier value of the Aggregator that this Aggregation Port has currently selected. Zero indicates that the Aggregation Port has not selected an Aggregator, either because it is in the process of detaching from an Aggregator or because no suitable Aggregator exists for it to select.	
AttachedAggID	Specifies the identifier value of the Aggregator that this Aggregation Port is currently attached to. Zero indicates that the Aggregation Port is not currently attached to an Aggregator. This value is read-only.	
ActorPort	Indicates the port number locally assigned to the Aggregation Port. The port number is communicated in LACPDUs as the Actor_Port. This value is read-only	
ActorPortPriority	Specifies the priority value assigned to this Aggregation Port. This 16-bit value is read-write.	
ActorAdminState*	Specifies a string of 8 bits, corresponding to the administrative values of Actor_State as transmitted by the Actor in LACPDUs.	
ActorOperState	Specifies a string of 8 bits, corresponding to the current operational values of Actor_State as transmitted by the Actor in LACPDUs.	
PartnerOperPort	Specifies the operational port number assigned by the port's protocol partner. This value is read-only.	

*To set the LACP modes, you must ensure that the LACP port properties are set according to the desired mode, as follows:

- LACP mode Off = AdminEnabled field cleared (disabled)
- LACP mode Passive = AdminEnabled field selected (enabled)
- LACP mode Active = AdminEnabled field selected (enabled) and ActorAdminState options lacpActive and aggregation selected

Mapping the LACP key mapping

Use this procedure to map the LACP key mapping.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the LACP key mapping tab.

Variable definitions

The following table outlines the parameters of the **LACP key mapping** tab.

Table 51: MLT/LACP LACP key mapping tab parameters

Variable	Value
LacpKeyValue	Specifies the value of the LACP administration key.
Mitid	Specifies the ID of the MLT.
SmltId	Specifies the ID of the SMLT.

VLACP Configuration

You can use the following sections to configure VLACP using the following Enterprise Device Manager.

Viewing VLACP Global information

Use this procedure to view VLACP information for the switch.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **MLT/LACP**.
- 3. Select the **Globals** tab.
- 4. View the VLACP section for VLACP information.

Variable definitions

The following table outlines the parameters of the VLACP Global tab.

Table 52: MLT/LACP Global tab VLACP section parameters

Variable	Value
VlacpEnable	Enables or disables VLACP on the switch.

Variable	Value
VlacpMulticastMACAddress	Identifies a multicast MAC address used exclusively for VLACPDUs. Default is 01:80:c2:00:11:00.
VlacpHoldTime	Time in seconds after restart to send PDUs with subtype HOLD. Used only when SMLT is enabled. Default is 0.

VLACP tab for ports

Use the following procedure to view the VLACP tab for ports:

Procedure steps

1. In the Device Physical View, double-click a Port.

The Port X/X dialog box appears with the Interface tab displayed.

2. Select the VLACP tab.

If you want to configure multiple ports, you can access the VLACP tab on the MLT/LACP tab.

Variable definitions

The following table outlines the parameters of the VLACP tab.

Table 53: Port X/X VLACP tab parameters

Variable	Value
rcPortIndex	Specifies the switch and port number.
AdminEnable	Enables or disables VLACP on a port. The default value is False.
OperEnable	Indicates whether VLACP is operationally enabled or disabled. This is a read-only field.
FastPeriodicTimer	Specifies the number of milliseconds between periodic transmissions using short timeouts. Valid values range from 400-20000 with a default of 500.
SlowPeriodicTimer	Specifies the number of milliseconds between periodic transmissions using long timeouts. Valid values range from 10000-30000 with a default of 30000.
Timeout	Specifies whether the timeout control value is a short or long timeout.
TimeoutScale	Sets a timeout scale for the port, where timeout = (periodic time) * (timeout scale).
	The range is 1-10. Default is 3.
	Note: With VLACP, a short interval exists between a port transmitting a VLACPDU and the partner port receiving the same VLACPDU. However, if the timeout-scale is set to less than 3, the port timeout value does not take into account the normal travel time of the VLACPDU. The port expects to receive a VLACPDU at the same moment the partner port sends it.

Variable	Value
	Therefore, the delayed VLACPDU results in the link being blocked, and then enabled again when the packet arrives. To prevent this scenario from happening, set the timeout-scale to a value larger than 3. If a VLACP partner does not receive a VLACPDU during (periodic time)*(timeout scale) the system sets the link as VLACP down.
EtherType	Specifies VLACP protocol identification. The ID value is a 4-digit Hex number, with a default of 8103.
EtherMacAddress	The default value is 00:00:00:00:00:00 and it can be configured with the MAC address of the switch or stack to which this port is sending VLACPDUs. It cannot be configured as a multicast MAC.
	Note: VLACP has only one multicast MAC address, configured using the MulticastMACAddress field in the VLACP Global tab, which is the Layer 2 destination address used for the VLACPDUs. The port-specific EtherMACAddresss parameter does not specify a multicast MAC address, but instead specifies the MAC address of the switch or stack to which this port is sending VLACPDUs. You are not always required to configure EtherMACAddresss. If not configured, the first VLACP-enabled switch that receives the PDUs from a unit assumes that it is the intended recipient and processes the PDUs accordingly.
	If you want an intermediate switch to drop VLACP packets, configure the EtherMACAddresss field with the desired destination MAC address. With EtherMACAddresss configured, the intermediate switches do not misinterpret the VLACP packets.
PortState	Identifies whether the VLACP port state is up or down. This is a read-only field.

Chapter 20: SLPP Configuration using Enterprise Device Manager

This chapter provides procedures used to configure Simple Loop Prevention Protocol (SLPP) using Device Manager.

Configuring SLPP transmitting list

Use this procedure to add a VLAN to the SLPP transmitting list.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **SLPP**.
- 3. Select the VLANs tab.
- 4. Under the SIppEnable heading, select the VLAN you want to add.
- 5. Double click to select True (enabled) or False (disabled).
- 6. Click Apply.
- 7. Click Close.

Enabling SLPP

Use this procedure to globally enable SLPP.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **SLPP**.
- 3. Select the **Global** tab.
- 4. Select the **GlobalEnable** checkbox.
- 5. Click Apply.
- 6. Click Close.

Configuring SLPP PDU transmit interval

Use this procedure to configure the SLPP PDU transmit interval in milliseconds.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **SLPP**.
- 3. Select the Global tab.
- 4. In the **TransmissionInterval** text box, enter the value, in milliseconds, for the transmit interval in the range 500 to 5000. The default is 500.
- 5. Click Apply.
- 6. Click Close.

Configuring SLPP PDU ether type

Use this procedure to configures the SLPP PDU ether type value:

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, double-click SLPP.
- 3. Select the Global tab.
- 4. In the **EtherType** text box, enter the value for ether type. The default SLPP PDU ether type value is 0x8102 Values 0x0000 and 0x8100 are disallowed.
- 5. Click Apply.
- 6. Click Close.

Configuring SLPP port auto enable

Use this procedure to configure the auto enable timer for ports shut down by SLPP.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click SLPP.
- 3. Select the **Global** tab.
- 4. In the **PortsReEnableTimeout** text box, enter the value, in seconds, for the timeout in the range 0 to 65535.
- 5. Click Apply.

6. Click Close.

Enabling SLPP PDU received function per port

Use this procedure to enable the SLPP PDU received function on a port.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **SLPP**.
- 3. Select the Ports tab.
- 4. Under the **SIppEnable** heading, select the port you want to enable.
- 5. Double click to select True (enabled) or False (disabled).
- 6. Click Apply.
- 7. Click Close.

Configuring the SLPP PDU receipt threshold

Use this procedure to enable the SLPP PDU received function on a port:

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click SLPP.
- 3. Select the **Ports** tab.
- 4. Under the PktRxThreshold heading, select the port you want to modify.
- 5. Double click and enter the value for the threshold in the range 1 to 500.
- 6. Click Apply.
- 7. Click Close.

Configuring SLPP Guard using Enterprise Device Manager

This section provides the procedures to configure Simple Loop Prevention Protocol (SLPP) Guard using EDM.

Selecting an SLPP Guard Ethernet type using EDM

Use this procedure to select an SLPP Guard Ethernet type for the switch.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **SLPP**.
- 3. In the work area, click the Global tab.
- 4. Type a value in the SIppGuardEtherType box.
- 5. On the toolbar, click **Apply**.

Configuring SLPP Guard using EDM

You can use this procedure to configure SLPP Guard for switch ports.

Procedure steps

- 1. From the navigation tree, double-click VLAN.
- 2. From the VLAN tree, click **SLPP**.
- 3. In the work area, click the SLPP Guard tab.
- 4. To select a specific switch port, click an IfIndex.
- 5. In the IfIndex row, double-click the cell in the **Enabled** column.
- 6. Select a value from the list-true to enable SLPP Guard, false to disable SLPP Guard.
- 7. In the IfIndex row, double-click the cell in the Timeout column.
- 8. Type a value in the **Timeout** box.
- 9. On the toolbar, click **Apply**.

Variable definitions

Variable	Value
IfIndex	Specifies the port on which to configure SLPP Guard.
Enable	Enables (true) or disables (false) SLPP Guard for the port.
Timeout	Specifies the time period, in seconds, for which SLPP Guard disables the port. After the timeout period expires, the switch re- enables the port. The timeout value can be 0 or a value ranging from 10 to 65535. With a value of 0, the port remains disabled

Variable	Value
	until it is manually re-enabled. The default Timeout value is 60 seconds.
Status	Displays the SLPP Guard status for the port.
TimerCount	Indicates the time, in seconds, that elapses after SLPP Guard disables a port. When the TimerCount value equals the Timeout value, the switch reenables the port.

Viewing the SLPP Guard configuration using EDM

Use this procedure to display SLPP Guard configuration information for switch ports.

Procedure steps

- 1. From the navigation tree, double-click **VLAN**.
- 2. From the VLAN tree, click **SLPP**.
- 3. In the work area, click the SLPP Guard tab.

Variable definitions

Variable	Value
<portlist></portlist>	Specifies a list of ports for which to display the SLPP Guard configuration status. If no ports are specified, the configuration status for all ports is displayed.

Chapter 21: ADAC Configuration using Enterprise Device Manager

You can configure ADAC-related settings through EDM using the following procedures.

Configuring ADAC settings

Use this procedure to configure the global ADAC settings.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, click **ADAC**.
- 3. Select the ADAC tab.
- 4. Select the AdminEnable field to enable ADAC.
- 5. Choose the Operating Mode.
- 6. Enter the Voice VLAN ID, Call Server port, and Uplink port.
- 7. Click Apply.

Variable definitions

The following table outlines the parameters of the ADAC tab.

Table 54: ADAC tab parameters

Variable	Value
AdminEnable	Enables and disables ADAC.
OperEnable	Indicates ADAC operational state: true is enabled and false is disabled.
	🚷 Note:
	If AdminEnable is True and OperEnable is False, this indicates an error condition such as missing Uplink and Call Server ports.

Variable	Value
OperatingMode	Sets the ADAC operation mode:
	 untaggedFramesBasic: IP Phones send untagged frames, and the Voice VLAN is not created.
	 untaggedFramesAdvanced: IP Phones send untagged frames, and the Voice VLAN is created.
	 taggedFrames: IP Phones send tagged frames.
VoiceVLAN	Sets the Voice VLAN ID.
CallServerPort	Sets the Call Server port. The Ethernet Routing Switch 5000 Series supports up to 8 Call Server ports.
UplinkPort	Sets the Uplink port. The Ethernet Routing Switch 5000 Series supports up to 8 Uplink ports.
MacAddrRangeControl	Provides two options for configuring the MAC address range table:
	none: default
	 clearTable: clears the MAC address range table.
	defaultTable: sets the MAC address range table to its default values.

Configuring ADAC MAC address ranges using EDM

Use this procedure to add MAC address ranges to the ADAC MAC address range table.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, click **ADAC**.
- 3. Select the ADAC MAC Ranges tab.
- 4. Click Insert.
- 5. In the **MacAddrRangeLowEndIndex** field, enter the low-end of the MAC address range to add.
- 6. In the **MacAddrRangeHighEndIndex** field, enter the high-end of the MAC address range to add.
- 7. Click Insert.

The following table outlines the parameters of the ADAC MAC Ranges tab.

Table 55: Variable definitions

Variable	Value
MacAddrRangeLowEndIndex	The MAC address for the low end of the MAC address range.
MacAddrRangeHighEndIndex	The MAC address for the high end of the MAC address range.

Deleting MAC address ranges using Device Manager

Use this procedure to delete MAC address ranges from the ADAC MAC address range table.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, click **ADAC**.
- 3. Select the ADAC MAC Ranges tab.
- 4. Select the desired range to delete.
- 5. Click Delete.

Configuring ADAC settings on a port

Use this procedure to configure ADAC settings on a port.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, click **ADAC**.
- 3. Select the **ADAC** tab.
- 4. To enable ADAC for the port, select the **AdminEnable** check box. To disable ADAC for the port, clear the **AdminEnable** check box.
- 5. Select the **ADAC Ports** tab.
- 6. In the **TaggedFramesPvid** box, type a number between 0 and 4094, where 0 means "no change."
- 7. Click on the TaggedFramesTagging setting required.
- 8. Select **MacDetectionEnable** or **LldpDetectionEnable** or select them both to enable the detection methods on the port.
- 9. Click Apply.

Variable definitions

The following table outlines the parameters of the ADAC Ports tab.

Table 56: ADAC Ports tab parameters

Variable	Value
AdminEnable	Enables or disables ADAC for the port.
OperEnable	Indicates ADAC operational state: true is enabled and false is disabled.

Variable	Value
	😸 Note:
	If OperEnable is False and AdminEnable is True, then Auto-Detection/ Auto-Configuration is disabled. This can occur due to a condition such as reaching the maximum number of devices supported per port.
ConfigStatus	(Read only) Describes the ADAC status for the port:
	configApplied means that the ADAC configuration is applied to this port.
	 configNotApplied means that the ADAC configuration is not applied to this port.
TaggedFramesPVID	Unique PVID between 1 and 4094. A value of 0 indicates that Auto- Configuration cannot change the PVID for the respective port.
TaggedFramesTagging	Choose
	tagAll to tag all frames
	 tagPvidOnly to tag frames by the unique PVID
	 untagPvidOnly to untag frames by the unique PVID
	 noChange to accept frames without change
AdacPortType	Describes how ADAC classifies the port:
	 telephony (when Auto-Detection is enabled for the port)
	• callServer
	• uplink
	• none
MacDetectionEnable	True indicates that Auto-Detection of Avaya IP Phones, based on MAC address, is enabled on the interface. False indicates that Auto-Detection of Avaya IP Phones, based on MAC address, is disabled on the interface. NOTE: MacDetectionEnable cannot be set to false if no other supported detection mechanism is enabled on the port.
LldpDetectionEnable	True indicates that Auto-Detection of Avaya IP Phones, based on 802.1ab is enabled on the interface. False indicates that Auto-Detection of Avaya IP Phones, based on 802.1ab, is disabled on the interface. NOTE: LldpDetectionEnable cannot be set to False if no other supported detection mechanism is enabled on the port.

Chapter 22: Bridge configuration using Enterprise Device Manager

Bridge information displays the MAC Address Table for the switch.

Displaying basic system bridge information

Use this procedure to display basic system bridge information, including the MAC address, type, and number of ports participating in the bridge.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, click **Bridge**.
- 3. Select the **Base** tab.

The following table outlines the parameters for the **Base** tab.

Table 57: Variable definitions

Variable	Value
BridgeAddress	Indicates the MAC address of the bridge when it is referred to in a unique fashion. This address must be the smallest MAC address of all ports that belong to the bridge and needs to be unique. When concatenated with dot1dStpPriority, a unique bridge ID is formed that is then used in the Spanning Tree Protocol.
NumPorts	Indicates the number of ports controlled by the bridging entity.
Туре	Indicates the type of bridging this bridge can perform. If the bridge is actually performing a certain type of bridging, this fact is indicated by entries in the port table for the given type.

Viewing transparent bridge information

Use this procedure to display information about learned forwarding entries discards and to configure the aging time.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, click **Bridge**.
- 3. Select the Transparent tab.
- 4. Click Apply if the AgingTime field is modified.

The following table outlines the parameters for the Transparent tab.

Table 58: Variable definitions

Variable	Value
LearnedEntryDiscards	Indicates the number of Forwarding Database entries learned that have been discarded due to insufficient space in the Forwarding Database. If this counter increases, it indicates that the Forwarding Database is becoming full regularly. This condition affects the performance of the subnetwork. If the counter has a significant value and is not presently increasing, it indicates that the problem has occurred but is not persistent.
AgingTime	Indicates the time-out period in seconds for aging out dynamically learned forwarding information.
	😢 Note:
	The 802.1D-1990 specification recommends a default of 300 seconds.

Viewing forwarding bridge information

Use this procedure to display information about bridge forwarding status.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, click **Bridge**.
- 3. Select the Forwarding tab.
- 4. To select specific bridge port status information display criteria, click Filter.
- 5. Select filtering criteria.
- 6. Click Filter.

The following table outlines the parameters for the **Forwarding** tab.

Table 59: Variable definitions

Variable	Value
ld	Specifies the VLAN identifier.

Variable	Value
Address	Specifies the unicast MAC address for which the bridge has forwarding or filtering information.
Port	Indicates the port number. The source address mut be equal to the value of the corresponding instance of dot1dTpFdbAddress
	A value of "0" indicates that the port number has not been learned, so the bridge does have the forwarding/filtering information for this address (located in the dot1dStaticTable). You must assign the port value to this object whenever it is learned even for addresses for which the corresponding value of dot1dTpFdbStatus is not learned.
Status	The values of this field include:
	• invalid: Entry is no longer valid, but has not been removed from the table.
	 learned: Value of the corresponding instance of dot1dTpFdbPort was learned and is being used.
	 self: Value of the corresponding instance of dot1dTpFdbAddress represents an address of the bridge. The corresponding instance of dot1dTpFdbPort indicates that a specific port on the bridge has this address.
	 mgmt(5): Value of the corresponding instance of dot1dTpFdbAddress is also the value of an existing instance of dot1dStaticAddress.
	 other: None of the preceding. This includes instances where some other MIB object (not the corresponding instance of dot1dTpFdbPort or an entry in the dot1dStaticTable) is being used to determine if a frames addressed to the value of dot1dTpFdbAddress are being forwarded.

Chapter 23: LLDP configuration using Enterprise Device Manager

Use the following procedures to configure and view LLDP global and transmit properties for local and neighbor systems.

Related links

Configuring LLDP transmit properties on page 295 Viewing LLDP remote properties on page 296 Configuring LLDP ports on page 298 Displaying LLDP transmit statistics on page 299 Graphing LLDP transmit statistics on page 300 Displaying LLDP receive statistics on page 300 Graphing LLDP receive statistics on page 302 Viewing LLDP local system properties on page 302 Viewing LLDP local port properties on page 304 Viewing LLDP management properites on page 305 Viewing LLDP remote management properties on page 306 Viewing LLDP organizationally-specific properties on page 307 LLDP Port dot1 configuration using Enterprise Device Manager on page 308 LLDP Port dot3 configuration using Enterprise Device Manager on page 314 LLDP Port MED configuration using Enterprise Device Manager on page 320 LLDP MED policy management using Enterprises Device Manager on page 332 Configuring LLDP Timers using EDM on page 337 Enabling or disabling Avava TLV transmit flags on page 338 Configuring the PoE conservation level request TLV on page 339 Configuring the switch call server IP address TLV on page 341 Configuring the switch file server IP address TLV on page 342 Viewing Avaya IP phone power level TLV information on page 343 Viewing remote call server IP address TLV information on page 343 Viewing remote file server IP address TLV information on page 344 Viewing PoE conservation level support TLV information on page 345 Viewing remote 802.1Q Framing TLV information on page 346 Viewing remote IP TLV information on page 347

Configuring LLDP transmit properties

Use this procedure to configure LLDP transmit properties and view remote table statistics.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the **Globals** tab.

The following table outlines the parameters of the **Globals** tab.

Table 60: Variable definitions

Variable	Value
lldpMessageTxInterval	Specifies the interval (in seconds) at which LLDP frames are transmitted on behalf of this LLDP agent.
lldpMessageTx HoldMultiplier	Specifies the time-to-live value expressed as a multiple of the object. The actual time-to-live value used in LLDP frames, transmitted on behalf of this LLDP agent, is expressed by the following formula: TTL = min(65535, (IldpMessageTxInterval *IldpMessageTxHoldMultiplier)) For example, if the value of IldpMessageTxInterval is 30, and the value of IldpMessageTxHoldMultiplier is 4, the value 120 is encoded in the TTL field in the LLDP header.
lldpReinitDelay	Indicates the delay (in seconds) from when the LLDP Port AdminStatus of a particular port is disabled until reinitialization begins.
lldpTxDelay	Indicates the delay (in seconds) between successive LLDP frame transmissions initiated by value or status changes in the LLDP local systems MIB. The recommended value for the IldpTxDelay is set by the following formula: 1 <= IldpTxDelay <= (0.25 * IldpMessageTxInterval)
IldpNotificationInterval	Controls the transmission of LLDP notifications. The agent must not generate more than one IldpRemTablesChange notification-event in the indicated period, where a <i>notification-event</i> is the "transmission of a single notification PDU type to a list of notification destinations." If additional changes in IldpRemoteSystemsData object groups occur within the indicated throttling period, these trap-events must be suppressed by the agent. An NMS must periodically check the value of IldpStatsRemTableLastChangeTime to detect any missed IldpRemTablesChange notification-events, for example, due to throttling or transmission loss. If notification transmission is enabled for particular ports, the suggested default throttling period is 5 seconds.
RemTablesLast ChangeTime	Specifies the value of the sysUpTime object (defined in IETF RFC 3418) at the time an entry is created, modified, or deleted in tables associated with the IldpRemoteSystemsData objects, and all LLDP extension objects

Variable	Value
	associated with remote systems. An NMS can use this object to reduce polling of the lldpRemoteSystemsData objects.
RemTablesInserts	Specifies the number of times the complete set of information advertised by a particular MSAP is inserted into tables contained in IldpRemoteSystemsData and IldpExtensions objects. The complete set of information received from a particular MSAP is inserted into related tables. If partial information cannot be inserted for a reason such as lack of resources, all of the complete set of information is removed. This counter is incremented only once after the complete set of information is successfully recorded in all related tables. Any failures occurring during insertion of the information set, which result in deletion of previously inserted information, do not trigger any changes in IldpStatsRemTablesInserts because the insert is not completed yet or in IldpStatsRemTablesDeletes, because the deletion is only a partial deletion. If the failure is the result of a lack of resources, the IldpStatsRemTablesDrops counter is incremented once.
RemTablesDeletes	Specifies the number of times the complete set of information advertised by a particular MSAP is deleted from tables contained in IldpRemoteSystemsData and IldpExtensions objects. This counter is incremented only once when the complete set of information is completely deleted from all related tables. Partial deletions, such as a deletion of rows associated with a particular MSAP, from some tables, but not from all tables, are not allowed, and thus, do not change the value of this counter.
RemTablesDrops	Indicates the number of times the complete set of information advertised by a particular MSAP can not be entered into tables contained in IldpRemoteSystemsData and IldpExtensions objects because of insufficient resources.
RemTablesAgeouts	Indicates the number of times the complete set of information advertised by a particular MSAP is deleted from tables contained in IldpRemoteSystemsData and IldpExtensions objects because the information timeliness interval has expired. This counter is incremented only once when the complete set of information is completely invalidated (aged out) from all related tables. Partial aging, similar to deletion case, is not allowed, and thus, does not change the value of this counter.
FastStartRepeatCount	Indicates the number of times the fast start LLDPDU is sent during the activation of the fast start mechanism defined by LLDP-MED.

LLDP configuration using Enterprise Device Manager on page 294

Viewing LLDP remote properties

Use this procedure view LLDP properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click **LLDP**.
- 5. Select the **Neighbor** tab.

The following table outlines the parameters of the **Neighbor** tab.

Table 61: Variable definitions

Variable	Value
TimeMark	Specifies the TimeFilter for this entry. See the TimeFilter textual convention in IETF RFC 2021 for details about TimeFilter.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Specifies an arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
ChassisIdSubtype	Specifies the type of encoding used to identify the remote system chassis:
	chassisComponent
	• interfaceAlias
	• portComponent
	• macAddress
	networkAddress
	interfaceName
	• local.
ChassisId	Specifies the remote chassis ID.
SysCapSupported	Identifies the system capabilities supported on the remote system.
SysCapEnabled	Identifies the system capabilities that are enabled on the remote system.
SysName	Specifies the remote system name.
SysDesc	Specifies the remote system description.
PortIdSubtype	Specifies the type of encoding used to identify the remote port.
	interfaceAlias
	portComponent
	• macAddress
	networkAddress
	interfaceName
	agentCircuitId

Variable	Value
	• local
PortId	Specifies the remote port ID.
PortDesc	Specifies the remote port description.

LLDP configuration using Enterprise Device Manager on page 294

Configuring LLDP ports

Use this procedure to set the optional TLVs to include in the LLPDUs transmitted by each port.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the Port tab.

The following table outlines the parameters of the Port tab.

Table 62: Variable definitions

Variable	Value
PortNum	Specifies the port number.
AdminStatus	Specifies the administratively desired status of the local LLDP agent:
	 txOnly: the LLDP agent transmits LLDP frames on this port and does not store any information about the remote systems to which it is connected.
	 rxOnly: the LLDP agent receives but does not transmit LLDP frames on this port.
	 txAndRx: the LLDP agent transmits and receives LLDP frames on this port.
	 disabled: the LLDP agent does not transmit or receive LLDP frames on this port. If the port receives remote systems information which is stored in other tables before AdminStatus is disabled, the information ages out.
NotificationEnable	Controls, for each port, whether notifications from the agent are enabled.
	 true: indicates that notifications are enabled
	false: indicates that notifications are disabled.

Variable	Value
TLVsTxEnable	Sets the optional Management TLVs to be included in the transmitted LLDPDUs:
	portDesc: Port Description TLV
	sysName: System Name TLV
	sysDesc: System Description TLV
	• sysCap: System Capabilities TLV
	Note: The Local Management tab controls Management Address TLV transmission.
VLANTxEnable(dot1)	Specifies whether the IEEE 802.1 organizationally defined port VLAN TLV transmission is included in the transmitted LLDPDUs.
TLVsTxEnable(dot3)	Sets the optional IEEE 802.3 organizationally defined TLVs to be included in the transmitted LLDPDUs:
	 macPhyConfigStatus: MAC/PHY configuration/status TLV
	powerViaMDI: Power over MDI TLV
	IinkAggregation: Link Aggregation TLV
	maxFrameSize: Maximum-frame-size TLV.
CapSupported(med)	Identifies which MED system capabilities are supported on the local system.
TLVsTxEnable(med)	Sets the optional organizationally defined TLVs for MED devices to include in the transmitted LLDPDUs:
	capabilities: Capabilities TLVs
	networkPolicy: Network Policy TLVs
	 location: Emergency Communications System Location TLVs
	 extendedPSE: Extended PoE TLVs with PSE capabilities
	 inventory: Hardware Revision, Firmware Revision, Software Revision, Serial Number, Manufacturer Name, Model Name, and Asset ID TLVs.
NotifyEnable(med)	A value of true enables sending the topology change traps on this port. A value of false disables sending the topology change traps on this port.

LLDP configuration using Enterprise Device Manager on page 294

Displaying LLDP transmit statistics

Use this procedure to view LLDP transmit statistics by port.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the **TX Stats** tab.

The following table outlines the parameters of the **TX Stats** tab.

Table 63: Variable definitions

Variable	Value
PortNum	Specifies the port number.
FramesTotal	Specifies the number of LLDP frames transmitted by this LLDP agent on the indicated port.

Related links

LLDP configuration using Enterprise Device Manager on page 294

Graphing LLDP transmit statistics

Use this procedure To graph LLDP transmit statistics.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the **TX Stats** tab.
- 6. Click Graph.
- 7. Highlight a data column to graph.
- 8. Click one of the graph buttons.

Related links

LLDP configuration using Enterprise Device Manager on page 294

Displaying LLDP receive statistics

Use this procedure to view LLDP receive statistics by port.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click **LLDP**.
- 5. Select the **RX Stats** tab.

The following table outlines the parameters of the **RX Stats** tab.

Table 64: Variable definitions

Variable	Value
PortNum	Specifies the port number.
FramesDiscardedTotal	Specifies the number of LLDP frames received on the port and discarded for any reason. This counter provides an indication that LLDP header formatting problems exist with the local LLDP agent in the sending system, or that LLDPDU validation problems exist with the local LLDP agent in the receiving system.
FramesErrors	Specifies the number of invalid LLDP frames received on the port, while the LLDP agent is enabled.
FramesTotal	Specifies the number of valid LLDP frames received on the port, while the LLDP agent is enabled.
TLVsDiscardedTotal	Specifies the number of LLDP TLVs discarded for any reason.
TLVsUnrecognizedTotal	Specifies the number of LLDP TLVs received on a given port that are not recognized by this LLDP agent on the indicated port. An unrecognized TLV is referred to as the TLV whose type value is in the range of reserved TLV types (000 1001 - 111 1110) in Table 9.1 of IEEE 802.1AB-2004. An unrecognized TLV can be a basic management TLV from a later LLDP version.
AgeoutsTotal	Represents the number of age-outs that occurred on a given port. An age- out is "the number of times the complete set of information advertised by a particular MSAP is deleted from tables contained in IldpRemoteSystemsData and IldpExtensions objects because the information timeliness interval has expired." This counter is similar to IldpStatsRemTablesAgeouts, except that it is on a for each-port basis. This enables NMS to poll tables associated with the IldpRemoteSystemsData objects and all LLDP extension objects associated with remote systems on the indicated port only. This counter is set to zero during agent initialization. When the admin status for a port changes from disabled to rxOnly, txOnly or txAndRx, the counter associated with the same port is reset to 0. The agent also flushes all remote system information associated with the same port. This counter is incremented only once when the complete set of information is invalidated (aged out) from all related tables on a particular port. Partial aging is not allowed, and thus, does not change the value of this counter.

LLDP configuration using Enterprise Device Manager on page 294

Graphing LLDP receive statistics

Use this procedure to graph LLDP receive statistics.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the **RX Stats** tab.
- 6. Click Graph.
- 7. Highlight a data column to graph.
- 8. Click one of the graph buttons.

Related links

LLDP configuration using Enterprise Device Manager on page 294

Viewing LLDP local system properties

Use this procedure to view LLDP local system properties.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the Local System tab.

The following table outlines the parameters of the Local System tab.

Table 65: Variable definitions

Variable	Value
ChassisIdSubtype	Specifies the type of encoding used to identify the local system chassis:
	chassisComponent
	interfaceAlias
	portComponent
	• macAddress
	networkAddress
	interfaceName
	• local
ChassisId	Specifies the chassis ID
SysName	Specifies the local system name
SysDesc	Specifies the local system description
SysCapSupported	Identifies the system capabilities supported on the local system
SysCapEnabled	Identifies the system capabilities that are enabled on the local system
DeviceClass	Specifies the local MED device class
HardwareRev	Specifies the vendor-specific hardware revision string as advertised by the local device
FirmwareRev	Specifies the vendor-specific firmware revision string as advertised by the local device
SoftwareRev	Specifies the vendor-specific software revision string as advertised by the local device
SerialNum	Specifies the vendor-specific serial number as advertised by the local device
MfgName	Specifies the vendor-specific manufacturer name as advertised by the local device
ModelName	Specifies the vendor-specific model name as advertised by the local device
AssetID	Specifies the vendor-specific asset tracking identifier as advertised by the local device
DeviceType	Defines the type of Power-via-MDI (Power over Ethernet) advertised by the local device:
	 pseDevice: indicates that the device is advertised as a Power Sourcing Entity (PSE).
	 pdDevice: indicates that the device is advertised as a Powered Device (PD)
	none: indicates that the device does not support PoE

Variable	Value
PSEPowerSource	Defines the type of PSE Power Source advertised by the local device:
	primary: indicates that the device advertises its power source as primary
	backup: indicates that the device advertises its power source as backup
PDPowerReq	Specifies the value of the power required (in units of 0.1 watts) by a Powered Device (PD)
PDPowerSource	Defines the type of power source advertised as in use by the local device:
	 fromPSE: indicates that the device advertises its power source as received from a PSE
	local: indicates that the device advertises its power source as local
	 localAndPSE: indicates that the device advertises its power source as using both local and PSE power
PDPowerPriority	Defines the priority advertised as required by this PD:
	 critical: indicates that the device advertises its power priority as critical, see RFC 3621
	 high: indicates that the device advertises its power priority as high, see RFC 3621
	 low: indicates that the device advertises its power priority as low, see RFC 3621

LLDP configuration using Enterprise Device Manager on page 294

Viewing LLDP local port properties

Use this procedure to view LLDP port properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the Local System tab.

The following table outlines the parameters of the Local Port tab.

Table 66: Variable definitions	
--------------------------------	--

Variable	Value
PortNum	Specifies the port number.
PortIdSubtype	Specifies the type of port identifier encoding used in the associated PortId object.
	interfaceAlias
	portComponent
	• macAddress
	networkAddress
	interfaceName
	• agentCircuitId
	• local.
PortId	lidentifies the port component associated with a given port in the local system.
PortDesc	Identifies the 802 LAN station port description associated with the local system. If the local agent supports IETF RFC 2863, the PortDesc object has the same value as the ifDescr object.

LLDP configuration using Enterprise Device Manager on page 294

Viewing LLDP management properites

Use this procedure to view LLDP management properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the Local Management tab.

The following table outlines the parameters of the Local Management tab.

Table 67: Variable definitions

Variable	Value
AddrSubtype	Specifies the type of management address identifier encoding used in the associated Addr object.
Addr	Specifies the string value used to identify the management address component associated with the local system. This address is used to contact the management entity.
AddrLen	Specifies the total length of the management address subtype and the management address fields in LLDPDUs transmitted by the local LLDP agent. The management address length field is needed so that the receiving systems that do not implement SNMP are not required to implement an iana family numbers/address length equivalency table to decode the management address.
AddrlfSubtype	Identifies the numbering method used to define the interface number associated with the remote system.
	• unknown
	• ifIndex
	• systemPortNumber
Addrlfld	Identifies the interface number of the management address component associated with the local system.
AddrOID	Identifies the type of hardware component or protocol entity associated with the management address advertised by the local system agent.
AddrPortsTxEnable	Identifies the ports on which the local system management address TLVs are transmitted in the LLPDUs.

Related links

LLDP configuration using Enterprise Device Manager on page 294

Viewing LLDP remote management properties

Use this procedure to view LLDP management properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the Neighbor Mgmt Address tab.

The following table outlines the parameters of the Neighbor Mgmt Address tab.

Table 68: Variable definitions

Variable	Value
TimeMark	Specifies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Identifies an arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
AddrSubtype	Specifies the type of encoding used in the associated Addr object.
Addr	Identifies the management address associated with the remote system.
AddrlfSubtype	Identifies the numbering method used to define the interface number associated with the remote system.
	• unknown
	• ifIndex
	systemPortNumber
Addrlfld	Identifies the interface number of the management address component associated with the remote system.
AddrOID	Identifies the type of hardware component or protocol entity associated with the management address advertised by the remote system agent.

Related links

LLDP configuration using Enterprise Device Manager on page 294

Viewing LLDP organizationally-specific properties

Use this procedure to view Organizationally-specific properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click LLDP.
- 5. Select the Organizational Defined Info tab.

The following table outlines the parameters of the **Organizational Defined Info** tab.

Table 69: Variable definitions

Variable	Value
TimeMark	Specifies the TimeFilter for this entry.

Variable	Value
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Specifies an arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
OrgDefInfoOUI	Specifies the Organizationally Unique Identifier (OUI), as defined in IEEE 802-2001, is a 24 bit (three octets) globally unique assigned number referenced by various standards, of the information received from the remote system.
OrgDefInfoSubtype	Identifies the subtype of the organizationally defined information received from the remote system. The subtype value is required to identify different instances of organizationally defined information that cannot be retrieved without a unique identifier that indicates the particular type of information contained in the information string.
OrgDefInfoIndex	Represents an arbitrary local integer value used by this agent to identify a particular unrecognized organizationally defined information instance, unique only for the OrgDefInfoOUI and IldpRemOrgDefInfoSubtype of the same remote system. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot. It is unlikely that the IldpRemOrgDefInfoIndex will wrap between reboots.
OrdDefInfo	Identifies the organizationally defined information of the remote system. The encoding for this object is the same as that defined for SnmpAdminString TC.

LLDP configuration using Enterprise Device Manager on page 294

LLDP Port dot1 configuration using Enterprise Device Manager

Use the following procedures to configure the LLDP Port dot1 dialog box and view IEEE 802.1 LLDP information.

Related links

LLDP configuration using Enterprise Device Manager on page 294 Viewing LLDP VLAN ID properties on page 309 Viewing LLDP protocol VLAN properties on page 309 Viewing LLDP VLAN Name properties on page 310 Viewing LLDP protocol properties on page 311 Viewing LLDP VLAN ID properties on page 311 Viewing LLDP Neighbor Protocol VLAN properties on page 312 Viewing LLDP VLAN Name properties on page 313 Viewing LLDP Neighbor Protocol properties on page 313

Viewing LLDP VLAN ID properties

Use this procedure to view LLDP VLAN ID properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click Port dot1.
- 5. Select the Local VLAN Id tab.

The following table outlines the parameters of the Local VLAN Id tab.

Table 70: Variable definitions

Variable	Value
PortNum	Specifies the port number.
VlanId	Specifies the local port VLAN ID. A value of zero is used if the system does not know the PVID.

Related links

LLDP Port dot1 configuration using Enterprise Device Manager on page 308

Viewing LLDP protocol VLAN properties

Use this procedure to view LLDP Protocol VLAN properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, click Port dot1.
- 5. Select the Local Protocol VLAN tab.

The following table outlines the parameters of the Local Protocol VLAN tab.

Table 71: Variable definitions

Variable	Value
PortNum	Specifies the port number.
ProtoVlanId	Specifies the ID of the port and protocol VLANs associated with the local port. A value of zero is used if the system does not know the protocol VLAN ID (PPVID).
ProtoVlanSuported	Indicates whether the local port supports port and protocol VLANs.
ProtoVlanEnabled	Indicates whether the port and protocol VLANs are enabled on the local port.
ProtoVlanTxEnable	Indicates whether the corresponding local port and protocol VLAN information are transmitted from the port.

Related links

LLDP Port dot1 configuration using Enterprise Device Manager on page 308

Viewing LLDP VLAN Name properties

Use this procedure to view LLDP VLAN Name properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click Port dot1.
- 5. Select the Local VLAN Name tab.

The following table outlines the parameters of the Local VLAN Name tab.

Table 72: Variable definitions

Variable	Value
PortNum	Specifies the port number.
VlanId	Specifies the integer value used to identify the IEEE 802.1Q VLAN IDs with which the given port is compatible.
VlanName	Indicates the string value used to identify the VLAN name identified by the VLAN ID associated with the given port on the local system. This object contains the value of the dot1QVLANStaticName object (defined in IETF RFC 2674) identified with the given IldpXdot1LocVlanId.
VlanNameTxEnable	Indicates whether the corresponding Local System VLAN name instance is transmitted from the port.

Related links

LLDP Port dot1 configuration using Enterprise Device Manager on page 308

Viewing LLDP protocol properties

Use this procedure to view LLDP protocol properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, click Port dot1.
- 5. Select the Local Protocol tab.

The following table outlines the parameters of the Local Protocol tab.

Table 73: Variable definitions

Variable	Value
PortNum	Specifies the port number.
ProtocolIndex	Specifies an arbitrary local integer value used by this agent to identify a particular protocol identity.
Protocolld	Specifies the octet string value used to identify the protocols associated with the given port of the local system.
ProtocolTxEnable	Indicates whether the corresponding Local System Protocol Identity instance is transmitted on the port.

Related links

LLDP Port dot1 configuration using Enterprise Device Manager on page 308

Viewing LLDP VLAN ID properties

Use this procedure to view LLDP VLAN ID properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, click Port dot1.
- 5. Select the Neighbor VLAN Id tab.

The following table outlines the parameters of the **Neighbor VLAN Id** tab.

Table 74: Variable definitions

Variable	Value
TimeMark	Specifies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Specifies an arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
VlanId	Specifies the port VLAN identifier associated with the remote system. If the remote system does not know the PVID or does not support port-based VLAN operation, the value is zero.

Related links

LLDP Port dot1 configuration using Enterprise Device Manager on page 308

Viewing LLDP Neighbor Protocol VLAN properties

Use this procedure to view LLDP VLAN ID properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click Port dot1.
- 5. Select the Neighbor Protocol VLAN tab.

The following table outlines the parameters of the Neighbor Protocol VLAN tab.

Table 75: Variable definitions

Variable	Value
TimeMark	Specifies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Specifies an arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
ProtoVlanId	Specifies the ID of the port and protocol VLANs associated with the remote port. A value of zero is used if the system does not know the protocol VLAN ID (PPVID).
ProtoVlanSuported	Indicates whether the remote port supports port and protocol VLANs.
ProtoVlanEnabled	Indicates whether the port and protocol VLANs are enabled on the remote port.

LLDP Port dot1 configuration using Enterprise Device Manager on page 308

Viewing LLDP VLAN Name properties

Use this procedure to view LLDP VLAN Name properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, click Port dot1.
- 5. Select the Neighbor VLAN Name tab.

The following table outlines the parameters of the **Neighbor VLAN Name** tab.

Table 76: Variable definitions

Vaiable	Value
TimeMark	Specifies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Specifies an arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
Vlanld	Indicates the integer value used to identify the IEEE 802.1Q VLAN IDs with which the remote port is compatible.
VlanName	Indicates the VLAN name identified by the VLAN ID associated with the remote system.

Related links

LLDP Port dot1 configuration using Enterprise Device Manager on page 308

Viewing LLDP Neighbor Protocol properties

Use this procedure to view LLDP Protocol properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, click Port dot1.
- 5. Select the Neighbor Protocol tab.

The following table outlines the parameters of the **Neighbor Protocol** tab.

Table 77: Variable definitions

Variable	Value
TimeMark	Specifies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Specifies an arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
ProtocolIndex	Represents an arbitrary local integer value used by this agent to identify a particular protocol identity.
Protocolld	Identifies the protocols associated with the remote port.

Related links

LLDP Port dot1 configuration using Enterprise Device Manager on page 308

LLDP Port dot3 configuration using Enterprise Device Manager

Use the following procedures to configure LLDP Port dot3 and view IEEE 802.3 LLDP information.

Related links

Viewing LLDP auto-negotiation properties

Use this procedure to view LLDP auto-negotiation properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.

- 4. From the 802.1AB tree, double-click Port dot3.
- 5. Select the Local Port Auto-negotiation tab.

The following table outlines the parameters of the Port dot3 Local Port Auto-negotiation tab.

Table 78: Variable definitions

Variable	Value
PortNum	Specifies the port number.
AutoNegSupported	Indicates whether the local port supports Auto-negotiation.
AutoNegEnabled	Indicates whether Auto-negotiation is enabled on the local port.
AutoNegAdvertisedCap	Contains the value (bitmap) of the ifMauAutoNegCapAdvertisedBits object (defined in IETF RFC 3636) associated with the local port on the system.
OperMauType	Indicates the operational MAU type of the given port on the local system.

Related links

LLDP Port dot3 configuration using Enterprise Device Manager on page 314

Viewing LLDP PoE porperties

Use this procedure to view LLDP PoE properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port dot3.
- 5. Select the **Local PoE** tab.

The following table outlines the parameters of the **Port dot3 Local PoE** tab.

Table 79: Variable definitions

Variable	Value
PortNum	Specifies the port number.
PowerPortClass	Identifies the port Class of the local port.
PowerMDISupported	Indicates whether MDI power is supported on the local port.
PowerMDIEnabled	Indicates whether MDI power is enabled on the local port.
PowerPairControlable	Indicates whether pair selection can be controlled on the local port. This is derived from the value of the pethPsePortPowerPairsControlAbility object (defined in IETF RFC 3621).

Variable	Value
PowerPairs	Contains the value of the pethPsePortPowerPairs object (defined in IETF RFC 3621) for the local port:
	• signal
	• spare
PowerClass	Contains the value of the pethPsePortPowerClassifications object (defined in IETF RFC 3621) for the local port:
	• class0
	• class1
	• class2
	• class3
	• class4

LLDP Port dot3 configuration using Enterprise Device Manager on page 314

Viewing LLDP link aggregation properties

Use this procedure to view LLDP link aggregation properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, double-click Port dot3.
- 5. Select the Local Link Aggregate tab.

The following table outlines the parameters of the Port dot3 Local Link Aggregate tab.

Table 80: Variable definitions

Variable	Value
PortNum	Specifies the port number.
LinkAggStatus	Specifies the link aggregation capabilities and the current aggregation status of the link.
LinkAggPortId	Contains the IEEE 802.3 aggregated port identifier, aAggPortID (IEEE 802.3-2002, 30.7.2.1.1), derived from the ifNumber of the ifIndex for the port component in link aggregation. If the port is not in a link aggregation state or does not support link aggregation, this value is set to zero.

Related links

LLDP Port dot3 configuration using Enterprise Device Manager on page 314

Viewing LLDP maximum frame size properties

Use this procedure to view LLDP maximum frame size properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, double-click Port dot3.
- 5. Select the Local Max Frame tab.

The following table outlines the parameters of the Port dot3 Local Max Frame tab.

Table 81: Variable definitions

Variable	Value
PortNum	Specifies the port number
MaxFrameSize	Specifies the maximum frame size for the port

Related links

LLDP Port dot3 configuration using Enterprise Device Manager on page 314

Viewing LLDP neighbor auto-negotiation properties

Use this procedure to view LLDP auto-negotiation properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, double-click Port dot3.
- 5. Select the Neighbor Port Auto-negotiation tab.

The following table outlines the parameters of the Port dot3 Neighbor Port Auto-negotiation tab.

Table 82: Variable definitions

Variable	Value
TimeMark	Indicates the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.

Variable	Value
Index	An arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
AutoNegSupported	Indicates whether the given port (associated with a remote system) supports Auto-negotiation.
AutoNegEnabled	Indicates whether Auto-negotiation is enabled on the remote port.
AutoNegAdvertisedCap	Contains the value (bitmap) of the ifMauAutoNegCapAdvertisedBits object (defined in IETF RFC 3636) associated with the remote port.
OperMauType	Indicates the operational MAU type of the given port on the remote system.

LLDP Port dot3 configuration using Enterprise Device Manager on page 314

Viewing LLDP neighbor PoE properties

Use this procedure to view LLDP PoE properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port dot3.
- 5. Select the **Neighbor PoE** tab.

The following table outlines the parameters of the Port dot3 Neighbor PoE tab.

Table 83: Variable definitions

Variable	Value
TimeMark	Indicates the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Identifies a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
PowerPortClass	Identifies the port Class of the remote port.
PowerMDISupported	Indicates whether MDI power is supported on the remote port.
PowerMDIEnabled	Indicates whether MDI power is enabled on the remote port.
PowerPairControlable	Indicates whether pair selection can be controlled on the remote port, derived from the value of the pethPsePortPowerPairsControlAbility object (defined in IETF RFC 3621).

Variable	Value
PowerPairs	Contains the value of the pethPsePortPowerPairs object (defined in IETF RFC 3621) for the remote port.
	• signal
	• spare
PowerClass	Contains the value of the pethPsePortPowerClassifications object (defined in IETF RFC 3621) for the remote port.
	• class0
	• class1
	• class2
	• class3
	• class4

LLDP Port dot3 configuration using Enterprise Device Manager on page 314

Viewing LLDP neighbor link aggregation properties

Use this procedure to view LLDP link aggregation properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port dot3.
- 5. Select the Neighbor Link Aggregate tab.

The following table outlines the parameters of the Port dot3 Neighbor Link Aggregate tab.

Table 84: Variable definitions

Variable	Value
TimeMark	Indicates the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	An arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
LinkAggStatus	Specifies the link aggregation capabilities and the current aggregation status of the remote link.

Variable	Value
LinkAggPortId	Contains the IEEE 802.3 aggregated port identifier, aAggPortID (IEEE 802.3-2002, 30.7.2.1.1), derived from the ifNumber of the ifIndex for the port component in link aggregation. If the port is not in a link aggregation state or does not support link aggregation, this value is set to zero.

LLDP Port dot3 configuration using Enterprise Device Manager on page 314

Viewing LLDP neighbor maximum frame size properties

Use this procedure to view LLDP maximum frame size properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click **Port dot3**.
- 5. Select the Neighbor Max Frame tab.

The following table outlines the parameters of the Port dot3 Neighbor Max Frame tab.

Table 85: Variable definitions

Variable	Value
TimeMark	Identifies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	An arbitrary local integer value used by this agent to identify a particular MSAP. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
MaxFrameSize	Specifies the Maximum Frame Size for the remote port.

Related links

LLDP Port dot3 configuration using Enterprise Device Manager on page 314

LLDP Port MED configuration using Enterprise Device Manager

Use the following procedures to configure LLDP Port MED and view MED LLDP information.

Related links

LLDP configuration using Enterprise Device Manager on page 294

Viewing local policy properties on page 321 Viewing local location properties on page 322 Viewing coordinate-based location details on page 323 Viewing civic address location details on page 324 Viewing LLDP local PoE PSE properties on page 325 Viewing LLDP neighbor capabilities properties on page 326 Viewing LLDP neighbor policy properties on page 326 Viewing LLDP neighbor location properties on page 327 Viewing coordinate-based location details on page 328 Viewing civic address location details on page 328 Viewing LLDP neighbor PoE properties on page 329 Viewing LLDP neighbor PoE PSE properties on page 330 Viewing LLDP neighbor PoE PD properties on page 330 Viewing LLDP neighbor PoE PD properties on page 331

Viewing local policy properties

Use this procedure to view LLDP policy properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the Local Policy tab.
- 6. Click Insert. The Insert Local Policy dialog box appears.
- 7. Enter the parameters according to the Variable definitions table.
- 8. Click Insert.

The following table outlines the parameters of the **Port MED Local Policy** tab.

Table 86: Variable definitions

Variable	Value
PortNum	Identifies the port number.
PolicyAppType	Specifies voice or voice-signaling application type.
PolicyVlanID	An extension of the VLAN Identifier for the port, as defined in IEEE 802.1P-1998. A value of 1 through 4094 is used to define a valid PVID. A value of 0 is used if the device is using priority tagged frames, meaning that only the 802.1p priority level is significant and the default VID of the

Variable	Value
	ingress port is being used instead. A value of 4095 is reserved for implementation use.
PolicyPriority	Indicates the value of the 802.1p priority which is associated with the local port.
PolicyDscp	Specifies the value of the Differentiated Service Code Point (DSCP) as defined in IETF RFC 2474 and RFC 2475 that is associated with the given port on the local system.
PolicyTagged	A value of true indicates that the application is using a tagged VLAN. A value of false indicates that for the specific application, the device is using an untagged VLAN or does not support a port based VLAN operation. In this case, both the VLAN ID and the Layer 2 priority fields are ignored, and only the DSCP value has relevance.

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing local location properties

Use this procedure to view LLDP location properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click **Port MED**.
- 5. Select the Local Location tab.

The following table outlines the parameters of the **Port MED Local Location** tab.

Table 87: Variable definitions

Variable	Value
PortNum	Specifies the port number.
LocationSubtype	Specifies the location subtype advertised by the remote device:
	• unknown
	coordinateBased
	civicAddress
	• elin
LocationInfo	Specifies the location information. The parsing of this information is dependent on the value LocationSubtype.

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing coordinate-based location details

Use this procedure to view or configure details for coordinate-based locations.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the Local Location tab.
- 6. Select a location with the LocationSubtype listed as coordinateBased.
- 7. Click the Location Detail button to view or configure the local detailed location information.
- 8. Enter the parameters according to the Variable definitions table.
- 9. Click Ok.

The following table outlines the parameters of the **Port MED Coordinate Based Location** dialog box.

Variable	Value
Latitude	Specifies the latitude in degrees, and its relation to the equator (North or South).
Longitude	Specifies the longitude in degrees, and its relation to the prime meridian (East or West).
Altitude	Specifies the altitude, and the units of measurement used (meters or floors).
Map Datum	Specifies the reference datum. The format can be one of the following:
	WGS84: World Geodesic System 1984, Prime Meridian Name: Greenwich
	NAD83/NAVD88 North American Datum 1983/ North American Vertical Datum of 1988
	NAD83/MLLW: North American Datum 1983/ Mean Lower Low Water

Table 88: Variable definitions

Related links

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing civic address location details

Use this procedure to view and configure details for civic address locations.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the Local Location tab.
- 6. Select a location with the LocationSubtype listed as civicAddress
- 7. Click the Location Detail button.
- 8. Enter details and click **OK**.
- 9. Click Close.

The following table outlines the parameters of the **Port MED Civic Address Location** dialog box.

Table 89: Variable definitions

Variable	Value
Country Code	Country code (2 upper case letters)
State	National subdivisions (state, canton, region)
County	County, parish, gun (JP), district (IN)
City	City, township, shi (JP)
City District	City division, city district, ward
Block (Neighborhood, block)	Neighborhood, block
Street	Street
Leading street direction	Leading street direction
Trailing street suffix	Trailing street suffix
Street suffix	Street suffix
House number	House number
House number suffix	House number suffix
Landmark or vanity address	Landmark or vanity address
Additional Location info	Additional location information
Name (Residence and office occupant)	Residence and office occupant
Postal/Zip code	Postal/Zip code
Building (structure)	Building (structure)

Variable	Value
Apartment (suite)	Unit number (apartment, suite)
Floor	Floor
Room number	Room number
Place type	Office
Postal community name	Postal community name
Post office box P.O.Box	Post office box
Additional Code	Additional code

Related links

<u>LLDP Port MED configuration using Enterprise Device Manager</u> on page 320

Viewing LLDP local PoE PSE properties

Use this procedure to view LLDP PoE PSE properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the Local PoE PSE tab.

The following table outlines the parameters of the Port MED Local PoE PSE tab.

Table 90: Variable definitions

Variable	Value	
PortNum	Specifies the port number.	
PSEPortPowerAvailable	Specifies the value of the power available (in units of 0.1 watts) from the PSE through this port.	
PSEPortPDPriority	Indicates the PD power priority that is advertised on this PSE port:	
	 unknown: priority is not configured or known by the PD 	
	critical: the device advertises its power priority as critical, see RFC 3621	
	 high: the device advertises its power priority as high, see RFC 3621 	
	 low: the device advertises its power priority as low, see RFC 3621 	

Related links

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing LLDP neighbor capabilities properties

Use this procedure n view LLDP capabilities properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the Neighbor Capabilities tab.

The following table outlines the parameters of the Port MED Neighbor Capabilities tab.

Table 91: Variable definitions

Variable	Value	
TimeMark	Specifies the TimeFilter for this entry.	
LocalPortNum	dentifies the local port on which the remote system information is received.	
Index	Identifies a particular MSAP, using an arbitrary local integer value. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.	
CapSupported	Identifies the MED system capabilities supported on the remote system.	
CapCurrent	Identifies the MED system capabilities that are enabled on the remote system.	
DeviceClass	Specifies the remote MED device class.	

Related links

<u>LLDP Port MED configuration using Enterprise Device Manager</u> on page 320

Viewing LLDP neighbor policy properties

Ue this procedure to view LLDP policy properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, click Port MED.
- 5. Select the Neighbor Policy tab.

The following table outlines the parameters of the **Port MED Neighbor Policy** tab.

Variable	Value	
TimeMark	Specifies the TimeFilter for this entry.	
LocalPortNum	Identifies the local port on which the remote system information is received.	
Index	Identifies a particular MSAP, using an arbitrary local integer value. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.	
PolicyAppType	Specifies the type of policy which has been applied.	
PolicyVlanID	An extension of the VLAN Identifier for the port, as defined in IEEE 802.1P-1998. A value of 1 through 4094 is used to define a valid PVID. A value of 0 is used if the device is using priority tagged frames, meaning that only the 802.1p priority level is significant and that the default VID of the ingress port is being used instead. A value of 4095 is reserved for implementation use.	
PolicyPriority	Indicates the value of the 802.1p priority which is associated with the remote system connected to the port.	
PolicyDscp	Contains the value of the Differentiated Service Code Point (DSCP) as defined in IETF RFC 2474 and RFC 2475 that is associated with the remote system connected to the port.	
PolicyUnknown	A value of true indicates that the network policy for the specified application type is currently unknown. In this case, the VLAN ID, the Layer 2 priority, and the DSCP value fields are ignored. A value of false indicates that this network policy is defined.	
PolicyTagged	A value of true indicates that the application is using a tagged VLAN. A value of false indicates that for the specific application, the device is using an untagged VLAN or does not support a port based VLAN operation. In this case, both the VLAN ID and the Layer 2 priority fields are ignored, and only the DSCP value has relevance.	

Table 92: Variable definitions

Related links

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing LLDP neighbor location properties

Use this procedure to view LLDP location properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the Neighbor Location tab.

The following table outlines the parameters of the **Port MED Neighbor Location** tab.

Table 93: Variable definitions

Variable	Value	
TimeMark	Specifies the TimeFilter for this entry.	
LocalPortNum	dentifies the local port on which the remote system information is received.	
Index	dentifies a particular MSAP, using an arbitrary local integer value. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.	
LocationSubtype	Identifies the location subtype advertised by the remote device:	
	• unknown	
	coordinateBased	
	• civicAddress	
	• elin	
LocationInfo	Specifies the location information advertised by the remote device. The parsing of this information is dependent on the location subtype.	

Related links

<u>LLDP Port MED configuration using Enterprise Device Manager</u> on page 320

Viewing coordinate-based location details

Use this procedure to view coordinate-based location details for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the Neighbor Location tab.
- 6. Select a location with the LocationSubtype listed as coordinateBased
- 7. Click the Location Details button.
- 8. Click Close.

Related links

<u>LLDP Port MED configuration using Enterprise Device Manager</u> on page 320

Viewing civic address location details

Use this procedure to view civic address location details for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the Neighbor Location tab.
- 6. Select a location with the LocationSubtype listed as civicAddress
- 7. Click the **Location Details** button.
- 8. Click Close.

Related links

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing LLDP neighbor PoE properties

Use this procedure to view LLDP PoE properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, double-click **Port MED**.
- 5. Select the **Neighbor PoE** tab.

The following table outlines the parameters of the **Port MED Neighbor PoE** tab.

Table 94: Variable definitions

Variable	Value
TimeMark	Specifies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Identifies a particular MSAP, using an arbitrary local integer value. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
PoEDeviceType	Specifies the type of PoE device.

Related links

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing LLDP neighbor PoE PSE properties

Use this procedure to view LLDP PoE PSE properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click 802.1AB.
- 4. From the 802.1AB tree, double-click **Port MED**.
- 5. Select the Neighbor PoE PSE tab.

The following table outlines the parameters of the Port MEDNeighbor PoE PSE tab.

Table 95: Variable definitions

Variable	Value	
TimeMark	Specifies the TimeFilter for this entry.	
LocalPortNum	Identifies the local port on which the remote system information is received.	
Index	Identifies a particular MSAP, using an arbitrary local integer value. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.	
PSEPowerAvailable	Specifies the power available (in units of 0.1 watts) from the PSE connected remotely to this port.	
PSEPowerSource	Defines the type of PSE Power Source advertised by the remote device.	
	• primary: indicates that the device advertises its power source as primary.	
	• backup: indicates that the device advertises its power source as backup.	
PSEPowerPriority	Specifies the priority advertised by the PSE connected remotely to the port:	
	• critical: indicates that the device advertises its power priority as critical, see RFC 3621.	
	 high: indicates that the device advertises its power priority as high, see RFC 3621. 	
	 low: indicates that the device advertises its power priority as low, see RFC 3621. 	

Related links

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing LLDP neighbor PoE PD properties

Use this procedure to view LLDP PoE PD properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click **Diagnostics**.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click Port MED.
- 5. Select the **Neighbor PoE PD** tab.

The following table outlines the parameters of the Port MED Neighbor PoE PD tab.

Table 96: Variable definitions

Variable	Value
TimeMark	Specifies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Identifies a particular MSAP, using an arbitrary local integer value. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
PDPowerReq	Specifies the value of the power required (in units of 0.1 watts) by a Powered Device (PD) connected remotely to the port.
PDPowerSource	Defines the type of Power Source advertised as being used by the remote device:
	 fromPSE: indicates that the device advertises its power source as received from a PSE.
	 local: indicates that the device advertises its power source as local.
	 localAndPSE: indicates that the device advertises its power source as using both local and PSE power.
PDPowerPriority	Defines the priority advertised as being required by the PD connected remotely to the port:
	 critical: indicates that the device advertises its power priority as critical, see RFC 3621.
	 high: indicates that the device advertises its power priority as high, see RFC 3621.
	 low: indicates that the device advertises its power priority as low, see RFC 3621.

Related links

LLDP Port MED configuration using Enterprise Device Manager on page 320

Viewing LLDP neighbor inventory properties

Use this procedure to view LLDP Inventory properties for the remote system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. From the Edit tree, double-click Diagnostics.
- 3. From the Diagnostics tree, double-click **802.1AB**.
- 4. From the 802.1AB tree, double-click **Port MED**.
- 5. Select the **Neighbor inventory** tab.

The following table outlines the parameters of the Port MED Neighbor Inventory tab.

Table 97: Variable definitions

Variable	Value
TimeMark	Specifiies the TimeFilter for this entry.
LocalPortNum	Identifies the local port on which the remote system information is received.
Index	Identifies a particular MSAP, using an arbitrary local integer value. An agent is encouraged to assign monotonically increasing index values to new entries, starting with one, after each reboot.
HardwareRev	Specifies the vendor-specific hardware revision string as advertised by the remote device.
FirmwareRev	Specifies the vendor-specific firmware revision string as advertised by the remote device.
SoftwareRev	Specifies the vendor-specific software revision string as advertised by the remote device.
SerialNum	Specifies the vendor-specific serial number as advertised by the remote device.
MfgName	Specifies the vendor-specific manufacturer name as advertised by the remote device.
ModelName	Specifies the vendor-specific model name as advertised by the remote device.
AssetID	Specifies the vendor-specific asset tracking identifier as advertised by the remote device.

Related links

LLDP Port MED configuration using Enterprise Device Manager on page 320

LLDP MED policy management using Enterprises Device Manager

Use the information in this section to view, create, and edit LLDP MED policies for the switch.

Related links

LLDP configuration using Enterprise Device Manager on page 294

Viewing LLDP MED policies on page 333 Creating LLDP MED policies on page 334 Editing LLDP MED policies on page 335 Deleting LLDP MED policies on page 336

Viewing LLDP MED policies

Use this procedure to view LLDP MED policy properties for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Diagnostics**.
- 3. In the Diagnostic tree, double-click 802.1AB.
- 4. In the 802.1AB tree, double-click Port MED.
- 5. In the work area, click the Local Policy tab.

Use the data in the following table to help you understand the LLDP MED local policy display.

Table 98: Variable definitions

Field	Description
PortNum	Indicates the port number
PolicyAppType	Displays the policy application type.
PolicyVlanID	Indicates the extension of the VLAN Identifier for the port, as defined in IEEE 802.1P-1998. A value of 1 through 4094 is used to define a valid PVID. A value of 0 is used if the device is using priority tagged frames, meaning that only the 802.1p priority level is significant and the default VID of the ingress port is being used instead. A value of 4095 is reserved for implementation use.
PolicyPriority	Indicates the value of the 802.1p priority which is associated with the local port.
PolicyDscp	Contains the value of the Differentiated Service Code Point (DSCP) as defined in IETF RFC 2474 and RFC 2475 that is associated with the given port on the local system.
PolicyTagged	Indicates whether the application is using a tagged VLAN, untagged VLAN, or does not support a port based VLAN operation.

Related links

LLDP MED policy management using Enterprises Device Manager on page 332

Creating LLDP MED policies

Use this procedure to create a new LLDP MED policy for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Diagnostics**.
- 3. In the Diagnostic tree, double-click **802.1AB**.
- 4. In the 802.1AB tree, double-click **Port MED**.
- 5. In the work area, click the Local Policy tab.
- 6. Click Insert.
- 7. To select a port to create a policy for, click the **PortNum** elipsis.
- 8. Click Ok .
- 9. In the **PolicyAppType** section, select one or both boxes.
- 10. To select a VLAN identifier for the selected port, click the **PolicyVlanID** elipsis.
- 11. Click Ok .
- 12. Double-click the **PolicyPriority** box.
- 13. Type a priority value.
- 14. Double-click the **PolicyDscp** box.
- 15. Type a DSCP value.
- 16. To use a tagged VLAN, click the **PolicyTagged** box.

OR

To use an untagged VLAN, clear the **PolicyTagged** box.

17. Click Insert.

Use the data in the following table to create a new LLDP MED policy for the local system.

Table 99: Variable definitions

Field	Description
PortNum	Specifies the port on which to configure LLDP MED policies.
PolicyAppType	Specifies the policy application type.
	 voice—selects the voice network policy
	 voiceSignaling—selects the voice signaling network policy

Table continues...

Field	Description
PolicyVlanID	Specifies the VLAN identifier for the selected port or ports. Values range from 1–4094. If you select priority tagged frames, the system recognizes only the 802.1p priority level and uses a value of 0 for the VLAN ID of the ingress port.
PolicyPriority	Specifies the value of the 802.1p priority that applies to the selected switch port or ports. Values range from 0–7.
PolicyDscp	Specifies the value of the Differentiated Service Code Point (DSCP) as defined in IETF RFC 2474 and RFC 2475 that is associated with the selected switch port or ports. Values range from 0–63.
PolicyTagged	Specifies the type of VLAN tagging to apply on the selected switch port or ports.
	 when selected—uses a tagged VLAN
	 when cleared—uses an untagged VLAN or does not support port-based VLANs.
	If you select untagged, the system ignores the VLAN ID and priority values, and recognizes only the DSCP value.

Related links

LLDP MED policy management using Enterprises Device Manager on page 332

Editing LLDP MED policies

Use this procedure to edit a previously configured LLDP MED policy for the local system.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Diagnostics**.
- 3. In the Diagnostic tree, double-click 802.1AB.
- 4. In the 802.1AB tree, double-click Port MED.
- 5. To select a policy to edit, click the PortNum.
- 6. In the policy row, double-click the cell in the **PolicyVlanID** column.
- 7. Select a VLAN from the list.
- 8. Click Ok .
- 9. In the policy row, double-click the cell in the **PolicyPriority** column.
- 10. Edit the policy priority value.
- 11. In the policy row, double-click the cell in the **PolicyDscp** column.

- 12. Edit the policy DSCP value.
- 13. In the policy row, double-click the cell in the **PolicyTagged** column.
- 14. Select a value from the list.
- 15. On the toolbar, click Apply .

Use the data in the following table to edit a previously configured LLDP MED policy for the local system.

Table 1	100:	Variable	definitions
---------	------	----------	-------------

Field	Description
PortNum	Indicates the port on which to configure LLDP MED policies. This is a read-only cell.
PolicyAppType	Indicates the policy application type. This is a read- only cell.
	voice— voice network policy
	 voiceSignaling— voice signaling network policy
PolicyVlanID	Specifies the VLAN identifier for the selected port or ports. Values range from 1–4094. If you select priority tagged frames, the system recognizes only the 802.1p priority level and uses a value of 0 for the VLAN ID of the ingress port.
PolicyPriority	Specifies the value of the 802.1p priority that applies to the selected switch port or ports. Values range from 0–7.
PolicyDscp	Specifies the value of the Differentiated Service Code Point (DSCP) as defined in IETF RFC 2474 and RFC 2475 that is associated with the selected switch port or ports. Values range from 0–63.
PolicyTagged	Specifies the type of VLAN tagging to apply on the selected switch port or ports.
	 true—uses a tagged VLAN
	 false—uses an untagged VLAN or does not support port-based VLANs.
	If you select untagged, the system ignores the VLAN ID and priority values, and recognizes only the DSCP value.

Related links

LLDP MED policy management using Enterprises Device Manager on page 332

Deleting LLDP MED policies

Use this procedure to delete anLLDP MED policy.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click **Diagnostics**.
- 3. In the Diagnostic tree, double-click **802.1AB**.
- 4. In the 802.1AB tree, double-click **Port MED**.
- 5. In the work area, click the **Local Policy** tab.
- 6. To select a policy to delete, click the PortNum.
- 7. On the toolbar, click **Delete** .

Related links

LLDP MED policy management using Enterprises Device Manager on page 332

Configuring LLDP Timers using EDM

Use the following procedure to configure LLDP Timers.

😵 Note:

LLDP timers apply to the entire device and cannot be configured by port.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, double-click Diagnostics.
- 3. In the Diagnostics tree, double-click 802.1AB.
- 4. In the 802.1AB tree, click LLDP.
- 5. In the LLDP work area, click the **Globals** tab.
- 6. In the Globals section, configure timers as required.
- 7. On the toolbar, click **Apply**.
- 8. On the toolbar, you can click **Refresh** to verify the configuration.

Variable definitions

The following table describes the variables associated with configuring LLDP timers.

Variable	Value
lldpMessageTxInterval	Indicates interval, in seconds, at which LLDP frames are transmitted on behalf of this LLDP agent.
	DEFAULT:

Table continues...

Variable	Value
	30s
IIdpMessageTxHoldMultiplier	Indicates the time-to-live value expressed as a multiple of the object. The actual time-to-live value used in LLDP frames, transmitted on behalf of this LLDP agent, is expressed by the following formula: TTL = min(65535, (IldpMessageTxInterval *IldpMessageTxHoldMultiplier).
	DEFAULT:
	4s
IIdpReinitDelay	Indicates the delay (in seconds) from when the LLDP Port AdminStatus of a particular port is disabled until reinitialization begins.
	DEFAULT:
	2s
IIdpTxDelay	Indicates the delay (in seconds) between successive LLDP frame transmissions initiated by value or status changes in the LLDP local systems MIB. The recommended value for the lldpTxDelay is set by the following formula: 1 <= lldpTxDelay <= (0.25 * lldpMessageTxInterval)
	DEFAULT:
	2s
IldpNotificationInterval	Controls the transmission of LLDP notifications.
	DEFAULT:
	55

Enabling or disabling Avaya TLV transmit flags

Use this procedure to enable or disable the transmission of optional proprietary Avaya TLVs from switch ports to Avaya IP phones.

Procedure steps

- 1. From the navigation pane, double-click Edit.
- 2. In the Edit tree, click **Diagnostics**.
- 3. In the Diagnostics work area, click 802.1AB.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the work area, click the **Port Config** tab.
- 6. To select a port, click the **PortNum**.
- 7. In the port row, double-click the cell in the **TLVsTxEnable** column.

8. Select a checkbox to enable a TLV.

OR

Clear a checkbox to disable a TLV.

- 9. Click **Ok**.
- 10. On the toolbar, click **Apply**.

Variable definitions

Variable	Value
poeConservationLevel	Enables or disables the TLV for requesting a specific power conservation level for an Avaya IP phone connected to the switch port.
	Important:
	Only Ethernet ports on switches that support PoE can request a specific power conservation level for an Avaya IP phone.
callServer	Enables or disables the TLV for advertising call server IPv4 addresses to an Avaya IP phone connected to the switch port.
fileServer	Enables or disables the TLV for advertising file server IPv4 addresses to an Avaya IP phone connected to the switch port.
framingTlv	Enables or disables the frame tagging TLV for exchanging Layer 2 priority tagging information between the switch and an Avaya IP phone.

Configuring the PoE conservation level request TLV

Use this procedure to request a specific power conservation level for an Avaya IP phone connected to a switch port.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click **Diagnostics**.
- 3. In the Diagnostics tree, click 802.1AB
- 4. In the 802.1AB tree, click Avaya
- 5. In the Avaya work area, click the **Local Port** tab.
- 6. Click **PortNum** to select a port.
- 7. In the port row, configure as required.

8. On the toolbar, click **Apply**.

Variable definitions

The following table describes the variables associated with configuring the PoE conservation level request TLV.

Variable	Value
PoeConsLevelRequest	Specifies the power conservation level to request for a vendor specific PD.
	RANGE:
	0–255
	DEFAULT:
	0
	With the default value of 0, the switch does not request a power conservation level for an Avaya IP phone connected to the port.

Configuring the 802.1Q framing TLV

Use this procedure to configure the frame tagging mode for exchanging Layer 2 priority tagging information between the switch and an Avaya IP phone.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click Diagnostics.
- 3. In the Diagnostics tree, click 802.1AB.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the Avaya work area, click the Local Port tab.
- 6. Click **PortNum** to select a port.
- 7. In the port row, configure as required.
- 8. On the toolbar, click **Apply**.

Variable definitions

The following table describes the variables associated with configuring 802.1Q framing TLV.

Variable	Value
Dot1QFramingRequest	Specifies the frame tagging mode. Values include:
	 tagged—frames are tagged based on the tagging value the Avaya IP phone receives with the LLDP- MED Network Policy TLV.
	 non-tagged—frames are not tagged with 802.1Q priority.
	 auto—an attempt is made to tag frames based on the tagging value the Avaya IP phone receives with the LLDP-MED Network Policy TLV. If there is no LLDPMED Network Policy information available, an attempt is made to tag frames based on server configuration. If that fails, traffic is transmitted untagged.
	DEFAULT:
	Auto

Configuring the switch call server IP address TLV

Use this procedure to define the local call server IP addresses that switch ports can advertise to Avaya IP phones.

You can define IP addresses for a maximum of 8 local call servers.

Important:

The switch does not support the advertisement of IPv6 addresses to Avaya IP phones.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click Diagnostics.
- 3. In the Diagnostics tree, click **802.1AB**.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the Avaya work area, click the Local Call Servers tab.
- 6. Click **CallServerNum** to select a port.
- 7. In the port row, configure as required.
- 8. On the toolbar, click **Apply**.

Variable definitions

The following table describes the variables associated with the Local Call Servers tab.

Variable	Value
CallServerNum	Displays the call server number.
CallServerAddressType	Displays the call server IP address type.
CallServerAddress	Defines the local call server IP address to advertise.

Configuring the switch file server IP address TLV

Use this procedure to define the local file server IP addresses that switch ports can advertise to Avaya IP phones.

You can define IP addresses for a maximum of 4 local call servers.

😵 Note:

If your Avaya IP Handset uses SIP, 802.1AB (LLDP) TLVs do not provide all information for the IP Phone. You must specify a file server IP address TLV so the IP phone can download the SIP configuration information, because the IP Phone retrieves information related to the SIP domain, port number and transport protocol from the file server.

Important:

The switch does not support the advertisement of IPv6 addresses to Avaya IP phones.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click Diagnostics.
- 3. In the Diagnostics tree, click **802.1AB**.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the Avaya work area, click the Local File Servers tab.
- 6. Click FileServerNum to select a port.
- 7. In the port row, configure as required.
- 8. On the toolbar, click Apply.
- 9. On the toolbar, you can click **Refresh** to verify the configuration.

Variable definitions

The following table describes the variables associated with the Local File Servers tab

Variable	Value
FileServerNum	Displays the file server number.

Table continues...

Variable	Value
FileServerAddressType	Displays the file server IP address type.
FileServerAddress	Defines file server IP address to advertise.

Viewing Avaya IP phone power level TLV information

Use this procedure to display power level information received on switch ports from an Avaya IP phone.

Procedure steps

- 1. From the navigation tree, double-click **Edit**.
- 2. In the Edit tree, click Diagnostics.
- 3. In the Diagnostics tree, click **802.1AB**.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the Avaya work area, click the **Neighbor Devices** tab.

Variable definitions

The following table describes the variables associated with the neighbor devices tab.

Variable	Value
TimeMark	Displays the time the latest TLV-based information is received from an Avaya IP phone.
LocalPortNum	Displays the number of the switch port on which the TLV-based information is received.
Index	Displays a unique identifier for the connected Avaya IP phone.
CurrentConsLevel	Displays the PoE conservation level configured on the Avaya IP phone connected to the switch port.
TypicalPower	Displays the average power level used by the Avaya IP phone connected to the switch port.
MaxPower	Displays the maximum power level for the Avaya IP phone connected to the switch port.

Viewing remote call server IP address TLV information

Use this procedure to display call server IP address information received on switch ports from an Avaya IP phone.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click **Diagnostics**.
- 3. In the Diagnostics tree, click **802.1AB**.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the work area, click the Neighbor Call Servers tab.

Variable definitions

Variable	Value
TimeMark	Displays the time the latest TLV-based information is received from an Avaya IP phone.
LocalPortNum	Displays the number of the switch port on which the TLV-based information is received.
Index	Displays a unique identifier for the connected Avaya IP phone.
PortCallServerAddressType	Displays the call server IP address type used by the Avaya IP phone connected to the switch port.
PortCallServerAddress	Displays the call server IP address used by the Avaya IP phone connected to the switch port.

Viewing remote file server IP address TLV information

Use this procedure to display file server IP address information received on switch ports from an Avaya IP phone.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click Diagnostics.
- 3. In the Diagnostics tree, click **802.1AB**.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the work area, click the Neighbor File Servers tab.

Variable definitions

Variable	Value
TimeMark	Displays the time the latest TLV-based information is received from an Avaya IP phone.
LocalPortNum	Displays the number of the switch port on which the TLV-based information is received.
Index	Displays a unique identifier for the connected Avaya IP phone.
PortFileServerAddressType	Displays the file server IP address type used by the Avaya IP phone connected to the switch port.
PortFileServerAddress	Displays the file server IP address used by the Avaya IP phone connected to the switch port.

Viewing PoE conservation level support TLV information

Use this procedure to display PoE conservation level information received on switch ports from an Avaya IP phone.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click Diagnostics.
- 3. In the Diagnostics tree, click **802.1AB**.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the work area, click the **Neighbor PoE** tab.

Variable definitions

Variable	Value
TimeMark	Displays the time the latest TLV-based information is received from an Avaya IP phone.
LocalPortNum	Displays the number of the switch port on which the TLV-based information is received.
Index	Displays a unique identifier for the connected Avaya IP phone.
PoeConsLevelValue	Displays the PoE conservation level supported by the Avaya IP phone connected to the switch port.

Viewing remote 802.1Q Framing TLV information

Use this procedure to display Layer 2 frame tagging mode information received on switch ports from connected Avaya IP phones.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click Diagnostics.
- 3. In the Diagnostics tree, click **802.1AB**.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the work area, click the **Neighbor Dot1Q** tab.

Variable	Value
TimeMark	Displays the time the latest TLV-based information is received from an Avaya IP phone.
LocalPortNum	Displays the number of the switch port on which the TLV-based information is received.
Index	Displays a unique identifier for the connected Avaya IP phone.
Dot1QFraming	Displays the Layer 2 frame tagging mode for the Avaya IP phone connected to the switch port. Values include:
	 tagged—frames are tagged based on the tagging value the Avaya IP phone receives with the LLDP- MED Network Policy TLV.
	 non-tagged—frames are not tagged with 802.1Q priority.
	 auto—an attempt is made to tag frames based on the tagging value the Avaya IP phone receives with the LLDP-MED Network Policy TLV. If there is no LLDP-MED Network Policy information available, an attempt is made to tag frames based on server configuration. If that fails, traffic is transmitted untagged.
	The default tagging mode is auto.

Variable definitions

Viewing remote IP TLV information

Use this procedure to display IP address configuration information received on switch ports from connected Avaya IP phones.

Procedure steps

- 1. From the navigation tree, double-click Edit.
- 2. In the Edit tree, click Diagnostics.
- 3. In the Diagnostics tree, click **802.1AB**.
- 4. In the 802.1AB tree, click Avaya.
- 5. In the work area, click the **Neighbor IP Phone** tab.

Variable definitions

Variable	Value
TimeMark	Displays the time the latest TLV-based information is received from an Avaya IP phone.
LocalPortNum	Displays the number of the switch port on which the TLV-based information is received.
Index	Displays a unique identifier for the connected Avaya IP phone.
PortPhoneAddressType	Displays the IP address type for the Avaya IP phone connected to the switch port.
PortPhoneAddress	Displays the IP address for the Avaya IP phone connected to the switch port.
PortPhoneAddressMask	Displays the IP address subnet mask for the Avaya IP phone connected to the switch port.
PortPhoneGatewayAddress	Displays gateway IP address for the Avaya IP phone connected to the switch port.

Appendix A: LACP over SMLT configuration example

This appendix shows you how to configure LACP over SMLT.

LACP over SMLT configuration example

The following configuration example shows you how to configure LACP over SMLT.

The configuration is a triangle SMLT in which A and B are SMLT aggregation switches and C is the edge switch. The MAC address for switch A is 00:aa:aa:aa:aa:00; for switch B, 00:bb:bb:bb:bb:00: and C, 00:cc:cc:cc:cc:00.

Prerequisites

- Ports 3 and 4 of switches A and B are SMLT ports.
- LACP is enabled on ports 1–4 of edge switch C, ports 3 and 4 of switch A, and ports 3 and 4 of switch B, .
- The switches are all in Global Configuration mode.

Switch A configuration

Use the following procedure to configure switch A.

Procedure steps

1. Prevent loops by configuring the switch in advance mode:

lacp port-mode advance

2. Select switch A base MAC (00:aa:aa:aa:a00) as the system MAC and configure the LAC system MAC for SMLT:

lacp smlt sys-id 00:aa:aa:aa:a0

3. Place switch A in interface mode:

interface Ethernet 3,4

4. Assign key 2 to ports 3 and 4

lacp key 2

5. Enable LACP on ports 3 and 4:

lacp mode active

6. Return switch A to Global Configuration mode:

exit

Bind MLT 30 to key 2. This command tells MLT application to reserve MLT 30 for LACP key
 Otherwise MLT will dynamically allocate an unused MLT # for LACP. Populate SMLT ID to the reserved trunk to make it SMLT enabled.

lacp key 2 mlt 30 smlt 2

8. Enable MLT1 with ports 1 and 2.

mlt 1 en mem 1-2

9. Set MLT 1 as the IST trunk.

int mlt 1

10. Set the IST VLAN ID as 10 and the IST peer IP address as 10.30.20.101.

ist enable peer-ip 10.30.20.101 vlan 10

11. Return switch A to the Global Configuration mode:

exit

Switch B configuration

Use the following procedure to configure switch B.

Procedure steps

1. Prevent loops by configuring the switch in advance mode:

```
lacp port-mode advance
```

 Select switch A base MAC (00:aa:aa:aa:aa:00) as the system MAC and configure the LAC system MAC for SMLT:

lacp smlt sys-id 00:aa:aa:aa:00

3. Place switch A in interface mode:

interface Ethernet 5

4. Assign key 2 to ports 3 and 4:

lacp key 2

5. Enable LACP on ports 3 and 4:

lacp mode active

6. Return switch B to the Global Configuration mode:

exit

 Bind MLT 30 to key 2. This command instructs the MLT application to reserve MLT 30 for LACP key 2. Otherwise MLT will dynamically allocate an unused MLT number for LACP. Populate SMLT ID to the reserved trunk to make it SMLT-enabled.

lacp key 2 mlt 30 smlt 2

8. Enable MLT1 with ports 1 and 2.

mlt 1 en mem 1-2

9. Set MLT 1 as the IST trunk.

int mlt 1

10. Set the IST VLAN ID as 10 and the IST peer IP address as 10.30.20.101.

ist enable peer-ip 10.30.20.100 vlan 10

11. Return switch B to the Global Configuration mode:

exit

Switch C configuration

Use the following procedure to configure switch C.

Procedure steps

1. Prevent loops by configuring the switch in advance mode:

lacp port-mode advance

2. Place switch C in interface mode:

interface Ethernet 1-4

3. Enable LACP on ports 1-4:

lacp mode active

е

4. Disable STP participation on ports 1–4 in all STGs:

spanning-tree port 1-4 stp <1-8> learning disable

5. Return switch C to the Global Configuration mode:

exit

Index

Α

ActorAdminKey field	<u>276</u>
ActorLagID field	<u>276</u>
ActorOperKey field	
ActorSystemID field	
ADAC	
and stacking	125
configuring using CLI	
initial user settings	
operating modes	
Tagged-Frames operating mode	
Untagged-Frames-Advanced operating mode	
Untagged-Frames-Basic Operating Mode	
User Restrictions	
ADAC and EAP	
adac command (global)	
adac command (per port)	
Add VLAN Membership field	
AdminEdgePort field	
AdminEdgeStatus field	
AdminP2P field	
AdminPathCost field	
AdminPointToPoint field	
AggregateOrIndividual field	
	······ <u>-···</u>

В

BPDU Filtering 38 BrgAddress field 257 BridgeForwardDelay field 252, 257 Bridge Forward Delay field 44, 50, 56 Bridge Forward Delay field 40, 47, 52 Bridge Hello Time field 252 Bridge Hello Time field 252 Bridge Hello Time field 252 Bridge Hello Time field 56 Bridge Instance field 264 Bridge Max. Age Time field 40, 47, 52 Bridge Max. Age field 252, 257
Bridge Maximum Age Time field <u>44</u> , <u>50</u> , <u>56</u> Bridge parameter
Base tab
BridgeAddress field
NumPorts field
Type
Forwarding tab
Address field
Status field
Bridge Priority (in Hex) field
BridgePriority field
Bridge Priority field
Bridge Tx Hold Count

Bridge Tx Hold Count field

С

CIST Root field	<u>56</u>
clear mac-address-table	147
clear mac-address-table address	148
clear mac-address-table interface Ethernet	
clear mac-address-table interface mlt	
clear mac-address-table interface vlan	
CollectorMaxDelay field	
CompatibilityMode field	
ConfigDigest field	
ConfigIdSel field	
configuration	
ŠLT	
configuring SMLT	
config mlt ist, create ip vlan-id	171
Create STP Group field	
CurrentPortRole field	

D

Ε

EAP and ADAC	<u>127</u>
Edge field	<u>48, 55</u>
EffectivePortState field	255, 259, 264
Enabled field	
Enable Stp field	<u>251</u>

F

FastStart field	251
FilterTaggedFrames field	
ForcePortState field	
ForceProtocolVersion field	
ForwardDelay field	<u>252, 257</u>
Forward Delay field	<u>44</u> , <u>50</u> , <u>56</u>
Forwarding tab	
ForwardTransitions field	<u>251, 254, 261, 266</u>

Н

HelloTime field	
Hello Time field	<u>44</u> , <u>50</u>
HelloTime time	<u>252</u>
HoldTime field	
Hop Count field	<u>56</u>

I

Index field	
InstanceDownCount field	
Instance field	262
InstanceUpCount field	
Inter-switch trunk (IST)	
about	
InvalidBPDUsRcvd field	
InvalidConfigBpduRxCount field	
InvalidMstBpduRxCount field	
InvalidRstBpduRxCount field	261
InvalidTcnBpduRxCount field	261
IP directed broadcasting	<u>201</u>
5	110
configuring with CLI	<u>148</u>
IST	
about	<u>87</u>
aggregation switch processes	
single point of failure	

L

LACP

configuring with Device Manager	<u>275</u>
configuring with the CLI	
port mode	
Learning field	48, 55
Link aggregation	

Μ

MacAddress field	<u>276</u>
MAC address forwarding database table	
configuring with CLI	<u>145</u>
mac-address-table aging-time command	<u>146</u>
Max. Hop Count	<u>52</u>
MaxAge field	

MaxHopCount field	
Maximum Age Time field	
MLT	
configuration rules	
MLT and STP	
MLT load-balancing	
MSTP	
configuring using ACLI	<u>158</u>
MstpDownCount field	
MSTP mode	
Display Spanning Tree Switch Settings option .	<u>52</u>
Spanning Tree Port Configuration option	
MstpUpCount field	
Mutlilink trunks	

Ν

NewRootBridgeCount field	257
NewRootCount field	
NewRootIdCount field	252
NoOfInstancesSupported field	257

0

OperEdgePort field	59
OperPointToPoint field25	
OperVersion field	59
options	
Display Spanning Tree Switch Settings	52
Spanning Tree Group Configuration	52
Spanning Tree Port Configuration	

Ρ

Participating field
Participation field
PartnerLagID field
PartnerOperKey field
PartnerSystemID field
PartnerSystemPriority field
PathCostDefault
PathCostDefaultType field
PathCost field
Path Cost field
Port field <u>42, 48, 55, 254, 255, 259, 264</u>
Priority field
ProtocolMigrationCount field261
ProtocolMigration field

R

ReceivedBPDUs field	266
RegionalPathCost field	259
RegionalRootCost field	

RegionalRoot field
Regional Root field
Regional Root Path Cost
RegionConfigChangeCount field
RegionName field
Region Name field
RegionVersion field
Role field
RootCost field
Root field
Root Path Cost field
RootPort field
Root Port field
RSTP
configuring using ACLI <u>156</u>
RstpDownCount field
RSTP mode
Display Spanning Tree Switch Settings
Spanning Tree Group Configuration
Spanning Tree Port Configuration
RstpUpCount field252
RxConfigBpduCount field 261
RxMstBpduCount field261
RxRstBpduCount field 261
RxTcnBpduCount field

S

SelectedPortRole field 259 show adac command 196 show adac interface command 197 show mac-address-table command 146 SLT SLT
about <u>89</u>
SMLT
advantages <u>69</u>
configuring with the CLI
end station configuration example
IST <u>87</u>
square configuration <u>73</u>
stack configuration <u>86</u>
STP convergence resolution <u>69</u>
traffic flow examples
triangle configuration
SMLT configuration steps
Spanning Tree Configuration Menu screen
Spanning Tree Configuration Menu screen in MSTP mode 52
Spanning Tree Group Configuration option
Spanning Tree Group Configuration screen
Spanning Tree Group Configuration screen in MSTP mode
Spanning Tree Group Configuration screen in RSTP mode <u>47</u>
Spanning Tree Port Configuration option
Spanning Tree Port Configuration screen
Spanning Tree Port Configuration screen in MSTP mode <u>55</u>
Spanning Tree Port Configuration screen in RSTP mode <u>48</u>
Spanning Tree Switch Settings screen

Spanning Tree Switch Settings screen in MSTP mode 56
Spanning Tree Switch Settings screen in RSTP mode 50
Spanning Tree VLAN Membership screen
Split Multi-Link Trunking (SMLT)
State field
STG
Stgld field
STGs
configuring using ACLI <u>150</u>
STP and MLT <u>65</u>
STP BPDU Filtering
Configuring with ACLI <u>149</u>
STPG mode
Display Spanning Tree Switch Settings option
Display Spanning Tree VLAN Membership option 39
Spanning Tree Group Configuration option
Spanning Tree Port Configuration option
STP Group
STP Group field <u>42</u> , <u>44</u> , <u>55</u> , <u>56</u> , <u>59</u>
STP Group State field
STP mode
settings using ACLI <u>149</u>
STP mode field
STP Mode field <u>40, 42, 44, 47, 50</u>
STP Multicast Address field40
support
contact

Т

Tagged BPDU on tagged port field TimeSinceTopologyChange field TLVs	
IEEE 802.1 organizationally-specific	
IEEE 802.3 organizationally-specific	
Management	
Organizationally-specific for MED devices .	
TopChanges field	
TransmittedBPDUs field	
Transparent tab	<u>291</u>
troubleshooting	
spanning tree groups	
VLANs	
Troubleshooting ISTs	<u>182</u>
Trunk field	
TxConfigBpduCount field	<u>261</u>
TxHoldCount field	
TXHoldCount field	<u>252</u>
Tx Hold Count field	<u>50</u> , <u>56</u>
TxMstBpduCount field	
TxRstBpduCount field	
TxTcnBpduCount field	

U

Unit field

V

VCC	
configuring with CLI	
Version field	<u>252</u>
videos	. <u>14</u>
VID used for tagged BPDU field	<u>40</u>
VLACP	<u>107</u>
configuring with Device Manager	<u>279</u>
configuring with the CLI	<u>188</u>
VLAN Configuration Control	
configuring with CLI	<u>144</u>
Vlanlds	<u>292</u>
Vlanlds field	<u>239</u>
VLAN Membership field46	, <u>59</u>
VLANs	
configuring with CLI	<u>137</u>