# **Brocade NetIron**

# **Administration Guide**

Supporting Multi-Service Ironware R05.8.00b



#### © 2015, Brocade Communications Systems, Inc. All Rights Reserved.

ADX, Brocade, Brocade Assurance, the B-wing symbol, DCX, Fabric OS, HyperEdge, ICX, MLX, MyBrocade, OpenScript, The Effortless Network, VCS, VDX, Vplane, and Vyatta are registered trademarks, and Fabric Vision and vADX are trademarks of Brocade Communications Systems, Inc., in the United States and/or in other countries. Other brands, products, or service names mentioned may be trademarks of others.

Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning any equipment, equipment feature, or service offered or to be offered by Brocade. Brocade reserves the right to make changes to this document at any time, without notice, and assumes no responsibility for its use. This informational document describes features that may not be currently available. Contact a Brocade sales office for information on feature and product availability. Export of technical data contained in this document may require an export license from the United States government.

The authors and Brocade Communications Systems, Inc. assume no liability or responsibility to any person or entity with respect to the accuracy of this document or any loss, cost, liability, or damages arising from the information contained herein or the computer programs that accompany it.

The product described by this document may contain open source software covered by the GNU General Public License or other open source license agreements. To find out which open source software is included in Brocade products, view the licensing terms applicable to the open source software, and obtain a copy of the programming source code, please visit <a href="http://www.brocade.com/support/oscd">http://www.brocade.com/support/oscd</a>.

# **Contents**

| Preface                 |                                                    | 13 |
|-------------------------|----------------------------------------------------|----|
|                         | Document conventions                               | 13 |
|                         | Text formatting conventions                        |    |
|                         | Command syntax conventions                         |    |
|                         | Notes, cautions, and warnings                      |    |
|                         | Brocade resources                                  |    |
|                         | Contacting Brocade Technical Support               |    |
|                         | Document feedback                                  |    |
|                         | Document recupacy                                  | 10 |
| <b>About This Docur</b> | nent                                               |    |
|                         | Audience                                           |    |
|                         | Supported hardware and software                    |    |
|                         | Supported software                                 | 18 |
|                         | Notice to the reader                               | 18 |
|                         | Related publications                               |    |
|                         | How command information is presented in this guide |    |
| Catting Started w       | with the Command Line Interfere                    | 21 |
| detting Started w       | vith the Command Line Interface                    |    |
|                         | Logging on through the CLI                         |    |
|                         | On-line help                                       |    |
|                         | Command completion                                 |    |
|                         | Scroll control                                     |    |
|                         | Line editing commands                              |    |
|                         | EXEC commands                                      |    |
|                         | User level                                         |    |
|                         | Privileged EXEC level                              | 25 |
|                         | Global level                                       | 25 |
|                         | CONFIG commands                                    | 25 |
|                         | Redundancy level                                   | 25 |
|                         | Interface level                                    |    |
|                         | LAG level                                          |    |
|                         | Router RIP level                                   |    |
|                         | Router OSPF level                                  |    |
|                         | BGP level                                          |    |
|                         | Global BGP and BGP4 unicast address family level   |    |
|                         | BGP4 multicast address family level                |    |
|                         | Router PIM level                                   |    |
|                         | Route Map level                                    |    |
|                         | Router VRRP level                                  |    |
|                         |                                                    |    |
|                         | Router VRRPE level                                 |    |
|                         | VLAN level                                         |    |
|                         | Ethernet Service Instance (ESI) level              |    |
|                         | Metro ring level                                   |    |
|                         | VSRP level                                         |    |
|                         | Topology group level                               |    |
|                         | 802.1X port security level                         |    |
|                         | MAC port security level                            |    |
|                         | Accessing the CLI                                  | 28 |

| Siı                         | ngle user in CONFIG mode                                      | 29 |
|-----------------------------|---------------------------------------------------------------|----|
|                             | ulti-user conflict during deletion of group configuration (or |    |
|                             | stanza)                                                       | 30 |
| Na                          | avigating among command levels                                |    |
|                             | _l command structure                                          |    |
|                             | earching and filtering output                                 |    |
|                             | owable characters for LAG names                               |    |
| CL                          | LI parsing enhancement                                        | 36 |
|                             | vntax shortcuts                                               |    |
|                             | aving configuration changes                                   |    |
|                             |                                                               |    |
|                             |                                                               |    |
| Configuring Basic Parameter | <i>'</i> S                                                    | 39 |
| Enabling a                  | and disabling interactivity for scripts                       | 42 |
| Entering s                  | system administration information                             | 44 |
| Configurir                  | ng Simple Network Management (SNMP) traps                     | 44 |
| Sp                          | pecifying an SNMP trap receiver                               | 44 |
|                             | pecifying a single trap source                                |    |
|                             | etting the SNMP trap holddown time                            |    |
|                             | sabling SNMP traps                                            |    |
|                             | ng SNMP ifIndex                                               |    |
|                             | Brocade Netlron CES and Brocade Netlron CER only              |    |
| Or                          | n Brocade NetIron XMR and Brocade MLX Series only             | 47 |
| SNMP sca                    | alability optimization                                        | 48 |
|                             | onfiguring SNMP throughput optimization                       |    |
|                             | onfiguring SNMP load throttling                               |    |
| Configurir                  | ng optical monitoring                                         | 50 |
|                             | splaying optical monitoring thresholds                        |    |
|                             | media information                                             |    |
|                             | npatibility checking                                          |    |
|                             | sabling transceiver type checking                             |    |
|                             | ng an interface as the packet source                          |    |
|                             | onfiguring an interface as the source for all Telnet packets  |    |
|                             | ancelling an outbound Telnet session                          |    |
| Co                          | onfiguring an interface as the source for all SSH packets     | 55 |
|                             | onfiguring an interface as the source for all TFTP packets    |    |
| Co                          | onfiguring an interface as the source for all TACACS or       |    |
|                             | TACACS+ packets                                               | 56 |
| Co                          | onfiguring an interface as the source for all RADIUS packets  | 56 |
|                             | e system clock                                                |    |
|                             | ST "change" notice for networks using US time zones           |    |
| Creating a                  | a command alias                                               | 58 |
| Re                          | emoving an alias                                              | 58 |
| Di                          | splaying a list of all configured alias                       | 58 |
| Limiting b                  | roadcast, multicast, or unknown unicast rates                 | 58 |
| Lir                         | miting broadcasts                                             | 59 |
| Lir                         | miting multicasts                                             | 59 |
| Lir                         | miting unknown unicasts                                       | 59 |
| Configurir                  | ng CLI banners                                                | 60 |
| Se                          | etting a message of the day banner                            | 60 |
|                             | etting a privileged EXEC CLI level banner                     |    |
|                             | splaying a message on the console when an incoming Telnet     |    |
|                             | session Is detected                                           | 61 |
| Configurir                  | ng terminal display                                           | 61 |
| Ch                          | necking the length of terminal displays                       | 61 |
|                             | or disabling routing protocols                                |    |
| Displaying                  | and modifying default settings for system parameters          | 62 |
|                             | or disabling layer 2 switching                                |    |

|                   | Configuring static MAC addresses                                     |       |
|-------------------|----------------------------------------------------------------------|-------|
|                   | Changing the MAC age time                                            | 69    |
|                   | Enabling and Disabling MAC movement syslog on MLX device             | 69    |
|                   | Configuring static ARP entries                                       | 70    |
|                   | Configuring system max values                                        | 71    |
|                   | Configuring CAM size for an IPv4 multicast group                     | 77    |
|                   | Configuring CAM size for an IPv6 multicast group                     |       |
|                   | Configuring profiles with a zero-size IPv4 or IPv6 ACL               |       |
|                   | Maintaining system-max configuration with available system resources |       |
|                   | Configuration time                                                   |       |
|                   | Bootup time                                                          | 80    |
|                   | L2 elements                                                          | 81    |
|                   | L3 elements                                                          | 82    |
|                   | VPLS elements                                                        | 82    |
|                   | Miscellaneous elements                                               |       |
|                   | Bootup time message                                                  | 83    |
|                   | Monitoring dynamic memory allocation                                 |       |
|                   | Switch fabric fault monitoring                                       | 85    |
|                   | Displaying switch fabric information                                 | 85    |
|                   | Displaying switch fabric module information                          | 86    |
|                   | Powering a switch fabric link on or off manually                     | 86    |
|                   | Powering a switch fabric module off automatically on failure         |       |
|                   | Auto-tune enhancement                                                | 87    |
|                   | Switch fabric log messages                                           | 88    |
|                   | Switch fabric utilization monitoring                                 | 89    |
|                   | Verifying an image checksum                                          | 90    |
|                   | Displaying information for an interface for an Ethernet port         |       |
|                   | Displaying the full port name for an Ethernet interface              | 91    |
|                   | Displaying statistics information for an Ethernet port               | 95    |
|                   | Monitoring Ethernet port statistics in real time                     | 95    |
|                   | Displaying recent traffic statistics for an Ethernet port            | 99    |
|                   | Configuring SNMP to revert ifType to legacy values                   | 101   |
|                   | Configuring snAgentConfigModuleType to return original values        | 101   |
|                   | Preserving interface statistics in SNMP                              | . 102 |
|                   | Disabling CAM table entry aging                                      | 102   |
|                   | Data integrity protection                                            | . 103 |
|                   | Configuring Detection Parameters                                     | 103   |
| Telemetry Solutio | Ns                                                                   |       |
|                   | About telemetry solutions                                            |       |
|                   | Limitations                                                          |       |
|                   | Configuration examples  Configuration example 1                      |       |
|                   |                                                                      |       |
|                   | Configuration example 2 Configuration example 3                      |       |
|                   | Configuring                                                          |       |
|                   | Comgunity                                                            | 110   |
| Remote Network    | Monitoring                                                           | .117  |
|                   | Basic management                                                     |       |
|                   | Viewing system information                                           |       |
|                   | Viewing configuration information                                    |       |
|                   | Viewing port statistics                                              |       |
|                   | Viewing STP statistics                                               |       |
|                   | Clearing statistics                                                  |       |
|                   | RMON support                                                         |       |
|                   |                                                                      |       |
|                   | Statistics (RMON group 1)                                            | . 119 |

|                         | History (RMON group 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 122                                                                                                                                                         |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Alarm (RMON group 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 122                                                                                                                                                         |
|                         | Event (RMON group 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                               |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                               |
| <b>Continuous Syste</b> | m Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                           |
| ,                       | Continuous system monitor overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               |
|                         | Event monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                               |
|                         | Event monitoring overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
|                         | Event types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               |
|                         | Displaying event information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                               |
|                         | Histogram information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |
|                         | Histogram information overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
|                         | Displaying CPU histogram information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               |
|                         | Displaying of 6 histogram information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |
|                         | Displaying memory histogram information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                               |
|                         | NP memory error monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                               |
|                         | NP memory error monitoring overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |
|                         | NP memory error monitoring: basic configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                               |
|                         | Port CRC error monitoring test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
|                         | Port CRC error monitoring overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               |
|                         | Port CRC error monitoring: basic configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
|                         | TM DRAM CRC error monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 139                                                                                                                                                         |
|                         | TM DRAM CRC error monitoring overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 139                                                                                                                                                         |
|                         | TM DRAM CRC error monitoring: basic configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                               |
|                         | Scheduled System Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               |
|                         | Future scheduling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                               |
|                         | On-demand testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                               |
|                         | Slot specific monitoring and testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .140                                                                                                                                                          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                               |
| Operations, Admi        | nistration, and Maintenance (OAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                               |
| Operations, Admi        | nistration, and Maintenance (OAM) IEEE 802.1ag Connectivity Fault Management (CFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 143                                                                                                                                                         |
| Operations, Admi        | nistration, and Maintenance (OAM) IEEE 802.1ag Connectivity Fault Management (CFM) Ethernet OAM capabilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 143<br>.144                                                                                                                                                 |
| Operations, Admi        | nistration, and Maintenance (OAM) IEEE 802.1ag Connectivity Fault Management (CFM) Ethernet OAM capabilities IEEE 802.1ag purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 143<br>.144<br>. 144                                                                                                                                        |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 143<br>.144<br>. 144<br>. 145                                                                                                                               |
| Operations, Admi        | nistration, and Maintenance (OAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 143<br>.144<br>. 144<br>. 145<br>. 145                                                                                                                      |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 143<br>.144<br>. 144<br>. 145<br>. 145                                                                                                                      |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities.  IEEE 802.1ag purpose.  IEEE 802.1ag provides hierarchical network management.  Mechanisms of Ethernet IEEE 802.1ag OAM.  Fault detection (continuity check message).  Fault verification (Loopback messages).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 143<br>.144<br>. 144<br>. 145<br>. 145<br>. 146                                                                                                             |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 143<br>.144<br>. 144<br>. 145<br>. 145<br>. 146                                                                                                             |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities.  IEEE 802.1ag purpose.  IEEE 802.1ag provides hierarchical network management.  Mechanisms of Ethernet IEEE 802.1ag OAM.  Fault detection (continuity check message).  Fault verification (Loopback messages).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 143<br>.144<br>. 145<br>. 145<br>. 145<br>. 146                                                                                                             |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities.  IEEE 802.1ag purpose.  IEEE 802.1ag provides hierarchical network management.  Mechanisms of Ethernet IEEE 802.1ag OAM.  Fault detection (continuity check message).  Fault verification (Loopback messages).  Fault isolation (Linktrace messages).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 143<br>.144<br>. 145<br>. 145<br>. 146<br>. 146<br>. 147                                                                                                    |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities.  IEEE 802.1ag purpose.  IEEE 802.1ag provides hierarchical network management.  Mechanisms of Ethernet IEEE 802.1ag OAM.  Fault detection (continuity check message).  Fault verification (Loopback messages).  Fault isolation (Linktrace messages).  Configuring IEEE 802.1ag CFM.  Enabling or disabling CFM.                                                                                                                                                                                                                                                                                                                                                                                                                          | . 143<br>.144<br>. 145<br>. 145<br>. 145<br>.146<br>.146<br>. 147                                                                                             |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain                                                                                                                                                                                                                                                                                                                                                                                                    | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147                                                                                                 |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters                                                                                                                                                                                                                                                                                                                                                             | . 143<br>.144<br>. 145<br>. 145<br>. 145<br>. 146<br>. 146<br>. 147<br>. 147<br>. 148                                                                         |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations                                                                                                                                                                                                                                                                                                                          | . 143<br>.144<br>. 145<br>. 145<br>. 145<br>. 146<br>. 146<br>. 147<br>. 147<br>. 148<br>. 148                                                                |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration                                                                                                                                                                                                                                                                                                  | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.146<br>.147<br>.147<br>.148<br>.148                                                                         |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)                                                                                                                                                                                                                                   | 143<br>144<br>145<br>145<br>145<br>146<br>147<br>147<br>147<br>148<br>148<br>148                                                                              |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring local ports                                                                                                                                                                                                                                                                         | . 143<br>.1444<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147<br>.147<br>.148<br>.148<br>.148<br>.149<br>.150                                                |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)  Configuring Remote MEPs                                                                                                                                                                                                          | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147<br>.147<br>.148<br>.148<br>.149<br>.150                                                         |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)  Configuring Remote MEPs  Setting the Remote Check Start-Delay                                                                                                                                                                    | . 143<br>. 144<br>. 144<br>. 145<br>. 145<br>. 145<br>. 146<br>. 147<br>. 147<br>. 148<br>. 148<br>. 149<br>. 150<br>. 151<br>. 151                           |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)  Configuring Remote MEPs  Setting the Remote Check Start-Delay  Specifying MIP creation policy                                                                                                                                    | . 143<br>. 144<br>. 144<br>. 145<br>. 145<br>. 145<br>. 146<br>. 147<br>. 147<br>. 148<br>. 148<br>. 149<br>. 150<br>. 151<br>. 151                           |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)  Configuring Remote MEPs  Setting the Remote Check Start-Delay  Specifying MIP creation policy  Y.1731 performance management                                                                                                     | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147<br>.147<br>.148<br>.148<br>.149<br>.151<br>.151<br>.151<br>.151                                 |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)  Configuring Remote MEPs  Setting the Remote Check Start-Delay  Specifying MIP creation policy  Y.1731 performance management  About Y.1731                                                                                       | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147<br>.147<br>.148<br>.148<br>.149<br>.151<br>.151<br>.151<br>.152<br>.152                         |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM) Ethernet OAM capabilities.  IEEE 802.1ag purpose.  IEEE 802.1ag provides hierarchical network management.  Mechanisms of Ethernet IEEE 802.1ag OAM.  Fault detection (continuity check message) Fault verification (Loopback messages) Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM.  Enabling or disabling CFM.  Creating a Maintenance Domain.  Setting Maintenance Domain parameters.  Creating Maintenance Associations.  Tag-type configuration.  Configuring a CCM interval for a Maintenance Association (MA).  Configuring Remote MEPs.  Setting the Remote Check Start-Delay.  Specifying MIP creation policy.  Y.1731 performance management.  About Y.1731.  Y. 1731 show commands.                                                  | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147<br>.147<br>.148<br>.148<br>.149<br>.151<br>.151<br>.151<br>.152<br>.152                         |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)  Configuring Remote MEPs  Setting the Remote Check Start-Delay  Specifying MIP creation policy  Y.1731 performance management  About Y.1731  Y. 1731 show commands  CFM monitoring and show commands                              | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147<br>.147<br>.148<br>.148<br>.149<br>.151<br>.151<br>.151<br>.152<br>.154<br>.155                 |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages).  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)  Configuring Remote MEPs  Setting the Remote Check Start-Delay  Specifying MIP creation policy  Y.1731 performance management  About Y.1731  Y. 1731 show commands  CFM monitoring and show commands  Sending linktrace messages | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147<br>.147<br>.148<br>.148<br>.149<br>.151<br>.151<br>.151<br>.152<br>.154<br>.155<br>.155         |
| Operations, Admi        | nistration, and Maintenance (OAM)  IEEE 802.1ag Connectivity Fault Management (CFM)  Ethernet OAM capabilities  IEEE 802.1ag purpose  IEEE 802.1ag provides hierarchical network management  Mechanisms of Ethernet IEEE 802.1ag OAM  Fault detection (continuity check message)  Fault verification (Loopback messages)  Fault isolation (Linktrace messages)  Configuring IEEE 802.1ag CFM  Enabling or disabling CFM  Creating a Maintenance Domain  Setting Maintenance Domain parameters  Creating Maintenance Associations  Tag-type configuration  Configuring a CCM interval for a Maintenance Association (MA)  Configuring Remote MEPs  Setting the Remote Check Start-Delay  Specifying MIP creation policy  Y.1731 performance management  About Y.1731  Y. 1731 show commands  CFM monitoring and show commands                              | . 143<br>.144<br>.145<br>.145<br>.145<br>.146<br>.147<br>.147<br>.147<br>.148<br>.148<br>.149<br>.151<br>.151<br>.151<br>.152<br>.154<br>.155<br>.155<br>.155 |

| Displaying connectivity statistics                                                                                       | 159 |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| Sample configuration for a customer's domain                                                                             | 160 |
| Configuring CFM using Provider Bridges                                                                                   |     |
| Displaying the connectivity status in a customer's domain                                                                |     |
| Sample configuration for a customer domain using MPLS VLL                                                                |     |
| Achieving end-to-end connectivity between CE1 and CE2                                                                    |     |
| Monitoring the status of devices in a VPLS network in a Provider's                                                       |     |
| Maintenance Domain                                                                                                       | 176 |
| Configuring PE 1                                                                                                         |     |
| Configuring PE 2                                                                                                         |     |
| Configuring PE 3                                                                                                         |     |
| Verifying connectivity in a VPLS network using IEEE 802.1ag                                                              |     |
| Verifying connectivity in a VPLS network using IEEE 802.1ag  Verifying connectivity in a VPLS network using IEEE 802.1ag | 170 |
| Loopback                                                                                                                 | 182 |
| Support for IEEE 802.1ag CFM for Provider Bridges (PB) and                                                               | 102 |
| Provider Backbone Bridges (PBB)                                                                                          | 102 |
| IEEE 802.3ah EFM-OAM                                                                                                     |     |
| Network deployment use case                                                                                              |     |
|                                                                                                                          |     |
| EFM-OAM protocol                                                                                                         |     |
| Process overview                                                                                                         |     |
| Link monitoring process                                                                                                  |     |
| Enabling and disabling EFM-OAM                                                                                           |     |
| Enabling an interface to accept remote loopback                                                                          |     |
| Display information                                                                                                      |     |
| Ping                                                                                                                     |     |
| Executing ping                                                                                                           |     |
| Executing ping VRF                                                                                                       |     |
| Executing ping IPv6                                                                                                      |     |
| Trace route                                                                                                              |     |
| Executing traceroute                                                                                                     |     |
| Executing traceroute VRF                                                                                                 |     |
| Executing traceroute IPv6                                                                                                | 196 |
| Trace-I2 protocol                                                                                                        | 196 |
| Configuration considerations                                                                                             | 197 |
| Tracing a traffic path                                                                                                   | 197 |
| IPv6 Traceroute over an MPLS network                                                                                     |     |
| Tracing an IPv6 route through an MPLS domain                                                                             |     |
| Configuring IPv6 Traceroute over MPLS                                                                                    | 200 |
| LSP ping and traceroute                                                                                                  |     |
| Överview                                                                                                                 |     |
| LSP ping operation                                                                                                       |     |
| LSP traceroute operation                                                                                                 |     |
| MPLS echo request                                                                                                        |     |
| MPLS echo reply                                                                                                          |     |
| LSP ping TLVs                                                                                                            |     |
| LSP FEC types                                                                                                            |     |
| Redundant RSVP LSPs                                                                                                      |     |
| One-to-one Fast ReRoute (FRR) LSPs                                                                                       |     |
| FRR bypass LSPs                                                                                                          |     |
| Transit-originated detour                                                                                                |     |
| LSP reoptimization                                                                                                       |     |
| PHP behavior                                                                                                             |     |
| Using the LSP ping and Traceroute commands                                                                               |     |
|                                                                                                                          |     |
| Displaying LSP ping and traceroute statistics                                                                            |     |
| CFM monitoring for ISID                                                                                                  |     |
| Configuring CFM monitoring for ISID                                                                                      |     |
| Link MA                                                                                                                  |     |
| Port status TLV                                                                                                          | 217 |

|                | Remote Defect Indication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 219                                                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                | Frame Loss Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 221                                                                     |
|                | LMM over VLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 221                                                                     |
|                | LMM over VPLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 221                                                                     |
|                | Configuration considerations and limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 221                                                                     |
|                | Supported configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                | LMM configurations common for VLAN and VPLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |
|                | Configuration examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |
|                | Syslog messages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
|                | One-way Delay Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
|                | Configuration considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |
|                | One-way Delay Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
|                | One-way Delay Measurement transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |
|                | One-way Delay Measurement reception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |
|                | Use Cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
|                | Supported configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                | Configuration procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |
|                | Configuration examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |
|                | Show commands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |
|                | Syslog messages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
|                | Synthetic loss measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
|                | Configuration considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |
|                | Commands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                | Configuration examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |
|                | Show commands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |
|                | Syslog messages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 249                                                                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| Network Time   | Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 251                                                                     |
| Network IIIIIe | 1 IVWCVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Z</b> JI                                                             |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251                                                                     |
|                | Network Time Protocol (NTP) overview  Network Time Protocol (NTP) leap second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 251<br>253                                                              |
|                | Network Time Protocol (NTP) overview  Network Time Protocol (NTP) leap second  How Brocade supports leap second handling for NTP                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 251<br>253<br>254                                                       |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251<br>253<br>254<br>254                                                |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251<br>253<br>254<br>254                                                |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview  Network Time Protocol (NTP) leap second  How Brocade supports leap second handling for NTP  How NTP works  NTP server  NTP client  NTP peer  NTP broadcast server  NTP broadcast client  Synchronizing time.  Configuring NTP  Changing to the NTP mode  Configuring the NTP client  Configuring the NTP peer                                                                                                                                                                                                                                |                                                                         |
|                | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
|                | Network Time Protocol (NTP) overview  Network Time Protocol (NTP) leap second  How Brocade supports leap second handling for NTP  How NTP works  NTP server  NTP client  NTP peer  NTP broadcast server  NTP broadcast client  Synchronizing time.  Configuring NTP  Changing to the NTP mode  Configuring the NTP client  Configuring the NTP peer                                                                                                                                                                                                                                |                                                                         |
|                | Network Time Protocol (NTP) overview Network Time Protocol (NTP) leap second How Brocade supports leap second handling for NTP How NTP works NTP server NTP client NTP peer NTP broadcast server NTP broadcast client Synchronizing time. Configuring NTP Changing to the NTP mode Configuring the NTP client Configuring NTP peer Configuring NTP on an interface                                                                                                                                                                                                                 |                                                                         |
|                | Network Time Protocol (NTP) overview Network Time Protocol (NTP) leap second How Brocade supports leap second handling for NTP How NTP works NTP server NTP client NTP peer NTP broadcast server NTP broadcast client Synchronizing time. Configuring NTP Changing to the NTP mode Configuring the NTP client Configuring NTP on an interface Show commands                                                                                                                                                                                                                        |                                                                         |
|                | Network Time Protocol (NTP) overview Network Time Protocol (NTP) leap second How Brocade supports leap second handling for NTP How NTP works NTP server NTP client NTP peer NTP broadcast server NTP broadcast client Synchronizing time. Configuring NTP Changing to the NTP mode Configuring the NTP client Configuring NTP on an interface Show commands Displaying NTP associations                                                                                                                                                                                            |                                                                         |
|                | Network Time Protocol (NTP) overview Network Time Protocol (NTP) leap second How Brocade supports leap second handling for NTP How NTP works NTP server NTP client NTP peer NTP broadcast server NTP broadcast client Synchronizing time. Configuring NTP Changing to the NTP mode Configuring the NTP client Configuring the NTP peer Configuring NTP on an interface Show commands Displaying NTP status                                                                                                                                                                         |                                                                         |
|                | Network Time Protocol (NTP) overview Network Time Protocol (NTP) leap second How Brocade supports leap second handling for NTP How NTP works NTP server NTP client NTP peer NTP broadcast server NTP broadcast client Synchronizing time. Configuring NTP Changing to the NTP mode Configuring the NTP client Configuring the NTP peer Configuring NTP on an interface. Show commands Displaying NTP associations Displaying NTP associations details                                                                                                                              |                                                                         |
|                | Network Time Protocol (NTP) overview Network Time Protocol (NTP) leap second How Brocade supports leap second handling for NTP How NTP works NTP server NTP client NTP peer NTP broadcast server NTP broadcast client Synchronizing time. Configuring NTP Changing to the NTP mode Configuring the NTP client Configuring the NTP peer Configuring NTP on an interface. Show commands Displaying NTP associations Displaying NTP associations details                                                                                                                              |                                                                         |
| Network Conf   | Network Time Protocol (NTP) overview Network Time Protocol (NTP) leap second How Brocade supports leap second handling for NTP How NTP works NTP server NTP client NTP peer NTP broadcast server NTP broadcast client Synchronizing time Configuring NTP Changing to the NTP mode Configuring the NTP client Configuring the NTP peer Configuring NTP on an interface Show commands Displaying NTP status Displaying NTP associations Displaying NTP associations details Configuration Examples                                                                                   |                                                                         |
| Network Conf   | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251253254254254255255255256256257258260261262264                        |
| Network Conf   | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251 253 254 254 254 255 255 255 255 256 256 256 260 260 261 262 264     |
| Network Conf   | Network Time Protocol (NTP) overview  Network Time Protocol (NTP) leap second  How Brocade supports leap second handling for NTP  How NTP works  NTP server  NTP client  NTP peer  NTP broadcast server  NTP broadcast client  Synchronizing time  Configuring NTP  Changing to the NTP mode  Configuring the NTP client  Configuring the NTP peer  Configuring NTP on an interface  Show commands  Displaying NTP status  Displaying NTP associations  Displaying NTP associations details.  Configuration Examples  iguration Protocol  NETCONF protocol introduction  Platforms |                                                                         |
| Network Conf   | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251 253 254 254 254 255 255 255 255 255 256 260 260 261 262 264 267 268 |
| Network Conf   | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
| Network Conf   | Network Time Protocol (NTP) overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |

|                           | DDC and array handling                                       | 270 |
|---------------------------|--------------------------------------------------------------|-----|
|                           | RPC and error handling                                       |     |
|                           | CLI and SSH subsystem                                        |     |
|                           | Recommendations for NETCONF                                  |     |
| Basic N                   | NETCONF operations                                           |     |
|                           | Initial connection                                           |     |
|                           | get operation                                                |     |
|                           | get-config operation                                         |     |
|                           | edit-config operation                                        | 282 |
|                           | Closing sessions                                             | 284 |
|                           | NETCONF commands and specifications                          | 284 |
| Data m                    | nodels and mapping                                           | 289 |
|                           | Example in YANG, XML, and CLI                                |     |
|                           |                                                              |     |
| Foundry Direct Routing an | d CAM Partition Profiles for the NetIron XMR and the Brocade |     |
| MLX Series                |                                                              | 291 |
| Config                    | uring CAM mode globally                                      | 291 |
|                           | uring Density Mode for the 2x100G and 20x10G CAM             |     |
|                           | uring IPv6 host CAM mode                                     |     |
|                           | uring IPv6 host drop CAM limit                               |     |
|                           | uring -X2 Algorithmic CAM profiles                           |     |
|                           | artition profiles                                            |     |
| C/ 11/1 P                 | Supernet CAM partition sharing                               |     |
|                           | Displaying CAM partition                                     |     |
|                           | Displaying CAM Partition for IPv6 VPN                        |     |
|                           | Output from show CAM partition usage command                 |     |
|                           | Displaying CAM information                                   |     |
|                           | Displaying IPv6 VPN CAM information                          |     |
|                           | Show cam v6acl                                               |     |
|                           | Displaying IPv6 host drop CAM limit                          |     |
|                           |                                                              |     |
| Config                    | Show IFL CAM ISID partition                                  |     |
|                           | uring CAM partition size                                     |     |
| CAIVI O                   | verflow logging                                              |     |
|                           | Configuring minimum logging interval and threshold value     | 323 |
| Hoing Sycles              |                                                              | 225 |
| Using Syslog              |                                                              |     |
| Dispiay                   | /ing Syslog messages                                         |     |
| 0                         | Enabling real-time display of Syslog messages                |     |
| Configi                   | uring the Syslog service                                     |     |
|                           | Displaying the Syslog configuration                          |     |
|                           | Configuring an encrypted syslog server                       |     |
|                           | Displaying the configured server connections                 |     |
|                           | Ascending or descending option for show log command          |     |
|                           | Disabling or re-enabling Syslog                              |     |
|                           | Specifying a Syslog server                                   |     |
|                           | Specifying an additional Syslog server                       |     |
|                           | Disabling logging of a message level                         |     |
|                           | Changing the number of entries for the local buffer          |     |
|                           | Changing the log facility                                    |     |
|                           | Displaying the interface name in Syslog messages             |     |
|                           | Clearing the Syslog messages from the local buffer           |     |
|                           | Logging all CLI commands to Syslog                           | 337 |
| Syslog                    | messages                                                     |     |
|                           | messages system                                              |     |
|                           | messages security                                            |     |
|                           | messages VLAN                                                |     |

| Syslog messages    | STP                                                     | 349                |
|--------------------|---------------------------------------------------------|--------------------|
|                    | RSTP                                                    |                    |
|                    | LAG                                                     |                    |
|                    | MRP                                                     |                    |
|                    | UDLD                                                    |                    |
|                    | VSRP                                                    |                    |
|                    | VRRP                                                    |                    |
|                    | IP                                                      |                    |
|                    | ICMP                                                    |                    |
|                    |                                                         |                    |
|                    | ACL                                                     |                    |
|                    | RACL                                                    |                    |
|                    | OSPF                                                    |                    |
|                    | OSPFv3                                                  |                    |
|                    | IS-IS                                                   |                    |
|                    | BGP                                                     |                    |
|                    | NTP                                                     |                    |
|                    | TCP                                                     |                    |
|                    | DOT1X                                                   |                    |
| Syslog messages    | SNMP                                                    | 388                |
| Syslog messages    | MPLS                                                    | 389                |
| Syslog messages    | VRF                                                     | 394                |
| Syslog messages    |                                                         | 395                |
|                    | BFD                                                     |                    |
|                    | Optics                                                  |                    |
|                    | LDP                                                     |                    |
|                    | DHCP                                                    |                    |
|                    | DHCPv6                                                  |                    |
|                    | data integrity protection                               |                    |
|                    | TCAM In-field soft repair                               |                    |
|                    | NSR                                                     |                    |
|                    | ntion Levels                                            |                    |
|                    | dress family configuration level                        |                    |
|                    | ibility for existing BGP4 and IPv4 IS-IS configurations |                    |
|                    | mands and BGP4 unicast route commands                   |                    |
| NIAP-CCEVS         |                                                         | 111                |
|                    | ified Precede equipment and Ironware releases           |                    |
|                    | tified Brocade equipment and Ironware releases          |                    |
|                    | t access to NIAP-CCEVS certified Brocade equipment      |                    |
| Warning: local use | er password changes                                     | 413                |
|                    |                                                         |                    |
| Acknowledgements   |                                                         | 415                |
|                    | tware                                                   |                    |
| ,                  |                                                         |                    |
|                    |                                                         |                    |
| •                  | SLeay License                                           |                    |
|                    | tware                                                   |                    |
| Gryptograpilic son | war                                                     | <del>-</del> † 1 / |
|                    |                                                         |                    |
|                    |                                                         |                    |

| Administration commands                                         | <b>445</b><br>446<br>450<br>451 |
|-----------------------------------------------------------------|---------------------------------|
| show statisticslogs-per-interval-per-mep-rmep                   | 446<br>450<br>451               |
| show statisticslogs-per-interval-per-mep-rmep                   | 446<br>450<br>451               |
| show statisticslogs-per-interval-per-mep-rmep                   | 446<br>450<br>451               |
| logs-per-interval-per-mep-rmep                                  | 450<br>451                      |
|                                                                 | 451                             |
| sysmon fe link auto-tune                                        |                                 |
| sysmon tm link auto-tune                                        |                                 |
| system np control-ram-threshold                                 | 453                             |
| system np lpm-ram-threshold                                     |                                 |
| disable authenticate md5                                        |                                 |
| cam-mode amod                                                   | 458                             |
| cam ifsr                                                        | 459                             |
| clear bm histogram                                              |                                 |
| clear cpu histogram sequence                                    |                                 |
| clear memory histogram                                          | 462                             |
| dot1ag-transparent                                              | 463                             |
| ip ssh encryption disable-aes-cbc                               | 464                             |
| jitc enable                                                     | 465                             |
| mac-move-det-syslog                                             | 466                             |
| show cpu histogram                                              | 467                             |
| show cpu histogram sequence                                     |                                 |
| show memory histogram                                           |                                 |
| show sysmon config                                              |                                 |
| show sysmon schedule                                            | 474                             |
| show sysmon results brief                                       |                                 |
| show sysmon results detail                                      |                                 |
| sysmon np memory-errors                                         |                                 |
| sysmon port port-crc-test                                       |                                 |
| sysmon port port-crc-test action                                |                                 |
| sysmon port port-crc-test counter                               |                                 |
| sysmon port port-crc-test log-backoff                           |                                 |
| sysmon port port-crc-test polling-period                        |                                 |
| sysmon port port-crc-test threshold                             |                                 |
| sysmon schedule after                                           |                                 |
| sysmon schedule at                                              |                                 |
| sysmon schedule now                                             |                                 |
| sysmon sfm walk auto                                            |                                 |
| sysmon sfm walk polling-period                                  |                                 |
| sysmon sfm walk redundancy-check                                |                                 |
| sysmon sfm walk start                                           |                                 |
| sysmon sfm walk status                                          |                                 |
| sysmon sfm walk threshold                                       |                                 |
| sysmon slot                                                     |                                 |
| system-init fe-access-recovery-disableterminal enable timestamp |                                 |

# **Preface**

| Document conventions                 | .13 |
|--------------------------------------|-----|
| Brocade resources                    | 15  |
| Contacting Brocade Technical Support | .15 |
| Document feedback                    | 16  |

# **Document conventions**

The document conventions describe text formatting conventions, command syntax conventions, and important notice formats used in Brocade technical documentation.

# **Text formatting conventions**

Text formatting conventions such as boldface, italic, or Courier font may be used in the flow of the text to highlight specific words or phrases.

| Format       | Description                                           |
|--------------|-------------------------------------------------------|
| bold text    | Identifies command names                              |
|              | Identifies keywords and operands                      |
|              | Identifies the names of user-manipulated GUI elements |
|              | Identifies text to enter at the GUI                   |
| italic text  | Identifies emphasis                                   |
|              | Identifies variables                                  |
|              | Identifies document titles                            |
| Courier font | Identifies CLI output                                 |
|              | Identifies command syntax examples                    |

## **Command syntax conventions**

Bold and italic text identify command syntax components. Delimiters and operators define groupings of parameters and their logical relationships.

| Convention  | Description                                                                                                                    |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| bold text   | Identifies command names, keywords, and command options.                                                                       |
| italic text | Identifies a variable.                                                                                                         |
| value       | In Fibre Channel products, a fixed value provided as input to a command option is printed in plain text, for example,show WWN. |

| Convention    | Description                                                                                                                                                             |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| []            | Syntax components displayed within square brackets are optional.                                                                                                        |
|               | Default responses to system prompts are enclosed in square brackets.                                                                                                    |
| { x   y   z } | A choice of required parameters is enclosed in curly brackets separated by vertical bars. You must select one of the options.                                           |
|               | In Fibre Channel products, square brackets may be used instead for this purpose.                                                                                        |
| x   y         | A vertical bar separates mutually exclusive elements.                                                                                                                   |
| <>            | Nonprinting characters, for example, passwords, are enclosed in angle brackets.                                                                                         |
|               | Repeat the previous element, for example, <code>member[member]</code> .                                                                                                 |
| \             | Indicates a "soft" line break in command examples. If a backslash separates two lines of a command input, enter the entire command at the prompt without the backslash. |

### Notes, cautions, and warnings

Notes, cautions, and warning statements may be used in this document. They are listed in the order of increasing severity of potential hazards.

#### NOTE

A Note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information.

#### **ATTENTION**

An Attention statement indicates a stronger note, for example, to alert you when traffic might be interrupted or the device might reboot.



#### CAUTION

A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.



#### **DANGER**

A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

### **Brocade resources**

Visit the Brocade website to locate related documentation for your product and additional Brocade resources.

You can download additional publications supporting your product at <a href="www.brocade.com">www.brocade.com</a>. Select the Brocade Products tab to locate your product, then click the Brocade product name or image to open the individual product page. The user manuals are available in the resources module at the bottom of the page under the Documentation category.

To get up-to-the-minute information on Brocade products and resources, go to MyBrocade. You can register at no cost to obtain a user ID and password.

Release notes are available on MyBrocade under Product Downloads.

White papers, online demonstrations, and data sheets are available through the Brocade website.

# **Contacting Brocade Technical Support**

As a Brocade customer, you can contact Brocade Technical Support 24x7 online, by telephone, or by email. Brocade OEM customers contact their OEM/Solutions provider.

### **Brocade customers**

For product support information and the latest information on contacting the Technical Assistance Center, go to http://www.brocade.com/services-support/index.html.

If you have purchased Brocade product support directly from Brocade, use one of the following methods to contact the Brocade Technical Assistance Center 24x7.

| Online                                                                                                                 | Telephone                                                                                                                                                                                                                                                                                      | E-mail                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Preferred method of contact for non-urgent issues:                                                                     | Required for Sev 1-Critical and Sev 2-High issues:                                                                                                                                                                                                                                             | support@brocade.com Please include:                                                                                       |
| <ul> <li>My Cases through MyBrocade</li> <li>Software downloads and licensing tools</li> <li>Knowledge Base</li> </ul> | <ul> <li>Continental US: 1-800-752-8061</li> <li>Europe, Middle East, Africa, and<br/>Asia Pacific: +800-AT FIBREE<br/>(+800 28 34 27 33)</li> <li>For areas unable to access toll<br/>free number: +1-408-333-6061</li> <li>Toll-free numbers are available in<br/>many countries.</li> </ul> | <ul> <li>Problem summary</li> <li>Serial number</li> <li>Installation details</li> <li>Environment description</li> </ul> |

### **Brocade OEM customers**

If you have purchased Brocade product support from a Brocade OEM/Solution Provider, contact your OEM/Solution Provider for all of your product support needs.

- OEM/Solution Providers are trained and certified by Brocade to support Brocade® products.
- · Brocade provides backline support for issues that cannot be resolved by the OEM/Solution Provider.

- Brocade Supplemental Support augments your existing OEM support contract, providing direct access to Brocade expertise. For more information, contact Brocade or your OEM.
- For questions regarding service levels and response times, contact your OEM/Solution Provider.

# **Document feedback**

To send feedback and report errors in the documentation you can use the feedback form posted with the document or you can e-mail the documentation team.

Quality is our first concern at Brocade and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. You can provide feedback in two ways:

- Through the online feedback form in the HTML documents posted on www.brocade.com.
- By sending your feedback to documentation@brocade.com.

Provide the publication title, part number, and as much detail as possible, including the topic heading and page number if applicable, as well as your suggestions for improvement.

# **About This Document**

| Audience                                           | 17 |
|----------------------------------------------------|----|
| Supported hardware and software                    | 17 |
| Notice to the reader                               | 18 |
| Related publications                               | 19 |
| How command information is presented in this guide | 10 |

# **Audience**

This document is designed for system administrators with a working knowledge of Layer 2 and Layer 3 switching and routing.

If you are using a Brocade device, you should be familiar with the following protocols if applicable to your network - IP, RIP, OSPF, BGP, ISIS, IGMP, PIM, MPLS, and VRRP.

# **Supported hardware and software**

The following hardware platforms are supported by this release of this guide:

TABLE 1 Supported devices

| Brocade Netlron XMR<br>Series | Brocade Netlron MLX Series | Netlron CES 2000 and Netlron CER 2000 Series |
|-------------------------------|----------------------------|----------------------------------------------|
| Brocade NetIron XMR 4000      | Brocade MLX-4              | Brocade NetIron CES 2024C                    |
| Brocade NetIron XMR 8000      | Brocade MLX-8              | Brocade NetIron CES 2024F                    |
| Brocade NetIron XMR 16000     | Brocade MLX-16             | Brocade NetIron CES 2048C                    |
| Brocade NetIron XMR 32000     | Brocade MLX-32             | Brocade NetIron CES 2048CX                   |
|                               | Brocade MLXe-4             | Brocade NetIron CES 2048F                    |
|                               | Brocade MLXe-8             | Brocade NetIron CES 2048FX                   |
|                               | Brocade MLXe-16            | Brocade NetIron CER 2024C                    |
|                               | Brocade MLXe-32            | Brocade NetIron CER-RT 2024C                 |
|                               |                            | Brocade NetIron CER 2024F                    |
|                               |                            | Brocade NetIron CER-RT 2024F                 |
|                               |                            | Brocade NetIron CER 2048C                    |
|                               |                            | Brocade NetIron CER-RT 2048C                 |
|                               |                            | Brocade NetIron CER 2048CX                   |
|                               |                            | Brocade NetIron CER-RT 2048CX                |
|                               |                            | Brocade NetIron CER 2048F                    |
|                               |                            | Brocade NetIron CER-RT 2048F                 |
|                               |                            | Brocade NetIron CER 2048FX                   |
|                               |                            | Brocade NetIron CER-RT 2048FX                |

# **Supported software**

For the complete list of supported features and the summary of enhancements and configuration notes for this release, refer to the *Brocade NetIron Unified R05.8.00b Release Notes*.

# Notice to the reader

This document may contain references to the trademarks of the following corporations. These trademarks are the properties of their respective companies and corporations.

These references are made for informational purposes only.

| Corporation           | Referenced Trademarks and Products |  |
|-----------------------|------------------------------------|--|
| Microsoft Corporation | Internet Explorer                  |  |
| Mozilla Corporation   | Mozilla Firefox                    |  |
| Sun Microsystems      | Java Runtime Environment           |  |

# **Related publications**

For the latest edition of these documents, which contain the most up-to-date information, see Documentation at http://www.brocade.com/ethernetproducts

- · Brocade NetIron Administration Guide
- · Brocade NetIron Security Configuration Guide
- Brocade NetIron Switching Configuration Guide
- Brocade NetIron Routing Configuration Guide
- Brocade NetIron QoS and Traffic Management Configuration Guide
- Brocade NetIron Multicast Configuration Guide
- · Brocade NetIron Multiprotocol Label Switch (MPLS) Configuration Guide
- Brocade NetIron Software Defined Networking (SDN) Guide
- · Brocade NetIron YANG Configuration Guide
- · Brocade NetIron MLX Series and NetIron XMR Series Diagnostic Reference
- Unified IP MIB Reference
- · Brocade NetIron Software Upgrade Guide
- Brocade MLXe Series Hardware Installation Guide
- · Brocade NetIron MLX Series and NetIron XMR Installation Guide
- Brocade NetIron CES 2000 Series and NetIron CER 2000 Series Hardware Installation Guide

# How command information is presented in this guide

For all new content, command syntax and parameters are documented in a separate command reference section at the end of the publication.

In an effort to provide consistent command line interface (CLI) documentation for all products, Brocade is in the process of preparing standalone Command References for the IP platforms. This process involves separating command syntax and parameter descriptions from configuration tasks. Until this process is completed, command information is presented in two ways:

- For all new content included in this guide, the CLI is documented in separate command pages. The
  new command pages follow a standard format to present syntax, parameters, usage guidelines,
  examples, and command history. Command pages are compiled in alphabetical order in a separate
  command reference chapter at the end of the publication.
- Legacy content continues to include command syntax and parameter descriptions in the chapters where the features are documented.

If you do not find command syntax information embedded in a configuration task, refer to the command reference section at the end of this publication for information on CLI syntax and usage.

How command information is presented in this guide

# **Getting Started with the Command Line Interface**

Logging on through the CLI
EXEC commands
CONFIG commands
25

Table 2 displays the individual devices and the command line features they support.

**TABLE 2** Supported command line features

| Features<br>supported                                                                 | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>Netlron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>Netlron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
|---------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| On-Line Help                                                                          | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Command<br>Completion                                                                 | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Scroll Control                                                                        | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Line Editing<br>Commands                                                              | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Accessing the CLI                                                                     | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Single User in<br>CONFIG Mode                                                         | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Multi-User<br>Conflict During<br>Deletion Of<br>Group<br>Configuration (Or<br>Stanza) | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Searching and Filtering Output                                                        | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| CLI Parsing                                                                           | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Syntax Shortcuts                                                                      | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Web<br>Management<br>Interface                                                        | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |

This chapter presents information to help you become familiar with the Brocade command line interface (CLI).

As with other devices, you can manage a Brocade using any of the following applications:

- Command Line Interface (CLI) a text-based interface accessible directly from a PC or terminal attached to the management module's serial (Console) port or 10BaseT/100BaseTX Ethernet (management) port, or from a Telnet connection to the PC or terminal.
- Web Management Interface a GUI-based management interface accessible through an HTTP (web browser) connection.

#### NOTE

The following interface cards are not supported by the front panel of the Web Management Interface: BR-MLX-100Gx2-X, NI-MLX-1Gx48-T, BR-MLX-10GX4-X-ML

Brocade Network Advisor - an optional SNMP-based standalone GUI application.

This user guide describes how to configure the features using the CLI.

#### **NOTE**

This user guide assumes that an IP address and default gateway have been assigned to the Brocade device when it was installed. If you need to assign an IP address or default gateway to the device, refer to the *Brocade Installation Guides* 

# Logging on through the CLI

After an IP address is assigned to the Brocade device's management port, you can access the CLI through a PC or terminal attached to the management module's serial (Console) port or 10BaseT/ 100BaseTX Ethernet (management) port, or from a Telnet or SSH connection to the PC or terminal.

You can initiate a local Telnet, SSH or SNMP connection by specifying the management port's IP address.

The commands in the CLI are organized into the following levels:

- User EXEC Lets you display information and perform basic tasks such as pings and traceroutes.
- Privileged EXEC Lets you use the same commands as those at the User EXEC level plus
  configuration commands that do not require saving the changes to the system-config file.
- CONFIG Lets you make configuration changes to the device. To save the changes across
  software reloads and system resets, you need to save them to the system-config file. The CONFIG
  level contains sub-levels for individual ports, for VLANs, for routing protocols, and other
  configuration areas.

#### NOTE

By default, the Brocade devices have all management access disabled, except for console port management. To create access, you must configure Enable passwords or local user accounts, or you can configure the device to use a RADIUS or TACACS or TACACS+ server for authentication.

### **On-line help**

To display a list of available commands or command options, enter "?" or press Tab. If you have not entered part of a command at the command prompt, all the commands supported at the current CLI level are listed. If you enter part of a command, then enter "?" or press Tab, the CLI lists the options you can enter at this point in the command string.

If you enter an invalid command, a message appears indicating the command was unrecognized.

```
device(config)# rooter ip
Unrecognized command
```

### **Command completion**

The CLI supports command completion, so you do not need to enter the entire name of a command or option. As long as you enter enough characters of the command or option name to avoid ambiguity with other commands or options, the CLI understands what you are typing.

#### Scroll control

By default, the CLI uses a page mode to paginate displays that are longer than the number of rows in your terminal emulation window. For example, if you display a list of all the commands at the global CONFIG level but your terminal emulation window does not have enough rows to display them all at once, the page mode stops the display and lists your choices for continuing the display.

```
aaa
access-list
all-client
arp
banner
base-mac-addr
boot
some lines omitted for brevity...
default-vlan-id
enable
enable-acl-counter
end
exit
--More--, next page: Space, next line: Return key, quit: Control-c
```

The software provides the following scrolling options:

- · Press the Space bar to display the next page (one screen at time).
- Press the Return or Enter key to display the next line (one line at a time).
- · Press Ctrl-C cancel the display.

## **Line editing commands**

The CLI supports the following line editing commands. To enter a line-editing command, use the CTRL-key combination for the command by pressing and holding the CTRL key, then pressing the letter associated with the command.

**TABLE 3** CLI line-editing commands

| Ctrl-key combination | Description                                                                                                                      |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Ctrl-A               | Moves to the first character on the command line.                                                                                |
| Ctrl-B               | Moves the cursor back one character.                                                                                             |
| Ctrl-C               | Escapes and terminates command prompts and ongoing tasks (such as lengthy displays), and displays a fresh command prompt.        |
| Ctrl-D               | Deletes the character at the cursor.                                                                                             |
| Ctrl-E               | Moves to the end of the current command line.                                                                                    |
| Ctrl-F               | Moves the cursor forward one character.                                                                                          |
| Ctrl-K               | Deletes all characters from the cursor to the end of the command line.                                                           |
| Ctrl-L; Ctrl-R       | Repeats the current command line on a new line.                                                                                  |
| Ctrl-N               | Enters the next command line in the history buffer.                                                                              |
| Ctrl-P               | Enters the previous command line in the history buffer.                                                                          |
| Ctrl-U; Ctrl-X       | Deletes all characters from the cursor to the beginning of the command line.                                                     |
| Ctrl-W               | Deletes the last word you typed.                                                                                                 |
| Ctrl-Z               | Moves from any CONFIG level of the CLI to the Privileged EXEC level; at the Privileged EXEC level, moves to the User EXEC level. |

# **EXEC** commands

There are two different levels of EXEC commands, the User Level and the Privileged Level .

### **User level**

The User level commands are at the top of the CLI hierarchy. These are the first commands that you have access to when connected to the device through the CLI. When you first connect to the Brocade device, you will see the User level prompt, similar to the following.

device>

The "device" part of the prompt is configurable. Your system may display a different string.

At this level, you can view basic system information and verify connectivity but cannot make any changes to the device configuration. To make changes to the configuration, you must move to other levels of the CLI hierarchy, such as the Privileged EXEC level.

### **Privileged EXEC level**

Commands at the Privileged EXEC level enable you to transfer and store software images and configuration files between the network and the system, and review the configuration.

You reach this level by entering the **enable** command at the User EXEC level.

```
device> enable

or

device> enable user1 mypassword
```

After entering the enable command, you see the following prompt.

device#

The prompt indicates that you are at the Privilege EXEC level.

When you are at the Privilege EXEC level, you can enter commands that are available at that level. It is also at this level where you enter the **configure terminal** command to Global Configuration level.

### Global level

The global CONFIG level allows you to globally apply or modify parameters for ports on the device. You reach this level by entering **configure terminal** at the privileged EXEC level.

```
device> enable
device# configure terminal
```

The prompt changes to the Global Configuration level.

device(config)#

#### NOTE

For configuration files which are copied to device running, or startup config via TFTP/SCP, entering a blank comment line or ! (exclamation mark denotes a comment line) followed only by blank spaces, in any of the global config sublevels, resets the mode to global config level.

# **CONFIG** commands

**CONFIG** commands modify the configuration of a Brocade device. When you are at the Global Configuration level, you can enter commands to configure the features in a Brocade device. This section describes the **CONFIG** CLI levels.

### **Redundancy level**

This redundancy level allows you to configure redundancy parameters for redundant management modules. You reach this level by entering the **redundancy** command at the global CONFIG level.

### Interface level

The interface level allows you to assign or modify specific port parameters on a specific port. You reach this level by entering the following at the global CONFIG level:

- interface ethernet slot/port
- · interface loopback num
- interface management portnum
- · or interface ve num
- · interface tunnel tunnel\_id
- interface group-ve vlan\_group\_id

#### LAG level

The LAG level allows you to change parameters for statically-configured LAG groups. You reach this level by entering a **LAG** command with the appropriate port parameters.

#### Router RIP level

The RIP level allows you to configure parameters for the RIP routing protocol. You reach this level by entering the **router rip** command at the global CONFIG level.

### **Router OSPF level**

The OSPF level allows you to configure parameters for the OSPF routing protocol. You reach this level by entering the **router ospf** command at the global CONFIG level.

### **BGP** level

The BGP level allows you to configure Border Gateway Protocol version 4 (BGP4) features. You reach this level by entering the **router bgp** command at the global CONFIG level.

# Global BGP and BGP4 unicast address family level

The global BGP and BGP4 unicast address family levels are present only on devices that support IPv6. The global BGP level allows you to configure the BGP routing protocol. The BGP4 unicast address family level allows you to configure a BGP4 unicast route. For backward compatibility, you can currently access BGP4 unicast address family commands at both global BGP configuration and BGP4 unicast address family configuration levels. Therefore, the global BGP and BGP4 unicast address family commands are documented together.

You reach the global BGP level by entering the **router bgp** command at the global CONFIG level. You reach the BGP4 unicast address family level by entering the **address-family ipv4 unicast** command at the global BGP level.

### **BGP4** multicast address family level

The BGP4 multicast address family level allows you to configure BGP4 multicast routes. You reach this level by entering the **address-family ipv4 multicast** command at the global BGP, BGP4 unicast address family, or IPv6 BGP unicast address family levels.

#### **Router PIM level**

The PIM level allows you to configure parameters for the Protocol Independent Multicast (PIM) routing protocol. You reach this level by entering the **router pim** command at the global CONFIG level.

### **Route Map level**

The Route Map level allows you to configure parameters for a BGP4 route map. You reach this level by entering the **route-map** namename command at the global CONFIG level.

#### Router VRRP level

The VRRP level allows you to configure parameters for the Virtual Router Redundancy Protocol (VRRP). You reach this level by entering the **router vrrp** command at the global CONFIG level, then entering the **ip vrrp vrid** *num* command at the interface configuration level.

#### **Router VRRPE level**

The VRRPE level allows you to configure parameters for VRRP Extended. You reach this level by entering the **router vrrp-extended** command at the global CONFIG level, then entering the **ip vrrp-extended vrid** *num* command at the interface configuration level.

### **VLAN** level

Policy-based VLANs allow you to assign VLANs to a protocol, port, or 802.1q tags.

You reach this level by entering the vlan vlan-id command at the Global CONFIG Level.

### **Ethernet Service Instance (ESI) level**

Ethernet Service Instance (ESI) allow you to assign an ESI to a protocol, or port.

## Metro ring level

Metro rings provide Layer 2 connectivity and fast failover in ring topologies.

You reach this level by entering the metro-ring ring-id command at the VLAN CONFIG Level.

### **VSRP** level

The VSRP level allows you to configure parameters for the Virtual Switch Redundancy Protocol (VSRP). You reach this level by entering the **vsrp vrid** *num* command at the VLAN configuration level, then entering the **vsrp vrid** *num* command at the VLAN configuration level.

### **Topology group level**

A topology group enables you to control the Layer 2 protocol configuration and Layer 2 state of a set of ports in multiple VLANs based on the configuration and states of those ports in a single master VLAN. One instance of the Layer 2 protocol controls all the VLANs.

You reach this level by entering the topology-group group-id command at the Global CONFIG Level.

### 802.1X port security level

The 802.1X port security level allows you to configure the 802.1X port security. You reach this level by entering the **dot1x-enable** command at the Global level.

### **MAC** port security level

The MAC port security level allows you to configure the port security feature. You reach this level by entering the **port security** command at the at the Global or Interface levels.

# **Accessing the CLI**

The CLI can be accessed through both serial and Telnet connections. For initial log on, you must use a serial connection. Once an IP address is assigned, you can access the CLI through Telnet.

Once connectivity to the device is established, you will see the a prompt.

device>

When accessing the CLI through Telnet, you maybe prompted for a password. By default, the password required is the password you enter for general access at initial setup. You also have the option of assigning a separate password for Telnet access with the **enable telnet password** password command, found at the Global Level.

At initial log on, all you need to do is type **enable** at the prompt, then press Return. You only need to enter a password after a permanent password is entered at the Global CONFIG Level of the CLI.

To reach the Global CONFIG Level, the uppermost level of the CONFIG commands, enter the following commands

| device > enable             | User Level commands            |
|-----------------------------|--------------------------------|
| device # configure terminal | Privileged Level-EXEC commands |
| device (config)#            | Global Level-CONFIG commands   |

You can then reach all other levels of the CONFIG command structure from this point.

The CLI prompt will change at each level of the CONFIG command structure, to easily identify the current level.

```
device> User Level EXEC Command
device# Privileged Level EXEC Command
device (config) # Global Level CONFIG Command
device(config-if-e10000-5/1) # Interface Level CONFIG Command
device(config-lbif-1) # Loopback Interface CONFIG Command
device(config-ve-1) # Virtual Interface CONFIG Command
                                 trunk group CONFIG Command
device(config-trunk-4/1-4/8)#
device(config-if-e10000-tunnel) # IP Tunnel Level CONFIG Command
device (config-bgp-router) # BGP Level CONFIG Command
device (config-ospf-router) # OSPF Level CONFIG Command
device(config-isis-router) # IS-IS Level CONFIG Command
device (config-pim-router) # PIM Level CONFIG Command
device (config-redundancy) # Redundant Management Module CONFIG Command
device (config-rip-router) # RIP Level CONFIG Command
device(config-port-80) # Application Port CONFIG Command
device(config-bgp-routemap Map_Name) # Route Map Level CONFIG Command
device (config-vlan-1) # VLAN Port-based Level CONFIG Command
device(config-vlan-atalk-proto) # VLAN Protocol Level CONFIG Command
```

#### NOTE

The CLI prompt at the interface level includes the port speed. The speed is one of the following: device (config-if-e100-5/1) # - The interface is a 10/100 port.device (config-if-e1000-5/1) # - The interface is a Gigabit port. For simplicity, the port speeds sometimes are not shown in example Interface level prompts in this manual.

### Single user in CONFIG mode

By default, more than one user can enter the CONFIG mode of a device CLI, which is accessed through the **configure terminal** command. While in CONFIG mode, users can override another user's configuration changes.

You can configure a device to allow only one user to be in CONFIG mode at any one time. Other users who try to enter that mode in will be denied. To allow only one user to enter CONFIG mode, enter the following command.

```
device#configure terminal
device(config)# single-config-user
device(config)# write memory
```

#### Syntax: [no] single-config-user

After the **single-config-user** command is issued, the device will not allow more than one user to enter CONFIG mode. However, if you run the command while more than one user is in CONFIG mode, the other users continue to be in CONFIG mode and can potentially override each other's configuration changes. Only users who try to enter the CONFIG mode after the command is issued are prevented from entering CONFIG mode. If a user is already in that mode and another user tries to enter CONFIG mode after the **single-config-user** command is issued, the following error is displayed.

```
device#configure terminal
Single user config mode is being enforced. Config mode is being used by <session-
type> session.
```

where session-type can be one of the following:

- console
- telnet number
- SSH number

### Multi-user conflict during deletion of group configuration (or stanza)

By default, a user may delete a group configuration, even if another user is simultaneously in that mode. You can disable this feature by issuing the **enable multi-user-mode-deletion** command.

To allow only one user to delete group configurations, enter the following command.

```
device#configure terminal
device(config)# enable multi-user-mode-deletion
device(config)# write memory
```

When a user attempts to delete a group configuration from the CLI, and another user is already within that group configuration, the user who tries to delete a group configuration in that mode will be denied and will receive the following error message.

```
Session 1:
device(config) # vlan 10
device(config-vlan-10) #
Session 2:

device(config) # no vlan 10
"Error: Cannot undo the configuration as {console|telnet|SSH} session is using this mode."
```

#### Syntax: [no] enable multi-user-mode-deletion

Use the **no** form of this command will allow multiple users the ability to delete group configurations.

#### NOTE

This feature will not work on commands that are issued from the WEB management and the SNMP management.

## **Navigating among command levels**

To reach other CLI command levels, you need to enter certain commands. At each level there is a launch command that allows you to move either up or down to the next level.

### CLI command structure

Many CLI commands may require textual or numeral input as part of the command.

#### Required or optional fields

These fields are either required or optional depending on how the information is bracketed. For clarity, a few CLI command examples are explained below.

Syntax: [no] deny redistribute value all | bgp | rip | static address ip-addr ip-mask [ match-metric value | set-metric value |

When an item is in italics, the information requested is a variable and required.

When an item is not bracketed with "[]" symbols, the item is a required keyword.

When an item is bracketed with "[]" symbols, the information requested is optional.

#### Optional fields

When two or more options are separated by a vertical bar, " | ", you must enter one of the options as part of the command.

#### Syntax: priority normal | high

For example, the "normal | high" entry in the Syntax above means that priority can be either priority normal or priority high. The command in the syntax above requires that you enter either normal or high as part of the command.

#### List of available options

To get a quick display of available options at a CLI level or for the next option in a command string, enter a question mark (?) at the prompt or press TAB.

To view all available commands at the user EXEC level, enter the following or press TAB at the User EXEC CLI level.

```
device> ?
enable
exit
fastboot
ping
show
stop-trace-route
traceroute
```

You also can use the question mark (?) with an individual command, to see all available options or to check context.

Enter the following to view possible **copy** command options.

```
device# copy ?
  flash
  running-config
  startup-config
  tftp
device# copy flash ?
  tftp
```

# Searching and filtering output

You can filter CLI output from **show** commands and at the --More-- prompt. You can search for individual characters, strings, or construct complex regular expressions to filter the output.

#### Searching and filtering output from show commands

You can filter output from **show** commands to display lines containing a specified string, lines that do not contain a specified string, or output starting with a line containing a specified string. The search string is a regular expression consisting of a single character or string of characters. You can use special characters to construct complex regular expressions. Refer to Using special characters in regular expressions on page 34 for information on special characters used with regular expressions.

#### Displaying lines containing a specified string

The following command filters the output of the **show interface** command for port 3/11 so it displays only lines containing the word "Internet". This command can be used to display the IP address of the interface.

```
device# show interface e 3/11 | include Internet Internet address is 192.168.1.11/24, MTU 1518 bytes, encapsulation ethernet
```

Syntax: show-command include | regular-expression

#### NOTE

The vertical bar ( | ) is part of the command.

Note that the regular expression specified as the search string is case sensitive. In the example above, a search string of "Internet" would match the line containing the IP address, but a search string of "internet" would not.

#### Displaying lines that do not contain a specified string

The following command filters the output of the **show who** command so it displays only lines that do not contain the word "closed". This command can be used to display open connections to the device.

Syntax: show-command exclude | regular-expression

#### Displaying lines starting with a specified string

The following command filters the output of the **show who** command so it displays output starting with the first line that contains the word "SSH". This command can be used to display information about SSH connections to the Brocade device.

```
device# show who | begin SSH
SSH connections:
1          established, client ip address 192.168.9.210
          7 seconds in idle
2          closed
3          closed
4          closed
5          closed
```

Syntax: show-command begin | regular-expression

#### Searching and filtering output at the -- More-- prompt

The --More-- prompt is displayed when output extends beyond a single page. From this prompt, you can press the Space bar to display the next page, the Return or Enter key to display the next line, or Ctrl-C or Q to cancel the display. You can also search and filter output from this prompt.

```
device# ?
 append
                       Append one file to another
  attrib
                       Change file attribute
 boot
                       Boot system from bootp/tftp server/flash image
 cd
                       Change current working directory
  chdir
                       Change current working directory
                       Clear table/statistics/keys
  clear
  clock
                       Set clock
  configure
                       Enter configuration mode
                       Copy between flash, tftp, config/code
  сору
                       Copy file commands
  ср
  debug
                       Enable debugging functions (see also 'undebug')
                       Delete file on flash
  delete
  dir
                       List files
  dm
                       test commands
  dot1x
                       802.1X
  erase
                       Erase image/configuration files from flash
                       Exit Privileged mode
  exit
  fastboot.
                       Select fast-reload option
  force-sync-standby
                       Sync active flash (pri/sec/mon/startup config/lp images)
                       to standby
  format
                       Format Auxiliary Flash card
 hd
                       Hex dump
                       IPC commands
  ipc
--More--, next page: Space, next line: Return key, quit: Control-c
```

At the --More-- prompt, you can press the forward slash key ( / ) and then enter a search string. The device displays output starting from the first line that contains the search string, similar to the *begin* option for **show** commands.

```
--More--, next page: Space, next line: Return key, quit: Control-c/telnet
```

The results of the search are displayed.

```
searching...

telnet Telnet by name or IP address

terminal Change terminal settings

traceroute TraceRoute to IP node

undelete Recover deleted file

whois WHOIS lookup

write Write running configuration to flash or terminal
```

To display lines containing only a specified search string (similar to the *include* option for **show** commands) press the plus sign key ( + ) at the --More-- prompt and then enter the search string.

```
--More--, next page: Space, next line: Return key, quit: Control-c +telnet
```

The filtered results are displayed.

```
filtering...
telnet Telnet by name or IP address
```

To display lines that do not contain a specified search string (similar to the *exclude* option for **show** commands) press the minus sign key ( - ) at the --More-- prompt and then enter the search string.

```
--More--, next page: Space, next line: Return key, quit: Control-c-telnet
```

The filtered results are displayed.

```
filtering...

sync-standby

Sync active flash (pri/sec/mon/startup config/lp images)

to standby if different

terminal

traceroute

TraceRoute to IP node

undelete

Recover deleted file
```

whois WHOIS lookup write Write running configuration to flash or terminal

As with the commands for filtering output from **show** commands, the search string is a regular expression consisting of a single character or string of characters. You can use special characters to construct complex regular expressions. Refer to the next section for information on special characters used with regular expressions.

#### Using special characters in regular expressions

You use a regular expression to specify a single character or multiple characters as a search string. In addition, you can include special characters that influence the way the software matches the output against the search string. These special characters are listed in the following table.

**TABLE 4** Special characters for regular expressions

| Character | Operation                                                                                                                                                                                                                                                                                                                           |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | The period matches on any single character, including a blank space.                                                                                                                                                                                                                                                                |
|           | For example, the following regular expression matches "aaz", "abz", "acz", and so on, but not just "az":                                                                                                                                                                                                                            |
|           | a.z                                                                                                                                                                                                                                                                                                                                 |
| *         | The asterisk matches on zero or more sequential instances of a pattern.                                                                                                                                                                                                                                                             |
|           | For example, the following regular expression matches output that contains the string "abc", followed by zero or more Xs:                                                                                                                                                                                                           |
|           | abcX*                                                                                                                                                                                                                                                                                                                               |
| +         | The plus sign matches on one or more sequential instances of a pattern.                                                                                                                                                                                                                                                             |
|           | For example, the following regular expression matches output that contains "de", followed by a sequence of "g"s, such as "deg", "deggg", and so on:                                                                                                                                                                                 |
|           | deg+                                                                                                                                                                                                                                                                                                                                |
| ?         | The question mark matches on zero occurrences or one occurrence of a pattern.                                                                                                                                                                                                                                                       |
|           | For example, the following regular expression matches output that contains "dg" or "deg":                                                                                                                                                                                                                                           |
|           | de?g                                                                                                                                                                                                                                                                                                                                |
|           | NOTE  Normally when you type a question mark, the CLI lists the commands or options at that CLI level that begin with the character or string you entered. However, if you enter Ctrl-V and then type a question mark, the question mark is inserted into the command line, allowing you to use it as part of a regular expression. |
| ۸         | A caret (when not used within brackets) matches on the beginning of an input string.                                                                                                                                                                                                                                                |
|           | For example, the following regular expression matches output that begins with "deg":                                                                                                                                                                                                                                                |
|           | ^deg                                                                                                                                                                                                                                                                                                                                |
| \$        | A dollar sign matches on the end of an input string.                                                                                                                                                                                                                                                                                |
|           | For example, the following regular expression matches output that ends with "deg": deg\$                                                                                                                                                                                                                                            |

**TABLE 4** Special characters for regular expressions (Continued)

#### Character Operation

An underscore matches on one or more of the following:

- , (comma)
- { (left curly brace)
- } (right curly brace)
- ( (left parenthesis)
- · ) (right parenthesis)
- · The beginning of the input string
- · The end of the input string
- · A blank space

For example, the following regular expression matches on "100" but not on "1002", "2100", and so on.

\_100\_

[] Square brackets enclose a range of single-character patterns.

For example, the following regular expression matches output that contains "1", "2", "3", "4", or "5":

[1-5]

You can use the following expression symbols within the brackets. These symbols are allowed only inside the brackets.

- ^ The caret matches on any characters except the ones in the brackets. For example, the following regular expression matches output that does not contain "1", "2", "3", "4", or "5":[^1-5]
- The hyphen separates the beginning and ending of a range of characters. A match occurs if any
  of the characters within the range is present. Refer to the example above.
- A vertical bar separates two alternative values or sets of values. The output can match one or the other value.

For example, the following regular expression matches output that contains either "abc" or "defg": abc|defg

() Parentheses allow you to create complex expressions.

For example, the following complex expression matches on "abc", "abcabc", or "defg", but not on "abcdefgdefg":

((abc)+)|((defg)?)

If you want to filter for a special character instead of using the special character as described in the table above, enter "\" (backslash) in front of the character. For example, to filter on output containing an asterisk, enter the asterisk portion of the regular expression as "\\*".

device# show ip route bgp | include \\*

### Allowable characters for LAG names

When creating a LAG name, you can use spaces in a file or subdirectory name if you enclose the name in double quotes. For example, to specify a subdirectory name that contains spaces, enter a string such as the following: "a long subdirectory name". The maximum length for a string is 64 characters.

The following characters are valid in file names:

- · All upper and lowercase letters
- · All digits

Any of the following special characters are valid:

- \$
- %
- . .
- -
- •
- .
- @
- ~
- `
- !
- (
- )
- {
- }
- ^
- #
- &

## **CLI parsing enhancement**

The response to an invalid keyword, the command returns to the cursor will include all valid content up to where the error was made. The prompt will only delete the invalid keyword "proc" and return to a prompt with the command "device# **show**". This will allow the user to continue typing from the point of failure, rather than having to type out the entire command again.

device# show proc
Unrecognized command
device# show

## **Syntax shortcuts**

A command or parameter can be abbreviated as long as enough text is entered to distinguish it from other commands at that level. For example, given the possible commands **copy tftp** ... and **config tftp** ..., possible shortcuts are **cop tftp** and **con tftp** respectively. In this case, *co* does not properly distinguish the two commands.

## Saving configuration changes

You can make configuration changes while the device is running. The type of configuration change determines whether or not it becomes effective immediately or requires a save to flash (**write memory**) and reset of the system (**reload**), before it becomes active.

This approach in adopting configuration changes:

- Allows you to make configuration changes to the operating or running configuration of the device to address a short-term requirement or validate a configuration without overwriting the permanent configuration file, the startup configuration, that is saved in the system flash, and;
- Ensures that dependent or related configuration changes are all cut in at the same time.

In all cases, if you want to make the changes permanent, you need to save the changes to flash using the **write memory** command. When you save the configuration changes to flash, this will become the configuration that is initiated and run at system boot.

#### **NOTE**

Most configuration changes are dynamic and thus do not require a software reload. If a command requires a software reload to take effect, the documentation states this.

### Modifying startup and running configuration file manually

When you manually modify a **startup-config** or **running-config** file, ensure that you do not delete the **!** (**exclamation mark**) from any of the lines in the configuration file.

### **NOTE**

For configuration files which are copied to device running, or startup config via TFTP/SCP, entering a blank comment line or ! (exclamation mark denotes a comment line) followed only by blank spaces, in any of the global config sublevels, resets the mode to global config level.

Modifying startup and running configuration file manually

# **Configuring Basic Parameters**

| Enabling and disabling interactivity for scripts                       | 42  |
|------------------------------------------------------------------------|-----|
| Entering system administration information                             | 44  |
| Configuring Simple Network Management (SNMP) traps                     | 44  |
| Configuring SNMP ifIndex                                               | 47  |
| SNMP scalability optimization                                          | 48  |
| Configuring optical monitoring.                                        | 50  |
| Displaying media information                                           | 52  |
| Optics compatibility checking                                          | 53  |
| Designating an interface as the packet source                          | 54  |
| Setting the system clock                                               | 56  |
| Creating a command alias                                               | 58  |
| Limiting broadcast, multicast, or unknown unicast rates                | 58  |
| Configuring CLI banners                                                | 60  |
| Configuring terminal display                                           | 61  |
| Enabling or disabling routing protocols                                | 62  |
| • Displaying and modifying default settings for system parameters      | 62  |
| Enabling or disabling layer 2 switching                                | 67  |
| Configuring static MAC addresses                                       | 68  |
| Changing the MAC age time                                              | 69  |
| • Enabling and Disabling MAC movement syslog on MLX device             | 69  |
| Configuring static ARP entries                                         | 70  |
| Configuring system max values                                          | 71  |
| Configuring CAM size for an IPv4 multicast group                       | 77  |
| Configuring CAM size for an IPv6 multicast group                       | 78  |
| Configuring profiles with a zero-size IPv4 or IPv6 ACL                 | 79  |
| • Maintaining system-max configuration with available system resources | 79  |
| Configuration time                                                     | 79  |
| Bootup time                                                            | 80  |
| Monitoring dynamic memory allocation                                   | 84  |
| Switch fabric fault monitoring                                         | 85  |
| Switch fabric utilization monitoring                                   | 89  |
| Verifying an image checksum                                            | 90  |
| Displaying information for an interface for an Ethernet port           |     |
| Displaying statistics information for an Ethernet port                 |     |
| Configuring SNMP to revert ifType to legacy values                     | 101 |
| Configuring snAgentConfigModuleType to return original values          |     |
| Preserving interface statistics in SNMP                                |     |
| Disabling CAM table entry aging                                        |     |
| Data integrity protection                                              |     |

Table 5 displays the individual Brocade devices and the basic parameters they support.

 TABLE 5
 Supported Brocade basic parameters features

| Features<br>supported                                                                        | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>Netiron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>Netlron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade NetIron CER Series 2000 Series Advanced Services package |
|----------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|
| Interactivity mode prompt                                                                    | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Simple Network<br>Management<br>(SNMP) traps                                                 | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| SNMP ifIndex                                                                                 | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Optical Monitoring                                                                           | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Optics<br>Compatibility<br>Checking                                                          | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                               |
| New encryption<br>code for<br>passwords,<br>authentication<br>keys, and<br>community strings | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                               |
| Designating an Interface as the source for packets                                           | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Setting the systemclock                                                                      | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Command Alias                                                                                | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Limiting<br>broadcast,<br>multicast, or<br>unknown-unicast<br>rates                          | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| CLI banners                                                                                  | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Terminal display                                                                             | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Modifying system parameter default settings                                                  | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |

 TABLE 5
 Supported Brocade basic parameters features (Continued)

| Features<br>supported                                              | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>Netlron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>Netlron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>Netlron<br>CER Series<br>2000 Series<br>Advanced<br>Services<br>package |
|--------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| System low<br>memory<br>prevention and<br>reporting                | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Layer 2 switching                                                  | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| MAC age time                                                       | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Static ARP entries                                                 | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Configurable CAM<br>size for IPv4 and<br>IPv6 multicast<br>entries | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Switch fabric fault monitoring                                     | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Automatic Tuning<br>of Links Between<br>Line Modules and<br>SFMs   | Yes                                           | a Yes                               | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Switch fabric utilization monitoring                               | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Verifying an image checksum                                        | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Displaying information for an interface for an Ethernet port       | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Displaying<br>statistics<br>Information for an<br>Ethernet port    | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Show Pause<br>Frame Statistics                                     | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Real-time<br>monitoring                                            | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |

<sup>&</sup>lt;sup>1</sup> 8x10G, 4x40G, 24x10G and 2x100G cards.

**TABLE 5** Supported Brocade basic parameters features (Continued)

| Features<br>supported                                                                    | Brocade<br>Netlron<br>XMR<br>Series<br>Series | Brocade<br>Netlron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>Netlron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>Netlron<br>CER Series<br>2000 Series<br>Advanced<br>Services<br>package |
|------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| SNMP scalability                                                                         | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| HW aging                                                                                 | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Data Integrity<br>Protection -<br>threshold<br>parameters for<br>CSRAM and LPM<br>memory | No                                            | No                                  | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |

This chapter describes how to configure basic system parameters.

The Brocade device is configured with default parameters to allow you to begin using the basic features of the system immediately. However, many advanced features, such as VLANs or routing protocols for the device, must first be enabled at the system (global) level before they can be configured.

You can find system level parameters at the Global CONFIG level of the CLI.

### NOTE

Before assigning or modifying any device parameters, you must assign the IP subnet (interface) addresses for each port.

# **Enabling and disabling interactivity for scripts**

Table 6 lists certain configuration and action commands that are interactive by default.

Because these commands require a user response, confirmation, or result in multiple changes across the system before the device can complete the configuration changes, they cannot be used in scripts as they are. You can, however, disable the interactive behavior by entering the **prompt** command.

### Syntax: [no] prompt

The **no prompt** command will only disable the confirmation prompt for commands in configuration mode. Commands executed in the EXEC mode will continue to prompt for confirmation.

Entering the **no prompt** command allows you to use the commands and actions that are listed in Table 6 within scripts without difficulty. After running a script, you can re-enable the default interactive behavior by entering the **prompt** command.

**TABLE 6** Interactive commands

| Command type  | Command                                                      |
|---------------|--------------------------------------------------------------|
| Configuration | cluster-l2protocol-forward                                   |
|               | route-only                                                   |
|               | rate-limit                                                   |
|               | policy-map                                                   |
|               | spanning-tree                                                |
|               | pms                                                          |
|               | disable                                                      |
|               | enable                                                       |
|               | violation deny                                               |
|               | violation restrict                                           |
|               | violation shutdown                                           |
| Action        | reboot-standby                                               |
|               | reset                                                        |
|               | reload                                                       |
|               | switchover                                                   |
|               | power-off lp all   slot                                      |
|               | power-off power-supply index   forced                        |
|               | hitless-reload mp primary   secondary lp primary   secondary |
|               | power-supply monitoring clear all  index                     |
|               | boot system flash primary   secondary                        |

### Default behavior for certain configuration commands:

```
device(config) #route-only
This will change the route-only behavior at the global level.
Are you sure? (enter 'y' or 'n'): y
Global 'route-only' committed.
```

### Disabling default behavior to allow for script use:

```
device(config)#
no prompt
device(config)#no route-only
Global 'no route-only' committed.
```

### Re-enabling default behavior:

```
device(config) #
prompt
device(config) #route-only
This will change the route-only behavior at the global level.
Are you sure? (enter 'y' or 'n'): y
Global 'route-only' committed.
```

# **Entering system administration information**

You can configure a system name, contact, and location for the Brocade device and save the information locally in the configuration file for future reference. The information is not required for system operation but recommended. When you configure a system name, it replaces the default system name in the CLI command prompt.

To configure a system name, contact, and location, enter commands such as the following.

```
device(config) # hostname home
home(config) # snmp-server contact Suzy Sanchez
home(config) # snmp-server location Centerville
home(config) # end
home# write memory
```

The system name you configure home replaces the system name device.

Syntax: [no] hostname string

Syntax: [no] snmp-server contact string Syntax: [no] snmp-server location string

The *name*, contact, and location each can be up to 255 alphanumeric characters. The text strings can contain blanks. The SNMP text strings do not require quotation marks when they contain blanks but the host name does.

# **Configuring Simple Network Management (SNMP) traps**

This section explains how to do the following:

- · Specify an SNMP trap receiver.
- Specify a source address and community string for all traps that the Brocade device sends.
- Change the holddown time for SNMP traps.
- Disable individual SNMP traps. (All traps are enabled by default.)
- Disable traps for CLI access that is authenticated by a local user account, a RADIUS server, or a TACACS or TACACS+ server.

### Specifying an SNMP trap receiver

You can specify a trap receiver to ensure that all SNMP traps sent by the Brocade device go to the same SNMP trap receiver or set of receivers, typically one or more host devices on the network. When you specify the host, you also specify a community string. The Brocade device sends all the SNMP traps to the specified hosts and includes the specified community string. Administrators can therefore filter for traps from a Brocade device based on IP address or community string. The number of SNMP Trap receivers that can be configured is limited to 32.

If the string is in the clear format, the system will internally encrypt it. When you display or save the configuration, the encrypted string is used.

To specify an SNMP trap receiver, enter a command such as the following.

```
device(config) # snmp-server host 10.2.2.2 version v2c mypublic port 200
```

The command adds trap receiver 10.2.2.2 and designates the UDP port that will be used to receive traps.

### Syntax: [no] snmp-server host ip-addr version [ v1 | v2c | v3 ] string [ port value ]

The *ip-addr* parameter specifies the IP address of the trap receiver.

The v1, v2c, or v3 parameter indicates which version of SNMP is used.

The *string* parameter specifies an SNMP community string configured on the Brocade device. It is not used to authenticate access to the trap host, but it is a useful method for filtering traps on the host. For example, if you configure each of your Brocade devices that use the trap host to send a different community string, you can easily distinguish among the traps from the devices based on the community strings.

By default, string is encrypted. If you want string to be in clear text, insert a 0 preceding string.

```
device(config) # snmp-server host 10.2.2.2 version v2c 0 mypublic port 200
```

The software adds a prefix to the string in the configuration. For example, the following portion of the code has the encrypted code "2".

```
snmp-server host 10.2.2.2 version v2c 12
$Si2^=d
```

The prefix can be one of the following:

- 0 = the key string is not encrypted and is in clear text
- 1 = the key string uses simple encryption (only for Brocade NetIron CES Series and Brocade NetIron CER Series)
- 2 = the key string uses base64 encryption format (only for Brocade NetIron XMR Series and Brocade NetIron MLX Series)

The **port** *value* parameter specifies the UDP port that will be used to receive traps. This parameter allows you to configure several trap receivers in a system. With this parameter, Brocade Network Advisor and another network management application can coexist in the same system. The Brocade devices can be configured to send copies of traps to more than one network management application.

### Specifying a single trap source

You can specify a single trap source to ensure that all SNMP traps sent by the Brocade device use the same source IP address. When you configure the SNMP source address, you specify the Ethernet port, loopback interface, or virtual routing interface that is the source for the traps. The Brocade device then uses the lowest-numbered IP address configured on the port or interface as the source IP address in the SNMP traps it sends.

Identifying a single source IP address for SNMP traps provides the following benefits:

- If your trap receiver is configured to accept traps only from specific links or IP addresses, you can simplify configuration of the trap receiver by configuring the Brocade device to always send the traps from the same link or source address.
- If you specify a loopback interface as the single source for SNMP traps, SNMP trap receivers can
  receive traps regardless of the states of individual links. Thus, if a link to the trap receiver becomes
  unavailable but the receiver can be reached through another link, the receiver still receives the trap,
  and the trap still has the source IP address of the loopback interface.

To configure the Brocade device to send all SNMP traps from the first configured IP address on port 4/11, enter the following commands.

```
device(config) # snmp-server trap-source ethernet 4/11
device(config) # write memory
```

 $\textbf{Syntax: [no] snmp-server trap-source loopback num \mid ethernet \ slot/port \mid ve\ num}$ 

The *num* parameter is a loopback interface or virtual routing interface number.

If you do not configure this command, the device will use the device router ID as the source IP address of the notification packet. The router ID of the device can be obtained from the "show ip" command output.

To specify a loopback interface as the device's SNMP trap source, enter following commands.

```
device(config) # int loopback 1
device(config-lbif-1) # ip address 10.0.0.1/24
device(config-lbif-1) # exit
device(config) # snmp-server trap-source loopback 1
```

The commands configure loopback interface 1, gives it IP address 10.0.0.1/24, then designate it as the SNMP trap source for the Brocade device. Regardless of the port the Brocade uses to send traps to the receiver, the traps always arrive from the same source IP address.

### Setting the SNMP trap holddown time

When a Brocade device starts up, the software waits for Layer 2 convergence (STP) and Layer 3 convergence (OSPF) before beginning to send SNMP traps to external SNMP servers. Until convergence occurs, the Brocade device might not be able to reach the servers, in which case the messages are lost.

By default, the Brocade device uses a one-minute holddown time to wait for the convergence to occur before starting to send SNMP traps. After the holddown time expires, the Brocade device sends the traps, including traps such as "cold start" or "warm start" that occur before the holddown time expires.

You can change the holddown time to a value from one second to ten minutes.

To change the holddown time for SNMP traps, enter a command such as the following at the global CONFIG level of the CLI.

```
device(config) # snmp-server enable traps holddown-time 30
```

The command changes the holddown time for SNMP traps to 30 seconds. The Brocade device waits 30 seconds to allow convergence in STP and OSPF before sending traps to the SNMP trap receiver.

### Syntax: [no] snmp-server enable traps holddown-time secs

The secs parameter specifies the number of seconds (1 - 600). The default is 60.

### **Disabling SNMP traps**

The Brocade device comes with SNMP trap generation enabled by default for all traps.

### NOTE

By default, all SNMP traps are enabled at system startup.

You can selectively disable one or more of the following traps:

- SNMP authentication key
- Temperature
- Power supply failure
- Fan failure
- Cold start
- Link up
- · Link down

- · Bridge new root
- · Bridge topology change
- · Module insert
- · Module remove
- · Redundant module
- · Metro-ring
- MPLS
- BGP4
- OSPF
- VRRP
- VSRP

To stop link down occurrences from being reported, enter the following command.

device(config) # no snmp-server enable traps link-down

Syntax: [no] snmp-server enable traps trap-type

A list of traps is available in the Unified IP MIB Reference.

# **Configuring SNMP ifIndex**

This section explains how ifIndex values are assigned on Brocade devices.

### On Brocade NetIron CES and Brocade NetIron CER only

On the Brocade Netlron CES Series and Brocade Netlron CER Series, the system automatically assign 64 indexes to each module on the device. This value is not configurable.

## On Brocade NetIron XMR and Brocade MLX Series only

On Brocade NetIron XMR Series and Brocade NetIron MLX Series devices, SNMP Management Information Base (MIB) uses Interface Index (ifIndex) to assign a unique value to each port on a module or slot. The number of indexes that can be assigned per module is 20, 40, or 64, depending on the number of ports on the module.

Enter the following to change the number of indexes per module.

device(config) # snmp-server max-ifindex-per-module 40

Syntax: [no] snmp-server max-ifindex-per-module [ 20 | 40 | 64 ]

20 is the default.

You cannot change the maximum ifIndex per module to a number less than the number of ports.

After this command is issued the following are generated:

- "System: IfIndex assignment was changed" is logged in the Syslog.
- The snTraplfIndexAssignmentChanged trap is generated.

### Configuration notes for the Brocade NetIron XMR and Brocade MLX Series

Note the following if you are upgrading the software on the Brocade NetIron XMR Series and Brocade NetIron MLX Series:

- If you are running an earlier version of the software and you will not be installing the NI-MLX-1Gx48-T module, you do not need to change your ifIndex allocation scheme. The current definition is maintained. The maximum ifIndex per module can remain at 20 or 40.
- If you are running an earlier version of the software and you will be installing the NI-MLX-1Gx48-T module on you Brocade NetIron MLX Series, you must configure the maximum ifIndex per module to 64. You must change the ifIndex allocation before installing the NI-MLX-1Gx48-T module; otherwise, the module status remains in the Offline state.
- If you have a new Brocade NetIron MLX Series (no previous software installed), but will not be
  installing an NI-MLX-1Gx48-T module, it is recommended that you configure the maximum ifIndex
  per module to 64 to avoid future ifIndex problems in case an NI-MLX-1Gx48-T module is installed in
  the future.
- If you have a new Brocade NetIron MLX Series (no previous software installed), and you will be
  installing an NI-MLX-1Gx48-T module, you must configure the maximum ifIndex per module to 64;
  otherwise, the module remains in the Offline state.

# **SNMP scalability optimization**

To ensure that SNMP requests are responded to promptly and that SNMP loads do not impact other device activities, the Brocade device speeds SNMP tasks and limit their effects on the CPU by a combination of throughput optimization and load throttling.

### **Configuring SNMP throughput optimization**

SNMP throughput is optimized on the Brocade device through a combination of SNMP value caching, conditional yielding by the SNMP agent, and acceptance of incoming packets during queue processing.

### Configuring SNMP value caching

To accelerate SNMP communication between the management module (MP) and interface module (LP), the LP will return values for multiple ports when it receives a request from the MP. These values will be cached on the MP to reduce MP/LP communication time.

The SNMP value caching mechanism is enabled by default. To disable the caching mechanism, use the following command at the MPLS configuration level of the CLI.

device(config-mpls) #snmp-server cache disable

### Syntax: [no] snmp-server cache disable

Use the no form of the command to enable SNMP value caching.

To configure the maximum length of time that a cached SNMP port value will be considered valid by the MP, use the following command at the MPLS configuration level of the CLI.

device (config-mpls) #snmp-server cache max-age 10000

Syntax: [no] snmp-server cache max-age milliseconds

- The preceding example sets the maximum age for cached SNMP port values to 10.000 milliseconds.
- The milliseconds parameter is the maximum number of milliseconds a value will be considered valid before the MP discards the value and requests a new one from the LP. The range for this parameter is from 50 through 15000.
- Use the no form of this command to return the cache aging limit to the default value of 100 milliseconds.

To configure the maximum size of the SNMP port value cache, use the following command at the MPLS configuration level of the CLI.

device (config-mpls) #snmp-server cache size 100

#### Syntax: [no] snmp-server cache size kilobytes

- The preceding example increases the maximum size for the SNMP port cache to 100 KB.
- The kilobytes parameter is the maximum memory size for the SNMP port cache.
- Use the no form of this command to return the maximum cache size to the default value of 32 KB.

### SNMP agent yielding behavior

When an SNMP agent yields CPU control unconditionally between processing of queued packets, it can result in low throughput for packets which are processed quickly. To increase throughput for these packets, the SNMP agent in the Brocade device yields CPU control between packets only when the agent has controlled the CPU for more than 10 milliseconds.

### SNMP queue processing

To ensure that SNMP packets are not dropped, the SNMP task on the Brocade device continues to accept newly received SNMP packets from the IP stack while processing the SNMP queue.

### **Configuring SNMP load throttling**

To ensure that high SNMP loads do not interfere with the performance of the device, the Brocade device limits the percentage of CPU time that can be occupied by SNMP processing. This limit is not imposed when the CPU is idle.

### NOTE

This command tries to fix the maximum percentage of time SNMP task can run in a non-idle system environment. This implies that SNMP task can't run for more than the specified percentage of time if the system is having zero idle time. But this constraint is checked only between processing of 2 SNMP PDU's. If the processing of a single SNMP PDU takes longer time then we may overrun the maximum limit. This command also tries to fix the minimum percentage of time SNMP task can run in a non-idle system environment. But if there is another task which is continuously hogging the CPU and SNMP is not getting time to run then we may under run the specified limit.

To configure the maximum percentage of CPU time that can be used by SNMP processing, use the following command at the configuration level of the CLI.

device(config) #snmp-server cpu max-non-idle-utilization 25

Syntax: [no] snmp-server cpu max-non-idle-utilization percent

- The preceding example raises the maximum percentage of non-idle CPU time to be used by SNMP processing to 25%.
- The percent parameter is the maximum percentage of non-idle CPU time to be used by SNMP processing. The range for this parameter is from 1 through 25.
- Use the no form of this command to return the SNMP non-idle CPU time maximum to the default value of 10%.

# **Configuring optical monitoring**

You can configure your Brocade device to monitor XFPs or SFPs in the system either globally or by specified port. If monitoring is enabled, console messages, syslog messages, and SNMP traps are sent when XFP or SFP operating conditions warrant it and a port is enabled.

Configure all XFP and SFP ports for optical monitoring, using the following command.

```
device(config) # optical-monitor
```

Configure a specific XFP or SFP port for optical monitoring, using the following command.

```
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# optical-monitor
```

Configure a range of XFP or SFP ports for optical monitoring, using the following command.

```
device(config)# interface ethernet 1/1 to 1/2 device(config-mif-e10000-1/1-1/2)# optical-monitor
```

#### Syntax: [no] optical-monitor alarm-interval

The optional *alarm-interval* variable sets the interval in minutes between which alarms or messages are sent. The default interval is 3 minutes.

You can view the XFP optical monitoring information using the show optic command as displayed in the following.

```
device#show optic 4
Port Temperature Tx Power Rx Power
                                        Tx Bias Current
4/1 30.8242 C -001.8822 dBm -002.5908 dBm 41.790 mA
      Normal
                 Normal
                              Normal
                                            Normal
    31.7070 C -001.4116 dBm -006.4092 dBm
4/2
                                         41.976 mA
               Normal
      Normal
                            Normal
                                            Normal
                           -000.5794 dBm
     30.1835 C
                                          0.000 mA
4/3
                             Normal
                Low-Alarm
                                           Low-Alarm
      Normal
      0.0000 C
4/4
                                           0.000 mA
      Normal
                 Normal
                              Normal
                                            Normal
```

For Temperature, Tx Power, Rx Power, and Tx Bias Current, values are displayed along with one of the following status values: Low-Alarm, Low-Warn, Normal, High-Warn or High-Alarm. The thresholds that determine these status values are set by the manufacturer of the XFPs. Table 7 describes each of these status values.

**TABLE 7** Status value description

| Status value | Description                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------|
| Low-alarm    | The monitored level has dropped below the "low-alarm" threshold set by the XFP or SFP manufacturer. |

TABLE 7 Status value description (Continued)

| Status value | Description                                                                                          |
|--------------|------------------------------------------------------------------------------------------------------|
| Low-warn     | The monitored level has dropped below the "low-warn" threshold set by the XFP or SFP manufacturer.   |
| Normal       | The monitored level is within the "normal" range set by the XFP or SFP manufacturer.                 |
| High-warn    | The monitored level has climbed above the "high-warn" threshold set by the XFP or SFP manufacturer.  |
| High-alarm   | The monitored level has climbed above the "high-alarm" threshold set by the XFP or SFP manufacturer. |

When the **show optic** command is issued on a BR-MLX-100GX interface card, the following conditions apply.

- · The temperature is averaged over all lanes.
- · TX bias, RX power and RX power are aggregate values.

#### **NOTE**

This function takes advantage of information stored and supplied by the SFP or XFP device. This information is an optional feature of the Multi-Source Agreement standard defining the SFP or XFP interface. Not all component suppliers have implemented this feature set. In such cases where the SFP or XFP device does not supply the information, a "Not Available" message will be displayed for the specific port that the device is installed

### Displaying optical monitoring thresholds

To display information about the optical monitoring thresholds, enter the following command.

```
device#show optic threshold 3
Transceiver Temperature High alarm
                                         4600
                                                    70.0000 C
Transceiver Temperature High warning
                                         4400
                                                    68.0000 C
                                                     2.0000 C
Transceiver Temperature Low warning
                                         0200
                                                     0.0000 C
Transceiver Temperature Low alarm
                                         875a
                                                     3.4650 mV
VCC Voltage High alarm
VCC Voltage High warning
                                         8610
                                                     3.4320
VCC Voltage Low warning
                                                     3.1680
                                         7bc0
VCC Voltage Low alarm
                                         7a76
                                                     3.1350 mV
SOA Bias Current High alarm
                                        0000
                                                     0.000
                                                            mΑ
SOA Bias Current High warning
                                        0000
                                                     0.000
                                                            mΑ
SOA Bias Current Low warning
                                        0000
                                                     0.000
                                                            mΑ
                                        0000
                                                     0.000
SOA Bias Current Low alarm
Auxiliary 1 Monitor High alarm
                                        0000
Auxiliary 1 Monitor High warning
                                        0000
Auxiliary 1 Monitor Low warning
                                        0000
Auxiliary 1 Monitor Low alarm
                                        0000
Auxiliary 2 Monitor High alarm
                                        0000
Auxiliary 2 Monitor High warning
Auxiliary 2 Monitor Low warning
                                        0000
                                        0000
Auxiliary 2 Monitor Low alarm
                                        0000
Laser Bias Current High alarm
                                                   120.000
                                        ea60
                                                   115.000
Laser Bias Current High warning
                                        e09c
                                                            mΑ
Laser Bias Current Low warning
                                        445c
                                                    35.000
                                                            mΑ
Laser Bias Current Low alarm
                                        3a98
                                                    30.000
                                                   004.5000 dBm
Laser TX Power High alarm
                                        6e18
Laser TX Power High warning
                                        621f
                                                   004.0000 dBm
```

| Laser TX Power Low warning Laser TX Power Low alarm Laser Temperature High alarm Laser Temperature High warning Laser Temperature Low warning Laser Temperature Low alarm Laser RX Power High alarm Laser RX Power High warning Laser RX Power Low warning Laser RX Power Low alarm Port. 3/2                            | 1049<br>0e83<br>3700<br>3500<br>1b00<br>1900<br>6e18<br>621f<br>01f5<br>00fb | -003.7996 dBm<br>-004.3004 dBm<br>55.0000 C<br>53.0000 C<br>27.0000 C<br>25.0000 C<br>004.5000 dBm<br>004.0000 dBm<br>-013.0016 dBm<br>-016.0032 dBm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transceiver Temperature High alarm Transceiver Temperature High warning Transceiver Temperature Low warning Transceiver Temperature Low alarm VCC Voltage High alarm VCC Voltage High warning                                                                                                                            | 4600<br>4400<br>0200<br>0000<br>875a<br>8610                                 | 70.0000 C<br>68.0000 C<br>2.0000 C<br>0.0000 C<br>3.4650 mV<br>3.4320 mV                                                                             |
| VCC Voltage Low warning VCC Voltage Low alarm SOA Bias Current High alarm SOA Bias Current High warning SOA Bias Current Low warning                                                                                                                                                                                     | 7bc0<br>7a76<br>0000<br>0000<br>0000                                         | 3.1680 mV<br>3.1350 mV<br>0.000 mA<br>0.000 mA<br>0.000 mA                                                                                           |
| SOA Bias Current Low alarm Auxiliary 1 Monitor High alarm Auxiliary 1 Monitor High warning Auxiliary 1 Monitor Low warning Auxiliary 1 Monitor Low alarm Auxiliary 2 Monitor High alarm Auxiliary 2 Monitor High warning Auxiliary 2 Monitor Low warning Auxiliary 2 Monitor Low warning Auxiliary 2 Monitor Low warning | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                         | 0.000 mA                                                                                                                                             |
| Laser Bias Current High alarm Laser Bias Current High warning Laser Bias Current Low warning Laser Bias Current Low alarm Laser TX Power High alarm Laser TX Power High warning Laser TX Power Low warning Laser TX Power Low alarm Laser Temperature High alarm Laser Temperature High warning                          | ea60<br>e09c<br>445c<br>3a98<br>6e18<br>621f<br>1049<br>0e83<br>3700<br>3500 | 120.000 mA<br>115.000 mA<br>35.000 mA<br>30.000 mA<br>004.5000 dBm<br>004.0000 dBm<br>-003.7996 dBm<br>-004.3004 dBm<br>55.0000 C                    |
| Laser Temperature High Warning Laser Temperature Low warning Laser RX Power High alarm Laser RX Power High warning Laser RX Power Low warning Laser RX Power Low alarm Show optics thresholds done device#                                                                                                               | 1500<br>1500<br>1900<br>6e18<br>621f<br>01f5<br>00fb                         | 53.0000 C<br>27.0000 C<br>25.0000 C<br>004.5000 dBm<br>004.0000 dBm<br>-013.0016 dBm<br>-016.0032 dBm                                                |

The example above displays information about the optical monitoring thresholds.

Syntax: show optic thresholds slot-number

# **Displaying media information**

To display media information for SFP and XFP devices installed in a specific slot, enter the following command at any CLI level.

```
Part# : IGF-32511J , Serial#: BTH0622410

Port 3/4:
    Type : 10GBASE-SR/SW 854.00nm (XFP)
    Vendor:    Foundry Networks, Version:
    Part# :    JXPR01SW05306 , Serial#: F74340380372
```

The example above displays all optical devices on slot 3.

#### Syntax: show media slot slot-number

To display media information for SFP and XFP devices installed in an ethernet port, enter the following command at any CLI level.

### Syntax: show media [ethernet slot-port [to slot-port]]

You can display media information for all ports in an Brocade device by using the **show media** command without options.

The ethernet slot-port parameter limits the display to a single port.

The **to** *slot-port* parameter displays information for a range of ports.

This results displayed from this command provide the Type, Vendor, Part number, Version and Serial number of the SFP or XFP optical device installed in the port.

If no SFP or XFP device is installed in a port, the "Type" field will display "N/A", the "Vendor" field will be empty and the other fields will display "Unknown".

Multi-rate optical transceivers are supported. In this case, if a multi-rate optical transceiver is inserted in an Interface module, the "Type" parameter will display the transmission code for the correct value for the port as determined by either the Interface module type or the configuration of the port. There is one exception to this rule however. If a port is in the disabled state only one type will be displayed. Once the port is enabled, the correct "Type" will be displayed in accordance with the configuration.

# **Optics compatibility checking**

This feature checks the installation of the following optical transceivers into Interface module ports and shuts down the port if the transceiver is incompatible with the port:

- 10 GbE XFP This interface is brought up if the XFP is compliant with Ethernet transmission compliance.
- 1 Gb (100/1000) Ethernet interface will be enabled if the SFP is Ethernet capable

If the interface is incompatible with the optical transceiver installed, the port will not come up and the syslog message "Incompatible optical trans-receiver detected on port n " is displayed. An SNMP trap is also generated and the port is described as "down" because of "(incompatible transceiver)" in the output from the **show interface** command.

Multi-rate optical transceivers (XFP and SFP) are supported as described in the following:

- In Multi-rate SFPs and XFPs, the EEPROM is programmed for multi-rate for example both Ethernet 1 Gb and SONET compliance codes can be programmed in the internal EEPROM of a multi-rate optical transceiver.
- Multi-rate SFPs and XFPs are supported. The system software checks for transmission compatibility
  against the interface configuration. Therefore an OC-12 interface will be brought up if the SFP is

- compatible for both OC-12 SONET and 1 Gb Ethernet transmission. The same SFP can also be used in a 1 Gb Ethernet interface.
- The show media command described in Configuring optical monitoring on page 50 continues to show only one transmission rate even for multi-rate SFPs and XFPs. If the interface is enabled and the SFP or XFP is compatible, the show media command only displays the compatible transmission code in the "Type" field. If the interface is disabled, the show media display depends on the module type. For Ethernet interface modules, the Ethernet compliance code is shown. If the Ethernet compliance code is not set then the SONET compliance code is displayed.

### Disabling transceiver type checking

When transceiver type checking is disabled, the syslog message "Incompatible optical transreceiver detected on port n" is still displayed but the port is not shut down. You can disable transceiver type checking with the **no transceiver-type-check** command as shown in the following.

```
device(config) # no transceiver-type-check
```

### Syntax: [no] transceiver-type-check

Transceiver type checking is on by default and the command is not included in the configuration.

The **no** option of the **transceiver-type-check** command, disables transceiver type checking as described, sends a syslog message and places the command in the configuration.

Using the **transceiver-type-check** command without the no option, enables transceiver type checking, sends a syslog message and removes the command from the configuration.

# Designating an interface as the packet source

The software uses the lowest-numbered IP address configured on an interface as the source IP address for all Telnet, SSH, NTP, TFTP, TACACS or TACACS+, or RADIUS packets originated from the Brocade device.

You can specify the source interface for one or more of these types of packets.

### Configuring an interface as the source for all Telnet packets

Identifying a single source IP address for Telnet packets provides the following benefits:

- If your Telnet server is configured to accept packets only from specific links or IP addresses, you
  can simplify configuration of the Telnet server by configuring the Brocade device to always send the
  Telnet packets from the same link or source address.
- If you specify a loopback interface as the single source for Telnet packets, Telnet servers can
  receive the packets regardless of the states of individual links. Thus, if a link to the Telnet server
  becomes unavailable but the client or server can be reached through another link, the client or
  server still receives the packets, and the packets still have the source IP address of the loopback
  interface.

To specify the lowest-numbered IP address configured on a loopback interface as the device's source for all Telnet packets, enter commands such as the following.

```
device(config) # int loopback 2
device(config-lbif-2) # ip address 10.0.0.2/24
device(config-lbif-2) # exit
device(config) # ip telnet source-interface loopback 2
```

The commands configure loopback interface 2, assign IP address 10.0.0.2/24 to it, then designate it as the source for all Telnet packets from the Brocade device.

#### Syntax: [no] ip telnet source-interface ethernet portnum | loopback num | ve num

The following commands configure an IP interface on an Ethernet port and designate the address port as the source for all Telnet packets from the Brocade device.

```
device(config) # interface ethernet 1/4
device(config-if-e10000-1/4) # ip address 10.157.22.110/24
device(config-if-e10000-
1/4) # exit
device(config) # ip telnet source-interface ethernet 1/4
```

### **Cancelling an outbound Telnet session**

If you want to cancel a Telnet session from the console to a remote Telnet server (for example, if the connection is frozen), you can terminate the Telnet session by performing the tasks listed below.

- 1. At the console, press Ctrl-^ (Ctrl-Shift-6).
- 2. Press the X key to terminate the Telnet session.

Pressing Ctrl-<sup>^</sup> twice in a row causes a single Ctrl-<sup>^</sup> character to be sent to the Telnet server. After you press Ctrl-<sup>^</sup>, pressing any key other than X or Ctrl-<sup>^</sup> returns you to the Telnet session.

### Configuring an interface as the source for all SSH packets

You can configure the Brocade device to use the lowest-numbered IP address configured on a loopback interface, virtual routing interface, or Ethernet port as the source for the SSH packets it sends.

For example, to specify an Ethernet port as the interface whose lowest-numbered IP address will be the source address for the SSH packets originated from the Brocade device, enter commands such as the following.

```
device(config) # interface ethernet 1/5
device(config-if-e10000-1/5) # ip address 10.157.22.111/24
device(config-if-e10000-1/5) # exit
device(config) # ip ssh source-interface ethernet 1/5
```

The commands configure Ethernet port 1/5, assign IP address 10.157.22.111/24 to it, then designate it as the source interface.

Syntax: [no] ip ssh source-interface ethernet portnum | loopback num | ve num

### Configuring an interface as the source for all TFTP packets

You can configure the Brocade device to use the lowest-numbered IP address configured on a loopback interface, virtual routing interface, or Ethernet port as the source for all TFTP packets it sends.

For example, to specify the lowest-numbered IP address configured on a virtual routing interface as the Brocade device's source for all TFTP packets, enter commands such as the following.

```
device(config) # int ve 1
device(config-vif-1) # ip address 10.0.0.3/24
device(config-vif-1) # exit
device(config) # ip tftp source-interface ve 1
```

The commands configure virtual routing interface 1, assign IP address 10.0.0.3/24 to it, then designate the address as the source address for all TFTP packets.

### Syntax: [no] ip tftp source-interface ethernet portnum | loopback num | ve num

The default is the lowest-numbered IP address configured on the port through which the packet is sent. The address therefore changes, by default, depending on the port.

# Configuring an interface as the source for all TACACS or TACACS+ packets

You can configure the Brocade device to use the lowest-numbered IP address configured on a loopback interface, virtual routing interface, or Ethernet port as the source for the TACACS or TACACS+ packets it sends.

For example, to specify a virtual routing interface as the interface whose lowest-numbered IP address will be the source address for the TACACS or TACACS+ packets originated from the Brocade device, enter commands such as the following.

```
device(config) # int ve 1
device(config-vif-1) # ip address 10.0.0.3/24
device(config-vif-1) # exit
device(config) # ip tacacs source-interface ve 1
```

The commands configure virtual routing interface 1, assign IP address 10.0.0.3/24 to it, then designate it as the source interface.

Syntax: [no] ip tacacs source-interface ethernet portnum | loopback num | ve num

### **Configuring an interface as the source for all RADIUS packets**

You can configure the Brocade device to use the lowest-numbered IP address configured on a loopback interface, virtual routing interface, or Ethernet port as the source for the RADIUS packets it sends.

For example, to specify an Ethernet port as the interface whose lowest-numbered IP address will be the source address for the RADIUS packets originated from the Brocade device, enter the following commands.

```
device(config) # interface ethernet 1/5
device(config-if-e10000-1/5) # ip address 10.157.22.111/24
device(config-if-e10000-1/5) # exit
device(config) # ip radius source-interface ethernet 1/5
```

The commands configure Ethernet port 1/5, assign IP address 10.157.22.111/24 to it, then designate it as the source interface.

Syntax: [no] ip radius source-interface ethernet portnum | loopback num | ve num

# Setting the system clock

The Brocade device allows you to manually set the system clock. Using the **clock set** command starts the system clock with the time and date you specify. The time counter setting is retained across power cycles.

To set the system time and date to 10:15:05 on October 15, 2005, enter the following command.

```
device# clock set 10:15:05 10-15-05
```

### Syntax: [no] clock set hh:mm:ss mm-dd-yy | mm-dd-yyyy

By default, the Brocade device does not change the system time for daylight savings time. To enable daylight savings time, enter the following command.

device# clock summer-time

#### Syntax: [no] clock summer-time

You can configure the Brocade device to adjust the time for any one-hour offset from GMT or for one of the following U.S. time zones:

- · US Pacific (default)
- Alaska
- Aleutian
- Arizona
- Central
- · East-Indiana
- Eastern
- Hawaii
- Michigan
- · Mountain
- Pacific
- Samoa

The default is US Pacific.

To change the time zone to Australian East Coast time (which is normally 10 hours ahead of GMT), enter the following command.

device(config) # clock timezone gmt gmt+10

### Syntax: [no] clock timezone gmt gmt | us time-zone

You can enter one of the following values for time-zone :

- US time zones (**us** ): alaska, aleutian, arizona, central, east-indiana, eastern, hawaii, michigan, mountain, pacific, samoa.
- GMT time zones (gmt ): gmt+12, gmt+11, gmt+10...gmt+01, gmt+00, gmt-01...gmt-10, gmt-11, gmt-12.

# DST "change" notice for networks using US time zones

The new Daylight Saving Time (DST) change that went into effect on March 11, 2007 affects networks in the US time zones. Because of this change, your network clock might not be correct. If your network uses US time zones, and it needs to maintain the correct time, you must enable the following command.

device(config)# clock timezone us pacific

Syntax: [no] clock timezone us { pacific | eastern | central | mountain }

### NOTE

This command must be configured on every device that uses the US DST.

To verify the change, use the following command.

device(config) # show clock

For more information, refer to www.brocade.com.

# **Creating a command alias**

Use the **alias** command to create an alias for a command and to save that alias within the device's configuration.

To create the alias "shro" for the **show ip routes** command, use the following command.

```
device(config)# alias shro = show ip routes
device(config)# write memory
```

Syntax: [no] alias [ name = command ]

The name variable is the name that you want to assign to the alias.

The command variable is the syntax for the command you want to create an alias for.

The write memory command is used to save the alias within the configuration.

### Removing an alias

You can remove an alias using the **no** version of the alias command as shown in the following.

```
device(config) # no alias shro
```

Alternately, you can use the **unalias** command as shown in the following.

```
device(config) # unalias shro
```

#### Syntax: [no] unalias

If the alias you try to remove does not exist, the following error will be displayed.

```
device(config) # unalias wrs
Error: Alias wrs does not exist, unalias failed
```

### Displaying a list of all configured alias

The following command allows you to display a list of all configured alias.

Syntax: [no] alias

# Limiting broadcast, multicast, or unknown unicast rates

The Brocade device can forward all traffic at wire speed. However, some third-party networking devices cannot handle high forwarding rates for broadcast, multicast, or unknown unicast packets.

The limits are individually configurable for broadcasts, multicasts, and unknown unicasts. You can configure limits globally to apply to each individual inbound interface module. The valid range is 1 - 4294967295 packets per second. The default is 0, which disables limiting.

#### **NOTE**

These packets will be sent to the CPU for software forwarding. Brocade recommends that you use the BUM rate limiting or ACL-based rate limiting as they are performed by hardware forwarding.

### **Limiting broadcasts**

To globally limit the number of broadcast packets a Brocade device forwards to 100,000 per second, enter the following command at the global CONFIG level of the CLI.

```
device(config)# broadcast limit 100000
device(config)# write memory
```

Syntax: [no] broadcast limit number

### **Limiting multicasts**

To globally limit the number of multicast packets a Brocade device forwards to 120,000 per second, enter the following command at the global CONFIG level of the CLI.

```
device(config)# multicast limit 120000
device(config)# write memory
```

Syntax: [no] multicast limit number

### NOTE

The multicast limit is configured at the global level, but the value you enter applies to each interface module (slot) installed on the device.

### **Limiting unknown unicasts**

To globally limit the number of unknown unicast packets a Brocade device forwards to 110,000 per second, enter the following command at the global CONFIG level of the CLI.

```
device(config)# unknown-unicast limit 110000
device(config)# write memory
```

Syntax: [no] unknown-unicast limit number

### NOTE

Only the **unknown-unicast limit** is configured on the global level, but the value you enter applies to each interface module (slot) installed on the device.

# **Configuring CLI banners**

The Brocade device can be configured to display a greeting message on users' terminals when they enter the Privileged EXEC CLI level or access the device through Telnet. In addition, a Brocade device can display a message on the Console when an incoming Telnet CLI session is detected.

### Setting a message of the day banner

You can configure the Brocade device to display a message on a user's terminal when he or she establishes a Telnet CLI session. For example, to display the message "Welcome to Brocade!" when a Telnet CLI session is established, enter the following.

```
device(config) # banner motd $(Press Return)
Enter TEXT message, End with the character '$'
Welcome to Brocade! $
```

A delimiting character is established on the first line of the **banner motd** command. You begin and end the message with this delimiting character. The delimiting character can be any character except "(double-quotation mark) and cannot appear in the banner text. In this example, the delimiting character is \$(dollar sign). The text in between the dollar signs is the contents of the banner. The banner text can be up to 2047 characters long and can consist of multiple lines. To remove the banner, enter the **no banner motd** command.

Syntax: [no] banner delimiting-character | [ motd delimiting-character ]

### NOTE

The **banner** *delimiting-character* command is equivalent to the **banner motd** *delimiting-character* command.

#### NOTE

The size of the MOTD banner will be restricted (truncated) to 1850 characters when using an SSH client.

### Setting a privileged EXEC CLI level banner

You can configure the Brocade device to display a message when a user enters the Privileged EXEC CLI level.

```
device(config) \# banner exec mode \# (Press Return) Enter TEXT message, End with the character '\#'. You are entering Privileged EXEC level Don't foul anything up! \#
```

As with the **banner motd** command, you begin and end the message with a delimiting character; in this example, the delimiting character is # (pound sign). To remove the banner, enter the **no banner exec mode** command.

Syntax: [no] banner exec\_mode delimiting-character

### Displaying a message on the console when an incoming Telnet session Is detected

You can configure the Brocade device to display a message on the Console when a user establishes a Telnet session. This message indicates where the user is connecting from and displays a configurable text message.

```
device(config) # banner incoming $(Press Return)
Enter TEXT message, End with the character '$'.
Incoming Telnet Session! $
```

When a user connects to the CLI using Telnet, the following message appears on the Console.

```
Telnet from 10.157.22.63 Incoming Telnet Session!
```

### Syntax: [no] banner incoming delimiting-character

To remove the banner, enter the no banner incoming command.

# **Configuring terminal display**

You can configure and display the number of lines displayed on a terminal screen during the current CLI session.

The **terminal length** command allows you to determine how many lines will be displayed on the screen during the current CLI session. This command is useful when reading multiple lines of displayed information, especially those that do not fit on one screen.

To specify the maximum number of lines displayed on one page, enter a command such as the following.

```
device#terminal length 15
```

### Syntax: [no] terminal length number-of-lines

The *number-of-lines* parameter indicates the maximum number of lines that will be displayed on a full screen of text during the current session. If the displayed information requires more than one page, the terminal pauses. Pressing the space bar displays the next page.

The default for *number-of-lines* is 24. Entering a value of 0 prevents the terminal from pausing between multiple output pages:

### **Checking the length of terminal displays**

The **show terminal** command specifies the number of lines that will be displayed on the screen as specified by the **terminal length**, **page display**, and **skip-page-display** commands. It also shows if the **enable skip-page-display** command has been configured. The **enable skip-page-display** command allows you to use the skip-page-display to disable the configured page-display settings.

```
device(config)# show terminal
Length: 24 lines
Page display mode (session): enabled
Page display mode (global): enabled
```

Syntax: show terminal

# **Enabling or disabling routing protocols**

The Multi-Service IronWare supports the following protocols:

- BGP4
- IP
- IS-IS
- MPLS
- MSDP
- OSPF
- PIM
- RIP
- VRRP
- VRRPE

By default, IP routing is enabled on the Brocade device. All other protocols are disabled, so you must enable them to configure and use them.

To enable a protocol on a Brocade device, enter **router** at the global CONFIG level, followed by the protocol to be enabled. The following example shows how to enable OSPF.

device(config) # router ospf

Syntax: [no] router bgp | ospf | pim | rip | vrrp | vrrpe

# Displaying and modifying default settings for system parameters

The Multi-Service IronWare has default table sizes for the following parameters. The table sizes determine the maximum number of entries the tables can hold. You can adjust individual table sizes to accommodate your configuration needs:

- · MAC address entries
- VLANs supported on a system
- · Virtual interfaces
- Spanning tree instances
- RSTP instances
- IP cache size
- ARP entries
- · IP routes
- IP ACL filter entries
- · L2 ACL entries per ACL table
- · Size for management port ACL
- · IP subnets per port and per device
- IPv6 Multicast routes
- · IPv6 PIM mcache
- · Layer 4 sessions supported
- · Number of VPLS's
- VPLS MAC entries
- · VRF routes
- IPv6 cache

- · IPv6 routes
- · Number of tunnels
- · Number of LAGs
- · Configuration file size

The tables you can configure as well the defaults and valid ranges for each table differ depending on the Brocade device you are configuring.

### **NOTE**

If you increase the number of subnet addresses you can configure on each port to a higher amount, you might also need to increase the total number of subnets that you can configure on the device.

#### **NOTE**

Changing the table size for a parameter reconfigures the device's memory. Whenever you reconfigure the memory on a Brocade device, you must save the change to the startup configuration file, then reload the software to place the change into effect.

To display the configurable tables and their defaults and maximum values, enter the following command at any level of the CLI.

Output for the Brocade NetIron XMR Series and Brocade MLX Series

| device#show default value<br>sys log buffers:50<br>ip arp age:10 min<br>ip addr per intf:24<br>when multicast enabled: | es<br>mac age time:3<br>bootp relay ma                  |                                                 | telnet ses                            |           |          |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|---------------------------------------|-----------|----------|
| igmp group memb.: 260 sec when ospf enabled:                                                                           | c igmp query:                                           | 125 sec                                         |                                       |           |          |
| ospf dead:40 sec<br>ospf transit delay:1 sec<br>when bgp enabled:                                                      | ospf hello:10                                           | sec                                             | ospf retra                            | ns:5 sec  |          |
| bgp local pref.:100<br>bgp metric:10<br>bgp ext. distance:20<br>when IS-IS enabled:                                    | <pre>bgp keep alive bgp local as:1 bgp int. dista</pre> | _                                               | bgp hold:1<br>bgp cluste<br>bgp local |           | 00       |
| isis hello interval:10 se isis port metric:10 isis csnp-interval:10 sec                                                | isis                                                    | s hello multi<br>s priority:64<br>s default-met | 1                                     |           |          |
| isis distance:115<br>isis lsp-interval:33 msec<br>isis max-lsp-lifetime:120                                            | c isis<br>00 sec isis                                   | s lsp-gen-int<br>s lsp-refresh<br>s maximum-pat | n-interval:9<br>:hs:4                 |           |          |
| isis retransmit-interval filter change update dela                                                                     |                                                         | s spf-interva                                   | al:5 sec                              |           |          |
| System Parameters Defa                                                                                                 | ault Maximum                                            | Current                                         | Actual                                | Bootup Re | vertible |
| mac 1:                                                                                                                 | 31072 2097152                                           | 2097152                                         | 2097152                               | 2097152   | Yes      |
| vlan 5                                                                                                                 | 12 4095                                                 | 4095                                            | 4095                                  | 4095      | No       |
| spanning-tree 32                                                                                                       | 2 128                                                   | 128                                             | 128                                   | 128       | No       |
| rstp 33                                                                                                                | 2 128                                                   | 128                                             | 128                                   | 128       | No       |
|                                                                                                                        | 192 65536                                               | 65536                                           | 65536                                 | 65536     | No       |
| multicast-route (IPv6) 83                                                                                              | 192 153600                                              | 153600                                          | 153600                                | 153600    | Yes      |
|                                                                                                                        | 096 4096                                                | 4096                                            | 4096                                  | 4096      | Yes      |
|                                                                                                                        | 04800 1048576                                           |                                                 |                                       | 1048576   |          |
| *                                                                                                                      | 04800 1048576                                           |                                                 | 1048576                               | 1048576   | Yes      |
| ip-subnet-port 2                                                                                                       |                                                         | 128                                             | 128                                   | 128       | No       |
| T T                                                                                                                    | 55 4095                                                 | 4095                                            | 4095                                  | 4095      | No       |
|                                                                                                                        | 192 1000000                                             |                                                 | 1000000                               | 1000000   |          |
| =                                                                                                                      | 16384                                                   | 16384                                           | 16384                                 | 16384     | No       |
|                                                                                                                        | 2768 163840                                             | 163840                                          | 163840                                | 163840    | Yes      |
|                                                                                                                        | 096 40960                                               | 40960                                           | 40960                                 | 40960     | No       |
| mgmt-port-acl-size 20                                                                                                  |                                                         | 100                                             | 100                                   | 100       | No       |
| 12-acl-table-entries 6                                                                                                 |                                                         | 256                                             | 256                                   | 256       | No       |
|                                                                                                                        | 5536 245760                                             | 245760                                          | 245760                                | 245760    | Yes      |
|                                                                                                                        | 5536 245760                                             | 245760                                          | 245760                                | 245760    | Yes      |
| vrf-route 5120                                                                                                         | 262143                                                  | 262143                                          | 262143                                | 262143    | Yes      |
|                                                                                                                        | 024 8192                                                | 8192                                            | 8192                                  | 8192      | No       |
| ip-tunnels                                                                                                             | 256 8192                                                | 8192                                            | 8192                                  |           |          |
| -                                                                                                                      |                                                         |                                                 |                                       |           |          |

No

| lsp-out-acl-cam     | 0       | 16384    | 16384    | 16384    | 16384    | No |
|---------------------|---------|----------|----------|----------|----------|----|
| trunk-num           | 128     | 256      | 256      | 256      | 256      | No |
| config-file-size    | 8388608 | 16777216 | 16777216 | 16777216 | 16777216 | No |
| ifl-cam             | 0       | 81920    | 49152    | 49152    | 49152    | No |
| ip-source-quard-cam | 0       | 131072   | 30000    | 30000    | 30000    | No |
| ipv4-mcast-cam      | 8192    | 65536    | 10000    | 10000    | 10000    | No |
| ipv6-mcast-cam      | 2048    | 16384    | 3500     | 3500     | 3500     |    |
| No                  |         |          |          |          |          |    |

### Output for the Brocade NetIron CES Series

| device#show default values<br>sys log buffers:50<br>ip arp age:10 min<br>ip addr per intf:24<br>when multicast enabled:<br>igmp group memb.:140 sec<br>when ospf enabled:<br>ospf dead:40 sec                     | mac age time:300 sec<br>bootp relay max hops:4<br>igmp query:60 sec<br>ospf hello:10 sec       | telnet sessions:5 ip ttl:64 hops ospf retrans:5 sec            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| ospf transit delay:1 sec<br>when bgp enabled:<br>bgp local pref.:100<br>bgp metric:10<br>bgp ext. distance:20                                                                                                     | bgp keep alive:60 sec<br>bgp local as:1<br>bgp int. distance:200                               | bgp hold:180 sec<br>bgp cluster id:0<br>bgp local distance:200 |
| when IS-IS enabled: isis hello interval:10 sec isis port metric:10 isis csnp-interval:10 sec isis distance:115 isis lsp-interval:33 msec isis max-lsp-lifetime:1200 isis retransmit-interval:5                    | sec isis maximum-pat                                                                           | 4<br>tric:10<br>terval:10 sec<br>n-interval:900 sec<br>ths:4   |
| filter change update delay: System Parameters Defaul mac 5632 vlan 512 spanning-tree 32 rstp 32 ip-arp 4096 multicast-route (IPv6) 1024                                                                           | :10 sec<br>Lt Maximum Current<br>20 131072 56320<br>4095 512<br>128 32<br>128 32<br>16384 4096 |                                                                |
| pim-mcache (IPv6)     1024       ip-cache     1638       ip-route     1638       ip-subnet-port     24       virtual-interface     255       vpls-mac     512       vpls-num     512       session-limit     3276 | 34 32768 16384<br>34 32768 16384<br>128 24<br>1024 255<br>1024 512                             |                                                                |
| ip-filter-sys     4096       mgmt-port-acl-size     20       12-acl-table-entries     64       ipv6-cache     1024       vrf-route     1024       receive-cam     1                                               | 5 8192 8192<br>100 20<br>256 256<br>4 8192 1024<br>4 8192 1024<br>32768 1024                   |                                                                |
| ip-tunnels 32<br>lsp-out-acl-cam 1<br>trunk-num 128                                                                                                                                                               | 128 32<br>1 1<br>255 128                                                                       |                                                                |

### Output for the Brocade NetIron CER Series device

| <pre>device#show default values sys log buffers:50 ip arp age:10 min ip addr per intf:24</pre> | mac age time:300 sec<br>bootp relay max hops:4                   | telnet sessions:5<br>ip ttl:64 hops                            |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|
| when multicast enabled: igmp group memb.: 260 sec                                              | igmp query: 125 sec                                              |                                                                |
| when ospf enabled : ospf dead:40 sec                                                           | ospf hello:10 sec                                                | ospf retrans:5 sec                                             |
| ospf transit delay:1 sec when bgp enabled :                                                    |                                                                  |                                                                |
| <pre>bgp local pref.:100 bgp metric:10 bgp ext. distance:20</pre>                              | bgp keep alive:60 sec<br>bgp local as:1<br>bgp int. distance:200 | bgp hold:180 sec<br>bgp cluster id:0<br>bgp local distance:200 |

| when IS-IS enabled :           |                              |                        |            |         |         |     |  |  |
|--------------------------------|------------------------------|------------------------|------------|---------|---------|-----|--|--|
| isis hello interval:10 s       | isis hello multiplier:3      |                        |            |         |         |     |  |  |
| isis port metric:10            | isis priority:64             |                        |            |         |         |     |  |  |
| isis csnp-interval:10 se       |                              | isis default-metric:10 |            |         |         |     |  |  |
| isis distance:115              | isis lsp-gen-interval:10 sec |                        |            |         |         |     |  |  |
| isis lsp-interval:33 mse       |                              |                        | -refresh-i | sec     |         |     |  |  |
| isis max-lsp-lifetime:1200 sec |                              | isis maximum-paths:4   |            |         |         |     |  |  |
| isis retransmit-interval       | isis spf-interval:5 sec      |                        |            |         |         |     |  |  |
| filter change update de        | lav:10 sec                   |                        |            |         |         |     |  |  |
|                                | Default                      |                        | Current    | Actual  | Bootup  |     |  |  |
| Revertible                     |                              |                        |            |         | -       |     |  |  |
| mac                            | 65536                        | 131072                 | 65536      | 65536   | 65536   | Yes |  |  |
| vlan                           | 512                          | 8192                   | 512        | 512     | 512     | Yes |  |  |
| spanning-tree                  | 32                           | 128                    | 32         | 32      | 32      | Yes |  |  |
| rstp                           | 32                           | 128                    | 32         | 32      | 32      | Yes |  |  |
| ip-arp                         | 4096                         | 16384                  | 4096       | 4096    | 4096    | Yes |  |  |
| ip-cache                       | 290816                       | 524288                 | 290816     | 290816  | 290816  | Yes |  |  |
| ip-route                       | 290816                       | 524288                 | 290816     | 290816  | 290816  | Yes |  |  |
| ip-subnet-port                 | 24                           | 128                    | 24         | 24      | 24      | Yes |  |  |
| virtual-interface              | 255                          | 4095                   | 255        | 255     | 255     | Yes |  |  |
| vpls-mac                       | 2048                         | 131072                 | 2048       | 2048    | 2048    | Yes |  |  |
| vpls-num                       | 128                          | 1024                   | 128        | 128     | 128     | Yes |  |  |
| session-limit                  | 32768                        | 32768                  | 32768      | 32768   | 32768   | Yes |  |  |
| ip-filter-sys                  | 4096                         | 32768                  | 4096       | 4096    | 4096    | Yes |  |  |
| mgmt-port-acl-size             | 20                           | 100                    | 20         | 20      | 20      | Yes |  |  |
| 12-acl-table-entries           | 64                           | 256                    | 64         | 64      | 64      | Yes |  |  |
| ipv6-cache                     | 8192                         | 131072                 | 8192       | 8192    | 8192    | Yes |  |  |
| ipv6-route                     | 8192                         | 131072                 | 8192       | 8192    | 8192    | Yes |  |  |
| ip-vrf-route                   | 1024                         | 524288                 | 1024       | 1024    | 1024    | Yes |  |  |
| ip-tunnels                     | 32                           | 256                    | 32         | 32      | 32      | Yes |  |  |
| config-file-size               | 8388608                      | 16777216               | 8388608    | 8388608 | 8388608 | Yes |  |  |
| ip-source-guard-cam            | 0                            | 131072                 | 0          | 0       | 0       | No  |  |  |
| ip-vrf                         | 16                           | 128                    | 16         | 16      | 16      | Yes |  |  |
| ipv6-vrf-route                 | 128                          | 16384                  | 128        | 128     | 128     | Yes |  |  |
| openflow-pvlan-entries         | 0                            | 2048                   | 0          | 0       | 0       | Yes |  |  |
| No                             |                              |                        |            |         |         |     |  |  |

### Syntax: show default values

The following table describes the system-max values of the **show default values** command for Brocade NetIron XMR Series and Brocade NetIron MLX Series.

TABLE 8 Display of show default values for system parameters

| This field | Displays                                                                                                                                                                                         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Default    | The default value for the system-max element. This value is used in the following conditions:                                                                                                    |
|            | a) There is no system-max configured for the corresponding element.                                                                                                                              |
|            | b) If the system-max element configuration is reverted at bootup time (if it is a revertible element).                                                                                           |
| Maximum    | The maximum value that this element can be configured at.                                                                                                                                        |
| Current    | The most current configured value for the system-max element. If the system-max element is configured in the running system, then the value under this column will change to reflect this value. |
|            | NOTE                                                                                                                                                                                             |
|            | The new value does not take affect until the node is reloaded.                                                                                                                                   |

**TABLE 8** Display of show default values for system parameters (Continued)

### This field... Displays...

#### Actual

The system-max value that is used by the target application of the running system. If system-max elements are reverted at bootup, then only the Actual column is affected. The Application is now using default values and will be displayed in the Actual column. Please refer to the example on the next page for more information.

The Current and Bootup values are still configured on the system, and are not affected by the reversion of system-max elements at bootup.

#### Bootup

The system-max value that was read from the configuration when the system was booting up. If the read values are found to be acceptable, and not reverted, then the values in this column, and in the "Actual" column will have the same values. However, if the values were reverted during bootup, then the values are different for the "Revertible" elements.

#### Revertible

This column displays which corresponding system-max element is revertible or not. If "Yes" is displayed then the value is changed to a default value. If 'No" is displayed then there no change to the value.

If system-max elements are reverted at bootup time, then the following message will display on the CLI.

```
device#show default values
```

```
NOTE: All the Revertible Elements were Reverted During System Bringup.
System Parameters Default
                             Maximum
                                         Current Actual
                                                                Bootup
                                                                          Revertible
                                2097152
                                            2097152
                                                       131072
                                                                  2097152
                     131072
mac
vlan
                       512
                                  4095
                                              512
                                                         512
                                                                     512
                                                                                Nο
spanning-tree
                       32
                                   128
                                              32
                                                         32
                                                                     32
                                                                                No
                       32
                                   128
                                              32
                                                         32
                                                                     32
                                                                                No
rstp
                                              65536
                                                         65536
                                                                     65536
ip-arp
                       8192
                                   65536
                                                                                No
multicast-route (IPv6) 8192
                                   153600
                                              8192
                                                         8192
                                                                     8192
                                                                                Yes
                       4096
                                   4096
                                              4096
                                                         4096
                                                                     4096
pim-mcache (IPv6)
                                                                                Yes
                       204800
                                   1048576
                                              524288
                                                         204800
                                                                     524288
ip-cache
                                                                                Yes
```

Information for the configurable tables appears under the columns shown in bold type. To simplify configuration, the command parameter you enter to configure the table is used for the table name.

#### : To increase the size of the IP route table

```
device(config)# system-max ip-route 120000
device(config)# write memory
device(config)# exit
device# reload
```

#### NOTE

If you enter a value that is not within the valid range of values, the CLI will display the valid range for you.

To increase the number of IP subnet interfaces you can configure on each port on a Brocade device to 64, enter the following commands.

```
device(config)# system-max ip-subnet-port 64
device(config)# write memory
device(config)# exit
device# reload
```

Syntax: [no] system-max ip-subnet-port num

The *num* parameter specifies the maximum number of subnet addresses per port. The minimum, maximum and default values for this parameter are described in Configuring system max values on page 71.

#### **NOTE**

You must reload the software for the change to take effect.

# **Enabling or disabling layer 2 switching**

By default, Brocade devices supports routing over layer 2 switching. You can enable layer 2 switching globally or on individual port using the **no route-only** command.

#### NOTE

On the Brocade NetIron CES Series and Brocade NetIron CER Series, the **route-only** command should not be configured on untagged MPLS uplinks when using it for VPLS or VLL. Otherwise, incoming VPLSor VLL traffic is dropped.

The **no route-only** and **route-only** commands prompts you for whether or not you want to change the "route-only" behavior. You must enter *y* if you want to proceed or *n* if you do not. The prompt is displayed as shown in the following examples of the **no route-only** and **route-only** commands.

#### NOTE

Always perform a reload after removing a route-only config or enabling route-only. Removing or enabling the route-only option without a reload will cause multicast issues.

To enable Layer 2 switching globally, enter the following.

```
device(config) \# no route-only This will change the route-only behavior at the global level. Are you sure? (enter 'y' or 'n'): y Global 'route-only' committed.
```

To globally disable Layer 2 switching on a Brocade device and return to the default (route-only) condition, enter commands such as the following:

```
device(config)# route-only This will change the route-only behavior at the global level. Are you sure? (enter 'y' or 'n'): y Global 'no route-only committed.
```

Syntax: [no] route-only

### NOTE

On the Brocade NetIron XMR Series and Brocade NetIron MLX Series devices, **route-only** is the default condition. Because **route-only** is the default condition, it will not be displayed in the configuration. If you use **no route-only** to enable switching, the **no route-only** command will be displayed in the configuration.

#### **NOTE**

On the Brocade NetIron CES Series device, **route-only** is disabled by default. Therefore, if **route-only** is enabled on a Brocade NetIron CES Series device, it will be displayed in the configuration.

To enable Layer 2 switching only on a specific interface, go to the Interface configuration level for that interface, and add the **no route-only** command. The following commands show how to enable Layer 2 switching on port 3/2.

```
device(config)# interface ethernet 3/2
device(config-if-e10000-3/2)# no route-only
```

### Syntax: [no] route-only

To re-enable the default route-only condition on port 3/2, enter the route-only command as shown.

```
device(config-if-e10000-3/2)# route-only
```

When **route-only** is enabled on a physical interface, incoming unknown unicast packets are not sent to the CPU and are dropped locally by the hardware.

#### **NOTE**

Configuring **route-only** on a physical interface affects incoming frames only. In other words, interface **route-only** disables L2 switching for incoming frames but does not disable L2 switching for outgoing frames. If the **route-only** interface is a member of a VLAN, the interface will still transmit frames received on other interfaces of that VLAN if those other interfaces still have L2 switching enabled. To prevent this from happening, make sure that any interface you have configured for **route-only** are not also members of VLANs where you are intentionally performing L2 switching.

# **Configuring static MAC addresses**

You can assign static MAC addresses to ports of a Brocade device.

You can manually input the MAC address of a device to prevent it from being aged out of the system address table, to prevent traffic for a specific device, such as a server, from flooding the network with traffic when it is down, and to assign higher priorities to specific MAC addresses.

Static MAC addresses are configured within a specified VLAN including the default VLAN 1. Optionally you can specify a port priority (QoS).

The default and maximum configurable MAC table sizes can differ depending on the device. To determine the default and maximum MAC table sizes for your device, display the system parameter values. Refer to Displaying and modifying default settings for system parameters on page 62.

### NOTE

The absolute maximum number of static MACs is 1000.

The ability of the CAM to store depends on the following:

- · The number of source MAC address being learned by the CAM.
- The number of destination MAC addresses being forwarded by the CAM
- The distribution of the MAC address entries across ports. For example, it one port is learning all the source MAC addresses, the available of the CAM for that port will be depleted.

In the following example, a static MAC address of 0000.0063.67FF with a priority of 7 is assigned to port 2 of module 1 in VLAN 200.

```
device(config)# vlan 200
device(config)# static-mac-address 0000.0063.67FF e 1/2 priority 7
```

### Syntax: [no] static-mac-address mac-addr ethernet portnum [ priority number ]

The mac-addr variable specifies the MAC address that you assigning.

The portnum variable specifies the Ethernet port that the MAC address is being assigned to.

Using the *priority* option, you can assign a value to the *number* variable of 0 - 7.

# Changing the MAC age time

The MAC age time sets the aging period for ports on the device, defining how long (how many seconds) a port address remains active in the address table.

To change the aging period for MAC addresses from the default of 300 seconds to 600 seconds.

```
device(config) # mac-age-time 600
```

### Syntax: [no] mac-age-time age-time

The age-time can be 0 or a number from 60 - 65535. The zero results in no address aging. The default is 300 (seconds).

# **Enabling and Disabling MAC movement syslog on MLX device**

The following command enable or disable the display of MAC movement syslog messages on Brocade NetIron MLX Series device.

### Syntax: [no] mac-move-det-syslog

Brocade(config) #mac-move-det-syslog

The **no** form of the command disables the display of MAC movement syslog messages.

The following example shows the MAC movement syslog message output when **mac-move-det-syslog** command is used.

```
Brocade (config) #mac-move-det-syslog
Brocade (config) #show arp
Total number of ARP entries: 2
(In all VRFs)
Entries in default routing instance:
                                                                            Age
                                    MAC Address
                                                          Type
                                                                                      Port.
             Address
(Vpls-Id, Vlan) / Vpls-Id:Peer
       19.19.19.1
                               0010.9400.0606
                                                      Dynamic
1/24
       172.26.67.1
                               0024.381c.b900
                                                      Dynamic
                                                                           1
mgmt1
Brocade (config) #
Brocade (config) #
Brocade#
SYSLOG: <12>Sep 25 02:43:07 IP/ARP: IP address 19.19.19.1 MAC movement detected,
changed from MAC 0010.9400.0606 / port 1/24 to MAC 0010.9400.0001 / port 1/24
Brocade#
Brocade#
Brocade#
Brocade (config) #show arp
Total number of ARP entries: 2
(In all VRFs)
Entries in default routing instance:
      IP Address
                         MAC Address
                                                        Type
                                                                      Age
                                                                                         Port/
Port (Vpls-Id, Vlan)/
      19.19.19.1
                             0010.9400.0001
                                                     Dynamic
      172.26.67.1
                            0024.381c.b900
                                                   Dynamic
Brocade (config) #
Brocade (config) #
SYSLOG: <12>Sep 25 02:43:40 IP/ARP: IP address 19.19.19.1 MAC movement detected, changed from MAC 0010.9400.0001 / port 1/24 to MAC 0010.9400.0606 / port 1/24
```

### Use [no] mac-move-det-syslog command to disable the MAC movement syslog.

The following example shows the MAC movement syslog message output when **[no] mac-move-det-syslog** command is used.

```
Brocade (config) #no mac-move-det-syslog
Brocade (config) #
Brocade (config) #
Brocade (config) #show arp
Total number of ARP entries: 2
(In all VRFs)
Entries in default routing instance:
     IP Address
                            MAC Address
                                                  Type
                                                              Age
                                                                               Port
(Vpls-Id, Vlan)/ Vpls-Id:Peer
     19.19.19.1
                           0010.9400.0001
                                                                            1/24
                                               Dynamic
                                                           1
                     0024.381c.b900
     172.26.67.1
                                                                        mamt1
                                               Dynamic
Brocade#
Brocade#
```

# **Configuring static ARP entries**

When you create a static ARP entry, the Brocade device automatically creates a static MAC entry.

### NOTE

To delete the static MAC entry, you must delete the static ARP entry first.

# **Configuring system max values**

The system max values for the several system parameters of the Brocade devices are described in Table 9

TABLE 9 System max values for Brocade NetIron XMR Series and Brocade MLX Series devices

| Parameter        | Minimum<br>value for<br>Brocade<br>Netlron MLX<br>Series | Maximum<br>value for<br>Brocade<br>NetIron MLX<br>Series | Default                                       | Minimum                                       | Maximum                                       | Default                                       |
|------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
|                  |                                                          |                                                          | value for<br>Brocade<br>NetIron MLX<br>Series | value for<br>Brocade<br>NetIron XMR<br>Series | value for<br>Brocade<br>NetIron XMR<br>Series | value for<br>Brocade<br>NetIron XMR<br>Series |
| config-file-size | 2097152                                                  | 16777216                                                 | 8388608                                       | 2097152                                       | 16777216                                      | 8388608                                       |
| gre-tunnels      | 1                                                        | 8192                                                     | 256                                           | 1                                             | 8192                                          | 256                                           |
| hw-flooding      | 0                                                        | 4095                                                     | 0                                             | 0                                             | 4095                                          | 8                                             |
| ifl-cam          | 0                                                        | 81920                                                    | 0                                             | 0                                             | 81920                                         | 0                                             |
| ip-arp           | 2048                                                     | 131072                                                   | 8192                                          | 2048                                          | 131072                                        | 8192                                          |
| ip-cache         | 8192                                                     | 2621440                                                  | 655360                                        | 8192                                          | 1048576                                       | 204800                                        |
| ip-filter-system | 1024                                                     | 102400                                                   | 4096                                          | 1024                                          | 102400                                        | 4096                                          |
| ip-route         | 4096                                                     | 2506752                                                  | 655360                                        | 4096                                          | 1048576                                       | 204800                                        |
| ipv4-mcast-cam   | 0                                                        | 32768                                                    | 4096                                          | 0                                             | 65536                                         | 8192                                          |
| ip-subnet-port   | 24                                                       | 128                                                      | 24                                            | 24                                            | 128                                           | 24                                            |
| ip-vrf-route     | 128                                                      | 655360                                                   | 5120                                          | 128                                           | 450560                                        | 5120                                          |
| ipv6-cache       | 8192                                                     | 1884160                                                  | 131072                                        | 8192                                          | 245760                                        | 65536                                         |
| ipv6-mcast-cam   | 0                                                        | 8192                                                     | 1024                                          | 0                                             | 16384                                         | 2048                                          |
| ipv6-route       | 4096                                                     | 1884160                                                  | 131072                                        | 4096                                          | 245760                                        | 65536                                         |
| ipv6-vrf-route   | 64                                                       | 98304                                                    | 1024                                          | 64                                            | 16384                                         | 128                                           |

**TABLE 9** System max values for Brocade NetIron XMR Series and Brocade MLX Series devices (Continued)

| Parameter                        | Minimum<br>value for<br>Brocade<br>NetIron MLX<br>Series | Maximum<br>value for<br>Brocade<br>NetIron MLX<br>Series | Default<br>value for<br>Brocade<br>NetIron MLX<br>Series | Minimum<br>value for<br>Brocade<br>NetIron XMR<br>Series | Maximum<br>value for<br>Brocade<br>NetIron XMR<br>Series | Default<br>value for<br>Brocade<br>NetIron XMR<br>Series |
|----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| I2-acl-table-<br>entries         | 64                                                       | 256                                                      | 64                                                       | 64                                                       | 256                                                      | 64                                                       |
| mac                              | 4000                                                     | 1048576                                                  | 32768                                                    | 4000                                                     | 2097152                                                  | 131072                                                   |
| mgmt-port-acl-<br>size           | 1                                                        | 100                                                      | 20                                                       | 1                                                        | 100                                                      | 20                                                       |
| subnet-<br>broadcast-acl-<br>cam | 0                                                        | 4096                                                     | 0                                                        | 0                                                        | 4096                                                     | 0                                                        |
| receive-cam                      | 512                                                      | 8192                                                     | 1024                                                     | 512                                                      | 8192                                                     | 1024                                                     |
| rstp                             | 1                                                        | 128                                                      | 32                                                       | 1                                                        | 128                                                      | 32                                                       |
| session-limit                    | 1024                                                     | 40960                                                    | 8192                                                     | 1024                                                     | 163840                                                   | 32768                                                    |
| spanning-tree                    | 1                                                        | 128                                                      | 32                                                       | 1                                                        | 128                                                      | 32                                                       |
| virtual-interface                | 40                                                       | 4095                                                     | 255                                                      | 40                                                       | 4095                                                     | 255                                                      |
| vlan                             | 2                                                        | 4095                                                     | 512                                                      | 2                                                        | 4095                                                     | 512                                                      |
| vpls-mac                         | 32                                                       | 262144                                                   | 2048                                                     | 32                                                       | 1000000                                                  | 8192                                                     |
| vpls-num                         | 512                                                      | 4096                                                     | 512                                                      | 1024                                                     | 16384                                                    | 2048                                                     |
| ecmp-pram-<br>block-size         | 8                                                        | 32                                                       | 32                                                       | 8                                                        | 32                                                       | 32                                                       |

### NOTE

If Algorithmic mode is enabled, the system maximum values for ip-cache, ip-route, ipv6-cache, and ipv6-route is limited to the maximum value supported by the specific CAM profile.

**TABLE 10** System max values for Brocade NetIron CES Series, Brocade NetIron CER Series, and Brocade NetIron CER Series-RT devices

|                              | Biocade Netholi GEIX Genes-IXI devices                      |                                                             |                                                                |                      |                                                             |                                                                |                      |                                                                    |                                                                       |
|------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|
| Parameter                    | Minimum<br>value for<br>Brocade<br>Netlron<br>CES<br>Series | Maximum<br>value for<br>Brocade<br>NetIron<br>CES<br>Series | Default<br>value<br>for<br>Brocade<br>NetIron<br>CES<br>Series | value for<br>Brocade | Maximum<br>value for<br>Brocade<br>NetIron<br>CER<br>Series | Default<br>value<br>for<br>Brocade<br>NetIron<br>CER<br>Series | value for<br>Brocade | Maximum<br>value for<br>Brocade<br>NetIron<br>CER<br>Series-<br>RT | Default<br>value<br>for<br>Brocade<br>NetIron<br>CER<br>Series-<br>RT |
| config-file-<br>size         | 2097152                                                     | 16777216                                                    | 8388608                                                        | 2097152              | 16777216                                                    | 8388608                                                        | 2097152              | 16777216                                                           | 8388608                                                               |
| ip-arp                       | 2048                                                        | 16384                                                       | 4096                                                           | 2048                 | 16384                                                       | 4096                                                           | 2048                 | 16384                                                              | 4096                                                                  |
| ip-cache                     | 4096                                                        | 32768                                                       | 16384                                                          | 4096                 | 524288                                                      | 290816                                                         | 4096                 | 1572864                                                            | 290816                                                                |
| ip-filter-sys                | 1024                                                        | 32768                                                       | 4096                                                           | 1024                 | 32768                                                       | 4096                                                           | 1024                 | 32768                                                              | 4096                                                                  |
| ip-route                     | 4096                                                        | 32768                                                       | 16384                                                          | 4096                 | 524288                                                      | 290816                                                         | 4096                 | 1572864                                                            | 290816                                                                |
| ip-subnet-<br>port           | 24                                                          | 128                                                         | 24                                                             | 24                   | 128                                                         | 24                                                             | 24                   | 128                                                                | 24                                                                    |
| l2-acl-<br>table-<br>entries | 64                                                          | 256                                                         | 64                                                             | 64                   | 256                                                         | 64                                                             | 64                   | 256                                                                | 64                                                                    |
| mac                          | 4000                                                        | 131072                                                      | 56320                                                          | 4000                 | 131072                                                      | 56320                                                          | 4000                 | 131072                                                             | 65536                                                                 |
| mgmt-port-<br>acl-size       | 1                                                           | 100                                                         | 20                                                             | 1                    | 100                                                         | 20                                                             | 1                    | 100                                                                | 20                                                                    |
| rstp                         | 1                                                           | 128                                                         | 32                                                             | 1                    | 128                                                         | 32                                                             | 1                    | 128                                                                | 32                                                                    |
| session-<br>limit            | 1024                                                        | 32768                                                       | 32768                                                          | 1024                 | 32768                                                       | 32768                                                          | 1024                 | 32768                                                              | 32768                                                                 |
| spanning-<br>tree            | 1                                                           | 128                                                         | 32                                                             | 1                    | 128                                                         | 32                                                             | 1                    | 128                                                                | 32                                                                    |
| virtual-<br>interface        | 40                                                          | 1024                                                        | 255                                                            | 40                   | 4095                                                        | 255                                                            | 40                   | 4095                                                               | 255                                                                   |
| vlan                         | 512                                                         | 4095                                                        | 512                                                            | 2                    | 8192                                                        | 512                                                            | 2                    | 8192                                                               | 512                                                                   |
| vrf                          | 1                                                           | 16                                                          | 1                                                              | 1                    | 128                                                         | 16                                                             | 1                    | 128                                                                | 16                                                                    |
| ipv6-cache                   | 1024                                                        | 131072                                                      | 1024                                                           | 1024                 | 131072                                                      | 1024                                                           | 1024                 | 262141                                                             | 8192                                                                  |
| ipv6-route                   | 1024                                                        | 131072                                                      | 1024                                                           | 1024                 | 131072                                                      | 8192                                                           | 1024                 | 262141                                                             | 8192                                                                  |
|                              |                                                             | -                                                           |                                                                |                      | -                                                           | +                                                              |                      |                                                                    | -                                                                     |

**TABLE 10** System max values for Brocade NetIron CES Series, Brocade NetIron CER Series, and Brocade NetIron CER Series-RT devices (Continued)

| Parameter  | Minimum<br>value for<br>Brocade<br>NetIron<br>CES<br>Series | Maximum<br>value for<br>Brocade<br>NetIron<br>CES<br>Series | Default<br>value<br>for<br>Brocade<br>NetIron<br>CES<br>Series | Minimum<br>value for<br>Brocade<br>NetIron<br>CER<br>Series | Maximum<br>value for<br>Brocade<br>NetIron<br>CER<br>Series | Default<br>value<br>for<br>Brocade<br>NetIron<br>CER<br>Series | Minimum<br>value for<br>Brocade<br>NetIron<br>CER<br>Series-<br>RT | Maximum<br>value for<br>Brocade<br>NetIron<br>CER<br>Series-<br>RT | Default<br>value<br>for<br>Brocade<br>NetIron<br>CER<br>Series-<br>RT |
|------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|
| vrf-route  | 1024                                                        | 32768                                                       | 1024                                                           | 1024                                                        | 32768                                                       | 1024                                                           | 1024                                                               | 1572864                                                            | 1024                                                                  |
| ip-tunnels | 32                                                          | 128                                                         | 32                                                             | 32                                                          | 128                                                         | 32                                                             | 32                                                                 | 256                                                                | 32                                                                    |

#### NOTE

Default values are the same irrespective of the software package on the Brocade NetIron CES Series and Brocade NetIron CER Series devices.

#### NOTE

The maximum FIB scalability for Brocade NetIron CER Series and Brocade NetIron CES Series has been tested using an internet route mix. When using route prefixes concentrated in a narrow prefix length range, the scalability numbers will be lower. It is important to design your network keeping this in mind.

To configure system-max values, use the following command.

Syntax: [no] system-max config-file-size | gre-tunnels | ip-arp | ip-cache | ip-filter-sys | ip-route | ip-static-arp | ipv4-mcast-cam | ip-subnet-port | ip-tunnels | vrf | vrf-route | ipv6-cache | ipv6-mcast-cam | ipv6-route | I2-acl-table-entries | ifl-cam | mac | mgmt-port-acl-size | subnet-broadcast-acl-cam | receive-cam | rstp | session-limit | spanning-tree | trunk-num | virtual-interface | vlan | vpls-mac | vpls-num | ecmp-pram-block-size

The *gre-tunnels* parameter sets the maximum number of GRE tunnels.For minimum, maximum and default values for this parameter refer to Table 9.

The *config-file-size* parameter sets the allowed running and startup-config file sizes. Refer to the appropriate table for your platform. For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *ifl-cam* parameter sets the maximum number of Internal Forwarding Lookup Identifiers. These are used when configuring a Local VLL for Dual Tagging. The default value for the *ifl-cam* parameter is 8K. The maximum values for this parameter are different depending on which CAM partition you have configured on your system. For minimum, maximum and default values by CAM partition for this parameter, refer to Table 11.

The  $\it ip-arp$  parameter sets the maximum number of ARP entries. For minimum, maximum and default values for this parameter refer to Table 9 and Table 10 .

The *ip-cache* parameter sets the maximum size of the IP cache.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *ip-filter-sys* parameter sets the maximum number of IP ACL entries.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *ip-route* parameter sets the maximum number of IP Route entries.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

#### **NOTE**

There is no need to configure a system-max value for static ARP entries.

The *ip-static-arp* parameter sets the maximum number of static ARP entries. For minimum, maximum and default values for this parameter refer to Table 9.

The *ipv4-mcast-cam* parameter allows you to configure the maximum CAM size for an IPv4 multicast group. For minimum, maximum and default values for this parameter refer to Table 4.5. To configure the CAM size of an IPv4 multicast group, refer to Configuring CAM size for an IPv4 multicast group on page 77.

The *ip-subnet-port* parameter sets the maximum number of IP subnets per port.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *vrf-route* parameter sets the maximum number of VRF routes per VRF instance.For minimum, maximum and default values for this parameter refer to Table 9.

The *ipv6-cache* parameter sets the maximum size of the IPv6 cache.For minimum, maximum and default values for this parameter refer to Table 9.

The *ipv6-mcast-cam* parameter allows you to configure the maximum CAM size for an IPv6 multicast group. For minimum, maximum and default values for this parameter refer to Displaying and modifying default settings for system parameters on page 62. To configure the CAM size of an IPv6 multicast group, refer to Configuring CAM size for an IPv6 multicast group on page 78.

The *ipv6-route* parameter sets the maximum number of IPv6 routes.For minimum, maximum and default values for this parameter refer to Table 9.

#### NOTE

The **system-max ipv6-route** command can be configured with a maximum value of 114688 on the Brocade NetIron MLX Series, but the Brocade device system will only support a maximum value of 114687 for IPv6 routes.

The *I2-acI-table-entries* parameter sets the maximum number of layer-2 ACL entries per ACL table.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *mac* parameter sets the maximum number of MAC entries. For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *mgmt-port-acl-size* parameter sets the maximum size for a management port ACL.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *subnet-broadcast-acl-cam* parameter sets the maximum number of IP broadcast ACL CAM entries. For minimum, maximum, and default values for this parameter, refer to Table 9.

The receive-cam parameter sets the maximum number of IP Receive ACL software CAM entries. For minimum, maximum and default values for this parameter refer to Table 9.

The *rstp* parameter sets the maximum number of RSTP instances.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The session-limit parameter sets the maximum number of sessions. For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *spanning-tree* parameter sets the maximum number of spanning-tree instances.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *virtual-interface* parameter sets the maximum number of virtual interfaces.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *vlan* parameter sets the maximum number of VLANs.For minimum, maximum and default values for this parameter refer to Table 9 and Table 10.

The *vpls-mac* parameter sets the maximum number of VPLS MAC Entries.For minimum, maximum and default values for this parameter refer to Table 9.

The *vpls-num* parameter sets the maximum number of Virtual Private LAN Services (VPLS). For minimum, maximum and default values for this parameter refer to Table 9

The ecmp-pram-block-size parameter is used as a limiting factor when programing ECMP nexthops (v4/v6/vpnv4/vpnv6). Even though the control plane supports up to 32 nexthops per a route, the actual number of nexthops which are programmed in HW is controlled by this command. If system-max ecmp-pram-block-size is configured to a value lesser than the value configured for **ip load-sharing** or *ipv6 load-sharing*, or if *ip load-sharing* or *ipv6 load-sharing* is configured to a value greater than that configured for **system-max ecmp-pram-block-size**, a warning message will be displayed. For minimum, maximum and default values for this parameter refer to Table 9

**TABLE 11** System maxifl-cam values available by CAM profile on Brocade NetIron XMR Series and Brocade MLX Series

| CAM profile     | Minimum value | Maximum value | Default value |
|-----------------|---------------|---------------|---------------|
| Default         | 0             | 57344         | 8192          |
| ipv4            | 0             | 114688        | 8192          |
| ipv6            | 0             | 131072        | 8192          |
| I2-metro        | 0             | 114688        | 8192          |
| mpls-l3vpn      | 0             | 114688        | 8192          |
| mpls-vpls       | 0             | 114688        | 8192          |
| multi-service   | 0             | 49152         | 8192          |
| multi-service-2 | 0             | 81920         | 8192          |
| vpn-vpls        | 0             | 114688        | 8192          |
| ipv4-vpn        | 0             | 114688        | 8192          |
| I2-metro-2      | 0             | 114688        | 8192          |
| mpls-l3vpn-2    | 0             | 114688        | 8192          |
| mpls-vpls-2     | 0             | 114688        | 8192          |
| ipv4-ipv6       | 0             | 114688        | 8192          |
| ipv4-vpls       | 0             | 114688        | 8192          |

**TABLE 11** System maxifl-cam values available by CAM profile on Brocade NetIron XMR Series and Brocade MLX Series (Continued)

| CAM profile | Minimum value | Maximum value | Default value |
|-------------|---------------|---------------|---------------|
| ipv4-ipv6-2 | 0             | 81920         | 8192          |

# Configuring CAM size for an IPv4 multicast group

To configure the CAM size of an IPv4 multicast group, enter the following command.

```
device(config) # system-max ipv4-mcast-cam
```

Syntax: [no] system-max [ ipv4-mcast-cam ]

By default, no system-max parameter is configured.

The *ipv4-mcast-cam* parameter allows you to specify the maximum CAM size you want for an IPv4 multicast group.

The *decimal* parameter specifies the range that is supported for configuring the CAM size. On the Brocade NetIron XMR Series, the minimum value supported is 0, and the maximum value supported is 65536. The default value is 8192. On the Brocade NetIron MLX Series, the minimum value supported is 0, and the maximum value supported is 32768. The default value is 4096.

Upon configuration, the Brocade system will verify the input value with the amount of CAM resources that are available. If the Brocade system is unable to allocate requested space, it will display the following error message on the Brocade NetIron XMR Series and Brocade NetIron MLX Series.

```
device(config) #system-max ipv4-mcast-cam 60000
Error - IPv4 Multicast CAM (60000) exceeding available CAM resources
Total IPv4 ACL CAM: 98304(Raw Size)
IPv4 Receive ACL CAM: 16384(Raw Size)
IPv4 Source Guard CAM: 32(Raw Size)
Reserved IPv4 Rule ACL CAM: 1024(Raw Size)
Available IPv4 Multicast CAM: 80864(Raw Size) 40432(User Size)
```

If there is not enough CAM resources available to change the cam-partition profile from IPv4 to IPv6, the following message is displayed.

```
device(config) #cam-partition profile ipv4-ipv6
Error - IPv4 Receive ACL CAM (8192) exceeding available CAM resources
Total IPv4 ACL CAM: 98304(Raw Size)
IPv4 Multicast CAM: 120000(Raw Size)
IPv4 Source Guard CAM: 32 (Raw Size)
Reserved IPv4 Rule ACL CAM: 1024(Raw Size)
Available IPv4 Receive ACL CAM: 0 (Raw Size)
Error - Failed to select this CAM profile
```

This error message is also displayed on the Brocade Netlron MLX Series.

After you issue the system-max command, with *ipv4-mcast-cam* parameter included, additional information will display on the Brocade NetIron XMR Series and Brocade NetIron MLX Series as shown in the following example.

```
device(config) #system-max ipv4-mcast-cam 60000 Reload required. Please write memory and then reload or power cycle. Failure to reload could cause system instability on failover. Newly configured system-max will not take effect during hitless-reload.
```

#### NOTE

You must write this command to memory and perform a system reload for this command to take effect.

# Configuring CAM size for an IPv6 multicast group

To configure the CAM size of an IPv6 multicast group, enter the following command.

```
device(config) # system-max ipv6-mcast-cam
```

#### Syntax: [no] system-max [ ipv6-mcast-cam ]

By default, no system-max parameter is configured.

The *ipv6-mcast-cam* parameter allows you to specify the maximum CAM size you want for an IPv6 multicast group.

The *decimal* parameter specifies the range that is supported for configuring the CAM size. On the Brocade NetIron XMR Series, the minimum value supported is 0, and the maximum value supported is 16384. The default value is 2048. On the Brocade NetIron MLX Series, the minimum value supported is 0, and the maximum value supported is 8192. The default value is 1024.

Upon configuration, the Brocade system will verify the input value with the amount of CAM resources that are available. If the Brocade system is unable to allocate requested space, it will display the following error messages on the Brocade NetIron XMR Series and Brocade NetIron MLX Series:

On the Brocade NetIron XMR Series.

```
device(config) # system-max ipv6-mcast-cam 15000

Error - IPV6 Multicast CAM (15000) exceeding available CAM resources

Total IPv6 ACL CAM: 32768(Raw Size)

Reserved IPv6 Rule ACL CAM: 1024(Raw Size)

Available IPv6 Multicast CAM: 31744(Raw Size) 3968(User Size)
```

#### On the Brocade NetIron MLX Series.

```
device(config) #system-max ipv6-mcast-cam 8000
Error - IPV6 Multicast CAM (8000) exceeding available CAM resources
Total IPv6 ACL CAM: 16384(Raw Size)
Reserved IPv6 Rule ACL CAM: 1024(Raw Size)
Available IPv6 Multicast CAM: 15360(Raw Size) 1920(User Size)
```

After you issue the system-max command, with *ipv6-mcast-cam* parameter included, additional information will display on the Brocade NetIron XMR Series and Brocade NetIron MLX Series as shown in the following example.

```
device(config) #system-max ipv6-mcast-cam 1000 Reload required. Please write memory and then reload or power cycle. Failure to reload could cause system instability on failover. Newly configured system-max will not take effect during hitless-reload.
```

#### NOTE

You must write this command to memory and perform a system reload for this command to take effect.

# Configuring profiles with a zero-size IPv4 or IPv6 ACL

When a profile is configured to a zero-size IPv4 or IPv6 ACL, the minimum value of 512 for IPv4, and the minimum value of 128 for IPv6 is disabled.

If the system-max value for multicast is configured, and you select a value of 0 for IPv4 or IPv6 ACL, the system-max value will be ignored. There is minimal checking for errors. The following warning message is displayed.

```
device(config) #cam-partition profile mpls-vpls-2
Warning - Changing to a profile with zero Ipv6 ACL CAM size, ignoring system-max
value check and minimum-guarantee checks.
Reload required. Please write memory and then reload or power cycle.
Failure to reload could cause system instability on failover.
Newly configured system-max will not take effect during hitless-reload.
```

#### **NOTE**

You must write this command to memory and perform a system reload for this command to take effect.

The system-max value is retained in the configuration so that it can be reused later when you want to change the CAM profile.

# Maintaining system-max configuration with available system resources

When system-max values are configured, the Brocade system checks for available system resources. The system resources are required in order to maintain dynamic memory allocation. System-max values are checked at the configuration time, and at the bootup time. If there are insufficient system resources available on the Management Module, this will cause the configuration to be rejected during card bootup. On the Interface Module, insufficient system resources will lead to failure in booting up the card.

# **Configuration time**

When system-max values are configured, the Management Module calculates the memory required to accept the value. The resulting value is checked against the Known-Available-Memory value, and calculated against the Highest Required Memory value for both the Management Module and the Interface Module.

The Known-Available-Memory is a value with the Lowest Supported Available Memory on a node. For example, if a node can accept a 1 Gigabyte LP, and a 512 MB LP, then the 512 MB LP will be used. The Highest Required Memory is a value with most amount of memory available on a node. For example, if a node has both 2 PPCR LP, and 1 PPCR LP, then the 2 PPCR LP will be used.

If the new system-max value is accepted, then the configuration will also be accepted. The following information will display.

```
device(config) #system-max mac 4000 Reload required. Please write memory and then reload or power cycle.
```

Failure to reload could cause system instability on failover. Newly configured system-max will not take effect during hitless-reload.

#### **NOTE**

You must write this command to memory and perform a system reload for this command to take effect.

If the new system-max value is not accepted, then the configuration is rejected. The following error message is printed on the console.

```
device(config) # system-max ipv4 10000
ERROR: Configured System-max value cannot be accommodated.
```

# **Bootup time**

At bootup time, the Management Module will repeat the same process as done in the Configuration time. The Management Module calculates the memory required to accept the system-max configuration. The resulting value is checked against the Known-Available-Memory value for both the Management Module and the Interface Module.

After the new system-max value is configured, there are three possible configuration outcomes. The three possible configuration outcomes are described below.

1. The configuration can be accommodated, but leaves only 10% of Available Memory

In this configuration, a check is made against 90% of Available Memory. If the difference between the Required Available Memory and the Available Memory is less than 10% of Available Memory, then the configuration is accepted. The following warning message is displayed on the console if it affects the Management Module or Interface Module.

The following warning message is displayed on the Management Module.

```
WARNING: Configured System-max Leaves less than 10 percent Free Memory Available
```

The following warning message is displayed on the Interface Module.

```
WARNING: Configured System-max Leaves less than 10 percent Free Memory Available on LP.
```

A syslog message showing the required memory versus the available memory is generated, and a similar warning message is displayed on the Management Module and Interface Module as shown in the following example.

```
device# show log
...
Jan 17 22:55:55:N: WARN: Configured System-max Leaves less than 10 percent Free
Memory Available on MP (162529285 req vs 1625292800 available)
Jan 17 22:55:55:N: WARN: Configured System-max Leaves less than 10 percent Free
Memory Available on LP (162529285 req vs 1625292800 available)
```

#### **NOTE**

When the system is booted up again, the percent of free memory is discretionary and is only an estimate.

#### **NOTE**

Even if all elements are configured with the maximum allowed value, you may not see the reversion of system-max values that occur on any given Interface Module.

#### NOTE

Notifications and traps are sent with the same message.

2. The configuration can be easily accommodated.

In this configuration, the Management Module continues to use the configured system-max value, and send the same value to the installed Interface Modules.

3. The configuration cannot be accommodated.

If the configured system-max value cannot be used, the Management Module will locate the elements that can be reverted to a default value. These system-max elements will revert to a default value, and the following message will display on the console.

WARN: Configured System-max cannot be accommodated. Resetting revertible elements to default values.

A syslog message is generated, and a similar warning message is displayed on the Management Module and Interface Module as shown in the following example.

```
device# show log
...
Jan 17 22:55:55:N: WARN: Configured System-max cannot be accommodated on MP
(1625292801 req vs 1625292800 available). Resetting revertible elements to default
values.
Jan 17 22:55:55:N: WARN: Configured System-max cannot be accommodated on LP
(1625292801 req vs 1625292800 available). Resetting revertible elements to default
values.
```

#### NOTE

Once the system-max have been reverted, a user might not be able to configure any system-max until configuration for some or all of the revertible system-max elements is removed using "no system-max" CLI.

#### NOTE

Notifications and traps are sent with the same message.

The following tables show which elements are revertible (Yes or No) in each element category.

#### L2 elements

TABLE 12 L2 elements

| L2 elements   | Revertible: yes or no |
|---------------|-----------------------|
| Mac           | yes                   |
| Vlan          | no                    |
| Spanning-tree | no                    |

TABLE 12 L2 elements (Continued)

| L2 elements | Revertible: yes or no |
|-------------|-----------------------|
| Rstp        | no                    |

### L3 elements

TABLE 13 L3 elements

| L3 elements                   | Revertible: yes or no |
|-------------------------------|-----------------------|
| Arp                           | no                    |
| multicast-route (for v6 only) | yes                   |
| pim-mcache                    | yes                   |
| ip-cache                      | yes                   |
| ip-route                      | yes                   |
| ip-subnet-port                | no                    |
| virtual-interface             | no                    |
|                               |                       |

### **VPLS** elements

**TABLE 14** VPLS elements

| VPLS elements                 | Revertible: yes or no |  |  |
|-------------------------------|-----------------------|--|--|
| vpls-mac (MAX_VPLS_MAC_INDEX) | yes                   |  |  |
| vpls-num (MAX_VPLS_NUM_INDEX) | no                    |  |  |

### **Miscellaneous elements**

 TABLE 15
 Miscellaneous elements

| Miscellaneous elements | Revertible: yes or no |
|------------------------|-----------------------|
| session-limit          | yes                   |
| ip-filter-sys          | no                    |
| mgmt-port-acl-size     | no                    |
| I2-acl-table-entries   | no                    |

**TABLE 15** Miscellaneous elements (Continued)

| Miscellaneous elements | Revertible: yes or no |
|------------------------|-----------------------|
| ipv6-cache             | yes                   |
| ipv6-route             | yes                   |
| IPVRF MAX ROUTES       | yes                   |
| mgmt-port-acl-size     | no                    |
| receive-cam            | no                    |
| IPGRE                  | no                    |
| LSP_ACL                | no                    |
| SERVICE_LOOKUP         | no                    |
| IP_SRC_GUARD_CAM       | no                    |
| IPv4 MCAST CAM         | no                    |
| IPv6 MCAST CAM         | no                    |
| SERVER_TRUNKS          | no                    |
| CONFIG_FILE_SIZE       | no                    |

### **Bootup time message**

At bootup time, the following warning and error message is displayed in bold. The warning message and the error message are intermittent. The warning message indicates that when the standby management module (MP) comes up, the active MP syncs the FID entries to the standby MP. If the FID sync fails, the standby MP reboots. The FID sync can fail with a timeout error message if the standby MP is busy processing, and the MP does not respond within an agreeable timeout period and retries. The FIDs are synced successfully on the subsequent reboot. The second error message indicates that when the system is rebooting the standby MP, the baseline sync cannot be completed for multicast. The baseline sync for multicast is aborted. The required state information is not replicated completely from the active MP to the standby MP when the system is rebooting.

#### **Command Output**

device>All tasks have completed their initializations

```
INFO: Back fan B-2 status is OK now.
Module is up in slot 1
Module is up in slot 5
Module is up in slot 4
Module is up in slot 2
Start code flash synchronization to standby MP.
Code flash synchronization to standby MP is done.
```

# **Monitoring dynamic memory allocation**

After a configured system-max value is accepted, it is possible that the dynamic memory allocation may fail in a running system. To monitor the amount of available memory on the Management Module and the Interface Module, a timer will check the memory every 10 seconds. If the available memory falls below 5 percent of the total installed memory, the timer will log the following warning message.

```
device# show log
...
Jan 17 22:55:55:N: WARN: Current Total Free Memory on MP is below 5 percent of
Installed Memory.
...
Jan 17 23:53:55:N: WARN: Current Total Free Memory on LP 8 is below 5 percent of
Installed Memory.
```

The warning message is displayed at a frequency of 1 log per 5 minutes.

#### **NOTE**

Notifications and traps are sent.

When the memory allocation fails, an alert message is logged immediately. The alert message is displayed at a frequency of 1 log per 5 minutes. The following example below displays an alert message on the Management Module and the Interface Module.

```
device# show log
...
Jan 17 22:55:55:A: ALERT: Failed to allocate memory on MP
...
Jan 17 23:52:55:A: ALERT: Failed to allocate memory on LP 8
```

The NULL value is returned to the calling routine. The calling routine will decide how to proceed after the memory allocation fails.

#### NOTE

Notifications and traps are sent.

At any time, you can display the status of all recorded memory that is available on the Management Module by entering the **show memory** command. The amount of available memory is displayed in percentage values. The following example displays a show memory output on a Management Module.

Total SDRAM : 536870912 bytes Available Memory : 45821952 bytes Available Memory (%): 8 percent

# Switch fabric fault monitoring

With this feature, you can display information about the current status of links between the switch fabric modules (SFM) and interface modules in a Brocade NetIron XMR Series or Brocade NetIron MLX Serieschassis. This feature also provides log messages to the console when there is a change in the "UP" or "DOWN" status of links to the SFM and when an individual fabric element (FE) cannot be accessed by the management module. The device can also be configured to automatically shut down an SFM when failure is detected. The following sections describe the capabilities of this feature.

### **Displaying switch fabric information**

You can display information about the current status of links between the SFMs and interface modules in a Brocade NetIron XMR Series or Brocade NetIron MLX Series chassis using the following command. Each line represents a link between an SFM and an interface module (LP).

|                       | v sfm-links a<br>FE link# | all<br>  LP#/TM#<br> | TM link#     | link state   |           |         |
|-----------------------|---------------------------|----------------------|--------------|--------------|-----------|---------|
| 2 / 1                 | 32                        | 3 / 1                | 13           | UP           |           |         |
| 2 / 1                 | 31                        | 3 / 2                | i 01 i       | UP           |           |         |
| 2 / 1                 | 11                        | 3 / 1                | 01           | UP           |           |         |
| 2 / 1                 | 12                        | 3 / 2                | j 13 j       | UP           |           |         |
| 2 / 3                 | 32                        | 3 / 1                | 19           | UP           |           |         |
| 2 / 3                 | 31                        | 3 / 2                | 07           | UP           |           |         |
| 2 / 3                 | 11                        | 3 / 1                | 07           | UP           |           |         |
| 2 / 3                 | 12                        | 3 / 2                | 19           | UP           |           |         |
| 3 / 1                 | 32                        | 3 / 1                | 16           | UP           |           |         |
| 3 / 1                 | 31                        | 3 / 2                | 04           | UP           |           |         |
| 3 / 1                 | 11                        | 3 / 1                | 04           | UP           |           |         |
| 3 / 1                 | 12                        | 3 / 2                | 16           | UP           |           |         |
| 3 / 3                 | 32                        | 3 / 1                | 22           | UP           |           |         |
| 3 / 3                 | 31                        | 3 / 2                | 10           | UP           |           |         |
| 3 / 3                 | 11                        | 3 / 1                | 10           | UP           |           |         |
| 3 / 3                 | 12                        | 3 / 2                | 22           | UP           |           |         |
| WARN: LP 3 forwarding | has 8 links               | up, less             | than minimum | to guarantee | line rate | traffic |

#### Syntax: show sfm-links sfm-number | all [ errors ]

The sfm-number variable specifies an SFM that you want to display link information for.

The all option displays link information for all SFMs in the chassis.

The errors option only displays information for SFM links that are in the DOWN state.

The output of this command can also be filtered using an output modifier. To use an output modifier, type a vertical bar ( | ) followed by a space and one of the following parameters:

- begin begin output with the first matching line
- · exclude exclude matching lines from the output
- include include only matching lines in the output

A warning statement is sent if the number of operational links falls below the minimum threshold. This warning is displayed to warn users that the line rate traffic will not be maintained.

The **show sfm-links** command displays the following information.

**TABLE 16** CLI display of SFM link information

| This field | Displays                                                                                         |
|------------|--------------------------------------------------------------------------------------------------|
| SFM#       | The switch fabric module number.                                                                 |
| FE#        | The FE number.                                                                                   |
| FE link#   | The number of the interconnect between the SFM and the FE.                                       |
| LP#        | The slot number where the Interface module (LP) is installed.                                    |
| TM#        | The number of the traffic manager used in the link.                                              |
| TM link#   | The link number on the traffic manager.                                                          |
| link state | The link state is either:  UP - In an operating condition  DOWN - In a non-operational condition |

### Displaying switch fabric module information

To display the state of all switch fabric modules in the chassis, enter the following command at any level of the CLI.

```
device> show module
M1 (upper): NI-MLX-MR Management Module Active
M2 (lower): NI-MLX-MR Management Module Standby (Ready State)
F1: NI-X-SF Switch Fabric Module Powered off (By Health Monitoring)
F2:
F3:
F4: NI-X-HSF Switch Fabric Module Active
```

#### Syntax: show module

The **show module** command displays the modules currently connected to the chassis and their state. For switch fabric modules, the command shows "Active" if the module is operational or "Powered off" and the reason for the shutdown.

### Powering a switch fabric link on or off manually

To manually power on a switch fabric link, use a command such as the following.

```
device# power-on snm-link 3 3 37
```

To manually power off a switch fabric link, use a command such as the following.

```
device# power-off snm-link 3 3 37
```

Syntax: [no] power-on snm-link sfm-number fe-number link-number Syntax: [no] power-off snm-link sfm-number fe-number link-number

### Powering a switch fabric module off automatically on failure

To configure the device to automatically power off a switch fabric module (SFM) or high speed switch fabric module (hSFM) on which an access error has been detected, enter the following command at the CONFIG level of the CLI.

device(config) # system-init fabric-failure-detection

Syntax: [no] system-init fabric-failure-detection

#### NOTE

You must restart the device for automatic SFM shutdown to take effect.

Once you have configured automatic SFM shutdown on the device and restarted it, the management module will automatically detect access failure (see Access failure messages on page 88) and shut down the unresponsive SFM. You can restart the SFM at any time (manually, by removing and reinserting the module, or by initiating a system restart), but if another access error is detected, the management module will shut the SFM down again. If an SFM is automatically powered down, SFM power-off status (and the associated reason) are synced to the standby management module, and in the event of failover the standby module will keep the faulty SFM powered off.

#### Auto-tune enhancement

The RAS feature set is extended with automatic monitoring and tuning of transmit and receive parameters on SERDES links between line modules and switch fabric modules that are down due to excessive CRC errors. Tuning is done on both the line module and switch fabric module i.e. both ends of the the link, at the same time.

If tuning fails on the switch fabric module then the **sysmon fe link action** configuration defines the action taken i.e. a syslog message is generated or the link is shut down and a syslog message is generated. If the link has already been tuned and goes down a second time, then the link is powered down and a syslog message generated.

Auto-tune is enabled by default on MLXe-16 and MLXe-32 chassis. This enhancement is not needed on MLXe-4 and MLXe8 chassis, because the CRC error condition does not occur on these chassis.

To disable auto-tuning on FE for slow or burst CRC errors, enter the following command:

device(config) # no sysmon fe link auto-tune

To enable auto-tuning again, use the following command:

device(config) # sysmon fe link auto-tune

Syntax: [no] sysmon fe link auto-tune

To disable auto-tuning on TM for slow or burst CRC errors, enter the following command:

device(config) # no sysmon tm link auto-tune

To enable auto-tuning again, use the following command:

device(config) # sysmon tmlink auto-tune

Syntax: [no] sysmon tm link auto-tune

### **Switch fabric log messages**

Information about the state of each switch fabric module and whether it can be accessed by the Management Module is also provided in the form of syslog messages.

#### Link up/down messages

The Switch Fabric modules (SFM) in a Brocade chassis send a log message when they first become operational or when they change state between "UP" and "DOWN". The following is an example of the message sent when a link first becomes operational (UP) or when it changes state from non-operational (DOWN) to operational (UP).

```
Apr 6 10:57:20:E: Fabric Monitoring Link Up : SFM 3/FE 3/Link 37, LP 5/TM 1
```

The following is an example of the message sent when a link is detected going from operational (UP) to non-operational (DOWN).

```
Apr 6 10:56:00:E: Fabric Monitoring Link Down : SFM 3/FE 3/Link 37, LP 5/TM 1
```

Once a link has been detected as going down and "auto-tune" is disabled or "auto-tune" is enabled but the link has already been tuned (see Auto-tune enhancement on page 87), it is automatically shut down by the Multi-Service IronWare software. The following is an example of the message sent when a link is either brought down automatically or manually using the command described in Powering a switch fabric link on or off manually on page 86.

```
Apr 6 10:56:00:E: Fabric Monitoring Link Admin Shut Down : SFM 3/FE 3/Link 37, LP 5/TM 1
```

This contents of the message are defined as described in the following.

```
Apr 6 10:57:20: - The time that the link changed state.
```

Fabric Monitoring Link Up - the link went "UP"Fabric Monitoring Link Down - the link went "DOWN"

```
SFM 3 - The switch fabric module (SFM) number
```

FE 3 - The Fabric Element number

Link 37 - The number of the interconnect between the SFM and the FE

LP 5 - The slot number where the Interface Module (LP) is installed.

TM 1 - The number of the traffic manager (TM) used in the link.

#### Access failure messages

The management module attempts to access each fabric element for every poll period (1 second by default). If the number of access failures in a poll window (default 10 seconds) exceeds the threshold (3 by default), the management module sends a log message similar to the following:

```
Apr 6 20:33:57:A:System: Health Monitoring: FE access failure detected on SFM 2/FE 1
```

The contents of the message are defined as described in the following.

Apr 6 20:33:57: - the time at which the error threshold was exceeded

```
{\tt FE} \ \ {\tt access} \ \ {\tt failure} \ \ {\tt detected} \ \ {\tt -the} \ \ {\tt management} \ \ {\tt module} \ \ {\tt failed} \ \ {\tt to} \ \ {\tt access} \ \ {\tt the} \ \ {\tt specified} \ \ {\tt FE}
```

SFM 2 - the switch fabric module (SFM) number

```
FE 1 - the Fabric Element (FE) number
```

If the device has been configured to shut down a switch fabric module when failure is detected (see Powering a switch fabric module off automatically on failure on page 87), the management module will shut down the failed switch fabric module, then send a log message similar to the following:

```
Oct 4 20:33:57:A:System: Health Monitoring: Switch fabric 2 powered off due to failure detection
```

The message above indicates that a failure was detected in attempting to access switch fabric module 2, and the module was powered off on October 4th at 20:33:57.

#### Fabric error interrupt

Fabric error interrupts are monitored and logged for both the switch fabric module, and the Brocade MLX 24-port 10 GbE module and Brocade MLX 2-port 100 GbE module.

The following example shows a fabric error interrupt for a switch fabric module on an MP:

```
Dec 4 20:33:57: SFM 1 / FE 1 Reg offset 0x00000800 value 0x0000000 Overflow ( DCQ) Interrupt
```

The following example shows a fabric error interrupt for a slot on an LP:

```
Mar 4 20:33:57: Slot 17 FE1 Reg offset 0x00000800 value 0x0000000c Overflow (DCQ) Interrupt
```

# Switch fabric utilization monitoring

With this feature, you can monitor the percentage of the total bandwidth used on the SFM for the timing intervals of 1 sec, 5 sec, 1 min, and 5 min. For example, to display bandwidth usage on all SFMs on the device, enter the following command.

To display bandwidth usage on one SFM, enter the following command.

#### Syntax: show sfm-utilization [ sfm-number | all ]

The *sfm-number* variable specifies an SFM that you want to utilization information for.

The all option displays utilization information for all SFMs in the chassis.

# Verifying an image checksum

Use the **image-checksum** command to verify the checksum of the application, boot, or monitor images that are saved in code flash and Auxiliary Flash cards.

#### NOTE

The **image-checksum** command on is not applicable to a combined application image.

To check a monitor image, use the following command.

```
device# image-checksum monitor
```

#### Syntax: [no] image-checksum file-name

The file-name variable specifies the image file that you want to verify the checksum for.

The following output can be generated by this command

TABLE 17 Output from image-checksum command

| Output              | Description                                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------|
| File not found      | The device failed to locate the specified file.                                                 |
| Failed to read file | The device failed to obtain the file length from the file system.                               |
| Not an image file   | The specified file is not an image file.                                                        |
| File read failed    | The specified file's actual length is different form the file length stored in the file system. |
| Checksum failed     | The image has a checksum error.                                                                 |
| ОК                  | The checksum has been verified for the specified image file.                                    |

# Displaying information for an interface for an Ethernet port

To display information for a show interface for an ethernet port, enter the following command at any CLI level.

```
device# show interface ethernet 9/1
GigabitEthernet2/3 is up, line protocol is up
STP Root Guard is disabled, STP BPDU Guard is disabled
Hardware is GigabitEthernet, address is 0000.0098.4900 (bia 0000.0098.492a)
Configured speed auto, actual 1Gbit, configured duplex fdx, actual fdx
Member of VLAN 1 (untagged), 5 L2 VLANS (tagged), port is in dual mode
(default vlan), port state is Forwarding
STP configured to ON, Priority is level0, flow control enabled
Priority force disabled, Drop precedence level 0, Drop precedence force disabled
arp-inspection-trust configured to OFF
mirror disabled, monitor disabled
Not member of any active trunks
Not member of any configured trunks
Port name is ->7.blade1.shelf1.access.aprd
```

```
MTU 1544 bytes, encapsulation ethernet 300 second input rate: 1509512 bits/sec, 713 packets/sec, 0.15% utilization 300 second output rate: 1992071 bits/sec, 751 packets/sec, 0.20% utilization 712896623 packets input, 204984611768 bytes, 0 no buffer Received 1315502 broadcasts, 53313 multicasts, 711527808 unicasts 0 input errors, 0 CRC, 0 frame, 0 ignored 0 runts, 29433839 giants NP received 712896745 packets, Sent to TM 712839428 packets NP Ingress dropped 57317 packets 796106728 packets output, 366570033985 bytes, 0 underruns Transmitted 2045784 broadcasts, 32330616 multicasts, 761730328 unicasts 0 output errors, 0 collisions NP transmitted 796106833 packets, Received from TM 796534170 packets
```

#### Syntax: show interface [ ethernet slot-port [ to slot-port ] ]

You can display information for all ports in a device by using the **show interface** command without options, or use the **ethernet** *slot-port* option to limit the display to a single port, or add the *to slot-port* option for a range of ports.

### Displaying the full port name for an Ethernet interface

To display the full port name for an ethernet interface using the CLI, enter the following command.

```
device# show interface brief slot 3
Port Link Port-State Dupl Speed Trunk Tag Priori MAC Name
Type
3/1 Up Forward Full 100G None No level0 0000.0002.025c default-port
3/2 Up Forward Full 100G None No level0 0000.0002.025d default-port
```

#### Syntax:show interfacebriefslot/port

If the port is logically UP (meaning not LK-DISABLE or LACP-BLOCKED or OAM-DISABLE or DOT1X-BLOCKED), then:

- If the port is untagged then the L2 Port state field indicates the STP State of Port in the untagged VLAN context.
- If the port is tagged or in dual mode (both tagged and untagged), then it is marked forwarding as a single port state cannot be determined.

In case Port is logically down, L2 Port State indicates reason for Logical Port down condition (LK-DISABLE or LACP-BLOCKED or OAM-DISABLE or DOT1X-BLOCKED)

Using the **show interface brief wide** command long port names are displayed. If the **show interface** brief wide command is not used only partial names are displayed in cases of long port names.

```
device# show interface brief wide
Port Link Port-State Speed Tag MAC
                                                Name
          Forward 10G No 0000.00f7.0230 port-connected-to-chicago
2/1
     αU
2.12
     DisabNone
                     None No
                              0000.00f7.0231
0000.00f7.0232
2/3
     DisabNone
                     None No
2/4
     DisabNone
                    None No 0000.00f7.0233
     Link Port-State Speed Tag MAC
Port.
                                                Name
          Forward 100M Yes 0000.00f7.0200
mgmt1 Up
Port Link Port-State Speed Tag MAC
                                                Name
                    N/A
1h1
     Up
          N/A
                          N/A N/A
device#
```

#### Syntax:show interfacebriefwideslot/port

 TABLE 18
 Display of show interface ethernet port

| This field                                                          | Displays                                                                                                                |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Module typeport# is state                                           | The <i>module type</i> variable specifies a type of interface module, such as 10GigabitEthernet.                        |
|                                                                     | The port# variable specifies the port number for the interface module.                                                  |
|                                                                     | The <i>state</i> variable if the interface module is up or down.                                                        |
| Line protocol is status                                             | The status variable specifies if the line protocol is up or down.                                                       |
|                                                                     | If the interface is down due to Remote Fault, the reason is indicated as: "(remote fault)".                             |
|                                                                     | If a port is down because of a Local Fault, the reason is indicated as: "(local fault)".                                |
| STP Root Guard is status                                            | The status variable specifies if the STP Root Guard is enabled or disabled.                                             |
| STP BPDU Guard is status                                            | The status variable specifies if the STP BPDU Guard is enabled or disabled.                                             |
| Hardware is module type                                             | The <i>module type</i> variable specifies a type of interface module, such as # GigabitEthernet.                        |
| Address is MAC- address                                             | The MAC- address variable specifies the MAC address of the port.                                                        |
| Configured speed and actual speed                                   | The speed that the module has been configured to operate at, and the actual speed it is currently operating at.         |
| Configured port speed and actual duplex                             | The port capacity that the module has been configured to operate at, and the actual speed it is currently operating at. |
| Member of VLAN # (untagged)                                         | The VLAN# (untagged) variable specifies a port that is a member of only 1 VLAN.                                         |
| port# L2 VLANS (tagged)  Port is in dual mode/untagged/ tagged mode | The port# L2 VLANS (tagged) variable specifies a port that is a member of multiple ports and untagged.                  |
| Port state is <i>status</i>                                         | A port is in <i>dual- mode</i> specifies member VLAN ports as untagged and tagged. The default mode is dual-mode.       |
|                                                                     | The status variable identifies the flow of traffic as forwarding or disabled.                                           |
| STP configured to status                                            | The status variable specifies if the STP is ON or OFF.                                                                  |
| Priority level Flow control <i>status</i>                           | The priority level assigned to the port-based VLAN. The priority level is on scale from 0-7. The default is 0.          |
| I IOW COITHOI STATUS                                                | The <i>status</i> variable is enabled or disabled.                                                                      |
| Priority force status                                               | The <i>status</i> variable specifies if the priority force on a port is disabled on enabled.                            |

 TABLE 18
 Display of show interface ethernet port (Continued)

| This field                                   | Displays                                                                                                                                                                                                                                    |  |  |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Drop precedence level value                  | Identifies the TOS or DSCP value in the IPv4 or IPv6 packet header.                                                                                                                                                                         |  |  |  |  |
|                                              | The <i>value</i> variable specifies the drop precedence on a scale from 0-3. Packets that contain a DSCP value of 0 are least likely to be dropped and packets with a value of 3 are most likely to be dropped. The default value is 0.     |  |  |  |  |
| Drop precedence force status                 | The <i>status</i> variable specifies the drop precedence force as enabled or disabled. Identifies the drop precedence if the force command is configured for a specific ingress port.                                                       |  |  |  |  |
| arp-inspection-trust configured to status    | The <i>status</i> variable specifies if arp-inspection-trust feature is configured ON or OFF. The default trust setting for a port is untrusted.                                                                                            |  |  |  |  |
| Mirror status                                | The <i>status</i> variable specifies if the port mirror command is configured as enabled or disabled.                                                                                                                                       |  |  |  |  |
| Monitor status                               | The <i>status</i> variable specifies if the port monitor command is configured as enabled or disabled.                                                                                                                                      |  |  |  |  |
| Trunk membership                             | The <i>Trunk membership</i> variable identifies the interface module as a member of a primary or secondary port. This specifies members of an active port or not a member of an active port.                                                |  |  |  |  |
| Configured trunk membership                  | The Configured trunk membership variable identifies the interface module as a member of any configured trunk or not a member of a configured trunk.                                                                                         |  |  |  |  |
| Port name                                    | The port name variable identifies the name assigned to the port.                                                                                                                                                                            |  |  |  |  |
| MTU # bytes , encapsulation ethernet         | Maximum Transmission Unit (MTU) refers to the size of the largest packet or frame that a known layer can pass forward.                                                                                                                      |  |  |  |  |
|                                              | The # bytes variable refers to size of the packet or frame.                                                                                                                                                                                 |  |  |  |  |
| # seconds input rate: value bits/            | The # seconds input rate refers to:                                                                                                                                                                                                         |  |  |  |  |
| sec, <i>value</i> packets/sec, % utilization | The value of bits received per second.                                                                                                                                                                                                      |  |  |  |  |
|                                              | <ul> <li>The <i>value</i> of packets received per second.</li> <li>The % utilization specifies the port's bandwidth used by received traffic.</li> </ul>                                                                                    |  |  |  |  |
| # seconds output rate: value                 | The # seconds output rate refers to:                                                                                                                                                                                                        |  |  |  |  |
| bits/sec, value packets/sec, %               | The value of bits transmitted per second.                                                                                                                                                                                                   |  |  |  |  |
| utilization                                  | The <i>value</i> of packets transmitted per second.                                                                                                                                                                                         |  |  |  |  |
|                                              | The % utilization specifies the port's bandwidth used by transmitted traffic.                                                                                                                                                               |  |  |  |  |
| value packets input, value                   | The value variable specifies the number of packets received.                                                                                                                                                                                |  |  |  |  |
| bytes, value no buffer                       | The value variable specifies the number of bytes received.  The value variable specifies the number of bytes received.  The value variable specifies the number of bytes received.                                                          |  |  |  |  |
|                                              | <ul> <li>The value no buffer variable specifies the total number of packets that have<br/>been discarded by the MAC device, due to temporary inability to store the<br/>packets before forwarding to the Network Processor (NP).</li> </ul> |  |  |  |  |

 TABLE 18
 Display of show interface ethernet port (Continued)

| This field                                                                          | Displays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Received value broadcasts, value multicasts, value unicasts                         | The <i>value</i> variable specifies the amount of traffic the interface module is receiving on broadcasts, multicasts, and unicast traffic.                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| value input errors, value CRC, value frame, value ignored                           | <ul> <li>The <i>value</i> input errors variable specifies the number of received packets with errors.</li> <li>The <i>value</i> CRC variable specifies the number of packets discarded by the MAC device due to detected CRC error.</li> <li>The <i>value</i> variable specifies the number of received packets with alignment errors.</li> <li>The <i>value</i> variable specifies the number of received packets that are discarded.</li> <li>These parameters are not currently supported and will always display 0.</li> </ul> |  |  |  |  |
| value runts, value giants                                                           | The <i>value</i> runts variable specifies the number of small packets that are less than 64 bytes.  The <i>value</i> giants variable specifies the number of large packets greater than                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                     | 1518 bytes.  These parameters are not currently supported and will always display 0.                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| NP received                                                                         | The number of packets received on the Network Processer (NP).                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| NP transmitted                                                                      | The number of packets sent from the Network Processor to the Traffic Manager (TM).                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| NP Ingress dropped                                                                  | The number of ingress packets dropped on the Network Processor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| value packets output value bytes                                                    | <ul> <li>The <i>value</i> variable specifies the number of transmitted packets.</li> <li>The <i>value</i> variable specifies the number of transmitted bytes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Transmitted <i>value</i> broadcasts, <i>value</i> multicasts, <i>value</i> unicasts | The <i>value</i> variable specifies the amount of traffic the interface module transmitted on broadcasts, multicasts, and unicast traffic.                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| value output errors, value collisions                                               | <ul> <li>The <i>value</i> variable specifies the number of transmitted packets with errors.</li> <li>The <i>value</i> variable specifies the number of packets that experienced multi-access collisions.</li> <li>These parameters are not currently supported and will always display 0.</li> </ul>                                                                                                                                                                                                                               |  |  |  |  |
| Network Processor transmitted value packets                                         | The <i>value</i> variable specifies the number of packets transmitted from the Network Processor.                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Received from Traffic Manager value packets                                         | The <i>value</i> variable specifies the number of packets received by the Network Processor from the Traffic Manager.                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |

# Displaying statistics information for an Ethernet port

You can view statistical information about the traffic passing through a specified Ethernet port in one of two ways. The **monitor** commands allow you to monitor traffic statistics in real time, while the **show statistics** command provides a snapshot of the most recent traffic statistics.

### Monitoring Ethernet port statistics in real time

You can monitor Ethernet traffic statistics in real time for a single port or traffic counters for all Ethernet ports using the **monitor** commands. When you execute a **monitor** command it retrieves and displays traffic statistics once per polling interval (2 seconds by default) until you pause or stop the display. The terminal window is fully occupied by the real-time display, and the command prompt is replaced by a footer listing options for pausing, canceling or modifying the display. When real-time monitoring is canceled, the command prompt is restored and the CLI resumes normal operation.

The following considerations affect the use of the **monitor** commands:

- Real-time monitor commands can be executed via Telnet, SSH, or a console session. Because of the
  slower communication rate in a console session, Brocade recommends executing the monitor
  commands only from a Telnet or SSH session. The default poll interval for telnet and SSH is 2
  seconds, but the default polling interval for a console session is 8 seconds. If you execute monitor
  commands from a console session, flickering of the display may occur.
- If the monitor command is executed in a console session, console debug messages will not be displayed on the console screen.
- When the monitor command is executed via telnet or SSH, debug messages will not be displayed during execution of the command even with a debug destination telnet session configuration present.
- monitor commands, in general, display two kinds of statistics: aggregated (counted since system startup or since last cleared using a clear command) and delta (counted since start of this monitor command or since last cleared using the c footer option on the monitor screen).
- Resizing of the terminal window is not supported during real-time statistics display. You must stop the execution of the command before resizing the terminal window.
- Terminal display size must be at least 80 characters wide by 24 lines in order to avoid garbled or truncated display.
- Execution of the monitor commands is unaffected by Telnet or SSH idle timeouts; as long as the monitor command is running, the terminal is not idle.
- There can be a noticeable impact on CPU utilization if the polling interval (monitor refresh interval) is short and multiple sessions are simultaneously executing **monitor** commands. When monitoring takes place by way of multiple simultaneous sessions, increase the polling interval to minimize impact on the CPU. (The polling interval/refresh rate ranges from 2 to 30 seconds, with a default value of 2 seconds for SSH or telnet connections and 8 seconds for a console session.)
- When you quit the monitor command, the CLI command prompt will usually be displayed at the bottom of the screen. If it appears instead in the middle of the screen, clear the screen using the command cls before executing further commands.

#### Real-time monitoring of traffic statistics for a specific Ethernet port

To monitor traffic statistics for a specific Ethernet port, enter the following command at the Privileged EXEC level of the CLI.

device# monitor statistics ethernet 1/2

Syntax: monitor statistics ethernet slot/port

The *slot/port* variable specifies the port for which you want to display statistics.

The **monitor statistics** command uses page mode display to show a detailed, port-specific traffic statistics screen which is updated every poll interval. (In the Brocade NetIron XMR Series and Brocade NetIron MLX Series, this command also shows a second screen displaying network processor statistics.) You can modify the display using the commands shown in the footer. (Note that when you enter footer options they are not executed immediately but will be interpreted by the monitor engine during the next polling cycle.) The footer commands and their effects are described in Table 19.

**TABLE 19** Footer commands for monitor statistics display

| otor communication mornior cianonics display                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Displays the transmit/output statistics (the default) and continues the execution of the original command.                                                                                                                                                                                                                                                                                     |
| Displays the receive/input statistics and continues the execution of the original command.                                                                                                                                                                                                                                                                                                     |
| Continues the execution of the command for the next available Ethernet interface. If there is no next interface available, the monitor continues to display statistics for the current interface.                                                                                                                                                                                              |
| Continues the execution of the command for the previous Ethernet interface. If there is no next interface available, the monitor continues to display statistics for the current interface.                                                                                                                                                                                                    |
| Clears the current delta counters and continues the execution of the original command. To clear the aggregate counters, use the appropriate <b>clear</b> command.                                                                                                                                                                                                                              |
| Freezes the execution of the command; pauses retrieval and display of the statistics. While display is frozen, the only valid commands are $\bf s$ and $\bf q$ : you can restart or quit the monitor, but any other command will be ignored.                                                                                                                                                   |
| Restarts the execution of the command; resumes retrieval and display of the statistics.                                                                                                                                                                                                                                                                                                        |
| Decreases the polling interval (monitor refresh interval) by one second and continues the execution of the original command with the new refresh interval. This option will decrease the refresh interval until it is equal to 2 seconds, the minimum supported refresh interval value. The default value is 2 seconds. This command is not displayed in the footer of the statistics screen.  |
| Increases the polling interval (monitor refresh interval) by one second and continues the execution of the original command with the new refresh interval. This option will increase the refresh interval until it is equal to 30 seconds, the maximum supported refresh interval value. The default value is 2 seconds. This command is not displayed in the footer of the statistics screen. |
| Quits the execution of the command and returns to the command prompt.                                                                                                                                                                                                                                                                                                                          |
| Brocade NetIron XMR Series and Brocade NetIron MLX Series only: Displays the first page of the multi-page display (page-up operation).                                                                                                                                                                                                                                                         |
| Brocade NetIron XMR Series and Brocade NetIron MLX Series only: Displays the second page of the multi-page display (page-down operation).                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Brocade Netlron XMR Series and Brocade Netlron MLX Series example**

device# monitor statistics ethernet 4/1

| Seconds: Page 1 of 2 Interface Tx Statistics Ethernet 4/1 Tx interface statistics Traffic statistics: | • | poll: 8 Time: Aug 1<br>Current | 9 16:10:59<br>Delta |
|-------------------------------------------------------------------------------------------------------|---|--------------------------------|---------------------|
|                                                                                                       |   |                                |                     |
| Out Packets                                                                                           |   | 17083660926                    | 533508              |
| Out Octets                                                                                            |   | 1093354299264                  | 34144512            |
| Out Unicast Packets                                                                                   |   | 17083660926                    | 533508              |
| Out Multicast Packets                                                                                 |   | 0                              | 0                   |
| Out Broadcast Packets                                                                                 |   | 0                              | 0                   |
| Error statistics:                                                                                     |   |                                |                     |
| Out Errors                                                                                            |   | 0                              | 0                   |
| Out Discards                                                                                          |   | 0                              | 0                   |

| Tx/Rx=t/r, Page1/2=u/d, Next/Prev=n/p, Clear= | c :Freeze=f/s Quit=q |             |
|-----------------------------------------------|----------------------|-------------|
| Seconds: 40                                   | poll: 8 Time: Aug 1  | .9 16:11:31 |
| Page 2 of 2 NP Tx Statistics                  | Current              | Delta       |
| Ethernet 4/1 Tx NP statistics                 |                      |             |
| Sent to MAC Packet                            | 17085805774          | 2670758     |
| Raw Good Packet                               | 17085805774          | 2670758     |
| IPX HW Forwarded Packet                       | 0                    | 0           |
| Receive from TM                               | 17085805775          | 2670759     |
| Unicast Packet                                | 17085805774          | 2670758     |
| Broadcast Packet                              | 0                    | 0           |
| Multicast Packet                              | 0                    | 0           |
| Error statistics :                            |                      |             |
| Bad Packet Count                              | 0                    | 0           |
|                                               |                      |             |
| ACL Drop                                      | 0                    | 0           |
| Source Port Supress Drop                      | 0                    | 0           |
| IPv4 Packet                                   | 0                    | 0           |
| IPv6 Packet                                   | 0                    | 0           |
| IPv4 Byte                                     | 0                    | 0           |
| IPv6 Byte                                     | 0                    | 0           |

Tx/Rx=t/r, Page1/2=u/d, Next/Prev=n/p, Clear=c :Freeze=f/s Quit=q

The previous output shows the first and second pages of the detailed traffic statistics display for Ethernet port 4/1 from a Brocade NetIron XMR Series or Brocade NetIron MLX Series, displaying transmit counters (the default).

#### **Brocade Netlron CES Series and Brocade Netlron CER Series example**

device# monitor statistics ethernet 1/2

| Seconds                             | : 26 | 6 poll: 2 Tim | e: Aug 19 16:01:41<br>Delta |
|-------------------------------------|------|---------------|-----------------------------|
| Ethernet 1/2 Tx interface statistic | s    |               |                             |
| Traffic statistics:                 |      |               |                             |
| In Packets                          |      | 24847720      | 7738201                     |
| In Octets                           |      | 1590253440    | 495244864                   |
| In Unicast Packets                  |      | 24847720      | 7738201                     |
| In Multicast Packets                |      | 0             | 0                           |
| In Broadcast Packets                |      | 0             | 0                           |
| Error statistics:                   |      |               |                             |
| In Errors                           |      | 0             | 0                           |
| In Discards                         |      | 0             | 0                           |

```
Tx/Rx=t/r, Next/Prev=n/p, Clear=c :Freeze=f/s Quit=q
```

The previous output shows the detailed traffic statistics display for Ethernet port 1/2 from a Brocade NetIron CES Series or Brocade NetIron CER Series, displaying transmit counters (the default).

#### Real-time monitoring of traffic statistics for all Ethernet ports

To monitor summary traffic data (total packets or bytes sent and received) for all Ethernet ports (displaying up to 16 ports per screen), enter the following command at the Privileged EXEC level of the CLI.

| device# mo |     |          | face traf<br>Time: Ma |      |         | • 0.8    |        |             |        |       |
|------------|-----|----------|-----------------------|------|---------|----------|--------|-------------|--------|-------|
| Interface  |     |          |                       |      | 1 20.12 | • • • •  |        |             |        |       |
| Incollace  | CLU |          | ackets                |      | Do      | lta      | 0+     | Packets     | т      | Delta |
| 1 /1       |     | THE      |                       |      |         |          | Out    |             | 1      |       |
| e1/1       |     |          | 24615                 |      | 4       | 004      |        | 24308       |        | 3986  |
| e1/2       |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/3       |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/4       |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/5       |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/6       |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/7       |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/8       |     |          | 0                     |      |         | 0        |        | 1           |        | 1     |
| e1/9       |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/10      |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/11      |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/12      |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/13      |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/14      |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/15      |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| e1/16      |     |          | 0                     |      |         | 0        |        | 0           |        | 0     |
| Packets=p  | or  | Bvtes=b, | Delta=d               | or I | Rate=r, | Clear=c, | Next=n | :Freeze=f/s | Ouit=a |       |

#### **Syntax:** monitor interface traffic [ ethernet slot/port ]

The **monitor interface traffic** command uses page mode display to produce an updating statistics screen which is updated every poll interval and which can be modified using the commands shown at the bottom of the display. (Note that when you enter footer options they are not executed immediately but will be interpreted by the monitor engine during the next polling cycle.) Normally the display begins with the lowest numbered Ethernet port; the **ethernet** *slot/port* option starts the display instead with the specified port.

The footer commands and their effects are described in Table 20.

**TABLE 20** Footer commands for monitor interface traffic display

| p | Displays input/output packets instead of bytes and continues the execution of the original command.   |
|---|-------------------------------------------------------------------------------------------------------|
| b | Displays input/output bytes instead of packets and continues the execution of the original command.   |
| d | Displays delta counters instead of rate counters and continues the execution of the original command. |
| r | Displays rate counters instead of delta counters and continues the execution of the original command. |

**TABLE 20** Footer commands for monitor interface traffic display (Continued)

| С                 | Clears the current delta counters and continues the execution of the original command. To clear the aggregate counters, use the appropriate <b>clear</b> command.                                                                                                                                                                                                                              |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n                 | Moves to the next group of interfaces and continues the execution of the original command.                                                                                                                                                                                                                                                                                                     |
| f                 | Freezes the execution of the command; pauses retrieval and display of the statistics. While display is frozen, the only valid commands are $\bf s$ and $\bf q$ : you can restart or quit the monitor, but any other command will be ignored.                                                                                                                                                   |
| s                 | Restarts the execution of the command; resumes retrieval and display of the statistics.                                                                                                                                                                                                                                                                                                        |
| F                 | Decreases the polling interval (monitor refresh interval) by one second and continues the execution of the original command with the new refresh interval. This option will decrease the refresh interval until it is equal to 2 seconds, the minimum supported refresh interval value. The default value is 2 seconds. This command is not displayed in the footer of the statistics screen.  |
| S                 | Increases the polling interval (monitor refresh interval) by one second and continues the execution of the original command with the new refresh interval. This option will increase the refresh interval until it is equal to 30 seconds, the maximum supported refresh interval value. The default value is 2 seconds. This command is not displayed in the footer of the statistics screen. |
| q or escape or ^c | Quits the execution of the command and returns to the command prompt.                                                                                                                                                                                                                                                                                                                          |

# Displaying recent traffic statistics for an Ethernet port

To display information from the **show statistics** command for an Ethernet port, enter the following command at any CLI level.

| device# show | w statistics ethe | rnet 9/1   |                  |         |            |   |
|--------------|-------------------|------------|------------------|---------|------------|---|
|              |                   |            | InOctets         | 2107534 | 98112      |   |
| OutOctets    | 210753550720      |            |                  |         |            |   |
|              | InPkts            | 1646511726 | OutPkt           | s       | 1646512119 |   |
| InBroa       | adcastPkts        | 0          | OutBroadcastPkts | 3       |            | 0 |
| InMult       | ticastPkts        | 0          | OutMulticastPkt  | S       | 0          |   |
| InUr         | nicastPkts        | 1646511726 | OutUnicastPkts   |         | 1646512142 |   |
| =            | InDiscards        | 0          | OutDiscard       | ds      | 0          |   |
|              | InErrors          | 0          | OutErroi         | îs      | 0          |   |
| InCollisions |                   | 0          | OutCollisior     | ns      | 0          |   |
|              |                   |            | OutLateCollision | ns      | 0          |   |
|              | Alignment         | 0          | FCS              | 3       |            | 0 |
| InFlo        | owCtrlPkts        | 0          | OutFlowCtrlPkts  | 3       |            | 0 |
|              | GiantPkts         | 0          | ShortPkts        | 3       |            | 0 |
| InH          | BitsPerSec        | 3440829770 | OutBitsPerSe     | ec ec   | 3440686411 |   |
| Inl          | PktsPerSec        | 3360185    | OutPktsPerSe     | ec      | 3360085    |   |
| InUt         | tilization        | 39.78%     | OutUtilizati     | Lon     | 39.78%     |   |

Syntax: show statistics ethernet slot/port

The *slot/port* variable specifies the port that you want to display statistics for.

| This field        | Displays                                                                                                                                                                                                               |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InOctets          | The total number of good octets and bad octets received.                                                                                                                                                               |
| OutOctets         | The total number of good octets and bad octets transmitted.                                                                                                                                                            |
| InPkts            | The total number of packets received. The count includes rejected and local packets that are not transmitted to the switching core for transmission.                                                                   |
| OutPkts           | The number of good packets received. The count includes unicast, multicast, and broadcasts packets.                                                                                                                    |
| InBroadcastPkts   | The total number of good broadcast packets received.                                                                                                                                                                   |
| OutBroadcastPkts  | The total number of good broadcast packets transmitted.                                                                                                                                                                |
| InMulticastPkts   | The total number of good multicast packets received.                                                                                                                                                                   |
| OutMulticastPkts  | The total number of good multicast packets transmitted.                                                                                                                                                                |
| InUnicastPkts     | The total number of good unicast packets received.                                                                                                                                                                     |
| OutUnicastPkts    | The total number of good unicast packets transmitted.                                                                                                                                                                  |
| InDiscards        | The total number of packets that were received and then dropped due to a lack of receive buffers.                                                                                                                      |
| OutDiscards       | The total number of packets that were transmitted and then dropped due to a lack of transmit buffers.                                                                                                                  |
| InErrors          | The total number of packets received that had Alignment errors or phy errors.                                                                                                                                          |
| OutErrors         | The total number of packets transmitted that had Alignment errors or phy errors.                                                                                                                                       |
| InCollisions      | The total number of packets received in which a Collision event was detected.                                                                                                                                          |
| OutCollisions     | The total number of packets transmitted in which a Collision event was detected.                                                                                                                                       |
| OutLateCollisions | The total number of packets transmitted in which a Collision event was detected, but for which a receive error (Rx Error) event was not detected.                                                                      |
| Alignment         | The total number of packets received that were from 64 - 1518 octets long, but had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). |
| FCS               | The Frame Checksum error.                                                                                                                                                                                              |
| InFlowCtrlPkts    | The total number of ingress flow control packets. "N/A" indicates that the interface module does not support flow control statistics.                                                                                  |
| OutFlowCtrlPkts   | The total number of egress flow control packets. "N/A" indicates that interface module does not support flow control statistics.                                                                                       |

| This field     | Displays                                                                                                                                                                                                       |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GiantPkts      | The total number of packets for which all of the following was true:  The data length was longer than the maximum allowable frame size.  No Rx Error was detected.  This counter is only for 10GbE interfaces. |
| ShortPkts      | The total number of packets received for which all of the following was true:  • The data length was less than 64 bytes.  • No Rx Error was detected.  • No Collision or late Collision was detected.          |
| InBitsPerSec   | The number of bits received per second.                                                                                                                                                                        |
| OutBitsPerSec  | The number of bits transmitted per second.                                                                                                                                                                     |
| InPktsPerSec   | The number of packets received per second.                                                                                                                                                                     |
| OutPktsPerSec  | The number of packets transmitted per second.                                                                                                                                                                  |
| InUtilization  | The percentage of the port's bandwidth used by received traffic.                                                                                                                                               |
| OutUtilization | The percentage of the port's bandwidth used by transmitted traffic.                                                                                                                                            |

# **Configuring SNMP to revert ifType to legacy values**

The ifType for all Ethernet interfaces (10/100/1G/10G) returns the value ethernetCsmacd(6) as mandated by RFC 2665. If you want ifType to return gigabitEthernet (117) or fastEther(62) for Ethernet interfaces, enter the following command.

device(config)# snmp-server legacy iftype

#### Syntax: [no] snmp-server legacy iftype

When this command is configured, the values gigabitEthernet (117) or fastEther(62) are returned for ifType. If you issue a **no snmp-server legacy iftype**, ifType returns ethernetCsmacd(6) for Ethernet interfaces.

# **Configuring snAgentConfigModuleType to return original values**

Enumeration values for snAgentConfigModuleType object in the SNMP MIB have been changed in Release 04.0.00 for the Brocade NetIron XMR Series and Brocade NetIron MLX Series to resolve enumeration conflicts with other hardware modules in the Unified IP MIB. For example, an SNMP get of the snAgentConfigModuleType of the 10x1GC module returned xmr20PortGigCopperSPModule(84). Beginning with Release 04.0.00, snAgentConfigModuleType returns fdryXmr20PortGigCopperSPModule(1084) for the 10x1GC module.

If you want snAgentConfigModuleType to return the enumeration values used before Release 04.0.00, configure the following command.

device(config) # snmp-server legacy module-type

#### Syntax: [no] snmp-server legacy module-type

Refer to the Unified IP MIB Reference for details on snAgentConfigModuleType.

# **Preserving interface statistics in SNMP**

By default, statistics for an interface is cleared from both the CLI and SNMP when the following commands are entered on the CLI:

- · clear statistics ethernet slot-number/port-number
- · clear statistics slot-number/port-number
- clear rmon statistics
- clear statistics log slot-number/port-number

If you want to preserve interface statistics in SNMP when these commands are entered, configure the following command at the Global level of the CLI.

device(config) # snmp-server preserve-statistics

#### Syntax: [no] snmp-server preserve-statistics

For details on which interface statistics are preserved in SNMP, refer to the "Preserved interface statistics for SNMP" section of the "Supported Standard MIBs" chapter in the *Unified IP MIB Reference*.

#### NOTE

Statistics for an interface will be different between the CLI and SNMP if **snmp-server preserve-statistics** is configured and the clear commands listed above are executed.

# Disabling CAM table entry aging

By default if no traffic hits a programmed flow-based content addressable memory (CAM) table entry, the CAM entry is removed from the system's CAM table. Depending on your network needs, however, you might have to disable the default behavior and force the system to retain CAM entries even when no traffic hits them. You can stop and start the CAM aging feature by using the **hw-aging** command in the global configuration mode.

Syntax: hw-aging disable | enable

The *disable* option prevents CAM entries from aging out. Even if no traffic hits a particular CAM entry, the entry remains in the CAM table.

The enable option returns the system to the default mode and unused CAM age out of the CAM table.

# **Data integrity protection**

Data integrity protection provides a way to detect and report potential problems with the internal data path of the network processor. It also allows you to tune the detection and reporting of these types of problems. In addition, a show command is provided to display the status of the system.

### **Configuring Detection Parameters**

Several parameters can be configured to support this data integrity protection: rolling window time frame, event thresholds for ingress and egress buffer events, and event thresholds for Control Static Random Access Memory (CSRAM) and Longest Prefix Match (LPM) memories. The configurations are applied system wide.

#### Rolling Window Time Frame

Data integrity protection implements a rolling window to calculate the most recent history of errors. The rolling window time frame is the period of time error events are recorded. Data integrity protection polls for events every 500 milliseconds and updates the current window.

```
device(config) # system np rolling-window 10
```

#### Syntax: [no] system np rolling-window window size

The *window size* parameter sets the rolling window time frame. The allowable window time is 10 to 60 seconds. Setting to 0 seconds will disable error monitoring.

The [no] option returns the threshold to the default setting.

#### **Event Threshold Configuration**

The data integrity protection implements configurable thresholds for generating a syslog and trap. There is one threshold for ingress buffer events and one threshold for egress buffer events. Once crossed, a syslog and trap will be generated.

To prevent excessive log and traps there is a 10 minute period before another syslog or trap is generated. Setting a threshold to zero disables error detection for the monitor point on all network processors.

The default threshold values are different for ingress and egress. The ingress error count is based on the errors detected on each 32-bit word. The egress error count is based on the number of packets with one or more errors.

The system np ingress-threshold command configures the ingress buffer error reporting threshold.

```
device(config) # system np ingress-threshold 20
```

#### Syntax: [no] system np ingress-threshold threshold

The *threshold* range is 0 to 120 events. Setting the threshold to 0 disables the monitor point for all network processors. The default setting is 20 events.

The [no] option returns the threshold to default.

The system np egress-threshold command configures the egress buffer error reporting threshold.

```
device(config) # system np egress-threshold 20
```

#### Syntax: [no] system np egress-threshold threshold

The *threshold* range is 0 to 120 events. Setting the threshold to 0 disables the monitor point for all network processors. The default setting is 3 events.

The [no] option returns the threshold to default.

#### Configuring the threshold parameters for CSRAM

Use the **system np control-ram-threshold** threshold command to configure the CSRAM threshold parameter when monitoring low level memory events occurring within the CSRAM memory module of the network processor.

Configure the Rolling Window Time Frame. Refer to the Rolling Window Time Frame on page 103.

#### NOTE

Configuring the threshold parameters for CSRAM is supported only on the Brocade NetIron CER Series and the Brocade NetIron CES Series platforms.

- In privileged EXEC mode, issue the configure terminal command to enter the global configuration mode.
- Enter the system np command to configure the NP error reporting threshold parameter on the device.

```
device (config) #system np
```

3. Enter the **system np control** command to configure the CSRAM error reporting threshold parameter on the device.

```
device (config) #system np control control-ram-threshold Configure the Control SRAM error reporting threshold
```

4. Enter the **system np control-ram-threshold** *threshold* command with the appropriate threshold parameter.

```
device (config) #system np control-ram-threshold 20
```

5. Enter the **system np control-ram-threshold 0** command to disable the monitoring of low level memory events.

```
device (config) #system np control-ram-threshold 0
```

6. Enter the **no system np control-ram-threshold** threshold command to reset the threshold value to default.

```
device (config) #no system np control-ram-threshold 20
```

#### NOTE

By default, the feature is enabled with default configuration values. When the default configuration values are present, the **show run** command does not display CSRAM error configuration information. The **show run** command displays CSRAM error configuration information only when a non-default value is configured or when the feature is disabled.

The following example configures the CSRAM error reporting threshold parameter to 20 events on the device.

```
device(config) #system np
                       Configure the Control SRAM error reporting threshold
control-ram-threshold
 egress-threshold
                          Configure the egress buffer error reporting threshold
                          Configure the ingress buffer error reporting threshold
  ingress-threshold
 lpm-ram-threshold
                          Configure the LPM memory error reporting threshold
 rolling-window
                          Configure the rolling window time frame
device(config) #system np control
                       Configure the Control SRAM error reporting threshold
control-ram-threshold
device(config) #system np control-ram-threshold 20
        0-120 events (default:10 disable: 0)
DECIMAL
device(config) #system np control-ram-threshold 20
```

#### Configuring the threshold parameters for LPM memory

Use the **system np lpm-ram-threshold** threshold command to configure the LPM memory threshold parameter when monitoring low level memory events occurring within the LPM memory module of the network processor.

Configure the Rolling Window Time Frame. Refer to the Rolling Window Time Frame on page 103.

#### **NOTE**

Configuring the threshold parameters for LPM memory is supported only on the Brocade NetIron CER Series and the Brocade NetIron CES Series platforms.

- In privileged EXEC mode, issue the configure terminal command to enter the global configuration mode.
- Enter the system np command to configure the NP error reporting threshold parameter on the device.

```
device (config) #system np
```

Enter the system np lpm command to configure the LPM memory error reporting threshold parameter on the device.

```
device (config) #system np lpm
lpm-ram-threshold Configure the LPM memory error reporting threshold
```

4. Enter the **system np lpm-ram-threshold** threshold command with the appropriate threshold parameter.

```
device (config) #system np lpm-ram-threshold 30
```

Enter the system np lpm-ram-threshold 0 command to disable the monitoring of low level memory events.

```
device (config) #system np lpm-ram-threshold 0
```

6. Enter the **no system np lpm-ram-threshold** threshold command to reset the threshold value to default.

```
device (config) #no system np lpm-ram-threshold 30
```

#### **NOTE**

By default, the feature is enabled with default configuration values. When the default configuration values are present, the **show run** command does not display LPM memory error configuration information. The **show run** command displays LPM memory error configuration information only when a non-default value is configured or when the feature is disabled.

The following example configures the LPM memory error reporting threshold parameter to 20 events on the device.

```
device(config) #system np
control-ram-threshold
                       Configure the Control SRAM error reporting threshold
  egress-threshold
                          Configure the egress buffer error reporting threshold
  ingress-threshold
                          Configure the ingress buffer error reporting threshold
  lpm-ram-threshold
                          Configure the LPM memory error reporting threshold
  rolling-window
                          Configure the rolling window time frame
device(config) #system np lpm
lpm-ram-threshold
                        Configure the LPM memory error reporting threshold
device(config) #system np lpm-ram-threshold 20
         0-120 events (default:10 disable: 0)
device(config) #system np lpm-ram-threshold 20
```

#### **Showing Status**

The **show np buffer-errors** command displays the count of error events for the rolling window.

```
device# show np buffer-errors
```

### **Configuring Basic Parameters**

|             | Ingress |            | Egr     | ess        |
|-------------|---------|------------|---------|------------|
| Ports       | Current | Cumulative | Current | Cumulative |
| 1/1- 1/24   | 15      | 37         | 0       | 0          |
| 1/25 - 1/48 | 0       | 0          | 0       | 0          |
| 2/1 - 2/2   | 0       | 0          | 0       | 0          |

Syntax: show np buffer-errors

#### **Displaying CSRAM error statistics**

Displays the CSRAM error statistics information for the configured ports. Each port range corresponds to one network processor.

Syntax show np control-ram-errors

Modes Privileged EXEC level mode.

#### **Command Output** The **show np control-ram-errors** command displays the following information:

device#show np control-ram-errors

| Output field | Description                                                                                                                                                                                                                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ports        | The ports that are configured with CSRAM threshold parameters.                                                                                                                                                                                                                                                                                   |
| Current      | The current column displays the number of errors recorded in the rolling window time frame. The rolling window time frame records the most recent number of errors. Refer to the Rolling Window Time Frame on page 103 for more information. The threshold configuration parameter is applied on the current value of the recorded error events. |
| Cumulative   | The cumulative column displays the number of errors recorded from the time the feature was first enabled.                                                                                                                                                                                                                                        |

#### **Examples** The following example displays CSRAM error statistics for the packet processor.

device#show np control-ram-errors

#### History

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

#### **Displaying LPM memory error statistics**

Displays the LPM memory error statistics information for the configured ports. Each port range corresponds to one network processor.

#### Syntax show np lpm-ram-errors

Modes Privileged EXEC level mode.

#### **Command Output**

The **show np lpm-ram-errors** command displays the following information:

device#show np lpm-ram-errors

Ports Current Cumulative Current Cumulative Current Cumulative 
$$1/1$$
 -  $1/24$  0 3 0 3 0 3  $0$  3  $0$  3  $0$  3  $0$  3

| Output field | Description                                                                                                                                                                                                                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ports        | The ports that are configured with LPM memory threshold parameters.                                                                                                                                                                                                                                                                              |
| Current      | The current column displays the number of errors recorded in the rolling window time frame. The rolling window time frame records the most recent number of errors. Refer to the Rolling Window Time Frame on page 103 for more information. The threshold configuration parameter is applied on the current value of the recorded error events. |
| Cumulative   | The cumulative column displays the number of errors recorded from the time the feature was first enabled.                                                                                                                                                                                                                                        |

#### Examples

The following example displays LPM memory error statistics for the packet processor.

device#show np lpm-ram-errors

|            | LPM 0   |            | LPM 1   |            | LPM 2   |            |
|------------|---------|------------|---------|------------|---------|------------|
| Ports      | Current | Cumulative | Current | Cumulative | Current | Cumulative |
| 1/1 - 1/24 | 0       | 0          | 0       | 0          | 0       | 0          |
| 2/1 - 2/2  | 0       | 0          | 0       | 0          | 0       | 0          |

#### History

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# **Telemetry Solutions**

The table below displays the individual Brocade devices and the Interface Parameters features they support .

**TABLE 21** Supported Brocade interface parameter features

| Features<br>supported  | Brocade<br>Netlron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>Netlron<br>CES Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>Netiron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>Netlron CES<br>Series 2000<br>Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
|------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Telemetry<br>Solutions | Yes                                           | Yes                                 | No                                                                    | No                                                                    | No                                                                    | No                                                                    | No                                                                                 |

# **About telemetry solutions**

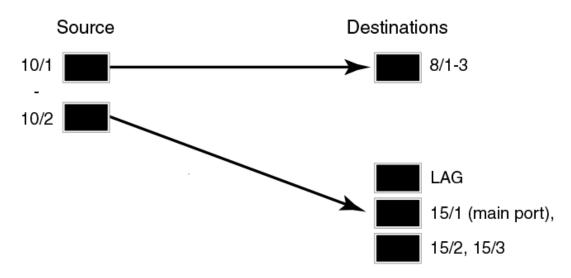
Telemetry Solutions provides a VLAN matching capability for IPv4 and IPv6 ACLs. Telemetry Solutions also includes new types of PBR next-hop (network interface). You can create policies that classify network traffic into different categories based on the extended ACLs and forward each category of traffic differently, based on the configured policy. With Telemetry Solutions, the ACL match can be based on both VLAN ID and the existing Layer 3 or Layer 4 fields.

Telemetry Solutions improves the user experience with options to classify the network traffic (VLAN matching) and providing more choices for PBR forwarding. You can also utilize the **rule-name** field in the route-map to organize and extract information about PBR configurations.

## **Limitations**

The ACL keyword *VLAN* is only intended to be used in PBR. For ACLs that contain the *VLAN* keyword and is used as standalone ACL, the following restrictions apply:

- An ACL that contains the VLAN keyword cannot be applied to Virtual Interfaces (VEs).
- The VLAN keyword will be ignored and will have no effect if the ACL is:
  - applied to a physical interface or LAG interface
  - applied to a management interface
  - used as an IP receive ACL
  - used in ACL-based rate-limiting
- If the set interface command exists in a route-map and the route-map is applied to a interface, it will
  only permit packets from the configured VLAN unless the command allow-all-vlan pbr is also
  configured on the interface.


# **Configuration examples**

#### **NOTE**

Telemetry can also be configured from SNMP. Refer to the *Unified IP MIB Reference guide* for more information.

## **Configuration example 1**

FIGURE 1 Configuration example 1



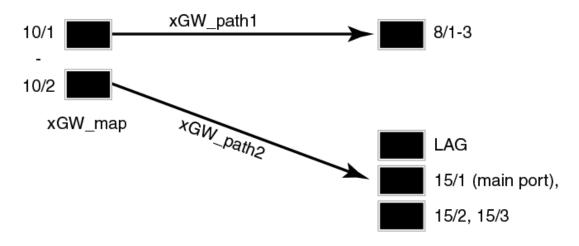
### **ACL Definition**

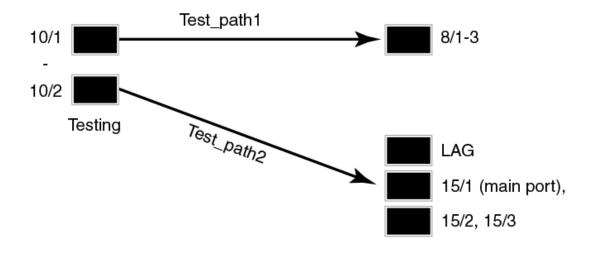
ip access-list extended xGW\_Filter1 permit vlan 114 udp any eq 1066 any ipv6 access-list xGW\_Filter1 permit vlan 112 ipv6 2001:db8:200::/48 any ip access-list extended xGW\_Filter2 permit vlan 2405 ip host any permit vlan 3000 ip any any

### ACL Association and Path Naming

route-map xGW map permit 1 rule-name xGW\_path1 match ip address xGW\_Filter1 match ipv6 address xGW\_Filter1 set next-hop-flood-vlan 2 preserve-vlan route-map xGW\_map permit 2 rule-name xGW\_path2 match ip address xGW\_Filter2 set interface ethernet 15/1 preserve-vlan

## Associate Path Policy to ingress


interface ethernet 10/1
ip policy route-map xGW\_map
ipv6 policy route-map xGW\_map
allow-all-vlan pbr
interface ethernet 10/2
ip policy route-map xGW\_map
allow-all-vlan pbr


## **Egress Port Definition**

vlan 2 untag ethernet 8/1 to 8/3 lag iris\_view ports ethernet 15/1 to 15/3 primary port 15/1 deploy

## **Configuration example 2**

FIGURE 2 Configuration example 2





### Define Test ACL configurations

ip access-list extended Test\_filter1
permit vlan 112 ip host 10.100.50.1 any
permit vlan 114 udp any eq 2075 any
ip access-list extended Test\_filter2
deny vlan 2405 ip host 10.33.44.55 any
permit vlan 3000 ip any any

### Associate Test ACL with Test map/paths

route-map Testing permit 1
rule-name Test\_path1
match ip address Test\_filter1

set next-hop-flood-vlan 2 preserve-vlan
route-map Testing permit 2
rule-name Test\_path2
match ip address Test\_filter2
set interface ethernet 15/1 preserve-vlan

### Apply new map to Source ports

interface ethernet 10/1
 ip policy route-map Testing
allow-all-vlan pbr
interface ethernet 10/2
 ip policy route-map Testing
allow-all-vlan pbr

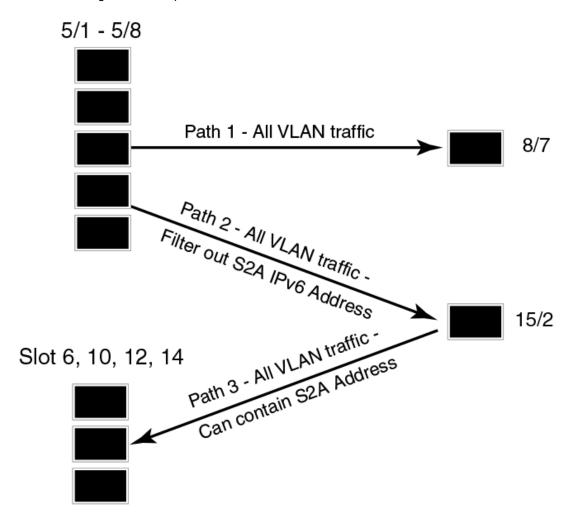
### Rebind ACL's

ip rebind-acl all

## Modify destination ports (if necessary)

vlan 2 untag ethernet 8/1 to 8/3 lag iris view ports ethernet 15/1 to 15/3 primary-port 15/1 deploy

## Apply production map to Source ports


interface ethernet 10/1
ip policy route-map xGW\_map
allow-all-vlan pbr
interface ethernet 10/2
ip policy route-map xGW\_map
allow-all-vlan pbr
Rebind ACL's
ip rebind-acl all

### Modify destination ports (if necessary)

vlan 2 untag ethernet 8/1 to 8/3 lag iris view ports ethernet 15/1 to 15/3 primary-port 15/1 deploy

## **Configuration example 3**

FIGURE 3 Configuration example 3



### Define ACL configurations

```
ipv6 access-list S2A_traffic permit vlan 2011 ipv6 2001:db8:200:1001:194:200::/96 any permit vlan 2012 ipv6 2001:db8:200:1001:194:200::/96 any permit vlan 2015 ipv6 2001:db8:200:1001:194:200::/96 any permit vlan 2016 ipv6 2001:db8:200:1001:194:200::/96 any permit vlan 2405 ipv6 2001:db8:200:1001:194:200::/96 any permit vlan 2435 ipv6 2001:db8:200:1001:194:200::/96 any ipv6 access-list Non_S2A_Traffic permit ipv6 any any ip access-list extended Non_S2A_Traffic permit ip any any
```

### Associate Traffic ACL with S2A map

route-map S2A permit 1

```
rule-name S2A_Path
match ipv6 address S2A_Traffic
set interface ethernet 8/7 preserve-vlan
route-map S2A permit 2
rule-name All-Traffic
match ip address Non_S2A_Traffic
match ipv6 address Non_S2A_Traffic
set next-hop-flood-vlan 2 preserve-vlan
```

### Apply S2A map to source ports

```
interface ethernet 5/1
ip policy route-map S2A
ipv6 policy route-map S2A
allow-all-vlan pbr
interface ethernet 5/8
ip policy route-map S2A
ipv6 policy route-map S2A
allow-all-vlan pbr
```

### Configure destination ports

```
vlan 2
untag ethernet 8/7 ethernet 15/2
```

With this construct, S2A traffic is explicitly allowed to 8/7 and all other traffic is also sent to 8/7 and 15/2.

### **Define ACL configurations**

```
ipv6 access-list S2A_OtherVLAN permit vlan 2007 ipv6 any any permit vlan 2008 ipv6 any any permit vlan 2009 ipv6 any any permit vlan 2010 ipv6 any any permit vlan 2017 ipv6 any any permit vlan 2019 ipv6 any any permit vlan 2019 ipv6 any any permit vlan 2010 ipv6 any any permit vlan 2010 ipv6 any any permit vlan 2011 ipv6 any any permit vlan 2017 ipv6 any any permit vlan 2019 ipv6 any any permit vlan 2019 ipv6 any any
```

#### **NOTE**

This would include any S2A IP address packets from these VLANS.

### Associate Test ACL with Test map/paths

```
route-map OtherSlot permit 1
rule-name S2A_OtherVLANPath
match ipv6 address S2A_OtherVLAN
set interface ethernet 15/2 preserve-vlan
```

### Apply other slot map to source ports on slot 6, 10, 12, 14

```
interface ethernet 6/1
ipv6 policy route-map OtherSlot
allow-all-vlan pbr
```

## **Configuring**

- 1. Configure IPv4/IPv6 ACLs to match desired traffic.
- 2. Configure PBR policies to redirect traffic to desired destinations.
- 3. Apply the PBR policies to interfaces (physical ports, LAG ports or Virtual interfaces).
- 4. Use the new CLI commands to display information about PBR configurations and operations.

### NOTE

If both IPv4 and IPv6 traffic need to be subjected to PBR, the IPv4 and IPv6 access lists need to be created separately. In addition, both **ip policy route-map xGW\_map** and **ipv6 policy route-map xGW\_map** need to be configured on the interface.

# **Remote Network Monitoring**

Table 22 displays the individual Brocade devices and the Remote Network Monitoring features they support.

TABLE 22 Supported Brocade remote network monitoring features

| Features<br>supported           | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>Netlron<br>MLX<br>Series | Brocade NetIron CES Series 2000 Series BASE package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
|---------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Remote<br>Network<br>Monitoring | Yes                                           | Yes                                 | Yes                                                 | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Statistics<br>(RMON Group<br>1) | Yes                                           | Yes                                 | Yes                                                 | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| History<br>(RMON Group<br>2)    | Yes                                           | Yes                                 | Yes                                                 | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Alarms<br>(RMON Group<br>3)     | Yes                                           | Yes                                 | Yes                                                 | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Events<br>(RMON Group<br>9)     | Yes                                           | Yes                                 | Yes                                                 | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |

This chapter describes the remote monitoring features available on Brocade products:

- Remote Monitoring (RMON) statistics All Brocade products support RMON statistics on the individual port level. Refer to RMON support on page 119.
- **sFlow** sFlow collects interface statistics and traffic samples from individual interfaces on a device and exports the information to a monitoring server.

# **Basic management**

The following sections contain procedures for basic system management tasks.

## **Viewing system information**

You can access software and hardware specifics for a device.

To view the software and hardware details for the system, enter the **show version** command.

device# show version
Syntax: show version

## **Viewing configuration information**

You can view a variety of configuration details and statistics with the show option. The **show** option provides a convenient way to check configuration changes before saving them to flash.

The show options available will vary for the device and by configuration level.

To determine the available show commands for the system or a specific level of the CLI, enter the following command.

device# show ?

Syntax: show option

You also can enter "show " at the command prompt, then press the TAB key.

## **Viewing port statistics**

Port statistics are polled by default every 10 seconds.

You can view statistics for ports by entering the following **show** commands:

- · show interfaces
- · show configuration

## **Viewing STP statistics**

You can view a summary of STP statistics for the device. STP statistics are by default polled every 10 seconds.

To view spanning tree statistics, enter the **show span** command. To view STP statistics for a VLAN, enter the **span vlan** command.

## **Clearing statistics**

You can clear statistics for many parameters with the clear option.

To determine the available clear commands for the system, enter the following command.

device# clear ?

Syntax: clear option

You also can enter "clear" at the command prompt, then press the TAB key.

#### **NOTE**

Clear commands are found at the Privileged EXEC level.

# **RMON** support

The RMON agent supports the following groups. The group numbers come from the RMON specification (RFC 1757):

- Statistics (RMON Group 1)
- · History (RMON Group 2)
- Alarms (RMON Group 3)
- · Events (RMON Group 9)

The CLI allows you to make configuration changes to the control data for these groups, but you need a separate RMON application to view and display the data graphically.

## **Statistics (RMON group 1)**

Count information on multicast and broadcast packets, total packets sent, undersized and oversized packets, CRC alignment errors, jabbers, collision, fragments and dropped events is collected for each port on a device.

No configuration is required to activate collection of statistics for the device. This activity is by default automatically activated at system start-up.

#### NOTE

The NetIron system provides limited MIB counters. Brocade uses "rmon\_giant" to represent oversized packet, i.e 9216 and above.

You can view a textual summary of the statistics for all ports by entering the following CLI command.

```
device(config) # show rmon statistics
Ethernet statistics 1 is active, owned by monitor
 Interface 1/1 (ifIndex 1) counters
                  Octets
             Drop events
                                                      Packets
                                  0
                                               Multicast pkts
          Broadcast pkts
    CRC alignment errors
                                               Undersize pkts
          Oversize pkts
                                                    Fragments
                                                   Collisions
                 Jabbers
                                       65 to 127 octets pkts
          64 octets pkts
                                                                       0
  128 to 255 octets pkts
                                       256 to 511 octets pkts
                                                                       0
  512 to 1023 octets pkts
                                  0 1024 to 1518 octets pkts
```

Syntax: show rmon statistics [  $num \mid$  ethernet  $slot/port \mid$  management  $num \mid$  | begin  $expression \mid$  exclude  $expression \mid$  include expression ]

The *portnum* parameter specifies the port number. You can use the physical port number or the SNMP port number. The physical port number is based on the product.

• The ports are numbered according to slot and port. For example, the first port in slot 1 is 1/1. The third port in slot 7 is 7/3.

The SNMP numbers of the ports start at 1 and increase sequentially. For example, if you are using a Chassis device and slot 1 contains an 8-port module, the SNMP number of the first port in slot 2 is 9. The physical port number of the same port is 2/1.

This command shows the following information.

**TABLE 23** Export configuration and statistics

| This line            | Displays                                                                                                                                                                                                                                                    |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Octets               | The total number of octets of data received on the network.                                                                                                                                                                                                 |
|                      | This number includes octets in bad packets. This number does not include framing bits but does include Frame Check Sequence (FCS) octets.                                                                                                                   |
| Drop events          | Indicates an overrun at the port. The port logic could not receive the traffic at full line rate and had to drop some packets as a result.                                                                                                                  |
|                      | The counter indicates the total number of events in which packets were dropped by the RMON probe due to lack of resources. This number is not necessarily the number of packets dropped, but is the number of times an overrun condition has been detected. |
| Packets              | The total number of packets received.                                                                                                                                                                                                                       |
|                      | This number includes bad packets, broadcast packets, and multicast packets.                                                                                                                                                                                 |
| Broadcast pkts       | The total number of good packets received that were directed to the broadcast address.                                                                                                                                                                      |
|                      | This number does not include multicast packets.                                                                                                                                                                                                             |
| Multicast pkts       | The total number of good packets received that were directed to a multicast address.                                                                                                                                                                        |
|                      | This number does not include packets directed to the broadcast address.                                                                                                                                                                                     |
| CRC alignment errors | The total number of packets received that were from 64 - 1518 octets long, but had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).                                      |
|                      | The packet length does not include framing bits but does include FCS octets.                                                                                                                                                                                |
| Undersize pkts       | The total number of packets received that were less than 64 octets long and were otherwise well formed.                                                                                                                                                     |
|                      | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                      |
| Fragments            | The total number of packets received that were less than 64 octets long and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).                                         |
|                      | It is normal for this counter to increment, since it counts both runts (which are normal occurrences due to collisions) and noise hits.                                                                                                                     |
|                      | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                      |

 TABLE 23
 Export configuration and statistics (Continued)

| This line          | Displays                                                                                                                                                                                                                                                                               |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Oversize packets   | The total number of packets received that were longer than 1518 octets and were otherwise well formed.                                                                                                                                                                                 |  |  |  |  |
|                    | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                                                 |  |  |  |  |
| Jabbers            | The total number of packets received that were longer than 1518 octets and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).                                                                     |  |  |  |  |
|                    | NOTE This definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms. |  |  |  |  |
|                    | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                                                 |  |  |  |  |
| Collisions         | The best estimate of the total number of collisions on this Ethernet segment.                                                                                                                                                                                                          |  |  |  |  |
| 64 octets pkts     | The total number of packets received that were 64 octets long.                                                                                                                                                                                                                         |  |  |  |  |
|                    | This number includes bad packets.                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                                                 |  |  |  |  |
| 65 to 127 octets   | The total number of packets received that were 65 - 127 octets long.                                                                                                                                                                                                                   |  |  |  |  |
| pkts               | This number includes bad packets.                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                                                 |  |  |  |  |
| 128 to 255 octets  | The total number of packets received that were 128 - 255 octets long.                                                                                                                                                                                                                  |  |  |  |  |
| pkts               | This number includes bad packets.                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                                                 |  |  |  |  |
| 256 to 511 octets  | The total number of packets received that were 256 - 511 octets long.                                                                                                                                                                                                                  |  |  |  |  |
| pkts               | This number includes bad packets.                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                                                 |  |  |  |  |
| 512 to 1023 octets | The total number of packets received that were 512 - 1023 octets long.                                                                                                                                                                                                                 |  |  |  |  |
| pkts               | This number includes bad packets.                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                                                 |  |  |  |  |
| 1024 to 1518       | The total number of packets received that were 1024 - 1518 octets long.                                                                                                                                                                                                                |  |  |  |  |
| octets pkts        | This number includes bad packets.                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | This number does not include framing bits but does include FCS octets.                                                                                                                                                                                                                 |  |  |  |  |

#### NOTE

The number of entries in a RMON statistics table directly corresponds to the number of ports on a system. For example, if the system is a 26 port device, there will be 26 entries in the statistics display.

## **History (RMON group 2)**

All active ports by default will generate two history control data entries per active device interface. An active port is defined as one with a link up. If the link goes down the two entries are automatically be deleted.

Two history entries are generated for each device:

- · a sampling of statistics every 30 seconds
- · a sampling of statistics every 30 minutes

The history data can be accessed and displayed using any of the popular RMON applications

A sample RMON history command and its syntax is shown below.

```
device(config) # rmon history 1 interface 1 buckets 10 interval 10 owner nyc02
```

Syntax: rmon history entry-number interface ethernet slot/port | management num buckets numberinterval sampling-interval owner text-string

You can modify the sampling interval and the bucket (number of entries saved before overwrite) using the CLI. In the above example, owner refers to the RMON station that will request the information.

#### NOTE

To review the control data entry for each port or interface, enter the **show rmon history** command.

## Alarm (RMON group 3)

Alarm is designed to monitor configured thresholds for any SNMP integer, time tick, gauge or counter MIB object. Using the CLI, you can define what MIB objects are monitored, the type of thresholds that are monitored (falling, rising or both), the value of those thresholds, and the sample type (absolute or delta).

An alarm event is reported each time that a threshold is exceeded. The alarm entry also indicates the action (event) to be taken if the threshold be exceeded.

A sample CLI alarm entry and its syntax is shown below.

```
device(config) \# rmon alarm 1 ifInOctets.6 10 delta rising-threshold 100 1 falling threshold 50 1 owner nyc02
```

**Syntax: rmon alarm** entry-number MIB-object.interface-num sampling-time sample-type threshold-type threshold-value event-number threshold-type threshold-value event-number **owner**text-string

The sample-type can be absolute or delta.

The threshold-type can be falling-threshold or rising-threshold.

## **Event (RMON group 9)**

There are two elements to the Event Group -- the event control table and the event log table .

The event control table defines the action to be taken when an alarm is reported. Defined events can be found by entering the CLI command, show event. The Event Log Table collects and stores reported events for retrieval by an RMON application.

A sample entry and syntax of the event control table is shown below.

device(config) # rmon event 1 description 'testing a longer string' log-and-trap public owner nyc02

Syntax: rmon event event-entry description text-stringlog | trap | log-and-trap | owner rmon-station

Event (RMON group 9)

# **Continuous System Monitor**

| Continuous system monitor overview | 126 |
|------------------------------------|-----|
| Event monitoring                   |     |
| Histogram information              | 128 |
| NP memory error monitoring         | 134 |
| Port CRC error monitoring test     | 136 |
| TM DRAM CRC error monitoring       |     |
| Scheduled System Monitor           |     |

Table 24 displays the individual devices and the Continuous System Monitor features they support.

**TABLE 24** Supported Continuous System Monitor features

| Features<br>supported                                             | Brocade<br>NetIron<br>XMR<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>Netlron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron<br>CER Series<br>2000 Series<br>Advanced<br>Services<br>package |
|-------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Continuous<br>System<br>Monitoring<br>(Sysmon)                    | Yes                                 | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| System Resource<br>Histogram                                      | Yes                                 | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| System Resource<br>Histogram<br>Enhancements for<br>Memory Errors | Yes                                 | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Automatic CRC<br>Error Monitoring                                 | Yes                                 | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Memory Error<br>Monitoring                                        | Yes                                 | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Scheduled<br>System Monitor                                       | Yes                                 | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |

This chapter contains the following sections:

- · Continuous system monitor overview on page 126
- Event monitoring on page 126
- Histogram information on page 128

<sup>&</sup>lt;sup>2</sup> Supported on the following interface cards: BR-MLX-100Gx2-X(100G), BR-MLX-10Gx24, BR-MLX-40Gx4-X, Gen-1 cards (NI-XMR-10Gx4, NI-MLX-10Gx4), Gen-1.1 cards (BR-MLX-1GCx24-X, BR-MLX-1GFx24-X, BR-MLX-10Gx4-X) and Gen-2 cards (NI-MLX-10Gx8-M, NI-MLX-10Gx8-D, BR-MLX-10Gx8-X).

- NP memory error monitoring on page 134
- · Port CRC error monitoring test on page 136
- Scheduled System Monitor on page 139

# **Continuous system monitor overview**

Continuous system monitoring (Sysmon) is implemented to monitor the overall system's health. Sysmon is a system-wide, modular monitoring service. It monitors different system components of a device to determine if those components are operating correctly.

Sysmon periodically monitors the system for defined event types such as errors on TM and FE links. Sysmon runs as a background process. It has a default policy that controls what is monitored and what actions will be taken if a fault is detected. Sysmon generates the following log outputs for the monitoring information.

- Syslog
- · Sysmon internal log

#### **NOTE**

Syslog reported Sysmon alarm messages should be reported to Brocade Technical Support.

Internal logs are generated to give more information to Brocade Technical Support when a problem occurs. The existence of internal logs doesn't mean the system is experiencing problems, or that some actions need to be taken. If Sysmon detects a failure, it will report the failure by generating the syslog messages. In some cases the failed device will be shutdown or isolated from the system. In other cases the software may attempt to recover the failed device.

Overall system performance depends on how resources are utilized. Any shortage of resources impacts the overall performance of a system. The system resource histogram feature provides detailed information on how system resources are used. It collects information on task CPU usage, buffer usage and memory usage and stores this information in internal memory.

Runtime diagnostics are a critical component of a networking system to provide maximum uptime by detecting and isolating faults, and then recovering from them. A system runtime diagnostics framework supports execution of diagnostic tests such as the port CRC error monitoring test. It manages this background diagnostic test and provides mechanisms for taking corrective action.

## **Event monitoring**

This section discusses the following topics:

- Event monitoring overview on page 126
- Event types on page 127
- Displaying event information on page 127

## **Event monitoring overview**

The Sysmon monitors a number of event types periodically. Sysmon detects errors based on polling and interrupt. Polling is reading specific hardware registers. Interrupt is an instantaneous event detection by Sysmon. Sysmon continuously monitors management processor and interface

processors via polling and interrupt methods. Once a threshold is reached, Sysmon logs the event in the internal Sysmon log and takes an action based on the event type. There are the following action types:

- · Syslog: Generates a message in the Syslog
- · Shutdown link: Disables the link between the TM and the FE
- SNMP trap: Generates an SNMP trap

By default, SYSMON is enabled to monitor and detect all the defined event types. The following Sysmon event types are defined and implemented:

- · TM\_LINK Monitoring TM serdes links.
- · FE\_LINK Monitoring FE serdes links.
- NP memory errors Monitoring memory errors on interface modules.
- · Port CRC errors

## **Event types**

## TM\_LINK

TM link is the link between the line card and the switch fabric module. The event type TM\_LINK monitors this link for the errors reported on the link by the TM, such as CRC, misalignment, code group error, and down links. Here is an example from Syslog.

Dec 29 15:31:24:W:System: ALARM:LP15/TM3 has 6 links, less than the minimum to maintain line rate

### FE\_LINK

FE link is the link between the line card and the switch fabric module. The event type FE\_LINK monitors this link for the errors reported on the link by the FE, such as CRC, misalignment, code group error and down links. Here is an example from Syslog.

Dec 29 15:31:24:W:System: ALARM:LP15/TM3 has 6 links, less than the minimum to maintain line rate

### NP memory errors

The NP Memory Error Monitoring event monitors memory errors on interface modules. Monitoring includes parity errors, ECC errors, overflow and underflow errors. Errors are reported as syslog messages or SNMP traps. Here is an example from Syslog.

```
Feb 23 19:27:29:E:PRAM Word 2 Parity Error on port range 3/1 - 3/2
```

For detailed information on NP memory error monitoring, refer to NP memory error monitoring on page 134

## **Displaying event information**

### Displaying internal log messages

You can use the following show commands to view the results of the monitoring activity. These show commands display information for all event types in one output.

To display the contents of the internal log, enter the following command.

```
device# show sysmon logs INFO:May 13 07:29:54: TM Link Error: LP2/TM2/Link2 -- SNM3/FE3/Link43 (disabled) INFO:May 13 07:29:33: FE Link Error: SNM3/FE3/Link64 -- LP4/TM1/Link2 (disabled)
```

Syntax: show sysmon logs

#### NOTE

The size of the internal log table is 10,000 logs.

### Clearing internal logs

To clear the internal logs, enter the following command.

device# clear sysmon logs

Syntax: clear sysmon logs

## Displaying current SYSMON configuration

Enter the **show sysmon configuration** command to view the current configuration for system monitoring services. Look for output similar to the following:

| device# show sysmon config | 1               | ı                      |                                          | 1    |
|----------------------------|-----------------|------------------------|------------------------------------------|------|
| EVENT                      | ACTION          | POLL PERIOD<br>  (SEC) | THERESHOLD<br> #(PER POLL<br>  in #POLL) |      |
| TM. Link Monitoring        | SHUTDOWN-LINK   | 60                     | 5 in 10                                  | 1800 |
| Port CRC Monitoring        | SYSLOG          | 60                     | 3 in 5                                   | 1800 |
| FE. Link Monitoring        | SHUTDOWN-LINK   | 60                     | 5 in 10                                  | 1800 |
| NP Memory Error Monitoring | SYSLOG-AND-TRAP | 10                     | N/A                                      | N/A  |
|                            |                 |                        |                                          |      |

# **Histogram information**

This section discusses the following topics:

- · Histogram information overview on page 129
- · Displaying CPU histogram information on page 129
- · Displaying buffer histogram information on page 131
- · Displaying memory histogram information on page 133

## **Histogram information overview**

The histogram framework feature monitors and records system resource usage information. The main objective of the histogram is to record resource allocation failures and task CPU usage information. The histogram feature keeps track of task execution information, context switch history of tasks, buffer allocation failure and memory allocation failure.

The histogram information is collected and maintained internally, in a cyclical buffer. It can be reviewed to determine if resource allocation failures or task CPU usage may have contributed to an application failure.

#### **NOTE**

Histogram information is not maintained across reboot.

## **Displaying CPU histogram information**

The CPU histogram provides information about task CPU usage. The CPU histogram is viewed in the form of buckets (task usage is divided into different interval levels called *buckets*). For example, the task run time is divided into buckets: bucket 1 (0-50 ms), bucket 2 (50-100 ms), bucket 3 (100-150 ms), and so on. The CPU histogram collects the task CPU usage in each bucket. This includes how many times a task run time or hold time falls in each bucket, and the maximum run time and total run time for each bucket. CPU histogram information is measured for the hold-time and wait-time of the task.

- Hold time The time that the task is holding the CPU without yield.
- Wait time The time that the task is waiting for execution.
- Timer time The time that task is handling the timer routines without yielding the CPU.
- Interrupt time The time that the task is handling the user interrupt routines without yielding the CPU.

#### Show commands

To display task hold time information, enter the following command:

```
device# show cpu histogram hold
HISTOGRAM CPU HISTOGRAM INFO
No of Bucket
 Bucket Granularity : 10 ms
Last cleared at : 2012.07.10-07:29:20.704
No of Task : 67
Task Name Bkt
                   Bkt
                            No of Time HoldTime
                                                     HoldTime
                                                                                 Time
          Nıım
                  Time(ms)
                                          Total(s)
                                                      Max(ms)
_____
                   000-010
                                     4
                                          .000463
                                                       .201
                                                             2012.07.10-07:29:20.701
            1
ip rx
                                          .000025
                   000-010
                                                             2012.07.10-07:29:20.700
vlan
                                     1
                                                       .025
                   000-010
                                           .000010
                                                             2012.07.10-07:29:20.701
mac_mgr
                                                       .010
            1
                                          .000025
                   000-010
                                                       .025
                                                             2012.07.10-07:29:20.700
mrp
            1
                                     1
                                                       .025
                                          .000025
                                                             2012.07.10-07:29:20.700
2012.07.10-07:29:20.700
                   000-010
erp
            1
                   000-010
                                                       .009
mxrp
                                          .000009
rtm
                   000-010
                                          .000062
                                                       .062
                                                             2012.07.10-07:29:20.700
                   000-010
                                          .000091
                                                             2012.07.10-07:29:20.700
rtm6
                                                       .091
                                           .000207
                                                       .207
                                                             2012.07.10-07:29:20.700
2012.07.10-07:29:20.701
ip tx
            1
                   000-010
                   000-010
12vpn
                                     1
                                          .000018
                                                       .018
                                                       .046
                                          .000046
ospf
            1
                   000-010
                                                             2012.07.10-07:29:20.700
                                          .000009
                                                             2012.07.10-07:29:20.700
isis
                   000-010
                                                       .009
mcast
                                          .000017
            1
                   000-010
                                                       .017
                                                             2012.07.10-07:29:20.700
ospf6
                   000-010
                                          .000012
                                                       .012
                                                             2012.07.10-07:29:20.700
mcast6
            1
                   000-010
                                          .000012
                                                       .012
                                                             2012.07.10-07:29:20.700
                   000-010
                                          .000029
                                                       .029
                                                             2012.07.10-07:29:20.700
web
                                          .000013
                   000-010
                                                       .013
                                                             2012.07.10-07:29:20.700
lacp
loop_detect 1
                   000-010
                                          .000009
                                                       .009
                                                             2012.07.10-07:29:20.701
                   000-010
                                           .000011
                                                       .011 2012.07.10-07:29:20.701
cluster mgr 1
```

| telnet 0     | 1 | 000-010 | 4 | .003 | 3 | 2012.07.10-07:29:20.672 |
|--------------|---|---------|---|------|---|-------------------------|
| <del>-</del> |   |         |   |      |   |                         |

# Syntax: show cpu histogram { hold | wait | interrupt | timer } [ tasknamename | above threshold-value | noclear ]

The *hold* parameter displays the task hold time histogram. The *wait* parameter displays the task wait time histogram. The *interrupt* parameter displays the task user-interrupt usage histogram. The *timer* parameter displays the task sys-timer time usage histogram.

When the *taskname name* variable is specified, the histogram information for the specified task only, is displayed. The *above threshold-value* variable specifies the display of histogram information for tasks whose maximum hold time is above the specified threshold level.

By default, task values are cleared on read. The *noclear* parameter displays information without clearing the values.

To display sequence of task execution information, enter the following command:

#### Syntax: show cpu histogram sequence [ taskname name | above threshold-value| trace ]

The *sequence* parameter displays sequential task execution information. Sequential execution of task information is recorded when a task's hold time is greater than the specified threshold value. The task sequence is maintained for a specific period of time and stored in a cyclic buffer, so the oldest record is overwritten by a new record.

When the *taskname name* variable is specified, the histogram information for the specified task only, is displayed. The *above threshold-value* variable specifies the display of histogram information for tasks whose maximum hold time is above the specified threshold level.

The trace parameter displays high CPU condition task traces.

### Clearing task sequence information

To clear CPU histogram sequence information, enter the following command:

```
device(config) # clear cpu histogram sequence
```

Syntax: clear cpu histogram sequence

## Displaying buffer histogram information

The main objective of the buffer histogram is to see if there was any buffer exhaustion in the last few seconds (10-60sec). Buffer usage is collected when available buffers in the 2K buffer size pool fall below the reserved limit. The threshold limit is defined in terms of BM allocate request type.

**TABLE 25** Threshold values for different buffer allocation request types.

| Buffer Pool | BM Allocate Request Type | Buffer allocated if available buffers |
|-------------|--------------------------|---------------------------------------|
| 2K          | OS, SDS, RCON            | Above 0                               |
| 2K          | TX, RX Critical          | Above 128                             |
| 2K          | IPC High                 | Above 512                             |
| 2K          | Data High                | Above 700                             |
| 2K          | IPC Low                  | Above 850                             |
| 2K          | RX Low                   | Above 1024                            |

### Show commands

To display buffer histogram information, enter the following command:

```
device# show bm histogram
HISTOGRAM BUFFER SEQUENCE INFO
DURATION : 60 s
SEQ IDX : 1
TIME : 2012.07.10-09:46:59.061
THRESHHOLD : Below RX limit (1129)
                            FREE IN-USE APP-OWN
POOL-ID SIZE(KB) TOTAL
  3 2 6144 1024 5120 1248
Task Name App-Owns(buffers)
                     13
mac_mgr
ip_tx
                       12
                       14
rtm
                      112
mcast
console
                       11
ip_rx
                       16
                       23
rtm6
mcast6
                       46
                       71
mpls
nht
12vpn
                       98
```

To display the buffer allocation stack for the top three tasks (in terms of buffer ownership), enter the following command:

```
device(config) # show bm histogram trace 3
HISTOGRAM BUFFER SEQUENCE INFO
DURATION: 60 s
SEO IDX :
TIME: 2013.02.07-10:39:34.334
THRESHHOLD: Below IPC Critical limit (128)
POOL-ID SIZE (KB) TOTAL FREE IN-USE APP-OWN
  3 2 6144 128 6016
                                         58
Task Name App-Owns(buffers)
mac mgr
               3
ip tx
rtm
mcast
console
              12
rtm6
mcast6
mpls
telnet_34
              18
[ Taskname : telnet 34 , AppId : 98 ]
[ Taskname : mcast , AppId : 17 ]
00055a38: dev bm get buf internal
000557c0: dev_bm_get_ipc_buf
00005024: xsyscall
2037791c: ipc get buffer
2038fel8: allocate_a_dy_sync_packet
2039120c: init_dy_sync_mgmt
20d08c18: 12mcast metro vpls init mac entry sync mgmt]
00055a38: dev_bm_get_buf_internal
000557c0: dev_bm_get_ipc_buf
00005024: xsyscall
2037791c: ipc_get_buffer
2038fe18: allocate_a_dy_sync_packet
2039120c: init_dy_sync_mgmt
20ced240: 12mcast_init_mdb_sync_mgmt]
```

#### Syntax: show bm histogram [ priority threshold-value | trace ]

The *priority threshold-value* variable displays histogram information for the specified buffer priority level only. The valid range is 0-5 (0-Critical, 1-Hi Tx, 2-Hi IPC Rx, 3-Hi Data Rx, 4-Low IPC Rx, 5-Low Data Rx).

The *trace* parameter displays the buffer allocation stack of the top three tasks (in terms of buffer ownership).

### Clearing buffer historgram data

To clear the buffer histogram data, enter the following command:

```
device(config) # clear bm histogram
```

### Syntax: clear bm histogram

### Low buffer syslogs

Syslog messages are generated when when available buffers fall below the 20, 10 and 5 percent buffer thresholds.

```
SYSLOG: <14>Feb 7 10:39:58 Ni-MLX-Sys-6 System: Low buffer, Available buffer goes Below 20%, Available Buffer (2243) on MP SYSLOG: <12>Feb 7 10:40:40 Ni-MLX-Sys-6 System: Low buffer, Available buffer goes Below 10%, Available Buffer (1633) on MP SYSLOG: <9>Feb 7 10:41:11 Ni-MLX-Sys-6 System: Low buffer, Available buffer goes Below 5%, Available Buffer (1328) on MP
```

SYSLOG: <10>Feb 7 10:47:34 Ni-MLX-Sys-6 System: Out of buffer, Below IPC Critical limit (128) on MP

## **Displaying memory histogram information**

System memory is divided into five memory pools: OS, Shared, Global, User Private and DMA. The memory histogram keeps track of each memory allocation/deallocation request from an application. It helps to identify memory leak and memory usage accross the task. It also monitors the under usage condition and reports to the system. The memory histogram is recorded when available memory goes below the threshold limit on each memory pool. The threshold limit is defined in terms of percentage of available memory (20%, 10% or 5%).

To display memory histogram information, enter the following command:

|                                                                                                                           | how memory hi<br>MEMORY SEQUE                 |                                                                                                          |        |                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEQ IDX<br>TIME                                                                                                           | : 60 s<br>: 1<br>: 2012.07.1<br>M : below 5 % |                                                                                                          | 539    |                                                                                                                                                                                                |
| POOL                                                                                                                      | Total Memory<br>(bytes)                       | Used I                                                                                                   |        | Available Memory<br>(bytes)                                                                                                                                                                    |
| Global                                                                                                                    | 2855272448                                    | 2843                                                                                                     | 262976 | 12009472                                                                                                                                                                                       |
| Task Name                                                                                                                 |                                               |                                                                                                          |        |                                                                                                                                                                                                |
| main itc tmr ip_rx scp lpagent console vlan mac_mgr mrp vsrp erp mxrp snms rtm rtm6 ip_tx rip ospf_msg_ telnet_0 telnet_1 | task                                          | 1355<br>4<br>63<br>425<br>748<br>63<br>101<br>44<br>40<br>26<br>28<br>28<br>29<br>109<br>151<br>70<br>17 |        | 28486529<br>645<br>10173<br>396453<br>17995881<br>31309<br>3515673<br>5814177<br>2305485<br>8541<br>8557<br>7527<br>188337<br>33724605<br>1918717<br>1274437<br>323733<br>7453<br>7689<br>7817 |

Syntax: show memory histogram [ pool pool-id | below threshold-value ]

The *pool pool-id* variable specifies the display of memory histogram information for a specific memory pool. The valid range for the *pool pool-id* variable is 0-3, where 0 = OS, 1 = Shared, 2 = Global and 3 =

User Private. The *below threshold-value* variable specifies the display of memory histogram information when available memory falls below the specified percentage (5, 10 or 20 percent).

### Low memory syslogs

Syslog messages are generated when available memory falls below the 20, 10, and 5 percent thresholds.

SYSLOG: <14>Feb 7 10:50:11 Ni-MLX-Sys-6 System: Low physical memory, Pool(2-Global) below 20%, available pool memory (225480704), physical memory (225480704) on MP SYSLOG: <9>Feb 7 10:50:11 Ni-MLX-Sys-6 System: Low pool memory, Pool(2-Global) below 5%, available pool memory (171204608), physical memory (171204608) on MP SYSLOG: <12>Feb 7 10:50:12 Ni-MLX-Sys-6 System: Low physical memory, Pool(2-Global) below 10%, available pool memory (118108160), physical memory (118108160) on MP SYSLOG: <9>Feb 7 10:50:12 Ni-MLX-Sys-6 System: Low physical memory, Pool(2-Global) below 5%, available pool memory (64421888), physical memory (64421888) on MP SYSLOG: <10>Feb 7 10:50:12 Ni-MLX-Sys-6 System: Low pool memory, Pool(2-Global) below 1%, available pool memory (28532736), physical memory (28532736) on MP SYSLOG: <10>Feb 7 10:50:12 Ni-MLX-Sys-6 System: Low physical memory, Pool(2-Global) below 1%, available pool memory (10731520), physical memory (10731520) on MP

### Clearing memory historgram data

To clear the memory histogram data, enter the following command:

device(config) # clear memory histogram

Syntax: clear memory histogram

# NP memory error monitoring

This sections discusses the following topics:

- NP memory error monitoring overview on page 134
- NP memory error monitoring: basic configuration on page 134

## NP memory error monitoring overview

It can be useful to know when memory errors occur on interface modules. NP memory error monitoring periodically monitors for external and internal memory errors and reports these errors as syslog messages or generates SNMP traps.

For details of specific errors that may occur on interface cards that support NP memory error monitoring, refer to NP memory errors on page 127.

## NP memory error monitoring: basic configuration

By default:

- · NP memory error monitoring is enabled.
- · Errors generate both a syslog message and a SNMP trap.
- · The polling period time is 60 seconds.

### Configuring NP memory error monitoring

You can configure:

- · The polling frequency.
- · How the errors are reported.

To set the polling frequency for NP memory errors at 10 second intervals, enter the following command:

```
device(config) # sysmon np memory-errors polling-period 10
```

To configure NP memory error monitoring to generate syslog messages, use the following command:

```
device(config) # sysmon np memory-errors action syslog
```

You may want to disable error reporting if, for example, a hardware fault exists and is generating a lot of errors. To disable reporting of NP memory errors, use the following command:

```
device (config) # sysmon np memory-errors action none
```

The following example disables monitoring of memory errors on interface modules.

```
device(config) # no sysmon np memory-errors
```

The **no** form of the command specifying a *poll-interval* value restores the default polling period. For example, the following command restores the polling period to 60 seconds.

```
device(config) # no sysmon np memory-errors polling-period 1000
```

The **no** form of the command specifying the **action** as **syslog-and-trap**, **syslog**, or **trap** will remove that action. The following command removes the **syslog** action.

```
device(config)# no sysmon np memory-errors action syslog
```

The **no** form of the command specifying the **action** as **none** will restore the default action (**syslog-and-trap**) . To restore the NP memory error action to **syslog-and-trap** , enter the following command:

```
device(config) # no sysmon np memory-errors action none
```

Syntax: [no] sysmon np memory-errors { polling-period secs | action { syslog-and-trap | syslog | trap | none } }

The *polling-period secs* variable specifies the frequency of polling for NP memory errors. The range is from 1 through 65535. The default value is 60 seconds.

The action parameter specifies the action taken when NP memory errors are detected. If the action parameter is set to none, NP memory errors are not reported. Setting the action parameter to syslog specifies the generation of a syslog message. Setting the action parameter to trap specifies the generation of a SNMP trap. If action is configured as syslog followed by configuration as trap, then the action will become syslog-and-trap. The default action is syslog-and-trap.

The **no** form of this command restores the default action.

#### NOTE

The *polling-period* parameter determines the interval between checks for NP memory errors. Reporting may not happen within the polling interval. It may be delayed by factors such as a high CPU load on the interface module or the management module, by low memory etc.

#### NOTE

The *action* parameter controls the generation of syslog messages or SNMP traps: they cannot be controlled by the **no snmp-server enable traps** command or the **no logging enable** command.

#### NOTE

Memory errors are detected on the interface module. Errors may not be reported if there is a communication problem between the management module and the interface module.

# Port CRC error monitoring test

This section discusses the following topics:

- Port CRC error monitoring overview on page 136
- Port CRC error monitoring: basic configuration on page 136

## Port CRC error monitoring overview

The port CRC error monitoring test is a background diagnostic test which monitors each port and checks if the number of packets with CRC errors (MAC CRC error eounter) exceeds a pre-configured limit. This limit or threshold is configured as the number of CRC errors occurring over the polling interval of the diagnostic test. If the test fails on a port for more than a configured threshold, a diagnostic action, if enabled, will be triggered. The diagnostic action can be configured to disable the port where the CRC errors exceed the configured threshold.

The threshold for diagnostic action, is configured as the ratio of the number of test failures to the number of diagnostics tests run. For example, if the threshold is set to three failures out of five diagnostic test runs, then the diagnostic action, when enabled, will be triggered if the test fails three times in five consecutive diagnostic tests.

A syslog is generated every time a port CRC error monitoring test fails. A syslog message is also generated after a port is disabled in a port CRC error diagnostic action.

#### **NOTE**

Optionally, syslogs can be disabled , before they are logged again, for a specific number of events (refer to Configuring 'log-backoff' for the port CRC error monitoring test on page 138). This applies to the syslog which is sent after the port CRC error monitoring test fails, but not to the syslog sent after a port is disabled. When a port is disabled in the port CRC error diagnostic action, a syslog will be logged to notify the user of the port state change irrespective of this command.

## Port CRC error monitoring: basic configuration

By default the:

- · Port CRC error monitoring is enabled
- Port CRC error monitoring test diagnostic action is set to syslog i.e. a syslog message is generated when port CRC errors exceed the configured threshold.

### Configuring the port CRC error monitoring test

- 1. Configure the port CRC error counter limit.
- 2. Configure the polling period for the test.
- 3. Configure the threshold to trigger diagnostic action

To configure the port CRC error counter limit to 20, enter the following command:

```
device(config) # sysmon port port-crc-test counter port-crc-counter less-than 20
```

### Syntax: sysmon port port-crc-test counter port-crc-counter less-than crc-count

The variable *crc-count* specifies the port CRC error count limit for the configured polling period. The range of values is 0 through 65535. The default value is 20.

To configure the port CRC error monitoring test to run every 60 seconds, enter the following command:

```
device(config)# sysmon port port-crc-test polling-period 60
```

### Syntax: sysmon port port-crc-test polling-period secs

The variable *secs* specifies the polling period in seconds. The range of values is 0 through 65535. The default value is 60 seconds.

To configure the threshold to trigger the diagnostic action, if the test fails more than three times during five continuous polls, enter the following command:

```
device(config) # sysmon port port-crc-test threshold 3 5
```

#### Syntax: sysmon port port-crc-test threshold num-failuresnum-polls

The *num-failures* variable specifes the number of failed test runs. The range of values is 1 through 31.

The num-polls variable specifies the number of polls (tests). The range of values is 2 through 31.

The default the shold is 3 failed test runs out of 5 polls.

### Disabling the port CRC error monitoring test

The port CRC error monitoring test is enabled by default.

To disable the port CRC error monitoring test, enter the following command:

```
device(config)# no sysmon port port-crc-test
```

To enable the test again, enter the following command:

```
device(config)# sysmon port port-crc-test
```

#### Syntax: [no] sysmon port port-crc-test

### Configuring the port CRC error monitoring test diagnostic action

The port CRC error monitoring test diagnostic action can be configured as:

- none no action is taken.
- port-disable disable the port.
- · syslog generate a syslog message.

The default port CRC error monitoring test diagnostic action is syslog.

#### NOTE

When the diagnostic action is configured as **port-disable**, a syslog message will also be generated after a port is disabled.

Table 26 lists the commands to transition between port CRC error monitoring test diagnostic action states.

TABLE 26 Port CRC error monitoring test: diagnostic action states

| Action State | none                             | syslog                                      | port-disable                                 |
|--------------|----------------------------------|---------------------------------------------|----------------------------------------------|
| none         |                                  | no sysmon port port-crc action none         | sysmon port port-crc action port-<br>disable |
| syslog       | sysmon port port-crc action none |                                             | sysmon port port-crc action port-disable     |
| port-disable | sysmon port port-crc action none | no sysmon port port-crc action port-disable |                                              |

To disable the port CRC error monitoring test diagnostic action, enter the following command:

device(config) # sysmon port port-crc-test action none

To set the diagnostic action to disable a port when the port CRC error limit crosses the configured threshold, enter the following command:

device(config) # sysmon port port-crc-test action port-disable

Syntax: sysmon port port-crc-test action { none | syslog | port-disable }

### Configuring 'log-backoff ' for the port CRC error monitoring test

Syslog messages sent after a port CRC diagnostic test fails, can be disabled for a certain number of events. Syslog action will resume after the specified number of events.

To disable syslog for 1,000 events:

device(config)# sysmon port port-crc-test log-backoff 1000

### Syntax: sysmon port port-crc-test log-backoff num

The variable *num* specifies the number of events to skip before logging syslog messages again. The range of values is 1 through 14,400.

# TM DRAM CRC error monitoring

## TM DRAM CRC error monitoring overview

The TM DRAM CRC error monitoring feature monitors CRC errors. A total of 30 ingress dram CRC errors in a minute is considered as one event. If the number of events are more than three, then the action will be taken depending on the user configuration. Threshold and number of events needed to take action are fixed and cannot be configured.

## TM DRAM CRC error monitoring: basic configuration

The basic configuration of TM DRAM CRC error monitoring is as follows.

Syntax: sysmon tm ingress-dram-crc actiondisable-ports | none| reset-linecard| syslog

The default configuration is disable-ports.

The disable-ports keyword disables ports for DRAM CRC errors.

The none keyword specifies no action.

The reset-linecard keyword resets line cards for DRAM CRC errors.

The syslog keyword adds system log messages for the DRAM CRC errors.

When disable-ports is configured, then all ports belonging to the affected TM are disabled.

```
Feb 18 11:46:09:A:System: LP15/TM0: all ports down due to dram crc errors
Feb 18 11:46:09:I:System: Interface ethernet 15/7, state down - ingress dram crc
Feb 18 11:46:09:I:System: Interface ethernet 15/2, state down - ingress dram crc
```

When you configure **none**, then there will be no action taken even after 3 events.

When **reset-linecard** is configured, the affected LP will be reset.

```
Feb 18 11:47:22:D:System: Module reset in slot 15, TM errors detected
```

When **syslog** is configured, only the system log message is generated at the 4th event and no other action is taken.

May 18 12:05:47:A:System: LP15/TM0: dram crc errors are detected

# **Scheduled System Monitor**

The system monitoring Runtime Diagnostic (RTD) framework supports scheduling in future, on-demand testing, and interface module (LP) specific testing/monitoring. These features are only for those tests that adopt the new RTD test execution framework.

Scheduled system monitor consists of the following tests:

- · Future scheduling on page 140
- · On-demand testing on page 140
- Slot specific monitoring and testing on page 140

## **Future scheduling**

System monitoring RTD framework runs tests for diagnostics periodically when the system starts or when a line card comes up. As part of the RTD framework, future scheduling supports the ability to schedule a test at some point of time in the future. This test is required in any monitoring system as the user may want to schedule a test based on the condition of the system or the available resources. Users can view the results asynchronously using CLI commands when the test is completed. Scheduling feature does not work if the test is already running in the continuous polling mode.

#### NOTE

This test supports a single scheduled configuration and does not support multiple scheduling configurations.

## **On-demand testing**

On-demand testing is a specific test that a user runs while monitoring the system depending upon the symptoms as and when required. On-demand testing feature does not work if the test is already running in the continuous polling mode. Users can specify the number of times the test is to be run.

#### NOTE

When a on-demand test is scheduled, then the user can not cancel the test before its completion.

## Slot specific monitoring and testing

This feature enables running a test on one or more specific LPs that have the same configuration. Users can specify LPs on which this test has to be run. If the user does not specify a slot, the test runs on all LPs by default. This feature helps in reducing the number of other unwanted execution of tests.

#### NOTE

This test cannot be run on individual LPs with different configuration for a specific test. For example, for a port CRC test, the test cannot be scheduled at different time on different LPs, or it cannot be scheduled on one LP and run in continuous polling on other LPs.

# **Operations, Administration, and Maintenance (OAM)**

| IEEE 802.1ag Connectivity Fault Management (CFM)                               | 143 |
|--------------------------------------------------------------------------------|-----|
| Mechanisms of Ethernet IEEE 802.1ag OAM                                        | 145 |
| Configuring IEEE 802.1ag CFM                                                   | 147 |
| Setting Maintenance Domain parameters                                          | 148 |
| Y.1731 performance management                                                  | 152 |
| CFM monitoring and show commands                                               | 155 |
| Monitoring the status of devices in a VPLS network in a Provider's Maintenance |     |
| Domain                                                                         | 176 |
| • IEEE 802.3ah EFM-OAM                                                         | 184 |
| • Ping                                                                         | 192 |
| Trace route                                                                    | 195 |
| Trace-l2 protocol                                                              | 196 |
| IPv6 Traceroute over an MPLS network                                           | 198 |
| LSP ping and traceroute                                                        | 201 |
| CFM monitoring for ISID                                                        | 210 |
| Frame Loss Measurement                                                         | 221 |
| One-way Delay Measurement                                                      | 228 |
| Synthetic loss measurement                                                     | 240 |

The table below displays the individual Brocade devices and the OAM features they support.

**TABLE 27** Supported OAM features

| Features<br>supported                                                                                      | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>NetIron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron<br>CER Series<br>2000 Series<br>Advanced<br>Services<br>package |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| IEEE 802.1ag<br>Connectivity Fault<br>Management<br>(CFM)                                                  | Yes                                           | Yes                                 | No                                                                       | Yes                                                                   | No                                                                    | No                                                                       | Yes                                                                                |
| IEEE 802.1ag<br>Connectivity Fault<br>Management<br>(CFM) for C-<br>VLANs and S-<br>VLANs within an<br>ESI | No                                            | No                                  | No                                                                       | Yes                                                                   | No                                                                    | No                                                                       | Yes                                                                                |
| IEEE 802.1ag<br>Connectivity Fault<br>Management<br>(CFM) for B-<br>VLANs                                  | No                                            | No                                  | No                                                                       | Yes                                                                   | No                                                                    | No                                                                       | Yes                                                                                |

TABLE 27 Supported OAM features (Continued)

| Features<br>supported                             | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>Netlron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>Netlron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>Netlron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>Netlron<br>CER Series<br>2000 Series<br>Advanced<br>Services<br>package |
|---------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Support for Sub-<br>second IEEE<br>802.1ag Timers | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | Yes                                                                      | Yes                                                                                |
| IEEE 802.1ag on<br>VPLS Endpoints                 | Yes                                           | Yes                                 | No                                                                       | Yes                                                                   | No                                                                    | No                                                                       | Yes                                                                                |
| IEEE 802.1ag<br>over VLL                          | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| MPLS OAM - LSP traceroute                         | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| RDI handling                                      | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| CFM handling for ISID                             | Yes                                           | Yes                                 | No                                                                       | No                                                                    | Yes                                                                   | No                                                                       | Yes                                                                                |
| Delay<br>measurement for<br>ISID                  | Yes                                           | Yes                                 | No                                                                       | No                                                                    | Yes                                                                   | No                                                                       | Yes                                                                                |
| MPLS OAM - LSP traceroute                         | Yes                                           | Yes                                 | No                                                                       | No                                                                    | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| IEEE 802.3ah<br>EFM-OAM                           | Yes                                           | Yes                                 | No                                                                       | Yes                                                                   | No                                                                    | No                                                                       | Yes                                                                                |
| Ping                                              | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Ping within a VRF                                 | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Trace Route                                       | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Trace Route within a VRF                          | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| IPv6 Traceroute<br>over an MPLS<br>network        | Yes                                           | Yes                                 | No                                                                       | Yes                                                                   | Yes                                                                   | No                                                                       | Yes                                                                                |
| Trace-l2 Protocol                                 | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| LSP Ping and<br>Traceroute                        | Yes                                           | Yes                                 | No                                                                       | Yes                                                                   | No                                                                    | No                                                                       | Yes                                                                                |
| Port Status TLV                                   | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |

TABLE 27 Supported OAM features (Continued)

| Features<br>supported         | Brocade<br>Netiron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade NetIron CER Series 2000 Series Advanced Services package |
|-------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|
| RDI handling                  | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Link MA                       | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Frame Loss<br>Measurement     | No                                            | No                                  | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| One-way Delay<br>Measurement  | No                                            | No                                  | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |
| Synthetic Loss<br>Measurement | No                                            | No                                  | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                              |

#### NOTE

Frame Loss Measurement, One-way Delay Measurement, and Synthetic Loss Measurement are not supported on the following CER and CES device models:

- BR-CER-2024C-4X-RT-AC
- BR-CER-2024C-4X-RT-DC
- BR-CER-2024F-4X-RT-AC
- BR-CER-2024F-4X-RT-DC
- BR-CES-2024C-4X-AC
- BR-CES-2024C-4X-DC
- BR-CES-2024F-4X-AC
- BR-CES-2024F-4X-DC

Operations, Administration, and Maintenance (OAM) implementation refers to the tools and utilities for installing, monitoring, and troubleshooting the network.

# **IEEE 802.1ag Connectivity Fault Management (CFM)**

IEEE 802.1ag Connectivity Fault Management (CFM) refers to the ability of a network to monitor the health of a service delivered to customers as opposed to just links or individual bridges.

The IEEE 802.1ag CFM standard specifies protocols, procedures, and managed objects to support transport fault management. This allows for the discovery and verification of the path, through bridges and LANs, taken by frames addressed to and from specified network users and the detection, and isolation of a connectivity fault to a specific bridge or LAN.

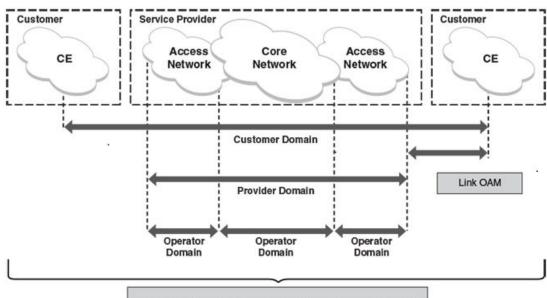
Ethernet CFM defines proactive and diagnostic fault localization procedures for point-to-point and multipoint Ethernet Virtual Connections that span one or more links. It operates end-to-end within an Ethernet network.

## **Ethernet OAM capabilities**

Ethernet OAM is able to:

- Monitor the health of links (because providers and customers might not have access to the management layer)
- · Check connectivity of ports
- · Detect fabric failures
- · Provide the building blocks for error localization tools
- Give appropriate scope to customers, providers and operators (hierarchical layering of OAM)
- · Avoid security breaches

## IEEE 802.1ag purpose


Bridges are increasingly used in networks operated by multiple independent organizations, each with restricted management access to each other's equipment. CFM provides capabilities for detecting, verifying and isolating connectivity failures in such networks.

There are multiple organizations involved in a Metro Ethernet Service: Customers, Service Providers and Operators.

Customers purchase Ethernet Service from Service Providers. Service Providers may utilize their own networks, or the networks of other Operators to provide connectivity for the requested service. Customers themselves may be Service Providers, for example a Customer may be an Internet Service Provider which sells Internet connectivity.

Operators will need minimal Ethernet OAM. Providers will need more comprehensive Ethernet OAM for themselves and to allow customers better monitoring functionality.

FIGURE 4 OAM Ethernet tools



End-to-end OAM. Provide end-to-end connectivity fault management per customer service over multi-network operator networks

## IEEE 802.1ag provides hierarchical network management

#### Maintenance Domain (MD)

A Maintenance domain is part of a network controlled by a single operator. In Figure 4 on page 144, we have customer domain, provider domain and operator domain.

#### Maintenance Domain level (MD level)

The MD levels are carried on all CFM frames to identify different domains. For example, in Figure 4 on page 144, some bridges belong to multiple domains. Each domain associates a MD level.

Customer Level: 5-7Provider Level: 3-4Operator Level: 0-2

#### Maintenance Association (MA)

Every MD can be further divided into smaller networks having multiple Maintenance End Points (MEP). Usually MA is associated with a service instances (for example a VLAN or a VPLS).

#### Maintenance End Point (MEP)

MEP is located on the edge of an MA. It defines the endpoint of the MA. Each MEP has unique ID (MEPID) within MA. The connectivity in a MA is defined as connectivity between MEPs. MEP generates Continuity Check Message and multicasts to all other MEPs in same MA to verify the connectivity.

#### Maintenance Intermediate Point (MIP)

MIP is located within a MA. It responds to Loopback and Linktrace messages for Fault isolation.

# **Mechanisms of Ethernet IEEE 802.1ag OAM**

Mechanisms supported by IEEE 802.1ag include Connectivity Check (CC), Loopback, and Link trace. Connectivity Fault Management allows for end-to-end fault management that is generally reactive (through Loopback and Link trace messages) and connectivity verification that is proactive (through Connectivity Check messages).

## Fault detection (continuity check message)

The Continuity Check Message (CCM) provides a means to detect hard and soft faults such as software failure, memory corruption, or misconfiguration. The failure detection is achieved by each Maintenance End Point (MEP) transmitting a CCM periodically within its associated Service Instance.

As a result, MEPs also receive CCMs periodically from other MEPs. If a MEP on local Bridge stops receiving the periodic CCMs from peer MEP on a remote Bridge, it can assume that either the remote Bridge has failed or failure in the continuity of the path has occurred. The Bridge can subsequently

notify the network management application about the failure and initiate the fault verification and fault isolation steps either automatically or through operator command.

A CCM requires only N transmissions within its member group, where N is the number of members within the member group. In other words, if a Virtual Bridge LAN Service has N members, only N CCMs need to be transmitted periodically - one from each.

Continuity Check (CC) messages are periodic hello messages multicast by a MEP within the maintenance domain, at the rate of X; X can be 3.3 milliseconds (ms), 10ms, or 100ms, 1 second, 1 minute, or 10 minutes. All Maintenance association Intermediate Points (MIPs) and MEPs in that domain will receive it but will not respond to it. The receiving MEPs will build a MEP database that has entities of the format. MEPs receiving this CC message will catalog it and know that the various maintenance associations (MAs) are functional, including all intermediate MIPs.

#### NOTE

The Brocade NetIron CES does not support sub-second values.

CCMs are not directed towards any specific; rather they are multicast across the entire point-to-point or multipoint service on a regular basis. Accordingly, one or more service flows, including the determination of MAC address reachability across a multipoint network, are monitored for connectivity status with IEEE 802.1ag.

## **Fault verification (Loopback messages)**

A unicast Loopback Message is used for fault verification. To verify the connectivity between MEP and its peer MEP or a MIP, the Loopback Message is initiated by a MEP with a destination MAC address set to the MAC address of either a Maintenance association Intermediate Point (MIP) or the peer MEP. The receiving MIP or MEP responds to the Loopback Message with a Loopback Reply.

A Loopback message helps a MEP identify the precise fault location along a given MA. A Loopback message is issued by a MEP to a given MIP along an MA. The appropriate MIP in front of the fault will respond with a Loopback reply. The MIP behind the fault will not respond. For Loopback to work, the MEP must know the MAC address of the MIP to ping.

## **Fault isolation (Linktrace messages)**

Linktrace mechanism is used to isolate faults at Ethernet MAC layer. Linktrace can be used to isolate a fault associated with a given Virtual Bridge LAN Service. It should be noted that fault isolation in a connectionless (multi-point) environment is more challenging than a connection oriented (point-to-point) environment. In case of Ethernet, fault isolation can be even more challenging since a MAC address can age out when a fault isolates the MAC address. Consequently a network-isolating fault results in erasure of information needed for locating the fault.

A Linktrace Message uses a set of reserved multicast MAC address. The Linktrace Message gets initiated by a MEP and traverses hop-by-hop and each Maintenance Point (a MEP or MIP) along the path intercepts this Linktrace Message and forwards it onto the next hop after processing it until it reaches the destination MEP. The processing includes looking at the destination MAC address contained in the Linktrace Message.

Each MP along the path returns a unicast Linktrace Reply back to the originating MEP. The MEP sends a single LTM to the next hop along the trace path; however, it can receive many Linktrace Responses from different MPs along the trace path and the destination MEP as the result of the message traversing hop by hop. As mentioned previously, the age-out of MAC addresses can lead to erasure of information at MIPs, where this information is used for the Linktrace mechanism. Possible ways to address this behavior include:

- Carrying out Linktrace following fault detection or verification such that it gets exercised within the window of age-out.
- Maintaining information about the destination MEP at the MIPs along the path using CCMs.
- · Maintaining visibility of path at the source MEPs through periodic LTMs.

Linktrace may also be used when no faults are apparent in order to discover the routes normally taken by data through the network. In the rare instances during network malfunctions where Linktrace cannot provide the information needed to isolate a fault, issuing Loopback Messages to MPs along the normal data path may provide additional useful information.

The Linktrace message is used by one MEP to trace the path to another MEP or MIP in the same domain. It is needed for Loopback (Ping). All intermediate MIPs respond back with a Link trace reply to the originating MEP. After decreasing the TTL by one, intermediate MIPs forward the Link trace message until the destination MIP or MEP is reached. If the destination is a MEP, every MIP along a given MA responds to the originating MEP. The originating MEP can then determine the MAC address of all MIPs along the MA and their precise location with respect to the originating MEP.

# **Configuring IEEE 802.1ag CFM**

## **Enabling or disabling CFM**

To enable or disable the CFM protocol globally on the devices and enter into the CFM Protocol Configuration mode, enter a command such as the following.

```
device(config) #cfm-enable
device(config-cfm) #
```

Syntax: [no] cfm-enable

The **no** form of the command disables the CFM protocol.

## **Creating a Maintenance Domain**

A Maintenance Domain is the network or the part of the network for which faults in connectivity are to be managed. A Maintenance Domain consists of a set of Domain Service Access Points.

A Maintenance Domain is, or is intended to be, fully connected internally. A Domain Service Access Point associated with a Maintenance Domain has connectivity to every other Domain Service Access Point in the Maintenance Domain, in the absence of faults.

Each Maintenance Domain can be separately administered.

The **domain-name** command in CFM protocol configuration mode creates a maintenance domain with a specified level and name and enters the Specific Maintenance Domain mode specified in the command argument.

```
device(config-cfm) #domain-name VPLS-SP level 4
device(config-cfm-md-VPLS-SP) #
```

Syntax: [no] domain-name name [ id md-id ] [ level level ]

The **domain-name** name parameter specifies the domain name. The *name* attribute is case-sensitive.

Theid md-id is the Maintenance Domain Index. It is an optional parameter. The range is 1 - 4090.

The **level** parameter sets the domain level in the range 0 - 7. When the domain already exists, the **level** argument is optional. The levels are.

Customer's Domain Levels: 5 - 7
Provider Domain Levels: 3 - 4
Operator Domain Levels: 0 - 2

The **no** form of the command removes the specified domain from the CFM Protocol Configuration mode.

# **Setting Maintenance Domain parameters**

## **Creating Maintenance Associations**

The Maintenance Association Identifier is unique over the domain. If the Maintenance Association Identifier is globally unique, then that domain is global. CFM can detect connectivity errors only for a list of MEPs with unique MAIDs.

The **ma-name** command, in Maintenance Domain mode, creates a maintenance association within a specified domain. The **ma-name** command changes the Maintenance Domain mode to a Specific Maintenance Association mode.

```
device(config-cfm-md-VPLS-SP) # ma-name ma_1 vlan-id 30 priority 4
device(config-cfm-md-VPLS-SP-ma-ma 1) #
```

Syntax: [no] ma-name name [ id ma-id ] [ esi esi-id ] [ vlan-id vlan-id ] [ vpls-id vpls-id ] [ priority priority ]

The **ma-name** parameter specifies the maintenance association name. The NAME attribute is case-sensitive.

The id ma-id is the Maintenance Association Index. It is an optional parameter. The range is 1 - 4090.

The *esi-id* specifies a unique ESI identifier of the maintenance association. In case of creating a MA a ESI ID should be set. This option is available only on platforms that support the Ethernet Service Instance (ESI) framework.

The *vlan-id* specifies a unique VLAN identifier of the maintenance association in the range *1-4090*. In case of creating a MA a VLAN ID should be set.

The *vpls-id* specifies a unique VPLS identifier of the maintenance association. In case of creating a MA, a VPLS ID should be set.

The *priority* parameter specifies the priority of the CCM messages, sent by MEPs, in the range *0-7*. When the maintenance association is already created, the *priority* argument is optional.

The **no** form of the command removes the created MA.

## **Tag-type configuration**

For the NetIron CES, the following two VLAN tag-types are allowed that can be configured globally:

- tag1 applies to customer edge ports (CVLAN) by default.
- tag2 applies to provider-network, backbone-edge, and backbone-network port types (SVLAN and BVLAN) by default.

#### NOTE

The *tag1* and *tag2* are independent of port-types, so the system can be configured to use *tag1* for SVLAN, BVLAN and *tag2* for CVLAN.

#### Configuring tag-types

You can set the ISID value using a separate command similar to NetIron XMR.

Syntax: [no] tag-value isid num

You can configure CVLAN, SVLAN, and BVLAN tag-types as shown below.

```
device(config)# tag-value tag1 8100
device(config)# tag-value tag2 9100
device(config)# tag-type cvlan tag1 svlan tag2 bvlan tag2
```

Syntax: [no] tag-value num

Syntax: tag-type tag-n

The *num* parameter specifies the value assigned to the tag. The default value for *tag1* is 0x8100 and for *tag2* is 0x88a8.

The *tag-n* parameter can be either *tag1* or *tag2*.

Tag type can be changed from a default value to a specific port as shown in the following example.

```
device(config-if-e1000-1/1)# tag-type tag2 ethernet 1/1 device(config-if-e1000-1/1)# tag-type tag1 ethernet 1/2
```

Syntax: tag-type tagid ethernet interface\_id

The tagid parameter can be either tag1 or tag2.

The *interface\_id* parameter specifies the Ethernet slot and port ID.

#### Restrictions

The tag-type has the following restrictions:

- · CVLAN and SVLAN cannot have the same tag-type.
- · SVLAN and BVLAN must have the same tag-type.
- · Port-type must be set to the default to configure the port-level tag-type.

## Configuring a CCM interval for a Maintenance Association (MA)

The **ccm-interval** command sets the time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain. The default value is 10 seconds.

```
device(config-cfm) #domain name VPLS-SP level 4
device(config-cfm-md-VPLS-SP) #ma-name ma_1 vlan-id 30 priority 3
device(config-cfm-md-VPLS-SP-ma-ma_1) #ccm-interval 10-second
device(config-cfm-md-VPLS-SP-ma-ma_1) #
```

Syntax: [no] ccm-interval [ 1-second | 1-minute | 10-second | 10-minute | 3.3-ms | 10-ms | 100-ms ]

The 1 second parameter sets the time interval between two successive CCM packets to 1 second.

The 1 minute parameter sets the time interval between two successive CCM packets to 1 minute.

The 10 second parameter sets the time interval between two successive CCM packets to 10 seconds.

The 10 minute parameter sets the time interval between two successive CCM packets to 10 minutes.

The **3.3 milliseconds** parameter sets the time interval between two successive CCM packets to 3.3 milliseconds.

The **10 milliseconds** parameter sets the time interval between two successive CCM packets to 10 milliseconds.

The **100 milliseconds** parameter sets the time interval between two successive CCM packets to 100 milliseconds.

## **Configuring local ports**

The **mep** command, in Maintenance Association mode, adds local ports as MEP to a specific maintenance association. If configuring a CFM packet to a "down" MEP, it will need to be sent out on the port on which it was configured. If configuring a CFM packet to an "up" MEP, it will need to be sent to the entire VLAN for multicast traffic, and unicast traffic will need to be sent to a particular port according to the MAC table.

Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity:

- The list of MEPs configured with identical values for MA ID defines an MA.
- · Each Bridge has its own Maintenance Association managed object for an MA.
- · Each individual MEP is configured with a ID that is unique within that MA.
- Each MEP is associated with a Service Access Point that provides access to a single service instance.

#### NOTE

When configuring 802.1ag over VPLS, if the VPLS endpoint is deleted from the configuration, the MEP configuration is deleted under CFM without warning.

To add local ports to an upstream MEP, enter commands such as the following.

```
device(config-cfm) # domain name VPLS-SP level 4
device(config-cfm-md-VPLS-SP) # ma-name ma_1 vlan-id 30 priority 3
device(config-cfm-md-VPLS-SP-ma_1) # mep 1 up port eth 2/1
device(config-cfm-md-VPLS-SP-ma_1) #
```

Syntax: [no] mep mep-id [ up | down ] [ vlan vlan-id port ethernet slot/port | port ethernet slot/port]

The mep-id parameter specifies the maintenance end point ID (mandatory) in the range 1-8191.

The up parameter sets the MEP direction away from the monitored VLAN.

The down parameter sets the MEP direction towards the monitored VLAN.

The *vlan-id* parameter specifies the VLAN end-points. It is configured only for MAs associated with VPLS and not configured for MAs with a VLAN.

The *port-id* parameter specifies the target interface on which it is used.

The **no** form of the command removes the specified MEPs.

## **Configuring Remote MEPs**

The **remote-mep** command is used to configure the remote MEP's you are expecting. If a remote MEP is not specified, the remote MEP database is built based on the CCM. If one remote MEP never sends CCM, the failure can not be detected.

```
device(config-cfm-md-VPLS-SP)# ma-name ma_1 vlan-id 30 device(config-cfm-md-VPLS-SP-ma_1)# remote-mep 1 to 120 device(config-cfm-md-VPLS-SP-ma_1)#
```

#### Syntax: [no] remote-mep mep-id [ to mep-id ]

The mep-id parameter specifies the maintenance end point ID (mandatory) in the range 1-8191.

The **no** form of the command removes the specified remote MEPs.

## **Setting the Remote Check Start-Delay**

When configuring the remote MEPs range, you can set a wait time before the MEPs come up and the CCM check operation is started. The default is set to 30 seconds.

```
device(config) #cfm-enable
device(config-cfm) #rmep-check start-delay 120
device(config-cfm) #
```

#### Syntax: [no] rmep-check start-delay seconds

The seconds parameter is the wait time interval before the CCM check is started. The range is 10 - 600 seconds.

## **Specifying MIP creation policy**

The **mip-policy** command, in Maintenance Association mode, specifies the conditions in which MIPs are automatically created on ports.

#### NOTE

MIP functionality of 802.1ag over VPLS with sub-second timer will have all the configuration restrictions of the VPLS CPU-protection.

A MIP can be created on a port and VLAN, only when explicit or default policy has been defined for them. For a specific port and VLAN a MIP will be created at the lowest of the levels. Additionally, the level created should be the next higher than the MEP level defined for these port and VLAN.

```
device(config-cfm) #domain name VPLS-SP level 4
device(config-cfm-md-VPLS-SP) #ma-name ma_1 vlan-id 30
device(config-cfm-md-VPLS-SP-ma_1) #mip-policy explicit
device(config-cfm-md-VPLS-SP-ma_1) #
```

#### Syntax: [no] mip-policy [ explicit | default ]

Use the **explicit** explicit parameter to specify that explicit MIPs are configured only if a MEP exists on a lower MD Level.

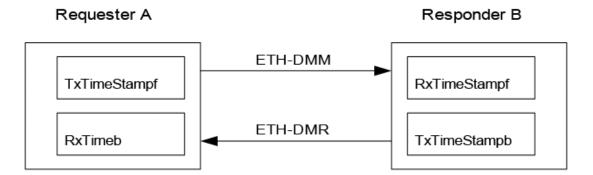
Use the **default** parameter to specify that MIPs will always be created.

The **no** form of the command restores the default Policy.

# Y.1731 performance management

The Y.1731 feature provides the following performance monitoring capability for point-to-point links as defined in ITU-T Rec Y.1731:

- · Two-way Frame Delay Measurement (ETH-DM)
- · Two-way Frame Delay Measurement Variation


#### NOTE

One-way ETH-DM is not supported in this release of the Multi-Service IronWare.

#### **About Y.1731**

Figure 5 shows an ETH-DM requester and responder.

FIGURE 5 ETH-DM requester and responder.



ETH-DM packets are transmitted, received and processed by LP CPU and are timestamped by the hardware on transmit and receive path.

An ETH-DM packet contains 4 timestamps for measuring the round-trip delay.

Requester A, transmits ETH-DMM packets with TxTimeStampf (timestamp at the transmission time of the packet).

Responder B, responds with an ETH-DMR packet using two timestamps to account for its processing time: RxTimeStampf (Timestamp at the time of receiving the DMM packet) and TxTimeStampb (timestamp at the time of transmitting the DMR packet).

Upon receiving an ETH-DMR packet, requester A stamps the packet with RxTimeb (timestamp at the time the DMR packet is received).

Frame Delay = (RxTimeb - TxTimeStampf) - (TxTimeStampb - RxTimeStampf)

#### This release provides Y.1731 support for the following:

- VLANs
- VPLS
  - Both VC-mode tagged and raw

- VLL
  - Both tagged and raw modes
- Up and Down MEPs for VLANs, VPLS, and VLL
- · Over LAG ports
  - The active primary port of the trunk would be used to transmit ETH-DM frames in case of down MEP
- · Through 802.1ag MIPs
  - MIP would behave as a transient node for ETH-DM frames

#### Configuration considerations:

When using Y.1731, consider the following:

- ETH-DM is reliable only if the transmitted DM frame (DMM) and received DM reply (DMR) are on the same line processor (LP). In the event that they are different, results will not be accurate.
- Maximum frame-delay that can be measured is 4 seconds. If a DMR packet is received with a delay greater than 4 seconds, the packet is discarded and ignored.
- ETH-DM does not gather path data. To determine which path the DM applies to, use the cfm linktrace domain command, since ETH-DM frames follow the same path.
- One-way ETH-DM is not supported in this release of the Multi-Service IronWare.

#### Configuring Y.1731 performance monitoring

Use the **cfm delay\_measurement domain** command to issue the delay measurement. If the number of delay measurement frame is greater than 16, then the last 16 delay measurement replies are printed.

You can issue the **cfm delay measurement** command from different sessions if they are for different **src-meps**. However, if it is for same **src-mep**, it only completes one session at a time.

Syntax: cfm delay\_measurement domain domain-name ma ma-name src-mep mep-id target-mep mep-id [ timeout timeout ] [ number number ]

The **domain** domain-name parameter specifies the maintenance domain to be used for a delay measurement message. The *domain-name* attribute is case-sensitive.

The **ma** *ma-name* parameter specifies the maintenance association to be used for a delay measurement message. The *ma-name* attribute is case-sensitive.

The **src-mep** *mep-id* parameter specifies the source mep-id in the range 1-8191.

The target-mep mep-id parameter specifies the destination mep-id in the range 1-8191.

The **number** parameter specifies the number of delay\_measurement messages to be sent. The range is 1-1000. The default value is 10. This is an optional parameter.

The **timeout** timeout parameter specifies the timeout used to wait for previous delay\_measurement reply before sending the next delay\_measurement message. The range is 1-4 seconds. The default value is 1second. This is an optional parameter.

If a **delay\_measurement** reply is received before the timeout, then the next delay measurement frame is sent immediately after processing the delay measurement reply. However, if the **delay measurement** reply is not received within the specified timeout, then the next **delay measurement** frame will be sent.

#### Y. 1731 show commands

Use the **show cfm statisticdelay\_measurement domain** command to display delay measurement statistics. If the command is issued gain, the output is replaced with the new values.

Port Used to transmit delay\_measurement: 2/2

Number of delay measurement frames Used to calculate Statistics: 10

Syntax: show cfm statistics delay\_measurement domain domain-name ma ma-name rmep rmep-id

The **domain** domain-name parameter specifies the maintenance domain to be used for a delay measurement message. The *domain-name* attribute is case-sensitive.

The **ma** *ma-name* parameter specifies the maintenance association to be used for a delay measurement message. The *ma-name* attribute is case-sensitive.

The **rmep** *rmep-id* parameter specifies the remote mep id to be used for a delay measurement message.

#### Sample configuration

1. MEP configuration (prerequisite for ETH-DM to work).

#### Requester-A:

```
device(config) #cfm-enable
device(config-cfm) # domain-name md2 level 7
device(config-cfm-md-md2) # ma-name ma2 vlan-id 2 priority 7
device(config-cfm-md-md2-ma-ma2) # mep 3 down port ethe 2/2
device(config-cfm-md-md2-ma-ma2) #
Responder-B:
device(config) #cfm-enable
```

```
device(config-cfm)# domain-name md2 level 7
device(config-cfm-md-md2)# ma-name ma2 vlan-id 2 priority 7
device(config-cfm-md-md2-ma-ma2)# mep 2 down port ethe 2/2
device(config-cfm-md-md2-ma-ma2)#
```

2. Issue the cfm delay\_measurement command.

```
device# cfm delay measurement domain md2 ma ma2 src-mep 3 target-mep 2
Y1731: Sending 10^- delay measurement to 0000.00f7.3931, timeout 1000 msec
Type Control-c to abort
Reply from 0000.00f7.3931: time= 32.131 us
Reply from 0000.00f7.3931: time= 31.637 us
Reply from 0000.00f7.3931: time= 32.566 us
Reply from 0000.00f7.3931: time= 34.052 us
Reply from 0000.00f7.3931: time= 33.376 us
Reply from 0000.00f7.3931: time= 31.501 us
Reply from 0000.00f7.3931: time= 33.016 us
Reply from 0000.00f7.3931: time= 32.537 us
Reply from 0000.00f7.3931: time= 32.492 us
Reply from 0000.00f7.3931: time= 32.552 us
sent = 10 number = 10 A total of 10 delay measurement replies received.
Success rate is 100 percent (10/10)
Round Trip Frame Delay Time
                                       : min = 31.501 us avg = 32.586 us max =
34.052 us
Round Trip Frame Delay Variation : min =
                                                                            839 ns max =
                                                       45 ns avg =
1.875 us
```

3. Issue the **show cfm statistic delay\_measurement domain** command.

# **CFM monitoring and show commands**

## Sending linktrace messages

The **cfm linktrace domain** command sends a linktrace message to a specified MEP in the domain. Enter a command such as the following to send a linktrace message to a specified MEP in the domain.

device# cfm linktrace domain VPLS-SP ma ma 1 src-mep 21 target-mep 1 timeout 10 ttl 4 Linktrace to 0000.00fb.5378 on Domain VPLS-SP, level 4: timeout 10ms, 4 hops

| Hops    | MAC<br>Forwarded        | Ingress<br>Egress | Ingress Action<br>Egress Action | Relay Action<br>Nexthop |
|---------|-------------------------|-------------------|---------------------------------|-------------------------|
|         |                         |                   |                                 |                         |
| 1       | 0000.00e2.6ea0          |                   |                                 | RLY_FDB                 |
|         | Forwarded               | 5/4               | EgrOK                           |                         |
| 2       | 0000.00fb.5378          | 7/2               | IgrOK                           | RLY HIT                 |
|         | Not Forwarded           |                   |                                 | _                       |
| Destina | ation 0000.00fb.5378 re | ached             |                                 |                         |

Syntax: [no] cfm linktrace domain name ma ma-name src- mep mep-id target-mip HH:HH:HH:HH:HH| target-mep mep-id } [ till TTL]

The **domain** *name* parameter specifies the maintenance domain to be used for a linktrace message. The *name* attribute is case-sensitive.

The **ma** ma-name parameter specifies the maintenance association to be used for a linktrace message. The ma-name attribute is case-sensitive.

The **src-mep** *mep-id* parameter specifies the Source ID in the range 1 - 8191.

The **target-mip** *HH:HH:HH:HH:HH* parameter specifies the MAC-address of the MIP linktrace destination.

The target-mep mep-id parameter specifies the Destination ID of the linktrace destination.

The **timeout** parameter specifies the time to wait for a linktrace reply. The range is 1 - 30 seconds.

The ttl TTL parameter specifies the initial TTL field value in the range 1 - 64. The default is 8 seconds.

## Sending loopback messages

The **cfm loopback domain** command, sends a loopback message to a specific MIP in a specified domain.

```
device#cfm loopback domain VPLS-SP ma ma_1 src-mep 2 target-mep 1 timeout 10 number
10
cfm: Sending 10 Loopback to 0000.00fb.5378, timeout 10 msec
Type Control-c to abort
Reply from 0000.00fb.5378: time=1ms
Reply from 0000.00fb.5378: time<1ms
Reply from 0000.00fb.5378: time<1m
```

# Syntax: [no] cfm loopback domain name ma ma-name scr-mep mep-id { target-mip HH:HH:HH:HH:HH:| target-mep mep-id } [ number number ] [ timeout timeout ]

The **domain** *name* parameter specifies the maintenance domain to be used for a linktrace message. The *name* attribute is case-sensitive.

The **ma** *ma-name* parameter specifies the maintenance association to be used for a linktrace message. The *ma-name* attribute is case-sensitive.

The **src-mep** *mep-id* parameter specifies the Source ID in the range 1-8191.

The **dst- mip** *HH:HH:HH:HH:HH* parameter specifies the MAC address of the MIP linktrace destination.

The **target-mep** *mep-id* parameter specifies the Destination ID in the range 1-8191.

The number number parameter specifies the number of loopback messages to be sent.

The **timeout** parameter specifies the timeout used to wait for linktrace reply.

## **Displaying CFM configurations**

The **show cfm** command, displays the current configuration and status of CFM. For the **show cfm** command to take effect, CFM should first be enabled in Protocol Configuration mode.

#### Syntax: show cfm [ domain name ] [ ma ma-name ]

The domain name parameter specifies a domain for display. By default, all defined domains are shown.

The **ma** *ma-name* parameter specifies the maintenance association name. By default, all defined domains are shown.

**TABLE 28** Show CFM output descriptions

| This field              | Displays                                                                                                                                                                |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domain                  | The Domain is the network or the part of the network for which faults in connectivity are displayed.                                                                    |
| Index                   | The Domain Index.                                                                                                                                                       |
| Level                   | The level is the domain level in the range <i>0-7</i> . The levels can be:  • Customer's MD levels: 5 - 7  • Provider's MD levels: 3 - 4  • Operator's MD levels: 0 - 2 |
| Maintenance Association | The maintenance association name.                                                                                                                                       |
| Ma Index                | The Maintenance Association Index.                                                                                                                                      |
| CCM interval            | The time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain.                                    |
| VLAN ID                 | The VLAN identifier of the maintenance association.                                                                                                                     |
| VPLS ID                 | The VPLS identifier of the maintenance association.                                                                                                                     |
| Priority                | The priority of the CCM messages, sent by MEPs, in the range 0-7.                                                                                                       |
| MEP                     | The maintenance end point ID                                                                                                                                            |

TABLE 28 Show CFM output descriptions (Continued)

| Direction | DIsplays the direction the MEP was sent:  Up - The MEP direction away from the monitored VLAN.  Down - The MEP direction is towards the monitored VLAN. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAC       | DIsplays the associated MAC Address.                                                                                                                    |
| PORT      | Displays the associated port.                                                                                                                           |
| MIP       | DIsplays the associated MIP                                                                                                                             |
| VLAN      | DIsplays the associated VLAN.                                                                                                                           |

The show cfm brief show a summary of the configured MEPs and RMEPs.

```
device#show cfm brief
Domain: md2
Index: 1
Level: 6  Num of MA: 1
   Maintenance association: ma2
   MA  Index: 1
   CCM interval: 10000 ms
   VLAN ID: 2
   Priority: 6
   Num of MEP: 1
   rmepstart: 0 rmepfail: 0 rmepok 1
```

Syntax: show cfm [ domain name ] [ ma ma-name ] brief

TABLE 29 Show cfm brief output description

| This field              | Displays                                                                                                                                                          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domain                  | The Domain is the network or the part of the network for which faults in connectivity are displayed.                                                              |
| Index                   | The Domain Index.                                                                                                                                                 |
| Level                   | The level is the domain level in the range <i>0-7</i> . The levels can be:  Customer's MD levels: 5 - 7  Provider's MD levels: 3 - 4  Operator's MD levels: 0 - 2 |
| Maintenance Association | The maintenance association name.                                                                                                                                 |
| Ma Index                | The Maintenance Association Index.                                                                                                                                |
| CCM interval            | The time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain.                              |
| VLAN ID                 | The VLAN identifier of the maintenance association.                                                                                                               |
| VPLS ID                 | The VPLS identifier of the maintenance association.                                                                                                               |

TABLE 29 Show cfm brief output description (Continued)

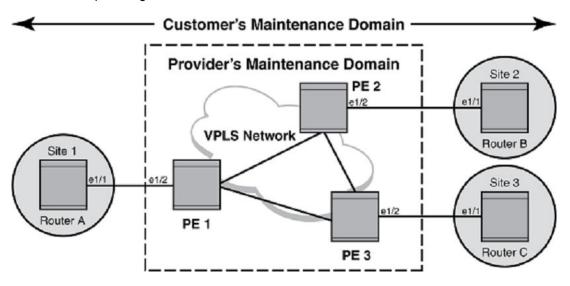
| Priority    | The priority of the CCM messages, sent by MEPs, in the range 0-7. |
|-------------|-------------------------------------------------------------------|
| Numof MEP   | The number of MEPs configured.                                    |
| Num of RMEP | The number of remote MEPs configured                              |
| remepstart  | The number of RMEPs in the start state.                           |
| rmepfail    | The number of RMEPs that have failed.                             |
| rmepok      | The number of RMEPs in an OK state.                               |

## **Displaying connectivity statistics**

The **show cfm connectivity** command, displays connectivity statistics for the remote database. For the **show cfm connectivity** command to take effect, CFM should first be enabled in the Protocol Configuration mode.

Syntax: show cfm connectivity

TABLE 30 Show CFM connectivity output descriptions


| This field              | Displays                                                                                                                                                                                              |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domain                  | The Domain is the network or the part of the network for which faults in connectivity are displayed.                                                                                                  |
| Index                   | The Domain Index.                                                                                                                                                                                     |
| Level                   | <ul> <li>The level is the domain level in the range 0-7. The levels can be:</li> <li>Customer's MD levels: 5 - 7</li> <li>Provider's MD levels: 3 - 4</li> <li>Operator's MD levels: 0 - 2</li> </ul> |
| Maintenance association | The maintenance association name.                                                                                                                                                                     |
| Ma Index                | The Maintenance Association Index.                                                                                                                                                                    |
| CCM interval            | The time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain.                                                                  |

**TABLE 30** Show CFM connectivity output descriptions (Continued)

| This field | Displays                                                                                                                                |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| VPLS ID    | The VPLS identifier of the maintenance association.                                                                                     |
| Priority   | The priority of the CCM messages, sent by MEPs, in the range 0-7.                                                                       |
| RMEP       | The remote maintenance end point ID                                                                                                     |
| MAC        | Displays the associated MAC Address.                                                                                                    |
| VLAN or VC | VLAN ID or VC label learned from the CCM packet. VC label is in hexadecimal format.                                                     |
| Age        | Uptime since RMEP discovery or from last age out                                                                                        |
| PORT       | Displays the associated port.                                                                                                           |
| SLOTMASK   | Mask of slots that are receiving CCM packets which are used for multi-slot trunks. For example a value of 0005 indicates Slots 1 and 3. |

## Sample configuration for a customer's domain

FIGURE 6 Sample configuration



#### Configuring Router A

CFM configuration steps for Router A are listed below.

1. To enable CFM, enter the following command.

RouterA(config)#cfm-enable

2. Create a maintenance domain with a specified name CUST\_1 and level 7.

RouterA(config-cfm) #domain-name CUST\_1 level 7

3. Create a maintenance association within a specified domain of vlan-id 30 with a priority 3.

```
RouterA(config-cfm-md-CUST_1)#ma-name ma_5 vlan-id 30 priority 3
```

4. Set the time interval between successive Continuity Check Messages to 10-seconds .

```
RouterA(config-cfm-md-CUST 1-ma-ma 5)#ccm-interval 10-second
```

5. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/1 to a specified maintenance association.

```
RouterA(config-cfm-md-CUST 1-ma-ma 5)#mep 2 down vlan 30 port ethe 1/1
```

#### Configuring Router B

CFM configuration steps for Router B are listed below.

1. To enable CFM for VPLS, enter the following command.

```
RouterB(config)#cfm-enable
```

2. Create a maintenance domain with a specified name CUST \_1 and level 7.

```
RouterB(config-cfm) #domain-name CUST 1 level 7
```

3. Create a maintenance association within a specified domain of vlan-id 30 with a priority 5.

```
RouterB(config-cfm-CUST_1) #ma-name ma_5 vlan-id 30 priority 5
```

4. Set the time interval between successive Continuity Check Messages to 10-seconds .

```
RouterB(config-cfm-md-CUST 1-ma-ma 5) #ccm-interval 10-second
```

5. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/1 as MEP to a specified maintenance association.

```
RouterB(config-cfm-md-CUST 1-ma-ma 5)#mep 2 down vlan 30 port ethe 1/1
```

#### Configuring Router C

CFM configuration steps for Router C are listed below.

1. To enable CFM for VPLS, enter the following command.

```
RouterC(config)#cfm-enable
```

2. Create a maintenance domain with a specified name CUST\_1 and level 7.

```
RouterC(config-cfm) #domain-name CUST_1 level 7
```

3. Create a maintenance association within a specified domain of vlan-id 30 with a priority 4.

```
RouterC(config-cfm-CUST 1)#ma-name ma 5 vlan-id 30 priority 4
```

4. Set the time interval between successive Continuity Check Messages to 10-seconds .

```
RouterC(config-cfm-md-CUST_1-ma-ma_5) #ccm-interval 10-second
```

5. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/1 as MEP to a specified maintenance association.

```
{\tt Routerc\,(config-cfm-md-CUST\_1-ma-ma\_5)\,\#mep\,\,1\,\,down\,\,vlan\,\,30\,\,port\,\,ethe\,\,1/1}
```

## **Configuring CFM using Provider Bridges**

Below is an example for configuring CFM when using Provider Bridges configurations as in the figure on Sample configuration for a customer's domain on page 160.

#### Configuring Router A

CFM configuration steps for Router A are listed below.

 Create the port-based VLAN that contains the tagged interface that you want to use by entering the following commands.

```
device(config) # vlan30
device(config-vlan-30) # tagged ethe 1/1
```

2. To enable CFM, enter the following command.

```
device(config) #cfm-enable
```

Create a maintenance domain with a specified name CUST\_1 and level 7.

```
device(config-cfm) #domain-name CUST 1 level 7
```

 Create a maintenance association within a specified ESI Site1vlan30, and a vlan-id 30 with a priority 3.

```
device(config-cfm-md-CUST 1)#ma-name ma 5 esi Sitelvlan30 vlan-id 30 priority 3
```

5. Set the time interval between successive Continuity Check Messages to 10-seconds .

```
device(config-cfm-md-CUST 1-ma-ma 5) #ccm-interval 10-second
```

6. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/1 to a specified maintenance association.

```
device(config-cfm-md-CUST 1-ma-ma 5) \#mep 2 down port ethe 1/1
```

7. To configure the hostnameas **RouterA**, enter a command such as the following.

```
device(config) #hostname RouterA
```

8. Configure interface ethernet 1/1 as the custom-edge by entering the following commands.

```
device(config) #interface ethernet 1/1
device(config-if-e10000-1/1) #port-type customer-edge
device(config-if-e10000-1/1) enable
device(config-if-e10000-1/1) end
```

#### Configuring Router B

CFM configuration steps for Router B are listed below.

 Create the port-based VLAN that contains the tagged interface that you want to use by entering the following commands.

```
device(config) # vlan30
device(
config-vlan-30) # tagged ethe 1/1
```

2. To enable CFM, enter the following command.

```
device(config)#cfm-enable
```

3. Create a maintenance domain with a specified name CUST\_1 and level7.

```
device(config-cfm) #domain-name CUST 1 level 7
```

4. Create a maintenance association within a specified ESI **Site2vlan30**, and a **vlan-id 30** with a priority **3**.

```
\texttt{device} \ (\texttt{config-cfm-md-CUST\_1}) \ \texttt{\#ma-name} \ \ \texttt{ma\_5} \ \ \texttt{esi} \ \ \texttt{Site2vlan30} \ \ \texttt{vlan-id} \ \ \texttt{30} \ \ \texttt{priority} \ \ \texttt{3}
```

Set the time interval between successive Continuity Check Messages to 10-seconds.

```
device(config-cfm-md-CUST_1-ma-ma_5)#ccm-interval 10-second
```

6. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/2 to a specified maintenance association.

```
device(config-cfm-md-CUST 1-ma-ma 5) #mep 2 down port ethe 1/2
```

7. To configure the hostnameas **RouterB**, enter a command such as the following.

```
device (config) #hostname RouterB
```

8. Configure interface ethernet 1/1 as the custome-edge by entering the following commands.

```
device(config) #interface ethernet 1/1
device(config-if-e10000-1/1) #port-type customer-edge
device(config-if-e10000-1/1) enable
device(config-if-e10000-1/1) end
```

#### Configuring Router C

CFM configuration steps for Router C are listed below.

 Create the port-based VLAN that contains the tagged interface that you want to use by entering the following commands.

```
device(config) # vlan30
device(
config-vlan-30) # tagged ethe 1/1
```

2. To enable CFM, enter the following command.

```
device(config)#cfm-enable
```

3. Create a maintenance domain with a specified nameCUST\_1 and level 7.

```
device(config-cfm) #domain-name CUST 1 level 7
```

 Create a maintenance association within a specified ESI Site3vlan30, and a vlan-id 30 with a priority 3.

```
device(config-cfm-md-CUST 1) #ma-name ma 5 esi Site3vlan30 vlan-id 30 priority 3
```

5. Set the time interval between successive Continuity Check Messages to 10-seconds .

```
device(config-cfm-md-CUST 1-ma-ma 5) #ccm-interval 10-second
```

6. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/2 to a specified maintenance association.

```
device(config-cfm-md-CUST_1-ma-ma_5) #mep 2 down port ethe 1/2
```

7. To configure the hostnameas **RouterC**, enter a command such as the following.

```
device(config) #hostname RouterC
```

8. Configure interface ethernet 1/1 as the **custome-edge** by entering the following commands.

```
device(config) #interface ethernet 1/1
device(config-if-e10000-1/1) #port-type customer-edge
device(config-if-e10000-1/1) enable
device(config-if-e10000-1/1) end
```

#### Provider Bridge Brocade 1

 Create the port-based VLAN that contains the tagged interface that you want to use by entering the following commands.

```
device(config) # vlan30
device(config-vlan-30) # tagged ethe 1/1
```

2. Create the ESI Brocadevlan300 as an encapsulated SVLAN with the ESI client **Site1vlan30** by entering the following commands.

```
device(config)esi Brocadevlan300 encapsulation svlan#
device(config)#esi-client Site1vlan30
```

Add the port-based VLAN300 that contains the tagged interfaces that you want to use by entering the following commands.

```
device(config) # vlan300
device(config-vlan-300) # tagged ethe 1/1 ethe 1/3
```

4. To enable CFM, enter the following command.

```
device(config) #cfm-enable
```

5. Create a maintenance domain with a specified name **CUST\_1** and level **5**.

```
device(config-cfm) #domain-name CUST 1 level 5
```

Create a maintenance association within a specified ESI Site1vlan30, and a vlan-id 30 with a priority 3.

```
device(config-cfm-md-CUST 1)#ma-name ma 5 esi Sitelvlan30 vlan-id 30 priority 3
```

7. Set the time interval between successive Continuity Check Messages to 10-seconds .

```
device(config-cfm-md-CUST 1-ma-ma 5) #ccm-interval 10-second
```

Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/2 as MEP to a specified maintenance association.

```
device(config-cfm-md-CUST_1-ma-ma_5) #mep 4 up port ethe 1/2
```

9. To configure the hostname as device, enter a command such as the following.

```
device(config) #hostname Brocade
```

10.Configure interface ethernet 1/1 as the **provider network** by entering the following commands.

```
device(config) #interface ethernet 1/1
device(config-if-e10000-1/1) #port-type provider-network
device(config-if-e10000-1/1) enable
device(config-if-e10000-1/1) end
```

11.Configure interface ethernet 1/2 as the **customer-edge** by entering the following commands.

```
device(config) #interface ethernet 1/2
device(config-if-e10000-1/2) #port-type custonmer-edge
device(config-if-e10000-1/2) enable
device(config-if-e10000-1/2) end
```

12.Configure interface ethernet 1/3 as the provider network by entering the following commands.

```
device(config) #interface ethernet 1/3
device(config-if-e10000-1/3) #port-type provider-network
device(config-if-e10000-1/3) enable
device(config-if-e10000-1/3) end
```

#### Provider Bridge Brocade2

 Create the port-based VLAN300 that contains the tagged interfaces that you want to use by entering the following commands.

```
device(config) # vlan300
device(config-vlan-300) # tagged ethe 1/1 ethe 1/3
```

2. To enable CFM, enter the following command.

```
device(config) #cfm-enable
```

3. Create a maintenance domain with a specified name CUST\_1 and level 5.

```
device(config-cfm) #domain-name CUST 1 level 5
```

 Create a maintenance association within a specified ESI Site2vlan30, and a vlan-id 30 with a priority 3.

```
\texttt{device} \ (\texttt{config-cfm-md-CUST\_1}) \ \texttt{\#ma-name} \ \ \texttt{ma\_5} \ \ \texttt{esi} \ \ \texttt{Site2vlan30} \ \ \texttt{vlan-id} \ \ \texttt{30} \ \ \texttt{priority} \ \ \texttt{30}
```

5. Set the time interval between successive Continuity Check Messages to 10-seconds .

```
device(config-cfm-md-CUST 1-ma-ma 5) #ccm-interval 10-second
```

Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/2 as MEP to a specified maintenance association.

```
device(config-cfm-md-CUST 1-ma-ma 5) #mep 5 up port ethe 1/2
```

7. To configure the hostname as device1, enter a command such as the following.

```
device(config) #hostname device1
```

8. Configure interface ethernet 1/1 as the **provider network** by entering the following commands.

```
device(config) #interface ethernet 1/1
device(config-if-e10000-1/1) #port-type provider-network
device(config-if-e10000-1/1) enable
device(config-if-e10000-1/1) end
```

9. Configure interface ethernet 1/2 as the customer-edge by entering the following commands.

```
device(config) #interface ethernet 1/2
device(config-if-e10000-1/2) #port-type custonmer-edge
device(config-if-e10000-1/2) enable
device(config-if-e10000-1/2) end
```

10.Configure interface ethernet 1/3 as the provider network by entering the following commands.

```
device(config) #interface ethernet 1/3
device(config-if-e10000-1/3) #port-type provider-network
device(config-if-e10000-1/3) enable
device(config-if-e10000-1/3) end
```

#### Provider Bridge Brocade3

 Create the port-based VLAN that contains the tagged interface that you want to use by entering the following commands.

```
device(config) # vlan30
device(config-vlan-30) # tagged ethe 1/2
```

Create the ESI devicevlan300 as an encapsulated SVLAN with the ESI client Site3vlan30 by entering the following commands.

```
device(config) #esi Brocade3vlan300 encapsulation svlan
device(config) #esi-client Site3vlan30
```

Add the port-based VLAN300 that contains the tagged interfaces that you want to use by entering the following commands.

```
device(config) # vlan300
device(config-vlan-300) # tagged ethe 1/1 ethe 1/3
```

4. To enable CFM, enter the following command.

```
device(config)#cfm-enable
```

5. Create a maintenance domain with a specified name CUST\_1 and level 5.

```
device(config-cfm) #domain-name CUST 1 level 5
```

Create a maintenance association within a specified ESI Site3vlan30, and a vlan-id 30 with a priority 3.

```
device(config-cfm-md-CUST 1)#ma-name ma 5 esi Site3vlan30 vlan-id 30 priority 3
```

7. Set the time interval between successive Continuity Check Messages to 10-seconds .

```
device(config-cfm-md-CUST_1-ma-ma_5)#ccm-interval 10-second
```

8. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/2 as MEP to a specified maintenance association.

```
device(config-cfm-md-CUST 1-ma-ma 5) #mep 6 up port ethe 1/2
```

9. To configure the hostname as Brocade3, enter a command such as the following.

```
device(config) #hostname Brocade3
Configure interface ethernet 1/1
as the provider network
by entering the following commands:
device(config) #interface ethernet 1/1
device(config-if-e10000-1/1) #port-type provider-network
device(config-if-e10000-1/1) enable
device(config-if-e10000-1/1) end
```

10.Configure interface ethernet 1/2 as the customer-edge by entering the following commands.

```
device(config) #interface ethernet 1/2
device(config-if-e10000-1/2) #port-type custonmer-edge
device(config-if-e10000-1/2) enable
device(config-if-e10000-1/2) end
```

11 Configure interface ethernet 1/3 as the provider network by entering the following commands.

```
device(config) #interface ethernet 1/3
device(config-if-e10000-1/3) #port-type provider-network
device(config-if-e10000-1/3) enable
device(config-if-e10000-1/3) end
```

## Displaying the connectivity status in a customer's domain

The following output are for 3 VPLS CEs. The 3 CEs are monitoring Ethernet LAN service in VLAN 30. The Ethernet SP is providing transport service for the customer's VLAN 30 through VPLS which is transparent to customer. The customer is only concerned about RMEPs from remote sites.

```
device#show cfm connectivity
Domain: CUST 1 Level:
 Maintenance association: ma 5
 CCM interval: 10000 ms
 VLAN ID: 30
 Priority: 3
 RMEP MAC
                    VLAN/PEER
                                        PORT
                                               SLOTS
                                  AGE
  400 0000.00e2.8a00 30
                                  879
                                         1/2 1,
  200 0000.00f5.e500
                        30
                                 1550
                                           1/2 1,
device#show cfm connectivity
Domain: CUST_1 Level: 7
 Maintenance association: ma_5
 CCM interval: 10000 ms
 VLAN ID: 30
 Priority: 5
                     VI.AN/PEER
                                         PORT
                                                 SLOTS
 RMEP MAC
                                   AGE
 ----
      ____
                    ___________
                    30 898
                                            1/3 1,
  400 0000.00e2.8a00
  100 0000.00e2.b400
                         30
                                  1569
                                             1/3 1,
device#show cfm connectivity
Domain: CUST 1 Level: 7
 Maintenance association: ma 5
 CCM interval: 10000 ms
 VLAN ID: 30
 Priority: 4
 RMEP MAC
                     VLAN/PEER
                                  AGE
                                        PORT
                                                SLOTS
      ____
                     ____________
                                        30
  200 0000.00f5.e500
                                    907
                                           1/4 1,
  100 0000.00e2.b400
                         30
                                    904
                                            1/4 1,
```

## Sample configuration for a customer domain using MPLS VLL

The topology inside an MPLS networks can be managed by using LSP ping and LSP trace route to detect and diagnose LSP failures. CFM packets are Ethernet packets with well know CFM etype and are not shown in the MPLS cloud. Therefore, the topology inside MPLS cannot be managed by the CFM protocol. However, you can use CFM to monitor the health of a VPLS or VLL instances.

#### FIGURE 7 Sample configuration

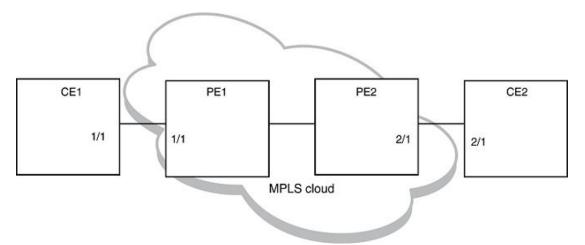



Figure 7 shows a deployment scenario where CE1 and CE2 are customer devices and PE1 and PE2 are provider routers. Port 1/1 on PE1 and port 2/1 on PE2 are VLL-end points. Port 1/1 on PE1 is connected to port 1/1 on CE1 and port 2/1 on PE2 is connected to port 2/1 on CE2.

## Achieving end-to-end connectivity between CE1 and CE2

To achieve end-to-end connectivity between CE1 and CE2, configure DOWN MEP on 1/1 and 2/1.PE1 and PE2 acts as MIP. The configuration for this is as follows.

#### Configuring CE1

1. To enable CFM, enter the following command.

device(config) #cfm-enable

2. Create a maintenance domain with a specified name CUST\_1 and level 7.

device(config-cfm)#domain-name CUST 1 level 7

3. Create a maintenance association within a specified domain of vlan-id 30 with a priority 3.

device(config-cfm-md-CUST\_1)#ma-name ma\_5 vlan-id 30 priority 3

4. Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

device(config-cfm-md-CUST 1-ma-ma 5) #ccm-interval 10-second

5. Configure a MEP on port 1/1 and vlan 30.

device(config-cfm-md-CUST 1-ma-ma 5) #mep 1 down vlan 30 port ethe 1/1

6. 6. Configure a remote-mep.

 $\label{lem:cust_lemma_ma_5} \texttt{device} (\texttt{config-cfm-md-CUST\_1-ma-ma\_5}) \, \# \, \texttt{remote-mep} \, \, 2 \, \, \texttt{to} \, \, 2$ 

#### Configuring CE2

1. To enable CFM, enter the following command.

device(config) #cfm-enable

2. Create a maintenance domain with a specified name CUST\_1 and level 7.

device(config-cfm) #domain-name CUST 1 level 7

3. Create a maintenance association within a specified domain of vlan-id 30 with a priority 3.

```
device(config-cfm-md-CUST_1) #ma-name ma_5 vlan-id 30 priority 3
```

4. Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

```
device(config-cfm-md-CUST 1-ma-ma 5)#ccm-interval 10-second
```

5. Configure a MEP on port 2/1 and vlan 30.

```
device(config-cfm-md-CUST 1-ma-ma 5) #mep 2 down vlan 30 port ethe 2/1
```

Configure a remote-mep.

```
device(config-cfm-md-CUST 1-ma-ma 5) #remote-mep 1 to 1
```

### MPLS Configurations on PE1

Before configuring CFM on PE1, the MPLS Configuration on PE1 must be done.

Enter the following commands to configure VLL peers from PE1 to PE 2.

1. To create a VLL instance, enter commands such as the following.

```
device(config) #router mpls
device(config-mpls) vll pel-to-pe2 30
```

2. To specify a VLL peer, enter a command such as the following.

```
device(config-mpls-vll)vll-peer 10.1.1.2
```

3. To specify an un-tagged endpoint for a VLL instance, enter the following commands.

```
device(config-mpls-vll)untagged ethe 1/1
```

Tagged ports are configured under a VLAN ID.

4. To specify a tagged endpoint for a VLL instance, enter the following commands.

```
device(config-mpls-v11)vlan 30
device(config-mpls-v11-vlan)tagged ethe 1/1
```

#### IEEE 802.1ag Configuration on PE1

If the VLL configuration is not done prior to configuring the maintenance association, then the maintenance association is not allowed.

1. To enable CFM, enter the following command.

```
device(config) #cfm-enable
```

2. Create a maintenance domain with a specified name CUST 1 and level 7.

```
device(config-cfm) #domain-name CUST 1 level 7
```

3. Create a maintenance association within a specified domain of vII-id 30 with a priority 3.

```
\label{lem:device} \texttt{device} \, (\texttt{config-cfm-md-CUST\_1}) \, \# \texttt{ma-name} \  \, \texttt{ma\_5} \  \, \texttt{vll-id} \, \, \texttt{30} \, \, \texttt{priority} \, \, \texttt{3}
```

Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

```
device(config-cfm-md-CUST 1-ma-ma 5) #ccm-interval 10-second
```

In the above configuration, a MIP (Maintenance Intermediate Point) is created by default on the VLL port. You can also configure an explicit MIP on PE1. In that case, MIP is created on the VLL-port if there is a MEP (Maintenance End Point) created on the port at some lower Maintenance Domain Level.

5. To configure an explicit MIP on PE1, enter the following command.

```
device(config-cfm-md-CUST 1-ma-ma 5) # mip-creation explicit
```

6. To change back to default use the following command.

```
device(config-cfm-md-CUST 1-ma-ma 5) # mip-creation default
```

#### MPLS Configurations on PE2

Before configuring CFM on PE2, MPLS is configured on PE2.

Use the following steps to configure VLL peers from PE2 to PE 1.

1. To create a VLL instance, enter commands such as the following.

```
device(config) #router mpls
device(config-mpls) vll pe2-to-pe1 30
```

2. To specify a VPLS peer enter a command such as the following.

```
device(config-mpls-vll)vpls-peer 10.1.1.1
```

3. To specify an un-tagged endpoint for a VLL instance, enter the following commands.

```
device(config-mpls-vll)untagged ethe 2/1
```

Tagged ports are configured under a VLAN ID.

4. To specify a tagged endpoint for a VLL instance, enter the following commands.

```
device(config-mpls-vll)vlan 30
device(config-mpls-vll-vlan)tagged ethe 2/1
```

## IEEE 802.1ag Configurations on PE2

If the VLL configuration is not done prior to configuring the maintenance association, then the maintenance association is not allowed.

1. To enable CFM, enter the following command.

```
device(config)#cfm-enable
```

2. Create a maintenance domain with a specified name CUST 1 and level 7.

```
device(config-cfm)#domain-name CUST_1 level 7
```

3. Create a maintenance association within a specified domain of vII-id 30 with a priority 3.

```
device(config-cfm-md-CUST 1) #ma-name ma 5 vll-id 30 priority 3
```

4. Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

```
device(config-cfm-md-CUST 1-ma-ma 5)#ccm-interval 10-second
```

In the above configuration, MIP is created by default on the VLL-endpoint. You can also configure an explicit-mip on PE2. In that case, MIP is created on the VLL-port if there is a MEP is created on the endpoint at some lower MD Level.

5. To configure an explicit-mip on PE2, enter the following command.

```
device(config-cfm-md-CUST 1-ma-ma 5) # mip-creation explicit
```

6. To change back to default use the following command.

```
\tt device(config-cfm-md-CUST\_1-ma-ma\_5) \# mip-creation \ default
```

#### Verifying connectivity using IEEE 802.1ag

Once CE1,CE2,PE1 and PE2 are configured, you can determine the end-to-end connectivity by looking at the remote-mep status by using the following show commands.

```
device#show cfm connectivity
Domain: CUST 1 Level: 7
Maintenance association: ma_5
CCM interval: 10000 ms
VLAN ID: 30
Priority: 3
device#show cfm connectivity domain CUST_1 ma ma_5 rmep-id 2
Domain: CUST_1 Level: 7
Maintenance association: ma 5 VLAN ID: 30 Priority: 3
CCM interval: 10
                     PORT Oper
                                                    CCM RDI Port
RMEP MAC
      AC
Intvl Seq
Intf
                                                 Val
           Status Status Error Error
==== ==========
                      === ===
____ _____
                                        26000
     0000.00e2.8a00
                     1/1
                             OK
                                                           2600
                                                                   Ν
```

#### Syntax: show cfm connectivity [domain name] [ma ma-name]

The **domain** name parameter displays the specific domain information. By default, all defined domains are shown.

The **ma** *ma-name* parameter specifies the maintenance association name. By default, all defined domains are shown.

**TABLE 31** Show CFM connectivity output descriptions

| This field              | Displays                                                                                                                                                                |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domain                  | The Domain is the network or the part of the network for which faults in connectivity are displayed.                                                                    |
| Level                   | The level is the domain level in the range <i>0-7</i> . The levels can be:  • Customer's MD levels: 5 - 7  • Provider's MD levels: 3 - 4  • Operator's MD levels: 0 - 2 |
| Maintenance association | The maintenance association name.                                                                                                                                       |
| CCM interval            | The time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain.                                    |
| VPLS ID                 | The VPLS identifier of the maintenance association.                                                                                                                     |
| Priority                | The priority of the CCM messages, sent by MEPs, in the range 0-7.                                                                                                       |
| RMEP                    | The remote maintenance end point ID                                                                                                                                     |
| MAC                     | DIsplays the associated MAC Address.                                                                                                                                    |

TABLE 31 Show CFM connectivity output descriptions (Continued)

| This field | Displays                                                                                                                                |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| VLAN/VC    | VLAN ID or VC label learned from the CCM packet. VC label is in hexadecimal format.                                                     |
| Age        | Uptime since RMEP discovery or from last age out                                                                                        |
| PORT       | Displays the associated port.                                                                                                           |
| SLOTMASK   | Mask of slots that are receiving CCM packets which are used for multi-slot trunks. For example a value of 0005 indicates Slots 1 and 3. |

#### Verifying connectivity in a VLL network using IEEE 802.1ag Loopback

You can manually monitor the status of a VLL peer using IEEE 802.1ag CFM Loopback (MAC ping) as shown below.

```
device#cfm loopback domain CUST 1 ma ma_5 src-mep 1 target-mep 2
DOT1AG: Sending 10 Loopback to 0000.00e2.8a00, timeout 10000 msec
Type Control-c to abort
Reply from 0000.00e2.8a00: time=3ms
Reply from 0000.00e2.8a00: time<1ms
Reply from 0000.00e2.8a00: time<1ms
Reply from 0000.00e2.8a00: time<1ms
Reply from 0000.00e2.8a00: time=38ms
Reply from 0000.00e2.8a00: time=1ms
Reply from 0000.00e2.8a00: time<1ms
A total of 10 loopback replies received.
Success rate is 100 percent (10/10), round-trip min/avg/max=0/4/38 ms.</pre>
```

# Syntax: [no] cfm linktrace domain name ma ma-mame src- mep mep-id target-mip HH:HH:HH:HH:HH | target-mep mep-id} [ timeout timeout ] [ ttl TTL ]

The **domain** *name* parameter specifies the maintenance domain to be used for a linktrace message. The *name* attribute is case-sensitive.

The **ma** *ma-name* parameter specifies the maintenance association to be used for a linktrace message. The *ma-name* attribute is case-sensitive.

The **src-mep** *mep-id* parameter specifies the Source ID in the range 1 - 8191.

The **target-mip** *HH:HH:HH:HH:HH* parameter specifies the MAC-address of the MIP linktrace destination.

The **target-mep** *mep-id* parameter specifies the ID of the linktrace destination.

The **timeout** parameter specifies the time to wait for a linktrace reply. The range is 1 - 30 seconds.

The ttl TTL parameter specifies the initial TTL field value in the range 1 - 64. The default is 8 seconds

#### Verifying Connectivity in a VLL Network Using IEEE 802.1ag Linktrace

You can manually monitor the status of a VLL peer using IEEE 802.1ag CFM Loopback (MAC Ping) as shown below.

Syntax: [no] cfm loopback domain name ma ma-name scr-mep mep-id { target-mip HH:HH:HH:HH:HH:| target-mep mep-id } [ number number] [ timeout timeout ]

The **domain** *name* parameter specifies the maintenance domain to be used for a linktrace message. The *name* attribute is case-sensitive.

The **ma** *ma-name* parameter specifies the maintenance association to be used for a linktrace message. The *ma-name* attribute is case-sensitive.

The **src-mep** *mep-id* parameter specifies the Source ID in the range 1-8191.

The **target- mip** *HH:HH:HH:HH:HH* parameter specifies the MAC address of the MIP linktrace destination.

The **target-mep** *mep-id* parameter specifies the Destination ID in the range 1-8191.

The number number parameter specifies the number of loopback messages to be sent.

The **timeout** parameter specifies the timeout used to wait for linktrace reply.

If the linktrace and loopback to target-mep 2 fails, then the linktrace can be done on the MIPs on PE1 and PE2 to know the exact failure.

#### Deployment scenario with PEs functioning as DOWN MEP

It is also possible to configure DOWN MEP on VLL end-points. For example, in Sample configuration for a customer domain using MPLS VLL on page 166, the DOWN MEP can be configured to monitor the connectivity between CE1 and PE1 or to monitor the connectivity between CE2 and PE2.

#### Configuring CE1

1. To enable CFM, enter the following command.

```
device(config) #cfm-enable
```

2. Create a maintenance domain with a specified name CUST 2 and level 6.

```
device(config-cfm) #domain-name CUST 2 level 6
```

Create a maintenance association within a specified domain of vlan-id 30 with a priority 3.

```
device(config-cfm-md-CUST_2)#ma-name ma_6 vlan-id 30 priority 3
```

4. Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

```
device(config-cfm-md-CUST 2-ma-ma 6) #ccm-interval 10-second
```

5. Configure a MEP on port 1/1 and vlan 30.

```
device(config-cfm-md-CUST 2-ma-ma 6) #mep 3 down vlan 30 port ethe 1/1
```

6. Configure a remote-mep.

```
\label{lem:cust_lemma_s} \texttt{device}\,(\texttt{config-cfm-md-CUST\_1-ma-ma\_5})\, \texttt{\#remote-mep}\ 4\ \texttt{to}\ 4
```

#### Configuring PE1

The MPLS-VLL configuration is the same as shown in the previous deployment scenario. If the VLL configuration is not done prior to configuring maintenance association, the MA configuration will not be allowed. Also the port and vlan in the MEP configuration should exist in the VLL configuration prior to MEP configuration, otherwise it is not allowed. The port in the MEP configuration can be either a tagged or untagged port already present in the VLL configuration.

1. To enable CFM, enter the following command.

```
device(config)#cfm-enable
```

2. Create a maintenance domain with a specified name CUST\_2 and level 6.

```
device(config-cfm) #domain-name CUST_2 level 6
```

3. Create a maintenance association within a specified domain of vII-id 30 with a priority 3.

```
device(config-cfm-md-CUST_2)#ma-name ma_6 vll-id 30 priority 3
```

4. Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

```
device(config-cfm-md-CUST 2-ma-ma 6)#ccm-interval 10-second
```

5. Configure a MEP on port 1/1 and vlan 30

```
device(config-cfm-md-CUST 2-ma-ma 6) #mep 4 down vlan 30 port ethe 1/1
```

To monitor the connectivity between CE-1 and PE-1, you can use the **show cfm connectivity** commands as mentioned in the previous scenario. You can also use the **loopback** or **linktrace** commands on CE-1 or PE-1.

#### Deployment scenario with PEs functioning as UP MEP

UP MEPs can also be configured on PEs. This monitors connectivity of VLL end points.

#### Configuring PE1

The MPLS-VLL configuration is the same as shown in the previous deployment scenario. If the VLL configuration is not done prior to configuring maintenance association, the MA configuration would not be allowed. Also the port and vlan in the MEP configuration should exist in VLL configuration prior to MEP configuration, otherwise it will not be allowed. The port in the MEP configuration can be either a tagged or untagged port already present in VLL configuration.

1. To enable CFM, enter the following command.

```
device(config)#cfm-enable
```

2. Create a maintenance domain with a specified name PROVIDER 1 and level 4.

```
device(config-cfm) #domain-name PROVIDER_1 level 4
```

3. Create a maintenance association within a specified domain of vII-id 30 with a priority 3.

```
device(config-cfm-md-PROVIDER 1) #ma-name ma 8 vll-id 30 priority 3
```

4. Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

```
device(config-cfm-md-PROVIDER_1-ma-ma_8)#ccm-interval 10-second
device(config-cfm-md-PROVIDER_1-ma-ma_8)#mep 6 up vlan 30 port ethe 1/1
```

#### Configuring PE2

The configuration on PE1 is similar to the PE1 configuration.

1. To enable CFM, enter the following command.

```
device(config) #cfm-enable
```

2. Create a maintenance domain with a specified name PROVIDER 1 and level 4.

```
device(config-cfm) #domain-name PROVIDER 1 level 4
```

3. Create a maintenance association within a specified domain of vII-id 30 with a priority 3.

```
device(config-cfm-md-PROVIDER_1)#ma-name ma_8 vll-id 30 priority 3
```

4. Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

```
device(config-cfm-md-PROVIDER 1-ma-ma_8)#ccm-interval 10-second device (config-cfm-md-PROVIDER_1-ma-ma_8)#mep 7 up vlan 30 port ethe 2/1
```

To monitor the connectivity between PE1 and PE2, you could use the **"show cfm connectivity"** commands as mentioned in the previous scenario. Also you could use either loopback or linktrace on PE1 or PE2.

#### Configuring PE2

1. To enable CFM, enter the following command.

```
device(config)#cfm-enable
```

2. Create a maintenance domain with a specified name PROVIDER\_1 and level 4.

```
device(config-cfm) #domain-name PROVIDER 1 level 4
```

3. Create a maintenance association within a specified domain of vII-id 30 with a priority 3.

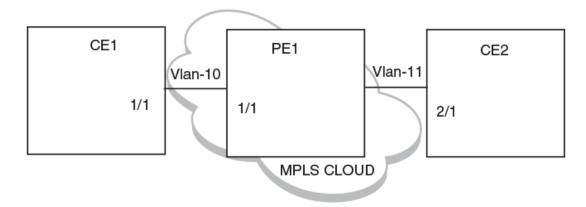
```
device(config-cfm-md-PROVIDER 1) #ma-name ma 8 vll-id 30 priority 3
```

4. Set the time interval between successive Continuity Check Messages. The default is 10-seconds.

```
device(config-cfm-md-PROVIDER_1-ma-ma_8) #ccm-interval 10-second
```

5. Configure MEP 4 down on port 1/1 and vlan 30

```
device(config-cfm-md-CUST 2-ma-ma 6)#mep 4 down vlan 30 port ethe 1/1
```


To monitor the connectivity between PE-1 and PE-2, we could use "show cfm connectivity " commands as mentioned in the previous scenario. Also we could use either loopback or linktrace on PE-1 or PE-2.

#### IEEE 802.1ag with VLL-LOCAL

In the case of IEEE 802.1ag over VLL-LOCAL, the PE acts as a MIP and VLL does VLAN translation. As shown in the figure below, MEP is configured on vlan-10 on CE1 and vlan-11 on CE2. On PE1, MIP is configured on VLL-LOCAL and which has vlan-10, port 1/1 and vlan-11,port 2/1 configured as end points.

UP MEP would not be allowed for VLL-Local.

FIGURE 8 IEEE 802.1ag over VLL-LOCAL



#### MPLS configurations on PE1

Before configuring CFM on PE1 we need to do MPLS Configuration on PE1.

Enter the following commands to configure VLL peers from PE1 to PE 2.

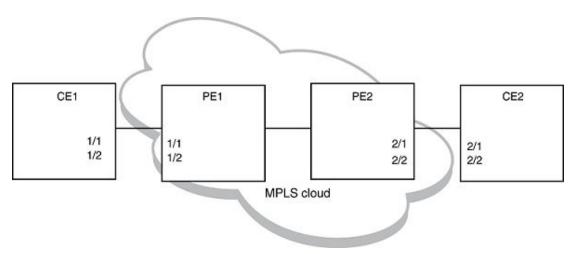
1. To create a VLL instance, enter commands such as the following.

```
device(config) #router mpls
device(config-mpls) vll-local test1
```

2. To specify an un-tagged endpoint for a VLL instance, enter the following commands.

```
device(config-mpls-vll-test1)untagged ethe 1/1
```

Tagged ports are configured under a VLAN ID.


3. To specify a tagged endpoint for a VLL instance, enter the following commands.

```
device(config-mpls-vll-test1)vlan 30
device(config-mpls-vll-vlan)tagged ethe 1/1
```

As in the previous case, to monitor the connectivity between CE1 and CE2, you can use the **show cfm connectivity** command as mentioned in the previous scenario. You can also use either loopback or linktrace on CE1 or CE2.

#### LAG-support for IEEE 802.1ag-over-vil

- IEEE 802.1ag over VLL scenerio



As shown in LAG-support for IEEE 802.1ag-over-vll, you can have MEP configuration over a LAG port. On CE1 and CE2 DOWN MEP is configured on VLAN and on PE1 and PE2 DOWN or UP MEP would be configured, depending on what to monitor.

The configuration and monitoring of MEPs is similar as mentioned in the previous examples.

#### **Deletion of VLL**

#### NOTE

Deletion of VLL would cause the deletion of Maintenance Association and corresponding MEPs on that MA.

#### Sub-second timer support

The **ccm-interval** command sets the time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain. The default value is 10 seconds.

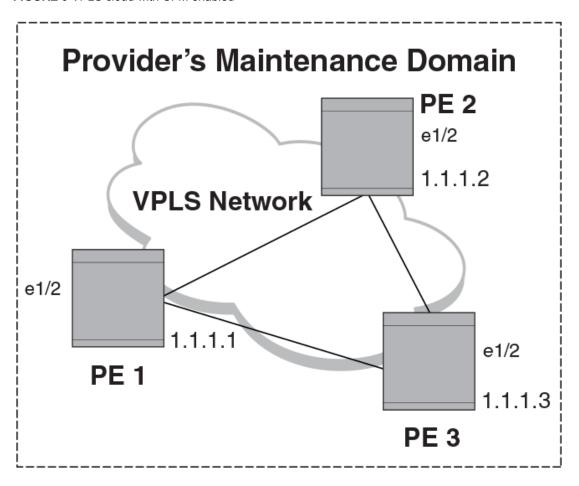
There is support for sub-second timers 3.3 ms, 10 ms and 100 ms. As in the case of VLAN and VPLS, for sub-second timers pbif hardware assist is used to transmit and process the CCM packets.

#### NOTE

The sub-second timer functionality is not supported on VLL-Local. The sub-second timer functionality is not supported on NetIron CES devices

#### Hitless upgrade support

Hitless upgrade support for IEEE 802.1ag over VLL is similar to IEEE 802.1ag hitless upgrade support for VLAN or VPLS.


# Monitoring the status of devices in a VPLS network in a Provider's Maintenance Domain

CFM provides capabilities to detect, verify, and isolate connectivity failures.

#### NOTE

When configuring 802.1ag over VPLS, if the VPLS endpoint is deleted from the configuration, the MEP configuration is deleted under CFM without warning.

In the Figure 9, CFM is applied over a VPLS network; ports 1/2 and 1/3 are customer facing networks; and port 1/1 is an uplink to a VPLS cloud.



#### FIGURE 9 VPLS cloud with CFM enabled

## **Configuring PE 1**

1. To enable CFM for VPLS, enter the following command.

device(config) #cfm-enable

2. Create a maintenance domain with a specified name VPLS-SP and level 4.

device(config-cfm) #domain-name VPLS-SP level 4

3. Create a maintenance association within a specified domain of vpls-id 1 with a priority 3.

device(config-cfm-md-VPLS-SP)#ma-name ma\_1 vpls-id 1 priority 3

4. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/2 as MEP to a specified maintenance association.

device(config-cfm-md-VPLS-SP-ma-ma 1) #mep 1 up vlan 30 port ethe 1/2

#### MPLS configurations

Enter the following commands to configure VPLS peers from PE 2 to PE3.

1. To create a VPLS instance, enter commands such as the following.

```
device(config) #router mpls
device(config-mpls) #vpls 1 1
```

To specify two remote VPLS peers within a VPLS instance, enter a commands such as the following.

```
device(config-mpls-vpls-1) #vpls-peer 10.1.1.2
device(config-mpls-vpls-1) #vpls-peer 10.1.1.3
```

Tagged ports are configured under a VLAN ID. To specify a tagged endpoint for a VPLS instance, enter the following commands.

```
device(config-mpls-vpls-1) \#vlan 30 device(config-mpls-vpls-1-vlan-30) \#tagged ethe 1/2 to 1/3
```

## **Configuring PE 2**

CFM configuration steps for Router 2 are listed below.

1. To enable CFM, enter the following command.

```
device(config)#cfm-enable
```

2. Create a maintenance domain with a specified name VPLS-SP and level 4.

```
device (config-cfm) #domain-name VPLS-SP level 4
```

3. Create a maintenance association within a specified domain of vpls-id 1 with a priority 3.

```
device(config-cfm-VPLS-SP) #ma-name ma 1 vpls-id 1 priority 3
```

4. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/2 as MEP to a specified maintenance association.

```
\label{lem:device} \texttt{device}(\texttt{config-cfm-md-VPLS-SP-ma-ma\_1}) \ \texttt{\#mep} \ \ \texttt{2} \ \ \texttt{up} \ \ \texttt{vlan} \ \ \texttt{30} \ \ \texttt{port} \ \ \texttt{ethe} \ \ 1/2 \ \ \texttt{1/2} \ \ \texttt{
```

#### MPLS configurations

Enter the following commands to configure VPLS peers from PE1 toPE 3.

1. To create a VPLS instance, enter commands such as the following.

```
device(config) #router mpls
device(config-mpls) vpls 1 1
```

2. To specify two remote VPLS peers within a VPLS instance, enter a command such as the following.

```
device(config-mpls-vpls-1)vpls-peer 10.1.1.1
device(config-mpls-vpls-1)vpls-peer 10.1.1.3
```

Tagged ports are configured under a VLAN ID. To specify a tagged endpoint for a VPLS instance, enter the following commands.

```
device(config-mpls-vpls-1)vlan 30
device(config-mpls-vpls-1-vlan-30)tagged ethe 1/2
```

## **Configuring PE 3**

CFM configuration steps for PE 3 are listed below.

1. To enable CFM for VPLS, enter the following command.

```
device(config) #cfm-enable
```

2. Create a maintenance domain with a specified name VPLS-SP and level 4.

```
device(config-cfm) #domain-name VPLS-SP level 4
```

3. Create a maintenance association within a specified domain of vpls-id 1 with a priority 3.

```
device(config-cfm-md-VPLS-SP) #ma-name ma 1 vpls-id 1 priority 3
```

4. Configuring a MED for each of the Domain Service Access Points of a service instance creates a MA to monitor the connectivity. Add ethernet port 1/2 as MEP to a specified maintenance association.

```
device(config-cfm-md-VPLS-SP-ma-ma 1) #mep 3 up vlan 30 port ethe 1/2
```

#### MPLS configurations

Enter the following commands to configure VPLS peers from Router 1 to Router 2.

1. To create a VPLS instance, enter commands such as the following.

```
device(config)router mpls
device(cconfig-mpls)vpls 1 1
```

2. To specify two remote VPLS peers within a VPLS instance, enter a command such as the following.

```
device(config-mpls-vpls-1)vpls-peer 10.1.1.1
device(config-mpls-vpls-1)vpls-peer 10.1.1.2
```

3. Tagged ports are configured under a VLAN ID. To specify a tagged endpoint for a VPLS instance, enter the following commands.

```
device(config-mpls-vpls-1)vlan 30
device(config-mpls-vpls-1-vlan-30)tagged ethe 1/2
```

## Verifying connectivity in a VPLS network using IEEE 802.1ag

To display VPLS IEEE 802.1ag connectivity, enter the following commands.

#### Syntax: show cfm [ domain name ] [ ma ma-name ]

The **domain** name parameter displays the specific domain information. By default, all defined domains are shown.

The **ma** *ma-name* parameter specifies the maintenance association name. By default, all defined domains are shown.

TABLE 32 Output for show CFM domain command

| This field | Displays                                                                                             |
|------------|------------------------------------------------------------------------------------------------------|
| Domain     | The Domain is the network or the part of the network for which faults in connectivity are displayed. |

TABLE 32 Output for show CFM domain command (Continued)

| This field                 | Displays                                                                                                                                                        |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level (Maintenance Domain) | The level is the domain level in the range <i>0-7</i> . The levels can be:  Operator's MD levels: 0 - 2 Provider's MD levels: 3 - 4 Customer's MD levels: 5 - 7 |
| Maintenance association    | The maintenance association name.                                                                                                                               |
| CCM interval               | The time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain.                            |
| VLAN ID                    | The VLAN identifier of the maintenance association.                                                                                                             |
| VPLS ID                    | The VPLS identifier of the maintenance association.                                                                                                             |
| Priority                   | The priority of the CCM messages, sent by MEPs, in the range 0-7.                                                                                               |
| MEP                        | The maintenance end point ID                                                                                                                                    |
| Direction                  | DIsplays the direction the MEP was sent:  Up - The MEP direction away from the monitored VLAN.  Down - The MEP direction is towards the monitored VLAN.         |
| MAC                        | DIsplays the associated MAC Address.                                                                                                                            |
| PORT                       | DIsplays the associated port.                                                                                                                                   |

The **show cfm connectivity** command, displays connectivity statistics for the remote database. For the **show cfm connectivity** command to take effect, CFM should first be enabled in the Protocol Configuration mode.

```
device#show cfm connectivity
 Domain: VPLS-SP Level: 4
 Maintenance association: ma 1
 CCM interval: 10
 VPLS ID: 1
 Priority: 3
 RMEP
                   VLAN/VC AGE PORT SLOTMASK
        MAC
        =====
 ====
                    ______
   4 0000.00e2.d80a 00f00a1 2157 0008
2 0000.00e2.b560 00f00a0 2597 0008
device#show cfm connectivity domain VPLS-SP ma ma 1 rmep-id 2
Domain: VPLS-SP Level: 4
Maintenance association: ma 1 VPLS ID: 1 Priority: 3
CCM interval: 10
                           Oper Age CCM RDI Port Intf Intvl Seq
 RMEP
       MAC
                    PORT
                           State Val Cnt Status Status Error Error
      2 0000.00e2.b560 00f00a0 OK 26000 2600
                                                      0
```

#### Syntax: show cfm connectivity [ domain NAME ] [ ma MA NAME ]

The domain NAME parameter displays information for a specific domain. By default, all defined domains are shown.

The ma NAME parameter specifies the maintenance association name. By default, all defined domains are shown.

 TABLE 33
 Output for show CFM connectivity command

| This field              | Displays                                                                                                                             |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Domain                  | The Domain is the network or the part of the network for which faults in connectivity are displayed.                                 |
| Level                   | The level is the domain level in the range 0-7. The levels can be:                                                                   |
|                         | Customer's MD levels: 0 - 2                                                                                                          |
|                         | Provider's MD levels: 3 - 4     Operator's MD levels: 5 - 7                                                                          |
|                         | Operator's MD levels: 5 - 7                                                                                                          |
| Maintenance association | The maintenance association name.                                                                                                    |
| CCM interval            | The time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain. |
| VLAN ID                 | The VLAN identifier of the maintenance association.                                                                                  |
| VPLS ID                 | The VPLS identifier of the maintenance association.                                                                                  |
| Priority                | The priority of the CCM messages, sent by MEPs, in the range 0-7.                                                                    |
| RMEP                    | The remote maintenance end point ID                                                                                                  |
| MAC                     | DIsplays the associated MAC Address.                                                                                                 |
| PORT                    | DIsplays the associated port.                                                                                                        |
| Oper State              | Defines the state of the port attached to the MEP. Possible values OK and Fail                                                       |
| Age Val                 | Age of the operational state of the port.                                                                                            |
| CCM Count               | Displays the total number of Continuity Check messages (CCMs) that are sent.                                                         |
| RDI                     | Remote Defect Indicator                                                                                                              |
| Port Status             | The status of a port                                                                                                                 |
| Intf Status             | The status of the interface                                                                                                          |
| Intvl Error             | Displays Y if there has been an interval error and N if no interval errors have been detected.                                       |
| Seq Error               | Displays Y if there has been a sequence error and N if no sequence errors have been detected.                                        |

# Verifying connectivity in a VPLS network using IEEE 802.1ag Loopback

You can manually monitor the status of VPLS peers using IEEE 802.1ag CFM Linktrace (MAC traceroute) and CFM Loopback (MAC Ping) as shown below.

Syntax: [no] cfm linktrace domain name ma ma-name src-mep mep-id target-mip HH:HH:HH:HH:HH:| target-mepmep-id [ timeout | [ ttl TTL ]

The **domain** *name* parameter specifies the maintenance domain to be used for a linktrace message. The *name* attribute is case-sensitive.

The **ma** ma-name parameter specifies the maintenance association to be used for a linktrace message. The name attribute is case-sensitive.

The src-mep mep-id parameter specifies the Source ID in the range 1-8191.

The **target-mip** *HH:HH:HH:HH:HH* parameter specifies the MAC-address of the MIP linktrace destination.

The target-mep mepid parameter specifies the ID of the linktrace destination.

The **timeout** timeout parameter specifies the timeout used to wait for linktrace reply. The default value is 1-30 seconds.

The ttl TTL parameter specifies the initial TTL field value in the range 1-64. The default is 8 seconds.

Syntax: [no] cfm loopback domain name ma ma-name scr-mep mep-id { target-mip HH:HH:HH:HH:HH | target-mep mep-id } [ number number ] [ timeout timeout ]

The **domain** *name* parameter specifies the maintenance domain to be used for a linktrace message. The *name* attribute is case-sensitive.

The **ma** *ma-name* parameter specifies the maintenance association to be used for a linktrace message. The *ma-name* attribute is case-sensitive.

The src-mep mep-id parameter specifies the Source ID in the range 1-8191.

The **target- mip** *HH:HH:HH:HH:HH* parameter specifies the MAC address of the MIP linktrace destination.

The target-mep mep-id parameter specifies the Destination ID in the range 1-8191.

The **number** *number* parameter specifies the number of loopback messages to be sent.

The timeout timeout parameter specifies the timeout used to wait for linktrace reply.

You have to configure MAs with different MD levels to monitor the different endpoints with different

#### NOTE

You have to configure MAs with different MD levels to monitor the different endpoints with different VLAN IDs in the same VPLS instance.

### Syslog message

If CFM is configured, a syslog message will be generated when remote MEPs change their states or if there are service cross connections.

### Sample Syslog Messages

```
device#
SYSLOG: Jan 7 11:22:55:<9>Router2, DOT1AG: Remote MEP 4 in Domain VPLS-SP, MA ma_1
aged out
SYSLOG: Jan 7 11:23:13:<9>Router2, DOT1AG: Remote MEP 4 in Domain VPLS-SP, MA ma_1
become UP state
```

When a failure is detected within a VPLS cloud, use LSP Ping and Traceroute. Refer to LSP ping and traceroute on page 201 for additional information.

# Support for IEEE 802.1ag CFM for Provider Bridges (PB) and Provider Backbone Bridges (PBB)

The device support the following single tagging and double tagging cases:

- · MEP (up/down) and MIP on C-VLANs
- MEP (up/down) and MIP on S-VLANs The ability to change tag-type 88a8 to S-VLANs

# The Brocade NetIron CES Series supports both of the above capabilities in the following scenarios:

- · MEP (up/down) and MIP on C-VLANs
- MEP (up/down) and MIP on S-VLANs -The ability to change tag-type 88a8 to S-VLANs
  - MEP on C-VLANs (extended to both default ESI and non-default ESI)

#### **NOTE**

The C-VLAN may be a child of another ESI or could be "stand-alone".

· - MEP on S-VLANs in an ESI

#### NOTE

The S-VLAN may be a child of another ESI or could be "stand-alone"

 MIP on standalone C-VLANs and stand-alone S-VLANs on a device (i.e. C-VLANs that are not a client of another ESI or S-VLANs that are not a client of another ESI).

### The following configurations are not supported on the Brocade NetIron CES Series devices:

- · Handling MIP on a C-VLAN that is a client of an S-VLAN
- · Handling MIP/MEP on a B-VLAN
- · Handling MIP on an S-VLAN that is a client of a B-VLAN

# 802.1ag over PBB sub-second timer support

#### NOTE

The sub-second timer functionality is not supported on NetIron CES devices.

The **ccm-interval** command sets the time interval between two successive Continuity Check messages (CCMs) that are sent by MEPs in the specified Maintenance Domain. The default value is 10 seconds.

There is support for sub-second timers 3.3 ms, 10 ms and 100 ms. The ISID CFM can be used in PBB networks and CFM monitoring between Backbone Edge Bridges.

The sub-second CCM interval is supported for the following scenarios:

- 802.1ag over Regular Vlan
- 802.1ag over ESI VLAN
- 802.1ag over VPLS

The following messages are supported for sub-second CCM interval:

- · Loop Back Message and Reply (LBM, LBR)
- · Link Trace Message and Reply (LTM, LTR)
- Delay Measurement Message and Reply (DMM, DMR)

### Sub-second timer sample configuration

#### CER1

```
device(config) #cfm-enable
device (config-cfm) #domain-name customer level 7
device(config-cfm-md-customer) #ma-name admin vlan 100 priority 7
device(config-cfm-md-customer-ma-admin)#ccm-interval 100-ms
device(config-cfm-md-customer-ma-admin) #mep 1 down port ethe 1/13
CER2
device(config) #cfm-enable
device(config-cfm) #domain-name customer level 7
device (config-cfm-md-customer) #ma-name admin vlan 100 priority 7
device(config-cfm-md-customer-ma-admin) #ccm-interval 100-ms
CER3
device(config)#cfm-enable
device(config-cfm) #domain-name customer level 7
device(config-cfm-md-customer) #ma-name admin vlan 100 priority 7
device(config-cfm-md-customer-ma-admin)#ccm-interval 100-ms
device(config-cfm-md-customer-ma-admin) #mep 1 down port ethe 1/13
```

# IEEE 802.3ah EFM-OAM

The IEEE 802.3ah Ethernet in the First Mile (EFM) is supported on the NetIron devices.

The IEEE 802.3ah Ethernet in the First Mile (EFM) standard specifies the protocols and Ethernet interfaces for using Ethernet over access links as a first-mile technology and transforming it into a highly reliable technology.

Using the Ethernet in the First Mile solution, you will gain broadcast Internet access, in addition to services, such as Layer 2 transparent LAN services, voice services over Ethernet Access networks, and video and multicast applications, reinforced by security and Quality of Service control in order to build a scalable network.

The in-band management specified by IEEE 802.3ah EFM standard defines the operations, administration and maintenance (OAM) mechanism needed for the advanced monitoring and maintenance of Ethernet links in the first mile. The OAM capabilities facilitate network operation and troubleshooting. Basic 802.3 frames convey OAM data between two ends of the physical link. EFM-OAM is optional and can be disabled on each physical port.

OAM initiatives are classified into three layers: transport, connectivity and service. The transport layer is the collection of forwarding entities and interconnected segments that form a multi-hop Ethernet network, and provide connectivity between devices. The transport layer OAM is specified by IEEE 802.3ah (Clause 57) and provides single-link OAM capabilities.

When OAM is present, two connected OAM sub-layers exchange protocol data units (OAMPDUs). OAMPDUs are standard-size frames that can be sent at a maximum rate of 10 frames per second. This limitation is necessary for reducing the impact on the usable bandwidth. It is possible to send each frame several times in order to increase the probability of reception. A combination of the destination MAC address, the Ethernet type/length field and subtype allow distinguishing OAMPDU frames from other frames.

OAM functionality is designed to provide reliable service assurance mechanisms for both provider and customer networks.

The IEEE 802.3ah EFM standard offers an opportunity to create the operations, OAM sub-layer within the data-link layer of the OSI protocol stack. The data-link layer provides utilities for monitoring and troubleshooting Ethernet links.

# **Network deployment use case**

The data-link layer OAM is targeted at last-mile applications, and service providers can use it for demarcation point OAM services.

Ethernet last-mile applications require robust infrastructure that is both passive and active. 802.3ah OAM aims to solve validation and testing problems in such an infrastructure.

Using the Ethernet demarcation, service providers can additionally manage the remote device without utilizing an IP layer. This can be done by using link-layer SNMP counters, request and reply, loopback testing, and other techniques.

# **EFM-OAM protocol**

The functionality of the EFM-OAM can be summarized under the following categories:

- Discovery: Discovery is the mechanism to detect the presence of an OAM sub-layer on the remote device. During the discovery process, information about OAM entities, capabilities, and configurations are exchanged.
- Link monitoring: This process is used to detect link faults and to provide information about the number of frame errors and coding symbol errors.
- Remote fault detection: Provides a mechanism for an OAM entity to convey error conditions to its peer by way of a flag in the OAMPDUs.
- Remote loopback: This mechanism is used to troubleshoot networks and to isolate problem segments in a large network by sending test segments.

### Discovery

Discovery is the first phase of EFM-OAM. At this phase, EFM-OAM identifies network devices along with their OAM capabilities. The Discovery process relies on the Information OAMPDUs. During discovery, the following information is advertised through the TLVs within periodic information OAMPDUs:

- OAM configuration (capabilities): Advertises the capabilities of the local OAM entity. Using this
  information, a peer can determine what functions are supported and accessible (e.g. loopback
  capability).
- OAM mode: The OAM mode is conveyed to the remote OAM entity. The mode can be either active
  or passive, and can also be used to determine a device's functionality.
- OAMPDU configuration: This configuration includes the maximum OAMPDU size to delivery. In combination with the limited rate of 10 frames per second, this information can be used to limit the bandwidth allocated to OAM traffic.

#### **Timers**

- Two configurable timers control the protocol, one determining the rate at which OAMPDUs are to be sent, and the second controlling the rate at which OAMPDUs are to be received to maintain the adjacency between devices.
- An additional 1-second non-configurable timer is used for error aggregation, which is necessary for the Link Monitoring Process to generate link quality events.
- The timer should generate PDUs in the range of 1s 10sec. The default value is 1sec.
- The Hold timer assumes the peer is dead if no packet is received for a period of 1 through 10 seconds. The default value is 5 seconds.

### **Flags**

Included in every OAMPDU is a flags field, which contains, besides other information, the status of the discovery process. There are three possible values for the status:

- · Discovering: Discovery is in progress.
- Stable: Discovery is completed. Once aware of this, the remote OAM entity can start sending any type of OAMPDU.
- Unsatisfied: When there are mismatches in the OAM configuration that prevent OAM from completing the discovery, the discovery process is considered unsatisfied and cannot continue.

# Process overview

The discovery process allows local Data Terminating Entity (DTE) to detect OAM on a remote DTE. Once OAM support is detected, both ends of the link exchange state and configuration information (such as mode, PDU size, loopback support, and so on). If both DTEs are satisfied with the settings, OAM is enabled on the link. However, the loss of a link or a failure to receive OAMPDUs for five seconds may cause the discovery process the start over again.

DTEs may be in either active or passive mode. Active mode DTEs instigate OAM communications and can issue queries and commands to a remote device. Passive mode DTEs generally wait for the peer device to instigate OAM communications and respond to, but do not instigate, commands and queries. Rules of what DTEs in active or passive mode can do are discussed in the following sections.

### Rules for active mode

A DTE in active mode:

- · Initiates the OAM Discovery process
- · Sends information PDUs
- May send event notification PDUs
- May send variable request or response PDUs
- May send loopback control PDUs

### Exceptions

- A DTE in active mode does not respond to variable request PDUs from DTEs in passive mode
- · A DTE in active mode does not react to loopback control PDUs from DTEs in passive mode

## Rules for passive mode

A DTE in passive mode:

- · Waits for the remote device to initiate the Discovery process
- · Sends information PDUs
- · May send event notification PDUs
- May respond to variable request PDUs
- May react to received loopback control PDUs
- · Is not permitted to send variable request or loopback control OAMPDUs

# **Link monitoring process**

The Link Monitoring Process is used for detecting and indicating link faults under a variety of circumstances. Link monitoring uses the Event Notification OAMPDU, and sends events to the remote OAM entity when there are problems detected on the link. The error events defined in the standard are:

- Errored Symbol Period (errored symbols per second): the number of symbol errors that occurred during a specified period exceeded a threshold. These are coding symbol errors (for example, a violation of 4B/5B coding).
- Errored Frame (errored frames per second): the number of frame errors detected during a specified period exceeded a threshold.
- Errored Frame Period (errored frames per N frames): the number of frame errors within the last N frames has exceeded a threshold.
- Errored Frame Seconds Summary (errored secs per M seconds): the number of errored seconds (one second intervals with at least one frame error) among the last M seconds has exceeded a threshold.

Since 802.3ah OAM does not guarantee the delivery of OAMPDUs, the Event Notification OAMPDU (discussed in the OAMPDU section below) can be sent multiple times to reduce the probability of losing notifications. A sequence number is used to recognize duplicate events. The Link Monitoring Process operates for all the links on which EFM OAM is enabled.

### Remote failure indication

Faults in Ethernet that are caused by slowly deteriorating quality are more difficult to detect than completely disconnected links. A flag in the OAMPDU allows an OAM entity to send failure conditions to its peer. The failure conditions are defined as follows:

- Link Fault: The Link Fault condition is detected when the receiver loses the signal. This condition is sent once per second in the Information OAMPDU.
- Dying Gasp: This condition is detected when the receiver goes down. The Dying Gasp condition is considered as unrecoverable. Conditions for dying gasp:
  - Reload or reset from MP
  - Interface disable (admin shutdown)
  - Link-OAM disable on interface (deconfiguration)
  - Crash on the box

- · Device power down (incidental or deliberate).
- Critical Event: When a critical event occurs, the device is unavailable as a result of malfunction, and
  it is to be restarted by the user. The critical events can be sent immediately and continually.

When the dying gasp or critical event occurs, the device driver calls a special API in the EFM-OAM implementation.

The link fault applies only when the physical sublayer is capable of independent transmission and reception.

When a link receives no signal from its peer at the physical layer (for example, if the peer's laser is malfunctioning), the local entity sets this flag to let the peer know that its transmit path is inoperable. The link-down API will be called by the device driver in order to notify the remote device of the link fault.

Because the failure conditions are severe, when they are set in the flag, the OAMPDU is not subject to the normal rate limiting policy.

### Remote loopback

An OAM entity can put its remote entity into loopback mode using a loopback control OAMPDU. This helps you ensure quality of links during installation or when troubleshooting. In loopback mode, each frame received is transmitted back on that same port except for OAMPDUs and pause frames. The periodic exchange of OAMPDUs must continue while in the loopback state to maintain the OAM session. The loopback command is acknowledged by responding with an information OAMPDU with the loopback state indicated in the state field.

# **Enabling and disabling EFM-OAM**

The link-oam command, in Protocol Configuration mode, enables and disables the EFM-OAM protocol and enters into the EFM-OAM Protocol Configuration mode. The link-oam disable and enable command resets all link-oam parameters to default values.

By default, EFM-OAM is disabled.

To enable EFM-OAM, enter a command such as the following:

```
device(config)link-oam
device(config-link-oam)#enable
```

Syntax: [no]link-oam

Syntax: enable

The **no** form of the command sets the 802.3ah EFM-OAM to the disabled state.

### Specifying the timeout value

The timeout command is a hold down timer that specifies the number of seconds before it declares that the other side has stopped sending OAMPDUs.

```
device(config-link-oam) #timeout 10
```

Syntax: [no] timeout value

The **no** form of the command restores the default value of 5 OAMPDUs.

The *value* parameter specifies the number of seconds before declaring the remote as down. in the range of *1-10*.

### Specifying the PDU rate

To set the number of PDUs to be transmitted per second, use the pdu-rate command. The default value is 1

device(config-link-oam) #pdu-rate 10

### Syntax: [no] pdu-rate value

The value parameter specifies the number of PDUs in the range of 1-10.

The **no** form of the command restores the default value of 1.

## Enabling and disabling the EFM-OAM state on the specified interface

The **ethernet** *slot/port* command in Interface Configuration mode, enables and disables EFM-OAM on the specified interface and sets its mode to active or passive.

When both peers are in passive mode (abnormal configuration), the information from "Remote Status" is not updated anymore and it may be inaccurate. By default, port state is disabled.

device(config-link oam) # ethernet 2/1 active

### Syntax: [no] ethernet slot/port { active | passive | remote-failure }

When **active** mode is specified, the device can send OAMPDU packets over this port in order to initiate an EFM-OAM discovery process. For the discovery process to be initiated the EFM-OAM protocol must have been enabled.

When **passive** mode is specified, the device cannot use this port to send OAMPDU packets, but can respond if it receives OAMPDUs from remote.

When **remote-failure** mode is specified, the device will be set for the remote-failure action. The no form of the command sets the 802.3ah EFM-OAM to the disabled state.

The **no** form of the command sets the 802.3ah EFM-OAM to the disabled state.

# **Enabling an interface to accept remote loopback**

#### NOTE

OAM remote loopback is supported only on the NetIron CES and NetIron CER platform and not supported on NetIron XMR and NetIron MLX platforms.

The **ethernet** *slot/port* allow-loopback command, in Interface Configuration mode, is used to enable the interface to respond to a loopback request from the remote. This is used for loopback traffic analysis.

 ${\tt device}\,({\tt config-link-oam})\ \ {\tt \#ethernet}\ \ 2/1\ \ {\tt allow-loopback}$ 

### Syntax: [no]ethernet slot/port allow-loopback

The **no** form of the command doesn't allow the interface to respond to the loopback request from the remote.

# Defining remote failure actions

By default, on receipt of a remote failure message, the device will only log the event. This can be changed to block an interface on receipt of a remote failure message. The commands below display the three events that the protocol supports.

```
device(config-link-oam)#ethernet 2/1 remote-failure dying-gasp action block-interface device(config-link-oam)#ethernet 2/1 remote-failure critical-event action block-interface device(config-link-oam)#ethernet 2/1 remote-failure link-fault action block-interface
```

Syntax: [no]ethernet slot/port remote-failure dying-gasp | link-fault | critical-event action block-interface

The **no** form of the command returns to default state of logging.

# Forcing the EFM-OAM remote interface into loopback

The **link-oam remote-loopback ethernet** *slot/port start/stop* command starts and stops the remote loopback on the remote node.

```
device# link-oam remote-loop-back ethernet 1/1 start
```

Syntax: [no]link-oam remote loopback ethernet slot/portstart/stop

# **Display information**

The following show commands will display OAM information.

### Displaying OAM information

To show OAM information on all OAM enabled ports, enter a command such as the following:

| device | #show link-oam i | nfo        |         |              |               |
|--------|------------------|------------|---------|--------------|---------------|
| Ethern | et Link Status   | OAM Status | Mode    | Local Stable | Remote Stable |
| 1/1    | up               | up         | active  | satisfied    | satisfied     |
| 1/2    | up               | up         | passive | satisfied    | satisfied     |
| 1/3    | up               | up         | active  | satisfied    | satisfied     |
| 1/4    | up               | init       | passive | unsatisfied  | unsatisfied   |
| 1/5    | down             | down       | passive | unsatisfied  | unsatisfied   |
| 1/6    | down             | down       | passive | unsatisfied  | unsatisfied   |
| 1/7    | down             | down       | passive | unsatisfied  | unsatisfied   |

### Displaying detailed information from a specific port

To show detailed OAM information, enter a command such as the following:

Syntax: show link-oam info detail ethernet all | slot/port

To show detailed OAM information on a specific ethernet port, enter a command such as the following:

Syntax: show link-oam info detail [ all | ethernet slot/port ]

### Displaying OAM statistics

To show OAM statistics, enter a command such as the following:

Syntax: show link-oam statistics

# Displaying detailed OAM statistics

To show detailed OAM statistics, enter a command such as the following:

```
device#show link-oam statistics detail
OAM statistics for Ethernet port: 1/1
        Tx statistics
                 information OAMPDUs:
                                                           587
                 loopback control OAMPDUs:
                 variable request OAMPDUs:
                                                           0
                 variable response OAMPDUs: unique event notification OAMPDUs:
                                                           0
                 duplicate event notification OAMPDUs:
                 oranization specific OAMPDUs:
                                                           0
                 link-fault records:
                 critical-event records:
                                                           0
                                                           0
                 dying-gasp records:
        Rx statistics
                                                           442
                 information OAMPDUs:
                 loopback control OAMPDUs:
                                                           Ω
                 variable request OAMPDUs:
                 variable response OAMPDUs:
                                                           0
                 unique event notification OAMPDUs:
                 duplicate event notification OAMPDUs:
                                                           0
                 oranization specific OAMPDUs:
                 unsupported OAMPDUs:
                 link-fault records:
                                                           0
                 critical-event records:
                                                           0
                 dying-gasp records:
                 discarded TLVs:
                                                           0
                 unrecognized TLVs:
OAM statistics for Ethernet port: 1/2
        Tx statistics
                 information OAMPDUs:
                                                           440
                 loopback control OAMPDUs:
                 variable request OAMPDUs:
                                                           0
                 variable response OAMPDUs:
                 unique event notification OAMPDUs:
                 duplicate event notification OAMPDUs:
                 oranization specific OAMPDUs:
                 link-fault records:
                 critical-event records:
                 dying-gasp records:
                                                           0
        Rx statistics
                 information OAMPDUs:
                                                           441
                 loopback control OAMPDUs:
                                                           Ω
                 variable request OAMPDUs:
                                                           0
                 variable response OAMPDUs: unique event notification OAMPDUs:
                                                           0
                                                           0
                 duplicate event notification OAMPDUs:
                 oranization specific OAMPDUs:
                                                           0
                 unsupported OAMPDUs:
                 link-fault records:
                                                           Ω
                 critical-event records:
                                                           0
                 dying-gasp records:
                                                           0
                 discarded TLVs:
                                                           0
                 unrecognized TLVs:
                                                           0
```

To show detailed OAM statistics, enter a command such as the following:

Syntax: show link-oam statistics detail ports [ all | ethernet slot/port ]

| This field    | Displays                                                                                                                                                    |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ethernet Port | Indicates if the ethernet port that EFM-OAM is enabled on.                                                                                                  |  |
| Link Status   | Indicates if the physical link is operational or any fault is detected on the link.                                                                         |  |
| OAM Status    | Indicates the status of OAM on the link between the local and remote DTEs. The status is enabled if OAM client is satisfied with local and remote settings. |  |

| This field    | Displays                                                                                                                           |
|---------------|------------------------------------------------------------------------------------------------------------------------------------|
| Mode          | Indicates if the DTE is in active or passive modes. Active DTEs can start the discovery process and passive ones can only respond. |
| Local Stable  | Indicates the reception of the remote DTE state information and is satisfied with the remote OAM settings.                         |
| Remote Stable | Indicates the reception of the local DTE state information at the remote DTE and is satisfied with the local OAM settings.         |

# **Ping**

Ping is a tool that helps you to verify the Internet connectivity at the IP level. The **ping** command sends an Internet Control Message Protocol (ICMP) echo request to the IP address or selected hostname.

# **Executing ping**

The **ping** command, in the (Enable) mode, pings another device from the device. The device supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply.

The device can execute multiple ping commands at the same time. If you can connect to the device via the console, or through an inbound telnet or SSH session, it should be possible to initiate a ping. This applies to all versions of the ping command described below. The device can also resolve multiple DNS queries simultaneously, which allows multiple ping commands with the **hostname** option to be executed at the same time.

To initiate the device to ping to a target device with the IP address of 10.22.2.33, enter a command such as the following.

```
device# ping 10.22.2.33
```

Syntax: ping ip address | hostname | vrf instance-name [ source ip address ] [ count num ] [ timeout msec ] [ ttl num] [ size byte] [ quiet ] [ numeric ] [ no-fragment ] [ verify ] [ data 1-to-4 bytehex ] [ brief ]

The required parameter is the IP address or the host name of the device.

The **vrf** *instance-name* parameter specifies a VPN routing/forwarding instance as the origin of the ping packets.

The **source** ip addr parameter specifies an IP address to be used as the origin of the ping packets.

The **count** *num* parameter specifies how many ping packets the device sends. You can specify from *1* - 4294967296 . The default is 1.

The **timeout** *msec* parameter specifies how many milliseconds the device waits for a reply from the pinged device. You can specify a timeout from 1 - 4294967296 milliseconds. The default is 5000 (5 seconds).

The **ttl** *num* parameter specifies the maximum number of hops. You can specify a TTL from 1 - 255. The default is 64.

The **size** byte parameter specifies the size of the ICMP data portion of the packet. This is the payload and does not include the header. You can specify from 0 - 9170. The default is 16.

The **no-fragment**parameter turns on the "do not fragment" bit in the IP header of the ping packet. This option is disabled by default.

The **quiet**parameter hides informational messages such as a summary of the ping parameters sent to the device and instead displays only messages indicating the success or failure of the ping. This option is disabled by default.

The **verify**parameter verifies that the data in the echo packet (the reply packet) is the same as the data in the echo request (the ping). By default the device does not verify the data.

The **data** 1 - 4 byte hex parameter lets you specify a specific data pattern for the payload instead of the default data pattern, "abcd", in the packet's data payload. The pattern repeats itself throughout the ICMP message (payload) portion of the packet.

#### NOTE

For numeric parameter values, the CLI does not check that the value you enter is within the allowed range. If you exceed the range for a numeric value, the software rounds the value to the nearest valid value.

The **brief** keyword causes ping test characters to be displayed. The following ping test characters are supported:

! Indicates that a reply was received.

. Indicates that the network server timed out while waiting for a reply.

U Indicates that a destination unreachable error PDU was received.

I Indicates that the user interrupted ping.

# **Executing ping VRF**

#### NOTE

The Ping utilities have been enhanced by adding the **ping vrf** command in release 02.1.00 to help with management of Layer 3 VPNs.

The **ping vrf** command lets you test a specific VPN connection. To use this option, enter the following command.

Syntax: ping vrf vrf-name ip-address

The *vrf-name* parameter is the name of the VRF that you want to conduct a ping to.

The ip-address parameter is the IP address containing the VRF that you want to conduct a ping to.

# **Executing ping IPv6**

The **ping ipv6** command allows you to verify the connectivity from a device to an IPv6 device by performing an ICMP for IPv6 echo test. As with IPv4, multiple IPv6 ping commands can be executed simultaneously by the device.

For example, to ping a device with the IPv6 address of 2001:db8:847f:a385:34dd::45 from the device, enter the following command.

device# ping ipv6 2001:db8:847f:a385:34dd::45

Syntax: ping ipv6 ipv6-address | hostname | vrf instance-name [ outgoing-interface [ eth slot/port | ve number ] ] [ source ipv6-address ] [ count number ] [ timeout milliseconds ] [ ttl number] [ size bytes ] [ quiet ] [ numeric ] [ no-fragment ] [ verify ] [ data 1-to-4 bytehex ] [ brief ]

The required parameter is the IPv6 address or the host name of the device. The *ipv6-address* parameter specifies the address of the target device. You must specify this address in hexadecimal using 16-bit values between colons, or specify a host name using an ASCII string.

The **vrf** *instance-name* parameter specifies a VPN routing/forwarding instance as the origin of the ping packets.

The **outgoing-interface** keyword specifies a physical interface over which you can verify connectivity. If you specify a physical interface, such as an Ethernet interface, you must also specify the port number of the interface. If you specify a virtual interface, such as a VE, you must specify the number associated with the VE.

### NOTE

This option is applicable only when the destination IPv6 address is a link local address.

Specify ethernet slot/port.

The **source** *ipv6-address* parameter specifies an IPv6 address to be used as the origin of the ping packets.

The **count** *number* parameter specifies how many ping packets the sends. You can specify from 1 - 4294967296. The default is 1.

The **timeout** *milliseconds* parameter specifies how many milliseconds the waits for a reply from the pinged device. You can specify a timeout from 1 - 4294967296 milliseconds. The default is 5000 (5 seconds).

The **ttl** *number* parameter specifies the maximum number of hops. You can specify a TTL from 1 - 255. The default is 64.

The **size** *bytes* parameter specifies the size of the ICMP data portion of the packet. This is the payload and does not include the header. You can specify from *0 - 9150*. The default is 16.

The **no-fragment** keyword turns on the "don't fragment" bit in the IPv6 header of the ping packet. This option is disabled by default.

The **quiet** keyword hides informational messages such as a summary of the ping parameters sent to the device and instead only displays messages indicating the success or failure of the ping. This option is disabled by default.

The **verify** keyword verifies that the data in the echo packet (the reply packet) is the same as the data in the echo request (the ping). By default the device does not verify the data.

The **data** 1 - 4 byte hex parameter lets you specify a specific data pattern for the payload instead of the default data pattern, "abcd", in the packet's data payload. The pattern repeats itself throughout the ICMP message (payload) portion of the packet.

### **NOTE**

For parameters that require a numeric value, the CLI does not check that the value you enter is within the allowed range. Instead, if you do exceed the range for a numeric value, the software rounds the value to the nearest valid value.

The **brief** keyword causes ping test characters to be displayed. The following ping test characters are supported:

! Indicates that a reply was received.

. Indicates that the network server timed out while waiting for a reply.

**U** Indicates that a destination unreachable error PDU was received.

I Indicates that the user interrupted ping.

# **Trace route**

The trace route tool works by sending ICMP echo packets with varying IP Time-to-Live (TTL) values to the destination.

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer devices, such as routers, through which the traffic passes on its way to the destination.

The device can execute simultaneous **traceroute** commands from multiple inbound telnet or SSH sessions. Multiple simultaneous traceroutes from Web and SNMP, however are not allowed. The device can also resolve multiple DNS queries simultaneously, which allows multiple **traceroute** commands with the *hostname* option to be executed at the same time.

#### NOTE

Traceroute commands in outbound telnet sessions run on the remote telnet server and not on the local device.

# **Executing traceroute**

The **traceroute** command, in the (Enable) mode, displays the routing path from the routing switch to the destination IP address as soon as the information is received. Traceroute requests display all responses to a given TTL. In addition, if there are multiple equal-cost routes to the destination, the device displays up to three responses by default.

### **NOTE**

When executed in IPv4, the traceroute command does not display the IP address of the GRE tunnel interface path.

```
device> traceroute 10.33.4.7 minttl 5 maxttl 5 timeout 5
```

Syntax: traceroute host-ip-addr [ maxttl value ] [ minttl value ] [ numeric ] [ timeout value ] [ source-ip ip addr ]

The **maxttl** value parameter is the maximum TTL (hops) value: Possible value is 1 - 255. The default is 30 seconds.

The **minttl** value parameter is the minimum TTL (hops) value: Possible value is 1 - 255. The default is 1 second.

The **numeric** parameter lets you change the display to list devices by IP address instead of by name.

The **timeout** *value* parameter specifies the possible values. Possible value range is 1 - 120. Default value is 2 seconds.

The **source-ip** *ip addr* parameter specifies an IP address to be used as the origin for the traceroute.

# **Executing traceroute VRF**

In the (Enable) mode, the **traceroute vrf** command functions like the standard **traceroute** command but requires you to specify a VRF table name. The **traceroute vrf** command must be used when the route to the destination is associated with a VRF table.

device# traceroute vrf blue 10.10.10.10

### Syntax: traceroute vrf vrf-nameip-address

The vrf-name parameter is the name of the VRF for you want are running the traceroute.

The *ip-address* parameter is the IP address containing the VRF that you want to conduct a traceroute to.

# **Executing traceroute IPv6**

The traceroute ipv6 command traces a path from a device that supports IPv6 to an IPv6 host.

The CLI displays trace route information for each hop as soon as the information is received. Traceroute requests display all responses to a minimum TTL of 1 second and a maximum TTL of 30 seconds. In addition, if there are multiple equal-cost routes to the destination, the device displays up to three responses.

To trace the path from the device to a host with an IPv6 address of 2001:db8:349e:a384::34, enter the following command.

device> traceroute ipv6 2001:db8:349e:a384::34

#### Syntax: traceroute ipv6 ipv6-address

The *ipv6-address* parameter specifies the address of an IPv6 host. You must specify this address in hexadecimal using 16-bit values between colons.

# **Trace-I2 protocol**

**Trace-I2** traces introduces a new proprietary protocol that traces the traffic path to a specified device in a VLAN. Also, it can be used to probe all reachable paths to all devices in a VLAN. It does the following:

- Traces a particular IP, MAC or hostname in a VLAN.
- · Probes the entire Layer 2 topology.
- Displays the input or output ports of each hop in the path.
- · Displays the round trip travel time of each hop.
- · Displays hops in a VLAN that form a loop.
- Displays each hop's Layer 2 protocol such as STP, RSTP, 802.1w, SSTP, metro ring, or route-only.

The resulting trace displays a report that provides information about a packet's path to a device, such as hop and port information and travel time. It also can locate any Layer 2 loop in a VLAN. The probed Layer 2 information is discarded when a new **trace-I2** command is issued again.

For each hop in the path, trace-I2 displays its input/output port, L2 protocols of the input port, and the microsecond travel time between hop and hop. It also prints out the hops which form a loop, if any. Displaying L2 topology lets a user easily obtain information of all hops.

# **Configuration considerations**

The configuration considerations are as follows:

- · Trace-I2 is enabled on the Brocade devices. It can be used to trace traffic only to devices.
- The devices that will participate in the trace-l2 protocol must be assigned to a VLAN and all devices on that VLAN must be Brocade devices that support the trace-l2 protocol.
- Brocade devices, as well as other vendor devices, that do not support the trace-l2 protocol, simply forward trace-l2 packets without a reply. Hence, these devices are transparent to the trace-l2 protocol.
- The destination for the packet with the trace-I2 protocol must be a device that supports the trace-I2 protocol and the destination cannot be a client, such as a personal computer, or devices from other vendors.

# **Tracing a traffic path**

The trace-I2 protocol is enabled on a VLAN. You can trace the traffic path of a packet by entering a command such as the following.

```
device(config) #trace-12 vlan 10 2.2.2.2
```

Syntax: [no] trace-I2 vlan vlan-id destination-address

The destination address can be a MAC address, an IP address, or a host. You can enter the destination-address in one of the following formats:

- · HHHH.HHHH Destination MAC address
- · A.B.C.D Destination IP address
- · ASCII string destination host name

If a destination address is not specified or the destination does not exists, trace-I2 collects L2 topology information which can be displayed by issuing a **trace-I2 show** command. The command displays the following information.

```
trace-12 reply vlan 2 from e26, 10.1.1.2, total round trip = 814 microsec
hop input output IP and/or MAC address microsec comment
1 e28 e25 10.1.1.4 0000.003f.c400 316 e28: ring 11
2 e15 e13 10.1.1.1 0000.0057.0d00 235 e15: ring 11
3 e27 10.1.1.2 0000.0057.2500 263 e27: ring 11
```

In the output above, the last hop is the destination. Because 10.1.1.2 and 10.2.2.2 are addresses of the same device, the device can use 10.1.1.2 in the reply.

In general, **trace-I2** first tries to use the IP address of the virtual routing interface that is associated with a VLAN. If the virtual routing interface is not available, it then uses the loopback address. If both addresses are not available, it displays MAC address only.

The *input* and *output* ports show the path of the hops. Hop 3 has no output port because it is the destination.

The *microsec* column is the round trip time (sum of the time) to and from the previous hop. For example, 316 microsec for hop 1 is the time from the source to hop 1 and from hop 1 to the source. One way time is not available because the tracel2 protocol does not synchronize the clocks between hops.

The comment column shows the Layer 2 protocol used on the input port. It could be the following:

- · STP spanning tree protocol
- RSTP Rapid STP, 802.1w draft 3
- 802.1w Rapid STP
- · ring Metro ring ID of input port.

- Single STP Includes Single STP, Single RSTP and Single 802.1w
- STP port disabled The spanning-tree ethernet disabled command is configured.
- · route-only This device has route-only configuration
- · port route-only The input port has route-only configuration

# Displaying Layer 2 topology information

To display information about the Layer 2 topology, first issue a **trace-l2vlan** command, then enter the **trace-l2 show** command as in the following example.

```
device(config) #trace-12 vlan 10
Vlan 10 L2 topology probed, use "trace-12 show" to display
device(config) #trace-12 show
Vlan 10 L2 topology was probed 6 sec ago, # of paths: 2
path 1 from e27, 1 hops:
hop input output IP and/or MAC address
                                             microsec comment
   e13
                 10.1.1.1 0000.0057.0d00
                                                   383 802-1w
path 2 from e25, 2 hops:
hop input output IP and/or MAC address
                                            microsec comment
   e27 e26 10.1.1.3 0000.0052.ea00
                                                   657 802-1w
2
   e28
                 10.1.1.4 0000.003f.c400
                                                   296 route-only
```

The **trace-I2 show** command does not display a path if the path is a subset of another path; therefore, the number of paths displayed could be fewer than the number of devices.

If the topology contains Layer 2 loops, a message such as the following is displayed.

```
*** Warning! The following 3 hops form a loop in vlan 2 hop input output IP and/or MAC address microsec comment 1 e25 10.1.2.2 0000.0057.2500 2 e28 10.4.100.1 0000.003f.c400 3 e29 10.1.1.1 0000.0057.0d00
```

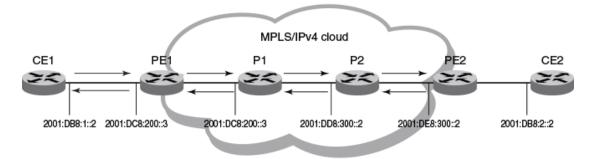
Syntax: trace-I2 show

# IPv6 Traceroute over an MPLS network

#### NOTE

IPv6 MPLS traceroute not supported on the BR-MLX-10Gx24-DM 24-port 10GbE module.

IPv6 traceroute behavior is similar to IPv4 traceroute. However, unlike IPv4 traceroute, IPv6 traceroute has a new 6PE label added during each hop across the MPLS cloud. Based on the IP header value, the node devices differentiate if the Internet Control Message Protocol version 6 (ICMPv6) echo request is from an IPv6 or IPv4 source device.


When the traceroute sends ICMPv6 echo request packets with a TTL value (hop limit) value of 1, the first router in the path replies with the *ttl-exceeded* error message to the source. The next packet has a TTL (hop limit) value of 2 and the second router replies with the *ttl-exceeded* error message. This process continues till the destination host receives the packets and returns an ICMPv6 Echo Reply message.

Based on the *ttl-exceeded* messages or the ICMPv6 Echo Reply messages received during the traceroute operation, the source device obtains details such as the hop sequence, total hops taken to complete the path, and the IPv4 or IPv6 addresses of devices that it passed during the path. For each hop, the traceroute gathers information about the hop number, best hop time, and the TTL value.

# Tracing an IPv6 route through an MPLS domain

Tracing an IPv6 route through an MPLS domain shows an MPLS-enabled provider network consisting of four LSRs. PE1 is the ingress PE Label Edge Router (LER), P1 and P2 are transit LSRs, and PE2 is the egress provider edge LER. CE1 and CE2 are CE devices located in different geographical locations.

FIGURE 10 IPv6 Traceroute in an MPLS cloud



To understand the IPv6 traceroute behavior in an MPLS domain, assume the following:

- Customer traffic is tunneled through a MPLS VPN network, and traffic within the MPLS core is forwarded by label-switching only.
- The CE1 router sends UDP packets from CE1 router towards the CE2 router.
- Traceroute is configured to generate ICMPv6 messages per ICMP extensions and to use LSPs to forward these messages. Refer to Configuring IPv6 Traceroute over MPLS on page 200 for more information.
- The PE routers are aware of the source and destination IPv6 addresses while the transit LSRs have no such knowledge.
- The traceroute command is issued from CE1 to CE2 and reports the following information:

```
device# traceroute ipv6 2001:DB8:2::2
Type Control-c to abort
Tracing the route to IPv6 node 2001:DB8:2::2 from 1 to 30 hops
       <1 ms
               <1 ms
                       <1 ms 2001:DB8:1::2
       <1 ms
                       <1 ms 2001:DC8:200::3
               <1 ms
        MPLS Label=1026 Exp=0 TTL=1 S=0
       MPLS Label=794624 Exp=0 TTL=1 S=1
  3
       <1 ms
               <1 ms
                       <1 ms 2001:DD8:300::2
        MPLS Label=1029 Exp=0 TTL=1 S=0
        MPLS Label=794624 Exp=0 TTL=2 S=1
                       <1 ms 2001:DE8:300::2
       <1 ms
               <1 ms
                       <1 ms 2001:DB8:2::2
       <1 ms
               <1 ms
```

#### NOTE

The traceroute output reports information on a traceroute packet only when its TTL equals 1. Label stack information associated with subsequent routing of the ICMP message along the LSPs to the destination and back to the source is not displayed.

In the Tracing an IPv6 route through an MPLS domain scenario, the traceroute operation can be described as follows:

1. CE1 sends a traceroute probe with a TTL of 1 to its peer, CE2, with the destination IP address of 2001:DB8:2::2. PE1 decrements the packet's TTL by one and drops the expired packet. It generates a ttl-exceeded ICMPv6 message, and sends it back to CE1 with the source IPv6 address embedded in the IPv6 header of the expired packet. Traceroute reports the PE1 IPv6 address at hop 1, but there is no label information.

```
1. <1 ms <1 ms <1 ms 2001:DB8:1::2
```

2. CE1 sends a second traceroute probe to CE2, with an incremented TTL value of 2. PE1 decrements the TTL value to 1, and adds the 6PE label and the Label Distribution Protocol (LDP) label onto the packet to route it to CE2 by way of the transit router P1. PE1 also copies the TTL value from the IP header into the TTL field of the labels (recall that TTL propagation must be enabled on the ingress PE).

The transit router P1 decrements the TTL, drops the expired packet since the TTL value is 0, and generates a *ttl-exceeded* ICMPv6 message. Before dropping the packet, and using the ICMPv6 extension mechanism, P1 copies the packet's label stack plus its IP header and appends both to the ICMPv6 message. Though the message destination is CE1, P1 cannot return the ICMPv6 message directly to CE1. It uses label-switching to forward the encapsulated ICMP response in the direction of the original traceroute probe along the configured LSPs and back to CE1. P1 sets the maximum TTL value of 255 to ensure that the message can reach its destination before it times out.

Traceroute reports the IP address of P1, plus the label stack that was pushed onto the traceroute packet by PE1 and received by P1 when the packet's TTL was 1.

```
2 <1 ms <1 ms <1 ms 2001:DC8:200::3

MPLS Label=1026 Exp=0 TTL=1 S=0

MPLS Label=794624 Exp=0 TTL=1 S=1
```

3. The third traceroute probe (TTL=3) is forwarded until it expires at the transit router P2. P2 (the Penultimate Hop Popping (PHP) LSR) generates the ICMPv6 message, appends the label stack from the expired traceroute packet, and passes it on to PE2 without imposing a label. PE2 forwards the ICMPv6 message back to CE1 along the return LSP.

Traceroute reports the IP address of P2, plus the label stack which P2 received with the traceroute packet from P1 when the packet's TTL was 1.

```
3 <1 ms <1 ms <1 ms 2001:DD8:300::2

MPLS Label=1029 Exp=0 TTL=1 S=0

MPLS Label=794624 Exp=0 TTL=2 S=1
```

4. The fourth traceroute probe (TTL=4) is forwarded until it expires at the egress provider edge device PE2. PE2 drops the packet and generates a ttl-exceeded ICMPv6 message without label stack extension since there is no label stack to report.

Traceroute reports only the IP address of PE2. The transit router P2 popped the outer label before passing the traceroute packet on to the egress PE2 and PE2 pops the VPN label before sending the ICMPv6 message back to the customer source device CE1.

```
4 <1 ms <1 ms <1 ms 2001:DE8:300::2
5 <1 ms <1 ms <1 ms 2001:DB8:2::2
```

The fifth traceroute probe (TTL=5) has a TTL large enough for the packets to reach the customer destination device CE2. CE2 generates an ICMPv6 port unreachable message, which CE2 sends back to CE1.

Traceroute reports only the IP address of the destination device CE2. No label extension is added because the received packet is not labeled. The *port unreachable* message is label-switched back to the customer source device CE1, as a normal data packet.

```
5 <1 ms <1 ms <1 ms 2001:DB8:2::2
```

# **Configuring IPv6 Traceroute over MPLS**

The **ipv6icmp mpls-response** command configures the behavior of the traceroute operation by controlling both the ICMPv6 message format (use ICMPv6 label stack extensions or not) and the

manner in which the ICMPv6 messages are **forwarded through an MPLS domain** (by way of IP routing table lookup or through label-switching using LSPs).

MPLS response is enabled by default. To enable the MPLS response after it was disabled, enter the following command:

```
device(config) # ipv6 icmp mpls-response
```

You can use this version of the command if the traceroute is over an IPv6-aware MPLS core. In such a case, IPv6 traceroute uses the default option of using the routing tables to forward packets. The IPv6 link local addresses should not be used to send the ICMPv6 packet. At the same time, you can still use the **ipv6 icmp mpls-responseuse-lsp** command to use the configured LSPs.

To specify using LSP to forward the ICMPv6 messages with MPLS label extensions, enter the following command:

```
device(config) # ipv6 icmp mpls-response use-lsp
```

Use this version of the command if the MPLS core is non IPv6-aware, because the IPv6 forwarding will not work.

To specify generating ICMPv6 messages without MPLS label extensions, enter the following command:

```
device(config) # ipv6 icmp mpls-response no-label-extensions
```

To disable the IPv6 Traceroute over MPLS feature, enter the following command:

```
device(config) # no ipv6 icmp mpls-response
```

Syntax: [no] ipv6 icmp mpls-response [ use-lsp ] [ no-label-extension ]

The **mpls-response**parameter enables the ICMPv6 traceroute response in default mode. The feature is enabled by default and configured to use IP routing to forward ICMP messages.

The **use-lsp** parameter enables forwarding of ICMPv6 error messages along the LSPs configured for the MPLS domain. By default, using configured LSPs use is disabled.

The **no-label-extension** parameter disables the use of label stack information in the ICMPv6 error messages.

The **no** option disables the ICMPv6 traceroute response configuration. When the ICMP traceroute feature is disabled, standard traceroute using IPv6 forwarding is used to trace a traffic path through an MPLS domain.

#### NOTE

The ipv6 icmp mpls-response command supports TTL expiry for IPv6 packets only.

The output of the **show ipv6 traffic** command displays counts for ICMPv6 *ttl-exceeded* error reply packets.

# LSP ping and traceroute

# Overview

The LSP Ping and Traceroute feature provides Operation, Administration, and Maintenance (OAM) functionality for MPLS networks based up RFC 4379 (Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures).

The LSP ping and traceroute functions provide a mechanism to detect MPLS data plane failure. LSP ping is used to detect data plane failure and to check the consistency between the data plane and the control plane. LSP traceroute is used to isolate the data plane failure to a particular router and to provide LSP path tracing. They are implemented using MPLS echo request and reply messages which are sent as UDP packets to a well-known UDP port 3503. This section provides the details of LSP Ping and Traceroute operation

# LSP ping operation

An MPLS echo request (described in MPLS echo request on page 202) is sent from the ingress to the egress LSR. At the transit LSRs, the ping packet is label switched (the same as a regular MPLS data packet) without any control plane intervention. Upon arriving at the egress LSR, the echo request is sent to the control plane for processing based on the IP Router Alert option and the well-known destination UDP port 3503. An echo reply (described in MPLS echo reply on page 203) is sent back as a UDP packet with an appropriate return code that depends on the result of the FEC stack validation.

# LSP traceroute operation

An MPLS echo request (described in MPLS echo request on page 202) is sent from the ingress LSR with the TTL of the outermost label set to an incremental value that starts with a TTL value of 1. This request causes the MPLS echo request to be forwarded to the control plane for processing at each transit LSR, based on the MPLS TTL expiration value. An echo reply (described in MPLS echo reply on page 203) is sent back with a return code indicating that it is the transit LSR for the FEC specified in the echo request. This process repeats until the echo request arrives at the egress LSP. The echo request is then forwarded to the control plane for processing, based on the IP Router Alert option. An echo reply is sent back as a UDP packet with an appropriate return code that depends on the result of the FEC stack validation.

# **MPLS** echo request

The MPLS echo request is sent from the ingress LSR as a labeled UDP packet (except for single-hop LSP). The echo request has the following characteristics.

### IP/UDP header information:

- · Source address = user-input or LSR ID.
- Destination address = user-input or 127.0.0.1.
- UDP source port = 3503.
- UDP destination port = 3503.
- IP TTL = 1
- · Router Alert option is set.

By default, the reply mode is set to 2 (reply by way of an IPv4 UDP packet), and you can set it to 1 (no reply) or 3 (reply by way of an IPv4 UDP packet with Router Alert option).

The sender handle is set to an internally-generated, 32-bit number that is assigned to each ping or traceroute session when the ping or traceroute operation begins. This sender handle is sent back in the echo reply, which is used to locate the appropriate ping or traceroute session.

The sequence number is a running number associated with each ping or traceroute session. It is starts with a value of 1.

The TTL for the outermost label is set to 255 for a ping. For traceroute, it is 1, 2, 3, and so on.

You can configure a timeout when starting the ping or traceroute command. The default value is 5 seconds.

# MPLS echo reply

The MPLS echo reply is sent by the transit (for traceroute) or egress (for ping and traceroute) LSR as a regular IPv4 UDP packet or an IPv4 UDP packet with Router Alert option depending on the reply-mode field of the echo request. If reply with Router Alert option is chosen, the user should make sure that all intermediate routers are capable of handling MPLS echo reply. If a reply is sent with Router Alert option and the reply is sent over a tunnel interface, the MPLS Router Alert label (label value 1) will be the topmost label for the packet. A reply with a Router Alert option should be used if and only if the normal IP return path is deemed unreliable.

The echo reply has the following characteristics.

#### IP/UDP header information:

- · Source address = LSR ID
- · Destination address = source IP address from the echo request
- UDP source port = 3503
- UDP destination port = UDP source port from the echo request
- IP TTL = 255
- Router Alert option set if and only if reply-mode field of the echo request set to 3.

The sender handle is copied from echo request message

The sequence number is copied from echo request message

# LSP ping TLVs

Table 34 lists the TLVs defined in RFC 3479 that are included in an echo request and reply.

TABLE 34 Show Cfm output descriptions

| TLV type | TLV name                  | TX in echo request                    | TX in echo reply                                                                          |
|----------|---------------------------|---------------------------------------|-------------------------------------------------------------------------------------------|
| 1        | Target FEC stack          | Yes                                   | No                                                                                        |
| 2        | Downstream mapping        | Yes if the <b>dsmap</b> option is set | Yes for transit LSRs only if downstream mapping TLV is included in the MPLS Echo request. |
| 3        | Pad                       | Depend on the size option             | Yes (if value = 2)                                                                        |
| 7        | Interface and Label Stack | N/A                                   | Yes if the I flag in DS mapping is set                                                    |
| 9        | Errored TLV               | N/A                                   | Yes (if error is detected)                                                                |
| 10       | Reply TOS bytes           | Yes if reply-tos option is set        | TLV is not sent back. Just copy TOS byte into IP header.                                  |

The Brocade devices support sending and receiving downstream mapping TLVs without multipath information (where the multipath type is always set to 0). Note that the detailed multipath information can be used by the ingress LSR to ping or traceroute through all ECMP paths at the transit LSR. Currently, the Brocade devices do not support LDP LSPs with ECMP. Consequently, the multipath type of non-zero is not relevant in these operations.

# **LSP FEC types**

For LDP LSPs, the LDP IPv4 prefix sub-TLV (sub-type = 1) is encoded in the target FEC stack of the echo request. For RSVP LSPs, the RSVP IPv4 LSP sub-TLV (sub-type = 3) is encoded in the target FEC stack.

#### NOTE

Static RSVP LSPs are no longer supported, so a ping or traceroute for a static LSP is not supported.

# Redundant RSVP LSPs

For RSVP LSPs with redundant paths, ping or traceroute on a LSP is performed on the currently active path. For example, if the secondary path is the active path for an LSP, the MPLS echo request packets are sent out on the secondary path's interface.

If the active path changes while a ping or traceroute is in progress, the echo request continues to be sent out on the old active path. This implies that the echo request that was sent after path switchover times out. The user subsequently needs to restart the ping or traceroute.

# One-to-one Fast ReRoute (FRR) LSPs

Similar to the redundant LSPs, a ping or traceroute on a one-to-one FRR LSP is performed on the active path. If a path switchover occurs while a ping or traceroute is in-progress, the echo request continues to be sent out on the old active path. This implies that the echo request sent after path switchover will time out.

A user can ping or trace the route of the ingress-originated detour of a one-to-one FRR LSP by specifying the detour parameter. The operation is started only if the detour is operationally up.

# FRR bypass LSPs

The LSP ping and traceroute facilities support FRR bypass LSPs. You can ping or trace the protected LSP and bypass tunnel separately.

You can ping or trace the ingress-originated or transit-originated bypass tunnel by specifying either the name of bypass LSP (as you would any regular LSP name) or the entire RSVP session ID (including the tunnel endpoint, the tunnel ID, and the extended tunnel ID).

#### NOTE

In the current facility backup implementation, the bypass LSP name must be unique in the system (for example, the name cannot be the same as the regular LSP name).

The traceroute output of a backup tunnel depends on the setting of the **propagate-ttl** and **label-propagate-ttl** options. If both **propagate-ttl** and **label-propagate-ttl** options are turned on, the

traceroute output shows the detail of the bypass path. If both options are turned off, the bypass path is shown as a single hop. The options should be either both ON or both OFF.

To trace the route of a backup path, the TTL of the bypass and protected labels (if they are not implicit NULL labels) are set as in the following example:

- Both propagate-ttland label-propagate-ttl are ON: TTL = 1, 2, 3, and so on, are set for both labels.
- Otherwise: bypass label TTL is set to 255. Protected label TTL is set to 1, 2, 3, and so on.

IP TTL is set to topmost label TTL. Otherwise, it is set to 255.

# **Transit-originated detour**

The user can initiate a ping or traceroute operation on a transit-originated, detour LSP. Because the session name does not uniquely identify a session on a transit LSR, the user needs to specify the entire session ID (including the tunnel endpoint, tunnel ID, and extended tunnel ID) for the detour LSP to which the LSP ping or traceroute command is applied.

# LSP reoptimization

If LSP reoptimization happens while the ping or traceroute is operating, the echo request is still sent out on the current LSP instance until the new instance is created. This avoids displaying partial information from the old and new paths if they are different; particularly for a traceroute. Similarly, if the ping or traceroute operation is started while LSP reoptimization is occurring, the LSP label, out interface, and other parameters from the currently up instance will be used.

# PHP behavior

Ping is transparent to the penultimate LSR. MPLS and IP TTL operations performed on a ping packet are the same as tor a regular data packet. In the default case where the MPLS TTL is copied into the IP TTL, the echo request packet can arrive at the egress LSR with an IP TTL value greater than 1. Consequently, in this situation, the IP Router Alert option is used to direct the echo request packet to the control plane for ping processing.

For a traceroute operation; if the echo request is received with a downstream mapping TLV, the Implicit Null label is encoded in the Downstream label in the echo reply just like any other label.

Since a Brocade device advertises an implicit Null label to its upstream LSR for both LDP and RSVP LSPs, packets that arrive at the egress LSR do not have the tunnel label. For a single-hop LSP, the echo request is sent out from ingress LSR as an unlabeled UDP packet.

# Using the LSP ping and Traceroute commands

The following sections described operation of the LSP Ping and Traceroute command:

- Executing LDP LSP ping on page 205
- Executing RSVP LSP ping on page 206
- Executing LDP LSP traceroute on page 208
- Executing RSVP LSP traceroute on page 209

### Executing LDP LSP ping

The LDP LSP ping command, sends an MPLS echo request from the ingress to the egress LSR.

To perform the LDP LSP ping operation, use the following command.

```
device# ping mpls ldp 10.22.22.22
Send 5 80-byte MPLS Echo Requests for LDP FEC 10.22.22.22/32, timeout 5000 msec
Type Control-c to abort
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max=0/1/1 ms.
device)#
```

Syntax: ping mpls ldp ip-address | ip-address/mask-length [ count num ] [ destination ip-address] [ detail ] [ reply-mode no-reply | reply-mode router-alert ] [ reply-tos num ] [ size bytes ] [ source ip-address ] [ timeoutmsec ] [ nexthop ipv4address ]

The **Idp** *ip-address* and *ip-address/mask-length* variables specify the LDP IPv4 destination prefix and mask length. If the **mask-length** is not specified, the default value is 32.

The **count** option with the *num* variable specifies the number of echo requests to send. The default value is 5.

The **destination** option specifies an IP address within the 127/8 subnet. The default address is 127.0.0.1

The **detail** option displays the details of the echo request and reply messages. By default, the display is in the brief mode.

The **reply-mode** option species the reply mode field in the echo request if and only if the user does not want the reply to be sent as an IPv4 UDP packet.

The **no-reply** option can be used to test one-way connectivity.

The **router-alert** option is used when the normal IP return path is unreliable. This option indicates that the reply should be sent as an IPv4 UDP packet with the Router Alert option. This option requires extra overhead processing at each LSR along the return path.

The **reply-tos** option specifies a TOS value between 0 and 254 to be included in the Reply-TOS-byte TLV. This value will be copied to the IP header TOS byte of the echo reply. By default, the reply-tos TLV is not included in the echo request.

#### **NOTE**

The last bit of the TOS byte is always 0.

The **size** option specifies that the size of the echo request including the label stack to be sent will be the value of the variable *bytes*. The pad TLV is used to fill the echo request message to the specified size. The minimum size is 80 byte for an LDP echo request. The maximum size is the size of the LSP MTU.

The **source** option specifies the IP address of any interface. This address is used as the destination address for the echo reply address. The default address is the LSR ID.

The **timeout** option specifies an interval in milliseconds for the echo request message. The default timeout is 5 seconds. The maximum timeout value is 5 minutes.

The **nexthop** specifies the nexthop IPv4 address to send the OAM request to. If an address that does not match the outgoing path for the tunnel is given, following error message appears as response:

```
Ping fails: LDP next-hop does not exist.
```

# Executing RSVP LSP ping

The RSVP ping command in the (enable) mode, sends an MPLS echo request from the ingress to the egress LSR.

To perform the RSVP LSP ping operation, use the following command.

```
device# ping mpls rsvp lsp toxmr2frr-18
Send 5 92-byte MPLS Echo Requests over RSVP LSP toxmr2frr-18, timeout 5000 msec
Type Control-c to abort
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max=0/1/5 ms.
device)#
```

Syntax:ping mpls rsvp lsp /sp-name| session tunnel-source-address tunnel-destination-addresstunnel-id [ count num ] [ destination ip-address ] [ detail ] [ detour ] [ reply-mode no-reply | reply-mode router-alert ] [ reply-tos num] [ size bytes ] [ source ip-address ] [ standby ] [ timeout msec ]

The rsvp Isp option specifies the name of the RSVP IPv4 LSP in the Isp-name variable.

The **rsvp session** option specifies the session ID. The **tunnel-source-address**,**tunnel- destination-address** and *tunnel-id* variables must all be specified to form a valid session ID.

The **count** option with the *num* variable specifies the number of echo requests to send. The default value is 5.

The **destination** option specifies an IP address within the 127/8 subnet. The default address is 127.0.0.1

The **detail** option displays the details of the echo request and reply messages. By default, the display is in the brief mode.

The **detour** option specifies a ping detour path. For a detour originated on the ingress LSR, you can ping the detour path using either the LSP name or session ID with the **detour** option specified.

The **reply-mode** option species the reply mode field in the echo request if and only if the user does not want the reply to be sent as an IPv4 UDP packet.

The **no-reply** option can be used to test one-way connectivity.

The **router-alert** option is used when the normal IP return path is unreliable. This option indicates that the reply should be sent as an IPv4 UDP packet with the Router Alert option. This option requires extra overhead processing at each LSR along the return path.

The **reply-tos** option specifies a TOS value between 0 and 254 to be included in the Reply-TOS-byte TLV. This value will be copied to the IP header TOS byte of the echo reply. By default, the reply-tos TLV is not included in the echo request.

#### NOTE

The last bit of the TOS byte is always 0.

The **size** option specifies that the size of the echo request including the label stack to be sent will be the value of the variable *bytes*. The pad TLV is used to fill the echo request message to the specified size. The minimum size is 92 bytes for an MPLS Echo request. The maximum size is the size of the LSP MTU.

The **source** option specifies the IP address of any interface. This address is used as the destination address for the echo reply address. The default address is the LSR ID.

The **standby** option directs the ping operation to the secondary path of a redundant LSP that is operationally up.

The **timeout** option specifies an interval in milliseconds for the echo request message. The default timeout is 5 seconds. The maximum timeout value is 5 minutes.

### **Executing LDP LSP traceroute**

The LDP LSP traceroute command in the (enable) mode, sends and MPLS echo request from the ingress to the egress LSR.

To perform the LDP LSP traceroute operation, use the following command.

```
device# traceroute mpls ldp 10.22.22.22
Trace LDP LSP to 10.22.22.22/32, timeout 5000 msec, TTL 1 to 30
Type Control-c to abort
   1 10ms 10.22.22.22 return code 3(Egress)
device)#
```

Syntax: traceroute mpls ldp ip-address/mask-length[ destination ip-address] [ dsmap ] [ min-ttl min-num] [ max-ttl max-num ] [ reply-mode router-alert ] [ reply-tos num] [ size bytes ] [ source ip-address] [ timeout msec ] [ nexthop ipv4address ]

The **Idp** *ip-address/mask-length* variable specifies the LDP IPv4 destination prefix and mask length. If the **mask-length** is not specified, the default value is 32.

The **destination** option specifies an IP address within the 127/8 subnet. The default address is 127.0.0.1

The **dsmap** option enables the Downstream (DS) mapping TLV in the echo request for traceroute operation. The DS mapping TLV is used to instruct the transit LSR to include the next-hop interface and label information in the echo reply. By default, the DS TLV is not included in the echo request.

The **min-ttl** option specifies a minimum value in the *min-num* variable for the outermost label in traceroute operation. The default minimum TTL value is 1. Acceptable values that can be configured are: 1 - 255.

The **max-ttl** option specifies a maximum value in the *max-num* variable for the outermost label in traceroute operation. The default maximum TTL value is 30. Acceptable values that can be configured are: 1 - 255.

The **reply-moderouter-alert** option is used when the normal IP return path is unreliable. This option indicates that the reply should be sent as an IPv4 UDP packet with the Router Alert option. This option requires extra overhead processing at each LSR along the return path.

The **reply-tos** option specifies a TOS value between 0 and 254 to be included in the Reply-TOS-byte TLV. This value will be copied to the IP header TOS byte of the echo reply. By default, the reply-tos TLV is not included in the echo request.

### **NOTE**

The last bit of the TOS byte is always 0.

The **size** option specifies that the size of the echo request including the label stack to be sent will be the value of the variable *bytes*. The pad TLV is used to fill the echo request message to the specified size. The minimum size is 92 bytes for an MPLS Echo request. The maximum size is the size of the LSP MTU.

The **source** option specifies the IP address of any interface. This address is used as the destination address for the echo reply address. The default address is the LSR ID.

The **timeout** option specifies an interval in milliseconds for the echo request message. The default timeout is 5 seconds. The maximum timeout value is 5 minutes.

The **nexthop** specifies the nexthop IPv4 address to send the OAM request to. If an address that does not match the outgoing path for the tunnel is given, following error message appears as response:

Traceroute fails: LDP next-hop does not exist.

### Executing RSVP LSP traceroute

The RSVP LSP traceroute command in the (enable) mode, sends and MPLS echo request from the ingress to the egress LSR.

To perform the RSVP LSP traceroute operation, use the following command.

```
device# traceroute mpls rsvp lsp toxmr2frr-18
Trace RSVP LSP toxmr2frr-18, timeout 5000 msec, TTL 1 to 30
Type Control-c to abort
   1 ms 10.22.22.22 return code 3(Egress)
device#
```

Syntax: traceroute mpls rsvp lsp /sp-name | session tunnel-source-addresstunnel-destination-addresstunnel-id [ destinationip-address] [ dsmap ] [ detour ] [ min-ttl min-num] [ max-ttl max-num ] [ reply-mode router-alert ] [ reply-tos num] [ size bytes ] [ sourceip-address ] [ standby ] [ timeout msec ]

The rsvp lsp option specifies the name of the RSVP IPv4 LSP in the lsp-name variable.

The **rsvp session** option specifies the session ID. The *tunnel-source-address*, *tunnel- destination-address* and *tunnel-id* variables must all be specified to form a valid session ID.

The **destination** option specifies an IP address within the 127/8 subnet. The default address is 127.0.0.1

The **dsmap** option enables the Downstream (DS) mapping TLV in the echo request for traceroute operation. The DS mapping TLV is used to instruct the transit LSR to include the next-hop interface and label information in the echo reply. By default, the DS TLV is not included in the echo request.

The **detour** option specifies a traceroute detour path. For a detour originated on the ingress LSR, you can ping the detour path using either the LSP name or session ID with the **detour** option specified.

The **reply-moderouter-alert** option is used when the normal IP return path is unreliable. This option indicates that the reply should be sent as an IPv4 UDP packet with the Router Alert option. This option requires extra overhead processing at each LSR along the return path.

The **reply-tos** option specifies a TOS value between 0 and 254 to be included in the Reply-TOS-byte TLV. This value will be copied to the IP header TOS byte of the echo reply. By default, the reply-tos TLV is not included in the echo request.

### NOTE

The last bit of the TOS byte is always 0.

The **size** option specifies that the size of the echo request including the label stack to be sent will be the value of the variable *bytes*. The pad TLV is used to fill the echo request message to the specified size. The minimum size is 92 bytes for an MPLS Echo request. The maximum size is the size of the LSP MTU.

The **source** option specifies the IP address of any interface. This address is used as the destination address for the echo reply address. The default address is the LSR ID.

The **standby** option directs the traceroute operation to the secondary path of a redundant LSP that is operationally up.

The **timeout** option specifies an interval in milliseconds for the echo request message. The default timeout is 5 seconds. The maximum timeout value is 5 minutes.

# Displaying LSP ping and traceroute statistics

You can use the **show mpls statistics oam** command to display the following LSP ping and traceroute counters:

- Ping and traceroute requests that are issued by the user
- · Echo requests sent
- · Echo requests received
- Echo request time-outs
- · Echo replies sent
- · Echo replies received
- · Echo replies with error return codes

To display the LSP ping and traceroute counters use the **show mpls statistics oam** command, as shown in the following.

```
device # show mpls statistics oam
User ping request processed: 8
User traceroute request processed: 3
Echo requests: sent(102658), received(2865), timeout(0)
Echo replies: sent(2865), received(102628)
Echo reply return code distribution:
  Egress(3)
                                                                   102628
  Transit(8)
  No return code(0)
                                                                   0
  Malformed request(1)
  Unsupported TLV(2)
                                                     2865
  No FEC mapping(4)
 DS map mismatch(5)
Unknown upstream intf(6)
Reserved return code(7)
Unlabeled output intf(9)
PTC mapping mismatch(10)
  DS map mismatch (5)
  No label entry(11)
  Rx intf protocol mismatch (12)
```

Premature LSP termination(13): 0 0

### Syntax: show mpls statistics oam

When the detail option is specified, the echo reply is shown with a error return code based on the error codes listed in RFC 4379.

# Clearing the LSP ping and traceroute counters

You can use the **clear mpls statistics oam** command to clear the LSP ping and traceroute counters as shown in the following.

```
device# clear mpls statistics oam
```

Syntax: clear mpls statistics oam

# **CFM monitoring for ISID**

- · ISID is configured in edge devices (BEB) of a PBB network.
- · CFM is configured for ISID in a BEB and is monitored between BEBs.

- The CCM interval for the sub-second timer is supported for CER with PBIF version 0x56 and greater.
- · Loopback, Link trace, and delay measurement messages are supported for ISID.
- MIP functionality is not applicable for ISID.

# **Configuring CFM monitoring for ISID**

The following PBB configuration is mandatory to configure CFM ISID.

- 1. Configure ESI for B-VLAN and VLAN under the ESI.
- 2. Add ports into the configured B-VLAN.
- 3. Configure ESI for ISID and ISID under the ESI.
- 4. Associate ISID ESI as client ESI with B-VLAN ESI.

Use the following commands for each step in the CFM configuration for ISID.

# Sample configuration

```
device(config) #interface eth 1/1
device(config-if-e1000-1/1)#enable
device(config-if-e1000-1/1) #port-type backbone-network
device(config) #esi isid 1 encapsulation isid
\begin{array}{lll} \mbox{device} (\mbox{config-esi-isid esi 1}) \mbox{\#isid 2000} \\ \mbox{device} (\mbox{config}) \mbox{\# esi bv} \mbox{Ian} \mbox{$\overline{1}$} \mbox{encapsulation bv} \mbox{lan} \end{array}
device(config-esi-bvlan_1)#vlan 200
device(config-esi-bvlan_1-vlan-200) #tagged eth1/1 device(config-esi-bvlan_1) #esi-
client isid 1
device(config) #interface ethernet 1/2
device(config-if-e1000-1/2)#enable
device(config-if-e1000-1/2) #port-type backbone-network
device(config)#esi isid_1 encapsulation isid device(config)esi-isid_esi_1)#isid_2000 device(config)# esi bvlan_T encapsulation bvlan device(config-esi-bvlan_1)#vlan_200 device(config-esi-bvlan_1-vlan-200)#tagged_ethernet_1/2 device(config-esi-bvlan_1)#esi-client_isid_esi_1
device(config) #tag-value tag1 88A8
device (config) #interface ethernet 1/1
device(config-if-e1000-1/1)#enable
device (config) #interface ethernet 1/2
device(config-if-e1000-1/2)#enable
device(config) #vlan 200
device(config-vlan-200) #tagged eth 1/1
device(config-vlan-200) #tagged eth 1/2
```

### Sample configuration for ISID CFM

The below configuration shows the sample configuration for ISID CFM

```
device(config) #cfm-enable
device(config-cfm) #domain-name ISID_domain level 7
device(config-cfm) #domain-mame ISID_2000 esi isid_1 isid 2000 priority 7
device(config-cfm-md-ISID_domain-ma-ISID_2000) #ccm-interval 1-second
device(config-cfm-md-ISID_domain-ma-ISID_2000) #mep 1 down port eth 1/1
device(config-cfm-md-ISID_domain-ma-ISID_2000) #

device(config-cfm) #domain-name ISID_domain level 7 device(config-cfm-md-ISID_domain) #ma-name ISID_2000 esi isid_1 isid_2000 priority 7
device(config-cfm-md-ISID_domain-ma-ISID_2000) #ccm-interval_1-second
```

# Show commands for CFM monitoring for ISID

The following **show** commands provide output for each component of the sample configuration.

#### Show cfm

Use the show cfm command to display the cfm configuration.

#### Syntax: show cfm

```
device#show cfm
Domain: ISID domain
Index: 1
Level: 3
Maintenance association: ISID 2000
Ma Index: 1
CCM interval: 1000 ms
ESI isid 1 ISID : 2000
Priority: 7
ETH-AIS TX: DISABLED
ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec
MEP Direction MAC
                          PORT PORT-STATUS-TLV
            0000.0011.86d1 ethe 1/1 N
    DOWN
device#show cfm
Domain: ISID domain
Index: 1
Level: 3
Maintenance association: ISID 2000
Ma Index: 1
CCM interval: 1000 ms
ESI isid 1 ISID : 2000
Priority: 7
ETH-AIS TX: DISABLED
ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec
MEP Direction MAC
                         PORT
                                  PORT-STATUS-TLV
0000.00ef.2a0b ethe 1/2
```

### Show cfm connectivity

Use the **show cfm connectivity** command to display the cfm connectivity configuration.

#### Syntax: show cfm connectivity

# Loopback Messages

### **CFM** loopback

Use the cfm loopback command to display loopback messages.

Syntax: cfm loopback domain domain-name ma ma-name src-mep ID target-mep ID

The following output shows the Loopback messages.

```
device#cfm loopback domain ISID_domain ma ISID_2000 src-mep 1 target-mep 2
DOT1AG: Sending 10 Loopback to 0000.00ef.2a0b, timeout 10000 msec
Type Control-c to abort
Reply from 0000.00ef.2a0b: time=1ms
Reply from 0000.00ef.2a0b: time<1ms
Repl
```

#### **CFM linktrace**

Use the cfm linktrace command to display linktrace messages.

Syntax: cfm linktrace domain domain-name ma ma-name src-mep ID target-mep ID

The following output shows the linktrace messages.

### **Delay-Measurement**

### **CFM** delay\_measurement

Use the **cfm delay\_measurement** command to display the delay measurement and delay variation using ISID.

Syntax: cfm delay\_measurement domain domain-name ma ma-name src-mep ID target-mep ID

The following output shows the delay measurement and delay variation using ISID.

```
device#cfm delay measurement domain ISID domain ma ISID 2000 src-mep 1 target-mep 2 Y1731: Sending 10 delay measurement to 0000.00ef.2a0b, timeout 1000 msec tras=0 Type Control-c to abort

Reply from 0000.00ef.2a0b: time= 35.295 us
Reply from 0000.00ef.2a0b: time= 35.400 us
Reply from 0000.00ef.2a0b: time= 35.115 us
Reply from 0000.00ef.2a0b: time= 35.265 us
Reply from 0000.00ef.2a0b: time= 35.250 us
Reply from 0000.00ef.2a0b: time= 35.250 us
Reply from 0000.00ef.2a0b: time= 35.280 us
Reply from 0000.00ef.2a0b: time= 35.205 us
Reply from Topic from 0000.00ef.2a0b: time= 35.280 us
Reply from 0000.00ef.2a0b: time= 35.205 us
Reply from 0000.00ef.2a0b: time= 35.280 us
Reply from 0000.00ef.2a0b: time= 35.280
```

# Link MA

Link MA can be used to monitor connectivity between any two Links in the network. It can be configured between any links since it is independent of the VLAN.

- The CCM interval for a sub-second timer is supported for CER with PBIF Support.
- · Loopback and delay measurement messages are supported for Link MA.

# Configuring Link MA

The below step captures the CFM configuration for Link MA

1. Domain configuration.

```
device(config-cfm)#domain-name d7 level 7
```

Syntax: domain-name name level value

2. MA configuration.

```
\label{eq:device} \texttt{device}\,(\texttt{config-cfm-md-d7})\, \texttt{\#ma-name} \ \texttt{link} \ \texttt{link-ma} \ \texttt{priority} \ 7
```

Syntax: ma-name name link-ma priority value

3. MEP configuration.

```
device(config-cfm-md-d7-ma-link) #mep 1 down port eth 1/1
```

Syntax: mep ID dir port portID

4. Individual -link monitor configuration.

```
device (config-cfm-md-erp-ma-ma-erp) #individual-link-monitoring
```

Syntax: [no] individual-link-monitor

# Sample Link MA configuration

The following sample configuration shows the Link Monitoring between DUT1 and DUT2. It also shows the Link Monitoring between DUT2 and DUT3.

#### DUT1

```
device(config) #cfm-enable
device(config-cfm) #domain-name d7 level 7
device(config-cfm-md-d7) #ma-name link link-ma priority 7
device(config-cfm-md-d7-ma-link) #ccm-interval 1-second
device(config-cfm-md-d7-ma-link) #mep 1 down port eth 1/1
```

#### DUT2

```
\label{eq:config} \begin{array}{l} \texttt{device}\,(\texttt{config})\, \#\texttt{cfm-enable}\,\,\, \texttt{DUT}\,\, 2\,(\texttt{config-cfm})\, \#\texttt{domain-name}\,\,\, d7\,\,\, \texttt{level}\,\,\, 7\,\,\, \\ \texttt{device}\,(\texttt{config-cfm-md-d7})\, \#\texttt{ma-name}\,\,\, \texttt{link}\,\, \texttt{link-ma}\,\,\, \texttt{priority}\,\, 7\,\,\, \\ \texttt{device}\,(\texttt{config-cfm-md-d7-ma-link})\, \#\texttt{ccm-interval}\,\,\, 1\text{-second}\,\,\, \\ \texttt{device}\,(\texttt{config-cfm-md-d7-ma-link})\, \#\texttt{mep}\,\,\, 3\,\,\, \texttt{down}\,\,\, \texttt{port}\,\,\, \texttt{eth}\,\,\, 1/1\,\,\, \\ \texttt{deviceconfig-cfm-md-d7-ma-link})\, \#\texttt{mep}\,\,\, 4\,\,\, \texttt{down}\,\,\, \texttt{port}\,\,\, \texttt{eth}\,\,\, 1/2\,\,\, \\ \end{array}
```

#### DUT3

```
device(config) #cfm-enable
device(config-cfm) #domain-name d7 level 7
device(config-cfm-md-d7) #ma-name link link-ma priority 7
device(config-cfm-md-d7-ma-link) #ccm-interval 1-second
device(config-cfm-md-d7-ma-link) #mep 2 down port eth 1/2
```

### Show commands

The following **show** commands provide output for each component of the sample configuration.

#### Show cfm

Use the **show cfm** command to display the cfm configuration.

#### Syntax: show cfm

```
device#show cfm
Domain: d7
Index: 1
Level: 7
Maintenance association: link
Ma Index: 1
CCM interval: 1000 ms
LINK MA ID: N/A Priority: 7
ETH-AIS TX: DISABLED
ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec
MEP Direction MAC
                                  PORT
                                               PORT-STATUS-TLV
     DOWN
                 0000.0011.86d1 ethe 1/1
device#show cfm
Domain: d7
Index: 1
Level: 7
Maintenance association: link
Ma Index: 1
CCM interval: 1000 ms
LINK MA ID: N/A
Priority: 7
ETH-AIS TX: DISABLED
ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec MEP Direction MAC
                                  PORT
                                               PORT-STATUS-TLV
```

```
device#show cfm
Domain: d7
Index: 1
Level: 7
Maintenance association: link
Ma Index: 1
CCM interval: 1000 ms
LINK MA ID: N/A
Priority: 7
ETH-AIS TX: DISABLED ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec
                      PORT
                             PORT-STATUS-TLV
MEP Direction MAC
1 DOWN 0000.00ef.2a0b ethe 1/2 N DUT_3#
```

### Show cfm connectivity

Use the **show cfm connectivity** command to display the cfm connectivity configuration.

### Syntax: show cfm connectivity

```
device#show cfm connectivity
Domain: d7 Index: 1
Level: 7
Maintenance association: link
MA Index: 1
CCM interval: 1000 ms
LINK MA ID: N/A
Priority: 7
ETH-AIS TX: DISABLED
ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec
                VLAN/PEER AGE PORT SLOTS STATE AIS STATE
RMEP MAC
0000.0011.6351 N/A 696 1/1 1 OK None
device#show cfm connectivity
Domain: d7 Index: 1
Level: 7
Maintenance association: link
MA Index: 1
CCM interval: 1000 ms
LINK MA ID: N/A
Priority: 7
ETH-AIS TX: DISABLED
ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec
RMEP MAC
                 VLAN/PEER AGE PORT SLOTS STATE AIS STATE
0000.00ef.2a0b N/A 799 1/1 1
                                          OK None
    0000.0011.86d1 N/A
                          799
                               1/2
                                     1
                                          OK
                                                None
device#show cfm connectivity
Domain: d7 Index: 1
Level: 7
Maintenance association: link
MA Index: 1
CCM interval: 1000 ms
LINK MA ID: N/A
Priority: 7
ETH-AIS TX: DISABLED
ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec
RMEP MAC
                 VLAN/PEER AGE PORT SLOTS STATE AIS STATE
     4 0000.0011.634b N/A 869 1/2 1 OK None
```

### Loop back messages

## **CFM loopback**

Use the cfm loopback command to display loopback messages.

Syntax: cfm loopback domain domain-name ma ma-name src-mep ID target-mep ID

The following output shows the Loopback messages.

```
device#cfm loopback domain d7 ma link src-mep 2 target-mep 3
DOT1AG: Sending 10 Loopback to 0000.0011.6351, timeout 10000 msec
Type Control-c to abort
Reply from 0000.0011.6351: time=1ms
Reply from 0000.0011.6351: time<1ms
Reply from 0000.00
```

#### **CFM linktrace**

Use the cfm linktrace command to display linktrace messages.

Syntax: cfm linktrace domain domain-name ma ma-name src-mep ID target-mep ID

```
The following output shows the linktrace messages. device#cfm linktrace domain d7 ma link src-mep 2 target-mep 3 Link trace functionality is not supported on Link-MA.
```

## **Port status TLV**

- · Port status TLV is carried in every CCM message and it carries the state of transmitting port
- The state can be either 1 or 2
  - 2 Port state is Forwarding
  - 1 Port state other than Forwarding
- · Port status TLV is supported for sub-second timers from PBIF version 0x56 onwards
- · Port status TLV is supported for all type of VLANs
  - CVLAN, SVAN, ISID and BVLAN
- Port status TLV is not applicable for Link MA

## Configuring Port Status TLV

Port status TLV is optional and will be carried in a CCM message only if it is enabled in the MEP configuration. Use the following command to enable port-status-tlv at the MEP level.

Syntax: [no] mep id dir tlv-type port-status-tlv port portld

## Sample configuration of Port Status TLV

The following configuration shows the process of enabling port status TLV at the MEP level.

```
device(config)#cfm-enable
device (config-cfm) #domain-name customer level 7
device(config-cfm-md-customer) #ma-name admin vlan-id 100 priority 7
device (config-cfm-md-customer-ma-admin) #ccm-interval 1-second
device(config-cfm-md-customer-ma-admin) #mep 1 down tlv-type port-status-tlv port eth
1/1
device (config) #cfm-enable
device(config-cfm) #domain-name customer level 7
device(config-cfm-md-customer) #ma-name admin vlan-id 100 priority 7
device(config-cfm-md-customer-ma-admin) #ccm-interval 1-second
device(config) #cfm-enable
device(config-cfm) #domain-name customer level 7
device(config-cfm-md-customer)#ma-name admin vlan-id 100 priority 7
device(config-cfm-md-customer-ma-admin) #ccm-interval 1-second
device(config-cfm-md-customer-ma-admin) #mep 2 down tlv-type port-status-tlv port
ethe 1/2
```

#### Show commands

The following commands are used to display the port status tlv at MEP.

#### Show cfm

Use the **show cfm** command to display the cfm configuration.

#### Syntax: show cfm

```
device#show cfm
Domain: customer
Index: 1
Level: 7
Maintenance association: admin
Ma Index: 1
CCM interval: 1000 ms
VLAN ID: 100
Priority: 7
MEP Direction MAC
                        PORT PORT-STATUS-TLV
1 DOWN 0000.0011.86d1 ethe 1/1 Y
device#show cfm
Domain: customer Index: 1
Level: 7
Maintenance association: admin
Ma Index: 1
CCM interval: 1000 ms
VLAN ID: 100
Priority: 7
                        PORT PORT-STATUS-TLV
MEP Direction MAC
DOMN
           0000.00ef.2a0b ethe 1/2
```

## Show cfm connectivity

Use the **show cfm connectivity** command to display the cfm connectivity configuration.

show cfm connectivity

The following commands display the received port status tlv state at RMEP.

```
device#show cfm connectivity domain customer ma admin rmep-id 2
```

```
Domain: customer Level: 7
Maintenance association: admin VLAN VLAN/VPLS/VLL ID: 100 Priority: 7
CCM interval: 1000 ms
               PORT Oper Age CCM RDI Port
                                          Intf Intvl Seq
RMEP MAC
                                                           core
                                   Status Status Error Error Fault level
                    State Val Cnt
____ _____
  0000.00ef.2a0b 1/1 OK 547 552 N
                                     2
                                                     M
device#
device#show cfm connectivity domain customer ma admin rmep-id 1
Domain: customer Level: 7
Maintenance association: admin VLAN VLAN/VPLS/VLL ID: 100 Priority: 7
CCM interval: 1000 ms
RMEP MAC
               PORT Oper Age CCM RDI Port
                                          Intf Intvl Seq
                    State Val Cnt
                                   Status Status Error Error Fault level
0000.0011.86d1 1/2 OK 590 590 N
                                     2
                                            0
                                                 Ν
```

## **Remote Defect Indication**

Remote Defect Indication (RDI) is a single bit, is carried by CCM to convey the MEPs in MA about reception of CCM messages by receiving MEPs (RMEP)

- The absence of RDI in a CCM indicates that the transmitting MEP is receiving CCMs from all remote MEPs
- The presence of RDI indicates that transmitting MEP is not receiving CCM from one or more RMEPs (one or more RMEP failed is in state) attached to the MEP.
- · RDI is supported for all type of VLANs
- CVLAN, SVAN, ISID and BVLAN
- · RDI is supported for regular and sub-second CCM intervals

#### Limitations

- UPMEP and MIP on C-VLAN ESI is not supported if it is a client of S-VLAN ESI (in Provider Edge).
- · UPMEP and MIP on S-VLAN ESI is not supported if it is a client of ISID ESI (in Backbone Edge).
- · Sub-second CCM interval is not supported for CES.
- · RDI is not applicable for Link MA.

### Sample configuration of Remote Defect Indication

The following sample configuration shows the RDI configuration.

#### DUT1

```
device(config) #cfm-enable
device(config-cfm) #domain-name customer level 7
device(config-cfm-md-customer) #ma-name admin vlan-id 100 priority 7
device(config-cfm-md-customer-ma-admin) #ccm-interval 1-second
device(config-cfm-md-customer-ma-admin) #mep 1 down port eth 1/1
device(config) #cfm-enable
device(config-cfm) #domain-name customer level 7
device(config-cfm-md-customer)#ma-name admin vlan-id 100 priority 7 device(config-cfm-md-customer-ma-admin)#ccm-interval 1-second
DUT3
device(config)#cfm-enable
device(config-cfm) #domain-name customer level 7
device(config-cfm-md-customer) #ma-name admin vlan-id 100 priority 7
device(config-cfm-md-customer-ma-admin)#ccm-interval 1-second
device(config-cfm-md-customer-ma-admin) #mep 2 down port ethe 1/2
DUT4
device(config) #cfm-enable
device(config-cfm) #domain-name customer level 7
device(config-cfm-md-customer) #ma-name admin vlan-id 100 priority 7
```

```
device(config-cfm-md-customer-ma-admin)\#ccm-interval 1-second device(config-cfm-md-customer-ma-admin)\#mep 3 down port eth 1/3
```

#### Show commands

The following **show** commands provide output for each component of the sample configuration.

#### Show cfm connectivity

Assume link between DUT 2 and 4 goes down. RMEP(DUT4's MEP) will get failed in DUT1 and DUT3. At this time DUT1 and 2 will start transmitting CCM with RDI bit set since RMEP has failed.

```
device#show cfm connectivity
Domain: customer Index: 1
Level: 7
Maintenance association: admin
MA Index: 1
CCM interval: 1000 ms
VLAN ID: 100
Priority: 7
ETH-AIS TX: DISABLED
ETH-AIS RX: DISABLED
ETH-AIS Interval: 10 sec
RMEP MAC
                  VLAN/PEER AGE PORT SLOTS STATE AIS STATE
_____
    0000.00ef.2a0b 100 799 1/1 1 OK None
0000.0011.86d1 100 400 1/1 1 FAILED None
                                                     None
device#
```

#### show cfm connectivity

The **show cfm connectivity** command shows the RDI received by RMEP.

The following command shows the RDI received by RMEP.

```
device#show cfm connectivity domain customer ma admin rmep-id 1
Domain: customer Level: 7
Maintenance association: admin VLAN VLAN/VPLS/VLL ID: 100 Priority: 7
CCM interval: 1000 ms
          PORT Oper Age CCM RDI Port
                                     Intf Intvl Seq
                                                     core
RMEP MAC
                 State Val Cnt Status Status Error Error Fault level
2 0000.0011.3301 1/2 OK 590 590 Y
                                       Ω
                                                N
device#
device#show cfm connectivity domain customer ma admin rmep-id 2
Domain: customer Level: 7
Maintenance association: admin VLAN VLAN/VPLS/VLL ID: 100 Priority: 7
CCM interval: 1000 ms
          PORT Oper Age CCM RDI Port Intf Intvl Seq
RMEP MAC
                  State Val Cnt Status Status Error Error Fault level
2 0000.00ef.2a0b 1/1 OK 690 590 Y
                                 Ω
                                       Ω
                                            N
                                                N
device#
```

Syntax: show cfm connectivity domain customer ma admin rmep-id id

## **Frame Loss Measurement**

The Frame Loss Measurement feature (ETH-LM) maintains counters of received and transmitted data frames between a pair of MEPs. These counters are used to calculate the frame loss ratio.

Only single-ended ETH-LM, which is used for on-demand OAM, is supported. An MEP sends frames with an ETH-LM request information to its peer MEP and receives frames with ETH-LM reply information from its peer MEP to perform loss measurement. Frames which carry the Loss Measurement Message (LMM) PDU are called LMM frames. Frames which carry the Loss Measurement Reply (LMR) PDU are called LMR frames.

When the Loss Measurement Message (LMM) is configured the Frame Loss Measurement is enabled.

## LMM over VLAN

Frame Loss Measurement can be done over VLAN where Connectivity Fault Management (CFM) is configured. In this use case, CFM should be enabled and down MEP should be configured on the VLAN end-points which should be monitored. LMM can be configured on the end-points for periodic measurements irrespective of the CFM connectivity. Ensure CFM connectivity is UP and running before the LMM session actually get started. Otherwise, an error will be thrown.

## LMM over VPLS

Frame Loss Measurement can be done over VPLS and VLL where Connectivity Fault Management (CFM) is configured. In this use case, CFM should be enabled and UP MEP should be configured on the VPLS end-points which should be monitored. LMM can be configured on the end-points for periodic measurements irrespective of the CFM connectivity. Ensure CFM connectivity is UP and running before the LMM session actually get started. Otherwise, an error will be thrown.

## **Configuration considerations and limitations**

As the Frame Loss Measurement feature uses ACL for getting data packet counters, it will be affected as follows:

- When there is an active LMM session and an L2 ACL is getting bounded, there will be some drop or frame loss expected as the LMM ACL is getting re-programmed.
- The responder should be started first before starting the initiator. Otherwise, the LMM packets will be dropped at the responder and no ACLs will be programmed, which may lead to inaccurate results.
- During termination, stop the initiator before the responder. Stopping the responder first may lead to inaccurate results as mentioned in the previous point.
- Only one LMM session will be active per source MEP per priority. This means eight active sessions
  per source MEP, one active for each priority.
- Maximum of 32 LMM sessions can be created per source MEP (irrespective of the priority).
- Maximum of 100 LMM sessions can be activated per system at any given point of time irrespective of the MD, MA, and MEP.
- LMM functionality not guaranteed if there exists multiple VPLS end points sharing the single peer for that VPLS instance. There should be a single VPLS end point.
- As the measurement is performed in the LP, LMM functionality is not supported over LAG, if member ports are from multiple slots. Loss will be measured only the ports on the same slot.
- If any ACLS are dropped on the same port or vport, the packets matching those ACLs will not be counted or taken into account as the LMM ACLs will be listed below the layer 2 ACLs.
- · Protocol packets or packets trapped to CPU are not counted.

- To measure frame loss on untagged endpoints in VPLS, cos 8 should be used which covers all the
  priorities, as there is no priority carried in the untagged packet. This feature not supported via
  SNMP as the priority range supported is 0 to 7.
- LMM initiator and responder should monitor on the same priority, otherwise the packet will be discarded on the responder or initiator side which leads to inaccurate results.
- If cos 8 is configured on the source MEP, no other session with different priority is supported as cos 8 already counts all the priorities. Cos 8 not supported via SNMP as it is additional and not as per the standard MIB.
- If the start time is configured without the daily option, it will be shown in the running-config until it is explicitly removed by the "stop now" command.
- LMM over VLL is not supported.
- For Layer 3 traffic, with VPLS the incoming priority in the data packet gets modified by DSCP bits and gets changed in the egress side. As the ingress and egress priorities are different in VPLS data traffic, only cos 8 should be used which monitors on all the priorities.
- For individual packet priority monitoring with VPLS L3 traffic, VLAN PCP and DSCP bits should be the same in the ingress traffic.

## **Supported configurations**

The following functionalities are common for both VPLS and VLAN endpoints.

## Monitor LMM on demand

The LMM can be started immediately whenever required and can be stopped after some period of time. The frame loss ratio will be calculated after every measurement interval configured and can be viewed whenever required. This use case will be useful whenever the administrator wants to measure immediately (on demand).

#### Monitor LMM for a fixed interval of time

The LMM can be configured to start at any fixed time (more than the current time) and can be stopped after some period of time (more than the start time). The frame loss ratio will be calculated after every measurement interval configured and can be viewed whenever required. This use case will be useful whenever the administrator wants to measure at particular time interval.

#### Monitor LMM after some relative time

The LMM can be configured to start after any relative time and can be stopped after some period of time (more than the start time). The frame loss ratio will be calculated after every measurement interval configured and can be viewed whenever required. This use case will be useful whenever the administrator wants to trigger the measurement after some duration.

## Monitor LMM daily for fixed interval of time

The LMM can be configured to start daily at any fixed time and stop after some period of time (more than the start time). The frame loss ratio will be calculated after every measurement interval configured and can be viewed whenever required. This use case will be useful whenever the administrator wants to measure daily at particular time interval.

## LMM configurations common for VLAN and VPLS

Before configuring Loss Measurement Message (LMM), Connectivity Fault Management (CFM) must be configured for the VLAN or VPLS. Refer to OAM chapter for the procedures to configure CFM for VLAN or VPLS.

The configuration of Loss Measurement Message (LMM) is the same process for both VLANs and VPLS.

## LMM initiator session configuration

Use the following procedure to configure the LMM initiator session.

1. LMM initiator session creation.

Create the Loss Measurement Message (LMM) session.

```
device(config-cfm) #loss-measurement lmm initiator 1
device(config-cfm-loss-measurement-lmm-initiator-1) #
```

#### Syntax: Imm initiator session\_id

2. LMM Initiator session configuration.

Configure the LMM session.

```
device(config-cfm-loss-measurement-lmm-initiator-1)#domain md1 ma ma1 src-mep 1
target-mep 2
```

#### Syntax: domain name ma name src-mep id target-mep id

3. LMM session CoS configuration.

```
device(config-cfm-loss-measurement-lmm-initiator-1)#Cos 1
device(config-cfm-loss-measurement-lmm-initiator-1)#
```

#### Syntax: Cos value

4. LMM session Tx-interval configuration.

```
device(config-cfm-loss-measurement-lmm-initiator-1) #Tx-interval 10
device(config-cfm-loss-measurement-lmm-initiator-1) #
```

## Syntax: Tx-interval timer\_value

5. LMM session measurement-interval configuration.

```
\label{lem:device} $$ device (config-cfm-loss-measurement-lmm-initiator-1) $$ $$ $$ Measurement-interval 10 $$ device (config-cfm-loss-measurement-lmm-initiator-1) $$ $$
```

#### Syntax: Measurement-interval timer\_value

6. LMM session threshold configuration

```
device(config-cfm-loss-measurement-lmm-initiator-1)#threshold forward average 5000 maximum 10000 device(config-cfm-loss-measurement-lmm-initiator-1)#threshold backward average 5000 maximum 10000
```

Syntax: threshold forward | backward average value maximum value

#### LMM responder session configuration

Use the following procedure to configure the LMM responder session.

1. LMM responder session creation.

```
\label{lem:device} \mbox{device(config-cfm) \#loss-measurement lmm responder 1} \\ \mbox{device(config-cfm-loss-measurement-lmm-responder-1) \#} \\
```

#### Syntax: loss-measurement Imm responder session\_id

2. LMM responder session configuration.

```
\label{lem:device} $$ (config-cfm-loss-measurement-lmm-responder-1) $$ domain md1 ma ma1 src-mep 2 target-mep 1 $$ device (config-cfm-loss-measurement-lmm-responder-1) $$ $$
```

#### Syntax: domain name ma name src-mep id target-mep id

3. LMM session CoS configuration.

```
\label{local_device} $$ \ensurement-lmm-responder-1) $$ $$ $$ 1 $$ device (config-cfm-loss-measurement-lmm-responder-1) $$
```

Syntax: Cos value

## Starting LMM session responder

Use the start command to start the session responder.

```
device(config-cfm-loss-measurement-lmm-responder-1) #start now
```

Syntax: start { now | after HH:MM:SS | HH:MM:SS [ daily ] }

now starts the session immediately.

after HH:MM:SS starts the session after the indicated time interval.

HH:MM:SS starts the session at the indicated time.

HH:MM:SS daily starts the session at the indicated time every day.

## Starting LMM Session Initiator

Use the **start** command to start the session initiator.

device(config-cfm-loss-measurement-lmm-initiator-1)#start after 01:10:00

Syntax:start{now|afterHH:MM:SS|HH:MM:SS[daily]}

now starts the session immediately.

after HH:MM:SS starts the session after the indicated time interval.

HH:MM:SS starts the session at the indicated time.

HH:MM:SS daily starts the session at the indicated time every day.

No configuration changes are supported once the session is started or triggered. Only the "Stop now" configuration is allowed which stops the session.

Session will not start if the target MEP not available. Session will be started, only if the target MEP is in FAILED state or OK state.

## Stopping LMM Session Responder

Use the **stop** command to stop the session responder.

```
device(config-cfm-loss-measurement-lmm-responder-1) #stop now
```

#### Syntax: stop { now | after HH:MM:SS | HH:MM:SS [ daily ] }

now stops the session immediately.

after HH:MM:SS stops the session after the indicated time interval.

HH:MM:SS stops the session at the indicated time.

HH:MM:SS daily stops the session at the indicated time every day.

## Stopping LMM Session Initiator

Use the **stop** command to stop the session initiator.

```
device(config-cfm-loss-measurement-lmm-initiator-1) #stop now
```

```
Syntax: stop { now | after HH:MM:SS | HH:MM:SS [ daily ] }
```

now stops the session immediately.

after HH:MM:SS stops the session after the indicated time interval.

HH:MM:SS stops the session at the indicated time.

HH:MM:SS daily stops the session at the indicated time every day.

## **Configuration examples**

## Configuration example for LMM over VLAN

#### **CE-1 Configuration**

```
device(config) # cfm
device(config-cfm) #loss-measurement lmm initiator 1
device(config-cfm-loss-measurement-lmm-initiator-1) #domain md1 ma ma1 src-mep 3
target-mep 4
device(config-cfm-loss-measurement-lmm-initiator-1) #Cos 2
device(config-cfm-loss-measurement-lmm-initiator-1) #tx-interval 10
device(config-cfm-loss-measurement-lmm-initiator-1) #measurement-interval 10
```

### **CE-2 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement lmm responder 1
device(config-cfm-loss-measurement-lmm-responder-1) #domain md1 ma ma1 src-mep 4
target-mep 3
device(config-cfm-loss-measurement-lmm-responder-1) #Cos 2
```

## Configuration example for VPLS tagged endpoints

## **PE-1 Configuration (Initiator)**

```
device(config-cfm) # loss-measurement lmm initiator 1
device(config-cfm-loss-measurement-lmm-initiator-1) #domain md1 ma ma1 src-mep 3
```

```
target-mep 4
device(config-cfm-loss-measurement-lmm-initiator-1) #Cos 2
device(config-cfm-loss-measurement-lmm-initiator-1) #tx-interval 10
device(config-cfm-loss-measurement-lmm-initiator-1) #measurement-interval 10
```

### PE-2 Configuration (Responder)

```
device(config-cfm) # loss-measurement lmm responder 1
device(config-cfm-loss-measurement-lmm-responder-1) #domain md1 ma ma1 src-mep 4
target-mep 3
device(config-cfm-loss-measurement-lmm-responder-1) #Cos 2
```

## Configuration example for VPLS untagged endpoints

#### **PE-1 Configuration (Initiator)**

```
device(config-cfm) # loss-measurement lmm initiator 1
device(config-cfm-loss-measurement-lmm-initiator-1) #domain md1 ma ma1 src-mep 3
target-mep 4
device(config-cfm-loss-measurement-lmm-initiator-1) #Cos 8
device(config-cfm-loss-measurement-lmm-initiator-1) #tx-interval 10
device(config-cfm-loss-measurement-lmm-initiator-1) #measurement-interval 10
```

#### PE-2 Configuration (Responder)

```
device(config-cfm)# loss-measurement lmm responder 1
device(config-cfm-loss-measurement-lmm-responder-1)#domain md1 ma ma1 src-mep 4
target-mep 3
device(config-cfm-loss-measurement-lmm-responder-1)#Cos 8
```

## Configuration example for VPLS tagged and untagged endpoints

## **PE-1 Configuration (Initiator)**

```
device(config-cfm)# loss-measurement lmm initiator 1
device(config-cfm-loss-measurement-lmm-initiator-1)#domain md1 ma ma1 src-mep 3
target-mep 4
device(config-cfm-loss-measurement-lmm-initiator-1)#Cos 8
device(config-cfm-loss-measurement-lmm-initiator-1)#tx-interval 10
device(config-cfm-loss-measurement-lmm-initiator-1)#measurement-interval 10
```

## PE-2 Configuration (Responder)

```
device(config-cfm)# loss-measurement lmm responder 1
device(config-cfm-loss-measurement-lmm-responder-1)#domain md1 ma ma1 src-mep 4
target-mep 3
device(config-cfm-loss-measurement-lmm-responder-1)#Cos 8
```

## Starting LMM Sessions

Start the responder before starting the initiator.

## **CE-2 Configuration**

```
device(config)# cfm
device(config-cfm)# loss-measurement lmm responder 1
device(config-cfm-loss-measurement-lmm-responder-1)#start now
```

## **CE-1 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement lmm initiator 1
device(config-cfm-loss-measurement-lmm-initiator-1) #start now
```

## Stopping LMM Sessions

Stop the initiator before stopping the responder.

## **CE-1 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement lmm initiator 1
device(config-cfm-loss-measurement-lmm-initiator-1) #stop now
```

## **CE-2 Configuration**

```
device(config-cfm)# loss-measurement lmm responder 1
device(config-cfm-loss-measurement-lmm-responder-1)#stop now
```

## Clearing history statistics per session

```
device(config-cfm)# loss-measurement lmm initiator 1
device(config-cfm-loss-measurement-lmm-initiator-1)#clear-stat
```

## Clearing history statistics globally

```
device(config-cfm) # loss-measurement clear-stat
```

## Syslog messages

Syslogs will be raised for the following cases:

- · When the LMM session is started.
- · When the LMM session is stopped.
- · When the Average Frame Loss Ratio is greater than the Threshold Average Frame Loss Ratio.
- When the Maximum Frame Loss Ratio is greater than the Threshold Maximum Frame Loss Ratio.

## Syslog message display output

The following are the Syslog message outputs displayed for various cases:

#### When the LMM session started

<Syslog>: Y.1731: The LMM session started for MA index 1, MD index 1, MEP id 2 Session index 1

#### When the LMM session stopped

<Syslog>: Y.1731: The LMM session started for MA index 1, MD index 1, MEP id 2 Session index 1  $\,$ 

## When the Average Frame Loss Ratio greater than Threshold Average Frame Loss Ratio

Syslog: Y.1731: The LMM session for MA index 1, MD index 1, MEP id 2 Session index 1 has crossed the forward average threshold value, with value 35000.

#### When the Maximum Frame Loss Ratio greater than Threshold Maximum Frame Loss Ratio

<Syslog>: Y.1731: The LMM session for MA index 1, MD index 1, MEP id 2 Session index 1 has crossed the forward maximum threshold value, with value 60000.

# **One-way Delay Measurement**

One-way delay measurement can be used for on-demand or proactive OAM to measure frame delay and frame delay variation. Frame delay and frame delay variation measurements are performed by sending periodic frames with Ethernet Delay Measurement information to the peer MEP and receiving frames with Ethernet Delay Measurement information from the peer MEP during proactive measurement session and/or the diagnostic interval. Each MEP may perform frame delay and frame delay variation measurement.

When a MEP is enabled to generate frames with one-way delay measurement information, it periodically sends frames with one-way delay measurement information to its peer MEP in the same ME. When a MEP is enabled to generate frames with one-way delay measurement information, it also expects to receive frames with one-way delay measurement information from its peer MEP in the same ME.

A MIP is transparent to the frames with one-way delay measurement information and therefore does not require any information to support one-way delay measurement functionality.

A MEP transmits frames with one-way delay measurement information with the following information element:

TxTimeStampf: Timestamp at the transmission time of one-way delay measurement frame

The receiving MEP can compare this value with the RxTimef, the time at the reception of a one-way delay measurement frame and calculate the one-way frame delay as:

Frame Delay = RxTimef - TxTimeStampf

## **Configuration considerations**

- Only one one-way delay measurement session will be active per source MEP per priority.
- Maximum of 32 one-way delay measurement sessions can be created per source MEP.
- Maximum of 100 one-way delay measurement sessions can be activated per system at any given point of time.
- There can be maximum 16 one-way delay measurement sessions (8 Initiator sessions and 8 Receiver sessions) which can be active per MEP.

- The one-way delay measurement receiver session should be started before starting the initiator session. Otherwise, the one-way delay measurement packets will be dropped at the receiver, which may lead to inaccurate results.
- The NTP should be disabled and the system clock should be set explicitly through CLI when the oneway delay has to be measured between a Brocade device and another vendor device.

## **One-way Delay Measurement**

In this case, each MEP sends frame with one-way Ethernet Delay Measurement information to its peer MEP to facilitate one-way frame delay and/or one-way frame delay variation measurements at the peer MEP.

## **One-way Delay Measurement transmission**

When configured for one-way delay measurement, a MEP periodically transmits one-way delay measurement frames with the TxTimeStampf value.

## **One-way Delay Measurement reception**

When configured for one-way delay measurement, a MEP, upon receiving a valid one-way delay measurement frame, uses the following values to make one-way frame delay measurement. A one-way delay measurement frame with a valid MEG level and a destination MAC address equal to the receiving MEP's MAC address is considered to be a valid one-way delay measurement frame. These values serve as input to the one-way frame delay variation measurement:

- · One-way delay measurement frame's TxTimeStampf value
- · RxTimef, which is the time at reception of the one-way delay measurement frame
- Frame Delayone-way = RxTimef TxTimeStampf

## **Use Cases**

The following use cases are supported for one-way delay measurement.

#### One-way Delay Measurement over VLAN

One-way delay measurement can be done over VLAN where CFM is configured. In this use case, CFM should be enabled and the down MEP should be configured on the VLAN end-points (tagged ports) for periodic measurements irrespective of the CFM connectivity. Verify CFM connectivity is up and running before the one-way delay measurement session is actually started. Otherwise, this may cause an error.

#### NOTE

The one-way delay measurement should be configured over CFM, where CFM should be configured over the VLAN and the down MEPs should be configured only on the tagged ports.

### One-way Delay Measurement over VPLS

One-way delay measurement can be done over VPLS where CFM is configured. In this use case, CFM should be enabled and the up MEP should be configured on the VPLS end-points which should be monitored. One-way delay measurement can be configured on the end-points for periodic

measurements irrespective of the CFM connectivity. Ensure CFM connectivity is up and running before the one-way delay measurement session is actually started. Otherwise, this may cause an error.

#### NOTE

If the VPLS end is configured as an untagged port, then the one-way delay measurement packet will be considered as no priority and one-way delay measurement will be measured with priority 8. If priority 8 is configured for the one-way delay measurement session, then all the other priority one-way delay measurement sessions under the same MEP will not be allowed.

## One-way Delay Measurement over VLL

One-way delay measurement can be done over VLL where CFM configured. In this use case, CFM should be enabled and the up MEP should be configured on the VLL end-points which should be monitored. One-way delay measurement can be configured on the end-points for periodic measurements irrespective of the CFM connectivity. Ensure CFM connectivity is up and running before the one-way delay measurement session is actually started. Otherwise, this may cause an error.

## **Supported configurations**

The following are the additional supported configurations for monitoring one-way delay measurement based on different time intervals. The functionality discussed below are common for both VPLS and VLAN.

#### Monitor one-way delay measurement on demand

In this case, one-way delay measurement can be started immediately whenever required and can be stopped after a period of time. The one-way delay will be calculated after receiving each one-way delay measurement packet and delay statistics will be calculated for every measurement interval configured. It can be viewed whenever required. This use case is useful whenever the you want to measure immediately (on demand).

#### Monitor one-way delay fixed interval of time

In this case, the one-way delay measurement can be configured to start at any fixed time and can be stopped after a period of time. The one-way delay will be calculated after receiving each one-way delay measurement packet and delay statistics will be calculated for every measurement interval configured. It can be viewed whenever required. This use case is useful whenever the administrator wants to measure at particular time interval.

## Monitor one-way delay after relative time

In this case, the one-way delay measurement can be configured to start after a relative time and can be stopped after a period of time. The one-way delay will be calculated after receiving each one-way delay measurement packet and delay statistics will be calculated every measurement interval configured. It can be viewed whenever required. This use case is useful whenever the administrator wants to trigger the measurement after some duration.

### Monitor one-way delay daily for fixed interval of time

In this case, the one-way delay measurement can be configured to start daily at any fixed time and stop after some period of time. The one-way delay will be calculated after receiving each one-way delay measurement packet and delay statistics will be calculated for every measurement interval configured. It can be viewed whenever required. This use case is useful whenever the administrator wants to measure daily at particular time interval.

## **Configuration procedure**

## **CFM Configuration for VLAN**

## **VLAN** Configuration

VLAN Creation.

```
device(config) #vlan 20
device(config-vlan-20) #tagged ethernet 1/1
```

Syntax: vlan id

## **CFM Configuration**

1. Enabling CFM.

```
device(config) #cfm-enable
device(config-cfm) #
```

#### Syntax: cfm-enable

2. Domain Configuration

```
device(config) #cfm-enable
device(config-cfm) #domain-name mdl level 7
device(config-cfm-md-mdl) #
```

#### Syntax: domain-name md\_name [ id id ] level level

3. MA Configuration

```
\label{lem:device} $\operatorname{device}(\operatorname{config-cfm-md-md1})$ $\#$ ma-name mal vlan 20 priority 4 $\operatorname{device}(\operatorname{config-cfm-md-md1-ma-ma1})$
```

## Syntax: ma-name ma\_name [ id id ] vlan-id vlan | vpls-id vpls priority priority

4. MEP Configuration

```
{\tt device}\,({\tt config-cfm-md-md1-ma-ma1})\,\#{\tt mep}\,\,1\,\,{\tt down}\,\,{\tt port}\,\,{\tt ethernet}\,\,1/1
```

Syntax: mep id { down | up } port ethernet slot/port

## CFM Configuration for VPLS and VLL

### **Creation of VPLS**

```
device(config) #router mpls
device(config-mpls) #vpls vpls100 100
```

```
device(config-mpls-vpls-vpls100)#vlan 100
device(config-mpls-vpls-vpls100-vlan-10)#tagged Ethernet 1/1
```

Syntax: vpls vpls-nameid
Syntax: vlan vlan-id

Syntax: tagged ethernet slot/port

#### Creation of VLL

```
device(config) #router mpls
device(config-mpls) #vll vll100 100
device(config-mpls-vll-vll100) #vlan 100
device(config-mpls-vll-vll100-vlan-10) #tagged Ethernet 1/1
```

Syntax: vII vII-nameid
Syntax: vIan vIan-id

Syntax: tagged ethernet slot/port

### **CFM Configuration**

1. Enable CFM.

```
device(config)#cfm-enable
device(config-cfm)#
```

## Syntax: cfm-enable

2. Configure the domain.

```
device(config) #cfm-enable
device(config-cfm) #domain-name md1 level 7
device(config-cfm-md-md1) #
```

#### Syntax: domain-name md\_name id id level level

3. Configure MA.

```
device(config-cfm-md-md1)#ma-name ma1 vpls-id 100 priority 4
device(config-cfm-md-md1-ma-ma1)#
```

Syntax: ma-name ma\_name [ id id ] vlan-id vlan | vpls-id vpls priority priority

Ma\_name - Maintenance Association Name

4. Configure MEP.

```
device(config-cfm-md-md1-ma-ma1) #mep 1 up vlan 100 port ethernet 1/1
```

Syntax: mep id down | up vlan vlan port ethernet slot/port

#### One-way delay measurement configuration

#### **NOTE**

The following configuration is common for common for VLAN, VPLS, and VLL.

#### One-way delay measurement initiator session configuration

1. One-way delay measurement initiator session creation

```
device(config)#cfm
device(config-cfm)# oneway-dm initiator 1
```

```
device(config-cfm-oneway-dm-initiator-1)# domain md1 ma ma1 src-mep 1 target-mep
101
```

## Syntax: oneway-dm initiator session-index

session\_index - Is used to configure the one-way delay measurement initiator session index (1-1000)

#### Syntax: domain md\_name ma ma\_name src-mep id target-mep id

Md name - Domain Name

Ma\_name - Maintenance Association Name

Src-Mep ID - Source MEP

Target-MEP ID - Destination MEP

2. One-way delay measurement initiator session configuration

```
device(config-cfm-oneway-dm-initiator-1)# cos 4
device(config-cfm-oneway-dm-initiator-1)# tx-interval 10
```

Syntax: cos value

Syntax: tx-interval sec

Cos (value) - Priority Value (1-7) (optional - Default value 7)

Tx-interval options include {start | stop} {now | after <HH:MM:SS> | <HH:MM:SS> | daily}

## One-way delay measurement receiver session configuration

1. One-way delay measurement receiver session creation

```
device(config) #cfm
device(config-cfm) # oneway-dm receiver 1
device(config-cfm-oneway-dm-receiver-1) # domain md1 ma ma1 src-mep 101 target-mep 1
```

Syntax: oneway-dm receiver session-index

## Syntax: domain md\_name ma ma\_name src-mep id target-mep id

2. One-way delay measurement receiver session configuration

```
device(config-cfm-oneway-dm-receiver-1) # cos 4
device(config-cfm-oneway-dm-receiver-1) # measurement-interval 10
```

Syntax: cos value

#### Syntax: measurement-interval sec

3. One-way delay measurement receiver session threshold configuration

```
device(config-cfm-oneway-dm-receiver-1)# threshold max 50
device(config-cfm-oneway-dm-receiver-1)# threshold average 25
```

Syntax: threshold max value

Syntax: threshold average value

#### Starting one-way delay measurement receiver session

A receiver session can be started immediately, after a specified amount of time, once at a specific time, or a specific time daily.

```
device(config-cfm-oneway-dm-receiver-1)# start now
```

Syntax: start now | after HH:MM:SS | HH:MM:SS daily

1. Start the one-way delay measurement receiver session after a period of time.

```
device(config-cfm-oneway-dm-receiver-1)# start after 01:30:00
```

The example above will start after 1 hour and 30 minutes.

2. Start 1DM Receiver Session exactly at given time.

```
device(config-cfm-oneway-dm-receiver-1)# start 09:30:00
```

The example above will be started exactly at 09:30 AM.

3. Start 1DM Receiver Session daily at given time.

```
device(config-cfm-oneway-dm-receiver-1)# start 09:30:00 daily
```

The example above will be started daily exactly at 09:30 AM.

## Starting the one-way delay measurement session initiator

A session can be started immediately, after a specified amount of time, once at a specific time, or a specific time daily.

```
device(config-cfm-oneway-dm-initiator-1)# start now
```

Syntax: start now | after HH:MM:SS | HH:MM:SS daily

#### Stopping the one-way delay measurement initiator session

A session can be stopped immediately, after a specified amount of time, once at a specific time, or a specific time daily.

```
device(config-cfm-oneway-dm-initiator-1)# stop now
```

Syntax: stop now | after HH:MM:SS | HH:MM:SS daily

## Stopping one-way delay measurement receiver session

A receiver session can be stopped immediately, after a specified amount of time, or at a specific time.

```
device(config-cfm-oneway-dm-receiver-1)# stop now
```

Syntax: stop now | after HH:MM:SS | HH:MM:SS

#### NOTE

The one-way delay measurement Receiver session should be started before starting the one-way delay measurement Initiator session. Also, the one-way delay measurement Initiator session should be stopped before stopping the one-way delay measurement Receiver session.

#### NOTE

Relative time is converted to absolute time otherwise it would not point to the expected time after a config-save and reboot. This case is applicable to both start and stop times.

## **Configuration examples**

### Sample configuration one-way delay measurement over VLAN

## **VLAN** configurations:

## **CE-1 Configuration**

```
device(config) # interface ethernet 1/1
device(config-if-e10000-1/1) # enable
device(config-if-e10000-1/1) # exit
device(config) # vlan 10
device(config-vlan-10) # tagged ethernet 1/1
```

#### **CE-2** configuration

```
device(config) # interface ethernet 1/1
device(config-if-e10000-1/1) # enable
device(config-if-e10000-1/1) # exit
device(config) # vlan 10
device(config-vlan-10) # tagged ethernet 1/1
```

## **CFM configurations:**

#### **CE-1** configuration

```
device(config) # cfm-enable
device(config-cfm) # domain mdl level 7
device(config-cfm-md-mdl) # ma mal vlan 10 priority 4
device(config-cfm-md-mdl-ma-mal) # mep 1 down port ethernet 1/1
```

### **CE-2** configuration

```
device(config) # cfm-enable
device(config-cfm) # domain md1 level 7
device(config-cfm-md-md1) # ma ma1 vlan 10 priority 4
device(config-cfm-md-md1-ma-ma1) # mep 101 down port ethernet 1/1
```

#### One-way delay measurement configurations:

#### **CE-1 Configuration**

```
device(config) # cfm
device(config-cfm) # oneway-dm initiator 1
device(config-cfm-oneway-dm-initiator-1) #domain md1 ma ma1 src-mep 1 target-mep 2
device(config-cfm-oneway-dm-initiator-1) #tx-interval 10
```

### **CE-2 Configuration**

```
device(config) # cfm
device(config-cfm) # oneway-dm receiver 2
device(config-cfm-oneway-dm-receiver-2) # domain md1 ma ma1 src-mep 2 target-mep 1
device(config-cfm-oneway-dm-receiver-2) # measurement-interval 10
```

## **Starting 1DM Sessions:**

#### **CE-1 Configuration**

```
\verb"device(config-cfm-oneway-dm-initiator-1)# start now"
```

#### **CE-2 Configuration**

```
device(config-cfm-oneway-dm-receiver-2)# start now
```

## **Stopping 1DM Sessions:**

## **CE-1 Configuration**

device(config-cfm-oneway-dm-initiator-1) # stop now

#### **CE-2 Configuration**

device(config-cfm-oneway-dm-receiver-2)# stop now

## Sample Configuration one-way delay measurement over VPLS or VLL

## **VPLS Configurations:**

#### **PE-1 Configuration**

```
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# enable
device(config-if-e10000-1/1)# exit
device(config)# router mpls
device(config-mpls)# vpls vpls100 100
device(config-mpls-vpls-vpls100)# vlan 10
device(config-mpls-vpls-vpls100-vlan-10)# tagged ethernet 1/1
device(config-mpls-vpls-vpls100-vlan-10)# end
```

#### **PE-2 Configuration**

```
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# enable
device(config-if-e10000-1/1)# exit
device(config)# router mpls
device(config-mpls)# vpls vpls100 100
device(config-mpls-vpls-vpls100)# vlan 10
device(config-mpls-vpls-vpls100-vlan-10)# tagged ethernet 1/1
device(config-mpls-vpls-vpls100-vlan-10)# end
```

## **VLL Configurations:**

## **PE-1 Configuration**

```
device(config) # interface ethernet 1/1
device(config-if-e10000-1/1) # enable
device(config-if-e10000-1/1) # exit
device(config) # router mpls
device(config-mpls) # vll vll100 100
device(config-mpls-vll-vll100) # vlan 10
device(config-mpls-vll-vll100-vlan-10) # tagged ethernet 1/1
device(config-mpls-vll-vll100-vlan-10) # end
```

## **PE-2 Configuration**

```
device(config) # interface ethernet 1/1
device(config-if-e10000-1/1) # enable
device(config-if-e10000-1/1) # exit
device(config) # router mpls
device(config-mpls) # vll vpls100 100
device(config-mpls-vll-vll100) # vlan 10
device(config-mpls-vll-vll100-vlan-10) # tagged ethernet 1/1
device(config-mpls-vll-vll100-vlan-10) # end
```

### **CFM Configurations:**

#### **PE-1 Configuration**

```
device(config) # cfm-enable
device(config-cfm) # domain md1 level 7
device(config-cfm-md-md1) # ma ma1 vpls 100 priority 4
device(config-cfm-md-md1-ma-ma1) # mep 1 up vlan 10 port ethernet 1/1
```

#### **PE-2 Configuration**

```
device(config) # cfm-enable
device(config-cfm) # domain md1 level 7
device(config-cfm-md-md1) # ma ma1 vpls 100 priority 4
device(config-cfm-md-md1-ma-ma1) # mep 101 up vlan 10 port ethernet 1/1
```

## One-way delay measurement configurations (common for VPLS/VLL)

#### NOTE

The one-way delay measurement receiver session should be started first before starting the initiator session. Otherwise, the one-way delay measurement packets will be dropped at the receiver, which may lead to inaccurate results.

#### **CE-1 Configuration**

```
device(config) # cfm
device(config-cfm) # oneway-dm initiator 1
device(config-cfm-oneway-dm-initiator-1) #domain md1 ma ma1 src-mep 1 target-mep 2
device(config-cfm-oneway-dm-initiator-1) #tx-interval 10
```

#### **CE-2 Configuration**

```
device(config) # cfm
device(config-cfm) # oneway-dm receiver 2
device(config-cfm-oneway-dm-receiver-2) # domain md1 ma ma1 src-mep 2 target-mep 1
device(config-cfm-oneway-dm-receiver-2) # measurement-interval 10
```

#### Starting one-way delay measurement sessions:

#### **CE-1 Configuration**

```
device(config-cfm-oneway-dm-initiator-1)# start now
```

#### **CE-2 Configuration**

device(config-cfm-oneway-dm-receiver-2)# start now

### Stopping one-way delay measurement sessions:

#### **CE-1 Configuration**

```
device(config-cfm-oneway-dm-initiator-1)# stop now
```

#### **CE-2 Configuration**

device(config-cfm-oneway-dm-receiver-2)# stop now

## Show commands

The show cfm oneway-dm **session\_index** command is used to display the session for a specified index. If a session index is not specified all available session indices will be displayed.

#### Syntax: show cfm oneway-dm session\_index

```
device# show cfm oneway-dm 101
One Way DM Session Index : 101
1DM Session Index : 101
Status
                         : Running
Session Type
                         : Receiver
Domain
                         : MD4
MA
                         : MA4.1
Source MEP
Target MEP
Cos
Measurement-Interval(in M : 30
Start time : 22:56:41
Start time type : Immediate
Stop time : 22:56:22
Stop time type : Immediate
Threshold Configuration
Threshold Average
                         : 0
Threshold Max
                          : 0
```

The show cfm oneway-dm statistics **session\_index** command is used to display the latest 32 measurement statistics for a specified session index. If a session index is not specified the statistics for all available session indices will be displayed.

device# show cfm oneway-dm statistics

Syntax: show cfm oneway-dm statistics session\_index

#### NOTE

The statistics command is valid only for receiver session Indices. An error will occur for initiator session indices.

The following information will be displayed in the show command output:

-----

#### **NOTE**

If a one-way delay measurement is skipped for any one-way delay measurement packet within the measurement interval, then it will be marked as suspect.

The show cfm oneway-dm statistics **session\_index row-index row-index** command is used to display details for a specific session index.

Syntax: show cfm oneway-dm statistics session-index row-index row-index

```
device# show cfm oneway-dm statistics 1 row-index 2
One Way DM Session Index : 1
HISTORY ENTRY :
                              : 2
Row Index
Flag
Start Time
                              : 18:27:39
                              : 00:00:11
Elapsed Time
Valid RX Count
Total RX Count
                              : 10
Avg Delay
                                     13.115
Max Delay
Min Delay
                                     12.956
Avg Frame Delay Variation:
Max Frame Delay Variation:
Min Frame Delay Variation:
                                       0.110
                                      0.016
```

## Syslog messages

The following are the Syslog message outputs displayed for various cases:

When the one-way delay measurement session is started.

```
SYSLOG: <time> Y.1731: The DM session started for MA index <ma index>, MD index <md index>, MEP id <med id> Session index <id>
```

When the one-way delay measurement session is stopped.

```
SYSLOG: <time> Y.1731: The DM session stopped for MA index <ma index>, MD index <md index>, MEP id <med id> Session index <id>
```

When the Average delay is greater than the Threshold Average delay.

```
SYSLOG: <timestamp> Y.1731: The DM session for MA index <ma index>, MD index <md index>, MEP id <med id> Session index <id> has crossed the forward average threshold, with value <value>
```

When the Maximum delay is greater than the Threshold Maximum delay.

```
SYSLOG: <timestamp> Y.1731: The DM session for MA index <ma index>, MD index <md index>, MEP id <med id> Session index <id> has crossed the forward maximum threshold, with value <value>
```

When the Destination MEP moves to, or is already in a FAILED state, when the session is Active.

```
<Syslog>: 1DM Session <Id> not started as the RMEP <Id> is in FAILED state.
```

# **Synthetic loss measurement**

Synthetic loss measurement (SLM) is part of the ITU-T Y.1731 standard. It can be used to periodically measure Frame Loss, Forward Loss Ratio (FLR), and Frame delay between a pair of point to point MEPs. Measurements are made between two MEPs belonging to the same domain and MA.

The procedure involves a Sender MEP sending an SLM Protocol Data Unit (PDU) once per transmit interval (e.g. 1 second, 10 seconds, 1 minute). The Remote MEP responds with a Synthetic Loss Reply (SLR). The messages are used to collect the number of SLMs and SLRs transmitted and received by the two MEPs.

## **Configuration considerations**

- · An MEP instance must be configured before configuring Synthetic loss measurement (SLM).
- A Synthetic loss measurement instance cannot be started if the target MEP is not known. However, the session can start if the remote MEP is known but in a failed state.
- A maximum of 32 SLM sessions can be created per source MEP.
- History data generated after every measurement cycle for a particular SLM session overwrites the oldest entry after 32 history entries.
- Only one Synthetic loss measurement session will be active per source MEP per COS.
- At any point of time a maximum of 100 SLM sessions can be activated on a node. This number is shared across all Y1731 modules.
- A maximum of 1000 SLM sessions can be configured over a system. This number is shared across all Y1731 modules.
- Synthetic loss measurement functionality will not be accurate if VPLS is point to multipoint.
- Synthetic loss measurement support is currently not available for MLX and XMR devices.
- Configuration of tx-interval, measurement interval, threshold, and clear statistics is possible only under the initiator mode.
- The same set of attributes are available under both the initiator and the responder mode, but attribute configuration will be rejected if it does not apply for the selected mode.
- Synthetic loss measurement should not be configured over VLAN untagged ports in the case of a regular VLAN.
- When COS 8 is used on an initiator and responder, a cos value is randomly chosen between 0-7
  before transmission of an Synthetic loss measurement (SLM) packet. On the responder side, all
  SLM packets for the target MEP are accounted for session 8 by ignoring the COS. Similar handling
  is present for Synthetic Loss Reply (SLR) processing. SLR packet uses the same cos which was
  present in the incoming SLM packet.
- When synthetic loss measurement is configured over VPLS untagged end-point, only cos 8 can be used
- The initiator and responder for a particular SLM session should have the same cos configured on both ends.
- Other than an immediate case, the start and stop configuration will always be a part of the running configuration. It is persistent after a reload.
- The stop now command stops any running session. It cancels the start of any scheduled session. In addition, it also resets the start/stop time to "00:00:00" and type to "Immediate" for non-periodic sessions.
- · Session configuration cannot be changed when it is running.
- Before configuring any SLM session, ensure the device is configured with the correct date and time.
   Use the show clock command to verify. Otherwise bring the clock to present time with the set clock hh:mm:ss mm-dd-yy command.
- Synthetic loss measurement (SLM) and Synthetic Loss Reply (SLR) packets are not transmitted or received over blocked ports.

## **Commands**

The following commands are described for the initiator and the responder.

device(config-cfm) #loss-measurement slm initiator

#### Syntax: loss-measurement slm initiator | responder | clear-stat

Initiator - is used configure synthetic loss measurement parameters on Tx side.

Responder - is used to configure synthetic loss measurement parameters on Responder side.

Clear-stat - is used to clear the history logs globally.

device(config-cfm) #loss-measurement slm initiator 1

#### Syntax: loss-measurement slm initiator session\_index

Session index - is used to configure the session index in range. The acceptable range is 1 - 1000.

device(config-cfm-loss-measurement-slm-initiator-1)# domain

#### Syntax: domain

Domain - is used to configure the domain name

device(config-cfm-loss-measurement-slm-initiator-1) # cos 1

#### Syntax: cos cos

Cos- is used to configure the priority value. The acceptable range is 1 - 8. The default is 7.

device(config-cfm-loss-measurement-slm-initiator-1)# tx-interval 1

#### Syntax: tx-interval interval

Interval - is used to configure the Tx interval between SLM packets (default - 1sec).

device(config-cfm-loss-measurement-slm-initiator-1)# tx-interval 1

#### Syntax: measurement-interval interval

Interval - is used to configure SLM Measurement interval (default- 15min).

device(config-cfm-loss-measurement-slm-initiator-1)# threshold forward

#### Syntax: threshold [forward | backward ] [average | maximum ] value

Default values:

Threshold Forward Average 0xFFFFFFF mili-percent

Threshold Backward Average 0xFFFFFFF mili-percent

Threshold Forward maximum 0xFFFFFFF mili-percent

Threshold Backward maximum 0xFFFFFFF mili-percent

## **Configuration examples**

Sample configuration of synthetic loss measurement over VLAN

## **VLAN Configurations:**

## **DUT1 Configuration**

```
device(config) # vlan 2
device(config-vlan-2) # tagged ethernet 1/1
```

#### **DUT2 Configuration**

```
device(config) # vlan 2
device(config-vlan-2) # tagged ethernet 1/1
```

### **CFM Configurations:**

#### **DUT1 Configuration**

```
device(config) # cfm-enable
device(config-cfm) # domain mdl level 7
device(config-cfm-md-mdl) # ma mal vlan 10 priority 4
device(config-cfm-md-mdl-ma-mal) # mep 3 down port ethernet 1/1
```

### **DUT2 Configuration**

```
device(config) # cfm-enable
device(config-cfm) # domain md1 level 7
device(config-cfm-md-md1) # ma ma1 vlan 2 priority 4
device(config-cfm-md-md1-ma-ma1) # mep 4 down port ethernet 1/1
```

#### **SLM Configurations:**

## **DUT1 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #domain md1 ma ma1 src-mep 3
target-mep 4
device(config-cfm-loss-measurement-slm-initiator-1) #cos 2
device(config-cfm-loss-measurement-slm-initiator-1) #tx-interval 1
device(config-cfm-loss-measurement-slm-initiator-1) #measurement-interval 1
```

### **DUT2 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1) #domain md1 ma ma1 src-mep 4
target-mep 3
device(config-cfm-loss-measurement-slm-responder-1) #cos 2
```

## Starting synthetic loss measurement sessions:

#### **NOTE**

Start the synthetic loss measurement (SLM) session on the responder side before the initiator.

#### **DUT2 Configuration (Responder)**

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1) #start now
```

#### **DUT1 Configuration (Initiator)**

```
device(config)# cfm
device(config-cfm)# cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1)#start now
```

## Stopping synthetic loss measurement sessions:

#### **NOTE**

Stop the initiator before stopping the responder.

#### **DUT1 Configuration**

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #stop now
```

#### **DUT2 Configuration**

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1) #stop now
```

### Clearing loss statistics:

You can clear history statistics on the initiator side at any point of time using the following command.

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #clear-stat
```

You can clear the history statistics globally using the following command.

## NOTE

When this command is executed, history logs will be cleared for all sessions in the system.

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm clear-stat
```

#### Sample configuration - synthetic loss measurement over VPLS

## **VPLS Configurations:**

## **LER1 Configuration**

```
device(config)# router mpls
device(config-mpls)# vpls vpls100 100
device(config-mpls-vpls100)# vlan 10
device(config-mpls-vpls-vpls100-vlan-10)# tagged ethernet 1/1
device(config-mpls-vpls-vpls100-vlan-10)# end
```

#### **LER2 Configuration**

```
device(config) # router mpls
device(config-mpls) # vpls vpls100 100
device(config-mpls-vpls-vpls100) # vlan 10
```

```
\label{lem:device} $$ \ensuremath{\text{device}}(\ensuremath{\text{config-mpls-vpls-vpls100-vlan-10}}) $$ $$ $$ tagged ethernet $1/1$ $$ $$ \ensuremath{\text{device}}(\ensuremath{\text{config-mpls-vpls-vpls100-vlan-10}}) $$ $$ $$ end $$ $$ $$
```

#### **CFM Configurations:**

```
device Configuration
device(config) # cfm-enable
device(config-cfm) # domain md1 level 7
device(config-cfm-md-md1) # ma ma1 vpls 100 priority 4
device(config-cfm-md-md1-ma-ma1) # mep 3 up vlan 10 port ethernet 1/1
```

#### **LER2 Configuration**

```
device(config) # cfm-enable
device(config-cfm) # domain md1 level 7
device(config-cfm-md-md1) # ma ma1 vpls 100 priority 4
device(config-cfm-md-md1-ma-ma1) # mep 4 up vlan 10 port ethernet 1/1
```

## Synthetic loss measurement configurations:

#### **LER1 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #domain mdl ma mal src-mep 3
target-mep 4
device(config-cfm-loss-measurement-slm-initiator-1) #cos 2
device(config-cfm-loss-measurement-slm-initiator-1) #tx-interval 1
device(config-cfm-loss-measurement-slm-initiator-1) #measurement-interval 1
```

#### **LER2 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1) #domain md1 ma ma1 src-mep 4
target-mep 3
device(config-cfm-loss-measurement-slm-responder-1) #cos 2
```

#### NOTE

Start the synthetic loss measurement session on the responder side before the initiator.

#### Starting synthetic loss measurement sessions:

#### LER2 Configuration (Responder)

```
device(config)# cfm
device(config-cfm)# cfm loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1)#start now
```

#### **LER1 Configuration (Initiator)**

```
device(config)# cfm
device(config-cfm)# cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1)#start now
```

### Stopping synthetic loss measurement sessions:

#### NOTE

Stop the initiator before stopping the responder.

#### **LER1 Configuration**

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #stop now
```

#### **LER2 Configuration**

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1) #stop now
```

#### Clearing loss statistics:

You can clear history statistics on the initiator side at any time using the following command.

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #clear-stat
```

You can clear the history statistics globally using the following command.

#### **NOTE**

When this command is executed, history logs will be cleared for all sessions in the system.

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm clear-stat
```

#### Sample configuration - Synthetic loss measurement over VLL

### **VLL Configurations:**

#### **LER1 Configuration**

```
device(config) # router mpls
device(config-mpls) # vll vll100 100
device(config-mpls-vll-vll100) # vlan 10
device(config-mpls-vll-vll100-vlan-10) # tagged ethernet 1/1
device(config-mpls-vll-vll100-vlan-10) # end
```

#### **LER2 Configuration**

```
device(config)# router mpls
device(config-mpls)# vll vll100 100
device(config-mpls-vll-vll100)# vlan 10
device(config-mpls-vll-vll100-vlan-10)# tagged ethernet 1/1
device(config-mpls-vll-vll100-vlan-10)# end
```

## **CFM Configurations:**

#### **LER1 Configuration**

```
device(config) # cfm-enable
device(config-cfm) # domain md1 level 7
device(config-cfm-md-md1) # ma ma1 vll 100 priority 4
device(config-cfm-md-md1-ma-ma1) # mep 3 up vlan 10 port ethernet 1/1
```

#### **LER2 Configuration**

```
device(config) # cfm-enable
device(config-cfm) # domain md1 level 7
device(config-cfm-md-md1) # ma ma1 vll 100 priority 4
device(config-cfm-md-md1-ma-ma1) # mep 4 up vlan 10 port ethernet 1/1
```

## Synthetic loss measurement configurations:

#### **LER1 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #domain mdl ma mal src-mep 3
target-mep 4
device(config-cfm-loss-measurement-slm-initiator-1) #cos 2
device(config-cfm-loss-measurement-slm-initiator-1) #tx-interval 1
device(config-cfm-loss-measurement-slm-initiator-1) #measurement-interval 1
```

#### **LER2 Configuration**

```
device(config) # cfm
device(config-cfm) # loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1) #domain md1 ma ma1 src-mep 4
target-mep 3
device(config-cfm-loss-measurement-slm-responder-1) #cos 2
```

#### Starting synthetic loss measurement sessions:

#### NOTE

Start the synthetic loss measurement (SLM) session on the responder side before the initiator.

#### LER2 Configuration (Responder)

```
device(config)# cfm
device(config-cfm)# cfm loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1)#start now
```

#### **LER1 Configuration (Initiator)**

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #start now
```

#### Stopping synthetic loss measurement sessions:

## **NOTE**

Stop the initiator before stopping the responder.

#### **LER1 Configuration**

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #stop now
```

#### **LER2 Configuration**

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm responder 1
device(config-cfm-loss-measurement-slm-responder-1) #stop now
```

## Clearing loss statistics:

You can clear history statistics on the initiator side at any time using the following command.

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm initiator 1
device(config-cfm-loss-measurement-slm-initiator-1) #clear-stat
```

You can clear the history statistics globally using the following command.

#### NOTE

When this command is executed, history logs will be cleared for all sessions in the system.

```
device(config) # cfm
device(config-cfm) # cfm loss-measurement slm clear-stat
```

## **Show commands**

The show cfm loss-measurement slm **session\_index** command is used to display the configuration data for a specified indices.

#### Syntax: show cfm loss-measurement slm sessionindex

```
device# show cfm loss-measurement slm 1
SLM Session Index
                             : 1
                            : Stopped
Status
                            : Initiator
: d1
Session Type
Domain
MΑ
                             : m1
                            : 20
: 30
: 0
Source MEP
Target MEP
Cos
Cos : 0
Start time : 16:29:57
Start time type : Immediate
Stop time : 16:30:02
                            : Immediate
: 1
Stop time type
Tx-interval (in Sec)
Measurement-Interval
                             : 1
Forward Average
                             : 0
Forward Max
                             : 0
                             : 0
Backward Average
                             : 0
Backward Max
```

## TABLE 35 show cfm loss-measurement slm output

| Row               | Definition             |  |
|-------------------|------------------------|--|
| SLM Session Index | Session index value    |  |
| Status            | stopped or running     |  |
| Session Type      | initiator or responder |  |
| Domain            | domain name            |  |
| MA                | ma name                |  |

\_\_\_\_\_

TABLE 35 show cfm loss-measurement slm output (Continued)

| Row                                                  | Definition                                           |  |  |
|------------------------------------------------------|------------------------------------------------------|--|--|
| Source MEP                                           | source mep id                                        |  |  |
| Target MEP                                           | target mep id or RMEP                                |  |  |
| cos                                                  | data priority loss in which needs to be monitored    |  |  |
| Start time                                           | Configured start time                                |  |  |
| Start time type Immediate, relative, fixed, periodic |                                                      |  |  |
| Stop time                                            | configured stop time                                 |  |  |
| Stop time type                                       | Immediate, relative, fixed, periodic                 |  |  |
| Tx interval (sec)                                    | transmission interval in sec, only for initiator     |  |  |
| Measurement interval                                 | measurement-interval in minutes, only for initiator  |  |  |
| Forward Average                                      | configured forward average threshold, for initiator  |  |  |
| Forward Max                                          | configured forward maximum threshold, for initiator  |  |  |
| Backward Average                                     | configured backward average threshold, for initiator |  |  |
| Backward Max                                         | configured backward maximum threshold, for initiator |  |  |

## Syntax: Show cfm loss-measurement slm statistics sessionindex

device# show cfm loss-measurement slm statistics 1
HISTORY TABLE :
Flag - S:Suspect

| Index Flag<br>FLR(ratio) |          | Elapsed  | TxFwd | RxFwd | TxBck | RxBck |
|--------------------------|----------|----------|-------|-------|-------|-------|
|                          |          |          |       |       |       |       |
| 5 -                      | 16:29:56 | 00:00:05 | 5     | 5     | 5     | 5     |
| 0.00000                  | 0.00000  |          |       |       |       |       |
| 4 –                      | 16:29:39 | 00:00:14 | 14    | 4     | 4     | 4     |
| 0.71428                  | 0.00000  |          |       |       |       |       |
| 3 –                      | 16:29:25 | 00:00:04 | 4     | 0     | 0     | 0     |
| 1.00000                  | 0.00000  |          |       |       |       |       |
| 2 -                      | 16:29:17 | 00:00:03 | 3     | 0     | 0     | 0     |
| 1.00000                  | 0.00000  |          |       |       |       |       |
| 1 -                      | 16:27:14 | 00:00:03 | 3     | 0     | 0     | 0     |
| 1.00000                  | 0.0000   |          |       |       |       |       |

## Syntax: show cfm loss-measurement slm statistics detailed session\_index rowindex

```
Flag
                                   : 16:29:56
Start
                              : 00:00:05
Elapsed
                            : 5
: 5
: 5
TxFwd
RxFwd
TxBck
RxBck
FLR(ratio) Max
FLR(ratio) Min
                         : 0.00000
                       : 0.00000
FLR(ratio) Avg
BLR(ratio) Max
BLR(ratio) Min
                         : 0.00000
                         : 0.00000
BLR (ratio) Avg
                             : 0.00000
```

#### Syntax: show cfm loss-measurement slm statistics detailed session\_index

```
device# show cfm loss-measurement slm statistics detailed 1 \ensuremath{\mathsf{HISTORY}} TABLE :
Flag - S:Suspect
Index
                                                       : 1
Flag
Start
                                                        : 16:29:22
                                               : 00:00:05
Elapsed
TxFwd
                                               : 5
RxFwd
TxBck
RxBck
FLR(ratio) Max : 0.00000
FLR(ratio) Min : 0.00000
FLR(ratio) Avg : 0.00000
BLR(ratio) Max : 0.00000
BLR(ratio) Min : 0.00000
BLR(ratio) Avg : 0.00000
Index
Flag
                                                    : -
: 16:29:56
Start
Elapsed
                                               : 00:00:05
                                               : 5
TxFwd
                                            : 5
: 5
RxFwd
TxBck
RxBck
RXBCK : 5
FLR(ratio) Max : 0.00000
FLR(ratio) Min : 0.00000
FLR(ratio) Avy : 0.00000
BLR(ratio) Max : 0.00000
BLR(ratio) Min : 0.00000
BLR(ratio) Avy : 0.00000
```

## **Syslog messages**

Syslogs will be raised for the following cases:

When the SLM session started

```
<Syslog>: SLM Session started for Session Index <id>
```

When the SLM session stopped

```
<Syslog>: SLM Session stopped for Session Index <id>
```

When the Average Frame Loss Ratio greater than Threshold Average Frame Loss Ratio for both forward and backward case.

<Syslog>: SLM Average FLR <value> greater than Threshold Average FLR <value>.

When the Maximum Frame Loss Ratio greater than Threshold Maximum Frame Loss Ratio for both forward and backward case.

<Syslog>: SLM Average FLR <value> greater than Threshold Average FLR <value>.

## **Network Time Protocol**

| Network Time Protocol (NTP) overview |     |
|--------------------------------------|-----|
| How NTP works                        | 254 |
| Configuring NTP                      | 256 |
| Show commands                        | 260 |

The table below displays the individual Brocade devices and the NTP features they support.

## TABLE 36 Supported NTP features

| Features<br>supported       | Brocade<br>Netlron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>NetIron<br>CES Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>L3_PREM<br>package | Brocade<br>Netlron<br>CER Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
|-----------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Network<br>Time<br>Protocol | Yes                                           | Yes                                 | Yes                                                                   | Yes                                                                   | Yes                                                                   | Yes                                                                   | Yes                                                                                |

# **Network Time Protocol (NTP) overview**

Network Time Protocol (NTP) maintains uniform time across all devices in a network. The NTP commands support the configuration of an external time server to maintain synchronization between all local clocks in a network.

NTP has a hierarchical structure. At the highest level, or stratum, are precise hardware clocks, which can synchronize to highly accurate external time reference. These hardware clock devices are known as stratum 0 devices. A stratum 1 time server obtains time directly from a hardware clock and is the most accurate reference in the NTP hierarchy. All lower stratum devices obtain time from the stratum above over a network. As the network introduces timing discrepancies, lower stratum devices are a factor less accurate.

A hierarchical structure allows the overhead of providing time to many clients to be shared among many time servers. Not all clients need to obtain time directly from a stratum 1 reference, but can utilize stratum 2 or 3 references.

NTP operates on a client-server basis. A network time client periodically requests time from a time server. The time server responds with a packet of information containing a time stamp. The time stamp is then used by the client to synchronize its system time.

The NTP client maintains the server and peer state information as an association. The server and peer association is mobilized at startup when a new NTP peer connection is established, or when a user configures an NTP server or peer. The symmetric passive association is mobilized upon arrival of the NTP packet from the peer, which is not statically configured. A syslog message is generated when a new association is mobilized. The statically configured server or peer associations are not demobilized unless the user removes the configuration. If the NTP packet from the symmetric passive peer results in an error or timeout, then the symmetric passive peer is demobilized. A syslog message is generated

when an association is demobilized. For more information about the generated syslog messages, refer to Syslog messages NTP on page 385.

NTP uses UTC (Universal Time Coordinated) time, which is similar to GMT time. It knows nothing of local time zones or daylight-saving time. It is a function of the time client to apply an offset to the supplied time to adjust for local time. In this manner, a time server located anywhere in the world can provide synchronisation to a client located anywhere else in the world. It allows clients to utilize different time zone and daylight-saving properties.

To keep the time in your network current, it is recommended that each device have its time synchronized with at least four external NTP servers. External NTP servers should be synchronized among themselves in order to maintain time synchronization.

#### NOTE

Network Time Protocol (NTP) commands must be configured on each individual device.

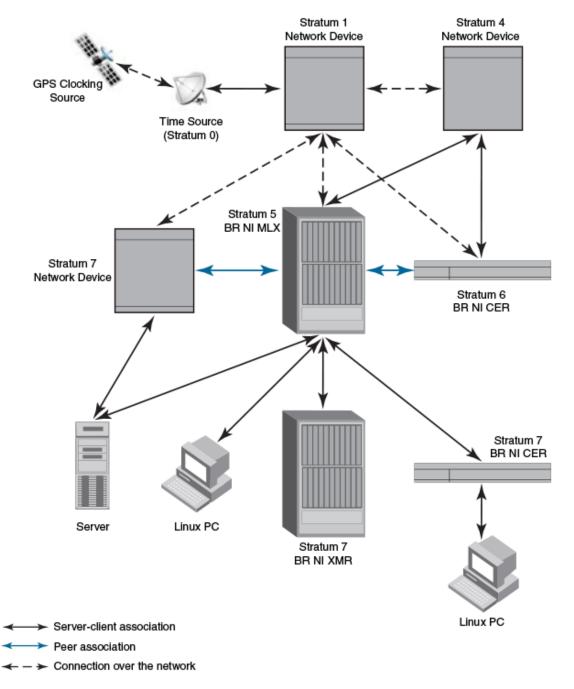



FIGURE 11 NTP sample network configuration

# **Network Time Protocol (NTP) leap second**

A leap second is a second added to Coordinated Universal Time (UTC) in order to keep it synchronized with astronomical time (UT1).

There are two main reasons that cause leap seconds to occur. The first is that the atomic second defined by comparing cesium clocks to the Ephemeris Time (ET) scale was incorrect, as the duration of the ephemeris second was slightly shorter than the mean solar second and this characteristic was

passed along to the atomic second. The second reason for leap seconds is that the speed of the Earth's rotation is not constant. It sometimes speeds up, and sometimes slows down, but when averaged over long intervals the trend indicates that it is gradually slowing. This gradual decrease in the rotational rate is causing the duration of the mean solar second to gradually increase with respect to the atomic second.

Leap seconds are added in order to keep the difference between UTC and astronomical time (UT1) to less than 0.9 seconds. The International Earth Rotation and Reference Systems Service (IERS), measures Earth's rotation and publishes the difference between UT1 and UTC. Usually leap seconds are added when UTC is ahead of UT1 by 0.4 seconds or more.

# How Brocade supports leap second handling for NTP

The obvious question raised is what happens during the NTP leap second itself.

Specifically, a positive leap second is inserted between second 23:59:59 of a chosen UTC calendar date (the last day of a month, usually June 30 or December 31) and second 00:00:00 of the following date. This extra second is displayed on UTC clocks as 23:59:60. On clocks that display local time tied to UTC, the leap second may be inserted at the end of some other hour (or half-hour or quarter-hour), depending on the local time zone. When ever there is a leap second the NTP server notifies by setting the NTP leap second bits.

On Brocade devices when ever there is a negative leap second, the clock is set once second backward of the following date as described here. On positive leap second the clock suppress second 23:59:59 of the last day of a chosen month, so that second 23:59:58 of that date would be followed immediately by second 00:00:00 of the following date.

Because the Earth's rotation speed varies in response to climatic and geological events, UTC leap seconds are irregularly spaced and unpredictable. Insertion of each UTC leap second is usually decided about six months in advance by the International Earth Rotation and Reference Systems Service (IERS), when needed to ensure that the difference between the UTC and UT1 readings will never exceed 0.9 second.

# **How NTP works**

## NTP server

A **NTP** server will provide the correct network time on your device using the Network time protocol (NTP). Network Time Protocol can be used to synchronize the time on devices across a network. A NTP time server is used to obtain the correct time from a time source and adjust the local time in each connecting device.

The NTP server can operate in master mode to serve time using the local clock, when it has lost synchronization

## NTP client

An NTP client gets time responses from an NTP server or servers, and uses the information to calibrate its clock. This consists of the client determining how far its clock is off and adjusting its time to match that of the server. The maximum error is determined based on the round-trip time for the packet to be received.

# NTP peer

NTP peer mode is intended for configurations where a group of devices operate as mutual backups for each other. If one of the devices lose a reference source, the time values can flow from the surviving peers to all the others.

The NTP peer can operate in:

Symmetric Active - When the peer is configured using the peer command.

*Symmetric Passive* - Dynamically learnt upon arrival of a NTP packet from the peer which is not configured. The symmetric passive association is removed on timeout or error.

## NTP broadcast server

An NTP server can also operate in a broadcast or multicast mode. Both work similarly; broadcast servers send periodic time updates to a broadcast address, while multicast servers send periodic updates to a multicast address. Using broadcast packets can greatly reduce the NTP traffic on a network, especially for a network with many NTP clients.

The interfaces should be enabled with NTP broadcasting. The NTP broadcast server broadcasts the NTP packets periodically (every 64 sec) to subnet broadcast IP address of the configured interface.

# NTP broadcast client

An NTP broadcast or multicast client listens for NTP packets on a broadcast or multicast address. When the first packet is received, it attempts to quantify the delay to the server in order to better quantify the correct time from later broadcasts. This is accomplished by a series of brief interchanges where the client and server act as a regular (non-broadcast) NTP client and server. Once these interchanges occur, the client has an idea of the network delay and thereafter can estimate the time based only on broadcast packets.

# Synchronizing time

After the system peer is chosen, the system time is synchronized using one of the following ways based on the time difference with system peer:

- < 128 msec The system clock is adjusted slowly towards the system peer time reference time.
- > 128 msec and < 1000 sec The system clock is stepped to the system peer reference time and the NTP state information is cleared.
- > 1000 sec NTP is operationally disabled. The admin should set the time to the current UTC time.

### Configuration considerations of NTP

- · NTP multicast server, client, and manycast client functionalities are not supported.
- In a scaled network, Brocade recommends configuring the Netlron device to one external NTP server (at minimum), or a dedicated internal NTP server.
- While upgrading from R05.2.00 or lower versions to R05.3.00, the SNTP configuration will be ignored.
- On reboot or MP switchover, all the NTP state information will be lost and time synchronization will start from fresh. The time synchronized to real time clock is retained across reboot and MP switchover.

- The following SNTP MIB objects are not supported.
  - snNTPPollInterval
  - snNTPSync
  - All the objects in snNTPServerTable
- · The web management support for SNTP is removed

### The following optional features are not supported

- · NTP version 4 Extension fields
- · The NTP packets having control (6) or private (7) packet modes
- · Autokey public key authentication
- NTP version 1 and 2
- Hostnames

# **Configuring NTP**

Before you begin to configure NTP, you must use the **clock set** command to set the time on your device to within 1000 seconds of the coordinated Universal Time (UTC).

# **Changing to the NTP mode**

Use the **ntp** command to enable the NTP client and server mode.

```
device(config)# ntp
```

Syntax: ntp

### **Enabling NTP authentication**

To enable Network Time Protocol (NTP) strict authentication, use the **authenticate** command. To disable the function, use the **no** form of this command.

```
device(config-ntp)# authenticate
```

Syntax: [no] authenticate

### Defining an authentication key

To define an authentication key for Network Time Protocol (NTP), use the **authentication-key** command. To remove the authentication key for NTP, use the **no** form of this command.

```
{\tt device} \, ({\tt config-ntp}) \, \# \, \, {\tt authentication-key} \, \, {\tt key-id} \, \, 1 \, \, {\tt md5} \, \, {\tt moof}
```

Syntax: [no] authentication-key key-id [ md5| sha1] keystring

The valid key-id parameter is 1 to 65535.

The **md5** keyword specifies the message authentication support that is provided using the Message Digest 5 Algorithm.

The sha1 keyword specifies that the SHA1 keyed hash algorithm is used for NTP authentication.

#### **NOTE**

In JITC mode, MD5 authentication scheme is disabled for NTP. For more information on JITC, refer to JITC overview on page 443

The *keystring* parameter is the value of the MD5 key or SHA1 key. The maximum length of the key string may be defined up to 16 characters. Up to 32 keys may be defined.

### Specifying a source interface

To use a particular source interface in Network Time Protocol (NTP) packets, use the **source-interface** command. To remove the specified source address, use the **no** form of this command.

#### NOTE

If the **source-interface** is not configured, then the lowest IP address in the outgoing interface will be used in the NTP packets.

device(config-ntp)# source-interface ethernet 3/1

Syntax: [no] source-interface ethernet slot/port | | loopback num | ve num

The **ethernet** *slot/port* parameter specifies the ethernet port number.

The loopback num parameter specifies the loopback interface number.

The **ve** *number* parameter specifies the virtual port number.

### Enable or disable the VLAN containment for NTP

To enable or disable the VLAN containment for NTP, use the **access-control vian** command. To remove the specified NTP VLAN configuration, use the **no** form of this command.

#### NOTE

The management interface is not part of any VLAN. When configuring the VLAN containment for NTP, it will not use the management interface to send or receive the NTP packets.

device(config-ntp)# access-control vlan 100

Syntax: [no] access-control vlan vlan-id

The vlan-id parameter specifies the VLAN ID number.

# **Configuring the NTP client**

To configure the device in client mode and specify the NTP servers to synchronize the system clock, use the server command. A maximum 8 NTP servers can be configured. To configured NTP server, use the **no** form of this command.

device(config-ntp) #server 10.2.3.4 key 1234

Syntax: # [no] server ipv4address | ipv6address [ version 3 | 4 ] [ key keyid ] [ minpoll interval ] [ maxpoll interval ]

The *ipv4 address* | *ipv6 address* parameter is the IP address of the server providing the clock synchronization.

The **version** 3|4 option defines the Network Time Protocol (NTP) version number. If this option is not specified, then it defaults to 4.

The **key** key id option defines the authentication key. By default, no authentication key is configured.

The **minpoll** *interval* option is the shortest polling interval. The range is from 4 through 17. Default is 6. The interval argument is power of 2 (4=16s, 5=32s, 6=64s, 7=128s, 8=256s, 9=512s etc.).

The **maxpoll** *interval* option is the longest polling interval. The range is 4 through 17. Default is 10. The interval argument is calculated by the power of 2 (4=16s, 5=32s, 6=64s, 7=128s, 8=256s, 9=512s etc.).

# **Configuring the NTP peer**

To configure the software clock to synchronize a peer or to be synchronized by a peer, use the **peer** command. A maximum of 8 NTP peers can be configured. To disable this capability, use the **no** form of this command.

```
device(config-ntp)# peer 10.2.3.4 key 1234
```

Syntax: [no] peer ipv4address | ipv6address [ version 3 | 4 ] [ key keyid ] [ minpoll interval ] [ maxpoll interval ]

The *ipv4 address* | *ipv6 address* parameter is the IP address of the peer providing the clock synchronization.

The **version** 3|4 option defines the Network Time Protocol (NTP) version number. If this option is not specified, then it defaults to 4.

The **key** key id option defines the authentication key. By default, no authentication key is configured.

The **minpoll** *interval* option is the shortest polling interval. The range is from 4 through 17. Default is 6. The interval argument is power of 2 (4=16s, 5=32s, 6=64s, 7=128s, 8=256s, 9=512s etc.).

The **maxpoll** *interval* option is the longest polling interval. The range is 4 through 17. Default is 10. The interval argument is calculated by the power of 2 (4=16s, 5=32s, 6=64s, 7=128s, 8=256s, 9=512s etc.).

# Configuring NTP on an interface

To configure the NTP interface context, use the **ntp-interface** command. The broadcast server or client is configured on selected interfaces. To remove the NTP broadcast configurations on the specified interface, use the **no** form of this command.

#### NOTE

The **ntp-interface** command is a mode change command, and will not be included in to the **show run output** unless there is configuration below that interface.

```
device(config-ntp)# ntp-interface ethernet 2/13
device(config-ntp-if-e1000-2/13)#

device(config-ntp)# ntp-interface management 1
(config-ntp-mgmt-1)#

device(config-ntp)# ntp-interface ve 100
device(config-ntp-ve-100)#
```

Syntax: [no] ntp-interface [ management 1 | ethernet slot/port | ve id ]

The management 1 parameter is the management port 1

The **ethernet** *slot/port* parameter specifies the ethernet port number.

The **ve** *id* parameter specifies the virtual port number.

### Configuring the broadcast client

To configure a device to receive Network Time Protocol (NTP) broadcast messages on a specified interface, use the **broadcast client** command. NTP broadcast client can be enabled on maximum of 16 ethernet interfaces. If the interface is operationally down or NTP is disabled, then NTP broadcast server packets are not received. To disable this capability, use the **no** form of this command.

```
device(config-ntp mgmt-1) # broadcast client
```

Syntax: [no] broadcast client

### Configuring the broadcast destination

To configure the options for broadcasting Network Time Protocol (NTP) traffic, use the **ntp broadcast destination** command. NTP broadcast server can be enabled on maximum 16 ethernet interfaces and four subnet addresses per interface. If the interface is operationally down or there is no ip address configured for the subnet address, then NTP broadcast server packets are not sent. To disable this capability, use the **no** form of this command.

### NOTE

This command is not effective, if the NTP server is disabled.

```
device(config) #int m1
device(config-if-mgmt-1) #ip address 10.20.99.173/24
device(config-if-mgmt-1) #ntp
device(config-ntp) #ntp-interface m1
device(config-ntp -mgmt-1) # broadcast destination 10.20.99.0 key 2
```

### Syntax: [no] broadcast destination ip-address [ key key-id ] [ version 3| 4 ]

The *IP-address* parameter is the IPv4 subnet address of the device to send NTP broadcast messages to.

The key key id option defines the authentication key. By default, no authentication key is configured.

The **version** 3|4 option defines the Network Time Protocol (NTP) version number. If this option is not specified, then it defaults to 4.

## Disabling NTP

To disable the NTP server and client, use the **disable** command. Disabling the NTP server or client mode will not remove the configurations. To enable receipt of NTP packets, use the **no** form of this command.

```
device(config-ntp) # disable
```

### Syntax: [no] disable [ serve ]

If the**server** keyword is specified, then NTP will not serve the time to downstream devices. This keyword disables the NTP server mode functionalities.

If this keyword is not specified, then both NTP client mode and NTP server mode functionalities will be disabled

### Configuring the master

To configure the Multi-Service IronWare as a Network Time Protocol (NTP) master clock to which peers synchronize themselves when an external NTP source is not available, use the **master** command. The master clock is disabled by default. To disable the master clock function, use the **no** form of this command.

#### NOTE

This command is not effective, if the NTP is enabled in client-only mode.

```
device(config-ntp) # master stratum 5
```

### Syntax: [no] master [ stratum number ]

Stratum *number* is the number from 2 to 15. It indicates the NTP stratum number that the system will claim.

# Enable or disable NTP logging

To enable or disable Network Time Protocol (NTP) message logging, use the **logging enable ntp** command. By default, the logging is enabled for NTP. To disable NTP logging, use the **no** form of this command.

```
device(config) # logging enable ntp
```

Syntax: [no] logging enable ntp

# **Show commands**

# **Displaying NTP status**

Use the show ntp status command to display the NTP status

```
device#show ntp status
Clock is synchronized, stratum 4, reference clock is 10.20.99.174
precision is 2**-16
reference time is D281713A.80000000 (03:21:29.3653007907 GMT+00 Thu Dec 01 2011)
clock offset is -2.3307 msec, root delay is 24.6646 msec
root dispersion is 130.3376 msec, peer dispersion is 84.3335 msec
system poll interval is 64, last clock update was 26 sec ago
NTP server mode is enabled, NTP client mode is enabled
NTP master mode is disabled, NTP master stratum is 8
NTP is not in panic mode
```

**TABLE 37** show ntp status command output descriptions

| Field                | Description                                                                                                                |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| synchronized         | Indicates the system clock is synchronized to NTP server or peer.                                                          |  |
| stratum              | Indicates the stratum number that this system is operating. Range 215.                                                     |  |
| reference            | IPv4 address or first 32 bits of the MD5 hash of the IPv6 address of the peer to which clock is synchronized.              |  |
| precision            | Precision of the clock of this system in Hz.                                                                               |  |
| reference time       | Reference time stamp.                                                                                                      |  |
| clock offset         | Offset of clock (in milliseconds) to synchronized peer.                                                                    |  |
| root delay           | Total delay (in milliseconds) along path to root clock.                                                                    |  |
| root dispersion      | Dispersion of root path.                                                                                                   |  |
| peer dispersion      | Dispersion of root path.                                                                                                   |  |
| system poll interval | Poll interval of the local system.                                                                                         |  |
| last update          | Time the router last updated its NTP information                                                                           |  |
| server mode          | Status of the NTP server mode for this device.                                                                             |  |
| client mode          | Status of the NTP client mode for this device.                                                                             |  |
| master               | Status of the master mode                                                                                                  |  |
| master stratum       | Stratum number that will be used by this device when master is enabled and no upstream time servers are accessible.        |  |
| panic mode           | Status of the panic mode. If the clock offset is more than 1000 seconds with the current time, then panic mode will be on. |  |

# **Displaying NTP associations**

Use the **show ntp associations** command to display detailed association information of the NTP server or peers.

**TABLE 38** show ntp associations command output descriptions

| Field     | Description                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------|
| *         | The peer has been declared the system peer and lends its variables to the system variables.                   |
| #         | This peer is a survivor in the selection algorithm.                                                           |
| +         | This peer is a candidate in the combine algorithm.                                                            |
| -         | This peer is discarded as outlier in the clustering algorithm.                                                |
| х         | This peer is discarded as falseticker in the selection algorithm.                                             |
| ~         | The server or peer is statically configured.                                                                  |
| address I | IPv4 or IPv6 address of the peer.                                                                             |
| ref clock | IPv4 address or first 32 bits of the MD5 hash of the IPv6 address of the peer to which clock is synchronized. |
| St        | Stratum setting for the peer.                                                                                 |
| when      | Time, in seconds, since last NTP packet was received from peer.                                               |
| poll      | Polling interval (seconds).                                                                                   |
| reach     | Peer reachability (bit string, in octal).                                                                     |
| delay     | Round-trip delay to peer, in milliseconds.                                                                    |
| offset    | Relative time difference between a peer clock and a local clock, in milliseconds.                             |
| disp      | Dispersion.                                                                                                   |

# **Displaying NTP associations details**

Use the **show ntp associations detail** command to display all the NTP servers and peers association information.

```
device# show ntp association detail
2001:db8:99:30::1 configured server, sys peer, stratum 3 ref ID 10.235.61.9, time d288dc3b.f2a17891 (10:23:55.4070668433 Pacific Tue Dec 06
our mode client, peer mode server, our poll intvl 10, peer poll intvl 10, root delay 0.08551025 msec, root disp 0.09309387, reach 17, root dist 0.17668502 delay 0.69961487 msec, offset -13.49459670 msec, dispersion 17.31550718,
 precision 2**-16, version 4 org time d288df70.a91de561 (10:37:36.2837308769 Pacific Tue Dec 06 2011)
 rcv time d288df70.a0c8d19e (10:37:36.2697515422 Pacific Tue Dec 06 2011) xmt time d288df70.a086e4de (10:37:36.2693194974 Pacific Tue Dec 06 2011)
filter delay
0.7734 6.7741
                              1.7736
                                             0.9933
                                                             0.8873
                                                                             0.6699
                                                                                             0.7709
filter offset -1
-18.4423 -22.0025
                           -17.9936 33.0014 -13.6604 -13.4494 -14.4481 -16.4453
filter disp
17.6610 16.6635
                           15.6660
                                           0.0030 17.7730 17.7700 17.6670
                                                                                                         17.6640
```

```
filter epoch 55824 56866 55686 55688 55690 55692 55694 55759
```

Use the **show ntp associations detail** *IPv4 address* | *IPv6 address* command to display the NTP servers and peers association information for a specific ip address.

```
device# show ntp association detail 10.99.40.1
10.99.40.1 configured server, candidate, stratum 3
 ref ID 10.45.57.38, time d288de7d.690ca5c7 (10:33:33.1762436551 Pacific Tue Dec 06
2011)
 our mode client, peer mode server, our poll intvl 10, peer poll intvl 10,
 root delay 0.02618408 msec, root disp 0.10108947, reach 3, root dist 0.23610585 delay 0.92163588 msec, offset 60.77749188 msec, dispersion 70.33842156,
 precision 2**-16, version 4
 org time d288defa.b260a71f (10:35:38.2992678687 Pacific Tue Dec 06 2011)
 rcv time d288defa.a2efbd41 (10:35:38.2733620545 Pacific Tue Dec 06 2011)
 xmt time d288defa.a2ae54f8 (10:35:38.2729334008 Pacific Tue Dec 06 2011)
                                                                           6.7736
 filter delay
                      0.000
                               6.7770
                                         6.7773
                                                     6.7711
                                                                6.7720
          0.9921
6.7700
 filter offset
                     0.000
                             19.0047
                                        19.1145
                                                   19.2245
                                                              19.3313
                                                                         17.4410
15.4463
          60.7777
 filter disp
               16000.000
                              16.0005
                                        15.9975
                                                   15.9945
                                                              15.9915
          0.0030
15.8855
 filter epoch
                     55683
                                55683
                                           55685
                                                     55687
                                                                55689
                                                                           55691
55693
          56748
```

#### Syntax: show ntp association detail IPv4 address | IPv6 address

The IPv4 or IPv6 address of the NTP peer

**TABLE 39** show ntp associations detail command output descriptions

| Field                  | Description                                                                                         |  |
|------------------------|-----------------------------------------------------------------------------------------------------|--|
| server                 | Indicates server is statically configured.                                                          |  |
| symmetric active peer  | Indicates peer is statically configured.                                                            |  |
| symmetric passive peer | Indicates peer is dynamically configured.                                                           |  |
| sys_peer               | This peer is the system peer                                                                        |  |
| candidate              | This peer is chosen as candidate in the combine algorithm.                                          |  |
| reject                 | This peer is rejected by the selection algorithm                                                    |  |
| falsetick              | This peer is dropped as falseticker by the selection algorithm                                      |  |
| outlyer                | This peer is dropped as outlyer by the clustering algorithm                                         |  |
| Stratum                | Stratum number                                                                                      |  |
| ref ID                 | IPv4 address or hash of IPv6 address of the upstream time server to which the peer is synchronized. |  |
| Time                   | Last time stamp that the peer received from its master.                                             |  |
| our mode               | This system's mode relative to peer (active /passive /client /server /bdcast /bdcast client).       |  |

TABLE 39 show ntp associations detail command output descriptions (Continued)

| Field           | Description                                                     |  |
|-----------------|-----------------------------------------------------------------|--|
| peer mode       | Mode of peer relative to this system                            |  |
| our poll intvl  | This system's poll interval to this peer.                       |  |
| peer poll intvl | Poll interval of peer to this system                            |  |
| root delay      | The delay along path to root (the final stratum 1 time source). |  |
| root disp       | Dispersion of path to root.                                     |  |
| root distance   | The distance from the server or peer to the client              |  |
| reach peer      | The peer reachability (bit string in octal).                    |  |
| Delay           | Round-trip delay to peer.                                       |  |
| offset          | Offset of peer clock relative to this clock                     |  |
| Dispersion      | Dispersion of peer clock                                        |  |
| precision       | Precision of peer clock                                         |  |
| version         | Peer NTP version number                                         |  |
| org time        | Originate time stamp of the last packet.                        |  |
| rcv time        | Receive time stamp of the last packet.                          |  |
| xmt time        | Transmit time stamp of the last packet.                         |  |
| filter delay    | Round-trip delay in milliseconds of last 8 samples.             |  |
| filter offset   | Clock offset in milliseconds of last 8 samples.                 |  |
| filter error    | Approximate error of last 8 samples                             |  |

# **Configuration Examples**

The following sections lists configuration examples to configure the Brocade device.

# NTP server and client mode configuration

Sample CLI commands to configure the NI device in NTP server and client modes.

```
device(config-ntp)# server 10.1.2.3 minpoll 5 maxpoll 10
device(config-ntp)# server 2001:db8::1/64
device(config-ntp)# peer 10.100.12.18
device(config-ntp)# peer 10.100.12.20
```

```
device(config-ntp)# peer 10.100.12.67
device(config-ntp)# peer 10.100.12.83
```

## NTP client mode configuration

Sample CLI commands to configure the Brocade device in NTP client mode.

```
device(config-ntp)# server 10.1.2.3 minpoll 5 maxpoll 10
device(config-ntp)# server 2001:db8::1/24
device(config-ntp)# peer 10.100.12.83
device(config-ntp)# disable serve
```

## NTP strict authentication configuration

Sample CLI commands to configure the Brocade device in strict authentication mode.

```
device(config-ntp)# authenticate device(config-ntp)# authentication-key key-id1 md5 key123 device(config-ntp)# server 10.1.2.4 key 1
```

# NTP loose authentication configuration

Sample CLI commands to configure the NI device in loose authentication mode. This allows some of the servers or clients to use the authentication keys.

```
device(config-ntp)# authentication-key-id key-id1 md5 key123 device(config-ntp)# server 10.1.2.4 key 1 device(config-ntp)# server 10.1.2.7
```

### NTP interface context for broadcast server or client mode

Sample CLI command enter the NTP interface context.

```
device(config) #int management 1
device(config-if-mgmt-1) #ip address 10.20.99.173/24
device(config-if-mgmt-1) #ntp
device(config-ntp) # ntp-interface management 1
device(config-ntp-mgmt-1) # broadcast destination 10.23.45.128
device(config-ntp) # ntp-interface ethernet 1/3
device(config-ntp-if-e1000-1/3) # broadcast destination 10.1.1.0 key 1
device(config-ntp) # ntp-interface ve 100
device(config-ntp-ve-100) # broadcast destination 10.2.2.0 key 23
```

### NTP broadcast client configuration

Sample CLI commands to configure the NTP broadcast client

```
device(config-ntp)# ntp-interface management 1
device(config-ntp-mgmt-1)# broadcast client
device(config-ntp)# ntp-interface ethernet 1/5
device(config-ntp-if-e1000-1/5)# broadcast client
device(config-ntp)# ntp-interface ve 100
device(config-ntp-ve-100)# broadcast client
```

NTP broadcast client configuration

# **Network Configuration Protocol**

| NETCONF protocol introduction         | 267 |
|---------------------------------------|-----|
| NETCONF in client/server architecture | 268 |
| Basic NETCONF operations              | 271 |
| Data models and mapping               | 289 |

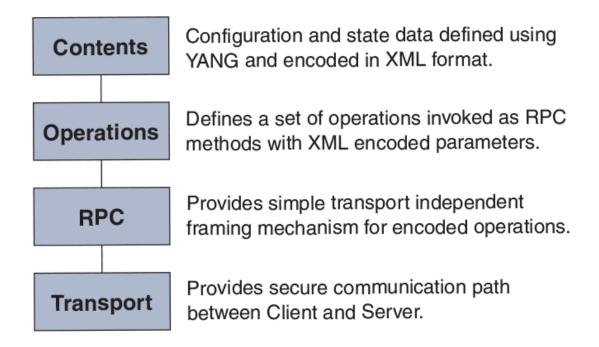
Table 40 displays the individual Brocade devices and the NETCONF features they support.

TABLE 40 Supported Brocade NETCONF features

| Features<br>supported          | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>NetIron<br>CES Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
|--------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| NETCONF<br>protocol            | Yes                                           | Yes                                 | Yes                                                                   | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Data models<br>and<br>mappings | Yes                                           | Yes                                 | Yes                                                                   | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |

# **NETCONF** protocol introduction

The Network Configuration protocol (NETCONF) uses Extensible Markup Language (XML) for automated configuration management. The NETCONF protocol runs on top of a secure transport, such as Secure Shell version 2 (SSHv2). Only one NETCONF session is supported at a time and any new NETCONF connection requests are rejected after the first session has been established.


NETCONF provides mechanisms through which you can do the following:

- · Manage multiple network devices
- · Retrieve full or partial configuration and state data
- Upload and manipulate new configurations

NETCONF can be conceptually partitioned into four layers, as shown in Figure 12.

FIGURE 12 Four layers of NETCONF

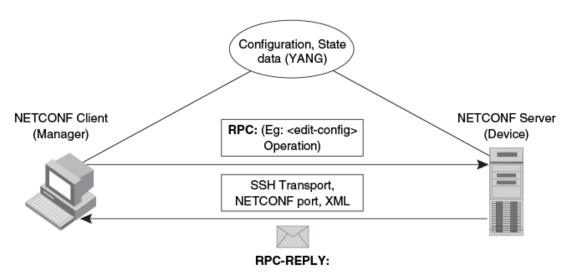
# Four layers of NETCONF



# **Platforms**

NETCONF is supported on the Brocade NetIron MLX Series, Brocade NetIron XMR Series, Brocade NetIron CER Series, and Brocade NetIron CES Series devices.

# Related documentation


For detailed information about NETCONF, refer to RFC 4741.

For detailed information about using the NETCONF protocol over the Secure Shell (SSH), refer to RFC 4742.

# **NETCONF** in client/server architecture

The NETCONF protocol uses a Remote Procedure Call (RPC) paradigm to facilitate communication between the client (NETCONF Manager or application) and the server (NETCONF Agent or device). A client encodes an RPC in XML and sends it to a server using a secure, connection-oriented session. The server responds with a reply encoded in XML, as shown in Figure 13.

FIGURE 13 NETCONF communication



The communication between the client and server consists of a series of alternating request and reply messages. The NETCONF peers use < rpc> and < rpc-reply> elements to provide transport protocol-independent framing of NETCONF requests and responses. The NETCONF server processes the RPC requests sequentially in the order in which they are received.

# **RPC request**

The <rpc> element is used for enclosing a NETCONF request sent from the client to the server. Every <rpc> element contains a mandatory attribute, the message-id. This attribute has a unique value for every RPC request, and is used to associate every RPC request with the corresponding response. The message-id value is a monotonically increasing integer string. The maximum length of the string is 4095 characters. If the message-id is not present in the RPC request, the server rejects the request by returning an <rpc-error> with the error-tag element set to the missing-attribute.

If there are any additional attributes present in the RPC request, the NETCONF server returns them unmodified in the corresponding RPC reply.

# **RPC** reply

For successfully processed get or get-config requests, the response data is encoded as the content of the crpc-reply> element.

For successfully processed edit-config or close-session requests, the <ok> element is encoded as the content of the <rpc-reply> element.

For unsuccessful RPC requests, one or more c=rpc-error> elements are encoded inside the reply> element.

# **RPC** and error handling

If the RPC request fails, an <rpc-error> element, the first detected error, is encoded inside the <rpc-reply> element and sent to the client. The server is not required to detect or report multiple errors. If the server detects multiple errors then the order of the error detection and reporting is at the discretion of the server.

# **CLI and SSH subsystem**

The NETCONF client must use Secure Shell Version 2 (SSHv2) as the network transport to connect to the NETCONF server. Only the SSHv2 protocol is supported as the NETCONF transport protocol.

To run NETCONF over SSHv2, the client establishes an SSH transport connection using the SSH transport protocol to the NETCONF port. The default NETCONF port is 830. The underlying SSH client and server exchange keys for message integrity and encryption.

The SSHv2 client invokes the ssh-userauth service to authenticate the user. All currently supported SSH user authentication methods such as the public-key, password, and keyboard-interactive authentications are supported for a NETCONF session also. If the SSH user authentication is disabled, the user is allowed full access.

On successful user authentication, the client invokes the ssh-connection service, also known as the SSH connection protocol. After the SSH session is established, the NETCONF client invokes NETCONF as an SSH subsystem called netconf.

## NETCONF user privileges

Every NETCONF session has a corresponding authentication, authorization, and accounting (AAA) session. The AAA attributes apply to the NETCONF session. Only authentication and EXEC authorization are supported. Other forms of accounting and command authorization are not supported.

The privilege level of the user (read-only(5), read-write(0)) is obtained from the AAA server, if it is provided. If the privilege level is not provided by the AAA server, the default privilege level applies for the NETCONF session.

Table 41 provides the mapping between the NETCONF privilege levels and the AAA privilege levels.

TABLE 41 Privilege levels

| AAA privilege level | NETCONF privilege level   |
|---------------------|---------------------------|
| 0                   | NETCONF_PRIVILEGE_LEVEL_0 |
| 1-5                 | NETCONF_PRIVILEGE_LEVEL_5 |

Table 42 provides the mapping between the NETCONF privilege levels and the supported NETCONF operations.

TABLE 42 NETCONF operations and privilege levels

| Operations                | NETCONF_PRIVILEGE_LEVEL_0 | NETCONF_PRIVILEGE_LEVEL_5 |  |
|---------------------------|---------------------------|---------------------------|--|
| <get></get>               | Yes                       | Yes                       |  |
| <get-config></get-config> | Yes                       | Yes                       |  |

**TABLE 42** NETCONF operations and privilege levels (Continued)

| Operations                      | NETCONF_PRIVILEGE_LEVEL_0 | NETCONF_PRIVILEGE_LEVEL_5 |  |
|---------------------------------|---------------------------|---------------------------|--|
| <edit-config></edit-config>     | Yes                       | No                        |  |
| <close-session></close-session> | Yes                       | Yes                       |  |

# **Recommendations for NETCONF**

- Use an authentication method to secure the underlying SSH session and to prevent any unauthorized access.
- Use a NETCONF client to generate the RPCs. If you have manually written the XML requests, recycling the XML from a successful request is recommended.
- Refer to the Brocade NetIron MLX Series and Brocade NetIron Family YANG guide for XML and data verification.
- Plan the configuration or state information that must be sent or retrieved to avoid sending and receiving large RPC messages.
- · Use of a scripting language or other custom interface is recommended.

# **Basic NETCONF operations**

The NETCONF protocol provides a small set of low-level operations to manage device configurations and retrieve device state information. The base protocol provides operations to retrieve, configure, copy, and delete configuration data stores. Additional operations are provided based on the capabilities advertised by the device.

The following base protocol operations are supported:

- aet
- get-config
- · edit-config
- close-session

#### NOTE

Other operations, including copy-config, delete-config, lock, unlock, and kill-session are not supported.

## **Initial connection**

Each NETCONF session begins with a handshake in which the NETCONF server and the client specify the NETCONF capabilities they support. The following sections describe how to start a NETCONF session.

### Hello messages

After establishing a secure transport connection, both the NETCONF server and client send a <hello> element simultaneously to announce their capabilities and session identifier.

After sending the hello message, the server starts the hello timer (default is 600 seconds) and waits for the hello message from the client. If no hello message is received by the server before the hello timer expires, the server aborts the NETCONF session by closing the underlying SSH session.

The NETCONF server must include the <session-id> element, which contains the unique session value for the NETCONF session, in the <hello> element. If the client receives the <hello> element without the <session-id> , the client aborts the NETCONF session by closing the underlying SSH session.

The NETCONF client must not include the <session-id> element in the <hello> element. If the
server receives the <hello> element with the <session-id>, the server aborts the NETCONF
session by closing the underlying SSH session.

The NETCONF client must include a valid xmlns attribute in the <hello> element. If the server receives the <hello> element without a valid xmlns attribute, the server aborts the NETCONF session by closing the underlying SSH session.

The NETCONF client must include a base capability. The server receiving the <hello> element without a NETCONF base capability aborts the NETCONF session by closing the underlying SSH session.

The server receiving the <rpc> element without receiving the <hello> element aborts the NETCONF session by closing the underlying SSH session.

The NETCONF client may send arbitrary data before sending a valid hello message. The server discards the data until a valid <hello> element is received from the client.

The following is an example for a <hello> element from the NETCONF server.

### **Capabilities**

A NETCONF capability is a set of protocol extensions that supplements the base NETCONF specification. A NETCONF capability is identified with a Uniform Resource Identifier (URI). Capabilities augment the base operations of the NETCONF server, describing both the additional operations and the contents allowed inside the operations. To support a capability, the NETCONF server must support all the dependent capabilities.

The following capabilities are supported on the NetIron platforms:

- Base capability: The base capability is the set of operations and contents that any NETCONF implementation must support. The URI for the base capability is urn:ietf:param:xml:ns:netconf:base:1.0. Both the NETCONF client and server must support the base capability.
- Writable-running capability: The writable-running capability indicates that the device supports edit-config and copy-config operations where the <running> configuration is the target. The URI is urn:ietf:params:netconf:capability:writable-running:1.0.

### **NOTE**

Other capabilities, including Candidate Configuration Capability, Confirmed Commit Capability, and Validate Capability, are not supported.

# get operation

The NETCONF <get> operation retrieves the devices and the state data, or a filtered subset of the data.

If the device can satisfy the request, the server sends an <rpc-reply> element containing a <data> element with the results of the query. If the request cannot be completed, an <rpc-error> element is included in the <rpc-reply> element.

#### **Parameter**

The <get> operation uses the filter parameter. The filter parameter specifies the portion of the system data to retrieve. If this parameter is not present, show version information is returned.

### **Examples**

The following is an example of a <get> operation:

```
<nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<nc:get>
</nc:rpc>
</nc:rpc>
]]>]]>
```

The following is an example of a <get> operation for MPLS state data.

```
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://
brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<nc:qet>
<nc:filter >
<brcd:netiron-statedata>
<brcd:mpls-statedata/>
</break:netiron-statedata>
</nc:filter>
</nc:get>
</nc:rpc>
] ] > ] ] >
The following is an example of a <get>
operation for a specific LSP.
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<nc:get>
<nc:filter nc:type="subtree" >
<brcd:netiron-statedata>
<brcd:mpls-statedata>
<brcd:mpls-lsp-statedata>
<brcd:name>scriptlsp1001</brcd:name>
</bread:mpls-lsp-statedata>
</break-statedata>
</brcd:netiron-statedata>
</nc:filter>
</nc:get>
</nc:rpc>
11>11>
brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<nc:data>
```

```
<netiron-statedata xmlns="http://brocade.com/ns/netconf/config/netiron-config/">
<brcd:mpls-statedata>
<brcd:mpls-lsp-statedata>
  <brcd:name>scriptlsp1001</brcd:name>
  <brcd:to>10.0.1
  <brcd:admin-state>
   <br/><brcd:up></brcd:up>
  </break:admin-state>
  <brcd:oper-state>
   <brcd:down></brcd:down>
  </bread:oper-state>
  <brcd:tunnel-intf>tnl0</brcd:tunnel-intf>
  <brcd:up-dn-times>0</brcd:up-dn-times>
  <brcd:retry-no>273</brcd:retry-no>
</brcd:mpls-lsp-statedata>
</brcd:mpls-statedata>
</netiron-statedata>
</nc:data>
</nc:rpc-reply>
]]>]]>
```

#### The following is an example of a <get> operation for VLAN state data.

```
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<nc:filter >
<brcd:netiron-statedata>
<brcd:vlan-statedata/>
</brcd:netiron-statedata>
</nc:filter>
</nc:get>
</nc:rpc>
11>11>
The following is an example of a <get>
operation for VLAN 1001.
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<nc:get>
<nc:filter nc:type="subtree" >
<brcd:netiron-statedata>
<brcd:vlan-statedata>
<br/>brcd:vlan>
<brcd:vlan-id>1001</pred:vlan-id>
</brcd:vlan>
</brcd:vlan-statedata>
</brcd:netiron-statedata>
</nc:filter>
</nc:get>
</nc:rpc>
]]>]]>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<netiron-statedata xmlns="http://brocade.com/ns/netconf/config/netiron-config/">
<brcd:vlan-statedata>
<bre><bre>d:vlan>
  <brcd:vlan-id>1001</pred:vlan-id>
  <brcd:vlan-name>scriptVlan1001
  <brcd:topo-hw-idx>65535</pred:topo-hw-idx>
  <brcd:topo-sw-idx>257</brcd:topo-sw-idx>
  <brcd:topo-next-vlan>0</brcd:topo-next-vlan>
  <bre><bre>d:port>
   <brcd:port-id>ethernet 1/20 </brcd:port-id>
   <brcd:tag-mode>TAGGED</brcd:tag-mode>
   <brcd:state>DISABLED</brcd:state>
  </bred:port>
  <brcd:bytes-received>0</brcd:bytes-received>
</brcd:vlan>
<brcd:dual-mode>ethernet 1/1 to 1/20 </brcd:dual-mode>
```

The following is an example of a <get> operation for Interface state data.

```
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://
brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<nc:get>
<nc:filter >
<brcd:netiron-statedata>
<brcd:interface-statedata/>
</brcd:netiron-statedata>
</nc:filter>
</n
```

The following is an example of a <get> operation for a specific Interface state data.

```
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<nc:filter nc:type="subtree" >
<brcd:netiron-statedata>
<brcd:interface-statedata>
<brcd:interface>
<brcd:interface-id>ethernet 1/20</brcd:interface-id>
</bred:interface>
</break:interface-statedata>
</brcd:netiron-statedata>
</nc:filter>
</nc:get>
</nc:rpc>
11>11>
'nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://brocade.com/ns/netconf/config/netiron-config/" message-id="25">
<nc:data>
<netiron-statedata xmlns="http://brocade.com/ns/netconf/config/netiron-config/">
<brcd:interface-statedata>
<brcd:interface>
  <brcd:interface-id>ethernet 1/20</brcd:interface-id>
  <brcd:link-state>
   <brcd:down></brcd:down>
  </brcd:link-state>
  <br/>
<br/>
d:12-state>
   <brcd:disabled></brcd:disabled>
  </brcd:12-state>
  <br/>d:duplex>
   <brcd:none></brcd:none>
  </bread:duplex>
  <brcd:speed></brcd:speed>
  <br/>
<br/>
d:tag-mode>
   <brcd:yes></brcd:yes>
  </bred:tag-mode>
  <brcd:priority-level>
   <brcd:level0>
  </brcd:priority-level>
  <brcd:mac-address>0000.0085.2d00/brcd:mac-address>
</bred:interface>
</brcd:interface-statedata>
</netiron-statedata>
</nc:data>
</nc:rpc-reply>
]]>]]>
```

# get-config operation

The NETCONF <get-config> operation retrieves all or part of a configuration from the source data store. The <get-config> operation is similar to the **show running-config** command.

If the device can satisfy the request, the server sends an <rpc-reply> element containing a <data> element with the results of the query. If the request cannot be completed, an <rpc-error> element is included in the <rpc-reply> element.

### **Parameters**

The parameters used for <get-config> are as follows:

- source: Name of the configuration data store being queried, such as <running/>. Only running configuration data store is supported.
- filter: Specifies the portions of the device configuration to retrieve. If this parameter is not
  present, no configuration is returned. The filter parameter must contain a type attribute. This
  attribute indicates the type of filtering syntax used within the filter parameter. The subtree
  filtering is the default filtering mechanism used in NETCONF.

### NOTE

xpath filtering is not supported.

### **Examples**

The following is an example of a <get-config> operation for MPLS configuration.

```
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/message-id="1">
<nc:get-config>
<nc:source>
<nc:running/>
</nc:source>
<nc:filter nc:type="subtree">
<brcd:netiron-config>
<brcd:mpls-config/>
</bredinctiron-config>
</nc:filter>
</nc:get-config>
</nc:rpc>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/
message-id="1">
<nc:data>
<brcd:netiron-config>
<brcd:mpls-config>
<br/>brcd:path>
  <brcd:name>example
  <brcd:strict>10.99.161.1</pred:strict>
</bread:path>
<bre><bre>brcd:path>
  <brcd:name>example2</brcd:name>
  <brcd:strict>10.99.145.1
</bred:path>
<br/>brcd:lsp>
  <br/><br/><br/>d:name>examplelsp1</br<d:name>
<br/><br/>cd:adaptive></br<d:adaptive>
  <brcd:from>10.99.10.1
  <brcd:to>10.99.161.1
  <brcd:enable></brcd:enable>
  <brcd:hop-limit>10</brcd:hop-limit>
```

```
<brcd:ipmtu>1526</pred:ipmtu>
  <brcd:primary-path>example<brcd:primary-path>
<brcd:record>
  <brcd:reoptimize-timer>3600</brcd:reoptimize-timer>
  <brcd:revert-timer>43200</brcd:revert-timer>
  <brcd:mpls-traffic-eng>
   <brcd:max-burst>44736</pred:max-burst>
   <brcd:max-rate>6312</brcd:max-rate>
   <brcd:mean-rate>1544
  </bread:mpls-traffic-eng>
  <brcd:secondary-path>
   <brcd:name>example2</brcd:name>
  </break:secondary-path>
</bread:lsp>
<br/>brcd:lsp>
  <brcd:name>examplelsp2</brcd:name>
  <brcd:adaptive></pred:adaptive>
  <brcd:from>10.99.10.1
  <brcd:to>10.99.145.1
  <brcd:enable></brcd:enable>
  <brcd:hop-limit>10</brcd:hop-limit>
  <brcd:ipmtu>1526</pred:ipmtu>
  <brcd:ldp-tunneling></brcd:ldp-tunneling>
  <brcd:metric>600</pred:metric>
  <brcd:primary-path>example2</brcd:primary-path>
<brcd:record></brcd:record>
  <brcd:reoptimize-timer>3600</brcd:reoptimize-timer>
  <brcd:revert-timer>43200</brcd:revert-timer>
  <brcd:mpls-traffic-eng>
   <bred:max-burst>44736</bred:max-burst>
<bred:max-rate>6312</bred:max-rate>
   <brcd:mean-rate>1544</brcd:mean-rate>
  </break-traffic-eng>
  <brcd:secondary-path>
   <brcd:name>example
  </bread:secondary-path>
</bread:lsp>
<br/>brcd:lsp>
  <brcd:name>exmaplelsp</brcd:name>
<brcd:from>10.99.10.1</brcd:from>
  <brcd:to>10.99.161.1
  <brcd:disable></brcd:disable>
  <brcd:record></brcd:record>
</bread:lsp>
</bred:mpls-config>
</bred:netiron-config>
</nc:data>
</nc:rpc-reply>
]]>]]>
```

### The following is an example of a <get-config> operation for VLAN configuration.

```
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/"
message-id="1">
<nc:get-config>
<nc:source>
<nc:running/>
</nc:source>
<nc:filter nc:type="subtree">
<brcd:netiron-config>
<brcd:vlan-config/>
</breat:netiron-config>
</nc:filter>
</nc:get-config>
</nc:rpc>
]]>]]>
brocade.com/ns/netconf/config/netiron-config/
message-id="1">
<nc:data>
<brcd:netiron-config>
<brcd:vlan-config>
<brcd:vlan>
 <brcd:vlan-id>1</pred:vlan-id>
```

```
<brcd:vlan-name>DEFAULT-VLAN</brcd:vlan-name>
  <brcd:untagged>ethernet 1/1 </brcd:untagged>
<brcd:untagged>ethernet 1/3 to 1/24 </brcd:untagged>
</bred:vlan>
<br/>brcd:vlan>
  <brcd:vlan-id>100</pred:vlan-id>
  <brcd:vlan-name></brcd:vlan-name>
  <brcd:untagged>ethernet 2/1 to 2/2 /brcd:untagged>
  <brcd:router-interface>ve 100</brcd:router-interface>
</brcd:vlan>
<br/>brcd:vlan>
  <brcd:vlan-id>200</brcd:vlan-id>
  <brcd:vlan-name></brcd:vlan-name>
  <brcd:tagged>ethernet 1/1 </brcd:tagged>
  <brcd:tagged>ethernet 1/3 </brcd:tagged>
  <brcd:tagged>ethernet 1/5 </brcd:tagged>
</brcd:vlan>
<bre><bre>d:vlan>
  <brcd:vlan-id>300</pred:vlan-id>
  <brcd:vlan-name></brcd:vlan-name>
  <brcd:untagged>ethernet 1/2 </brcd:untagged>
</brcd:vlan>
<bre><bre>d:vlan>
  <brcd:vlan-id>4095</pred:vlan-id>
  <brcd:vlan-name>CONTROL-VLAN</brcd:vlan-name>
  <brcd:tagged>ethernet 1/1 to 1/24 </brcd:tagged>
  <brcd:tagged>ethernet 2/1 to 2/2 </brcd:tagged>
</brcd:vlan>
<brcd:default-vlan-id>1</pred:default-vlan-id>
</bred:vlan-config>
</brcd:netiron-config>
</nc:data>
</nc:rpc-reply>
11>11>
```

The following is an example of a <get-config> operation for Interface configuration.

```
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/"
message-id="1">
<nc:get-config>
<nc:source>
<nc:running/>
</nc:source>
<nc:filter nc:type="subtree">
<brcd:netiron-config>
<brcd:interface-config/>
</break:netiron-config>
</nc:filter>
</nc:get-config>
</nc:rpc>
]]>]]>
'nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://
brocade.com/ns/netconf/config/netiron-config/"
message-id="1">
<nc:data>
<brcd:netiron-config>
<brcd:interface-config>
<brcd:interface>
  <brcd:interface-id>management 1</brcd:interface-id>
  <brcd:enable></brcd:enable>
  <br/>d:ip>
   <brcd:address>10.20.99.187/20</brcd:address>
  </bred:ip>
  <br/>
<br/>
d:ipv6>
   <brcd:address>2001:db8::10:20:99:187/64</brcd:address>
  </bred:ipv6>
  <brcd:priority>
  </brcd:priority>
</bred:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/1</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </brcd:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto;speed-duplex>
```

```
<brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/2</brcd:interface-id>
  <brcd:disable></brcd:disable>
 <brcd:loop-detection>
  </breat:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
 </bred:priority>
</bred:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/3</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breatloop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</brcd:speed-duplex>
 <brcd:priority>
  </bred:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/4</brcd:interface-id>
  <brcd:disable></pred:disable>
 <brcd:loop-detection>
  </breatloop-detection>
 <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto
  <brcd:priority>
 </bred:priority>
</brcd:interface>
<brcd:interface>
 <brd:interface-id>ethernet 1/5</brcd:interface-id>
<brcd:disable></brcd:disable>
 <brcd:loop-detection>
 </breatloop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </bred:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/6</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breat:loop-detection>
 <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</brcd:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/7</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breat:loop-detection>
 <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
 </breat:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/8</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
 </bread:loop-detection>
  <brcd:flow-control></pred:flow-control>
 <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
 </bred:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/9</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breat:loop-detection>
```

```
<brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</brcd:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/10</pred:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </brcd:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/11</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breat:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>autospeed-duplex>
  <brcd:priority>
  </bred:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/12</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </brcd:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</brcd:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
 <brcd:interface-id>ethernet 1/13</brcd:interface-id>
<brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </brcd:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/14interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breat:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/15</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breation>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <bre><bre>d:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/16</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </brcd:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</bred:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/17</brcd:interface-id>
  <brcd:disable></brcd:disable>
```

```
<brcd:loop-detection>
 </break:loop-detection>
<break:flow-control></break:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
 </bred:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/18</brcd:interface-id>
  <brcd:disable></brcd:disable>
 <brcd:loop-detection>
  </breat:loop-detection>
  <brcd:flow-control></brcd:flow-control>
 <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/19/brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
 </breat:loop-detection>
  <brcd:flow-control></brcd:flow-control>
 <brcd:speed-duplex>autobrcd:speed-duplex>
 <brcd:priority>
  </bred:priority>
</brcd:interface>
<brcd:interface>
 <brcd:interface-id>ethernet 1/20</brcd:interface-id>
  <brcd:disable></brcd:disable>
 <brcd:loop-detection>
  </breatloop-detection>
 <bred:flow-control></bred:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
 </bred:priority>
</brcd:interface>
<brcd:interface>
 <brd:interface-id>ethernet 1/21</brcd:interface-id>
<brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breat:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
 <brcd:priority>
  </bred:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/22/brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breatloop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/23</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breat:loop-detection>
 <bre>cd:flow-control></bred:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 1/24</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </brcd:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:speed-duplex>auto</pred:speed-duplex>
  <brcd:priority>
  </brcd:priority>
</bred:interface>
<brcd:interface>
```

```
<brcd:interface-id>ethernet 2/1interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
 </p
  <brcd:priority>
  </brcd:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ethernet 2/2</brcd:interface-id>
  <brcd:disable></brcd:disable>
  <brcd:loop-detection>
  </breat:loop-detection>
  <brcd:flow-control></brcd:flow-control>
  <brcd:priority>
  </bred:priority>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>ve 100</brcd:interface-id>
  <brcd:enable></brcd:enable>
  <br/>d:ip>
   <brcd:address>10.2.2.2/24</pred:address>
  </bred:ip>
</brcd:interface>
<brcd:interface>
  <brcd:interface-id>loopback 1
  <bre><bre>d:enable></bred:enable>
 <br/>d:ip>
   <brcd:address>10.13.32.1/32
  </bred:ip>
</brcd:interface>
</break:interface-config>
</break:netiron-config>
</nc:data>
</nc:rpc-reply>
]]>]]>
```

# edit-config operation

The NETCONF <edit-config> operation loads all the configurations into the specified target configuration.

Elements in the <config> subtree may contain an operation attribute. The attribute identifies the point in the configuration to perform the operation and might appear on multiple elements throughout the <config> subtree.

The operation attribute contains any one of the following values: merge, replace, create, delete.

The values merge, replace, or create is enforced by the behavior of the individual CLI, so these options are ignored. The delete operation alone is supported.

#### **Parameters**

The parameters used for <edit-config> are as follows:

- target: Name of the configuration data store being edited, such as <nc:running/>.
- test-option: This option is not supported.
- default-operation: Only the none value is supported. The other values such as merge, replace, create, and delete are ignored because the behaviors are enforced by the individual CLI.

- error-option: Only the stop-on-error option is supported. The other values such as continue-on-error and rollback-on-error are ignored.
- config: A hierarchy of configuration data as defined by the data models of the device. The new
  configuration must be inline configuration and other configuration options such as local file, remote
  file, and URL are not supported.

# **Examples**

The following is an example for an <edit-config> operation for MPLS configuration.

```
<nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"</pre>
xmlns:brcd="http://brocade.com/ns/netconf/config/netiron-config/">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:default-operation>merge</nc:default-operation>
<nc:config>
<brcd:netiron-config>
<brcd:mpls-config>
<brcd:lsp nc:operation="delete">
<brcd:name>examplelsp2</brcd:name>
</bread:lsp>
</bred:mpls-config>
</brcd:netiron-config>
</nc:config>
</nc:edit-config>
</nc:rpc>
11>11>
crc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://brocade.com/ns/netconf/config/netiron-config/"
message-id="1">
<nc:ok></nc:ok>
</nc:rpc-reply>
```

#### ]]>]]>

The following is an example for an <edit-config> operation for VLAN configuration.

```
<nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"</pre>
xmlns:brcd="http://brocade.com/ns/netconf/config/netiron-config/">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:default-operation>merge</nc:default-operation>
<nc:config>
<brcd:netiron-config>
<br/>brcd:vlan-config>
<brcd:vlan nc:operation="delete">
<brcd:vlan-id>200</pred:vlan-id>
</brcd:vlan>
</bred:vlan-config>
</break:netiron-config>
</nc:confia>
</nc:edit-config>
</nc:rpc>
11>11>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://</pre>
brocade.com/ns/netconf/config/netiron-config/"
message-id="1">
<nc:ok></nc:ok>
</nc:rpc-reply>
```

The following is an example for an <edit-config> operation to configure interface ethernet 1/1 with the IP address of 10.1.1.1/24 and enable the interface.

```
<nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:brcd="http://brocade.com/ns/netconf/config/netiron-config/">
```

```
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:config>
<brcd:netiron-config>
<brcd:interface-config>
<brcd:interface>
<brcd:interface-id>ethernet 1/1:interface-id>
<brcd:enable></brcd:enable>
<br/>brcd:ip>
<brcd:address>10.1.1.1/24
</bred:ip>
</brcd:interface>
</break:interface-config>
</break:netiron-config>
</nc:config>
</nc:edit-config>
</nc:rpc>
]]>]]>
'nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:brcd="http://
brocade.com/ns/netconf/config/netiron-config/"
message-id="1">
<nc:ok></nc:ok>
</nc:rpc-reply>
]]>]]>
```

## Error handling

The error-option element contains the stop-on-error value. The stop-on-error value aborts the edit-config operation on the first error. All the configuration items before the error are already applied on the system. This is the default error option.

After receiving the complete <code>edit-config</code> RPC, the configuration items specified in the XML are applied sequentially as per the order specified in the YANG. If all the configuration items are successfully applied, an <code><ok></code> element is sent in the <code><rpc-reply></code> element. Otherwise, an <code><rpc-error></code> element with the details of the error is sent in the <code><rpc-reply></code> element.

# **Closing sessions**

The NETCONF <close-session> operation is used for gracefully closing the current NETCONF session. The <close-session> operation uses no additional parameters.

When a NETCONF server receives a <close-session> request, the server releases resources associated with the session and closes the underlying SSH connection. Any NETCONF requests received after a <close-session> request are ignored. If the device is able to close the connection, an <rpc-reply> element is sent that includes an <ok> element. Otherwise, an <rpc-error> element with the details of the error is sent in the <rpc-reply> element.

# **NETCONF** commands and specifications

The following sections describe the configuration of NETCONF using the CLI and the associated show commands, the syslog messages, and the system limitations of NETCONF.

### Configuring NETCONF server

To enable the NETCONF server on a device, enter the following command.

```
device(config) # netconf server
device# netconf server?
server    Enable NETCONF server functionality
```

When no port number is specified, the command applies to the default port (830).

To enable the NETCONF server for a specific port, enter the following command.

```
device(config) # netconf server port 2001
```

### Syntax: [no] netconf server [ port port-number ]

The **port** option allows you to enable NETCONF on a non-default port.

The port-number variable specifies the port number of the device. The range is from 1 through 65535.

Both the SSH server and the NETCONF server must be enabled to establish a NETCONF session. The **netconf server** command displays the following warning message if the SSH server configuration is disabled.

Warning: SSH server is disabled. Please enable the SSH server.

### Configuring session hello-timeout

A NETCONF session hello-timeout indicates the number of seconds a session waits before the hello message is received from the NETCONF client. A session is dropped if no hello message is received before the specified number of seconds elapses. If this parameter is set to zero, the server never drops a session.

#### **NOTE**

Setting the NETCONF session hello-timeout value to zero permits denial of service attacks.

To configure a NETCONF session hello-timeout, enter the following command.

```
device(config) # netconf hello-timeout 300
```

### Syntax: [no] netconf hello-timeout [ seconds ]

The *seconds* variable specifies the number of seconds the server waits to receive a hello message. The range is from 1 through 3600 seconds. The default value is 600 seconds.

### Configuring session idle-timeout

A NETCONF session idle-timeout indicates the number of seconds that a session may remain idle without issuing any RPC requests. A session is dropped if it is idle for an interval longer than the specified number of seconds. If this parameter is set to zero, the server never drops a session because it is idle.

To configure a NETCONF session idle-timeout, enter the following command.

```
device(config) # netconf idle-timeout 86400
```

### Syntax: [no] netconf idle-timeout [ seconds ]

The seconds variable specifies the number of seconds a session remains idle. The range is from 1 through 360000 seconds. The default value is 3600 seconds.

### Displaying NETCONF statistics

To display the NETCONF server level information and statistics, enter the following command.

device# show netconf server

### Syntax: show netconf server

Table 43 describes the output of the **show netconf server** command.

**TABLE 43** NETCONF server parameters

| Field                | Description                                                                                                                            |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Field                | Description                                                                                                                            |  |
| server status        | The admin status (enabled or disabled) of the NETCONF server. Also displays the SSH status, when SSH is not enabled.                   |  |
| Port                 | The NETCONF server port number.                                                                                                        |  |
| Transport            | The NETCONF transport (currently only SSH is supported).                                                                               |  |
| Start Time           | The time at which the NETCONF subsystem is started.                                                                                    |  |
| Max allowed sessions | The maximum number of simultaneous NETCONF sessions supported by the server.                                                           |  |
| Active sessions      | The number of active NETCONF sessions.                                                                                                 |  |
| Hello timeout        | The NETCONF session hello message timeout in seconds.                                                                                  |  |
| Idle timeout         | The NETCONF session idle message timeout in seconds.                                                                                   |  |
| In sessions          | The number of sessions started.                                                                                                        |  |
| In bad hellos        | The number of sessions silently dropped because an invalid hello message was received.                                                 |  |
| Dropped sessions     | The number of sessions that were abnormally terminated (for example, due to transport close).                                          |  |
| In too big rpcs      | The total number of RPC requests received by the server that are larger than the supported maximum RPC request size.                   |  |
| In rpcs              | The total number of correct RPC requests received by the server.                                                                       |  |
| In bad rpcs          | The total number of incorrect RPC messages received by the server. This includes XML parse errors and errors on the RPC layer.         |  |
| Out rpcs             | The total number of RPC reply messages sent by the server containing an <pre><rpc-ok> element or <data> element.</data></rpc-ok></pre> |  |
| Out rpc errors       | The total number of RPC reply messages sent by the server containing an <pre><pre><pre><pre>cpc-error&gt;</pre></pre></pre></pre>      |  |

**TABLE 43** NETCONF server parameters (Continued)

| Field            | Description                                                                                                                   |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Out too big rpcs | The total number of RPC reply messages sent by the server containing an $<$ rpc-error> element with too-big as the error tag. |  |

To display the NETCONF session level statistics, enter the following command.

Get: 1 Un-supported: 0

### Syntax: show netconf sessions

Table 44 describes the output of the **show netconf sessions** command.

**TABLE 44** NETCONF session parameters

| Description                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------|--|
| The unique identification value for the NETCONF session.                                                                       |  |
| The unique identification value for the SSH session.                                                                           |  |
| The authenticated SSH user name. The value is <none> for public key authentication.</none>                                     |  |
| The time at which the session is established.                                                                                  |  |
| The IP address of the NETCONF client.                                                                                          |  |
| The supported NETCONF privilege level operations for a session, where privilege is derived from the SSH user privilege.        |  |
| The number of correct RPC requests received.                                                                                   |  |
| The total number of incorrect RPC messages received by the server. This includes XML parse errors and errors on the RPC layer. |  |
| The total number of RPC reply messages sent by the server containing an $< rpc-ok>$ element or $< data>$ element.              |  |
| The total number of RPC reply messages sent by the server containing an <pre><pre><pre><pre>cerror&gt;</pre></pre></pre></pre> |  |
| The number of well-formed <edit-config> operations received.</edit-config>                                                     |  |
| The number of well-formed <get-config> operations received.</get-config>                                                       |  |
|                                                                                                                                |  |

TABLE 44 NETCONF session parameters (Continued)

| Field       | Description                                                |
|-------------|------------------------------------------------------------|
| Get         | The number of well-formed <get> operations received.</get> |
| Unsupported | The number of unsupported operations received.             |

## Syslog messages for NETCONF

The following syslog message is generated when the NETCONF session is established.

SYSLOG: <14>Feb 8 01:03:00 NETCONF session [1] from 10.20.99.130 user ncradsuper has been established.

#### Syntax: NETCONF session id from IPaddress user username has been established

The following syslog message is generated when the NETCONF session is disconnected.

SYSLOG: <14>Feb 8 01:03:00 NETCONF session [1] from 10.20.99.130 user ncradsuper has been disconnected.

Syntax: NETCONF session id from IPaddress user username has been disconnected

## Clearing NETCONF statistics

To clear the NETCONF server level statistics, enter the following command.

device# clear netconf server-stats

#### Syntax: clear netconf server-stats

To clear the NETCONF session level statistics, enter the following command.

device# clear netconf session-stats

Syntax: clear netconf session-stats

### System limitations for NETCONF

The following are the system limitations for NETCONF.

- Only one NETCONF session is supported at a time. Any new NETCONF connection requests are rejected after the first session is established.
- Only the <running> configuration data store is supported.
- The <running> configuration data store displays the commands that are currently supported by NETCONF.
- · The NETCONF notifications are not supported.
- · A partial set of configuration and state display commands are supported.
- The XPATH filtering is not supported.
- A 32K response size limit is supported. An error is returned, if the response size limit is exceeded.
- A 16K request buffer limit is supported. An error is returned, if the request size limit is exceeded.
- · Only a subset of the subtree filtering is supported.

# **Data models and mapping**

YANG is a data modeling language used to model configuration and state data manipulated by the NETCONF protocol, NETCONF remote procedure calls, and NETCONF notifications. In order for NETCONF to be an interoperable protocol, models must be defined in a vendor-neutral language. YANG provides the language and rules for defining models for use with NETCONF.

The YANG language is currently being developed by the IETF NETCONF Data Modeling Language Working Group (NETMOD) and is defined in RFC 6020.

Each block of YANG data is encapsulated as a module, containing a header statement, linkage information, meta information, and revision history. Modules can contain one or more submodules with the same structure.

The following code example shows the structure of a header statement, along with linkage and meta information, which contains contact information and a high-level description of the module.

```
module netiron-config
    namespace "http://brocade.com/ns/netconf/config/netiron-config/";
    prefix "brcd";
    include common-defs;
    include vlan-config;
    include interface-config;
    include mpls-config;
    organization
         "Brocade Communications Inc.";
              "Technical Support Center"+
              "130 Holger Way,"+
"San Jose, CA 95134"+
"Email: ipsupport@brocade.com"+
              "Phone: 1-800-752-8061"+
              "URL: www.brocade.com";
    description
         "NetIron Config module. VERSION: ";
    revision 2011-04-20
         description "Initial revision";
```

# **Example in YANG, XML, and CLI**

Table 45 provides an example to describe the VLAN name in the YANG model and the equivalent XML and CLI.

TABLE 45 Example in YANG, XML, and CLI

| YANG                     | XML                                                 | CLI                                |
|--------------------------|-----------------------------------------------------|------------------------------------|
| leaf vlan-name           | <pre><brcd:vlan-name>example</brcd:vlan-name></pre> | [no] vlan vlan-id [name vlan-name] |
| {                        |                                                     |                                    |
| type string              |                                                     |                                    |
| {                        |                                                     |                                    |
| length "131";            |                                                     |                                    |
| }                        |                                                     |                                    |
| description "VLAN Name"; |                                                     |                                    |
| }                        |                                                     |                                    |

For further examples and information on the YANG model, refer to the *Brocade NetIron MLX Series* and *Brocade NetIron Family YANG Guide*.

# Foundry Direct Routing and CAM Partition Profiles for the NetIron XMR and the Brocade MLX Series

| Configuring CAM mode globally                            | 291 |
|----------------------------------------------------------|-----|
| • Configuring Density Mode for the 2x100G and 20x10G CAM | 292 |
| Configuring IPv6 host CAM mode                           | 292 |
| Configuring IPv6 host drop CAM limit                     | 293 |
| Configuring -X2 Algorithmic CAM profiles                 | 293 |
| CAM partition profiles                                   | 294 |
| Configuring CAM partition size                           | 322 |
| CAM overflow logging                                     | 323 |

Table 46 displays the individual devices and the Foundry Direct Routing (FDR) and CAM Partition features they support.

TABLE 46 Supported Foundry Direct Routing and CAM partition features

| Features<br>supported             | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade NetIron CES Series 2000 Series BASE package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
|-----------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Foundry Direct<br>Routing         | Yes                                           | Yes                                 | Yes                                                 | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| CAM Partition<br>Profiles         | Yes                                           | Yes                                 | No                                                  | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Supernet CAM<br>Partition Sharing | Yes                                           | Yes                                 | No                                                  | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| CAM Overflow<br>Logging           | Yes                                           | Yes                                 | No                                                  | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| IPv6 Host CAM<br>Enhancement      | Yes                                           | Yes                                 | No                                                  | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |

# **Configuring CAM mode globally**

#### NOTE

There is no configuration support for **cam-mode** in NetIron CES and NetIron CER. Foundry Direct Routing (FDR) is enabled by default.

The default CAM mode currently supported in static CAM mode, also known as FDR. You can set the CAM mode to dynamic IP CAM using the following command:

device(config) # cam-mode ip dynamic

You must reload the device for this command to take effect.

Syntax: [no] cam-mode ip [ dynamic| static ]

The **dynamic** parameter sets the IP CAM mode to dynamic.

The **static** parameter sets the IP CAM mode to static. This is the default state.

# Configuring Density Mode for the 2x100G and 20x10G CAM

Setting the CAM to double density mode will automatically disable uRPF. The uRPF is allowed under single density mode. The default setting for the XMR is double density. The default setting for the MLX is single density. You can set the density mode using the following command:

device(config) # cam-mode ip urpf-100g

You must reload the device for this command to take effect.

#### NOTE

There is no configuration support for cam-mode in NetIron CES and NetIron CER.

From 05.8.00a release onwards, you can achieve -X2 CAM profile numbers by enabling Algorithmic mode using the **cam-mode amod** command (available only on BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, or BR-MLX-1GX20-U10G-X2 cards). In Algorithmic mode, the line card runs in single density mode and also supports uRPF mode to work without reducing the route scale.

#### **NOTE**

By default, BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, or BR-MLX-1GX20-U10G-X2 cards boot up with -M CAM profile numbers and if uRPF is enabled, the number of routes are reduced by half.

For more information about CAM profile support and uRPF impact with and without Algorithmic mode, refer to Configuring -X2 Algorithmic CAM profiles on page 293.

Syntax: [no] cam-mode ip [ urpf |urpf-100g]

The **urpf** parameter sets the IP CAM partition to single density mode.

The **urpf-100g** parameter sets the IP CAM partition to single density mode.

# **Configuring IPv6 host CAM mode**

#### NOTE

There is no configuration support for cam-mode in NetIron CES and NetIron CER.

The CAM mode for IPv6 routes can be configured to host. You can set the CAM mode to *host* by using the following command.

device(config) # cam-mode ipv6 host

You must reload the device for this command to take effect.

Syntax: [no] cam-mode ipv6 host

The host parameter programs the complete 128 bit IPv6 address into the CAM.

# Configuring IPv6 host drop CAM limit

To limit the usage of CAM by IPV6 hosts with unresolved ND, enter the **ipv6 max-host-drop-cam** command.

device(config) # ipv6 max-host-drop-cam 5

Syntax: [no] ipv6 max-host-drop-cam [ limit ]

The optional *limit* variable is the IPv6 drop CAM limit for a port per packet processor (PPCR). The limit value can be from 0 through 65535.

# **Configuring -X2 Algorithmic CAM profiles**

The CAM profile numbers for BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, and BR-MLX-1GX20-U10G-X2 cards are much higher than the actual physical CAM capacity. Algorithmic mode, which employs a prefix-based software algorithm to optimize the CAM space, can be used to accommodate large numbers of longest prefix match (LPM) entries. Algorithmic mode also ensures reduced power consumption.

Depending on the -X2 CAM partition profile configuration, Algorithmic mode supports up to a maximum of 2448K IPv4, 1840K IPv6, 2048K IPv4 VPN, and 400K IPv6 VPN CAM entries.

From 05.8.00a release onwards, Algorithmic mode is available (disabled by default) on BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, and BR-MLX-1GX20-U10G-X2 cards.

#### NOTE

Brocade recommends enabling Algorithmic mode only on BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, or BR-MLX-1GX20-U10G-X2 cards as the cards come with the required factory-installed license. There is no license enforcement to enable Algorithmic mode on BR-MLX-100Gx2-CFP2-M, BR-MLX-10Gx20-M, or BR-MLX-1GX20-U10G-M cards.

By default, BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, and BR-MLX-1GX20-U10G-X2 cards boot up with -M CAM profile numbers and if uRPF is enabled, the number of routes are reduced by half. You must enable Algorithmic mode using the **cam-mode amod** command to achieve -X2 CAM profile numbers. Algorithmic mode also supports uRPF mode to work without reducing the route scale.

The line card must be reloaded for Algorithmic mode to take effect.

Refer to Table 54 on page 306 for information about -X2 CAM profile partitions.

TABLE 47 CAM profile support and uRPF impact with and without Algorithmic mode

| Modules                                                           | CAM profile support                                                                                                                                        | uRPF impact                                                                                                                                                                                                      |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BR-MLX-100Gx2-CFP2-M, BR-MLX-10Gx20-M, and BR-MLX-1GX20-U10G-M    | Non-Algorithmic mode<br>(default): -M CAM<br>profile type     Algorithmic mode: Not<br>supported                                                           | The number of routes are reduced by half if uRPF mode is enabled.                                                                                                                                                |
| BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, and BR-MLX-1GX20-U10G-X2 | Non-Algorithmic mode<br>(default): -M CAM<br>profile type     Algorithmic mode: -X2<br>CAM profile type<br>(supported from<br>05.8.00a release<br>onwards) | <ul> <li>Non-Algorithmic mode:<br/>The number of routes<br/>are reduced by half if<br/>uRPF mode is enabled.</li> <li>Algorithmic mode: No<br/>change in route scale<br/>even if uRPF is<br/>enabled.</li> </ul> |

The system-max values for ip-cache, ip-route, ipv6-cache, and ipv6-route is limited to the maximum value supported by the specific CAM profile. For example, for the multi-service-3 CAM profile, ip-cache system-max is limited to IPv4 + IPv4 VPN size of the profile which is 768k + 608k.

Refer to Table 54 on page 306 for information about -X2 CAM profile partitions.

If the system has a mix of BR-MLX-100Gx2-CFP2-M or BR-MLX-10Gx20-M and BR-MLX-100Gx2-CFP2-X2 or BR-MLX-10Gx20-X2 cards, Algorithmic mode can be enabled on the BR-MLX-100Gx2-CFP2-X2 or BR-MLX-10Gx20-X2 cards by specifying the slot.

To enable Algorithmic mode, enter the following command:

device(config) # cam-mode amod slot 2

# **CAM** partition profiles

CAM is partitioned on the device by a variety of profiles that you can select depending on your application. The available profiles are described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module).

To implement a CAM partition profile, enter the following command.

device(config) # cam-partition profile ipv4

#### NOTE

You must reload your device for this command to take effect.

Syntax: cam-partition profile [ ipv4 | ipv4-ipv6 | ipv4-ipv6-2 | ipv4-vpls | ipv4-vpn | ipv6 | I2-metro | I2-metro-2 | mpls-I3vpn | mpls-I3vpn-2 | mpls-vpls | mpls-vpls-2 | mpls-vpn-vpls | multi-service | multi-service-2 | multi-service-3 | multi-service-4 ]

The **ipv4** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module), to optimize the device for IPv4 applications.

The **ipv4-ipv6** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module), to optimize the device for IPv4 and IPv6 dual stack applications.

The **ipv4-ipv6-2** option that was introduced in NetIron 03.7.00 adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module), to optimize the device for increased IPv4 routes with room for IPv6.

The **ipv4-vpls** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module), to optimize the device for IPv4 and MPLS VPLS applications.

The **ipv4-vpn** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module), to optimize the device for IPv4 and MPLS Layer 3 VPN applications.

The **ipv6** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module), to optimize the device for IPv6 applications.

The **I2-metro** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers, to optimize the device for Layer 2 Metro applications.

The **I2-metro-2** option provides another alternative to **I2-metro** to optimize the device for Layer 2 Metro applications. It adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers.

The **mpls-l3vpn** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers, to optimize the device for Layer 3, BGP, or MPLS VPN applications.

The **mpls-l3vpn-2** option provides another alternative to **mpls-l3vpn** to optimize the device for Layer 3, BGP, or MPLS VPN applications. It adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers.

The**mpls-vpls** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers, to optimize the device for MPLS VPLS applications.

The **mpls-vpls-2** option provides another alternative to **mpls-vpls** to optimize the device for MPLS VPLS applications. It adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers.

The **mpls-vpn-vpls** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers, to optimize the device for MPLS Layer 3 and Layer 2 VPN applications.

The **multi-service** option adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers, to optimize the device for Multi-Service applications.

The **multi-service-2** option provides another alternative to **multi-service** to optimize the device for Multi-Service applications. It adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers.

The **multi-service-3** option provides another alternative to **multi-service** to optimize the device for Multi-Service applications to support IPv6 VRF. It adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers.

The **multi-service-4** option provides another alternative to **multi-service** to optimize the device for Multi-Service applications to support IPv6 VRF. It adjusts the CAM partitions, as described in Table 48 for the Brocade MLX Series (MR2-X management module) and Table 49 for the Brocade MLX Series (MR2-M management module) routers.

There are eighteen CAM partitioning profiles for the Brocade NetIron XMR Series and for the Brocade NetIron MLX Series routers. The profiles for routers are described in Brocade MLX Series (MR2-X management module) Table 48 and the profiles for Brocade MLX Series (MR2-M management module) routers are described in Table 49.

**TABLE 48** CAM partitioning profiles available for Brocade MLX Series(MR2-X management module) routers

|                                | Touters                  |                          |                          |                          |             |                                 |                        |                                   |                          |
|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------|---------------------------------|------------------------|-----------------------------------|--------------------------|
| Profile                        | IPv4                     | IPv6                     | MAC or<br>VPLS<br>MAC    | IPv4<br>VPN              | IPv6<br>VPN | IPv4 or<br>L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or<br>L2<br>Outboun<br>d ACL | IPv6<br>Outboun<br>d ACL |
| Default<br>Profile             | Logical<br>size:<br>512K | Logical<br>size: 64K     | Logical<br>size:<br>128K | Logical<br>size:<br>128K | 0           | Logical<br>size: 48K            | Logical<br>size: 4K    | Logical<br>size: 48K              | Logical<br>size: 4K      |
| ipv4<br>Profile                | Logical<br>size: 1M      | 0                        | Logical<br>size: 32K     | 0                        | 0           | Logical<br>size:<br>112K        | 0                      | Logical<br>size: 64K              | 0                        |
| ipv6<br>Profile                | Logical<br>size: 64K     | Logical<br>size:<br>240K | Logical<br>size: 32K     | 0                        | 0           | Logical<br>size: 16K            | Logical<br>size: 24K   | Logical<br>size: 16K              | Logical<br>size: 12K     |
| I2-metro<br>Profile            | Logical<br>size:<br>256K | 0                        | Logical<br>size:<br>512K | 0                        | 0           | Logical<br>size: 64K            | 0                      | Logical<br>size: 64K              | 0                        |
| mpls-<br>I3vpn<br>Profile      | Logical<br>size:<br>256K | 0                        | Logical<br>size: 32K     | Logical<br>size:<br>480K | 0           | Logical<br>size: 64K            | 0                      | Logical<br>size: 64K              | 0                        |
| mpls-vpls<br>Profile           | Logical<br>size:<br>256K | 0                        | Logical<br>size:<br>512K | 0                        | 0           | Logical<br>size: 64K            | 0                      | Logical<br>size: 64K              | 0                        |
| multi-<br>service<br>Profile   | Logical<br>size:<br>256K | Logical<br>size: 32K     | Logical<br>size:<br>192K | Logical<br>size:<br>256K | 0           | Logical<br>size: 32K            | Logical<br>size: 8K    | Logical<br>size: 32K              | Logical<br>size: 8K      |
| multi-<br>service-2<br>Profile | 512K                     | 64K                      | 128K                     | 128K                     | 0           | 48K                             | 4K                     | 48K                               | 4K                       |
| multi-<br>service-3<br>Profile | 256K                     | 32K                      | 128K                     | 192K                     | 32K         | 32K                             | 8K                     | 32K                               | 8K                       |

**TABLE 48** CAM partitioning profiles available for Brocade MLX Series(MR2-X management module) routers (Continued)

| Profile                        | IPv4                     | IPv6                     | MAC or<br>VPLS<br>MAC    | IPv4<br>VPN              | IPv6<br>VPN | IPv4 or<br>L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or<br>L2<br>Outboun<br>d ACL | IPv6<br>Outboun<br>d ACL |
|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------|---------------------------------|------------------------|-----------------------------------|--------------------------|
| multi-<br>service-4<br>Profile | 768K                     | 32K                      | 64K                      | 64K                      | 8K          | 32K                             | 8K                     | 48K                               | 4K                       |
| mpls-<br>vpn-vpls<br>Profile   | Logical<br>size:<br>128K | 0                        | Logical<br>size:<br>224K | Logical<br>size:<br>384K | 0           | Logical<br>size: 48K            | 0                      | Logical<br>size: 64K              | 0                        |
| ipv4-vpn<br>Profile            | Logical<br>size:<br>320K | 0                        | Logical<br>size: 32K     | Logical<br>size:<br>448K | 0           | Logical<br>size: 64K            | 0                      | Logical<br>size: 64K              | 0                        |
| l2-<br>metro-2<br>Profile      | Logical<br>size: 64K     | 0                        | Logical<br>size:<br>608K | 0                        | 0           | Logical<br>size: 64K            | 0                      | Logical<br>size: 64K              | 0                        |
| mpls-<br>l3vpn-2<br>Profile    | Logical<br>size:<br>128K | 0                        | Logical<br>size: 32K     | Logical<br>size:<br>544K | 0           | Logical<br>size: 64K            | 0                      | Logical<br>size: 64K              | 0                        |
| mpls-<br>vpls-2<br>Profile     | Logical<br>size:<br>128K | 0                        | Logical<br>size:<br>576K | 0                        | 0           | Logical<br>size: 64K            | 0                      | Logical<br>size: 64K              | 0                        |
| ipv4-ipv6<br>Profile           | Logical<br>size:<br>320K | Logical<br>size:<br>160K | Logical<br>size: 32K     | 0                        | 0           | Logical<br>size: 48K            | Logical<br>size: 20K   | Logical<br>size: 32K              | Logical<br>size: 8K      |
| ipv4-vpls<br>Profile           | Logical<br>size:<br>320K | 0                        | Logical<br>size:<br>480K | 0                        | 0           | Logical<br>size: 64K            | 0                      | Logical<br>size: 64K              | 0                        |
| ipv4-<br>ipv6-2<br>Profile     | Logical<br>size:<br>768K | Logical<br>size: 64K     | Logical<br>size: 64K     | 0                        | 0           | Logical<br>size: 64K            | Logical<br>size: 8K    | Logical<br>size: 48K              | Logical<br>size: 4K      |

**TABLE 49** CAM partitioning profiles available for Brocade MLX Series(MR2-M management module) routers

| Profile            | IPv4                     | IPv6                    | MAC or<br>VPLS<br>MAC   | IPv4<br>VPN             | IPv6<br>VPN | IPv4 or L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|--------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------|------------------------------|------------------------|-------------------------------|-------------------------|
| Default<br>Profile | Logical<br>size:<br>256K | Logical<br>size:<br>32K | Logical<br>size:<br>64K | Logical<br>size:<br>64K | 0           | Logical<br>size: 24K         | Logical<br>size: 2K    | Logical size:<br>48K          | Logical<br>size: 4K     |

**TABLE 49** CAM partitioning profiles available for Brocade MLX Series(MR2-M management module) routers (Continued)

|                                |                          | (Continue                | ,,                       |                          |             |                              |                        |                               |                         |
|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------|------------------------------|------------------------|-------------------------------|-------------------------|
| Profile                        | IPv4                     | IPv6                     | MAC or<br>VPLS<br>MAC    | IPv4<br>VPN              | IPv6<br>VPN | IPv4 or L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
| ipv4 Profile                   | Logical<br>size:<br>512K | 0                        | Logical<br>size:<br>16K  | 0                        | 0           | Logical<br>size: 56K         | 0                      | Logical size:<br>64K          | 0                       |
| ipv6 Profile                   | Logical<br>size:<br>64K  | Logical<br>size:<br>112K | Logical<br>size:<br>16K  | 0                        | 0           | Logical<br>size: 8K          | Logical<br>size: 12K   | Logical size:<br>16K          | Logical<br>size: 12K    |
| I2-metro<br>Profile            | Logical<br>size:<br>128K | 0                        | Logical<br>size:<br>256K | 0                        | 0           | Logical<br>size: 32K         | 0                      | Logical size:<br>64K          | 0                       |
| mpls-l3vpn<br>Profile          | Logical<br>size:<br>128K | 0                        | Logical<br>size:<br>16K  | Logical<br>size:<br>240K | 0           | Logical<br>size: 32K         | 0                      | Logical size:<br>64K          | 0                       |
| mpls-vpls<br>Profile           | Logical<br>size:<br>128K | 0                        | Logical<br>size:<br>256K | 0                        | 0           | Logical<br>size: 32K         | 0                      | Logical size:<br>64K          | 0                       |
| multi-<br>service<br>Profile   | Logical<br>size:<br>128K | Logical<br>size:<br>16K  | Logical<br>size:<br>96K  | Logical<br>size:<br>128K | 0           | Logical<br>size: 16K         | Logical<br>size: 4K    | Logical size:<br>32K          | Logical<br>size: 8K     |
| multi-<br>service-2<br>Profile | 448K                     | 16K                      | 32K                      | 32K                      | 0           | 24K                          | 2K                     | 48K                           | 4K                      |
| multi-<br>service-3<br>Profile | 128K                     | 16K                      | 64K                      | 96K                      | 32K         | 16K                          | 4K                     | 32K                           | 8K                      |
| multi-<br>service-4<br>Profile | 448K                     | 8K                       | 0                        | 32K                      | 8K          | 16K                          | 4K                     | 48K                           | 4K                      |
| mpls-vpn-<br>vpls Profile      | Logical<br>size:<br>64K  | 0                        | Logical<br>size:<br>112K | Logical<br>size:<br>192K | 0           | Logical<br>size: 24K         | 0                      | Logical size:<br>64K          | 0                       |
| ipv4-vpn<br>Profile            | Logical<br>size:<br>160K | 0                        | 16K                      | Logical<br>size:<br>224K | 0           | Logical<br>size: 32K         | 0                      | Logical size:<br>64K          | 0                       |
| I2-metro-2<br>Profile          | Logical<br>size:<br>64K  | 0                        | Logical<br>size:<br>288K | 0                        | 0           | Logical<br>size: 32K         | 0                      | Logical size:<br>64K          | 0                       |

**TABLE 49** CAM partitioning profiles available for Brocade MLX Series(MR2-M management module) routers (Continued)

| Profile                     | IPv4                     | IPv6                    | MAC or<br>VPLS<br>MAC    | IPv4<br>VPN              | IPv6<br>VPN | IPv4 or L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|-----------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------|------------------------------|------------------------|-------------------------------|-------------------------|
| mpls-<br>l3vpn-2<br>Profile | Logical<br>size:<br>64K  | 0                       | Logical<br>size:<br>16K  | Logical<br>size:<br>272K | 0           | Logical<br>size: 32K         | 0                      | Logical size:<br>64K          | 0                       |
| mpls-<br>vpls-2<br>Profile  | Logical<br>size:<br>64K  | 0                       | Logical<br>size:<br>288K | 0                        | 0           | Logical<br>size: 32K         | 0                      | Logical size:<br>64K          | 0                       |
| ipv4-ipv6<br>Profile        | Logical<br>size:<br>160K | Logical<br>size:<br>80K | Logical<br>size:<br>16K  | 0                        | 0           | Logical<br>size: 24K         | Logical<br>size: 10K   | Logical size:<br>32K          | Logical<br>size: 8K     |
| ipv4-vpls<br>Profile        | Logical<br>size:<br>160K | 0                       | Logical<br>size:<br>240K | 0                        | 0           | Logical<br>size: 32K         | 0                      | Logical size:<br>64K          | 0                       |
| ipv4-ipv6-2<br>Profile      | 480K                     | 8K                      | 32K                      | 0                        | 0           | 32K                          | 4K                     | 48K                           | 4K                      |

**TABLE 50** CAM partitioning profiles available for the NI-MLX-10Gx8-D modules

| Profile                  | IPv4 | IPv6 | MAC or<br>VPLS<br>MAC | IPv4<br>VPN | IPv6<br>VPN | IPv4 or L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|--------------------------|------|------|-----------------------|-------------|-------------|------------------------------|------------------------|-------------------------------|-------------------------|
| Default<br>Profile       | 128K | 16K  | 64K                   | 32K         | 0           | 24K                          | 2K                     | 48K                           | 4K                      |
| ipv4 Profile             | 256K | 0    | 16K                   | 0           | 0           | 56K                          | 0                      | 64K                           | 0                       |
| ipv6 Profile             | 68K  | 48K  | 16K                   | 0           | 0           | 8K                           | 12K                    | 16K                           | 12K                     |
| l2-metro<br>Profile      | 64K  | 0    | 160K                  | 0           | 0           | 32K                          | 0                      | 64K                           | 0                       |
| mpls-l3vpn<br>Profile    | 64K  | 0    | 16K                   | 144K        | 0           | 32K                          | 0K                     | 64K                           | 0                       |
| mpls-vpls<br>Profile     | 64K  | 0    | 160K                  | 0           | 0           | 32K                          | 0                      | 64K                           | 0                       |
| multi-service<br>Profile | 64K  | 8K   | 80K                   | 64K         | 0           | 16K                          | 4K                     | 32K                           | 8K                      |

**TABLE 50** CAM partitioning profiles available for the NI-MLX-10Gx8-D modules (Continued)

| Profile                        | IPv4 | IPv6 | MAC or<br>VPLS<br>MAC | IPv4<br>VPN | IPv6<br>VPN | IPv4 or L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|--------------------------------|------|------|-----------------------|-------------|-------------|------------------------------|------------------------|-------------------------------|-------------------------|
| multi-<br>service-2<br>Profile | 192K | 16K  | 32K                   | 32K         | 0           | 24K                          | 2K                     | 48K                           | 4K                      |
| multi-<br>service-3<br>Profile | 64K  | 8K   | 32K                   | 48K         | 32K         | 16K                          | 4K                     | 32K                           | 8K                      |
| multi-<br>service-4<br>Profile | 198K | 8K   | 32K                   | 48K         | 32K         | 16K                          | 4K                     | 32K                           | 8K                      |
| mpls-vpn-vpls<br>Profile       | 64K  | 0    | 80K                   | 96K         | 0           | 24K                          | 0                      | 64K                           | 0                       |
| ipv4-vpn<br>Profile            | 96K  | 0K   | 16K                   | 128K        | 0           | 32K                          | 0                      | 64K                           | 0                       |
| I2-metro-2<br>Profile          | 64K  | 0    | 160K                  | 0           | 0           | 32K                          | 0                      | 64K                           | 0                       |
| mpls-l3vpn-2<br>Profile        | 64K  | 0    | 16K                   | 144K        | 0           | 32K                          | 0                      | 64K                           | 0                       |
| mpls-vpls-2<br>Profile         | 64K  | 0    | 160K                  | 0           | 0           | 32K                          | 0                      | 64K                           | 0                       |
| ipv4-ipv6<br>Profile           | 96K  | 32K  | 16K                   | 0           | 0           | 24K                          | 10K                    | 32K                           | 8K                      |
| ipv4-vpls<br>Profile           | 64K  | 0    | 160K                  | 0           | 0           | 32K                          | 0                      | 64K                           | 0                       |
| ipv4-ipv6-2<br>Profile         | 192K | 16K  | 32K                   | 0           | 0           | 32K                          | 4K                     | 48K                           | 4K                      |

**TABLE 51** CAM partitioning profiles available for the BR-MLX-100Gx2-X modules

| Profile                        | IPv4  Note: All IPv4  values listed are when operating in double density mode. | IPv6 | MAC<br>or<br>VPLS<br>MAC | IPv4<br>VPN | IPv6<br>VPN | L2<br>Inbound<br>ACL | IPv4<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|--------------------------------|--------------------------------------------------------------------------------|------|--------------------------|-------------|-------------|----------------------|------------------------|------------------------|-------------------------------|-------------------------|
| Default<br>Profile             | 512K                                                                           | 64K  | 160K                     | 256K        | 0           | 16K                  | 96K                    | 16K                    | 48K                           | 8K                      |
| ipv4<br>Profile                | 1024K                                                                          | 0    | 160K                     | 0           | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |
| ipv6<br>Profile                | 64K                                                                            | 240K | 160K                     | 0           | 0           | 16K                  | 32K                    | 48K                    | 16K                           | 24K                     |
| I2-metro<br>Profile            | 1024K                                                                          | 0    | 160K                     | 0           | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |
| I2-metro-2<br>Profile          | 1024K                                                                          | 0    | 160K                     | 0           | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |
| multi-<br>service<br>Profile   | 288K                                                                           | 40K  | 160K                     | 576K        | 0           | 16K                  | 64K                    | 32K                    | 32K                           | 16K                     |
| multi-<br>service-2<br>Profile | 512K                                                                           | 64K  | 160K                     | 128K        | 0           | 96K                  | 96K                    | 16K                    | 48K                           | 8K                      |
| multi-<br>service-3<br>Profile | 256K                                                                           | 32K  | 160K                     | 384K        | 64K         | 16K                  | 80K                    | 24K                    | 32K                           | 16K                     |
| multi-<br>service-4<br>Profile | 768K                                                                           | 16K  | 160K                     | 32K         | 32K         | 16K                  | 64K                    | 32K                    | 48K                           | 8K                      |
| mpls-vpn-<br>vpls<br>Profile   | 128K                                                                           | 0    | 160K                     | 896K        | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |
| mpls-<br>l3vpn<br>Profile      | 128K                                                                           | 0    | 160K                     | 896K        | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |

**TABLE 51** CAM partitioning profiles available for the BR-MLX-100Gx2-X modules (Continued)

| Profile                     | IPv4 Note: All IPv4 values listed are when operating in double density mode. | IPv6 | MAC<br>or<br>VPLS<br>MAC | IPv4<br>VPN | IPv6<br>VPN | L2<br>Inbound<br>ACL | IPv4<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|-----------------------------|------------------------------------------------------------------------------|------|--------------------------|-------------|-------------|----------------------|------------------------|------------------------|-------------------------------|-------------------------|
| mpls-<br>l3vpn-2<br>Profile | 1024K                                                                        | 0    | 160K                     | 0           | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |
| mpls-vpls<br>Profile        | 1024K                                                                        | 0    | 160K                     | 0           | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |
| mpls-<br>vpls-2<br>Profile  | 1024K                                                                        | 0    | 160K                     | 0           | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |
| ipv4-vpn<br>Profile         | 320K                                                                         | 0    | 160K                     | 704K        | 0           | 16K                  | 128K                   | 0                      | 64K                           | 0                       |
| ipv4-ipv6<br>Profile        | 320K                                                                         | 176K | 160K                     | 0           | 0           | 16K                  | 48K                    | 40K                    | 32K                           | 16K                     |
| ipv4-vpls<br>Profile        | 1024K                                                                        | 0    | 160K                     | 0           | 0           | 16K                  | 96K                    | 16K                    | 64K                           | 0                       |
| ipv4-<br>ipv6-2<br>Profile  | 768K                                                                         | 65K  | 160K                     | 0           | 0           | 16K                  | 96K                    | 16K                    | 48K                           | 8K                      |

**TABLE 52** CAM partitioning profiles available for the BR-MLX-10GX24-DM modules

| Profile            | IPv4 | IPv6 | MAC  | IPv4<br>VPN | IPv4<br>ACL/<br>MCAST<br>VPLS |   | IPv6<br>DAVC |     |     | OUT_IPv6<br>ACL | Src_Ingrs<br>Chk | MCAST<br>VPLS | OUT_LBL<br>ACL | SRVC<br>LKUP |     |
|--------------------|------|------|------|-------------|-------------------------------|---|--------------|-----|-----|-----------------|------------------|---------------|----------------|--------------|-----|
| Default<br>Profile | 128K | 16K  | 128K | 32K         | 48K                           | 0 | 0            | 16K | 48K | 8K              | 0                | NA            | NA             | 64K          | 16K |
| ipv4<br>Profile    | 256K | 0    | 128K | 0           | 80K                           | 0 | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K          | 16K |

**TABLE 52** CAM partitioning profiles available for the BR-MLX-10GX24-DM modules (Continued)

| Profile                      | IPv4 | IPv6 | MAC  | IPv4<br>VPN | IPv4<br>ACL/<br>MCAST<br>VPLS | IPv6<br>VPN | IPv6<br>DAVC |     |     | OUT_IPv6<br>ACL | Src_Ingrs<br>Chk | MCAST<br>VPLS | OUT_LBL<br>ACL |     | L2<br>ACL |
|------------------------------|------|------|------|-------------|-------------------------------|-------------|--------------|-----|-----|-----------------|------------------|---------------|----------------|-----|-----------|
| ipv6<br>Profile              | 32K  | 56K  | 128K | 0           | 16K                           | 0           | 0            | 32K | 16K | 24K             | 0                | NA            | NA             | 64K | 16K       |
| mpls-<br>vpn<br>Profile      | 64K  | 0    | 128K | 96K         | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |
| mpls-<br>vpls<br>Profile     | 256K | 0    | 128K | 0           | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |
| I2-metro<br>Profile          | 256K | 0    | 128K | 0           | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |
| l2-<br>metro-2<br>Profile    | 256K | 0    | 128K | 0           | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |
| mpls-<br>vpn-2<br>Profile    | 32K  | 0    | 128K | 112K        | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |
| mpls-<br>vpls-2<br>Profile   | 256K | 0    | 128K | 0           | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |
| multi-<br>service<br>Profile | 96K  | 8    | 128K | 64K         | 48K                           | 0           | 0            | 16K | 32K | 16K             | 0                | NA            | NA             | 64K | 16K       |
| mpls-<br>vpn-vpls<br>Profile | 64K  | 0    | 128K | 96K         | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |
| ipv4-vpn<br>Profile          | 64K  | 0    | 128K | 96K         | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |
| ipv4-<br>ipv6<br>Profile     | 96K  | 40   | 128K | 0           | 64K                           | 0           | 0            | 8K  | 32K | 16K             | 0                | NA            | NA             | 64K | 16K       |
| ipv4-<br>vpls<br>Profile     | 256K | 0    | 128K | 0           | 80K                           | 0           | 0            | 0   | 64K | 0               | 0                | NA            | NA             | 64K | 16K       |

 TABLE 52
 CAM partitioning profiles available for the BR-MLX-10GX24-DM modules (Continued)

| Profile                         | IPv4 | IPv6 | MAC  | IPv4<br>VPN | IPv4<br>ACL/<br>MCAST<br>VPLS | IPv6<br>VPN | IPv6<br>DAVC |     |     | OUT_IPv6<br>ACL | Src_Ingrs<br>Chk | MCAST<br>VPLS | OUT_LBL<br>ACL | SRVC<br>LKUP | L2<br>ACL |
|---------------------------------|------|------|------|-------------|-------------------------------|-------------|--------------|-----|-----|-----------------|------------------|---------------|----------------|--------------|-----------|
| ipv4-<br>ipv6-2<br>Profile      | 224K | 8K   | 128K | 0           | 48K                           | 0           | 0            | 16K | 48K | 8K              | 0                | NA            | NA             | 64K          | 16K       |
| multi-<br>service-<br>2 Profile | 6K   | 8K   | 128K | 16K         | 64K                           | 0           | 0            | 8K  | 48K | 8K              | 0                | NA            | NA             | 64K          | 16K       |
| multi-<br>service-<br>3 Profile | 192K | 8K   | 128K | 48K         | 48K                           | 16K         | 0            | 16K | 32K | 16K             | 0                | NA            | NA             | 64K          | 16K       |
| multi-<br>service-<br>4 Profile | 128K | 8K   | 128K | 32K         | 48K                           | 8K          | 0            | 16K | 48K | 8K              | 0                | NA            | NA             | 64K          | 16K       |

**TABLE 53** CAM partitioning profiles available for the BR-MLX-10GX20-M (1G/10G combo), or BR-MLX-1GX20-U10G-M, and BR-MLX-100GX2-CFP2-M

| Profile                    | IPv4  | IPv6 | MAC or<br>VPLS<br>MAC | IPv4<br>VPN | IPv6<br>VPN | L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|----------------------------|-------|------|-----------------------|-------------|-------------|----------------------|------------------------|-------------------------------|-------------------------|
| Default Profile            | 512K  | 64K  | 128K                  | 128K        | 0           | 48K                  | 4K                     | 48K                           | 4K                      |
| ipv4 Profile               | 1024K | 0    | 32K                   | 0           | 0           | 112K                 | 0                      | 64K                           | 0                       |
| ipv6 Profile               | 64K   | 240K | 32K                   | 0           | 0           | 16K                  | 24K                    | 16K                           | 12K                     |
| I2-metro<br>Profile        | 384K  | 0    | 512K                  | 0           | 0           | 32K                  | 0                      | 64K                           | 0                       |
| l2-metro-2<br>Profile      | 128K  | 0    | 640K                  | 0           | 0           | 32K                  | 0                      | 64K                           | 0                       |
| multi-service<br>Profile   | 256K  | 32K  | 192K                  | 256K        | 0           | 32K                  | 8K                     | 32K                           | 8K                      |
| multi-service-2<br>Profile | 512K  | 64K  | 128K                  | 128K        | 0           | 48K                  | 4K                     | 40K                           | 6K                      |
| multi-service-3<br>Profile | 256K  | 32K  | 128K                  | 192K        | 64K         | 32K                  | 8K                     | 32K                           | 8K                      |

**TABLE 53** CAM partitioning profiles available for the BR-MLX-10GX20-M (1G/10G combo), or BR-MLX-1GX20-U10G-M, and BR-MLX-100GX2-CFP2-M (Continued)

| Profile                    | IPv4 | IPv6 | MAC or<br>VPLS<br>MAC | IPv4<br>VPN | IPv6<br>VPN | L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|----------------------------|------|------|-----------------------|-------------|-------------|----------------------|------------------------|-------------------------------|-------------------------|
| multi-service-4<br>Profile | 768K | 32K  | 64K                   | 64K         | 32K         | 32K                  | 8K                     | 48K                           | 4K                      |
| multi-service-5<br>Profile | 768K | 32K  | 64K                   | 0           | 0           | 96K                  | 8K                     | 48K                           | 4K                      |
| multi-service-6<br>Profile | 640K | 96K  | 32K                   | 32K         | 16K         | 48K                  | 8K                     | 48K                           | 4K                      |
| telemetry-1<br>Profile     | 512K | 64K  | 32K                   | 0           | 0           | 96K                  | 20K                    | 32K                           | 8K                      |
| mpls-vpn-vpls<br>Profile   | 128K | 0    | 224K                  | 384K        | 0           | 48K                  | 0                      | 64K                           | 0                       |
| mpls-l3vpn<br>Profile      | 256K | 0    | 32K                   | 480K        | 0           | 64K                  | 0                      | 64K                           | 0                       |
| mpls-l3vpn-2<br>Profile    | 128K | 0    | 32K                   | 544K        | 0           | 64K                  | 0                      | 64K                           | 0                       |
| mpls-vpls<br>Profile       | 256K | 0    | 512K                  | 0           | 0           | 64K                  | 0                      | 64K                           | 0                       |
| mpls-vpls-2<br>Profile     | 128K | 0    | 576K                  | 0           | 0           | 64K                  | 0                      | 64K                           | 0                       |
| ipv4-vpn<br>Profile        | 320K | 0    | 32K                   | 448K        | 0           | 64K                  | 0                      | 64K                           | 0                       |
| ipv4-ipv6<br>Profile       | 320K | 160K | 32K                   | 0           | 0           | 48K                  | 20K                    | 32K                           | 8K                      |
| ipv4-vpls<br>Profile       | 320K | 0    | 480K                  | 0           | 0           | 64K                  | 0                      | 64K                           | 0                       |
| ipv4-ipv6-2<br>Profile     | 768K | 64K  | 64K                   | 0           | 0           | 64K                  | 8K                     | 40K                           | 6K                      |

**TABLE 54** CAM partitioning profiles available for the BR-MLX-10GX20-X2 (1G/10G combo), or BR-MLX-1GX20-U10G-X2, and BR-MLX-100GX2-CFP2-X2

| Profile                        | IPv4  | IPv6  | MAC<br>or<br>VPLS<br>MAC | IPv4<br>VPN | IPv6<br>VPN | L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|--------------------------------|-------|-------|--------------------------|-------------|-------------|----------------------|------------------------|-------------------------------|-------------------------|
| Default Profile                | 1424K | 416K  | 224K                     | 608K        | 0           | 144K                 | 12K                    | 48K                           | 4K                      |
| ipv4 Profile                   | 2448K | 48K   | 64K                      | 0           | 0           | 272K                 | 4K                     | 64K                           | 0                       |
| ipv6 Profile                   | 256K  | 1840K | 64K                      | 0           | 0           | 32K                  | 60K                    | 16K                           | 12K                     |
| I2-metro<br>Profile            | 2048K | 0     | 544K                     | 0           | 0           | 32K                  | 0                      | 64K                           | 0                       |
| I2-metro-2<br>Profile          | 2048K | 0     | 640K                     | 0           | 0           | 16K                  | 0                      | 64K                           | 0                       |
| multi-service<br>Profile       | 1024K | 704K  | 192K                     | 704K        | 0           | 128K                 | 20K                    | 32K                           | 8K                      |
| multi-<br>service-2<br>Profile | 1328K | 512K  | 256K                     | 608K        | 0           | 128K                 | 12K                    | 40K                           | 6K                      |
| multi-<br>service-3<br>Profile | 768K  | 512K  | 192K                     | 608K        | 400K        | 128K                 | 20K                    | 32K                           | 8K                      |
| multi-<br>service-4<br>Profile | 1024K | 304K  | 128K                     | 768K        | 304K        | 144K                 | 24K                    | 48K                           | 4K                      |
| multi-<br>service-5<br>Profile | 1840K | 704K  | 128K                     | 0           | 0           | 128K                 | 28K                    | 48K                           | 4K                      |
| multi-<br>service-6<br>Profile | 1120K | 768K  | 128K                     | 368K        | 224K        | 144K                 | 24K                    | 48K                           | 4K                      |
| telemetry-1<br>Profile         | 1936K | 608K  | 64K                      | 0           | 0           | 160K                 | 28K                    | 32K                           | 8K                      |
| mpls-vpn-vpls<br>Profile       | 512K  | 0     | 416K                     | 1840K       | 0           | 96K                  | 0                      | 64K                           | 0                       |
| mpls-l3vpn<br>Profile          | 704K  | 0     | 128K                     | 1712K       | 0           | 240K                 | 0                      | 64K                           | 0                       |
| mpls-l3vpn-2<br>Profile        | 512K  | 0     | 128K                     | 2048K       | 0           | 240K                 | 0                      | 64K                           | 0                       |

| TABLE 54 | CAM partitioning profiles available for the BR-MLX-10GX20-X2 (1G/10G combo), or BR- |
|----------|-------------------------------------------------------------------------------------|
|          | MLX-1GX20-U10G-X2, and BR-MLX-100GX2-CFP2-X2 (Continued)                            |

| Profile                | IPv4  | IPv6  | MAC<br>or<br>VPLS<br>MAC | IPv4<br>VPN | IPv6<br>VPN | L2<br>Inbound<br>ACL | IPv6<br>Inbound<br>ACL | IPv4 or L2<br>Outbound<br>ACL | IPv6<br>Outbound<br>ACL |
|------------------------|-------|-------|--------------------------|-------------|-------------|----------------------|------------------------|-------------------------------|-------------------------|
| mpls-vpls<br>Profile   | 2048K | 0     | 416K                     | 0           | 0           | 96K                  | 0                      | 64K                           | 0                       |
| mpls-vpls-2<br>Profile | 2048K | 0     | 544K                     | 0           | 0           | 32K                  | 0                      | 64K                           | 0                       |
| ipv4-vpn<br>Profile    | 1024K | 0     | 160K                     | 1424K       | 0           | 224K                 | 0                      | 64K                           | 0                       |
| ipv4-ipv6<br>Profile   | 1536K | 1024K | 64K                      | 0           | 0           | 128K                 | 36K                    | 32K                           | 8K                      |
| ipv4-vpls<br>Profile   | 2048K | 0     | 416K                     | 0           | 0           | 96K                  | 0                      | 64K                           | 0                       |
| ipv4-ipv6-2<br>Profile | 2048K | 1024K | 32K                      | 0           | 0           | 16K                  | 4K                     | 40K                           | 6K                      |

# **Supernet CAM partition sharing**

TCAM sharing within a particular CAM Section is supported.

TCAM allocation is optimized to allow dynamic allocation of resources to each level within a particular resource pool. If one level runs out of TCAM resources, it can use resources that have been allocated to another level and remain unused. This feature is applicable to IPv4, IPv6, and L-3 VPN routes.

#### NOTE

CAM Sharing is not shared across resource pools, such as IPv4, IPv6 or L-3 VPN. Only shared between levels of each pool. For example: IPv4 may not use CAM resources from the IPv6 resource pool.

# **Displaying CAM partition**

The **show cam-partition** command provides information about available CAM in three formats: raw size, user size, and reserved size.

```
Subpartition 4: Raw Size 778, User Size 778, (0 reserved)
IPv6: Raw Size 131072, User Size 65536(0 reserved)
Subpartition 0: Raw Size 12288, User Size 6144,
                                                                (O reserved)
                    1: Raw Size 107496, User Size 53748, (0 reserved)
  Subpartition
                    2: Raw Size 9332, User Size 4666, (0 reserved)
  Subpartition
  Subpartition 3: Raw Size 1284, User Size 642, (0 reserved) Subpartition 4: Raw Size 384, User Size 192, (0 reserved)
IP VPN Raw Size 131072, User Size 131072(0 reserved)
  Subpartition 0: Raw Size 2048, User Size 2048, (0 reserved)
  Subpartition 1: Raw Size 116886, User Size 116886, (0 reserved)
  Subpartition
                    2: Raw Size 9333, User Size 9333, (0 reserved)
  Subpartition 3: Raw Size 1285, User Size 1285, (O reserved)
Subpartition 4: Raw Size 384, User Size 384, (O reserved)
  Subpartition
MAC: Raw Size 131072, User Size 131072(0 reserved)
  Subpartition 0: Raw Size 10, User Size 10, (0 reserved)
  Subpartition 1: Raw Size 32, User Size 32, (0 reserved)
                    2: Raw Size 131030, User Size 131030, (0 reserved)
  Subpartition
Session: Raw Size 98304, User Size 49152(0 reserved)
  Subpartition 0: Raw Size 79872, User Size 39936, (0 reserved)
  Subpartition 1: Raw Size 2048, User Size 1024, (0 reserved) Subpartition 2: Raw Size 16384, User Size 8192, (0 reserved)
IPv6 Session: Raw Size 32768, User Size 4096(0 reserved)
  Subpartition 0: Raw Size 15872, User Size 1984, (0 reserved)
  Subpartition 1: Raw Size 512, User Size 64, (0 reserved)
  Subpartition 2: Raw Size 16384, User Size 2048, (0 reserved)
Out Session: Raw Size 196608, User Size 98304(49152 reserved)
Out IPv6 Session: Raw Size 65536, User Size 8192(4096 reserved)
Slot 1 XPP20SP 0:
                            0(000000) - 262143(03ffff)
0(000000) - 262143(03ffff)
TP Section (Left):
IP Section (Right:
                                0(000000) -
  IP SNet
                                                12287 (002fff)
             0:(Left.):
            1:(Left): 12288(003000) - 262143(03ffff)

1:(Right): 0 (000000) - 218250 (03548a)

2:(Right): 218251 (03548b) - 255585 (03e661)
  TP SNet.
  IP SNet
  TP SNet.
             3:(Right): 255586 (03e662) - 260725
4:(Right): 260726 (03fa76) - 261503
  IP SNet
                                                           (03fa75)
  TP SNet
                                                           (0.3fd7f)
             5: (Right): 261504 (03fd80) - 261631
6: (Right): 261632 (03fe00) - 261695
  IP SNet
                                                           (03fdff)
             6: Right): 261632 (03fe00) - 261695
7: (Right): 261696 (03fe40) - 261727
8: (Right): 261728 (03fe60) - 261759
  TP SNet.
                                                           (03fe3f)
  IP SNet
                                                            (03fe5f)
  IP SNet
                                                           (03fe7f)
             9:(Right): 261760 (03fe80) - 261791
10:(Right): 261792 (03fea0) - 261807
                                                           (03fe9f)
  IP SNet
  IP SNet 10: (Right): 261792
                                                            (03feaf)
  IP SNet 11: (Right): 261808 (03feb0) - 261823
IP SNet 12: (Right): 261824 (03fec0) - 261839
                                                           (03febf)
  IP SNet 12: (Right): 261824
                                                           (03fecf)
  IP SNet 13:(Right): 261840 (03fed0) - 261855
                                                            (03fedf)
  IP SNet 14: (Right): 261856 (03fee0) - 261871
                                                            (03feef)
                                    (03fef0) - 261887
  IP SNet 15: (Right): 261872
                                                            (03feff)
                                    (03ff00) - 261903
                                                           (03ff0f)
  IP SNet 16: (Right): 261888
  IP SNet 17: (Right): 261904 (03ff10) - 261919
                                                            (03ff1f)
  IP SNet 18: (Right): 261920 (03ff20) - 261935 IP SNet 19: (Right): 261936 (03ff30) - 261951
                                                            (03ff3f)
                                    (03ff40) - 261967
(03ff50) - 261983
  IP SNet 20: (Right): 261952
                                                            (03ff4f)
  IP SNet 21: (Right): 261968
                                                           (03ff5f)
  IP SNet 22: (Right): 261984
                                    (03ff60) - 261999
  IP SNet 23: (Right): 262000 (03ff70) - 262015
                                                           (03ff7f)
  IP SNet 24: (Right): 262016 (03ff80) - 262031
IP SNet 25: (Right): 262032 (03ff90) - 262047
                                                           (03ff8f)
                                    (03ffa0) - 262063
     SNet 26: (Right): 262048
                                                           (03ffaf)
  IP SNet 27: (Right): 262064 (03ffb0) - 262079
                                                           (03ffbf)
  IP SNet 28: (Right): 262080 (03ffc0) - 262095
IP SNet 29: (Right): 262096 (03ffd0) - 262111
                                                           (03ffcf)
                                                           (03ffdf)
  IP SNet 30:(Right): 262112 (03ffe0) - 262127 IP SNet 31:(Right): 262128 (03fff0) - 262143
                                                            (03ffef)
                                    (03fff0) - 262143 (03ffff)
                    : 262144 (040000) - 393215 (05ffff)
TPV6 Section
  IPV6 SNet 0: 262144 (040000) - 274431 (042fff)
                1: 274432
                             (043000) - 381927
  IPV6 SNet
                                                    (05d3e7)
                2: 381928
                             (05d3e8) - 391259 (05f85b)
  TPV6 SNet.
                3: 391260
4: 392544
                             (05f85c) - 392543 (05fd5f)
  IPV6 SNet
                             (05fd60) - 392927
  TPV6 SNet
                                                   (05fedf)
  IPV6 SNet
                5: 392928
                             (05fee0) - 393055 (05ff5f)
                             (05ff60) - 393119
                6: 393056
  IPV6 SNet
                                                   (05ff9f)
                             (05ffa0) - 393151
  IPV6 SNet
                7: 393120
                                                    (0.5ffhf)
                8: 393152
                             (05ffc0) - 393183 (05ffdf)
  TPV6 SNet.
IPV6 SNet 9: 393184 IP VPN Section: 393216
                             (05ffe0) - 393215
                                                   (05ffff)
                            (060000) - 524287 (07ffff)
  IP VPN SNet 0: 393216 (060000) - 395263 (0607ff)
                  1: 395264 (060800) - 512149 (07d095)
  IP VPN SNet
  IP VPN SNet 2: 512150 (07d096) - 521482 (07f50a)
```

```
IP VPN SNet 3: 521483 (07f50b) - 522767 (07fa0f)
  IP VPN SNet 4: 522768 (07fal0) - 523151 (07fb8f)
IP VPN SNet 5: 523152 (07fb90) - 523279 (07fc0f)
  IP VPN SNet 6: 523280 (07fc10) - 523343 (07fc4f)
                 7: 523344 (07fc50) - 523375 (07fc6f)
  TP VPN SNet
  IP VPN SNet 8: 523376 (07fc70) - 523407 (07fc8f)
                 9: 523408 (07fc90) - 523439 (07fcaf)
  TP VPN SNet
  IP VPN SNet 10: 523440 (07fcb0) - 523455 (07fcbf)
  IP VPN SNet 11: 523456 (07fcc0) - 523471 (07fccf)
  IP VPN SNet 12: 523472 (07fcd0) - 523487 (07fcdf)
  IP VPN SNet 13: 523488 (07fce0) - 523503 (07fcef)
  IP VPN SNet 14: 523504 (07fcf0) - 523519 (07fcff)
  IP VPN SNet 15: 523520 (07fd00) - 523535 (07fd0f)
  IP VPN SNet 16: 523536 (07fd10) - 523551 (07fd1f)
  IP VPN SNet 17: 523552 (07fd20) - 523567 (07fd2f)
  IP VPN SNet 18: 523568 (07fd30) - 523583 (07fd3f)
  IP VPN SNet 19: 523584 (07fd40) - 523599 (07fd4f)
  IP VPN SNet 20: 523600 (07fd50) - 523615 (07fd5f)
  IP VPN SNet 21: 523616 (07fd60) - 523631 (07fd6f)
  IP VPN SNet 22: 523632 (07fd70) - 523647 (07fd7f)
  IP VPN SNet 23: 523648 (07fd80) - 523663 (07fd8f)
  IP VPN SNet 24: 523664 (07fd90) - 523679 (07fd9f)
  IP VPN SNet 25: 523680 (07fda0) - 523695 (07fdaf)
  IP VPN SNet 26: 523696 (07fdb0) - 523711 (07fdbf)
  IP VPN SNet 27: 523712 (07fdc0) - 523727 (07fdcf)
  IP VPN SNet 28: 523728 (07fdd0) - 523743 (07fddf)
  IP VPN SNet 29: 523744 (07fde0) - 523759 (07fdef)
  IP VPN SNet 30: 523760 (07fdf0) - 523775 (07fdff)
  IP VPN SNet 31: 523776 (07fe00) - 524287 (07ffff)
                  : 524288 (080000) - 655359 (09ffff)
MAC Section
  MAC Forwarding: 524288 (080000) - 655317 (09ffd5)
MAC Flooding : 655318 (09ffd6) - 655327 (09ffdf)
Misc Protocol : 655350 (09fff6) - 655381 (0a0015)
Session Section: 655360 (0a0000) - 753663 (0b7fff)
IP Multicast : 655360 (0a0000) - 671743 (0a3fff)
Broadcast ACL : 673792 (0a4800) - 675839 (0a4fff)
  Receive ACL
                  : 671744 (0a4000) - 673791 (0a47ff)
Rule-based ACL: 673792 (0a4800) - 753663 (0b7fff)
IPv6 Session Sec: 753664 (0b8000) - 786431 (0bffff)
                             (0b8000) - 770047
  IP Multicast : 753664
                                                 (0bbfff)
                  : 770048 (0bc000) - 770559 (0bc1ff)
  Receive ACL
  Rule-based ACL: 770560 (0bc200) - 786431 (0bffff)
                  : 786432 (0c0000) - 983039 (0effff)
Out Session
Out IPv6 Session: 983040 (0f0000) - 104857 (0fffff)
```

#### Syntax: show cam-partition

The output displays the CAM partitioning profile name, slot number, number of CAM device, and total CAM size. It also displays the raw size, user size, and reserved size for each of the CAM sub-partitions.

In Algorithmic mode, the subpartitions and subnets for IP, IP VPN, IPv6, and IPv6 VPN are not displayed in the output of the **show cam-partition** command.

```
device# show cam-partition
CAM partitioning profile: default

XPP100GEXE 0:
# of CAM device = 1
Total CAM Size = 4456448 entries (340Mbits)

MAC: Raw Size 229376, User Size 229376(0 reserved)
Subpartition 0: Raw Size 4, User Size 4, (0 reserved)
Subpartition 1: Raw Size 8, User Size 8, (0 reserved)
Subpartition 2: Raw Size 229354, User Size 229354, (0 reserved)
Subpartition 3: Raw Size 10, User Size 10, (0 reserved)
Subpartition 0: Raw Size 10, User Size 10, (0 reserved)
Subpartition 1: Raw Size 0, User Size 0, (0 reserved)
Subpartition 1: Raw Size 0, User Size 0, (0 reserved)
Subpartition 2: Raw Size 276480, User Size 138240, (0 reserved)
Subpartition 3: Raw Size 0, User Size 0, (0 reserved)
Subpartition 3: Raw Size 0, User Size 0, (0 reserved)
Subpartition 4: Raw Size 2048, User Size 1024, (0 reserved)
```

```
Subpartition 5: Raw Size 16384, User Size 8192, (0 reserved)
  Subpartition 6: Raw Size 0, User Size 0, (0 reserved) Subpartition 7: Raw Size 0, User Size 0, (0 reserved)
  Subpartition 8: Raw Size 0, User Size 0, (0 reserved)
  Subpartition
                    9: Raw Size 0, User Size 0, (0 reserved)
   Subpartition 10: Raw Size 0, User Size 0, (0 reserved)
  Subpartition 11: Raw Size 0, User Size 0, (0 reserved)
IPv6 Session: Raw Size 98304, User Size 12288(0 reserved)
  Subpartition 0: Raw Size 81920, User Size 10240, (0 reserved)
   Subpartition
                    1: Raw Size 0, User Size 0, (0 reserved)
                    2: Raw Size 16384, User Size 2048, (0 reserved)
   Subpartition
  Subpartition
                    3: Raw Size 0, User Size 0, (0 reserved)
  Subpartition 4: Raw Size 0, User Size 0, (0 reserved) Subpartition 5: Raw Size 0, User Size 0, (0 reserved)
  Subpartition 6: Raw Size 0, User Size 0, (0 reserved)
Out Session: Raw Size 98304, User Size 49152(0 reserved)
Out IPv6 Session: Raw Size 32768, User Size 4096(0 reserved)
Internal Forwarding Lookup: Raw Size 131072, User Size 131072(0 reserved)
  Subpartition 0: Raw Size 131071, User Size 131071, (0 reserved)
  Subpartition 1: Raw Size 1, User Size 1, (0 reserved)
IP: Raw Size 1458176, User Size 1458176(0 reserved)
IP VPN Raw Size 622592, User Size 622592(0 reserved)
IPv6: Raw Size 425984, User Size 425984(0 reserved)
                    : 163840 (028000) - 393215 (05ffff)
MAC Section
  Misc Protocol: 163840 (028000) - 163849 (028009)
  MAC Forwarding: 163840 (028000) - 163849 (028009)
  MAC Forwarding: 163840 (028000) - 163849 (028009)
PORT BUM RL : 163840 (028000) - 163849 (028009)
Misc Protocol : 163850 (02800a) - 393203 (05fff3)
MAC Forwarding: 163850 (02800a) - 393203 (05fff3)
  MAC Flooding : 163850 (02800a) - 393203 (05fff3)
  PORT BUM RL : 163850 (02800a) - 393203 (05fff3)
Misc Protocol : 393204 (05fff4) - 393211 (05fffb)
MAC Forwarding: 393204 (05fff4) - 393211 (05fffb)
  MAC Flooding : 393204 (05fff4) - 393211 (05fffb)
PORT BUM RL : 393204 (05fff4) - 393211 (05fffb)
  Misc Protocol: 393212 (05fffc) - 393215 (05ffff)
  MAC Forwarding: 393212 (05fffc) - 393215 (05ffff)
MAC Flooding: 393212 (05fffc) - 393215 (05ffff)
PORT BUM RL: 393212 (05fffc) - 393215 (05ffff)
Session Section: 393216 (060000) - 688127 (0a7fff)
  Rule-based ACL : 411648 (064800) - 688127 (0a7fff)
Receive ACL : 409600 (064000) - 411647 (0647ff)
                               : 393216 (060000) - 409599 (063fff)
  IP Multicast
IPv6 Session Sec: 688128 (0a8000) - 786431 (0bffff)
  IP Multicast : 688128 (0a8000) - 704511 (0abfff)
                    : 688128 (0a8000) - 704511 (0abfff)
  Receive ACL
  Rule-based ACL: 688128 (0a8000) - 704511 (0abfff)
  TP Multicast : 704512 (0ac000) - 786431 (0bffff)
Receive ACL : 704512 (0ac000) - 786431 (0bffff)
Rule-based ACL: 704512 (0ac000) - 786431 (0bffff)
                   : 786432 (0c0000) - 884735 (0d7fff)
Out Session
Out IPv6 Session: 884736 (0d8000) - 917503 (0dffff)
Internal Forward: 917504 (0e0000) - 104857 (0fffff)
               : 104857 (Offfff) - 104857 (Offffff)
  IFL Main
  IFL Openflow C: 104857 (Offfff) - 104857 (Offfff)
                    : 917504 (0e0000) - 104857 (0ffffe)
  IFL Main
  IFL Openflow C: 917504 (0e0000) - 104857 (0ffffe)
```

```
IP Section(Left): 104857 (100000) - 250675 (263fff)
IP VPN Section: 250675 (264000) - 312934 (2fbfff)
IPV6 Section : 312934 (2fc000) - 355532 (363fff)
XPP100GEXE 1:
# of CAM device
                                               = 1
Total CAM Size
                                               = 4456448 entries (340Mbits)
MAC: Raw Size 229376, User Size 229376(0 reserved)
   Subpartition 0: Raw Size 4, User Size 4, (0 reserved)
   Subpartition 1: Raw Size 8, User Size 8, (0 reserved)
   Subpartition 2: Raw Size 229354, User Size 229354, (0 reserved) Subpartition 3: Raw Size 10, User Size 10, (0 reserved)
Session: Raw Size 294912, User Size 147456(0 reserved)
   Subpartition 0: Raw Size 0, User Size 0, (0 reserved)
Subpartition 1: Raw Size 0, User Size 0, (0 reserved)
Subpartition 2: Raw Size 276480, User Size 138240, (0 reserved)
   Subpartition 3: Raw Size 0, User Size 0, (0 reserved)
Subpartition 4: Raw Size 2048, User Size 1024, (0 reserved)
   Subpartition 5: Raw Size 16384, User Size 8192, (0 reserved)
   Subpartition 6: Raw Size 0, User Size 0, (0 reserved)
   Subpartition 7: Raw Size 0, User Size 0, (0 reserved) Subpartition 8: Raw Size 0, User Size 0, (0 reserved)
   Subpartition 9: Raw Size 0, User Size 0, (0 reserved)
Subpartition 10: Raw Size 0, User Size 0, (0 reserved)
   Subpartition 11: Raw Size 0, User Size 0, (0 reserved)
IPv6 Session: Raw Size 98304, User Size 12288(0 reserved)
  Subpartition 0: Raw Size 81920, User Size 10240, (0 reserved)
   Subpartition 1: Raw Size 0, User Size 0, (0 reserved)
   Subpartition 2: Raw Size 16384, User Size 2048, (0 reserved)
   Subpartition 3: Raw Size 0, User Size 0, (0 reserved) Subpartition 4: Raw Size 0, User Size 0, (0 reserved)
   Subpartition 5: Raw Size 0, User Size 0, (0 reserved) Subpartition 6: Raw Size 0, User Size 0, (0 reserved)
Out Session: Raw Size 98304, User Size 49152(0 reserved)
Out IPv6 Session: Raw Size 32768, User Size 4096(0 reserved)
Internal Forwarding Lookup: Raw Size 131072, User Size 131072(0 reserved)
   Subpartition 0: Raw Size 131071, User Size 131071, (0 reserved)
   Subpartition 1: Raw Size 1, User Size 1, (0 reserved)
IP: Raw Size 1458176, User Size 1458176(0 reserved)
IP VPN Raw Size 622592, User Size 622592(0 reserved)
IPv6: Raw Size 425984, User Size 425984(0 reserved)
  AC Section : 163840 (028000) - 393215 (05ffff)
Misc Protocol : 163840 (028000) - 163849 (028009)
MAC Section
   MAC Forwarding: 163840 (028000) - 163849 (028009)
MAC Flooding: 163840 (028000) - 163849 (028009)
PORT BUM RL: 163840 (028000) - 163849 (028009)
   Misc Protocol: 163850 (02800a) - 393203 (05fff3)
  MAC Flooding: 163850 (02800a) - 393203 (05fff3)
MAC Flooding: 163850 (02800a) - 393203 (05fff3)
PORT BUM RL: 163850 (02800a) - 393203 (05fff3)
Misc Protocol: 393204 (05fff4) - 393211 (05fffb)
  MAC Flooding: 393204 (05fff4) - 393211 (05fffb)
MAC Flooding: 393204 (05fff4) - 393211 (05fffb)
PORT BUM RL: 393204 (05fff4) - 393211 (05fffb)
Misc Protocol: 393212 (05fffc) - 393215 (05ffff)
  MAC Flooding: 393212 (05fffc) - 393215 (05ffff)
MAC Flooding: 393212 (05fffc) - 393215 (05ffff)
PORT BUM RL: 393212 (05fffc) - 393215 (05ffff)
```

```
Session Section : 393216 (060000) - 688127 (0a7fff)
  Rule-based ACL : 411648 (064800) - 688127 (0a7fff)
Receive ACL : 409600 (064000) - 411647 (0647ff)
IP Multicast : 393216 (060000) - 409599 (063fff)
                              : 393216 (060000) - 409599 (063fff)
  IP Multicast
IPv6 Session Sec: 688128 (0a8000) - 786431 (0bffff)
IP Multicast : 688128 (0a8000) - 704511 (0abfff)
Receive ACL : 688128 (0a8000) - 704511 (0abfff)
  Rule-based ACL: 688128 (0a8000) - 704511 (0abfff)
IP Multicast : 704512 (0ac000) - 786431 (0bffff)
Receive ACL : 704512 (0ac000) - 786431 (0bffff)
  Rule-based ACL: 704512 (0ac000) - 786431 (0bffff)
Out Session
                   : 786432 (0c0000) - 884735 (0d7fff)
Out IPv6 Session: 884736 (0d8000) - 917503 (0dffff)
Internal Forward: 917504 (0e0000) - 104857 (0fffff)
                   : 104857 (Offffff) - 104857 (Offffff)
  IFL Main
  IFL Openflow C: 104857 (Offfff) - 104857
                     : 917504 (0e0000) - 104857 (0ffffe)
  IFL Main
  IFL Openflow C: 917504 (0e0000) - 104857 (0ffffe)
IP Section(Left): 104857 (100000) - 250675 (263fff)
IP VPN Section: 250675 (264000) - 312934 (2fbfff)
                   : 312934 (2fc000) - 355532 (363fff)
IPV6 Section
```

Table 55 describes the output parameters of the **show cam-partition** command.

TABLE 55 Output parameters of the show cam-partition command

| Field                    | Description                                                                                                                                                                                                        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAM partitioning profile | Shows the CAM profile name.                                                                                                                                                                                        |
| Slot                     | Shows the slot number.                                                                                                                                                                                             |
| # of CAM device          | Shows the number of the CAM device.                                                                                                                                                                                |
| Total CAM Size           | Shows the total available CAM size.                                                                                                                                                                                |
| Raw Size                 | Shows the value double that of the CAM partition standard entry count. A standard entry contains 64 bits for the data and 64 bits for the mask. The raw size may cover invalid entries.                            |
| User Size                | Shows the actual number of entries that the application can use. For a 128-bit application, such as Layer 4 ACL and IPV6, two standard entries equal one user entry. The user size may also cover invalid entries. |
| reserved                 | Shows the number of entries not usable in a specific sub-partition.                                                                                                                                                |
| IP                       | Shows the raw size, user size, and reserved size for the IP CAM partition and its subpartitions. In Algorithmic mode, subpartitions are not displayed.                                                             |
| IPv6                     | Shows the raw size, user size, and reserved size for the IPv6 CAM partition and its subpartitions. In Algorithmic mode, subpartitions are not displayed.                                                           |

 TABLE 55
 Output parameters of the show cam-partition command (Continued)

| Field            | Description                                                                                                                                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IP VPN           | Shows the raw size, user size, and reserved size for the IP VPN CAM partition and its subpartitions. In Algorithmic mode, subpartitions are not displayed. |
| MAC              | Shows the raw size, user size, and reserved size for the MAC CAM partition and its subpartitions.                                                          |
| Session          | Shows the raw size, user size, and reserved size for the session CAM partition and its subpartitions.                                                      |
| IPv6 Session     | Shows the raw size, user size, and reserved size for the IPv6 session CAM partition and its subpartitions.                                                 |
| Out Session      | Shows the raw size, user size, and reserved size for the out session CAM partition and its subpartitions.                                                  |
| Out IPv6 Session | Shows the raw size, user size, and reserved size for the out IPv6 session CAM partition and its subpartitions.                                             |
| IP Section       | Shows the CAM partition size of the IP section and its subnets. In Algorithmic mode, subnets are not displayed.                                            |
| IPv6 Section     | Shows the CAM partition size of the IPv6 section and its subnets. In Algorithmic mode, subnets are not displayed.                                          |
| IP VPN Section   | Shows the CAM partition size of the IP VPN section and its subnets. In Algorithmic mode, subnets are not displayed.                                        |
| MAC Section      | Shows the CAM partition size of the MAC section.                                                                                                           |
| MAC Forwarding   | Shows the CAM partition size of the MAC forwarding section.                                                                                                |
| MAC Flooding     | Shows the CAM partition size of the MAC flooding section.                                                                                                  |
| Misc Protocol    | Shows the CAM partition size of the miscellaneous protocol section.                                                                                        |
| Session Section  | Shows the CAM partition size of the session section.                                                                                                       |
| IP Multicast     | Shows the CAM partition size of the IP multicast ACL.                                                                                                      |
| Broadcast ACL    | Shows the CAM partition size of the IP broadcast ACL.                                                                                                      |
| Receive ACL      | Shows the CAM partition size of the IP receive ACL.                                                                                                        |
| Rule-based ACL   | Shows the CAM partition size of the rule-based ACL.                                                                                                        |
| IPv6 Session Sec | Shows the CAM partition size of the IPv6 session section.                                                                                                  |
|                  |                                                                                                                                                            |

### **Displaying CAM Partition for IPv6 VPN**

The IPv6 VPN CAM partition is created when multi-service-3 or multi-service-4 CAM profile is configured. The IPv6 VPN CAM partition contains 10 sub partitions. The sub-partition is allocated with a fixed size, but can be dynamically changed. If the size of sub-partition is dynamically changed, the output from the **show cam-partition** command is affected. The following example displays information about IPv6 VPN CAM partition when the current CAM profile is multi-service-3:

```
device# show cam-partition
CAM partitioning profile: multi-service-3
Slot 1 XPP20SP 0:
# of CAM device
                                = 917504 entries (63Mbits)
Total CAM Size
IPv6 VPN: Raw Size 131072, User Size 65536(0 reserved)
  Subpartition 0: Raw Size 2048, User Size 1024, (0 reserved)
  Subpartition 1: Raw Size 117734, User Size 58867, (0 reserved)
 Subpartition 2: Raw Size 9333, User Size 4666, (0 reserved) Subpartition 3: Raw Size 1285, User Size 642, (0 reserved)
 Subpartition 4: Raw Size 384, User Size 192, (0 reserved)
Slot 1 XPP20SP 0:
IPv6 VPN Section: 524288 (080000) - 655359 (09ffff)
 IPV6 VPN SNet 0: 524288 (080000) - 526335 (0807ff)
  IPV6 VPN SNet 1: 526336 (080800) - 644069
 IPV6 VPN SNet 2: 644070 (09d3e6) - 653402
  IPV6 VPN SNet 3: 653403 (09f85b) - 654687
 IPV6 VPN SNet 4: 654688 (09fd60) - 655071 (09fedf)
  IPV6 VPN SNet
                 5: 655072
                            (09fee0) - 655199 (09ff5f)
 IPV6 VPN SNet 6: 655200 (09ff60) - 655263 (09ff9f)
                 7: 655264 (09ffa0) - 655295 (09ffbf)
 IPV6 VPN SNet
 IPV6 VPN SNet 8: 655296 (09ffc0) - 655327
                                               (09ffdf)
  IPV6 VPN SNet 9: 655328 (09ffe0) - 655359 (09ffff)
```

#### **NOTE**

In Algorithmic mode, the subpartitions and subnets are not displayed in the output of the **show campartition** command.

# Output from show CAM partition usage command

The **show cam-partition usage** command shows the CAM size available per partition, the amount free, and the percent used. This information is shown here for slot 1.

```
device# show cam-partition usage
CAM partitioning profile: multi-service-3
Slot 1 XPP20SP 0:
Slot 1 XPP20SP 0:
            [IP]262144(size), 262129(free), 00.00%(used)
        :SNet 0: 2048(size),
                                 2036(free), 00.58%(used)
        :SNet 1:237830(size), 237828(free), 00.00%(used)
        :SNet 2: 18667(size), 18667(free), 00.00%(used)
        :SNet 3: 2570(size),
                                 2570(free), 00.00%(used)
        :SNet 4:
                   389(size),
                                   389(free), 00.00%(used)
                   128 (size),
                                  128(free), 00.00%(used)
        :SNet 5:
        :SNet 6:
                    64(size),
                                   64(free), 00.00%(used)
                     32(size),
                                    32(free), 00.00%(used)
        :SNet 7:
                                    32(free), 00.00%(used)
        :SNet 8:
                     32 (size),
                     32(size),
                                    32(free), 00.00%(used)
        :SNet 9:
       :SNet 10:
                    16(size),
                                    16(free), 00.00%(used)
       :SNet 11:
                     16(size),
                                    16(free), 00.00%(used)
                                    16(free), 00.00%(used)
       :SNet 12:
                     16(size),
       :SNet 13:
                    16(size),
                                   16(free), 00.00%(used)
                                   16(free), 00.00%(used)
16(free), 00.00%(used)
16(free), 00.00%(used)
                      16(size),
         :SNet 14:
                     16(size),
       :SNet 15:
       :SNet 16:
                    16(size).
```

```
:SNet 17:
                    16(size),
                                    16(free), 00.00%(used)
     :SNet 18:
                                     16(free), 00.00%(used)
                    16(size),
                                     16(free), 00.00%(used)
                    16(size),
                    16(size),
                                     16(free), 00.00%(used)
     :SNet 20:
     :SNet 21:
                    16(size),
                                     16(free), 00.00%(used)
                                     16(free), 00.00%(used)
     :SNet 22:
                    16(size),
     :SNet 23:
                    16(size),
                                     16(free), 00.00%(used)
     :SNet 24:
                    16(size),
                                     16(free), 00.00%(used)
     :SNet 25:
                    16(size),
                                     16(free), 00.00%(used)
     :SNet 26:
                    16(size),
                                     16(free), 00.00%(used)
     :SNet 27:
                    16(size),
                                     16(free), 00.00%(used)
                                     16(free), 00.00%(used)
16(free), 00.00%(used)
     :SNet 28:
                    16(size),
     :SNet 29:
                    16(size),
     :SNet 30:
:SNet 31:
                                     16(free), 00.00%(used)
15(free), 06.25%(used)
                    16(size),
                    16(size),
         [IPV6] 32768(size), 32762(free), 00.01%(used)
       :SNet 0:
                  1024(size),
                                  1022(free), 00.19%(used)
                                 28754(free), 00.00%(used)
2332(free), 00.00%(used)
      :SNet 1: 28756(size),
      :SNet 2:
                 2332(size),
                                    320(free), 00.00%(used)
192(free), 00.00%(used)
      :SNet 3:
                   320(size),
      :SNet 4:
                   192 (size),
                                    64(free), 00.00%(used)
32(free), 00.00%(used)
      :SNet 5:
                    64(size),
      :SNet 6:
                    32(size),
                                     16(free), 00.00% (used)
15(free), 06.25% (used)
      :SNet 7:
                    16(size),
      :SNet 8:
                    16(size),
      :SNet 9: 16(size), 15(free), 06.25% (used) [IP VPN]196608(size), 196532(free), 00.03% (used) :SNet 0: 2048(size), 1999(free), 02.39% (used)
      :SNet 0: 2048(size),
      :SNet 1:177113(size), 177086(free), 00.01%(used)
      :SNet 2: 14000(size), 14000(free), 00.00%(used)
      :SNet 3: 1927(size),
                                 1927(free), 00.00%(used)
      :SNet 4:
                   384(size),
                                    384(free), 00.00%(used)
                   128(size),
      :SNet 5:
                                    128(free), 00.00%(used)
      :SNet 6:
                                     64(free), 00.00%(used)
                    64(size),
       :SNet 7:
                                     32(free), 00.00%(used)
                    32(size),
32(size),
      :SNet 8:
                                     32(free), 00.00%(used)
                                     32(free), 00.00%(used)
      :SNet 9:
                    32(size),
     :SNet 10:
                    16(size),
                                     16(free), 00.00%(used)
                                     16(free), 00.00%(used)
     :SNet 11:
                    16(size),
     :SNet 12:
                    16(size),
                                     16(free), 00.00%(used)
                                     16(free), 00.00%(used)
16(free), 00.00%(used)
     :SNet 13:
                    16(size),
     :SNet 14:
                    16(size),
     :SNet 15:
                    16(size),
                                     16(free), 00.00%(used)
     :SNet 16:
                    16(size),
                                     16(free), 00.00%(used)
                                     16(free), 00.00%(used)
16(free), 00.00%(used)
     :SNet 17:
                    16(size),
     :SNet 18:
                    16(size),
                                     16(free), 00.00%(used)
16(free), 00.00%(used)
     :SNet 19:
                    16(size),
     :SNet 20:
                    16(size),
     :SNet 21:
                    16(size),
                                    16(free), 00.00%(used)
     :SNet 22:
                    16(size),
                                     16(free), 00.00%(used)
                                    16(free), 00.00%(used)
16(free), 00.00%(used)
     :SNet 23:
                    16(size),
     :SNet 24:
                    16(size),
                                    16(free), 00.00%(used)
16(free), 00.00%(used)
     :SNet 25:
                    16(size),
     :SNet 26:
                    16(size),
      :SNet 27:
                                     16(free), 00.00%(used)
                     16(size),
                                    16(free), 00.00% (used)
16(free), 00.00% (used)
16(free), 00.00% (used)
                    16(size),
     :SNet 28:
     :SNet 29:
                    16(size),
     :SNet 30:
                    16(size),
          th 31: 512(size), 512(free), 00.00%(used)
[MAC]131072(size), 131061(free), 00.00%(used)
ocol: 10(size), 6(free), 40.00%(used)
     :SNet 31:
 [IPV6 VPN] 65536(size),
                                     15(free), 99.97%(used)
                                   0(free), 100.00%(used)
       :SNet 0:
                    20(size),
      :SNet 1: 65500(size),
                                     0(free), 100.00%(used)
      :SNet 2:
                                      2(free), 00.00%(used)
                     2(size),
                                      2(free), 00.00%(used)
       :SNet 3:
                      2(size),
      :SNet 4:
                      2(size),
                                      2(free), 00.00%(used)
                                      2(free), 00.00%(used)
      :SNet 5:
                      2(size),
                                      2(free), 00.00%(used)
      :SNet 6:
                      2(size),
                                      2(free), 00.00%(used)
       :SNet 7:
                      2(size),
                                      1(free), 50.00%(used)
      :SNet 8:
                      2(size),
                                      2(free), 00.00%(used)
      :SNet 9:
                      2(size),
                                 32767(free), 00.00%(used)
     [Session] 32768(size),
:IP Multicast: 8192(size),
                                 8192(free), 00.00%(used)
                                 1023(free), 00.09%(used)
23552(free), 00.00%(used)
 :Receive ACL:
                  1024(size),
    :Rule ACL: 23552(size),
```

```
:IP Source Guard Permit: 0(size), 0(free), 00.00%(used)
:IP Source Guard Denial: 0(size), 0(free), 00.00%(used)
[IPV6 Session] 8192(size), 8192(free), 00.00%(used)
:IP Multicast: 2048(size), 2048(free), 00.00%(used)
:Receive ACL: 0(size), 0(free), 00.00%(used)
:Rule ACL: 6144(size), 6144(free), 00.00%(used)
[Internal Forwarding Lookup] 8192(size), 8185(free), 00.08%(used)
[Out V6 Session] 8192(size), 8192(free), 00.00%(used)
```

The type of CAM partitioning profile configured is displayed in the "CAM partitioning profile line. The "multi-service-3" or "multi-service-4" profile indicates that the system will allocate a partition for IPV6 VPN.

The output displays the size of the available CAM, amount of CAM currently free, and what percentage of the available CAM is used currently.

(size): The effective user size obtained by subtracting the reserved size from the user size.

(free ): The amount of CAM currently available.

(used ): The percentage of CAM currently being used.

In Algorithmic mode, the subnets of IP, IP VPN, IPv5, and IPv6 VPN are not displayed in the output of the **show cam-partition usage** command.

```
device# show cam-partition usage
CAM partitioning profile: default
XPP100GEXE 0:
               [MAC] 229376(size), 229371(free), 0.0%(used)
     :Protocol: 10(size), 5(free), 50. 0%(used)
:Forwarding: 229354(size), 229354(free), 0. 0%(used)
:Flooding: 8(size), 8(free), 0. 0%(used)
:Port BUM RL: 4(size), 4(free), 0. 0%(used)
                                                               0. 0%(used)
    :Port BUM RL:
         [Session] 147456(size), 147455(free),
                                                                 0. 0% (used)
   :IP Source Guard Denial: 0(size),
:IP Source Guard Permit: 0(size),
                                                               0(free), 0.0%(used)
                                                               0(free),
                                                                                0.0% (used)
             rce Guard Permit: 0(size), 0(free),
:Rule-based ACL: 138240(size), 138240(free),
:Broadcast ACL: 0(size), 0(free),
:Receive ACL: 1024(size), 1023(free),
:IP Multicast: 8192(size), 8192(free),
:IP Multicast 1G: 0(size), 0(free),
IP Multicast 2GM: 0(size), 0(free),
en Flow CatchAll: 0(size), 0(free),
Plow UnProtected: 0(size), 0(free),
Deen Flow Normal: 0(size), 0(free),
n Flow Protected: 0(size), 0(free),
n Flow Protected: 0(size), 0(free),
                                                                                0.0%(used)
                                                                                0.0% (used)
                                                                                0.9% (used)
                                                                                0. 0% (used)
            :IP Multicast 1G:
                                                                                0.0% (used)
                                                                                0.0%(used)
           :IP Multicast 2GM:
        :Open Flow CatchAll:
                                                                                0. 0% (used)
                                                                                0. 0% (used)
    :Open Flow UnProtected:
           :Open Flow Normal:
                                                                                0. 0% (used)
       :Open Flow Protected:
                                           0(size),
                                                               0(free),
                                                                                0. 0% (used)
                               8(size), 12288(free), 0.0%(used)
:Rule ACL: 10240(size), 10240(free),
   [IPV6 Session] 12288(size),
                                                                                         0. 0% (used)
                            :Receive ACL:
                                                     0(size),
                                                                         0(free),
                                                                                         0. 0% (used)
                                                 2048(size),
                                                                      2048(free),
                       :IPv6 Multicast:
                                                                                         0. 0% (used)
                                                                   0(free),
0(free),
       :IPv6 Open Flow UnProtected:
           :IPv6 Open Flow CatchAll:
                                                     0(size),
                                                                                         0. 0% (used)
                                                     0(size),
                                                                                        0.0%(used)
                                                                          0(free),
              :IPv6 Open Flow Normal:
                                                     0(size),
                                                                                         0. 0% (used)
0. 0% (used)
          :IPv6 Open Flow Protected:
                                                     O(size).
                                                                          0(free).
    [Out Session] 49152(size), 49152(free), 0.0%(used)
[Out V6 Session] 4096(size),
                                              4096(free), 0.0%(used)
0. 0% (used)
                                                                                  0. 0% (used)
       :IFL Openflow CatchAll:
                                              1(size),
                                                                   1(free),
                                                                                 0. 0% (used)
                [IP]1458176(size), 1458165(free), 0.0%(used)
           [IP VPN] 622592(size), 622592(free),
                                                                 0.0%(used)
```

```
[IPV6] 425984(size), 425982(free),
                                                    0. 0% (used)
XPP100GEXE 1:
            [MAC] 229376(size), 229371(free),
                                                    0.0%(used)
                      10(size),
      :Protocol:
                                       5(free),
                                                   50. 0%(used)
    :Forwarding: 229354(size), 229354(free),
                                                    0.0%(used)
      :Flooding:
                       8(size),
                                       8(free),
                                                    0. 0% (used)
   :Port BUM RL:
                       4(size),
                                        4(free),
                                                    0.0%(used)
       [Session] 147456(size), 147455(free),
                                                   0. 0% (used)
  :IP Source Guard Denial:
                                  0(size),
                                                   0(free),
                                                               0. 0% (used)
  :IP Source Guard Permit:
                                  0(size),
                                                   0(free),
                                                               0. 0% (used)
           :Rule-based ACL: 138240(size), 138240(free),
                                                               0. 0% (used)
            :Broadcast ACL:
                                                  0(free),
                                                               0. 0% (used)
                                  0 (size),
                              1024(size),
                                               1023(free),
              :Receive ACL:
                                                               0. 9% (used)
             :IP Multicast:
                               8192(size),
                                               8192(free),
                                                               0. 0% (used)
          :IP Multicast 1G:
                                 0(size),
                                                   0(free),
                                                               0. 0% (used)
         :IP Multicast 2GM:
                                  0(size),
                                                   0(free),
                                                               0. 0% (used)
      :Open Flow CatchAll:
                                  0(size),
                                                   0(free),
                                                               0. 0% (used)
   :Open Flow UnProtected:
                                  0(size),
                                                   0(free),
                                                               0. 0% (used)
        :Open Flow Normal:
                                  0(size),
                                                   0(free),
                                                               0. 0% (used)
      :Open Flow Protected:
                                  0 (size),
                                                  0(free),
                                                               0. 0% (used)
  [IPV6 Session] 12288(size), 12288(free), :Rule ACL: 10240(size),
                                                  0. 0%(used)
                                                     10240(free),
                                                                      0. 0% (used)
                                                          0(free),
                      :Receive ACL:
                                          0(size),
                                                                      0. 0% (used)
                                                       2048 (free),
                  :IPv6 Multicast:
                                       2048 (size),
                                                                      0. 0% (used)
        :IPv6 Open Flow CatchAll:
                                          0(size),
                                                          0(free),
                                                                      0. 0% (used)
     :IPv6 Open Flow UnProtected:
                                                          0(free),
                                          0(size),
                                                                      0. 0% (used)
                                                                      0. 0% (used)
0. 0% (used)
           :IPv6 Open Flow Normal:
                                                          0(free),
                                          0 (size),
       :IPv6 Open Flow Protected:
                                                          0(free),
                                          0 (size),
   [Out Session] 49152(size),
                                  49152(free),
                                                    0. 0% (used)
                                    4096(free),
                                                    0. 0% (used)
[Out V6 Session]
                   4096(size).
[Internal Forwarding Lookup] 131072(size), 131072(free), :IFL Main: 131071(size), 131071(free),
                                                                 0. 0% (used)
                                                                 0. 0% (used)
     :IFL Openflow CatchAll:
                                    1(size),
                                                     1(free),
                                                                 0.0%(used)
             [IP]1458176(size), 1458165(free),
                                                    0. 0% (used)
        [IP VPN] 622592(size), 622592(free),
                                                    0. 0% (used)
           [IPV6] 425984(size), 425982(free),
                                                    0. 0% (used)
```

Syntax: show cam-partition usage slot slot-number

# **Displaying CAM information**

The following commands display CAM information.

#### Show cam I2vpn

To display all VLL or VPLS MAC entries, including local entries (Port or VLAN or MAC from end points) and remote entries (VC or MAC from VLL or VPLS peers) enter the following command.

```
device# show cam 12vpn 2/1
Slot Index
                                               VC Label Out Port Remote DA/
              MAC
                              Age Port
                                         IFL/
     (Hex)
                                         VLAN
                                                                           SA
                                                                               (Hex)
                                                 74565
     9fff6
             0000.0034.5678
                              Dis
                                         4096
                                                                           DΑ
                                                                                8f
             0000.0034.5566
                             Dis
                                                                                8e
                                   2/2
                                                N/A
                                                           Filter
                                                                           DA
```

Syntax: show cam |2vpns/ot/port | MAC address |

#### Show cam ipvpn

To display IPv4 VPN CAM entries, including local (Port+VLAN+IP) and remote (VC+IP) entries, enter the following command.

Syntax: show cam ipvpns/ot/port [ IP prefix ]

#### Show cam 14

To display all CAM entries on a Layer 4 interface, enter the following command.

```
device# show cam 14 4/1
LP Index Src IP
                        SPort Pro Age IFL/ Out IF Group PRAM
   (Hex) (Dest IP
                                      VLAN Action
                        DPort)
                                                        (Hex)
                              17 Dis 0
                                                  31
  a4000 0.0.0.0
                        0
                                           CPU
                                                        00084
        (10.0.0.0
                       3784 )
                       0
  a4800 0.0.0.0
                              0 Dis 0
                                           Pass
                                                  0
                                                       000c1
  (10.9.4.255
a4802 0.0.0.0
                         0
                       0
                              0 Dis 0
                                                  0
                                                        000c2
                                           Pass
        (10.10.4.255
                     0
                             )
  a4804 0.0.0.0
                              0
                                Dis 0
                                           Pass
                                                  0
                                                        000c3
        (10.33.33.255
                      0
                             )
  a4806 0.0.0.0
                              0
                                                  0
                       0
                                 Dis 0
                                           Pass
                                                        000c4
        (10.10.10.255
                      0
                             )
  a4808 0.0.0.0
                              0
                                Dis 0
                                           Pass
                                                  0
                                                        000c5
        (10.20.20.255 0 )
   a480a 0.0.0.0
                       0
                              0
                                Dis 0
                                           Pass
                                                  0
                                                        000c6
        (10.13.13.255
                      0
                           )
  a480c 0.0.0.0
                       0
                              0
                                Dis 0
                                           Pass
                                                  0
                                                        000c7
        (10.41.41.255
                       0
                             )
  a480e 0.0.0.0
                              0
                                  Dis 0
                                           Pass
                                                  0
                                                        000c8
        (10.21.21.21
                       0
                             )
  a4810 0.0.0.0
(10.55.55.255
                              0
                                  Dis 0
                                           Pass
                                                  0
                                                        000c9
                             )
```

#### Syntax: show cam I4 slot/port

The *slot/port* parameter specifies the port for which you want to display the CAM entries.

Table 56 describes the output parameters of the **show cam I4** slot/port command.

TABLE 56 Output parameters of the show cam I4 command

| Field          | Description                                                 |
|----------------|-------------------------------------------------------------|
| LP             | Shows the number of the interface module.                   |
| Index (Hex)    | Shows the row number of this entry in the IP route table.   |
| Src IP Dest IP | Shows the source IP address and the destination IP address. |
| SPort DPort    | Shows the source port ID and the destination port ID.       |
| Pro            | Shows the type of the protocol (TCP, UDP) used.             |
| Age            | Shows whether the age is enabled or disabled.               |

**TABLE 56** Output parameters of the show cam I4 command (Continued)

| Field         | Description                                   |  |
|---------------|-----------------------------------------------|--|
| IFL/ VLAN     | Shows the VLAN to which the port belongs.     |  |
| Out IF Action | Shows the state of outgoing interface action. |  |
| Group         | Shows the group address.                      |  |
| PRAM (Hex)    | Shows the ACL PRAM entries.                   |  |

#### Show cam label-out

To display Outbound Label ACL CAMs, enter the following command.

```
      device# show
      cam label-out 2/1

      Slot Index
      Port
      Outer Lbl
      Inner Lbl
      MAC
      Action

      2
      0xc0000
      2/1
      1024
      1025
      0000.0034.5678
      Drop

      2
      0xc0002
      2/1
      1027
      1028
      0000.0034.5577
      Drop
```

Syntax: show cam label-out slot/port

#### Show IFL CAM partition

To display information about the IFL CAM partition, enter the following command.

Syntax: show cam ifl slot/port

#### Show CAM IP

To display IP CAM information, enter the following command.

| device# show cam ip 3/1 |           |                   |     |     |      |        |       |
|-------------------------|-----------|-------------------|-----|-----|------|--------|-------|
| LΡ                      | Index     | IP Address        | MAC | Age |      | Out IF | PRAM  |
|                         | (Hex)     |                   |     |     | VLAN |        | (Hex) |
| 3                       | 02fef(L)  | 10.33.32.0/32     | N/A | Dis | N/A  | Drop   | 00094 |
| 3                       | 02ff0(L)  | 10.33.32.255/32   | N/A | Dis | N/A  | Mgmt   | 0009d |
| 3                       | 02ff1(L)  | 10.33.32.1/32     | N/A | Dis | N/A  | Mgmt   | 0009c |
| 3                       | 02ff2(L)  | 10.11.11.0/32     | N/A | Dis | N/A  | Drop   | 00094 |
| 3                       | 02ff3(L)  | 10.11.11.255/32   | N/A | Dis | N/A  | Mgmt   | 0009b |
| 3                       | 02ff4(L)  | 10.11.11.3/32     | N/A | Dis | N/A  | Mamt   | 0009a |
| 3                       | 02ff5(L)  | 10.5.5.5/32       | N/A | Dis | N/A  | Mamt   | 00096 |
| 3                       | 02ff6(L)  | 224.0.0.22/32     | N/A | Dis | N/A  | Mgmt   | 00093 |
| 3                       | 02ff7(L)  | 224.0.0.18/32     | N/A | Dis | N/A  | Mamt   | 00092 |
| 3                       | 02ff8(L)  | 224.0.0.13/32     | N/A | Dis | N/A  | Mamt   | 00091 |
| 3                       | 02ff9(L)  | 224.0.0.9/32      | N/A | Dis | N/A  | Mamt   | 00090 |
| 3                       | 02ffa(L)  | 224.0.0.6/32      | N/A | Dis | N/A  | Mamt   | 0008f |
| 3                       | 02ffb(L)  | 224.0.0.5/32      | N/A | Dis | N/A  | Mamt   | 0008e |
| 3                       | 02ffc(L)  | 224.0.0.4/32      | N/A | Dis | N/A  | Mamt   | 0008d |
| 3                       | 02ffd(L)  | 224.0.0.2/32      | N/A | Dis | N/A  | Mamt   | 0008c |
| 3                       | 02ffe(L)  | 224.0.0.1/32      | N/A | Dis | N/A  | Mamt   | 0008b |
| 3                       | 02fff(L)  | 10.255.255.255/32 | N/A | Dis | N/A  | Mamt   | 0008a |
| 3                       | 35488 (R) | 10.33.32.0/24     | N/A |     | N/A  | CPU    | 0009f |
| 3                       | 35489(R)  | 10.11.11.0/24     | N/A |     | N/A  | CPU    | 0009e |
|                         |           |                   |     |     |      |        |       |

| 3 | 3548a(R) | 10.5.5.5/32 | N/A | Dis N/A | Drop | 00094 |
|---|----------|-------------|-----|---------|------|-------|
| 3 | 3ffff(R) | 0.0.0.0/0   | N/A | Dis N/A | Drop | 00094 |

#### Syntax: show cam ip slot/port

The slot/port parameter specifies the port for which you want to display the CAM entries.

Table 57 describes the output parameters of the **show cam ip** *slot/port* command.

TABLE 57 Output parameters of the show cam ip command

| Field       | Description                                               |  |
|-------------|-----------------------------------------------------------|--|
| LP          | Shows the number of the interface module.                 |  |
| Index (Hex) | Shows the row number of this entry in the IP route table. |  |
| IP Address  | Shows the IP address of the interface.                    |  |
| MAC         | Shows the MAC address of the interface.                   |  |
| Age         | Shows whether the age is enabled or disabled.             |  |
| IFL/ VLAN   | Shows the VLAN to which the port belongs.                 |  |
| Out IF      | Shows the state of outgoing interface action.             |  |
| PRAM (Hex)  | Shows the ACL PRAM entries.                               |  |

#### Show CAM IPv6

To display IPv6 CAM information, enter the following command

```
device# show cam ipv6 3/20
LP Index IPV6 Address MAC Age IFL/ Out IF PRAM (Hex)

VLAN (Hex)

3 22ffc 2001:db8::/128 N/A Dis N/A Mgmt 000dc
3 22ffe 2001:db8::1/128 N/A Dis N/A Mgmt 000db
3 2e8a6 2001:db8::/64 N/A Dis N/A CPU 000dd
3 2ffde fe80::/10 N/A Dis N/A CPU 00086
3 2fffe ::/0 N/A Dis N/A Drop 00085
```

#### Syntax: show cam ipv6 slot/port

The slot/port parameter specifies the port for which you want to display the CAM entries.

Table 58 describes the output parameters of the **show cam ipv6** slot/port command.

**TABLE 58** Output parameters of the show cam ipv6command

| Field       | Description                                               |  |
|-------------|-----------------------------------------------------------|--|
| LP          | Shows the number of the interface module.                 |  |
| Index (Hex) | Shows the row number of this entry in the IP route table. |  |

**TABLE 58** Output parameters of the show cam ipv6command (Continued)

| Field        | Description                                   |  |
|--------------|-----------------------------------------------|--|
| IPV6 Address | Shows the IPv6 address of the interface.      |  |
| MAC          | Shows the MAC address of the interface.       |  |
| Age          | Shows whether the age is enabled or disabled. |  |
| IFL/ VLAN    | Shows the VLAN to which the port belongs.     |  |
| Out IF       | Shows the state of outgoing interface action. |  |
| PRAM (Hex)   | Shows the ACL PRAM entries.                   |  |

# **Displaying IPv6 VPN CAM information**

The **show cam ipv6-vpn** command displays CAM information for an IPv6 VPN CAM entry on a single port, or for all ports on a device. IPv6 VPN CAM contains the destination IPv6 VPN address and layer 3 VPN ID. To display information for an IPv6 VPN CAM entry, enter the following command:

| de | vice# show cam ipv6-vpn 1/1 |        |        |        |
|----|-----------------------------|--------|--------|--------|
| LF | Index IPV6 VPN Address      | MAC    |        | Age    |
|    | (Hex)                       | IFL ID | Out IF | PRAM   |
| 1  | 407f0 2001:db8:1::/128      | N/A    |        | Dis    |
|    |                             | (21847 | Filter | 1d615) |
| 1  | 407f2 2001:db8:2::/128      | N/A    |        | Dis    |
|    |                             | (21846 | Drop   | 5af6d) |

Syntax: show cam ipv6-vpn slot/port

#### Show cam v6acl

The **show cam v6acl** command displays IPv6 ACL CAM sessions configured on the device. The VLAN column is expanded to display either VLAN or IFL ID as shown in the example below:

| device# show cam v6acl 1/1 |                           |  |  |  |
|----------------------------|---------------------------|--|--|--|
| LP Index Src IP Addr       | SPort IFL/VLAN ID         |  |  |  |
| Dst IP Addr                | DPort Pro Age Out IF PRAM |  |  |  |
| 1 74000 2001:db8:1::/64    | 0 536977                  |  |  |  |
| 2001:db8:2::/64            | 0 6 Dis Pass 000a4        |  |  |  |
| 1 74008 2001:db8:1::/64    | 0 536977                  |  |  |  |
| 2001:db8:2::/64            | 0 6 Dis Pass 000a5        |  |  |  |
| 1 74010 2001:db8:1::/64    | 0 536977                  |  |  |  |
| 2001:db8:2::/6             | 0 6 Dis Pass 000a6        |  |  |  |
| 1 74018 2001:db8:1::/64    | 0 536977                  |  |  |  |
| 2001:db8:2::/64            | 0 6 Dis Pass 000a7        |  |  |  |
| 1 74020 2001:db8:1::/64    | 0 536977                  |  |  |  |
| 2001:db8:2::/64            | 0 6 Dis Pass 000a8        |  |  |  |
| 1 74028 2001:db8:1::/64    | 0 536977                  |  |  |  |
|                            |                           |  |  |  |

Syntax: show cam ipv6-vpn slot/port

# Displaying IPv6 host drop CAM limit

Run the **show ipv6** command to display information about the IPv6 host drop CAM limit.

```
device# show ipv6
Global Settings
   IPv6 Router-Id: 10.23.23.1 load-sharing path: 4
   unicast-routing enabled, ipv6 allowed to run, hop-limit 64
   reverse-path-check disabled
   host drop cam limit 5
   urpf-exclude-default disabled
   session-logging-age 5
   No Inbound Access List Set
   No Outbound Access List Set
   source-route disabled, forward-source-route disabled, icmp-redirect disabled
Configured Static Routes: 2
```

Syntax: show ipv6

## **Show IFL CAM ISID partition**

To display information about 802.1AH for ISID, enter the following command:

```
device#show cam ifl-isid 1/1
Slot Index
            Port Outer VLAN Itag ISID PRAM
                                              IFL ID
                                                          IPV4/V6
                                                          Routing
                                        185fe8 1
    0085fe8 1/14
                                                             0/0
    0085fe9 1/13
                                       185fe9 1
                                                             0/1
    0085fea 1/16
                                        185fea
    0085feb 1/15
                                       185feb 1
```

#### Syntax: show cam ifl-isid slot/port

This output includes an IPv4/ IPv6 Routing column. The IPv4/IPv6 Routing column indicates whether IPv4 or IPv6 is enabled or disabled on the interface. The number 1 represents enabled, and the number 0 represents disabled. For example, if 0/0 is displayed, then IPv4/IPv6 is disabled. If 0/1 is displayed, then IPv4 is disabled/ IPv6 is enabled. The IPv4/IPv6 Routing column is also displayed in the output of the **show cam ifl** command and **show cam ifl-mpls** command.

# **Configuring CAM partition size**

When you configure a tftp file size into the device, the device can only perform a parameter check based on the default CAM profile configured. In this situation, it is possible that you have configured a CAM partition size that conflicts with the physical CAM size. The following **system-max** commands may cause a conflict with the physical CAM size:

- system-max
  - ifl-cam
  - ip-source-guard-cam
  - ipv4-mcast-cam
  - ipv6-mcast-cam
  - Isp-out-acl-cam
  - subnet-broadcast-acl-cam
  - receive cam

When you have configured a CAM size that conflicts with the physical CAM size, a partition is created with the maximum possible CAM indices assigned to it. The following Syslog message is generated:

```
device# show log
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
    Buffer logging: level ACDMEINW, 27 messages logged
    level code: A=alert C=critical D=debugging M=emergency E=error
```

```
I=informational N=notification W=warning Dynamic Log Buffer (50 lines): Sep 9 18:48:23:A:CAM IPv6 VPN SNet 9 partition warning: request 32, actual 0, sl ot 1, ppcr 0
```

# **CAM overflow logging**

At system initialization, a threshold value is calculated for each sub-partition. If a partition does not have any sub-partitions, the value is based on the entire partition size. If a partition has movable sub-partition boundaries, the threshold value is also based on the entire partition size. By default, the threshold value is 5% of the total entry count. A minimum logging interval (default of 5 minutes) is also set for each partition to check usage. For example, let us say CAM overflow logging duration was set to 5 minutes and the overflow log is generated during a CAM write at 2:00 pm, then any further CAM writes will not cause an overflow log until 5 minutes have elapsed. So the next CAM overflow logging would occur on a CAM write after 2:05 pm. When the interval elapses, if the number of unused CAM entries drops below the threshold percentage value, a log message is generated during a CAM write.

```
CAM partition <partition name including sub-partition ID if applicable> warning: total <total count> , free <current free count> , slot <1 based slot number> , ppcr <0 based ppcr id>
```

After the log message is generated, the sub-partition time stamp is updated to the current time.

# Configuring minimum logging interval and threshold value

You can configure a minimum logging interval and threshold value for CAM partition logging using the following command.

```
device(config)# cam-partition logging 10% 5
```

Syntax: [no] cam-partition logging thresholdpercentage % | interval in minutes

You can configure the *threshold percentage* % variable to change the threshold value from the default 95%.

The interval in minutes variable allows you to set the minimum logging interval. Default 5 minutes.

#### **NOTE**

Because IP and IPv6 sub-partitions can dynamically grow and shrink, for these partitions, logging is implemented at the entire partition level. An SNMP trap is generated with the logging message.

Configuring minimum logging interval and threshold value

# **Using Syslog**

| Displaying Syslog messages                | 321 |
|-------------------------------------------|-----|
| Configuring the Syslog service            | 328 |
| Syslog messages                           | 338 |
| Syslog messages system                    | 338 |
| Syslog messages security                  | 346 |
| Syslog messages VLAN                      | 349 |
| Syslog messages STP                       | 349 |
| Syslog messages RSTP                      | 351 |
| Syslog messages LAG                       | 352 |
| Syslog messages MRP                       | 352 |
| Syslog messages UDLD                      | 353 |
| Syslog messages VSRP                      | 353 |
| Syslog messages VRRP                      | 353 |
| Syslog messages IP                        | 354 |
| Syslog messages ICMP                      | 354 |
| Syslog messages ACL                       | 355 |
| Syslog messages RACL                      | 358 |
| Syslog messages OSPF                      | 358 |
| Syslog messages OSPFv3                    | 368 |
| Syslog messages IS-IS                     | 377 |
| Syslog messages BGP                       | 383 |
| Syslog messages NTP                       | 385 |
| Syslog messages TCP                       | 385 |
| Syslog messages DOT1X                     | 386 |
| Syslog messages SNMP                      | 388 |
| Syslog messages MPLS                      | 389 |
| Syslog messages VRF                       | 394 |
| Syslog messages                           | 395 |
| Syslog messages BFD                       | 395 |
| Syslog messages Optics                    | 396 |
| Syslog messages LDP                       | 398 |
| Syslog messages DHCP                      | 399 |
| Syslog messages DHCPv6                    | 400 |
| Syslog messages data integrity protection | 400 |
| Syslog messages TCAM In-field soft repair |     |
| Syslog messages NSR                       | 402 |

Table 59 displays the individual Brocade devices and the Syslog features they support.

**TABLE 59** Supported Brocade Syslog features

| <u> </u>                                             |                                               | ,                                   |                                                                          |                                                                       |                                                                       |                                                                          |                                                                                    |
|------------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Features<br>supported                                | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>Netlron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
| Syslog<br>Messages                                   | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Real-Time<br>Display of<br>Syslog<br>Messages        | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| BFD Syslog                                           | Yes                                           | Yes                                 | No                                                                       | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Increased<br>Syslog buffer                           | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| Time Stamps                                          | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Option for Show<br>Log Command                       | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Disabling<br>Logging of a<br>Message Level           | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Interface Name<br>in Syslog<br>Messages              | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| TCP or UDP<br>Port Numbers<br>in Syslog<br>Messages  | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Logging all CLI<br>Commands                          | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| BFD Logging                                          | Yes                                           | Yes                                 | No                                                                       | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Number of<br>Entries the<br>Local Buffer<br>Can Hold | 1-5000                                        | 1-5000                              | 1-5000                                                                   | 1-5000                                                                | 1-5000                                                                | 1-5000                                                                   | 1-5000                                                                             |
| Disabing Syslog for an event                         | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |

This appendix describes how to display Syslog messages and how to configure the Syslog facility, and lists the Syslog messages that a Brocade device can display during standard operation.

#### **NOTE**

This appendix does not list Syslog messages that can be displayed when a debug option is enabled.

A device's software can write syslog messages to provide information at the following severity levels:

- · Emergencies
- Alerts
- Critical
- Errors
- Warnings
- Notifications
- Informational
- Debugging

The device writes the messages to a local buffer, which can hold up to 5000 entries.

You also can specify the IP address or host name of up to six Syslog servers. When you specify a Syslog server, the device writes the messages both to the system log and to the Syslog server.

Using a Syslog server ensures that the messages remain available even after a system reload. The device's local Syslog buffer is cleared during a system reload or reboot, but the Syslog messages sent to the Syslog server remain on the server.

The Syslog service on a Syslog server receives logging messages from applications on the local host or from devices such as a Brocade NetIron MLX Series. Syslog adds a time stamp to each received message and directs messages to a log file. Most Unix workstations come with Syslog configured. Some third party vendor products also provide Syslog running on NT.

Syslog uses UDP port 514 and each Syslog message thus is sent with destination port 514. Each Syslog message is one line with Syslog message format. The message is embedded in the text portion of the Syslog format. There are several subfields in the format. Keywords are used to identify each subfield, and commas are delimiters. The subfield order is insensitive except that the text subfield should be the last field in the message. All the subfields are optional.

## **Displaying Syslog messages**

To display the Syslog messages in the device's local buffer, enter the following command at any level of the CLI.

For information about the Syslog configuration information, time stamps, and dynamic and static buffers, refer to Displaying the Syslog configuration on page 329.

### **Enabling real-time display of Syslog messages**

By default, to view Syslog messages generated by a device, you need to display the Syslog buffer or the log on a Syslog server used by the device.

You can enable real-time display of Syslog messages on the management console. When you enable this feature, the software displays a Syslog message on the management console when the message is generated.

When you enable the feature, the software displays Syslog messages on the serial console when they occur. However, to enable display of real-time Syslog messages in Telnet or SSH sessions, you also must enable display within the individual sessions.

To enable real-time display of Syslog messages, enter the following command at the global CONFIG level of the CLI.

```
device(config) # logging console
```

### Syntax: [no] logging console

This command enables the real-time display of Syslog messages on the serial console. You can enter this command from the serial console or a Telnet or SSH session.

To also enable the real-time display for a Telnet or SSH session, enter the following command from the Privileged EXEC level of the session.

```
telnet@device# terminal monitor
Syslog trace was turned ON
```

#### Syntax: [no] terminal monitor

Notice that the CLI displays a message to indicate the status change for the feature. To disable the feature in the management session, enter the **terminal monitor** command again. The command toggles the feature on and off.

```
telnet@device# terminal monitor
Syslog trace was turned OFF
```

Here is an example of how the Syslog messages are displayed.

```
telnet@device# terminal monitor
Syslog trace was turned ON
SYSLOG: <9>device, Power supply 2, power supply on left connector, failed
SYSLOG: <14>device, Interface ethernet 1/6, state down
SYSLOG: <14>device, Interface ethernet 1/2, state up
```

## **Configuring the Syslog service**

The procedures in this section describe how to perform the following Syslog configuration tasks:

- Specify a Syslog server. You can configure the device to use up to six Syslog servers. (Use of a Syslog server is optional. The system can hold up to 5000 Syslog messages in an internal buffer.)
- · Change the level of messages the system logs.
- Change the number of messages the local Syslog buffer can hold.
- · Display the Syslog configuration.
- · Clear the local Syslog buffer.

Logging is enabled by default, with the following settings:

- · Messages of all severity levels (Emergencies Debugging) are logged.
- By default, up to 50 messages are retained in the local Syslog buffer. This can be changed.
- · No Syslog server is specified.

### **Displaying the Syslog configuration**

To display the Syslog parameters currently in effect on a device, enter the following command from any level of the CLI.

```
device> show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Buffer logging: level ACDMEINW, 3 messages logged
level code: A=alert C=critical D=debugging M=emergency E=error
I=informational N=notification W=warning
Static Log Buffer:
Dec 15 19:04:14:A:Fan 1, fan on right connector, failed
Dynamic Log Buffer (50 entries):
Dec 15 18:46:17:I:Interface ethernet 1/4, state up
Dec 15 18:45:21:I:Bridge topology change, vlan 4095, interface 4, changed state to forwarding
Dec 15 18:45:15:I:Warm start
```

#### Syntax: show logging

The Syslog display shows the following configuration information, in the rows above the log entries themselves.

**TABLE 60** CLI Display of Syslog buffer configuration

| This field       | Displays                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syslog logging   | The state (enabled or disabled) of the Syslog buffer.                                                                                                                                                                                                                                                                                                                                       |
| messages dropped | The number of Syslog messages dropped due to user-configured filters. By default, the software logs messages for all Syslog levels. You can disable individual Syslog levels, in which case the software filters out messages at those levels. Refer to Disabling logging of a message level on page 335. Each time the software filters out a Syslog message, this counter is incremented. |
| flushes          | The number of times the Syslog buffer has been cleared by the <b>clear logging</b> command. refer to Clearing the Syslog messages from the local buffer on page 337.                                                                                                                                                                                                                        |
| overruns         | The number of times the dynamic log buffer has filled up and been cleared to hold new entries. For example, if the buffer is set for 100 entries, the 101st entry causes an overrun. After that, the 201st entry causes a second overrun.                                                                                                                                                   |
| level            | The message levels that are enabled. Each letter represents a message type and is identified by the key (level code) below the value. If you disable logging of a message level, the code for that level is not listed.                                                                                                                                                                     |
| messages logged  | The total number of messages that have been logged since the software was loaded.                                                                                                                                                                                                                                                                                                           |
| level code       | The message levels represented by the one-letter codes.                                                                                                                                                                                                                                                                                                                                     |

### Static and dynamic buffers

The software provides two separate buffers:

- · Static logs power supply failures, fan failures, and temperature warning or shutdown messages
- **Dynamic** logs all other message types. In previous releases, power supply messages were displayed in static logs only, with only the last event logged in. The power supply messages are now displayed in both static and dynamic logs.

In the static log, new messages replace older ones, so only the most recent message is displayed. For example, only the most recent temperature warning message will be present in the log. If multiple temperature warning messages are sent to the log, the latest one replaces the previous one. The static buffer is not configurable.

The message types that appear in the static buffer do not appear in the dynamic buffer. The dynamic buffer contains up to the maximum number of messages configured for the buffer (50 by default), then begins removing the oldest messages (at the bottom of the log) to make room for new ones.

The static and dynamic buffers are both displayed when you display the log.

Notice that the static buffer contains two separate messages for fan failures. Each message of each type has its own buffer. Thus, if you replace fan 1 but for some reason that fan also fails, the software replaces the first message about the failure of fan 1 with the newer message. The software does not overwrite the message for fan 2, unless the software sends a newer message for fan 2.

When you clear log entries, you can selectively clear the static or dynamic buffer, or you can clear both. For example, to clear only the dynamic buffer, enter the following command at the Privileged EXEC level.

```
device# clear logging dynamic-buffer
```

#### Syntax: clear logging [ dynamic-buffer | static-buffer ]

You can specify **dynamic-buffer** to clear the dynamic buffer or **static-buffer** to clear the static buffer. If you do not specify a buffer, both buffers are cleared.

#### Time stamps

The contents of the time stamp differ depending on whether you have set the time and date on the onboard system clock:

- If you have set the time and date on the onboard system clock, the date and time are shown in the following format:mm dd hh:mm:ss where:
  - mm abbreviation for the name of the month
  - dd day
  - hh hours

- mm minutes
- ss seconds

For example, "Oct 15 17:38:03" means October 15 at 5:38 PM and 3 seconds.

- If you have not set the time and date on the onboard system clock, the time stamp shows the amount
  of time that has passed since the device was booted, in the following
  format:numdnumhnummnumswhere:
  - numd day
  - numh hours
  - numm minutes
  - nums seconds

For example, "188d1h01m00s" means the device had been running for 188 days, 11 hours, one minute, and zero seconds when the Syslog entry with this time stamp was generated.

### Example of Syslog messages on a device whose onboard clock is set

The example shows the format of messages on a device whose onboard system clock has been set. Each time stamp shows the month, the day, and the time of the system clock when the message was generated. For example, the system time when the most recent message (the one at the top) was generated was October 15 at 5:38 PM and 3 seconds.

### Example of Syslog messages on a device whose onboard clock is not set

The example shows the format of messages on a device whose onboard system clock is not set. Each time stamp shows the amount of time the device had been running when the message was generated. For example, the most recent message, at the top of the list of messages, was generated when the device had been running for 21 days, seven hours, two minutes, and 40 seconds.

### Configuring an encrypted syslog server

You can configure up to six encrypted syslog servers, but only one is active at any time, with the other servers acting as standby. When you add an encrypted syslog server, if there is no active syslog server, a session is established with the configured server. If a new connection is added when an active session exists, a new session with another encrypted syslog server is not attempted.

A new syslog server session is attempted in the following scenarios:

- Current active encrypted syslog server configuration is removed or the SSL connection to the active syslog server is closed
- · During a device reload
- · During switch over of the management module
- · No active syslog server is found when the device sends syslog messages

Attempts to connect to a new syslog server starts with the first configured syslog server. The device attempts to establish an SSL connection with a server until a successful SSL connection is established. During this interval, the trap hold down timer is started and all the syslog messages are queued. When the timer expires, the device sends queued log messages to the connected syslog server.

Configuring encrypted syslog servers requires two steps:

- · Installing the SSL Client certificate from a remote machine
- · Adding encrypted syslog servers

### Installing the SSL client certificate

Before you can configure an encrypted syslog server for the device, you must install the SSL client certificate. Do one of the following to install the SSL client certificate.

#### **Using TFTP:**

Use TFTP to copy the SSL Client Certificate and private key from the remote machine if TFTP is enabled on the device. Enter the following commands in sequence in any order:

Syntax: copy tftp flash remote\_ip cert\_file client-certificate

and

Syntax: copy tftp flash remote\_ippriv\_key\_file client-private-key

The *remote\_ip* keyword specifies the IP address of the remote host where the SSL Client certificate and private key are present. The *cert\_file* keyword specifies the filename of the SSL Client Certificate, and the *priv\_key\_file* keyword specifies the filename of the private key.

### **Using SCP**

Use SCP to copy the SSL Client Certificate and private key from the remote machine. Enter the following commands in sequence in any order at the remote host where the SSL Client Certificate and private key are present:

```
Host# scp cert.p12 user@10.25.105.121:sslclientcert
Host# scp privkeyfile user@10.25.105.121:sslclientprivkey
```

Syntax: scp cert\_file user@remote\_ip :sslclientcert

and

#### Syntax: scp priv\_key\_file user@ remote\_ip :sslclientprivkey

The *remote\_ip* keyword specifies the IP address of the device. The *cert\_file* keyword specifies the filename of the SSL Client Certificate, and the *priv\_key\_file* keyword specifies the filename of the private key.

### Adding an encrypted syslog server

To configure an encrypted server connection, enter the following command:

```
device(config) # logging host 10.25.105.201 ssl-port 60514
```

Syntax: logging host [ ipv6 ] ip\_address | ipv6\_address ssl-port port

The *ip-address* keyword specifies the syslog server. The **ssl-port** keyword specifies the SSL port that will be used to connect to the specified syslog server.

#### NOTE

You can configure an encrypted syslog server connection only after the device has been placed in the Common Criteria mode. While you can configure these when the device is in the Administrative mode, the configuration takes effect only after the device is put in the Common Criteria Operational mode.

### Displaying the configured server connections

You can display the active encrypted syslog server connection with the **show ip ssl** command:

In addition, you can use the show logging command to display the active SSL-encrypted syslog server along with the logging level information.

### Ascending or descending option for show log command

A new option was added to the **show log** command that allows you to display the log in either ascending or descending order based on time. The command will still work without the option selected and will display the log in default descending chronological order. The command is executed as shown

```
device# show log ascending
```

#### Syntax: show log [ ascending | descending ]

The **ascending** option displays the oldest log entry first.

The **descending** option displays the most recent log entry first. This is the default condition and consistent with previous versions of the Multi-Service IronWare.

### Disabling or re-enabling Syslog

Syslog is enabled by default. To disable it, enter the following command at the global CONFIG level.

```
device(config) # no logging on
```

Syntax: [no] logging on [ udp-port ]

The udp-port parameter specifies the application port used for the Syslog facility. The default is 514.

To re-enable logging, enter the following command.

```
device(config) # logging on
```

This command enables local Syslog logging with the following defaults:

- Messages of all severity levels (Emergencies Debugging) are logged.
- · Up to 50 messages are retained in the local Syslog buffer.
- No Syslog server is specified.

### Disabling Syslog of an event

Enter the **no logging enable** command to disable syslogs of a particluar event. In the following example, the **nologging enable** command disables the syslog for SNMP authentication failure.

```
device(config) # no logging enable snmp-auth-failure
```

Syntax: [no] logging enable[bfd | cfm | config-changed | fan-speed-change | fan-state-change | link-state-change | mgmt-mod-redun-state-change | module-hotswap | mpls | mvrp-vlan |ntp | ospf| snmp-auth-failure |temp-error |user-login |vrrp-if-state-change]

The **bfd** option defines the log of changes in the status of the BFD session.

The **cfm** option defines the log of changes in the CFM operations.

The config-changed option defines the log of changes in the configuration data.

The fan-speed-change option defines the log of changes in the speed of the fan.

The fan-state-change option defines the log of changes in the state of the fan.

The link-state-change option defines the log of changes in the state of the link.

The **mgmt-mod-redun-state-change** option defines the log of changes in the redundant state of the management module.

The module-hotswap option defines the log of insertion and removal of modules.

The **mpls** option defines the log of changes in the state of MPLS VPLS and MPLS VLL.

The mvrp-vlan defines the log of changes in the state of MVRP VLAN.

The **ntp** option defines the log of changes in the state of the NTP response.

The ospf option defines the log of changes in the state of OSPF.

The snmp-auth-failure option defines the log of SNMP authentication failure events.

The temp-error option defines the log of temporary errors.

The user-login option defines the log of user names for login.

The vrrp-if-state-change option defines the log of changes in the state of VRRP interface.

### Specifying a Syslog server

To specify a Syslog server, enter a command such as the following

```
device(config) # logging host 10.0.0.99
```

For backward compatibility, the software reads the old command syntax from the startup configuration, and converts it to the new command syntax in the running configuration.

Syntax: [no] logging host ip-address | server-name

### Specifying an additional Syslog server

To specify an additional Syslog server, enter the **logging host***ip-addr* command again, as in the following example. You can specify up to six Syslog servers.

Enter a command such as the following

```
device (config) # logging host 10.0.0.99
```

For backward compatibility, the software reads the old command syntax from the startup configuration, and converts it to the new command syntax in the running configuration.

Syntax: [no] logging host ip-address | server-name

### Disabling logging of a message level

If you want to disable the logging of a message level, you must disable each message level individually.

For example, to disable logging of debugging and informational messages, enter the following commands

```
device(config)# no logging buffered debugging
device(config)# no logging buffered informational
```

### Syntax: [no] logging buffered level|num-entries

The level parameter can have one of the following values:

- alerts
- · critical
- · debugging
- emergencies
- errors
- informational
- notifications
- warnings

The commands in the example above change the log level to notification messages or higher. The software will not log informational or debugging messages. The changed message level also applies to the Syslog servers.

On a NetIron XMR and NetIron MLX, enter 1 - 5000 for num-entries.

On a NetIron CES and NetIron CER 2000, enter 1 - 5000 for num-entries.

### Changing the number of entries for the local buffer

You also can use the **logging buffered** command to change the number of entries the local Syslog buffer can store.

device(config) # logging buffered 100

### Syntax: [no] logging buffered level|num-entries

On a NetIron XMR and NetIron MLX, enter 1 - 5000 for num-entries.

The default number of messages is 50. The change takes effect immediately and does not require you to reload the software.

### **Changing the log facility**

The Syslog daemon on the Syslog server uses a facility to determine where to log the messages from the device. The default facility for messages the device sends to the Syslog server is "user". You can change the facility using the following command.

### NOTE

You can specify only one facility. If you configure the device to use two Syslog servers, the device uses the same facility on both servers.

device(config) # logging facility local0

#### Syntax: [no] logging facility facility-name

The facility-name can be one of the following:

- kern kernel messages
- · user random user-level messages
- · mail mail system
- · daemon system daemons
- · auth security or authorization messages
- · syslog messages generated internally by Syslog
- · Ipr line printer subsystem
- · news netnews subsystem
- uucp uucp subsystem
- · sys9 cron or at subsystem
- · sys10 reserved for system use
- · sys11 reserved for system use
- · sys12 reserved for system use
- sys13 reserved for system use
- · sys14 reserved for system use
- · cron cron or at subsystem
- local0 reserved for local use
- · local1 reserved for local use
- local2 reserved for local use
- local3 reserved for local use
- local4 reserved for local use
- · local5 reserved for local use

- · local6 reserved for local use
- local7 reserved for local use

### Displaying the interface name in Syslog messages

By default, an interface's slot number (if applicable) and port number are displayed when you display Syslog messages. If you want to display the name of the interface instead of its number, enter the following command.

```
device(config) # ip show-portname
```

This command is applied globally to all interfaces on the device.

### Syntax: [no] Ip show-portname

When you display the messages in the Syslog, you refer to the interface name under the Dynamic Log Buffer section. The actual interface number is appended to the interface name. For example, if the interface name is "lab" and its port number is "2", you refer to "lab2" displayed as in the example below.

### Clearing the Syslog messages from the local buffer

To clear the Syslog messages stored in the device's local buffer, use the following command.

```
device# clear logging
Syntax: clear logging
```

### Logging all CLI commands to Syslog

This feature allows you to log all valid CLI command from each user session into the system log.

To enable CLI command logging, enter the following command.

```
device(config)# logging cli-command
```

Syntax: [no] logging cli-command

### Example of CLI command logging

In the following example, two CLI sessions are run. In the first example, a telnet session enables CLI command logging and configures **router bgp** and the BGP **no neighbor** command as shown.

```
telnet@ device(config)# logging cli-command
telnet@ device(config)# router bgp
telnet@ device(config-bgp)# no nei 10.1.1.8 remote 10
```

In the next example, a console session configures **router bgp** and the **BGP neighbor** command as shown.

```
device(config) # router bgp
device(config-bgp) # nei 10.1.1.8 remote 10
```

Using the **show log** command, you would refer to a series of log records as shown in the following.

## Syslog messages

The tables that follow list all of the Syslog messages. The messages are listed by message level, in the following order:

- · Emergencies (none)
- Alerts
- Critical
- Errors
- · Warnings
- Notifications
- Informational
- · Debugging

## Syslog messages system

Message ISIS Memory Limit Exceeded

**Explanation** IS-IS is requesting more memory than is available.

Message Level Alert

Message System Power supply num, location , failed

**Explanation** A power supply has failed.

The *num* is the power supply number.

The location describes where the failed power supply is in the chassis.

Message Level Alert

Message

System power type Power Supply num, location ,

state

**Explanation** 

The power type refers to AC or DC power supply.

The *num* is the power supply number as positioned in the chassis.

The *location* describes where the power supply is in the chassis in relation to its state.

The state refers to how the power supply is functioning in the chassis.

The state can be one of the following:

- Installed (OK) The power supply is installed and ok.
- Installed (Failed or Disconnected)- The power supply has failed, or the power cord is disconnected.
- Not Installed (FAILED) The power supply is physically removed from the chassis.

Message Level Alert

Message

System Fan num , location , failed

**Explanation** 

A fan has failed.

The *num* is the power supply number.

The *location* describes where the failed power supply is in the chassis. The location can be one of the following

Message Level

Alert

Message

System Management module at slot slot-num state changed from module-state to module-state due to reason .

**Explanation** 

Indicates a state change in a management module.

The  ${\it slot-num}$  indicates the chassis slot containing the module.

The module-state can be one of the following:

- active
- standby
- crashed
- coming-up
- unknown

A **due to** clause has been added to this message. The *reason* variable can be either or the following:

- MP upgrade to ver version number where version number is the version number of the Multi-Service IronWare software that the management module was upgraded to.
- · Active Reboot

**Message** Alert

Level

Message System Temperature degrees C degrees, warning

level warn-degrees C degrees, shutdown level

shutdown-degrees C degrees

**Explanation** Indicates an overtemperature condition on the active module.

The degrees value indicates the temperature of the module.

The warn-degrees value is the warning threshold temperature configured

for the module.

The shutdown-degrees value is the shutdown temperature configured for

the module.

Message Level Alert

Message System num-modules modules and 1 power supply,

need more power supply!

**Explanation** Indicates that the chassis needs more power supplies to run the modules

in the chassis.

The *num-modules* parameter indicates the number of modules in the

chassis.

Message Level Alert

Message System: Health Monitoring: FE access failure

detected on SFM num /FE num (NetIron XMR and

NetIron MLX only)

**Explanation** The management processor is unable to access the specified fabric

element. This syslog message will be generated a maximum of once per

ten minute period.

The SFM and FE *num* parameters indicate the number of the switch fabric

module and fabric element that could not be accessed

Message Level Alert

Message System: Health Monitoring: TM Egress data errors

detected on LP num /TM num

**Explanation** The system has detected egress data errors on the specified line

processor and traffic manager.

The LP and TM  $\it{num}$  parameters indicate the number of the line processor

and traffic manager on which the errors were detected.

Message Level Alert

Message Error Failed to shutdown Power Supply PS-Num .

Write Failed (offset 0x2, value 44, size 2). (Brocade NetIron XMR and Brocade MLX only).

**Explanation** A power supply failed to shutdown because of its failure to access its

registers.

Message Level Error

Message Error Module down in slot 3, reason

CARD DOWN REASON BOOT FAILED. Error Code (1).

• The error message displayed on the Management Module console when the Interface Module fails to boot up. The message will display the error

ode reason

When the Interface Module is in DOWN state, the error code is included

in the dynamic buffer.

The error code is 0 when there is no error code reported from the Interface

Module.

Message Level Error

Message CAM partition partition name warning total total-

count , free current free-count, slot slot-

number , ppcr ppcr-id

**Explanation** Indicates that the CAM partition specified by the *partition name* has

exceeded a threshold (configurable with a default value of within 5% of the capacity of the partition) and may soon overflow the threshold. The *free-count* specifies the amount of free space still available in the partition. The *slot-number* and ppcr *ppcr-id* indicate where the overflow is occurring.

The partition-name includes the sub-partition ID if applicable.

Message Warning

Level

Message

System Not enough power to power on module in

slot num

**Explanation** There is not enough power available in the chassis to power on the module

in the specific slot number.

The slot *num* refers to the slot number in the chassis.

Message Level Warning

**Message** System Module up in slot n

Message Level Notification

Message System Module down in slot n reason

**Explanation** Indicates that the module in the slot specified by the *n* variable is down for

one of the following reasons as specified by the reason variable:

• CARD\_DOWN\_REASON\_NONE

• CARD\_DOWN\_REASON\_ADMIN\_DOWN

• CARD\_DOWN\_REASON\_CONFIG\_MISMATCH

• CARD\_DOWN\_REASON\_LOSS\_HEARTBEAT

CARD\_DOWN\_REASON\_BOOT\_FAILEDCARD\_DOWN\_REASON\_TIMEOUT

CARR ROWN REACON CERRE CANO FAIL

• CARD\_DOWN\_REASON\_STRIPE\_SYNC\_FAILED

CARD\_DOWN\_REASON\_REBOOTEDCARD\_DOWN\_REASON\_OVER\_HEAT

• CARD\_DOWN\_REASON\_POWERED\_OFF\_BY\_USER

CARD\_DOWN\_REASON\_LINK\_DOWN

Message Level Notification

Message System Module n powered on

Message Level Notification

Message System Module n powered off

Message Level Notification

Message System Switch fabric n powered on

Message Level Notification

Message System Switch fabric n powered off

Message Level Notification

Message System Enough power available to power on module

in slot num .

**Explanation** There is enough power available in the chassis to power on the module in

the specific slot number.

The slot *num* refers to the slot number in the chassis.

Message Level Notification

Message System Module was inserted to slot slot-num

**Explanation** Indicates that a module was inserted into a chassis slot.

The *slot-num* is the number of the chassis slot into which the module was

inserted.

Message Level Notification

Message System Module was removed from slot slot-num

**Explanation** Indicates that a module was removed from a chassis slot.

The slot-num is the number of the chassis slot from which the module was

removed.

Message Level Notification

Message System Set fan speed to speed percentage

**Explanation** Indicates that the fan speed has been changed to the value described in

the speed variable and that the fan is now operating at the percentage of

capacity described.

The possible *speedpercentage* values are:

• LOW (50%)

MEDIUM (75%)

• MEDIUM-HIGH (90%)

• HIGH (100%)

Message Level Notification

Message System Cold start

**Explanation** The device has been powered on.

Message Level Informational

Message System Warm start

**Explanation** The system software (flash code) has been reloaded.

Message System Interface portnum , state up

**Explanation** A port has come up.

The portnum is the port number.

Message Level Informational

Message System Interface portnum , state down

**Explanation** A port has gone down.

The *portnum* is the port number.

Message Level Informational

Message System Interface portnum , line protocol up

**Explanation** The line protocol on a port has come up.

The *portnum* is the port number.

Message Level Informational

Message System Interface portnum , line protocol down

**Explanation** The line protocol on a port has gone down.

The *portnum* is the port number.

Message Level Informational

Message System Interface portnum is down (remote fault)

**Explanation** The interface is down due to Remote Fault. This is indicated as "(remote

fault)".

The portnum is the port number of the interface.

Message Level Informational

Message System portnum is down (local fault)

**Explanation** The port is down due to Local Fault. This is indicated as "(local fault)".

The *portnum* is the port number of the interface.

Message System Syslog server IP-address deleted | added |

modified from console | telnet | ssh | web | snmp

OR Syslog operation enabled | disabled from

console | telnet | ssh | web | snmp

**Explanation** A user made Syslog configuration changes to the specified Syslog server

address, or enabled or disabled a Syslog operation through the Web,

SNMP, console, SSH, or Telnet session.

Message Level Informational

Message System SSH | telnet server enabled | disabled

from console | telnet | ssh | web | snmp session

[by user username ]

**Explanation** A user enabled or disabled an SSH or Telnet session, or changed the SSH

enable or disable configuration through the Web, SNMP, console, SSH, or

Telnet session.

Message Level Informational

Message System Module n CPU m crashed

Message Level Informational

Message System IfIndex assignment was changed.)

**Explanation** The maximum number of ifIndex per module has been changed.

Message Level Informational

Message System Power Supply PS-Num will be shutdown due

to flapping next time it becomes available. (Brocade NetIron XMR and Brocade MLX only).

**Explanation** A power supply will shutdown because of flapping the next time it is

available.

The *PS-Num* is the power supply number.

Message Level Informational

Message System Power Supply PS-Num is shutdown due to

flapping. ( Brocade XMR and Brocade MLX only).

**Explanation** A power supply is shut down because of flapping.

The *PS-Num* is the power supply number.

Message Level Informational

Message sys-np-mac-224 IFSR: Soft Error at TCAM index

0x0002211a of PPCR 1.

**Explanation** The syslog message is generated when the TCAM entry error is observed

by the user.

Message Level Informational

Message sys-np-mac-224 IFSR: Error FIFO Overflow on PPCR

1.

**Explanation** The syslog message is generated when the first in first out (FIFO) overflow

error is observed by the user.

Message Level Informational

# Syslog messages security

Message Security Port security violation at interface

portnum , address mac , vlan id

Message Level Warning

Message Security Interface portnum was shut down due to

port security violation

Message Level Warning

Message Security console login {by user I null } to USER

EXEC mode Security {telnet I ssh} login {by user
I null } from src {IP ip I IPv6 ipv6-addr } to

USER EXEC mode

**Explanation** A user has logged into the USER EXEC mode of the CLI.

The *user* is the user name.

Message Level Informational

Message Security console logout {by user I null } from

USER EXEC mode Security {telne I ssh} logout {by

user I null } from src {IP ip I IPv6 ipv6-addr }

from USER EXEC mode

**Explanation** A user has logged out of the USER EXEC mode of the CLI.

The *user* is the user name.

Message Level Informational

Message Security console login {by user I null } to

Privileged EXEC mode Security {telnet I ssh} login {by user I null } from src {IP ip I IPv6}

ipv6-addr } to Privileged EXEC mode

**Explanation** A user has logged into the Privileged EXEC mode of the CLI.

The *user* is the user name.

Message Level Informational

Message Security console logout {by user I null } from

Privileged EXEC mode Security {telnet I ssh} logout {by user I null } from src {IP ip I IPv6}

ipv6-addr } from Privileged EXEC mode

**Explanation** A user has logged out of Privileged EXEC mode of the CLI.

The *user* is the user name.

Message Level Informational

Message Security outbound telnet session number login to

server IP ip from SSH session session number

**Explanation** A user has initiated an outbound Telnet session from an inbound SSH

session.

The first *session number* is the number of the outbound Telnet session.

The *ip* is the IP address to which the Telnet session is connected.

The second sessions number is the number of the inbound SSH session.

Message Level Informational

Message Security outbound telnet session number logout

from server IP ip from SSH session session number

**Explanation** A user has terminated an outbound Telnet session initiated from an

inbound SSH session.

The first session number is the number of the outbound Telnet session.

The *ip* is the IP address from which the Telnet session has disconnected.

The second *sessions number* is the number of the inbound SSH session.

Message Level Informational

Message Security startup-config was changed {by user }

from {web management I snmp management I ssh

client ip I telnet client ip }

**Explanation** A configuration change was saved to the startup configuration file.

The *user* is the user's ID, if they entered a user ID to log in.

Message Level Informational

Message Security running-config was changed {by user }

from {web management I snmp management I ssh

client ip I telnet client ip }

**Explanation** A configuration change was saved to the running configuration file.

The *user* is the user's ID, if they entered a user ID to log in.

Message Level Informational

Message Security telnet | SSH | web access [by username ]

from src IP source ip address , src MAC source

MAC address rejected, n attempts

**Explanation** There were failed web, SSH, or Telnet login access attempts from the

specified source IP and MAC address.

• [by user username] does not appear if telnet or SSH clients are

specified.

• n is the number of times this SNMP trap occurred in the last five

minutes, or other configured number of minutes.

Message Informational

Level

Message Security user username added | deleted | modified

from console | telnet | ssh | web | snmp

**Explanation** A user created, modified, or deleted a local user account through the Web,

SNMP, console, SSH, or Telnet session.

Message Security Enable super | port-config | read-only

password deleted | added | modified from console | telnet | ssh | web | snmp OR Line password deleted | added | modified from console | telnet

| ssh | web | snmp

**Explanation** A user created, re-configured, or deleted an Enable or Line password

through the Web, SNMP, console, SSH, or Telnet session.

Message Level Informational

Message Apr 2 11:00:39:I:Security: telnet access from src

IP ip address rejected, 1 attempt(s).

**Explanation** A user sees this message when attempting to login with Telnet when the

standby MP is in SYNC\_SW State.

Message Level Informational

Message Apr 2 11:00:39:I:Security:SSH access from src IP ip

address rejected, 1 attempt(s).

**Explanation** A user sees this message when attempting to login with SSH when the

standby MP is in SYNC\_SW State.

Message Level Informational

## Syslog messages VLAN

Message VLAN Id vlan-id added | deleted | modified from

console | telnet | ssh | web | snmp session

**Explanation** A user created, modified, or deleted a VLAN through the Web, SNMP,

console, SSH, or Telnet session.

Message Level Informational

# **Syslog messages STP**

Message STP VLAN id - New RootBridge string RootPort

portnum (reason )

**Explanation** A Spanning Tree Protocol (STP) topology change has occurred.

The id is the ID of the VLAN in which the STP topology change occurred.

The *portnum* is the number of the port connected to the new root bridge.

Message Level Informational

Message STP VLAN id - Bridge is RootBridge string

( reason )

**Explanation** A Spanning Tree Protocol (STP) topology change has occurred, resulting

in the device becoming the root bridge.

The id is the ID of the VLAN in which the STP topology change occurred.

Message Level Informational

Message STP VLAN id Port portnum - Bridge TC Event

( reason )

**Explanation** A Spanning Tree Protocol (STP) topology change has occurred on a port.

The id is the ID of the VLAN in which the STP topology change occurred.

The *portnum* is the port number.

Message Level Informational

Message STP VLAN vlanid Port portnum - State state

( reason )

Message Level Informational

Message STP Root Guard Port portnum , VLAN vlan-id

inconsistent (Received superior BPDU)

**Explanation** The specified port was blocked because it has Root Guard enabled and

received a superior BPDU.

Message Level Informational

Message STP Root Guard Port portnum , VLAN vlan-id

consistent (Timeout)

**Explanation** The specified block Root Guard-protected port was unblocked.

Message STP BPDU Guard port portnum disable System

Interface ethernet portnum , state down -

disabled

Explanation The spanning-tree protect do-disable command is configured on the

specified port and the port became disabled due to a receipt of a BPDU

packet.

Message Level Informational

Message STP BPDU Guard re-enabled on ports ethe portnum

System Interface ethernet portnum , state up

Explanation The spanning-tree protect re-enable was issued to re-enable the

specified port

Message Level Informational

## Syslog messages RSTP

Message RSTP VLAN id Port portnum - Bridge TC Event

(reason)

**Explanation** 802.1W recognized a topology change event in the bridge. The topology

change event is the forwarding action that started on a non-edge

Designated port or Root port.

Message Level Informational

Message RSTP VLAN id Port portnum - STP State state

(reason)

**Explanation** 802.1W changed the state of a port to a new state forwarding, learning,

blocking. If the port changes to blocking, the bridge port is in discarding

state.

Message Level Informational

Message RSTP VLAN id - New RootPort portnum (reason)

**Explanation** 802.1W changed the port's role to Root port, using the root selection

computation.

Message RSTP VLAN id - New RootBridge string RootPort

portnum (reason)

**Explanation** 802.1W selected a new root bridge as a result of the BPDUs received on a

bridge port.

Message Level Informational

Message RSTP VLAN id - Bridge is RootBridge string

(reason)

**Explanation** 802.1W changed the current bridge to be the root bridge of the given

topology due to administrative change in bridge priority.

Message Level Informational

Message vlan vlan-id Bridge is RootBridge mac-address

(MsgAgeExpiry)

Explanation The message age expired on the Root port so 802.1W changed the current

bridge to be the root bridge of the topology.

Message Level Informational

## Syslog messages LAG

Message LAG group ( ports ) created by 802.3ad link-

aggregation module.

**Explanation** 802.3ad link aggregation is configured on the device, and the feature has

dynamically created a LAG group (aggregate link).

The  $\ensuremath{\textit{ports}}$  is a list of the ports that were aggregated to make the LAG

group.

Message Level Informational

# Syslog messages MRP

MRP interface ethernet portnum vlan vlan-master ,

changing to state-string

Message MRP metro ring ring-id cannot be enabled. No free

CAM entries

Message Level Informational

# Syslog messages UDLD

Message UDLD Logical link on interface ethernet portnum

is up

Message Level Informational

Message UDLD Logical link on interface ethernet portnum

is dowr

Message Level Informational

# Syslog messages VSRP

Message VSRP VLAN vlanid VRID id - transition to state-

string

Message Level Informational

Message VSRP VLAN vlanid VRID id - aware change old-

portnum -> new-portnum\n

Message Level Informational

Message VSRP VLAN vlanid VRID id - aware learn portnum

Message Level Informational

# Syslog messages VRRP

Message VRRP intf state changed, intf portnum , vrid

virtual-router-id ,state vrrp-state

**Explanation** A state change has occurred in a Virtual Router Redundancy Protocol

(VRRP) interface.

The portnum is the port.

The virtual-router-id is the virtual router ID (VRID) configured on the

interface.

The *vrrp-state* can be one of the following:

init

master

backup

· unknown

Message Level Notification

# Syslog messages IP

Message IP Dup IP ip-addr detected, sent from MAC mac-

addr interface portnum

**Explanation** Indicates that the device received a packet from another device on the

network with an IP address that is also configured on the device.

The *ip-addr* is the duplicate IP address.

The  ${\it mac\text{-}addr}$  is the MAC address of the device with the duplicate IP

address.

The portnum is the port that received the packet with the duplicate IP

address. The address is the packet's source IP address.

Message Level Warning

# Syslog messages ICMP

Message ICMP Local ICMP exceeds burst-max burst packets,

stopping for lockup seconds!

**Explanation** The number of ICMP packets exceeds the *burst-max* threshold set by the

ip icmp burst command. The device may be the victim of a Denial of

Service (DoS) attack.

All ICMP packets will be dropped for the number of seconds specified by the *lockup* value. When the lockup period expires, the packet counter is

reset and measurement is restarted.

Message Level Notification

Message

ICMP Transit ICMP in interface portnum exceeds num burst packets, stopping for num seconds!

Explanation

Threshold parameters for ICMP transit (through) traffic have been configured on an interface, and the maximum burst size for ICMP packets on the interface has been exceeded.

The portnum is the port number.

The first *num* is the maximum burst size (maximum number of packets allowed).

The second *num* is the number of seconds during which additional ICMP packets will be blocked on the interface.

#### NOTE

This message can occur in response to an attempted Smurf attack.

Message Level Notification

## Syslog messages ACL

Message ACL li

ACL list acl-num denied ip-proto src-ip-addr (src-tcp/udp-port) (Ethernet portnummac-addr) -> dst-ip-addr (dst-tcp/udp-port), 1 events

**Explanation** 

Indicates that an Access Control List (ACL) denied (dropped) packets.

The *acl-num* indicates the ACL number. Numbers 1 - 99 indicate standard ACLs. Numbers 100 - 199 indicate extended ACLs.

The ip-proto indicates the IP protocol of the denied packets.

The src-ip-addr is the source IP address of the denied packets.

The *src-tcp/udp-port* is the source TCP or UDP port, if applicable, of the denied packets.

The portnum indicates the port number on which the packet was denied.

The *mac-addr* indicates the source MAC address of the denied packets.

The dst-ip-addr indicates the destination IP address of the denied packets.

The dst-tcp/udp-port indicates the destination TCP or UDP port number, if applicable, of the denied packets.

Message Level Warning

Message

ACL:rip filter list list-num direction V1  $\mid$  V2 denied ip-addr , num packets

**Explanation** 

Indicates that a RIP route filter denied (dropped) packets.

The list-num is the ID of the filter list.

The *direction* indicates whether the filter was applied to incoming packets or outgoing packets. The value can be one of the following:

in

· out

The V1 or V2 value specifies the RIP version (RIPv1 or RIPv2).

The *ip-addr* indicates the network number in the denied updates.

The *num* indicates how many packets matching the values above were dropped during the five-minute interval represented by the log entry.

Message Level Warning

Message ACL insufficient L4 session resource, using flow

based ACL instead

**Explanation** The device does not have enough Layer 4 session entries.

To correct this condition, allocate more memory for sessions. To allocate more memory, enter the following command at the global CONFIG level of

the CLI interface

system-max session-limit num

Message Level Notification

Message ACL system fragment packet inspect rate rate

exceeded

**Explanation** The fragment rate allowed on the device has been exceeded.

The rate indicates the maximum rate allowed.

This message can occur if fragment throttling is enabled.

Message Level Notification

Message AC port fragment packet inspect rate rate

exceeded on port portnum

Explanation The fragment rate allowed on an individual interface has been exceeded.

The rate indicates the maximum rate allowed.

The portnum indicates the port.

This message can occur if fragment throttling is enabled.

Message Level Notification

Message ACL Port portnum , exceed configured L4 rule-

based CAM size, larger L4 partition size required

Message Level Notification

Message ACL Port portnum , exceed configured L2 ACL rule-

based CAM size, larger partition size is required

Message Level Notification

Message ACL Port portnum , exceed configured outbound L4

rule-based CAM size, larger outbound L4 partition

size required

Message Level Notification

Message ACL Port portnum , exceed configured IPv6 L4

rule-based CAM size, larger IPv6 L4 partition

size required

Message Level Notification

Message ACL Port portnum , exceed configured IPv6

outbound L4 rule-based CAM size, larger IPv6

outbound L4 partition size required

Message Level Notification

Message ACL Port portnum, error in allocating inbound L4

rule-based ACL CAM entry

Message Level Notification

Message ACL Port portnum , error in allocating outbound

L4 rule-based ACL CAM entry

Message Level Notification

Message ACL Port portnum , inbound ACL CAM programming

incomplete

Message Level Notification

Message ACL Port portnum , outbound ACL CAM programming

incomplete

Message Level Notification

Message ACL aclid added | deleted | modified from console

| telnet | ssh | web | snmp session

Explanation A user created, modified, deleted, or applied an ACL through the Web,

SNMP, console, SSH, or Telnet session.

Message Level Informational

# Syslog messages RACL

Message RACL Port portnum , IP Receive ACL exceed

configured CAM size, larger partition size

required

Message Level Notification

Message RACL Port portnum , IP Receive ACL exceed

configured RL class limit

Message Level Notification

Message RACL Port portnum , IP Receive ACL CAM malloc

error

Message Level Notification

# Syslog messages OSPF

Message OSPF Memory Overflow

**Explanation** OSPF has run out of memory.

Message Level Alert

Message OSPF LSA Overflow, LSA Type = lsa-type

#### Explanation

Indicates an LSA database overflow.

The *Isa-type* parameter indicates the type of LSA that experienced the overflow condition. The LSA type is one of the following:

- 1 Router
- 2 Network
- 3 Summary
- 4 Summary
- · 5 External

#### Message Level

Alert

#### Message

OSPF interface state changed, rid router-id , intf addr ip-addr , state ospf-state

### **Explanation**

Indicates that the state of an OSPF interface has changed.

The router-id is the router ID of the device.

The *ip-addr* is the interface's IP address.

The *ospf-state* indicates the state to which the interface has changed and can be one of the following:

- down
- loopback
- · waiting
- · point-to-point
- · designated router
- · backup designated router
- other designated router
- unknown

### Message Level

Notification

### Message

OSPF virtual intf state changed, rid router-id, area area-id, nbr ip-addr, state ospf-state

### **Explanation**

Indicates that the state of an OSPF virtual routing interface has changed.

The router-id is the router ID of the router the interface is on.

The area-id is the area the interface is in.

The *ip-addr* is the IP address of the OSPF neighbor.

The *ospf-state* indicates the state to which the interface has changed and can be one of the following:

- down
- loopback
- waiting
- point-to-point
- · designated router

- · backup designated router
- · other designated router
- unknown

### Message Level

Notification

Message

OSPF nbr state changed, rid router-id , nbr addr ip-addr , nbr rid nbr-router-Id , state ospf-state

**Explanation** 

Indicates that the state of an OSPF neighbor has changed.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the neighbor.

The *nbr-router-id* is the router ID of the neighbor.

The *ospf-state* indicates the state to which the interface has changed and can be one of the following:

- down
- · attempt
- initializing
- 2-way
- exchange start
- · exchange
- loading
- full
- unknown

Message Level Notification

Message

OSPF virtual nbr state changed, rid router-id , nbr addr ip-addr , nbr rid nbr-router-id , state ospf-state

Explanation

Indicates that the state of an OSPF virtual neighbor has changed.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the neighbor.

The  $\emph{nbr-router-id}$  is the router ID of the neighbor.

The *ospf-state* indicates the state to which the interface has changed and can be one of the following:

- down
- attempt
- initializing
- 2-way
- · exchange start
- exchange

- · loading
- full
- · unknown

Message Level Notification

Message

OSPF intf config error, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , error type error-type , pkt type pkt-type

**Explanation** 

Indicates that an OSPF interface configuration error has occurred.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the error packet.

The error-type can be one of the following:

- · bad version
- · area mismatch
- · unknown NBMA neighbor
- · unknown virtual neighbor
- · authentication type mismatch
- authentication failure
- · network mask mismatch
- · hello interval mismatch
- · dead interval mismatch
- · option mismatch
- unknown

The packet-type can be one of the following:

- hello
- database description
- · link state request
- · link state update
- link state ack
- unknown

Message Level Notification

Message

OSPF virtual intf config error, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , error type error-type , pkt type pkt-type

**Explanation** 

Indicates that an OSPF virtual routing interface configuration error has occurred.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the error packet.

The error-type can be one of the following:

- · bad version
- area mismatch
- · unknown NBMA neighbor
- · unknown virtual neighbor
- · authentication type mismatch
- · authentication failure
- · network mask mismatch
- hello interval mismatch
- · dead interval mismatch
- option mismatch
- unknown

The packet-type can be one of the following:

- hello
- · database description
- · link state request
- · link state update
- link state ack
- unknown

#### Message Level

#### Notification

## Message

OSPF intf authen failure, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , error type error-type , pkt type pkt-type

#### **Explanation**

Indicates that an OSPF interface authentication failure has occurred.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the authentication failure.

The error-type can be one of the following:

- · bad version
- area mismatch
- · unknown NBMA neighbor
- unknown virtual neighbor
- · authentication type mismatch
- · authentication failure
- · network mask mismatch
- · hello interval mismatch
- · dead interval mismatch
- option mismatch
- unknown

The packet-type can be one of the following:

- hello
- · database description
- · link state request
- · link state update
- · link state ack
- · unknown

Message Level Notification

Message

OSPF virtual intf authen failure, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , error type error-type , pkt type pkt-type

**Explanation** 

Indicates that an OSPF virtual routing interface authentication failure has occurred.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the authentication failure.

The error-type can be one of the following:

- · bad version
- · area mismatch
- · unknown NBMA neighbor
- · unknown virtual neighbor
- · authentication type mismatch
- authentication failure
- · network mask mismatch
- · hello interval mismatch
- · dead interval mismatch
- · option mismatch
- unknown

The packet-type can be one of the following:

- hello
- · database description
- · link state request
- · link state update
- · link state ack
- unknown

Message Level Notification

Message

OSPF intf rcvd bad pkt, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , pkt type pkt-type  $\,$ 

#### **Explanation**

Indicates that an OSPF interface received a bad packet.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the authentication failure.

The packet-type can be one of the following:

- hello
- database description
- · link state request
- · link state update
- link state ack
- unknown

#### NOTE

This message is typically generated during BFD or OSPF reconverge within the following scenarios:

- · The router is undergoing hitless upgrade
- Management module switchover,
- · Interface module CPU utilization is at 95% or more,
- · The clear ip ospf neighbor all command is issued.

During these processes, OSPF adj is deleted due to BFD time out while the router can still receive OSPF packets destined to a previous session from its neighbor because the neighbor has an inconsistent OSPF state due to timing. This message will go away shortly when BFD or OSPF re-establishes neighbor.

## Message Level

Notification

#### Message

OSPF virtual intf rcvd bad pkt, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , pkt type pkt-type

### Explanation

Indicates that an OSPF interface received a bad packet.

The *router-id* is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the authentication failure.

The packet-type can be one of the following:

- hello
- · database description
- link state request
- link state update
- link state ack
- · unknown

Message Level Notification

Message

OSPF intf retransmit, rid router-id , intf addr ip-addr , nbr rid nbr-router-id ,pkt type is pkt-type , LSA type lsa-type ,LSA id lsa-id , LSA rid lsa-router-id

**Explanation** 

An OSPF interface on the device has retransmitted a Link State Advertisement (LSA).

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *nbr-router-id* is the router ID of the neighbor router.

The packet-type can be one of the following:

- · hello
- · database description
- · link state request
- · link state update
- · link state ack
- · unknown

The Isa-type is the type of LSA.

The Isa-id is the LSA ID.

The Isa-router-id is the LSA router ID.

Message Level Notification

Message

OSPF virtual intf retransmit, rid router-id , intf addr ip-addr , nbr rid nbr-router-id , pkt type is pkt-type , LSA type lsa-type ,LSA id lsa-id , LSA rid lsa-router-id

Explanation

An OSPF interface on the device has retransmitted a Link State Advertisement (LSA).

The router-id is the router ID of the device.

The ip-addr is the IP address of the interface on the device.

The *nbr-router-id* is the router ID of the neighbor router.

The packet-type can be one of the following:

- hello
- · database description
- · link state request
- · link state update
- · link state ack
- · unknown

The Isa-type is the type of LSA.

Brocade NetIron Administration Guide 53-1003254-04

The Isa-id is the LSA ID.

The Isa-router-id is the LSA router ID.

Message Level Notification

Message

OSPF originate LSA, rid router-id , area area-id , LSA type lsa-type , LSA id lsa-id , LSA

router id lsa-router-id

**Explanation** 

An OSPF interface has originated an LSA.

The *router-id* is the router ID of the device.

The *area-id* is the OSPF area.

The *Isa-type* is the type of LSA.

The Isa-id is the LSA ID.

The Isa-router-id is the LSA router ID.

Message Level Notification

Message

OSPF max age LSA, rid router-id , area area-id ,

LSA type lsa-type , LSA id lsa-id , LSA rid lsa-

router-id

Explanation

An LSA has reached its maximum age.

The *router-id* is the router ID of the device.

The area-id is the OSPF area.

The *Isa-type* is the type of LSA.

The Isa-id is the LSA ID.

The Isa-router-id is the LSA router ID.

Message Level

Notification

Message

OSPF LSDB overflow, rid router-id , limit num

Explanation

A Link State Database Overflow (LSDB) condition has occurred.

The router-id is the router ID of the device.

The *num* is the number of LSAs.

Message Level

Notification

Message

OSPF LSDB approaching overflow, rid router-id ,

limit num

**Explanation** The software is close to an LSDB condition.

The *router-id* is the router ID of the device.

The *num* is the number of LSAs.

Message Level Notification

Message OSPF intf rcvd bad pkt Bad Checksum, rid ip-addr ,

intf addr ip-addr , pkt size num , checksum num ,

pkt src addr ip-addr , pkt type type

**Explanation** The device received an OSPF packet that had an invalid checksum.

The rid *ip-addr* is device's router ID.

The intf addr ip-addr is the IP address of the interface that received the

packet.

The pkt size *num* is the number of bytes in the packet.

The checksum num is the checksum value for the packet.

The pkt src addr *ip-addr* is the IP address of the neighbor that sent the

packet.

The pkt type type is the OSPF packet type and can be one of the following:

hello

database description

link state request

· link state update

· link state acknowledgement

· unknown (indicates an invalid packet type)

Message Level Notification

Message OSPF intf rcvd bad pkt Bad Packet type, rid ip-

 $\operatorname{addr}$  , intf  $\operatorname{addr}$  ip-addr , pkt size  $\operatorname{num}$  ,

checksum num , pkt src addr ip-addr , pkt type

type

**Explanation** The device received an OSPF packet with an invalid type.

The parameters are the same as for the Bad Checksum message. The pkt

type type value is "unknown", indicating that the packet type is invalid.

Message Level Notification

Message OSPF intf rcvd bad pkt Unable to find associated

neighbor, rid ip-addr , intf addr ip-addr , pkt size num , checksum num , pkt src addr ip-addr ,

pkt type type

**Explanation** The neighbor IP address in the packet is not on the device's list of OSPF

neighbors.

The parameters are the same as for the Bad Checksum message.

Message Level Notification

Message OSPF intf rcvd bad pkt Invalid packet size, rid

ip-addr , intf addr ip-addr , pkt size num ,
checksum num , pkt src addr ip-addr , pkt type

type

**Explanation** The device received an OSPF packet with an invalid packet size.

The parameters are the same as for the Bad Checksum message.

Message Level Notification

# Syslog messages OSPFv3

Message OSPFv3 Memory Overflow

**Explanation** OSPF has run out of memory.

Message Level Alert

Message OSPFv3 LSA Overflow, LSA Type = lsa-type

**Explanation** Indicates an LSA database overflow.

The Isa-type parameter indicates the type of LSA that experienced the

overflow condition. The LSA type is one of the following:

• 1 - Router

• 2 - Network

• 3 - Summary

• 4 - Summary

• 5 - External

Message Level Alert

Message OSPFv3 interface state changed, rid router-id ,

intf addr ip-addr , state ospf-state

**Explanation** Indicates that the state of an OSPF interface has changed.

The *router-id* is the router ID of the device.

The *ip-addr* is the interface's IP address.

The *ospf-state* indicates the state to which the interface has changed and can be one of the following:

- down
- loopback
- waiting
- · point-to-point
- · designated router
- · backup designated router
- · other designated router
- unknown

#### Message Level

Notification

#### Message

 ${\tt OSPFv3}$  virtual intf state changed, rid routerid , area area-id , nbr ip-addr , state  ${\tt ospf-state}$ 

#### **Explanation**

Indicates that the state of an OSPF virtual routing interface has changed.

The router-id is the router ID of the router the interface is on.

The area-id is the area the interface is in.

The *ip-addr* is the IP address of the OSPF neighbor.

The *ospf-state* indicates the state to which the interface has changed and can be one of the following:

- down
- loopback
- waiting
- point-to-point
- designated router
- · backup designated router
- other designated router
- unknown

#### Message Level

Notification

#### Message

OSPFv3 nbr state changed, rid router-id , nbr addr ip-addr , nbr rid nbr-router-Id , state ospf-state

### **Explanation**

Indicates that the state of an OSPF neighbor has changed.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the neighbor.

The *nbr-router-id* is the router ID of the neighbor.

The *ospf-state* indicates the state to which the interface has changed and can be one of the following:

- down
- attempt
- initializing
- 2-way
- · exchange start
- exchange
- loading
- full
- unknown

Message Level Notification

Message

OSPFv3 virtual nbr state changed, rid router-id , nbr addr ip-addr , nbr rid nbr-router-id , state ospf-state

**Explanation** 

Indicates that the state of an OSPF virtual neighbor has changed.

The *router-id* is the router ID of the device.

The *ip-addr* is the IP address of the neighbor.

The *nbr-router-id* is the router ID of the neighbor.

The *ospf-state* indicates the state to which the interface has changed and can be one of the following:

- down
- attempt
- initializing
- 2-way
- exchange start
- exchange
- loading
- full
- unknown

Message Level Notification

Message

OSPFv3 intf config error, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , error type error-type , pkt type pkt-type

Explanation

Indicates that an OSPF interface configuration error has occurred.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the error packet.

The error-type can be one of the following:

- · bad version
- · area mismatch
- · unknown NBMA neighbor
- · unknown virtual neighbor
- · authentication type mismatch
- authentication failure
- · network mask mismatch
- hello interval mismatch
- dead interval mismatch
- option mismatch
- unknown

The packet-type can be one of the following:

- hello
- · database description
- · link state request
- · link state update
- · link state ack
- unknown

### Message Level

Notification

## Message

OSPFv3 virtual intf config error, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , error type error-type , pkt type pkt-type

#### **Explanation**

Indicates that an OSPF virtual routing interface configuration error has occurred.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the error packet.

The error-type can be one of the following:

- · bad version
- · area mismatch
- unknown NBMA neighbor
- · unknown virtual neighbor
- · authentication type mismatch
- · authentication failure
- network mask mismatch
- hello interval mismatch
- · dead interval mismatch
- option mismatch
- unknown

The packet-type can be one of the following:

- hello
- · database description
- link state request
- link state update
- link state ack
- unknown

Message Level Notification

Message

OSPFv3 intf authen failure, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , error type error-type , pkt type pkt-type

**Explanation** 

Indicates that an OSPF interface authentication failure has occurred.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the authentication failure.

The error-type can be one of the following:

- · bad version
- · area mismatch
- · unknown NBMA neighbor
- · unknown virtual neighbor
- · authentication type mismatch
- · authentication failure
- · network mask mismatch
- · hello interval mismatch
- dead interval mismatch
- option mismatch
- unknown

The packet-type can be one of the following:

- hello
- database description
- · link state request
- link state update
- link state ack
- unknown

Message Level Notification

Message

OSPFv3 virtual intf authen failure, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , error type error-type , pkt type pkt-type

Explanation

Indicates that an OSPF virtual routing interface authentication failure has occurred.

372

The *router-id* is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the authentication failure.

The error-type can be one of the following:

- · bad version
- · area mismatch
- · unknown NBMA neighbor
- · unknown virtual neighbor
- · authentication type mismatch
- authentication failure
- · network mask mismatch
- hello interval mismatch
- · dead interval mismatch
- option mismatch
- unknown

The packet-type can be one of the following:

- hello
- · database description
- · link state request
- · link state update
- · link state ack
- · unknown

Message Level Notification

Message

OSPFv3 intf rcvd bad pkt, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , pkt type pkt-type

**Explanation** 

Indicates that an OSPF interface received a bad packet.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the authentication failure.

The packet-type can be one of the following:

- hello
- · database description
- · link state request
- link state update
- · link state ack
- unknown

Message Level Notification

#### Message

OSPFv3 virtual intf rcvd bad pkt, rid router-id , intf addr ip-addr , pkt src addr src-ip-addr , pkt type pkt-type

#### **Explanation**

Indicates that an OSPF interface received a bad packet.

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *src-ip-addr* is the IP address of the interface from which the device received the authentication failure.

The packet-type can be one of the following:

- · hello
- · database description
- · link state request
- · link state update
- · link state ack
- unknown

### Message Level

Notification

#### Message

OSPFv3 intf retransmit, rid router-id , intf addr ip-addr , nbr rid nbr-router-id ,pkt type is pkt-type , LSA type lsa-type ,LSA id lsa-id , LSA rid lsa-router-id

#### **Explanation**

An OSPF interface on the device has retransmitted a Link State Advertisement (LSA).

The router-id is the router ID of the device.

The *ip-addr* is the IP address of the interface on the device.

The *nbr-router-id* is the router ID of the neighbor router.

The packet-type can be one of the following:

- hello
- · database description
- · link state request
- · link state update
- · link state ack
- unknown

The Isa-type is the type of LSA.

The Isa-id is the LSA ID.

The Isa-router-id is the LSA router ID.

#### Message Level

Notification

Message

OSPFv3 virtual intf retransmit, rid router-id , intf addr ip-addr , nbr rid nbr-router-id , pkt type is pkt-type , LSA type lsa-type ,LSA id lsa-id , LSA rid lsa-router-id

**Explanation** 

An OSPF interface on the device has retransmitted a Link State  $\,$ 

Advertisement (LSA).

The router-id is the router ID of the device.

The ip-addr is the IP address of the interface on the device.

The *nbr-router-id* is the router ID of the neighbor router.

The packet-type can be one of the following:

hello

· database description

· link state request

· link state update

· link state ack

· unknown

The Isa-type is the type of LSA.

The Isa-id is the LSA ID.

The Isa-router-id is the LSA router ID.

Message Level Notification

Message

OSPFv3 originate LSA, rid router-id , area area-id , LSA type lsa-type , LSA id lsa-id , LSA router id lsa-router-id

**Explanation** 

An OSPF interface has originated an LSA.

The router-id is the router ID of the device.

The area-id is the OSPF area.

The Isa-type is the type of LSA.

The Isa-id is the LSA ID.

The Isa-router-id is the LSA router ID.

Message Level Notification

Message

OSPFv3 max age LSA, rid router-id , area area-id , LSA type lsa-type , LSA id lsa-id , LSA rid

lsa-router-id

**Explanation** 

An LSA has reached its maximum age.

The *router-id* is the router ID of the device.

The area-id is the OSPF area.

The Isa-type is the type of LSA.

The Isa-id is the LSA ID.

The Isa-router-id is the LSA router ID.

Message Level Notification

Message OSPFv3 LSDB overflow, rid router-id , limit num

**Explanation** A Link State Database Overflow (LSDB) condition has occurred.

The *router-id* is the router ID of the device.

The *num* is the number of LSAs.

Message Level Notification

Message OSPFv3 LSDB approaching overflow, rid router-id ,

limit num

**Explanation** The software is close to an LSDB condition.

The router-id is the router ID of the device.

The *num* is the number of LSAs.

Message Level Notification

Message OSPFv3 intf rcvd bad pkt Bad Checksum, rid ip-

addr , intf addr ip-addr , pkt size num , checksum

num , pkt src addr ip-addr , pkt type type

**Explanation** The device received an OSPF packet that had an invalid checksum.

The rid *ip-addr* is device's device ID.

The intf addr ip-addr is the IP address of the interface that received the

packet.

The pkt size *num* is the number of bytes in the packet.

The checksum *num* is the checksum value for the packet.

The pkt src addr ip-addr is the IP address of the neighbor that sent the

packet.

The pkt type type is the OSPF packet type and can be one of the following:

- hello
- database description
- · link state request
- · link state update
- link state acknowledgement
- unknown (indicates an invalid packet type)

Message Notification

Level

Message OSPFv3 intf rcvd bad pkt Bad Packet type, rid ip-

addr , intf addr ip-addr , pkt size num ,

checksum num , pkt src addr ip-addr , pkt type

type

**Explanation** The device received an OSPF packet with an invalid type.

The parameters are the same as for the Bad Checksum message. The pkt

Message Level Notification

Message OSPFv3 intf rcvd bad pkt Unable to find

associated neighbor, rid ip-addr , intf addr ip-addr , pkt size num , checksum num , pkt src addr

ip-addr , pkt type type

**Explanation** The neighbor IP address in the packet is not on the device's list of OSPF

neighbors.

The parameters are the same as for the Bad Checksum message.

Message Level Notification

Message OSPFv3 intf rcvd bad pkt Invalid packet size, rid

ip-addr , intf addr ip-addr , pkt size num ,
checksum num , pkt src addr ip-addr , pkt type

type

**Explanation** The device received an OSPF packet with an invalid packet size.

The parameters are the same as for the Bad Checksum message.

Message Level Notification

## Syslog messages IS-IS

Message ISIS Memory Limit Exceeded

**Explanation** IS-IS is requesting more memory than is available.

Message Level Alert

Message ISIS ENTERED INTO OVERLOAD STATE

**Explanation** The device has set the overload bit to on (1), indicating that the device's

IS-IS resources are overloaded.

Message Level Notification

Message ISIS Entered Overload State Due to overload-

reason

**Explanation** The device has set the overload bit to on (1), indicating that the device's IS-

IS resources are Overloaded.

Reasons for the overload as expressed in the overload-reason variable are:

Configuration

· Startup Configuration

· LSP Buffer Allocation Failure

· LSP Header Allocation Failure

Maximum Number of LSPs Exceeded

LSP Fragmentation Count Exceeded

LSP Sequence Number Wrap Around

LSP Option Allocation Failure

Path Entry Allocation Failure

· Route Entry Allocation Failure

Definitions of the overload-reason values are described in Table 61.

Message Level Notification

Message ISIS Exited Overload State

**Explanation** The device has set the overload bit to off (0), indicating that the device's

IS-IS resources are no longer overloaded.

Message Level Notification

Message ISIS L1 ADJACENCY DOWN system-id on circuit

circuit-id

**Explanation** The device's adjacency with this Level-1 IS has gone down.

The system-id is the system ID of the IS.

The circuit-id is the ID of the circuit over which the adjacency was

established.

Message Level Notification

Message ISIS L1 ADJACENCY UP system-id on circuit

circuit-id

**Explanation** The device's adjacency with this Level-1 IS has come up.

The system-id is the system ID of the IS.

The circuit-id is the ID of the circuit over which the adjacency was

established.

Message Level Notification

Message ISIS L2 ADJACENCY DOWN system-id on circuit

circuit-id

**Explanation** The device's adjacency with this Level-2 IS has gone down.

The system-id is the system ID of the IS.

The circuit-id is the ID of the circuit over which the adjacency was

established.

Message Level Notification

Message ISIS L2 ADJACENCY UP system-id on circuit

circuit-id

**Explanation** The device's adjacency with this Level-2 IS has come up.

The system-id is the system ID of the IS.

The circuit-id is the ID of the circuit over which the adjacency was

established.

Message Level Notification

Message ISIS LSP-type LSP LSP-ID Seq sequence-number Len

length LifeTime lifetime on interface-name dropped

due to LSP-drop-reason

**Explanation** The device has dropped the received LSP.

The LSP-Type can be one of the following:

• L1

• L2

The LSP-ID variable is in the 8 byte LSP ID value.

The sequence-number is a 4 byte value that is associated with each LSP ID.

The *length* is the length of the LSP PDU.

The lifetime is the life period of the LSP.

The interface-name is the name of the interface and is displayed in the

following form "Ethernet 1/1".

The LSP-drop-reason variable describes the following reasons that the LSP

was dropped:

- · Adjacency not found
- · Adjacency Level Mismatch
- · IS Level Mismatch
- · Length Too Short
- · Length Too Large
- · Authentication Failure
- Max Area Check Failure
- · Zero Checksum
- · Checksum Mismatch
- · Invalid Length

Definitions of the LSP-drop-reason values are described in Table 61.

#### Message Level

Notification

#### Message

ISIS NbrType Neighbor Hostname/systemID DOWN on interface-name due to neighbor-down-reason

#### **Explanation**

The device's Neighbor has gone down. The *NbrType* can be one of the following:

- L1
- L2
- PTPT

The *interface-name* is the name of the interface and is displayed in the following form "Ethernet 1/1".

The *neighbor-down-reason* variable can be any one of the following reasons that the Neighbor is Down:

- BFD Trigger
- · Maximum Adjacencies
- User Trigger
- · Hold Timer Expiry
- · Adjacency ID Mismatch
- · Adjacency Type Mismatch
- Interface Down
- · Interface State Change

Definitions of the neighbor-down-reason values are described in Table 61.

### Message Level

Notification

### Message

ISIS NbrType neighbor Hostname/systemID UP on interface-name

### Explanation

The device's Neighbor has come up.

The *NbrType* can be one of the following:

• L1

• L2

PTPT

The *interface-name* is the name of the interface and is displayed in the following form "Ethernet 1/1".

Message Level Notification

Message ISIS PTP ADJACENCY DOWN mac on interface portnum

Message Level Notification

Message ISIS PTP ADJACENCY UP mac on interface portnum

**TABLE 61 Definition of IS-IS variables** 

| Variable                 | Value                   | Definition                                                                                                                                                  |
|--------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neighbor-<br>down-reason | BFD Trigger             | BFD identified link failures and triggered IS-IS to clean the neighbors on that link.                                                                       |
|                          | Maximum Adjacencies     | IS-IS has reached the maximum number of adjacencies. Therefore, it has deleted the adjacency with the lowest SNPA address to accommodate the new adjacency. |
|                          | User Trigger            | The user triggered to delete the adjacency using the clear <b>isis neighbor systemID</b> command or the <b>clear isis all</b> command.                      |
|                          | Hold Timer Expiry       | The adjacency was deleted because there were no "hellos" received within the hold time period.                                                              |
|                          | Adjacency ID Mismatch   | The adjacency was deleted because the new "hello" received from this adjacency has a different System ID.                                                   |
|                          | Adjacency Type Mismatch | The adjacency was deleted because the new "hello" received from this adjacency has a different adjacency Type.                                              |
|                          | Interface Down          | The adjacency was deleted because the interface went down.                                                                                                  |
|                          | Interface State Change  | The adjacency was deleted because the interface state has changed due to user configuration.                                                                |
| overload-<br>reason      | Configuration           | The Overload condition was entered because of a user configuration.                                                                                         |
|                          | Startup Configuration   | The Overload condition was entered because of the startup configuration.                                                                                    |

TABLE 61 Definition of IS-IS variables (Continued)

| Variable            | Value                               | Definition                                                                                     |
|---------------------|-------------------------------------|------------------------------------------------------------------------------------------------|
|                     | LSP Buffer Allocation Failure       | The Overload condition was entered because of an LSP buffer allocation error.                  |
|                     | LSP Header Allocation<br>Failure    | The Overload condition was entered because of an LSP header allocation error.                  |
|                     | Maximum Number of LSPs<br>Exceeded  | The Overload condition was entered because the LSP count reached the maximum value.            |
|                     | LSP Fragmentation Count<br>Exceeded | The Overload condition was entered because of IS-IS trying to generate the 256th LSP fragment. |
|                     | LSP Sequence Number Wrap<br>Around  | The Overload condition was entered because the LSP numbers reached the maximum value.          |
|                     | LSP Option Allocation Failure       | Self LSP building failed due to an internal buffer allocation failure.                         |
|                     | Path Entry Allocation Failure       | The SPF computation failed due to a Path Entry allocation failure.                             |
|                     | Route Entry Allocation Failure      | The SPF computation failed due to a Route Entry allocation failure.                            |
| LSP-drop-<br>reason | Adjacency not found                 | The LSP was dropped because the is no adjacency found on the interface.                        |
|                     | Adjacency Level Mismatch            | The LSP was dropped because the adjacency is at a different level from the LSP level.          |
|                     | IS Level Mismatch                   | The LSP was dropped because IS-IS is configured at a different level than the LSP level.       |
|                     | Length Too Short                    | The LSP length is shorter than the LSP header length.                                          |
|                     | Length Too Large                    | The LSP length is larger than the Maximum LSP buffer length.                                   |
|                     | Authentication Failure              | The LSP was dropped because of an authentication failure.                                      |
|                     | Max Area Check Failure              | The LSP has a Max Area Count different than the configured Max Area Count of the device.       |
|                     | Zero Checksum                       | The LSP has a zero checksum.                                                                   |
|                     | Checksum Mismatch                   | The LSP checksum is different than the computed checksum.                                      |
|                     | Invalid Length                      | The LSP length is different than the sum of the option lengths in the LSP.                     |
|                     |                                     |                                                                                                |

## Syslog messages BGP

Message BGP4 Not enough memory available to run BGP4

**Explanation** The device could not start the BGP4 routing protocol because there is not

enough memory available.

Message Level Debug

Message BGP No of prefixes received from BGP peer ip-addr

exceeds maximum prefix-limit...shutdown

**Explanation** The device has received more than the specified maximum number of

prefixes from the neighbor, and the device is therefore shutting down its

BGP4 session with the neighbor.

Message Level Error

Message BGP received invalid AS4 PATH attribute length

(3) - entire AS4\_PATH ignored

**Explanation** Possible attribute length can be only even number and cannot be odd. If an

attribute with odd length is received, this error is displayed.

Message Level Error

Message BGP received invalid AS4\_PATH attribute flag

(0x40) - entire AS4 PATH ignored

**Explanation** If the flag that describes the attribute has unacceptable values then this

error is displayed.

Message Level Error

Message BGP received invalid Confed info in AS4\_PATH

(@byte 43) - entire AS4\_PATH ignored

**Explanation** Confederation segments(AS\_CONFED\_SEQ/SET) must precede the

(AS\_SEQ/SET), if not, this error is displayed.

Message Level Error

Message BGP received incorrect Seq type/len in AS4\_PATH

(@byte 41) - entire AS4 PATH ignored

**Explanation** Valid segment types are (AS\_SEQ/SET, AS\_CONFED\_SEQ/SET), any

other values results in an error being displayed.

Message Level Error

Message BGP received multiple AS4 PATH attributes - used

first AS4\_PATH attribute only

**Explanation** When AS4\_PATH is received more than one time in the update message,

this error is displayed.

Message Level Error

Message BGP No of prefixes received from BGP peer ip-addr

exceeds warning limit num

**Explanation** The device has received more than the allowed percentage of prefixes from

the neighbor.

The *ip-addr* is the IP address of the neighbor.

The *num* is the number of prefixes that matches the percentage you specified. For example, if you specified a threshold of 100 prefixes and 75 percent as the warning threshold, this message is generated if the device

receives a 76th prefix from the neighbor.

Message Warning

Level

Message BGP Peer ip-addr UP (ESTABLISHED)

**Explanation** Indicates that a BGP4 neighbor has come up.

The *ip-addr* is the IP address of the neighbor's BGP4 interface with the

device.

Message Level Notification

Message BGP Peer ip-addr DOWN (IDLE)

**Explanation** Indicates that a BGP4 neighbor has gone down.

The *ip-addr* is the IP address of the neighbor's BGP4 interface with the

device.

Message Level Notification

Message BGP Peer ip DOWN ( reasonrecv notif )

Message Configuration (Wait for BGP)

**Explanation** IS-IS is waiting for BGP convergence to complete.

Message Level Notification

## **Syslog messages NTP**

Message NTP server ip-addr failed to respond

Explanation Indicates that a Network Time Protocol (NTP) server did not respond to the

device's query for the current time.

The *ip-addr* indicates the IP address of the NTP server.

Message Level Warning

Message <server | sym\_active | sym\_passive> association

is mobilized for <ipv4 address | ipv6 address>

**Explanation** Indicates the mobilization of a new NTP server, or symmetric active or

symmetric passive association with the peer. The symmetric passive message is logged upon the arrival of the first NTP packet from the NTP

peer, which is not statically configured.

Message Level Informational

Message <server | sym\_active | sym\_passive> association

is demobilized <ipv4 address | ipv6 address>

**Explanation** Indicates the NTP server and symmetric active peer demobilization

messages are logged when a user removes the NTP server or peer configuration. The NTP symmetric passive demobilization is logged when the NTP packet from the symmetric passive peer results in an error or

timeout.

Message Level Informational

## **Syslog messages TCP**

Message TCP Local TCP exceeds burst-max burst packets,

stopping for lockup seconds!

**Explanation** The number of TCP SYN packets exceeds the *burst-max* threshold set by

the **ip tcp burst** command. The device may be the victim of a TCP SYN

DoS attack.

All TCP SYN packets will be dropped for the number of seconds specified by the  ${\it lockup}$  value. When the lockup period expires, the packet counter is

reset and measurement is restarted.

Message Level Notification

Message TCP Transit TCP in interface portnum exceeds num

burst packets, stopping for num seconds!

**Explanation** Threshold parameters for TCP transit (through) traffic have been configured

on an interface, and the maximum burst size for TCP packets on the

interface has been exceeded.

The *portnum* is the port number.

The first *num* is the maximum burst size (maximum number of packets

allowed).

The second *num* is the number of seconds during which additional TCP

packets will be blocked on the interface.

NOTE

This message can occur in response to an attempted TCP SYN attack.

Message Level Notification

# Syslog messages DOT1X

Message DOT1X security violation at port portnum ,

malicious mac address detected mac-address

**Explanation** A security violation was encountered at the specified port number.

Message Level Warning

Message DOT1X Port portnum , AuthControlledPortStatus

change restricted

Message Level Warning

Message DOT1X Port portnum port default vlan-id changes

to vlan-id

Message DOT1X Port portnum currently used vlan-id changes

to vlan-id due to move to restricted vlan

Message Level Notification

Message DOT1X issues software port up indication of Port

portnum to other software applications

**Explanation** The device has indicated that the specified port has been authenticated,

but the actual port may not be active.

Message Level Notification

Message DOT1X issues software port down indication of

Port portnum to other software applications

**Explanation** The device has indicated that the specified is no longer authorized, but the

actual port may still be active.

Message Level Notification

Message DOT1X Port portnum , AuthControlledPortStatus

change authorized

**Explanation** The status of the interface's controlled port has changed from unauthorized

to authorized.

Message Level Informational

Message DOT1X Port portnum , AuthControlledPortStatus

change unauthorized

**Explanation** The status of the interface's controlled port has changed from authorized to

unauthorized.

Message Level Informational

Message DOT1X Port portnum currently used vlan-id changes

to vlan-id due to dot1x-RADIUS vlan assignment

**Explanation** A user has completed 802.1X authentication. The profile received from the

RADIUS server specifies a VLAN ID for the user. The port to which the user is connected has been moved to the VLAN indicated by *vlan-id*.

Message Level Informational

Message DOT1X Port portnum currently used vlan-id is set

back to port default vlan-id vlan-id

**Explanation** The user connected to *portnum* has disconnected, causing the port to be

moved back into its default VLAN, vlan-id.

Message Level Informational

Message DOT1X Port portnum is unauthorized because system

resource is not enough or the invalid information

to set the dynamic assigned IP ACLs or MAC

address filters

**Explanation** 802.1X authentication could not take place on the port. This happened

because strict security mode was enabled and one of the following

occurred:

Insufficient system resources were available on the device to apply an IP

ACL or MAC address filter to the port

Invalid information was received from the RADIUS server (for example,

the Eliteration and the state of the state of

the Filter-ID attribute did not refer to an existing IP ACL or MAC address

filter)

Message

Level

Informational

Message DOT1X Not enough memory

**Explanation** There is not enough system memory for 802.1X authentication to take

place. Contact device Technical Support.

Message Level Debug

## Syslog messages SNMP

Message SNMP Auth. failure, intruder IP ip-addr

**Explanation** A user has tried to open a management session with the device using an

invalid SNMP community string.

The *ip-addr* is the IP address of the host that sent the invalid community

string.

Message Level Informational

Message SNMP read-only community | read-write community |

contact | location | user | group | view |

engineld | trap [host] [ value -str ] deleted |

added  $\mid$  modified from console  $\mid$  telnet  $\mid$  ssh  $\mid$ 

web | snmp session

**Explanation** A user made SNMP configuration changes through the Web, SNMP,

console, SSH, or Telnet session.

[value-str] does not appear in the message if SNMP community or engineld

is specified.

Message Level Informational

## **Syslog messages MPLS**

Message Deleting VLL name (ID number )at string port

slot/port with peer IPv4 address ip-address

**Explanation** Sent when PW traps are generated if the PW has been deleted, i.e. when

the pwRowStatus in the MIB has been set to destroy(6), the PW has been  $\ensuremath{\mathsf{E}}$ 

deleted by a non-MIB application, or due to auto discovery process.

Message Level Informational

Message MPLS Deleting VLL vll-name (ID vll-id )

**Explanation** Sent when the specified VLL is being deleted.

Message Level Informational

Message MPLS Deleting VLL vll-name (ID vll-id ) at

{tagged | untagged} port slot/port

**Explanation** Sent when the specified VLL with the at the specified tagged or untagged

port is being deleted.

Message Level Informational

Message MPLS Deleting VLL vll-name (ID vll-id ) with peer

IPv4 address ip

Explanation Sent when the specified VLL with the specified IPv4 peer is being deleted.

Message Level Informational

Message VLL is down for table index number

**Explanation** Sent when PW traps are generated if the VLL is down for one index

Message Level Informational

Message VLL is up for table index number

Explanation Sent when PW traps are generated if VLL is up for one index

Message Level Informational

Message VLLs are down for table indexes number through

number

Explanation Sent when PW traps are generated if the VLLs represented by sequential

entries in the database are down

Message Level Informational

Message VLLs are up for table indexes number through

number

**Explanation** Sent when PW traps are generate dif VLLs represented by sequential

entries in the database are up

Message Level Informational

Message VRF Port slot-port added to VRF name with updated

port count number

**Explanation** Sent when an MPLS L3 VPN trap is generated if the state of an interface

within the VRF changed from down to up.

Message Level Informational

Message VRF Port slot-port deleted from VRF name with

updated port count number

**Explanation** Sent when an MPLS L3 VPN trap is generated if the state of an interface

within the VRF changed from down to up.

Message Level Informational

Message MPLS Deleting VLL name (ID vc-id ) at {tagged I

untagged} port portnum with peer IPv4 address ip

Message MPLS LSP lspname switches to new active path

pathame

Message Level Notification

Message MPLS LSP lspname using path pathname is down

Message Level Notification

Message MPLS LSP lspname using path pathname is up

Message Level Notification

Message MPLS VLL is down for table index n

Message Level Notification

Message MPLS VLL is up for table index n

Message Level Notification

Message Level Notification

Message MPLS VLLs are up for table indexes n through m

Message Level Notification

Message MPLS VPLS [ID id ] peer ip is down

**Explanation** Sent when a single VPLS peer is transitioning to a down state

Message Level Notification

MPLS VPLS [ID id ] peer ip is up

**Explanation** Sent when a single VPLS peer is transitioning to an up state

Message MPLS VPLS name (ID id ) endpoint ip-address is

down

**Explanation** Sent when a single VPLS endpoint is transitioning to a down state.

Message Level Notification

Message MPLS VPLS name (ID id ) endpoint ip-address is up

**Explanation** Sent when a single VPLS endpoint is transitioning to an up state.

Message Level Notification

Message MPLS VPLS for instance indices list n through m

are u

**Explanation** Sent when multiple VPLS instances are transitioning to an up state.

Message Level Notification

Message MPLS VPLS for instance indices list n through m

are down

**Explanation** Sent when multiple VPLS instances are transitioning to a down state.

Message Level Notification

Message MPLS VPLS peer ip associated with VC ID n is up

**Explanation** Sent when a single VPLS peer is transitioning to an up state.

Message Level Notification

Message MPLS VPLS peer ip associated with VC ID n is down

**Explanation** Sent when a single VPLS peer is transitioning to a down state.

Message Level Notification

list is down

**Explanation** Sent when multiple VPLS instances associated with a peer are

transitioning to a down state.

list is up

**Explanation** Sent when multiple VPLS instances associated with a peer are

transitioning to an up state.

Message Level Notification

Message MPLS VPL endpoint slot / port associated with

instance indices list is down

**Explanation** Sent when multiple VPLS instances associated with an endpoint is

transitioning to a down state.

Message Level Notification

Message MPLS VPL endpoint slot / port associated with

instance indices list is up

**Explanation** Sent when multiple VPLS instances associated with an endpoint is

transitioning to an up state.

Message Level Notification

Message MPLS VLL-Local name is down

**Explanation** Sent when a single VLL-Local instance is transitioning to a down state.

Message Level Notification

Message MPLS VLL-Local name is up

**Explanation** Sent when a single VLL-Local instance is transitioning to an up state.

Message Level Notification

Message MPLS VLL-Local for instance indices list n

through m are up

**Explanation** Sent when multiple VLL-Local instances are transitioning to an up state.

Message Level Notification

Message MPLS VLL-Local for instance indices list n

through m are down

**Explanation** Sent when multiple VLL-Local instances are transitioning to a down state.

Message Level Notification

Message MPLS VLL name (ID id is down

**Explanation** Sent when a single VLL peer is transitioning to a down state.

Message Level Notification

Message MPLS VLL name (ID id is up

**Explanation** Sent when a single VLL peer is transitioning to an up state.

Message Level Notification

Message MPLS VLL for instance indices list n through m

are up

**Explanation** Sent when multiple VLL instances are transitioning to an up state.

Message Level Notification

Message MPLS VLL for instance indices list n through m

are down

**Explanation** Sent when multiple VLL instances are transitioning to a down state.

Message Level Notification

# Syslog messages VRF

Message VRF Port portnum added to VRF name with updated

port count n

Message Level Notification

Message VRF Port portnum deleted from VRF name with

updated port count n

Message VRF vrf\_name has been configured as management

VRF.

**Explanation** Indicates that the specified VRF

has been configured as a

management VRF.

Message Level Informational

Message VRF vrf\_name has been un- configured as

management VRF.

**Explanation** Indicates that the specified VRF

has been removed as a

management VRF.

Message Level Informational

## Syslog messages

Message Authentication Enabled on portnum

**Explanation** The multi-device port authentication feature was enabled on the on the

specified portnum.

Message Level Notification

Message Authenticaion Disabled on portnum

**Explanation** The multi-device port authentication feature was disabled on the on the

specified portnum.

Message Level Notification

# Syslog messages BFD

Message BFD Session UP for NBR neighbor-ID on port

**Explanation** The BFD session is UP with the neighbor specified by the neighbor-ID on

the port specified by the *port* variable.

Message BFD Session DOWN for NBR neighbor-ID on port

Reason Neighbor Signaled Session Down

**Explanation** The BFD session with the neighbor specified by the *neighbor-ID* on the

port specified by the port variable is Down because the BFD neighbor has

signaled the session to be down.

Message Level Notification

Message BFD Session DOWN for NBR neighbor-ID on port

Reason Administratively Down

**Explanation** The BFD session with the neighbor specified by the *neighbor-ID* on the

port specified by the *port* variable is Down for Administrative reasons.

Message Level Notification

# Syslog messages Optics

Message Transceiver type checking has been disabled!

**Explanation** The transceiver type checking feature has been disabled. The device will

continue to report incompatible transceivers through syslog messages and

but will not shutdown a port that contains one.

Message Level Notification

Message Session DOWN for LSP lsp-name Reason

Administratively Down

**Explanation** The BFD session for the LSP specified by the *Isp-name* is Down for

Administrative reasons.

Message Level Notification

Message Session Up for LSP lsp-name

**Explanation** The BFD session for the LSP specified by the *Isp-name* is Up.

Message Level Notification

Message Session DOWN for RSVP session session-id Reason

Administratively Down

**Explanation** The BFD session for the RSVP session specified by the session-id is Down

for Administrative reasons.

The form of the session-id displayed isIPv4 tunnel endpoint or tunnel ID or

extended tunnel ID.For example 10.22.22.2/3/11/11/11/1

Message Level Notification

Message Session UP for RSVP session session-id

**Explanation** The BFD session for the RSVP session specified by the session-id is Up.

The form of the session-id displayed isIPv4 tunnel endpoint or tunnel ID or

extended tunnel ID.For example 10.22.22.2/3/11/11/11/1

Message Level Notification

Message Transceiver type checking has been enabled!

**Explanation** The transceiver type checking feature has been re-enabled. The feature is

enabled by default and does not send the message under normal circumstances. However, if it is disabled and then re-enabled the device

will send this message.

Message Level Notification

Message Optic is not Brocade qualified ( port ) Type

type-description Vendor vendor-name , Version
version-num Part# part-no , Serial# serial-no

**Explanation** The optic module installed in the Interface module at the port specified by

the *port* variable is not Brocade qualified although the port is still operational. The Type, Vendor, Version, Part#, and Serial # of the optic

module is provided.

Message Level Warning

Message Optic is not Brocade qualified, optical

monitoring is not supported ( port ) Type typedescription Vendor vendor-name , Version version-

num Part# part-no , Serial# serial-no

**Explanation** The optic module installed in the Interface module at the port specified by

the *port* variable is not Brocade qualified and will not be able to be monitored using the Optical Monitoring function. The Type, Vendor,

Version, Part#, and Serial # of the optic module is provided.

**Message** Alert

Level

Message Optic is not capable of optical monitoring

( port ) Type type-description Vendor vendorname , Version version-num Part# part-no ,

Serial# serial-no

**Explanation** The optic module installed in the Interface module at the port specified by

the *port* variable is not able to be monitored using the Optical Monitoring function. The Type, Vendor, Version, Part#, and Serial # of the optic

module is provided.

Message Level Alert

Message Incompatible optical trans-receiver detected on

port n

**Explanation** Indicates that in incompatible XFP or SFP has been installed in the port

specified. A port with an incompatible optical module installed are shut

down.

Message Level Alert

## Syslog messages LDP

Message MPLS LDP path vector limit mismatch for session

lsrId labelSpaceId (value local vector limit )
with peer lsrId labelSpaceId (value peer vector

limit )

**Explanation** This notification is generated when the value of the LDP path vector limit

value from the peer does not match that of the entity.

Message Level Notification

MPLS LDP entity session lsrId labelSpaceId with

peer lsrId labelSpaceId is up

**Explanation** This notification is sent when the value of 'mplsLdpSessionState' enters the

'operational(5)' state.

Message Level Notification

Message MPL LDP entity session lsrId labelSpaceId with

peer lsrId labelSpaceId is down

Explanation This notification is sent when the value of 'mplsLdpSessionState' leaves

the 'operational(5)' state.

Message Level Notification

#### **Syslog messages DHCP**

Message DHCPC: No DHCP service available on the network.

**Explanation** The DHCPOFFER message is not received within 16 seconds of starting

the DHCP address configuration phase.

Message Level Warning

Message DHCPC: Failed to renew DHCP lease on port 1/1

with IP address 10.1.1.1 mask 255.255.255.0

**Explanation** The DHCP lease cannot be renewed.

Message Level Warning

Message DHCPC: Failed to configure IP address on port

1/1; with IP address 10.1.1.1, mask 255.255.255.0

**Explanation** The IP address cannot be configured without a reason.

Message Level Warning

Message Failed to download image file image name

**Explanation** The image file cannot be downloaded.

Message Level Warning

Message DHCPC: Failed to download configuration file

image name

**Explanation** The configuration files cannot be downloaded.

Message Level Warning

### Syslog messages DHCPv6

Message DHCPv6: Maximum allowed 60000 delegated prefixes

learned.

**Explanation** The delegated prefixes' limit has reached the maximum value at the

system level

Message Level Warning

Message DHCPv6: Write to flash file to save delegated

prefixes information failed.

**Explanation** Saving the delegated prefixes to flash file failed.

Message Level Warning

Message DHCPv6: Maximum allowed 20000 delegated prefixes

learned on interface ve 100.

**Explanation** The delegated prefixes' limit has reached the maximum value at the

interface level.

Message Level Warning

#### Syslog messages data integrity protection

Message NP CSRAM has 4 error events, exceeding configured

threshold for interfaces 1/1 to 1/24.

Explanation A user sees this message when the CSRAM error events exceeds the

configured threshold parameter for the specified port range.

Message Level Informational

Message NP LPM has 4 error events, exceeding configured

threshold for interfaces 1/1 to 1/24.

Explanation A user receives this message when the LPM memory error events exceeds

the configured threshold parameter for the specified port range.

Message Level Informational

Message NP ingress buffer has 11 error events, exceeding

configured threshold for interfaces 1/1 to 1/24.

**Explanation** A user receives this message when the NP ingress buffer error events

exceeds the configured threshold for the specified port range.

Message Level Informational

Message NP egress buffer has 11 events, exceeding

configured threshold for interfaces 1/1 to 1/24.

**Explanation** A user receives this message when the NP egress buffer error events

exceeds the configured threshold for the specified port range.

Message Level Informational

## Syslog messages TCAM In-field soft repair

Message SYSLOG: <14>Jul 23 11:02:41 sys-np-mac-224 IFSR:

Soft Error at TCAM index 0x0002211a of PPCR 1

**Explanation** Indicates the TCAM In-Field Soft Repair (IFSR) memory parity error is

detected at the specified TCAM index for the Port Per Packet Processor

(PPCR) 1.

Message Level Error

Message SYSLOG: <14>Jul 23 11:02:41 sys-np-mac-224 IFSR:

Soft Repair at TCAM index 0x00002fe9 of PPCR 1

**Explanation** Indicates the IFSR error entry is repaired at the specified TCAM index for

the PPCR 1.

Message Level Informational

Message SYSLOG: <14>Jul 23 11:02:41 sys-np-mac-224 IFSR:

Soft Repair failed at TCAM index 0x00002fe9 of

PPCR 1

**Explanation** Indicates the IFSR error entry failed to repair in Non-NetRoute mode at the

specified TCAM index for the PPCR 1.

Message Level Informational

Message SYSLOG: <14>Jul 23 11:02:41 sys-np-mac-224 IFSR:

Soft Repair failed on PPCR 1

**Explanation** Indicates the IFSR error entry failed to repair in NetRoute mode at the

specified PPCR 1.

Message Level Informational

Message SYSLOG: <14>Jul 23 11:02:41 sys-np-mac-224 IFSR:

Error FIFO Overflow on PPCR 1

**Explanation** Indicates that within the KBP FIFO, TCAM indices error entries are high

and an FIFO overflow of entries occurred for the PPCR 1. Some error

entries may have dropped.

Message Level Informational

## Syslog messages NSR

Message NSR: Successfully notified RTM6 that OSPF6

switchover complete

Explanation OSPFv3 completes the restart process after switching over to the new

master MP.

Message Level Notification

# **Global and Address Family Configuration Levels**

- Accessing the address family configuration level......405
- Backward compatibility for existing BGP4 and IPv4 IS-IS configurations.......406

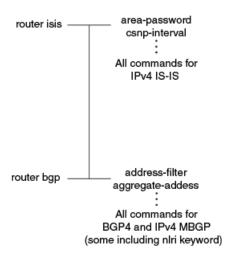

Table 62 displays the individual devices and the Global and Address Family Configuration Level features they support.

TABLE 62 Supported global and address family configuration level features

| Features<br>supported                                                  | Brocade<br>NetIron<br>XMR<br>Series<br>Series | Brocade<br>NetIron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron<br>CES Series<br>2000 Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
|------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Accessing the<br>Address Family<br>Configuration<br>Level Under<br>BGP | Yes                                           | Yes                                 | No                                                                       | No                                                                    | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Backward<br>Compatibility for<br>Existing BGP4<br>and IPv4 IS-IS       | Yes                                           | Yes                                 | No                                                                       | No                                                                    | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| Global BGP4<br>Commands and<br>BGP4 Unicast<br>Route<br>Commands       | Yes                                           | Yes                                 | No                                                                       | No                                                                    | Yes                                                                   | Yes                                                                      | Yes                                                                                |

This appendix describes the restructured CLI for BGP and IS-IS on devices that support IPv6. In earlier versions of software, the CLI for BGP4 and IPv4 IS-IS is structured as shown in Figure 14.

FIGURE 14 Earlier structure of BGP4 and IPv4 IS-IS CLI



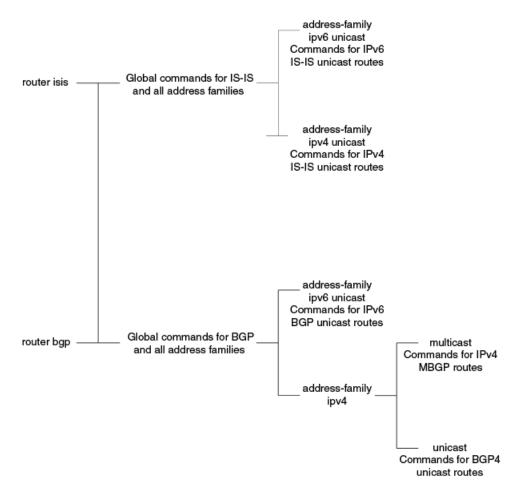
To configure BGP4 and IPv4 MBGP, enter the **router bgp** command, which takes you to the BGP router configuration level. At this level, you can access commands to configure all aspects of BGP4 and IPv4 MBGP, including commands that configure the protocol, and commands that configure unicast routes and multicast routes. (To configure aspects of multicast routes, specify the nlri keyword with a command.)

To configure IPv4 IS-IS, enter the **router isis** command, which takes you to the IS-IS device configuration level. At this level, you can access commands that allow you to configure all aspects of IPv4 IS-IS, including commands that configure the protocol, and commands that configure unicast routes.

In both cases, the device determines, for example, whether commands entered at the BGP device configuration level apply to BGP4, to BGP4 unicast routes, or to IPv4 MBGP routes.

The introduction of IPv6 required the restructuring of existing BGP4 and IPv4 IS-IS CLI for the following reasons:

- · To accommodate the IPv6-related CLI.
- To simplify the configuration of BGP4 unicast and IPv4 MBGP routes.


The CLI includes two layers of CLI for BGP and IS-IS (refer to Figure 15):

- · A global layer to configure BGP and IS-IS protocols.
- · Address families that separate the configuration of:
  - IPv6 and IPv4
  - Routing protocol

Sub-address families separate the configuration of:

- · Unicast routes
  - Multicast routes

FIGURE 15 IPv4, BGP4+ and IS-IS CLI structures



## Accessing the address family configuration level

For example, to access the BGP4 multicast address family configuration level, enter the following command while at the global BGP configuration level.

```
device(config-bgp)# address-family ipv4 multicast
device(config-bgp-ipv4m)#
```

#### Syntax: address-family ipv4 unicast | ipv4 multicast | ipv6 unicast

The (config-bgp-ipv4m)# prompt indicates that you are at the IPv4 multicast address family configuration level. At this level, you can access commands that allow you to configure BGP4 multicast routes. The commands that you enter at this level apply to BGP4 multicast routes only. You can generate a configuration for BGP4 multicast routes that is separate and distinct from configurations for BGP4 unicast routes and BGP4+ unicast routes.

#### NOTE

Each address family configuration level gives you access to commands that apply to that address family only. To enable a feature in a particular address family, you must specify any associated commands for that feature in that address family.

To exit the BGP4 multicast address family configuration level, enter this command.

```
device(config-bgp-ipv4m) # exit-address-family
device(config-bgp) #
```

#### Syntax: exit-address-family

When you enter the **exit-address-family** command at an address family configuration level you return to the global IS-IS configuration level, or the BGP4 unicast address family configuration level, (the default BGP4 level). For backward compatibility, you can currently access commands related to BGP4 unicast routes at both global BGP4 configuration and BGP4 unicast address family configuration levels. Both levels are indicated by the (config-bgp)# prompt.

# Backward compatibility for existing BGP4 and IPv4 IS-IS configurations

When a device is upgraded to the current software version, the software automatically converts the existing BGP4 unicast and all IPv4 IS-IS configurations into the new address families. The software also automatically converts some of the IPv4 MBGP configuration into the new address family. Software conversion actions include:

- Leaves the global BGP4 and IPv4 IS-IS configurations as is.
- Converts the configuration for BGP4 unicast neighbors and routes into the BGP4 unicast address family.
- Converts the configuration for IPv4 IS-IS unicast routes into the IPv4 IS-IS unicast address family.
- Converts the configuration for IPv4 MBGP neighbors into IPv4 MBGP address family.

#### **NOTE**

The software does not convert all aspects of the IPv4 MBGP configuration. You must reconfigure the network routes, aggregate routes, redistribution of routes into IPv4 MBGP, and route map filters. Use the **show run** and **show ip bgp config** commands to check your IPv4 MBGP configuration.

Previously, IPv4 MBGP routes were configured using commands that included the *nlri* keyword The current software version does not support the *nlri* keyword with IPv4 and IPv6 MBGP commands. You must now use the address families to configure all versions of BGP, IS-IS, and MBGP.

#### Global BGP4 commands and BGP4 unicast route commands

A global BGP command configures the BGP routing protocol and applies to all IPv4 and IPv6 address families. You can access the global commands while at the global BGP configuration level.

A BGP4 unicast route command configures a BGP4 unicast route. For backward compatibility, you can access BGP4 unicast route commands at both global BGP4 configuration and BGP4 unicast

address family configuration levels. To help you distinguish the global BGP4 commands from the BGP4 unicast route commands at the global BGP4 configuration level, this section lists global BGP commands:

- · address-filter
- · always-compare-med
- · as-path-filter
- · as-path-ignore
- · bgp-redistribute-internal
- · cluster-id
- · community-filter
- · compare-routerid
- · confederation identifier
- · confederation peers
- default-local-preference
- distance
- · enforce-first-as
- · fast-external-fallover
- · ignore-invalid-confed-as-path
- · local-as
- · med-missing-as-worst
- · timers

The following global BGP commands are used to configure peer groups and neighbors:

- neighbor ipv4-address | ipv6-address | peer-group-name description
- neighbor ipv4-address | ipv6-address | peer-group-name distribute-list acl name in
- neighbor ipv4-address | ipv6-address | peer-group-name distribute-list acl\_name out
- neighbor ipv4-address | ipv6-address | peer-group-name distribute-list in
- neighbo r ipv4-address | ipv6-address | peer-group-name distribute-list out
- neighbor ipv4-address | ipv6-address | peer-group-name ebgp-multihop
- neighbor ipv4-address | ipv6-address | peer-group-name filter-list in
- neighbor ipv4-address | ipv6-address | peer-group-name filter-list out
- neighbor ipv4-address | ipv6-address | peer-group-name next-hop-self
- neighbor ipv4-address | ipv6-address | peer-group-name password
- neighbor ipv4-address | ipv6-address | peer-group-name peer-group
- neighbor ipv4-address | ipv6-address | peer-group-name remote-as
- neighbor ipv4-address | ipv6-address | peer-group-name remove-private-as
- neighbor ipv4-address | ipv6-address | peer-group-name shut down
- neighbor ipv4-address | ipv6-address | peer-group-name soft-reconfiguration inbound
- neighbor ipv4-address | ipv6-address | peer-group-name timers
- neighbor ipv4-address | ipv6-address | peer-group-name update-source

The following address family commands modify the behavior of BGP for a specific address family:

- · aggregate-address
- · client-to-client-reflection
- dampening
- · default-information-originate
- · default-metric
- · maximum-paths
- · multipath
- **neighbor** *ipv4-address* | *ipv6-address* | *peer-group-name* **filter-list in** (applies to the IPv4 unicast address family only)

- network
- next-hop-enable-default
- next-hop-recursion (applies to the IPv4 unicast address family only)
- · readvertise (applies to the IPv4 unicast address family only)
- redistribute
- table-map
- update-time

The following commands configure policies for neighbors or peer groups for a specific address family:

- neighbor ipv4-address | ipv6-address | peer-group-name activate
- neighbor ipv4-address | ipv6-address | peer-group-name capability orf prefixlist
- neighbor ipv4-address | ipv6-address | peer-group-name default-originate
- neighbor ipv4-address | ipv6-address | peer-group-name filter-list as-path-access-list in
- neighbor ipv4-address | ipv6-address | peer-group-name filter-list as-path-access-lis out
- neighbor ipv4-address | ipv6-address | peer-group-name maximum-prefix
- neighbor ipv4-address | ipv6-address | peer-group-name prefix\_list\_prefix\_list\_name in
- neighbor ipv4-address | ipv6-address | peer-group-name prefix\_list prefix\_list\_name out
- neighbor ipv4-address | ipv6-address | peer-group-name route-map in
- neighbor ipv4-address | ipv6-address | peer-group-name route-map out
- neighbor ipv4-address | ipv6-address | peer-group-name route-reflector-client
- neighbor ipv4-address | ipv6-address | peer-group-name send-community
- neighbor ipv4-address | ipv6-address | peer-group-name unsuppress-map
- neighbor ipv4-address | ipv6-address | peer-group-name weight
- neighbor ipv4-address | ipv6-address | peer-group-name route-map
   neighbor ipv4-address | ipv6-address | peer-group-name allowas-in
- neighbor ipv4-address | ipv6-address | peer-group-name send-label

Currently, you can create a neighbor with an IPv4 or IPv6 address at the global BGP configuration or IPv4 unicast address family configuration level. For example, if you create a neighbor with an IPv4 address at this level, by default, the neighbor is enabled to exchange IPv4 unicast prefixes. However, this neighbor cannot exchange IPv4 multicast prefixes until you explicitly enable it to do so by entering the **neighbor** *ipv4-address* | *peer-group-name* **activate** command at the IPv4 multicast address family configuration level. Likewise, if you create a neighbor with an IPv6 address at this level, the neighbor will not exchange IPv6 unicast prefixes until you explicitly enable it to do so by entering the **neighbor** *ipv6-address* | *peer-group-name* **activate** command at the IPv6 unicast address family configuration level.

If you create a neighbor at the IPv4 multicast address family configuration or IPv6 unicast address family configuration levels, by default, the neighbor is enabled to exchange IPv4 multicast prefixes or IPv6 unicast prefixes, respectively. You do not need to explicitly enable the neighbor at either level.

## **Commands That Require a Reload**

Table 63 displays the individual Brocade devices and the commands that require a reload features they support.

TABLE 63 Supported Brocade commands that require a reload features

| Features<br>supported      | Brocade<br>Netlron<br>XMR<br>Series<br>Series | Brocade<br>Netlron<br>MLX<br>Series | Brocade<br>Netlron<br>CES<br>Series<br>2000<br>Series<br>BASE<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>ME_PREM<br>package | Brocade<br>NetIron CES<br>Series 2000<br>Series<br>L3_PREM<br>package | Brocade<br>NetIron<br>CER<br>Series<br>2000<br>Series<br>Base<br>package | Brocade<br>NetIron CER<br>Series 2000<br>Series<br>Advanced<br>Services<br>package |
|----------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| cam-mode ip                | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| cam-mode ipvpn             | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |
| default-max-<br>frame-size | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| multicast-<br>flooding     | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| port-priority              | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| system-max                 | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| virtual-<br>interface-mac  | Yes                                           | Yes                                 | Yes                                                                      | Yes                                                                   | Yes                                                                   | Yes                                                                      | Yes                                                                                |
| vII-mtu-<br>enforcement    | Yes                                           | Yes                                 | No                                                                       | No                                                                    | No                                                                    | No                                                                       | No                                                                                 |

Most CLI commands take effect as soon as you enter them. However, a small number of commands require a software reload to take effect. Table 64 lists these commands.

To place a configuration change made by one of these commands into effect, you must save the change to the startup-config file, then reload the software. If you reload the software without saving the change to the startup-config file, the device does not make the change.

To reload the software, you must perform a warm start. To perform a warm start, do one of the following:

- Enter the reload command at the Privileged EXEC level of the CLI.
- Enter the **boot system** command at the Privileged EXEC level of the CLI.

 TABLE 64
 Commands that require a software reload

| Command                | See                                                                                                              |
|------------------------|------------------------------------------------------------------------------------------------------------------|
| cam-mode ip            | Foundry Direct Routing and CAM Partition Profiles for the NetIron XMR and the Brocade NetIron MLX Series chapter |
| cam-mode ipvpn         | Foundry Direct Routing and CAM Partition Profiles for the NetIron XMR and the Brocade NetIron MLX Series chapter |
| default-max-frame-size | Foundry Direct Routing and CAM Partition Profiles for the NetIron XMR and the Brocade NetIron MLX Series chapter |
| multicast-flooding     | Brocade NetIron Switching Configuration Guide                                                                    |
| system-max             | Foundry Direct Routing and CAM Partition Profiles for the NetIron XMR and the Brocade NetIron MLX Series chapter |
| virtual-interface-mac  | Brocade NetIron Switching Configuration Guide                                                                    |
| vII-mtu-enforcement    | Brocade NetIron MPLS Configuration Guide                                                                         |

#### **NIAP-CCEVS**

Some devices have passed the Common Criteria (CC) certification testing. This testing is sponsored by the National Information Assurance Partnership (NIAP) - Common Criteria Evaluation and Validation Scheme (CCEVS). For more information regarding the NIAP-CCEVS certification process refer to the following link: http://www.nap-ccevs.org/

In an effort to maintain a proper level of security as it relates to access to network infrastructure resources, Brocade recommends that all Brocade hardware be installed within a secure location that is accessible by approved personnel only.

#### **NIAP-CCEVS** certified Brocade equipment and Ironware releases

The following devices have been NIAP-CCEVS certified. The following IronWare software release must be used to remain compliant with this certification:

 TABLE 65
 NIAP-CCEVS certified equipment and IronWare software releases

| Brocade product             | Brocade IronWare software version | Discussed in                               |  |
|-----------------------------|-----------------------------------|--------------------------------------------|--|
| Brocade XMR Family          | 3.8.00a                           | Brocade NetIron Administration Guide       |  |
| Brocade MLX Family          | 3.8.00a                           | Brocade NetIron Administration Guide       |  |
| BigIron RX Family           | 2.5.00b                           | BigIron RX Series Configuration Guide      |  |
| FastIron SuperX/SX Family   | 4.1.00                            | FastIron and TurboIron Configuration Guide |  |
| FastIron Edge X Family      | 4.1.00                            | FastIron and TurboIron Configuration Guide |  |
| FastIron GS/LS Family       | 4.2.00a                           | FastIron and TurboIron Configuration Guide |  |
| FastIron Edge Switch Family | 4.0.00a                           | FastIron Security Guide                    |  |

TABLE 65 NIAP-CCEVS certified equipment and IronWare software releases (Continued)

| Brocade product           | Brocade IronWare software version | Discussed in                                                        |
|---------------------------|-----------------------------------|---------------------------------------------------------------------|
| ServerIron JetCore Family | 11.0.00a                          | ServerIron TrafficWorks Graphical User Interface                    |
|                           |                                   | ServerIron TrafficWorks Server Load Balancing Guide                 |
|                           |                                   | ServerIron TrafficWorks Advanced Server Load Balancing<br>Guide     |
|                           |                                   | ServerIron TrafficWorks Global Server Load Balancing Guide          |
|                           |                                   | ServerIron TrafficWorks Security Guide                              |
|                           |                                   | ServerIron TrafficWorks Administration Guide                        |
|                           |                                   | ServerIron TrafficWorks Switching and Routing Guide                 |
|                           |                                   | ServerIron Firewall Load Balancing Guide                            |
| ServerIron ADX Family     | 12.0.00                           | ServerIron ADX TrafficWorks Graphical User Interface                |
|                           |                                   | ServerIron ADX TrafficWorks Server Load Balancing Guide             |
|                           |                                   | ServerIron ADX TrafficWorks Advanced Server Load Balancing<br>Guide |
|                           |                                   | ServerIron ADX TrafficWorks Global Server Load Balancing<br>Guide   |
|                           |                                   | ServerIron ADX TrafficWorks Security Guide                          |
|                           |                                   | ServerIron ADX TrafficWorks Administration Guide                    |
|                           |                                   | ServerIron ADX TrafficWorks Switching and Routing Guide             |
|                           |                                   | ServerIron ADX Firewall Load Balancing Guide                        |

# Web management access to NIAP-CCEVS certified Brocade equipment

All devices that are to remain in compliancy with the NIAP-CCEVS certification must disable all remote access through the integrated Web management graphical user interface (GUI). In accordance with NIAP-CCEVS this functionality is considered a security risk and must be disabled.

Please refer to the Brocade Configuration Guides associated with each product in the table NIAP-CCEVS certified Brocade equipment and Ironware releases on page 411for detailed instructions on how to disable the Web Management Interface feature.

## Warning: local user password changes

Please note that if existing usernames and passwords have been configured on a device with specific privilege levels (super-user, read-only, port-config) and if you attempt to change a user's password by executing the following command.

device(config) # user fdryreadonly password <value>

The privilege level of this particular user will be changed from its current value to "super-user". The "super-user" level username and password combination provides full access to the Brocade command line interface (CLI). To prevent this from occurring, use the following command.

device(config)# user fdryreadonly privilege <value> password <value>

Warning: local user password changes

#### **Acknowledgements**

| Cryptographic software | 415 |
|------------------------|-----|
| OpenSSL license        | 418 |
| Cryptographic software | 417 |

This appendix presents the acknowledgements for portions of code from various vendors that are included in the Brocade devices covered in this manual.

#### **Cryptographic software**

#### **MPL 1.1**

The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.mozilla.org/MPL/.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License.

The Original Code is the Network Security Services libraries.

The Initial Developer of the Original Code is Red Hat, Inc. Portions created by the Initial Developer are Copyright (C) 2009 the Initial Developer. All Rights Reserved.

Portions created by Netscape Communications Corporation are Copyright (C) 1994-2000 Netscape Communications Corporation. All Rights Reserved.

Contributor(s):

#### **OpenSSL license**

Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.

- 1. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 3. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation or other materials provided with the distribution.
- 4. All advertising materials mentioning features or use of this software must display the following acknowledgment: "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. ( http://www.openssl.org/ )"

- 5. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.
- 6. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL Project.
- Redistributions of any form whatsoever must retain the following acknowledgment: "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit ( http:// www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OPENSSL PROJECT "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#### **Original SSLeay License**

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to conform with Netscapes SSL. This library is free for commercial and non-commercial use as long as the following conditions are aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

- 1. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- 2. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
- 3. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. All advertising materials mentioning features or use of this software must display the following acknowledgment: "This product includes cryptographic software written by Eric Young(eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from the library being used are not cryptographic related.
- 4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgment: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The licence and distribution terms for any publically available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence.

#### **Cryptographic software**

This product includes cryptographic software written by Eric Young ( eay@cryptsoft.com ). This product includes software written by Tim Hudson ( tjh@cryptsoft.com ).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)/. All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the following conditions are adhered to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson ( tih@cryptsoft.com ).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

- 1. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
- 3. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation or other materials provided with the distribution.
- 4. All advertising materials mentioning features or use of this software must display the following acknowledgement:
  - "This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the routines from the library being used are not cryptographic related:-).
- 5. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson ( tjh@cryptsoft.com )"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution license [including the GNU Public License.]

Cryptographic software

# **NP Memory Errors**

The Sysmon NP Memory Error Monitoring event monitors memory errors on interface modules. This appendix lists the interface cards that support NP memory error monitoring. It also details the different NP memory errors supported on each interface card.

The following interface cards support NP memory error monitoring:

- - BR-MLX-40Gx4-X
  - BR-MLX-10Gx24
  - BR-MLX-100Gx2-X(100G)
  - Gen-1
    - NI-XMR-10Gx4
    - NI-MLX-10Gx4)
  - Gen-1.1
    - BR-MLX-1GCx24-X
    - BR-MLX-1GFx24-X
    - BR-MLX-10Gx4-X
  - Gen-2
    - NI-MLX-10Gx8-M
    - NI-MLX-10Gx8-D
    - BR-MLX-10Gx8-X

TABLE 66 NP memory errors supported on BR-MLX-40Gx4-X interface cards

| External Me | External Memory Errors                       |  |  |  |
|-------------|----------------------------------------------|--|--|--|
| 1           | PRAM Parity Errors                           |  |  |  |
| 2           | CAM2PRAM Parity Errors                       |  |  |  |
| 3           | LBLRAM Parity Errors                         |  |  |  |
| 4           | CAM wd10 Parity Error                        |  |  |  |
| 5           | CAM GIO Parity Error                         |  |  |  |
| 6           | CAM PEO Parity Error                         |  |  |  |
| 7           | CAM Operation Parity Error                   |  |  |  |
| 8           | CAM Result Bus Parity Error                  |  |  |  |
| Internal Me | Internal Memory Errors                       |  |  |  |
| 1           | Tx Deframer MVLAN Flag FIFO Parity           |  |  |  |
| 2           | Tx Deframer MVLAN control Packet FIFO Parity |  |  |  |
| 3           | Tx Deframer MVLAN replication table Parity   |  |  |  |
|             |                                              |  |  |  |

| TABLE 66 | NP memory errors supported on BR-MLX-40Gx4-X interface cards (Continued) |
|----------|--------------------------------------------------------------------------|
| 4        | Tx Deframer MVLAN start offset FIFO Parity                               |
| 5        | Tx Deframer MVLAN sop FIFO Parity                                        |
| 6        | Tx Deframer MVLAN payload Data FIFO Parity                               |
| 7        | Tx Packet Edit Data FIFO Parity                                          |
| 8        | Tx Packet Edit Next Hop Table Parity                                     |
| 9        | ACL PRAM Results FIFO Parity                                             |
| 10       | ACL Data FIFO Parity                                                     |
| 11       | ACL Control FIFO Parity                                                  |
| 12       | ACL QoS Done FIFO Parity                                                 |
| 13       | ACL Port Number FIFO Parity                                              |
| 14       | ACL Priet Table Parity                                                   |
| 15       | ACL Tx VLAN Table Parity                                                 |
| 16       | Tx Priet Lookup Result Parity                                            |
| 17       | MAC0 Frame LSTD Parity                                                   |
| 18       | MAC0 Frame Data Parity                                                   |
| 19       | MAC0 Frame Control Parity                                                |
| 20       | MAC1 Frame LSTD Parity                                                   |
| 21       | MAC1 Frame Data Parity                                                   |
| 22       | MAC1 Frame Control Parity                                                |
| 23       | Tx Packet Edit Data FIFO Parity                                          |
| 24       | Tx Packet Edit Control FIFO Parity                                       |
| 25       | Tx Packet Edit nhlk FIFO Parity                                          |
| 26       | Tx Packet Edit pipe LBLe FIFO Parity                                     |
| 27       | Start Offset Table CPU Read Parity                                       |
| 28       | Replacement Table CPU Read Parity                                        |
| 29       | Next Hop Table CPU Read Parity                                           |
| 30       | Tx VLAN Table CPU Read Parity                                            |
|          |                                                                          |

| <b>TABLE 66</b> NP memory errors supported on BR-MLX-40Gx4-X interface | e cards | (Conti | nued) |
|------------------------------------------------------------------------|---------|--------|-------|
|------------------------------------------------------------------------|---------|--------|-------|

|    | <u> </u>                                      |
|----|-----------------------------------------------|
| 31 | Priet Table CPU Read Parity                   |
| 32 | Rx MAC Data FIFO Read Parity                  |
| 33 | Rx MAC Flag FIFO Read Parity                  |
| 34 | Rx MAC Data FIFO Read Parity                  |
| 35 | Rx MAC Flag FIFO Read Parity                  |
| 36 | CAM Result Scheduler FIFO Overflow            |
| 37 | CAM1 Lookup FIFO3 Overflow                    |
| 38 | CAM1 Lookup FIFO2 Overflow                    |
| 39 | CAM1 Lookup FIFO1 Overflow                    |
| 40 | CAM2 Lookup FIFO3 Overflow                    |
| 41 | CAM2 Lookup FIFO2 Overflow                    |
| 42 | CAM2 Lookup FIFO1 Overflow                    |
| 43 | Rx Port Pipeline HQoS Data Parity             |
| 44 | Rx Port Pipeline Rx Data-in Parity            |
| 45 | Rx Port Pipeline Rxctrl FIFO Read Data Parity |
| 46 | Rx Port Pipeline Read Rx QoS Id FIFO Parity   |
| 47 | Rx Port Pipeline Rx portnum FIFO Parity       |
| 48 | Rx Port Pipeline Rx QoS Done FIFO Parity      |
| 49 | Rx Port Pipeline Rx Flag FIFO Parity          |
| 50 | Rx Port Pipeline Rx Header FIFO Parity        |
| 51 | Rx Port Pipeline PRAM Packet Id Status        |
| 52 | Rx Port Pipeline Data Path Packet Id Status   |
| 53 | EXM IP Address FIFO Overflow                  |
| 54 | Rx Packet Header FIFO Parity                  |
| 55 | LBL Lookup FIFO Overflow                      |
| 56 | Indicates Parity in the Packet Decode FIFO    |
| 57 | PRAM Result Error Flag evalcik                |
|    |                                               |

TABLE 66 NP memory errors supported on BR-MLX-40Gx4-X interface cards (Continued) 58 ECMP FIFO Overflow 59 LBL2 ECMP FIFO Overflow 60 Rx port Pipeline Rx QoS Id FIFO Overflow Status 61 Rx port Pipeline Rx Flag FIFO Overflow Status 62 Rx port Pipeline Rx Header FIFO Overflow Status 63 Rx CAM Result FIFO Parity 64 Rx CAM Result FIFO Underflow Status Rx CAM Result FIFO Overflow Status 65 66 Rx Packet Decode FIFO Overflow Status 67 Rx Packet Decode FIFO underflow Status 68 Rx Packet Decode FIFO Parity 69 Rx topotos FIFO Parity 70 Rx topotos FIFO Underflow Status 71 Rx topotos FIFO Overflow Status 72 CAM1 Lookup FIFO 1 73 CAM1 Lookup FIFO 2 CAM1 Lookup FIFO 3 74 75 CAM1 Asc FIFO 76 CAM2 Lookup FIFO 1 77 CAM2 Lookup FIFO 2 78 CAM2 Lookup FIFO 3 79 CAM2 Asc FIFO 80 LBLram srvt Lookup FIFO Underflow LBLram extd Service rd Data Parity 81 82 LBLram LBL Lookup FIFO Underflow 83 LBLram srvp Lookup FIFO Overflow 84 LBLram srvp Lookup FIFO Underflow

 TABLE 66
 NP memory errors supported on BR-MLX-40Gx4-X interface cards (Continued)

| 85  | LBLram rdrequest FIFO Overflow          |
|-----|-----------------------------------------|
| 86  | LBLram rdrequest FIFO Underflow         |
| 87  | LBLram extd Service Read FIFO Overflow  |
| 88  | LBLram extd Service Read FIFO Underflow |
| 89  | srvt Lookup FIFO rd Data Parity         |
| 90  | cam Result Scheduler FIFO Underflow     |
| 91  | CAM1 Result FIFO Overflow               |
| 92  | CAM1 Result FIFO Underflow              |
| 93  | CAM2 Result FIFO Overflow               |
| 94  | CAM2 Result FIFO Underflow              |
| 95  | Label Result FIFO Overflow              |
| 96  | Label Result FIFO Underflow             |
| 97  | LBL hold FIFO Underflow                 |
| 98  | LBL hold FIFO Overflow                  |
| 99  | ECMP FIFO Underflow                     |
| 100 | LBL Result sync FIFO Underflow          |
| 101 | LBL Result sync FIFO Overflow           |
| 102 | LBL2 ECMP FIFO Underflow                |
| 103 | EXM cpu2hashbkt rData Parity            |
| 104 | EXM hwsrch hashbkt rData Parity         |
| 105 | EXM hash idx table Parity               |
| 106 | EXM IP Address FIFO Underflow           |
| 107 | EXM IP Address FIFO Parity              |
| 108 | EXM VPN Id FIFO Underflow               |
| 109 | EXM VPN Id FIFO Parity                  |
| 110 | Stats Block0 Rx FIFO Underflow          |
| 111 | Stats Block0 tx FIFO Overflow           |
|     |                                         |

| TABLE 66 | NP memory errors supported on BR-MLX-40Gx4-X interface cards (Continued) |
|----------|--------------------------------------------------------------------------|
| 112      | Stats Block0 tx FIFO Underflow                                           |
| 113      | Stats Block0 Rx FIFO Overflow                                            |
| 114      | Stats Block1 Rx FIFO Underflow                                           |
| 115      | Stats Block1 tx FIFO Overflow                                            |
| 116      | Stats Block1 tx FIFO Underflow                                           |
| 117      | Stats Block1 Rx FIFO Overflow                                            |
| 118      | Stats Block2 Rx FIFO Underflow                                           |
| 119      | Stats Block2 tx FIFO Overflow                                            |
| 120      | Stats Block2 tx FIFO Underflow                                           |
| 121      | Stats Block2 Rx FIFO Overflow                                            |
| 122      | Stats Block3 Rx FIFO Underflow                                           |
| 123      | Stats Block3 tx FIFO Overflow                                            |
| 124      | Stats Block3 tx FIFO Underflow                                           |
| 125      | Stats Block3 Rx FIFO Overflow                                            |
| 126      | Stats Block4 Rx FIFO Underflow                                           |
| 127      | Stats Block4 tx FIFO Overflow                                            |
| 128      | Stats Block4 tx FIFO Underflow                                           |
| 129      | Stats Block4 Rx FIFO Overflow                                            |
| 130      | Stats Block5 Rx FIFO Underflow                                           |
| 131      | Stats Block5 tx FIFO Overflow                                            |
| 132      | Stats Block5 tx FIFO Underflow                                           |
| 133      | Stats Block5 Rx FIFO Overflow                                            |
| 134      | CAM2PRAM QDR Interface mw FIFO Parity                                    |
| 135      | CAM2PRAM QDR Interface mw FIFO Underflow                                 |
| 136      | CAM2PRAM QDR Interface mw FIFO Overflow                                  |
| 137      | CAM2PRAM QDR Interface rdrequest FIFO Parity                             |
| 138      | CAM2PRAM QDR Interface rdrequest FIFO Underflow                          |

| TABLE 00 IN INCIDIO Supported on DIV MEX 400X4 X Interface datas (Continued) | TABLE 66 | NP memor | y errors supported on BR-MLX-40Gx4-X interface cards ( | (Continued) |
|------------------------------------------------------------------------------|----------|----------|--------------------------------------------------------|-------------|
|------------------------------------------------------------------------------|----------|----------|--------------------------------------------------------|-------------|

| 139 | CAM2PRAM QDR Interface rdrequest FIFO Overflow |
|-----|------------------------------------------------|
| 140 | CAM2PRAM cpu FIFO Parity                       |
| 141 | CAM2PRAM CAM Interface Data FIFO Underflow     |
| 142 | CAM2PRAM CAM Interface Count FIFO Underflow    |
| 143 | CAM2PRAM Result FIFOs Parity                   |
| 144 | CAM2PRAM Result FIFOs Underflow                |
| 145 | CAM2PRAM Result FIFOs Overflow                 |
| 146 | CAM2PRAM Result Scheduler Underflow            |
| 147 | CAM2PRAM Result Scheduler Overflow             |
| 148 | PRAM CAM Interface Data FIFO Underflow 0       |
| 149 | PRAM CAM Interface Data FIFO Overflow 0        |
| 150 | PRAM CAM Interface Data FIFO Underflow 1       |
| 151 | PRAM CAM Interface Data FIFO Overflow 1        |
| 152 | PRAM CAM Interface Data FIFO Underflow 2       |
| 153 | PRAM CAM Interface Data FIFO Overflow 2        |
| 154 | PRAM CAM Interface Data FIFO Underflow 3       |
| 155 | PRAM CAM Interface Data FIFO Overflow 3        |
| 156 | PRAM Channel0 rdParity Flag                    |
| 157 | PRAM Channel1 rdParity Flag                    |
| 158 | PRAM Channel2 rdParity Flag                    |
| 159 | PRAM Channel3 rdParity Flag                    |
| 160 | CAM2Age L2 Underflow 0                         |
| 161 | CAM2Age L2 Underflow 1                         |
| 162 | CAM2Age ACL Underflow 0                        |
| 163 | CAM2Age ACL Underflow 1                        |
| 164 | CAM2Age L3 Underflow                           |
| 165 | L2 Aged FIFO Underflow                         |
|     |                                                |

TABLE 66 NP memory errors supported on BR-MLX-40Gx4-X interface cards (Continued) 166 L2 Aged FIFO Overflow 167 L2 Aged FIFO Parity 168 L2 Aged mem Parity 169 L3 Aged FIFO Underflow L3 Aged FIFO Overflow 170 171 L3 Aged FIFO Parity 172 L3 Aged mem Parity ACL Aged FIFO Underflow 173 174 ACL Aged FIFO Overflow 175 ACL Aged FIFO Parity 176 ACL Aged mem Parity 177 Rx QoS Id ff Underflow 178 Rx QoS Id ff Overflow 179 Rx Flag ff Underflow 180 Rx QoS Done ff Underflow 181 Rx QoS Done ff Overflow 182 PRAM QDR Interface rdrequest FIFO Parity PRAM QDR Interface rdrequest FIFO Underflow 183 184 PRAM QDR Interface rdrequest FIFO Overflow 185 PRAM QDR Interface cpu rd FIFO Parity 186 PRAM Result FIFO Parity 187 PRAM Result FIFO Overflow 188 CAM2Age L3 Overflow 189 CAM2Age L2 Overflow 0 190 CAM2Age L2 Overflow 1 191 CAM2Age ACL Overflow 0

192

CAM2Age ACL Overflow 1

 TABLE 66
 NP memory errors supported on BR-MLX-40Gx4-X interface cards (Continued)

| 193 | CAM2PRAM Data FIFO Overflow  |
|-----|------------------------------|
| 194 | CAM2PRAM Count FIFO Overflow |
| 195 | CAM1 Lookup FIFO1 Underflow  |
| 196 | CAM1 Lookup FIFO2 Underflow  |
| 197 | CAM1 Lookup FIFO3 Underflow  |
| 198 | CAM2 Lookup FIFO1 Underflow  |
| 199 | CAM2 Lookup FIFO2 Underflow  |
| 200 | CAM2 Lookup FIFO3 Underflow  |
| 201 | CAM1 Asc FIFO Underflow      |
| 202 | CAM1 Asc FIFO Overflow       |
| 203 | CAM2 Asc FIFO Underflow      |
| 204 | CAM2 Asc FIFO Overflow       |
| 205 | EXM VPN Id FIFO Overflow     |
| 206 | CAM3 Lookup FIFO1 Underflow  |
| 207 | CAM3 Lookup FIFO2 Underflow  |
| 208 | CAM3 Lookup FIFO3 Underflow  |
| 209 | CAM3 Asc FIFO Underflow      |
| 210 | CAM3 Asc FIFO Overflow       |
| 211 | CAM3 Lookup FIFO1 Parity     |
| 212 | CAM3 Lookup FIFO2 Parity     |
| 213 | CAM3 Lookup FIFO3 Parity     |
| 214 | CAM3 Asc FIFO Parity         |
| 215 | Cmd rdData Parity            |
| 216 | Cmpl Data Parity             |
| 217 | CAM3 Lookup FIFO1 Overflow   |
| 218 | CAM3 Lookup FIFO2 Overflow   |
| 219 | CAM3 Lookup FIFO3 Overflow   |
|     |                              |

| TABLE 66    | NP memory errors supported on BR-MLX-40Gx4-X interface cards (Continued) |
|-------------|--------------------------------------------------------------------------|
| 220         | Service CAM Block Mux FIFO Overflow                                      |
| 221         | Service CAM Block Mux FIFO Underflow                                     |
| 222         | eACL CAM Block Mux FIFO1 Overflow                                        |
| 223         | eACL CAM Block Mux FIFO1 Underflow                                       |
| 224         | eACL CAM Block Mux FIFO2 Overflow                                        |
| 225         | eACL CAM Block Mux FIFO2 Underflow                                       |
| 226         | Service CAM Result FIFO Overflow                                         |
| 227         | Service CAM Result FIFO Underflow                                        |
| 228         | eACL CAM Result FIFO Overflow                                            |
| 229         | eACL CAM Result FIFO Underflow                                           |
| 230         | eACL CAM Block Mux FIFO2 Parity                                          |
| 231         | eACL CAM Block Mux FIFO1 Parity                                          |
| 232         | Service CAM Block Mux FIFO Parity                                        |
| 233         | CAM3 Service Result FIFO Parity                                          |
| 234         | CAM3 eACL Result FIFO Parity                                             |
| TABLE 67    | NP memory errors supported on BR-MLX-10Gx24 interface cards.             |
| External Me | emory Errors                                                             |
| 1           | ISL TCAM Parity Error                                                    |
| 2           | ISL PRAM ECC Single Error                                                |
| 3           | ISL BKT Memory ECC Single Error                                          |
| 4           | ISL Mask Memory ECC Single Error                                         |
| 5           | ISL Index Memory ECC Single Error                                        |
| 6           | ISL PRAM ECC Double Error                                                |
| 7           | ISL BKT Memory ECC Double Error                                          |
| 8           | ISL Mask Memory ECC Double Error                                         |
| 9           | ISL Index Memory ECC Double Error                                        |
| Internal Me | mory Errors                                                              |

 TABLE 67
 NP memory errors supported on BR-MLX-10Gx24 interface cards. (Continued)

| .ABLL 0 | The memory errors supported on Bit MEX 100X24 Interface saids. (Continued) |
|---------|----------------------------------------------------------------------------|
| IPT     |                                                                            |
| 1       | IPT Topology Table Memory Un-Correctable ECC Error                         |
| 2       | IPT Topology Table Memory Correctable ECC Error                            |
| 3       | IPT DSCP Table Memory Un-Correctable ECC Error                             |
| 4       | IPT DSCP Table Memory Correctable ECC Error                                |
| 5       | IPT PCP Table Memory Un-Correctable ECC Error                              |
| 6       | IPT PCP Table Memory Correctable ECC Error                                 |
| 7       | IPT EXP Table Memory Un-Correctable ECC Error                              |
| 8       | IPT EXP Table Memory Correctable ECC Error                                 |
| 9       | IPT Byte count Table Memory Parity Error                                   |
| 10      | IPT Framee count Table Memory Parity Error                                 |
| EFE     |                                                                            |
| 11      | EFE Frame Control Parity Error                                             |
| 12      | EFE Frame Data Parity Error                                                |
| 13      | EFE HW NextHop Table Lookup 1bit Parity Error                              |
| 14      | EFE HW NextHop Table Lookup 2bit Parity Error                              |
| PIB     |                                                                            |
| 15      | PIB Tx Channel 0 FIFO DMA Parity Error                                     |
| 16      | PIB Tx Channel 1 FIFO DMA Parity Error                                     |
| 17      | PIB Tx Channel 2 FIFO DMA Parity Error                                     |
| 18      | PIB Tx Channel 3 FIFO DMA Parity Error                                     |
| 19      | PIB Tx Keep Alive FIFO DMA Parity Error                                    |
| 20      | PIB Tx Keep Alive Sequence Id Parity Error                                 |
| 21      | PIB Tx Keep Alive Scheduler Parity Error                                   |
| 22      | PIB Tx Keep Alive Descriptor Parity Error                                  |
| 23      | PIB RA IO Read Parity Error                                                |
| 24      | PIB RA IO Write Parity Error                                               |
|         |                                                                            |

| TABLE 67 | NP memory errors supported on BR-MLX-10Gx24 interface cards. (Continued) |
|----------|--------------------------------------------------------------------------|
| 25       | PIB Tx Channel 0 PCle Read Parity Error                                  |
| 26       | PIB Tx Channel 1 PCle Read Parity Error                                  |
| 27       | PIB Tx Channel 2 PCle Read Parity Error                                  |
| 28       | PIB Tx Channel 3 PCle Read Parity Error                                  |
| 29       | PIB Keep Alive Tx Channel PCIe Read Parity Error                         |
| 30       | PIB IOR PCIe Read Parity Error                                           |
| 31       | PIB IOW PCIe Read Parity Error                                           |
| 32       | PIB IO PCIe Write Parity Error                                           |
| ICC      |                                                                          |
| 33       | ICC ACL CAM Request FIFO Overflow                                        |
| 34       | ICC L2 CAM Request FIFO Overflow                                         |
| 35       | ICC L3 CAM Request FIFO Overflow                                         |
| 36       | ICC ACL CAM result FIFO Overflow                                         |
| 37       | ICC L2 CAM result FIFO Overflow                                          |
| 38       | ICC L3 CAM result FIFO Overflow                                          |
| 39       | ICC ACL CAM Request FIFO Parity Error                                    |
| 40       | ICC L2 CAM Request FIFO Parity Error                                     |
| 41       | ICC L3 CAM Request FIFO Parity Error                                     |
| 42       | ICC ACL CAM result FIFO Parity Error                                     |
| 43       | ICC L2 CAM result FIFO Parity Error                                      |
| 44       | ICC L3 CAM result FIFO Parity Error                                      |
| 45       | ICC L2 CAM result interface Parity Error                                 |
| 46       | ICC L3 CAM result interface Parity Error                                 |
| 47       | ICC L2 CAM result Pipeline fatal Errors                                  |
| 48       | ICC L3 CAM result Pipeline fatal Errors                                  |
| 49       | ICC passthrough FIFO (hash,labels) Overflow                              |
| 50       | ICC passthrough FIFO read Parity Error                                   |
|          |                                                                          |

| TABLE 67 | NP memory errors supported on BR-MLX-10Gx24 interface cards. (Continued) |
|----------|--------------------------------------------------------------------------|
| 51       | ICC ACL CAM read Parity Error                                            |
| ERA      |                                                                          |
| 52       | ERA RPC Credit update err                                                |
| 53       | ERA Tx PRAM HW Read 1bit err                                             |
| 54       | ERA Tx PRAM HW Read 2bit err                                             |
| 55       | ERA Tx PRAM refresh err                                                  |
| 56       | ERA Tx VLAN Table HW Read 1bit err                                       |
| 57       | ERA Tx VLAN Table HW Read 2bit err                                       |
| 58       | ERA Tx VLAN Table refresh err                                            |
| 59       | ERA RPC RMRAM ECC serr                                                   |
| 60       | ERA RPC RMRAM ECC merr                                                   |
| 61       | ERA RPC CNTRAM ECC serr                                                  |
| 62       | ERA RPC CNTRAM ECC merr                                                  |
| 63       | ERA RPC IRRAM ECC serr                                                   |
| 64       | ERA RPC IRRAM ECC merr                                                   |
| 65       | ERA RPC BSRAM ECC serr                                                   |
| 66       | ERA RPC BSRAM ECC merr                                                   |
| 67       | ERA RPC ACRAM ECC serr                                                   |
| 68       | ERA RPC ACRAM ECC merr                                                   |
| 69       | ERA Priet 1bit err                                                       |
| 70       | ERA Priet 2bit err                                                       |
| 71       | ERA TCAM Scrub Parity Error                                              |
| 72       | ERA Tx Packet Data FIFO Parity Error                                     |
| 73       | ERA Tx Packet Control Info Parity Error                                  |
| 74       | ERA RPC FIFO Overflow                                                    |
| RPP      |                                                                          |
| 75       | RPF FIFO Overflow                                                        |

| TABLE 67 | NP memory errors supported on BR-MLX-10Gx24 interface cards. (Continued) |
|----------|--------------------------------------------------------------------------|
| 76       | RHF NullFIFO Overflow                                                    |
| 77       | LEP FIFO Overflow                                                        |
| 78       | RCF Status FIFO Overflow                                                 |
| 79       | CCM Status FIFO Overflow                                                 |
| 80       | CCM Status FIFO undrflow                                                 |
| 81       | Rx Header FIFO Parity Error                                              |
| 82       | CCM Status FIFO Parity Error                                             |
| 83       | CCM Session Table Read Uncorrectible ECC Error                           |
| 84       | CCM Session Table Read Correctible ECC Error                             |
| 85       | CCM Hash Table Read Uncorrectible ECC Error                              |
| 86       | CCM Hash Table Read Correctible ECC Error                                |
| 87       | CCM Hash Bucket Read Uncorrectible ECC Error                             |
| 88       | CCM Hash Bucket Read Correctible ECC Error                               |
| 89       | BFD Session Table Read Uncorrectible ECC Error                           |
| 90       | BFD Session Table Read Correctible ECC Error                             |
| 91       | BFD Session Rx Count Statistics Read Parity Error                        |
| TPP      |                                                                          |
| 92       | Transmit Packet FIFO Read Parity Error                                   |
| 93       | TPP Statistics Parity Error                                              |
| 94       | Write Command Reply Packet Parity Error                                  |
| 95       | Read Command Reply Packet Parity Error                                   |
| IFE      |                                                                          |
| 96       | RPC ACRAM Table Memory Un-Correctable ECC Error                          |
| 97       | RPC accumulator Table Memory Correctable ECC Error                       |
| 98       | RPC Max Burst size Table Memory Un-Correctable ECC Error                 |
| 99       | RPC Max Burst size Table Memory Correctable ECC Error                    |
| 100      | RPC Credit Increment Table Memory Un-Correctable ECC Error               |
|          |                                                                          |

| 101         | RPC Credit Increment Table Memory Correctable ECC Error              |  |
|-------------|----------------------------------------------------------------------|--|
| 102         | RPC Remap Table Memory Un-Correctable ECC Error                      |  |
| 103         | RPC Remap Table Memory Correctable ECC Error                         |  |
| 104         | RPC Count Table Memory Un-Correctable ECC Error                      |  |
| 105         | RPC Count Table Memory Correctable ECC Error                         |  |
| 106         | Rx Port Pipeline QOS done FIFO Parity Error                          |  |
| 107         | Rx Port Pipeline Flag FIFO Parity Error                              |  |
| 108         | Rx Port Pipeline Header FIFO Parity Error                            |  |
| 109         | Port Number FIFO UnCorrectable ECC Error                             |  |
| 110         | Port Number FIFO Correctable ECC Error                               |  |
| 111         | Rx Control iNPt FIFO UnCorrectable ECC Error                         |  |
| 112         | Rx Control iNPt FIFO Correctable ECC Error                           |  |
| 113         | Rx Port Pipeline FIFO Error                                          |  |
| 114         | Rx Port Pipeline iNPt QOS ID FIFO Parity Error                       |  |
| 115         | Per port priority indexed counter Memory Parity Error                |  |
| ΓABLE 68    | NP memory errors supported on BR-MLX-100Gx2-X(100G) interface cards. |  |
| External Me | emory Errors                                                         |  |
| 1           | LBLRAM Parity Errors                                                 |  |
| 2           | Age RAM 1 Parity Errors                                              |  |
| 3           | Age RAM 2 Parity Errors                                              |  |
| 4           | CAM1 Interface Parity Errors                                         |  |
| 5           | CAM2 Interface Parity Errors                                         |  |
| 6           | CAM3 Interface Parity Errors                                         |  |
| 7           | TXCAM Interface Parity Error                                         |  |
| Internal Me | mory Errors                                                          |  |
| 1           | Multicast VLAN flag FIFO Parity                                      |  |

Multicast VLAN cPacket FIFO Parity

2

| TABLE 68 | NP memory errors supported on BR-MLX-100Gx2-X(100G) interface cards. (Continued) |
|----------|----------------------------------------------------------------------------------|
| 3        | Multicast VLAN sfsTable Parity                                                   |
| 4        | Multicast VLAN repTable Parity                                                   |
| 5        | Multicast VLAN sfs FIFO Parity                                                   |
| 6        | Multicast VLAN sop FIFO Parity                                                   |
| 7        | Multicast VLAN pld FIFO Parity                                                   |
| 8        | Packet Edit Data FIFO Parity                                                     |
| 9        | Packet Edit sop FIFO Parity                                                      |
| 10       | Packet Edit merge FIFO Parity                                                    |
| 11       | Nexthoptable Ikup Data Parity                                                    |
| 12       | ACL PRAM Results FIFO Parity                                                     |
| 13       | ACL feed FIFO Parity                                                             |
| 14       | ACL Data FIFO Parity                                                             |
| 15       | ACL ctrl FIFO Parity                                                             |
| 16       | ACL qosdone Parity                                                               |
| 17       | ACL portnum Parity                                                               |
| 18       | ACL priet Parity                                                                 |
| 19       | Tx vlan Result Parity                                                            |
| 20       | Framer ctrl FIFO Parity                                                          |
| 21       | Framer Data FIFO Parity                                                          |
| 22       | Packet Edit Data FIFO rdData Parity                                              |
| 23       | Packet Edit ctrl FIFO rdData Parity                                              |
| 24       | Packet Edit nhlk FIFO rdData Parity                                              |
| 25       | Packet Edit Ible FIFO rdData Parity                                              |
| 26       | CPU2startofs Read Data Parity                                                    |
| 27       | CPU2replace Read Data Parity                                                     |
| 28       | CPU2gentable nhtable Read Data Parity                                            |
| 29       | CPU2gentable Txvlan Read Data Parity                                             |
|          |                                                                                  |

| TABLE 68 | NP memory errors supported on BR-MLX-100Gx2-X(100G) interface cards. (Continued) |
|----------|----------------------------------------------------------------------------------|
| 30       | CPU priet Read Data Parity                                                       |
| 31       | Rx MAC Data FIFO Parity Status                                                   |
| 32       | Rx MAC Flag FIFO Parity Status                                                   |
| 33       | CAM1 Result Data FIFO Parity Status                                              |
| 34       | CAM2 Result Data FIFO Parity Status                                              |
| 35       | CAM3 Result Data FIFO Parity Status                                              |
| 36       | CAM Result Scheduler FIFO Parity Status                                          |
| 37       | CAM1 PacketID Mismatch                                                           |
| 38       | CAM2 PacketID Mismatch                                                           |
| 39       | CAM3 PacketID Mismatch                                                           |
| 40       | CAM Result FIFO Parity Status                                                    |
| 41       | Label PRAM Result Scheduler FIFO Parity Status                                   |
| 42       | Service PRAM Result FIFO Parity Status                                           |
| 43       | Rx Packethdr Result FIFO Parity Status                                           |
| 44       | Rx Packet ID Mismatch                                                            |
| 45       | Rx Control FIFO Parity Status                                                    |
| 46       | Rx Data FIFO Parity Status                                                       |
| 47       | Ageram1 FIFO 1 Parity Status                                                     |
| 48       | Ageram1 FIFO 2 Parity Status                                                     |
| 49       | Ageram2 FIFO 1 Parity Status                                                     |
| 50       | Ageram1 Aging Entry FIFO Parity Status                                           |
| 51       | Ageram2 Aging Entry FIFO Parity Status                                           |
| 52       | Rx Data FIFO Mismatch                                                            |
| 53       | Service PRAM Result FIFO Parity Status                                           |
| 54       | Packet Header Misc Parity Status                                                 |
| 55       | Packet Header 2 Parity Status                                                    |
| 56       | Packet Header 1 Parity Status                                                    |

| TABLE 68 | NP memory errors supported on BR-MLX-100Gx2-X(100G) interface cards. (Continued) |
|----------|----------------------------------------------------------------------------------|
| 57       | Packet Header 0 Parity Status                                                    |
| 58       | Service CAM Lookup FIFO Parity Status                                            |
| 59       | CAM1 ASC FIFO Parity Status                                                      |
| 60       | CAM1 Lookup FIFO-1 Parity Status                                                 |
| 61       | CAM1 Lookup FIFO-2 Parity Status                                                 |
| 62       | CAM2 ASC FIFO Parity Status                                                      |
| 63       | CAM2 Lookup FIFO-1 Parity Status                                                 |
| 64       | CAM2 Lookup FIFO-2 Parity Status                                                 |
| 65       | CAM3 ASC FIFO Parity Status                                                      |
| 66       | CAM3 Lookup FIFO-1 Parity Status                                                 |
| 67       | CAM3 Lookup FIFO-2 Parity Status                                                 |
| 68       | PRAM Result FIFO Parity                                                          |
| 69       | Trunk adjusted header Parity                                                     |
| 70       | Packet Tablerd Parity                                                            |
| 71       | Service PRAM Result FIFO Parity Status                                           |
| 72       | Packet Header Misc Parity Status                                                 |
| 73       | Packet Header 2 Parity Status                                                    |
| 74       | Packet Header 1 Parity Status                                                    |
| 75       | Packet Header 0 Parity Status                                                    |
| 76       | Rx Packetdecode FIFO Parity                                                      |
| 77       | Rx topotos FIFO Parity                                                           |
| 78       | Eval0 trunk group Table Parity                                                   |
| 79       | Eval1 trunk group Table Parity                                                   |
| 80       | Eval2 trunk group Table Parity                                                   |
| 81       | Eval3 trunk group Table Parity                                                   |
| 82       | Eval4 trunk group Table Parity                                                   |
| 83       | Eval5 trunk group Table Parity                                                   |

| TABLE 68 | NP memory errors supported on BR-MLX-100Gx2-X(100G) interface cards. (Continued) |
|----------|----------------------------------------------------------------------------------|
| 84       | Merged CAM Result FIFO0 Parity                                                   |
| 85       | Merged CAM Result FIFO1 Parity                                                   |
| 86       | Merged PRAM Result FIFO0 Parity                                                  |
| 87       | Merged PRAM Result FIFO1 Parity                                                  |
| 88       | Ored 7 ram m p Result Parity                                                     |
| 89       | Rx Data in Parity                                                                |
| 90       | Rxctrl FIFO Read Data Parity                                                     |
| 91       | Read Rx qosid FIFO Parity                                                        |
| 92       | Rx portnum FIFO Parity                                                           |
| 93       | Rx qosdone FIFO Parity                                                           |
| 94       | Rx flag FIFO Parity                                                              |
| 95       | Rx header FIFO Parity                                                            |
| 96       | HQoS Table Parity                                                                |
| 97       | PRAM1 ECMP FIFO rd Parity                                                        |
| 98       | PRAM1 rdrequest FIFO Parity                                                      |
| 99       | PRAM1 CPU rd FIFO Parity                                                         |
| 100      | PRAM2 rdrequest FIFO Parity                                                      |
| 101      | PRAM2 CPU rd FIFO Parity                                                         |
| 102      | PRAM3 rdrequest FIFO Parity                                                      |
| 103      | PRAM3 CPU rd FIFO Parity                                                         |
| 104      | CAM2PRAM1 rdrequest FIFO Parity                                                  |
| 105      | CAM2PRAM1 ECMP FIFO rdData Parity                                                |
| 106      | CAM2PRAM1 CPU FIFO rdData Parity                                                 |
| 107      | CAM2PRAM1 mw FIFO rd Parity                                                      |
| 108      | CAM2PRAM2 rdrequest FIFO Parity                                                  |
| 109      | CAM2PRAM2 ECMP FIFO rdData Parity                                                |
| 110      | CAM2PRAM2 CPU FIFO rdData Parity                                                 |
|          |                                                                                  |

| TABLE 68    | NP memory errors supported on BR-MLX-100Gx2-X(100G) interface cards. (Continued) |  |
|-------------|----------------------------------------------------------------------------------|--|
| 111         | CAM2PRAM2 mw FIFO rd Parity                                                      |  |
| 112         | CAM2PRAM3 rdrequest FIFO Parity                                                  |  |
| 113         | CAM2PRAM3 ECMP FIFO rdData Parity                                                |  |
| 114         | CAM2PRAM3 CPU FIFO rdData Parity                                                 |  |
| 115         | CAM2PRAM3 mw FIFO rd Parity                                                      |  |
| 116         | CAM Result FIFO Parity                                                           |  |
| 117         | Rx MAC Data FIFO Parity Status                                                   |  |
| 118         | Rx MAC Flag FIFO Parity Status                                                   |  |
| TABLE 69    | NP memory errors supported on Gen-1 and Gen-1.1 interface cards.                 |  |
| Internal Me | mory Errors                                                                      |  |
| 1           | Rx Data FIFO Pointer Mismatch                                                    |  |
| 2           | Rx Control FIFO Pointer Mismatch                                                 |  |
| 3           | CAM1 ASC FIFO Mismatch                                                           |  |
| 4           | CAM2 ASC FIFO Mismatch                                                           |  |
| 5           | CAM3 ASC FIFO Mismatch                                                           |  |
| TABLE 70    | NP memory errors supported on Gen-2 interface cards.                             |  |
| External Me | emory Errors                                                                     |  |
| 1           | PRAM Parity Errors                                                               |  |
| 2           | CAM2PRAM Parity Errors                                                           |  |
| 3           | LBLRAM /TXPRAM Parity Errors                                                     |  |
| 4           | AGERAM Parity Errors                                                             |  |
| 5           | CAM1 Interface Parity Errors                                                     |  |
| 6           | CAM2 Interface Parity Errors                                                     |  |
| 7           | CAM3 Interface Parity Errors                                                     |  |
| Internal Me | mory Errors                                                                      |  |
| 1           | Tx ACL PRAM Results FIFO Parity                                                  |  |
| 2           | Tx VLAN Result Parity                                                            |  |
|             |                                                                                  |  |

 TABLE 70
 NP memory errors supported on Gen-2 interface cards. (Continued)

| 3  | Tx Frame ctrl Parity                     |
|----|------------------------------------------|
| 4  | Tx Frame Data Parity                     |
| 5  | Tx nexthoptable Ikup Data Parity         |
| 6  | Stats Data Parity                        |
| 7  | Spix Multicast VLAN replace rData Parity |
| 8  | Rx Dispatch Parity                       |
| 9  | Rx MAC0 Data FIFO Parity                 |
| 10 | Rx MAC1 Data FIFO Parity                 |
| 11 | Rx MAC2 Data FIFO Parity                 |
| 12 | Rx MAC3 Data FIFO Parity                 |
| 13 | Rx MAC0 ctrl FIFO Parity                 |
| 14 | Rx MAC1 ctrl FIFO Parity                 |
| 15 | Rx MAC2 ctrl FIFO Parity                 |
| 16 | Rx MAC3 ctrl FIFO Parity                 |
| 17 | SPI0 Multicast VLAN sopFIFO Parity       |
| 18 | SPI0 Multicast VLAN sfsFIFO Parity       |
| 19 | SPI0 Multicast VLAN repTable Parity      |
| 20 | SPI0 Multicast VLAN cpktFIFO Parity      |
| 21 | SPI0 Multicast VLAN Flag FIFO Parity     |
| 22 | SPI1 Multicast VLAN sopFIFO Parity       |
| 23 | SPI1 Multicast VLAN sfsFIFO Parity       |
| 24 | SPI1 Multicast VLAN repTable Parity      |
| 25 | SPI1 Multicast VLAN cpktFIFO Parity      |
| 26 | SPI1 Multicast VLAN Flag FIFO Parity     |
| 27 | SPI2 Multicast VLAN sopFIFO Parity       |
| 28 | SPI2 Multicast VLAN sfsFIFO Parity       |
| 29 | SPI2 Multicast VLAN repTable Parity      |
|    |                                          |

TABLE 70 NP memory errors supported on Gen-2 interface cards. (Continued) 30 SPI2 Multicast VLAN cpktFIFO Parity 31 SPI2 Multicast VLAN Flag FIFO Parity 32 SPI3 Multicast VLAN sopFIFO Parity 33 SPI3 Multicast VLAN sfsFIFO Parity 34 SPI3 Multicast VLAN repTable Parity 35 SPI3 Multicast VLAN cpktFIFO Parity 36 SPI3 Multicast VLAN Flag FIFO Parity 37 Agezero Read Data Parity 38 CAM3 Async FIFO rbus Parity 39 CAM3 SyncFIFO rdData lo Parity 40 CAM3 SyncFIFO rdData hi Parity 41 CAM3 Lookup FIFO Parity 42 CAM2 Async FIFO rbus Parity 43 CAM2 SyncFIFO rdData lo Parity 44 CAM2 SyncFIFO rdData hi Parity 45 CAM2 Lookup FIFO Parity 46 CAM1 Async FIFO rbus Parity 47 CAM1 SyncFIFO rdData lo Parity 48 CAM1 SyncFIFO rdData hi Parity 49 CAM1 Lookup FIFO Parity 49 Eval0 Trunk group Table Parity 50 Eval1 Trunk group Table Parity 51 LBLPRAM Result Scheduler FIFO Parity PRAM Result Scheduler FIFO Parity 52 53 Rx topotos FIFO Parity 54 Aged FIFO Read Data Parity 55 cpu2replace rdData Parity

 TABLE 70
 NP memory errors supported on Gen-2 interface cards. (Continued)

|    | ,                                |
|----|----------------------------------|
| 56 | Rxctrl FIFO Read Data Parity     |
| 57 | config Read Data Parity          |
| 58 | cmd rdData Parity                |
| 59 | cmpl Data Parity                 |
| 60 | Rx pktdecode FIFO Parity         |
| 61 | pkt Tablerd Parity[3:0]          |
| 62 | PRAM Result FIFO0 Parity         |
| 63 | PRAM Result FIFO1 Parity         |
| 64 | PRAM Result FIFO2 Parity         |
| 65 | PRAM Result FIFO3 Parity         |
| 66 | Rx pkthdr FIFO Parity            |
| 67 | Packet Table Read Parity         |
| 68 | NextHop Table Read Data Parity   |
| 69 | TxVLAN Read Data Parity          |
| 70 | LBLikup Lookup FIFO Overflow     |
| 71 | LBLRAM rdrequest FIFO Parity     |
| 72 | LBLRAM Txp lkupFIFO Parity       |
| 73 | LBLRAM LBL IkupFIFO Parity       |
| 74 | LBLRAM cpu FIFO rdData Parity    |
| 75 | PRAM ecmp FIFO rd Parity         |
| 76 | PRAM rdrequest FIFO Parity       |
| 77 | PRAM cpu rdFIFO Parity           |
| 78 | Rx CAMResult FIFO Parity         |
| 79 | CAM2PRAM mwFIFO Parity           |
| 80 | CAM2PRAM rdrequest FIFO Parity   |
| 81 | CAM2PRAM ecmp FIFO rdData Parity |
| 82 | CAM2PRAM cpu FIFO rdData Parity  |
|    |                                  |

 TABLE 70
 NP memory errors supported on Gen-2 interface cards. (Continued)

|     | , ,                             |
|-----|---------------------------------|
| 83  | sCAM Result ReadData Parity     |
| 84  | mCAM Result ReadData Parity     |
| 85  | LBLIkup Lookup FIFO Underflow   |
| 86  | Txplkup Lookup FIFO Underflow   |
| 87  | Txplkup Lookup FIFO Overflow    |
| 88  | LBLRAM rdrequest FIFO Underflow |
| 89  | LBLRAM rdrequest FIFO Overflow  |
| 90  | MAC0 Frame ctrl Parity          |
| 91  | MAC0 Frame Data Parity          |
| 92  | MAC1 Frame ctrl Parity          |
| 93  | MAC1 Frame Data Parity          |
| 94  | MAC2 Frame ctrl Parity          |
| 95  | MAC2 Frame Data Parity          |
| 96  | MAC3 Frame ctrl Parity          |
| 97  | MAC3 Frame Data Parity          |
| 98  | Sp0 Tx Frame ctrl Parity        |
| 99  | Sp0 Tx Frame Data Parity        |
| 100 | Sp1 Tx Frame ctrl Parity        |
| 101 | Sp1 Tx Frame Data Parity        |
| 102 | Sp2 Tx Frame ctrl Parity        |
| 103 | Sp2 Tx Frame Data Parity        |
| 104 | Sp3 Tx Frame ctrl Parity        |
| 105 | Sp3 Tx Frame Data Parity        |
|     |                                 |

# Joint Interoperability Test Command

• JITC overview......443

### JITC overview

The Joint Interoperability Test Command (JITC) mode on a device is compliant with the standards established by JITC, a United States military organization that oversees testing of national security systems and information technology systems for hardware, software and components. Some services include developmental, operational, and validation testing.

The JITC mode implemented on a device enforces default behavior for some features to ensure strict JITC certification compliance.

### **AES-CTR encryption mode support for SSH**

The Advanced Encryption Standard - Cipher Block Chaining (AES-CBC) encryption mode for Secure Shell (SSH) is vulnerable to certain plain-text attacks. JITC mandates that AES-CBC mode be disabled, and only AES-CTR mode be used. The JITC mode of operation implements this requirement in both SSH client and server modes.

In the JITC mode, by default, the AES-CBC encryption mode for SSH is disabled and the AES-CTR (Counter) encryption mode is enabled. To enable the JITC mode, use the **jitc enable** command. For more information about the **jitc enable** command, refer to **jitc enable** on page 465. The **ip ssh encryption disable-aes-cbc** command that disables the AES-CBC mode can be seen in the running configuration. The encryption algorithms such as aes256-ctr, aes192-ctr, or aes128-ctr are enabled and the CBC mode ciphers are removed. The AES-CTR encryption mode for SSH is available in JITC and non-JITC mode.

The following table lists encryption algorithm keys in different operation modes in the preferred order by the sender.

 TABLE 71
 SSH ciphers with JITC support

| Mode                                                                                                          | Ciphers supported (listed in order of precedence)                                   |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Standard mode                                                                                                 | aes256-ctr, aes192-ctr, aes128-ctr, aes256-cbc,<br>aes192-cbc, aes128-cbc, 3des-cbc |
| Standard mode with the <b>ip ssh encryption aes-only</b> command enabled                                      | aes256-ctr, aes192-ctr, aes128-ctr, aes256-cbc,<br>aes192-cbc, aes128-cbc           |
| JITC mode with the ip ssh encryption aes-only command and ip ssh encryption disable- aes-cbc command enabled. | aes256-ctr, aes192-ctr, aes128-ctr                                                  |

The AES-CBC mode can be re-enabled by issuing the **no ip ssh encryption disable-aes-cbc** command, which will bring back the pre-existing CBC ciphers (aes256-cbc, aes192-cbc, aes128-cbc) along with the CTR ciphers.

#### NOTE

The AES-CTR mode must be configured both on the client and server sides to establish an SSH connection.

## **SHA1** authentication support for NTP

In the JITC mode, the symmetric key scheme supported for cryptographic authentication of messages uses the SHA1 keyed hash algorithm instead of the MD5 authentication scheme. The MD5 authentication for Network Time Protocol (NTP) is disabled by default in the JITC mode, using the **disable authentication md5** command. The **disable authentication md5** command is displayed in the running configuration. The SHA1 authentication scheme is available to define the authentication key for NTP. SHA1 authentication must be enabled manually using the **authentication-key** *key-id* **sha1** *key-string* command. The SHA1 authentication configuration is available in JITC and non-JITC mode.

### NOTE

Brocade does not recommend re-enabling the MD5 authentication in JITC mode using the **no disable authentication md5** command.

# **Administration commands**

| show statistics                            | 446 |
|--------------------------------------------|-----|
| logs-per-interval-per-mep-rmep             | 450 |
| sysmon fe link auto-tune                   | 451 |
| sysmon tm link auto-tune                   | 452 |
| system np control-ram-threshold            | 453 |
| system np lpm-ram-threshold                | 455 |
| disable authenticate md5                   | 457 |
| cam-mode amod                              | 458 |
| cam ifsr                                   | 459 |
| clear bm histogram                         | 460 |
| clear cpu histogram sequence               | 461 |
| clear memory histogram                     | 462 |
| dot1ag-transparent                         | 463 |
| • ip ssh encryption disable-aes-cbc        | 464 |
| • jitc enable                              | 465 |
| mac-move-det-syslog.                       | 466 |
| show cpu histogram                         | 467 |
| show cpu histogram sequence                | 470 |
| show memory histogram                      | 471 |
| • show sysmon config                       | 472 |
| show sysmon schedule                       | 474 |
| show sysmon results brief                  | 476 |
| show sysmon results detail                 | 478 |
| • sysmon np memory-errors                  | 479 |
| • sysmon port port-crc-test                | 481 |
| sysmon port port-crc-test action           | 482 |
| sysmon port port-crc-test counter          | 483 |
| sysmon port port-crc-test log-backoff      | 483 |
| • sysmon port port-crc-test polling-period | 484 |
| sysmon port port-crc-test threshold        | 484 |
| sysmon schedule after                      | 486 |
| sysmon schedule at                         | 487 |
| sysmon schedule now                        | 488 |
| sysmon sfm walk auto                       | 489 |
| sysmon sfm walk polling-period             | 490 |
| sysmon sfm walk redundancy-check           | 491 |
| sysmon sfm walk start                      | 492 |
| sysmon sfm walk status                     | 493 |
| sysmon sfm walk threshold                  | 494 |
| • sysmon slot                              |     |
| system-init fe-access-recovery-disable     | 496 |
| terminal enable timestamn                  | 407 |

## show statistics

Displays the statistics for a specific option.

Syntax show statistics brief [ ethernet | lag | management | pos | slot | tunnel ]

show statistics dos-attack

show statistics ethernet slot/port

show statistics lag lag\_name

show statistics management dec

show statistics pos slot/port

show statistics slot dec

show statistics tunnel ip\_tunnel\_id

show statistics ipsec-tunnel tunnel-id

Parameters brief

Displays the port statistics in brief mode.

ethernet

Displays the ethernet port in brief mode.

lag

Displays LAG in brief mode.

management

Displays the management port in brief mode.

pos

Displays the POS port in brief mode.

slot

Displays all ports in a slot in brief mode.

tunnel

Displays Ip tunnel statistics in brief mode.

dos-attack

Displays DOS-attack statistics.

ethernet slot/port

Displays the ethernet port for the specified slot and port.

lag

Displays LAG determined by the *lag\_name* variable.

management

Displays the management port determined by the *dec* variable.

pos

Displays the POS port determined by the *slot/port* variable.

slot

Displays all of the ports in a slot determined by the *slot/port* variable.

tunnel

Displays the IP tunnel statistics determined by the *ip\_tunnel\_id* variable.

ipsec-tunnel

Displays the IPsec tunnel statistics determined by the *tunnel-id* variable.

### Modes

This command operates under all modes.

### **Command Output**

The **show statistics** *ethernet* command displays the following information:

| Output field      | Description                                                                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InOctets          | The total number of good octets and band octets received.                                                                                                                                                             |
| OutOctets         | The total number of good and bad octets transmitted.                                                                                                                                                                  |
| InPkts            | The total number of packets received. the count includes rejected and local packets that are not transmitted to the switching core for transmission.                                                                  |
| OutPkts           | The number of good packets received. The count includes unicast, multicast, and broadcast packets.                                                                                                                    |
| InBroadcastPkts   | The total number of good broadcast packets received.                                                                                                                                                                  |
| OutBroadcastPkts  | The total number of good broadcast packets transmitted.                                                                                                                                                               |
| InMulticastPkts   | The total number of good multicast packets received.                                                                                                                                                                  |
| OutMulticastPkts  | The total number of good multicast packets transmitted.                                                                                                                                                               |
| InUnicastPkts     | The total number of good unicast packets received.                                                                                                                                                                    |
| OutUnicastPkts    | The total number of good unicast packets transmitted.                                                                                                                                                                 |
| InDiscards        | The total number of packets that were received and then dropped due to a lack of received buffers.                                                                                                                    |
| OutDiscards       | The total number of packets that were transmitted and then dropped due to a lack of transmit buffers.                                                                                                                 |
| InErrors          | The total number of packets received that had Alignment errors or phy errors.                                                                                                                                         |
| OutErrors         | The total number of packets transmitted that has Alignment errors or phy errors.                                                                                                                                      |
| InCollisions      | The total number of packets received in which a Collision event was detected.                                                                                                                                         |
| OutCollisions     | The total number of packets transmitted in which a Collision event was detected.                                                                                                                                      |
| OutLateCollisions | The total number of packets transmitted in which a Collision event was detected but for which a receive error (RX error) event was not detected.                                                                      |
| Alignment         | The total number of packets received that were from 64 - 1518 octets long but had either a bad FCS with an integral number of octets (FCS error) or a bad FCS with a non-integral number of octets (Alignment error). |
| FCS               | The Frame Checksum error.                                                                                                                                                                                             |
| InFlowCtrlPkts    | The total number of ingress flow control packets. "N/A" indicates that the interface module does not support flow control statistics.                                                                                 |
| OutFlowCtrlPkts   | The total number of egress flow control packets.                                                                                                                                                                      |
| GiantPkts         | The total number of packets for which all of the following is true:                                                                                                                                                   |
|                   | <ul><li>The data length was longer than the maximum allowable frame size.</li><li>No Rx error was detected.</li></ul>                                                                                                 |

| Output field   | Description                                                                  |  |
|----------------|------------------------------------------------------------------------------|--|
| ShortPkts      | The total number of packets received for which all of the following is true: |  |
|                | The data length was less than 64 bytes.                                      |  |
|                | <ul> <li>No Rx error was detected.</li> </ul>                                |  |
|                | <ul> <li>No Collision or late Collision was detected.</li> </ul>             |  |
| InBitsPerSec   | The number of bits received per second.                                      |  |
| OutBitsPerSec  | The number of bits transmitted per second.                                   |  |
| InPktsPerSec   | The number of packets received per second.                                   |  |
| OutPktsPerSec  | The number of packets transmitted per second.                                |  |
| InUtilization  | The percentage of the port's bandwidth used by received traffic.             |  |
| OutUtilization | The percentage of the port's bandwidth used by transmitted traffic.          |  |

### Examples

### The following example displays the **show statistics ethernet** command:

device# show statistics ethernet 9/1

| :            |                                                                                                                |                                                                                                                                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 210753498112 | OutOctets                                                                                                      | 210753550720                                                                                                                                                                                                                                         |
| 1646511726   | OutPkts                                                                                                        | 1646512119                                                                                                                                                                                                                                           |
| 0            | OutBroadcastPkts                                                                                               | 0                                                                                                                                                                                                                                                    |
| 0            | OutMulticastPkts                                                                                               | 0                                                                                                                                                                                                                                                    |
| 1646511726   | OutUnicastPkts                                                                                                 | 1646512142                                                                                                                                                                                                                                           |
| 0            | OutDiscards                                                                                                    | 0                                                                                                                                                                                                                                                    |
| 0            | OutErrors                                                                                                      | 0                                                                                                                                                                                                                                                    |
| 0            | OutCollisions                                                                                                  | 0                                                                                                                                                                                                                                                    |
|              | OutLateCollisions                                                                                              | 0                                                                                                                                                                                                                                                    |
| 0            | FCS                                                                                                            | 0                                                                                                                                                                                                                                                    |
| 0            | OutFlowCtrlPkts                                                                                                | 0                                                                                                                                                                                                                                                    |
| 0            | ShortPkts                                                                                                      | 0                                                                                                                                                                                                                                                    |
| 3440829770   | OutBitsPerSec                                                                                                  | 3440686411                                                                                                                                                                                                                                           |
| 3360185      | OutPktsPerSec                                                                                                  | 3360085                                                                                                                                                                                                                                              |
| 39.78%       | OutUtilization                                                                                                 | 39.78%                                                                                                                                                                                                                                               |
|              | 210753498112<br>1646511726<br>0<br>0<br>1646511726<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>3440829770<br>3360185 | 210753498112 OutOctets 1646511726 OutPkts 0 OutBroadcastPkts 0 OutMulticastPkts 1646511726 OutUnicastPkts 0 OutDiscards 0 OutErrors 0 OutCollisions 0 OutLateCollisions 0 FCS 0 OutFlowCtrlPkts 0 ShortPkts 3440829770 OutBitsPerSec 0 OutPktsPerSec |

The following example displays the **show statistics brief ipsec-tunnel** command modified to display IPsec tunnel interface packet and byte count.

| devi | ce#show | statistics   | brief ipsec-tu | nnel       |         |
|------|---------|--------------|----------------|------------|---------|
| #    | Tnnl    | RxPkts       | RxBytes        | TxPkts     | TxBytes |
| 1    | 24      | 0            | 0              | 0          | 0       |
| 2    | 100     | 0            | 0              | 457        | 79518   |
| 3    | 101     | 0            | 0              | 0          | 0       |
| 4    | 102     | 0            | 0              | 0          | 0       |
| 5    | 103     | 0            | 0              | 1          | 174     |
| 6    | 104     | 0            | 0              | 0          | 0       |
| 7    | 105     | 0            | 0              | 0          | 0       |
| 8    | 106     | 0            | 0              | 0          | 0       |
| 9    | 107     | 0            | 0              | 0          | 0       |
| 10   | 108     | 0            | 0              | 0          | 0       |
| 11   | 109     | 0            | 0              | 0          | 0       |
| 12   | 110     | 0            | 0              | 0          | 0       |
| 13   | 123     | 0            | 0              | 0          | 0       |
| 14   | 124     | 0            | 0              | 0          | 0       |
|      | 125     | 0            | 0              | 0          | 0       |
| 16   | 150     | 0            | 0              | 0          | 0       |
| 17   | 254     | 0            | 0              | 0          | 0       |
| devi | Lce#    |              |                |            |         |
| devi | Lce#    |              |                |            |         |
|      |         | . 100        |                |            |         |
|      |         | l 100 statis | stics:         | m 51       | 1.67    |
|      | RPkts:  | 0            |                | TxPkts: 4  |         |
| RΣ   | Bytes:  | U            |                | TxBytes: 8 | 31238   |

| Release version | Command history                                                                    |
|-----------------|------------------------------------------------------------------------------------|
| 05.8.00         | This command was modified to display IPsec tunnel interface packet and byte count. |

# logs-per-interval-per-mep-rmep

Limits the log generation of individual MEPs or RMEPs in a 15 minute time window.

Syntax logs-per-interval-per-mep-rmep value

no logs-per-interval-per-mep-rmep value

Command Default Limiting the log generation for MEPs or RMEPs is not enabled by default.

Parameters value

Specifies the number of logs generated per MEP or RMEP per 900000 milliseconds. The decimal range is from 1 to 100. The default is 10.

**Modes** CFM Protocol Configuration mode.

**Usage Guidelines** 

Use the **logs-per-interval-per-mep-rmep** value command to limit the number of logs generated for each MEP or RMEP in a 15 minute time window. When the value parameter is configured, the value is uniform for all MEPs and RMEPs. The **no logs-per-interval-per-mep-rmep** value command resets the value to the default value.

#### NOTE

The **logs-per-interval-per-mep**-rmep value command is supported on Brocade NetIron XMR Series and Brocade NetIron MLX Series devices, and Brocade NetIron CES Series and Brocade NetIron CER Series devices.

#### **Examples**

The following example limits the log generation to 20 logs per MEP or RMEP in a 15 minute time window.

```
device(config) #cfm-enable
device(config-cfm) #logs-per-interval-per-mep-rmep 20
device(config-cfm) #
```

Use the **show cfm logs-limit-per-mep-rmep** command to display the *value* parameter configured for the log limit generation for each MEP or RMEP. The *value* parameter is highlighted in the output.

```
device(config-cfm)# show cfm logs-limit-per-mep-rmep
Logs limit per interval (900000 ms) per MEP/RMEP: 20 (Default: 10)
```

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# sysmon fe link auto-tune

Enables auto tuning on the fabric element (FE).

Syntax sysmon fe link auto-tune

no sysmon fe link auto-tune

Modes Global configuration mode

Usage Guidelines The no form of the command disables auto-tuning on the FE.

**Examples** The following example disables auto-tuning on the FE.

device(config)# no sysmon fe link auto-tune

| Release version | Command history              |
|-----------------|------------------------------|
| 05.6.00         | This command was introduced. |

# sysmon tm link auto-tune

Enables auto tuning on the traffic manager (TM).

Syntax sysmon tm link auto-tune

no sysmon tm link auto-tune

Modes Global configuration mode

**Usage Guidelines** The **no** form of the command disables auto-tuning on the TM.

**Examples** The following example disables auto-tuning on the TM.

device(config) # no sysmon tm link auto-tune

| Release version | Command history              |
|-----------------|------------------------------|
| 05.6.00         | This command was introduced. |

# system np control-ram-threshold

Configures the CSRAM error reporting threshold parameter for low level memory events.

Syntax system np [control-ram-threshold threshold]

no system np [ control-ram-threshold threshold ]

Command Default system np control-ram-threshold

Parameters control-ram-threshold

Specifies the CSRAM error reporting threshold parameter.

threshold

Specifies the configurable threshold range when low level memory events are exceeded. The decimal range is from 0 - 120 events. The default value is 10.

Modes Global configuration mode.

**Usage Guidelines** 

Use this command to configure the CSRAM threshold parameter when monitoring low level memory events occurring with the internal data path of the network processor. This command is enabled by default. Use the **no** form of the command to reset the threshold value to default. Use the command to disable the monitoring of low level memory events. A syslog message and a trap is generated when the CSRAM error events recorded in the rolling window exceeds the configured threshold parameter for the specified port range.

#### NOTE

Configuring the CSRAM error reporting threshold parameter is supported only on the Brocade NetIron CER Series and the Brocade NetIron CES Series platforms.

#### **Examples**

The following example configures the CSRAM error reporting threshold parameter to 20 events.

```
device (config) #system np control control-ram-threshold Configure the Control SRAM error reporting threshold device(config) #system np control-ram-threshold 20 DECIMAL 0-120 events (default:10 disable: 0) device(config) #system np control-ram-threshold 20
```

Use the **show run** command to display the CSRAM error reporting threshold parameter to 20 events.

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# system np lpm-ram-threshold

Configures the LPM memory error reporting threshold parameter for low level memory events.

Syntax system np [ lpm-ram-threshold threshold ]

no system np [ lpm-ram-threshold threshold ]

Command Default Configuring the LPM memory error reporting threshold parameters is enabled by default.

Parameters Ipm-ram-threshold

Specifies the LPM memory error reporting threshold parameter.

threshold

Specifies the configurable threshold range when low level memory events are exceeded. The decimal range is from 0 - 120 events. The default value is 10.

Modes Global configuration mode

**Usage Guidelines** 

Use this command to configure the LPM memory threshold parameter when monitoring low level memory events occurring with the internal data path of the network processor. The command is enabled by default. Use the **no** form of the command to reset the threshold value to default. Use this command to disable the monitoring of low level memory events. A syslog message and a trap is generated when the LPM memory error events recorded in the rolling window exceeds the configured threshold parameter for the specified port range.

#### NOTE

Configuring the LPM memory error reporting threshold parameter is supported only on the Brocade NetIron CER Series and the Brocade NetIron CES Series platforms.

#### **Examples**

The following example configures the LPM memory error reporting threshold parameter to 20 events.

Use the **show run** command to display the LPM memory error reporting threshold parameter to 20 events.

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

### disable authenticate md5

Disables the MD5 authentication scheme for Network Time Protocol (NTP).

Syntax disable authenticate md5

no disable authenticate md5

authentication scheme is enabled.

Modes NTP configuration mode

Usage Guidelines In the standard mode, both SHA1 and MD5 authentication schemes are supported. If JITC is enabled

using the **jitc enable** command, the MD5 authentication for Network Time Protocol (NTP) is disabled by default and the **disable authenticate md5** command can be seen in the running configuration. In the JITC mode, only the SHA1 authentication option is available. The SHA1 authentication scheme must be enabled manually by configuring the authentication key for NTP using the **authentication-key** 

command and an example of configuring this command is shown below.

The **no** form of the command enables the MD5 authentication scheme.

**Examples** The following example disables the MD5 authentication scheme.

device# configure terminal
device(config)# ntp
device(config-ntp)# disable authenticate md5

The following example enables SHA1 authentication for NTP.

device# configure terminal
device(config)# ntp
device(config-ntp)# authentication-key key-id 20 sha1 keystring

| Release version | Command history              |
|-----------------|------------------------------|
| 5.8.00          | This command was introduced. |

### cam-mode amod

Enables Algorithmic mode which optimizes the CAM space and power utilization and achieves -X2 CAM profile numbers.

Syntax cam-mode amod slot number

no cam-mode amod slot number

Command Default The TCAM mode (non-Algorithmic mode) is enabled by default.

Parameters slot

Specifies the line processor (LP) slot on which Algorithmic mode must be

enabled.

number

Specifies the slot number.

Modes Global configuration mode

By default, BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, and BR-MLX-1GX20-U10G-X2 cards boot up with -M CAM profile numbers and if uRPF is enabled, the number of routes are reduced by half. You must enable Algorithmic mode to achieve -X2 CAM profile numbers. Algorithmic mode also supports uRPF mode to work without reducing the route scale.

The configuration will be ignored at the LP if the command is applied on a slot other than BR-MLX-100Gx2-CFP2-X2, BR-MLX-10Gx20-X2, and BR-MLX-1GX20-U10G-X2.

If Algorithmic mode is enabled on an empty slot, the line card inserted at a later stage will be initialized to Algorithmic mode.

The **no** form of the command disables Algorithmic mode.

#### NOTE

Algorithmic mode is supported on MR2-X management modules only.

#### Examples

The following example configures Algorithmic mode on slot 2.

device# configure terminal
device(config)# cam-mode amod slot 2

| Release version | Command history              |
|-----------------|------------------------------|
| 05.8.00a        | This command was introduced. |

## cam ifsr

Disables or enables In-Field Soft Repair (IFSR) for TCAM hardware errors for a specified host name.

Syntax cam ifsr { disable | enable }

Parameters disable

Disables IFSR for TCAM hardware errors for a specified host name.

enable

Enables IFSR for TCAM hardware errors for a specified host name.

Modes Global configuration mode

#### **Usage Guidelines**

Use this to command to disable or enable persistent hardware errors from displaying on the console as syslog messages as a result of hardware errors. Some hardware errors cannot be repaired. Continuous syslog messages will appear on the console displaying the system KBP errors. The command allows you to disable the feature, and stop the monitoring of hardware errors. After replacing the hardware, enable the feature. By default, the command is enabled.

The IFSR feature is supported only on the following interface modules for Brocade MLX Series devices.

- BR-MLX-100Gx2-CFP2-X2
- BR-MLX-10Gx20-M (1G/10G combo) and BR-MLX-10Gx20-X2 (1G/10G combo)
- BR-MLX-10Gx4-IPSEC-M

#### **Examples**

The following example enables IFSR.

device(config)# cam ifsr enable

The following example disables IFSR on slot 3 of the LP module.

device(config)# cam ifsr disable
IFSR is disabled on slot 3

| Release version | Command history              |
|-----------------|------------------------------|
| 05.8.00a        | This command was introduced. |

# clear bm histogram

Clears buffer histogram data.

Syntax clear bm histogram

Modes Privileged EXEC mode

**Usage Guidelines** 

The histogram information is collected and maintained internally, in a cyclical buffer. It can be reviewed to determine if resource allocation failures or task CPU usage may have contributed to an application failure

The main objective of the buffer histogram is to see if there was any buffer exhaustion in the last few seconds (10-60sec). Buffer usage is collected when available buffers in the 2K buffer size pool fall below the reserved limit. Before starting another collection cycle, it may be useful to clear the histogram buffers using the **clear bm histogram** command. This command can also be entered in global configuration mode.

**Examples** 

The following example clears buffer histogram data.

device# clear bm histogram

| Release | Command History              |
|---------|------------------------------|
| 05.5.00 | This command was introduced. |

## clear cpu histogram sequence

Clears CPU histogram sequential execution of task data.

Syntax clear cpu histogram sequence

no clear cpu histogram sequence

Modes Privileged EXEC mode

Global configuration mode

Usage Guidelines The CPU histogram provides information about task CPU usage. The histogram information is collected

and maintained internally, in a cyclical buffer. It can be reviewed to determine if resource allocation

failures or task CPU usage may have contributed to an application failure.

Before starting another collection cycle of task CPU usage, it may be useful to clear the existing CPU histogram information using the **clear cpu histogram sequence** command. This command can also be

entered in global configuration mode.

To view the CPU histogram information, use the **show cpu histogram** command.

**Examples** The following example clears the CPU histogram sequential execution of task information.

device(config)# clear cpu histogram sequence

| Release | Command History              |
|---------|------------------------------|
| 05.5.00 | This command was introduced. |

# clear memory histogram

Clears memory histogram data.

Syntax clear memory histogram

Modes Privileged EXEC mode

**Usage Guidelines** 

The memory histogram keeps track of each memory allocation/deallocation request from an application. It helps to identify memory leak and memory usage across the task. It also monitors the under usage condition and reports to the system. The memory histogram is recorded when available memory goes below the threshold limit on each memory pool.

Before starting another collection cycle, it may be useful to clear the existing memory histogram information using the **clear memory histogram sequence** command. This command can also be entered in global configuration mode.

To view the memory histogram information, use the **show memory histogram** command.

**Examples** 

The following example clears memory histogram data.

device(config) # clear memory histogram

| Release | Command History             |
|---------|-----------------------------|
| 05.5.00 | This command was introduced |

## dot1ag-transparent

Forwards non-CCM packets without altering the packet prioritization at the ingress.

Syntax dot1ag-transparent

no dot1ag-transparent

Modes Global configuration mode

Usage Guidelines When IEE 802.1ag CFM is not configured for the device, the priority of non-CCM packets can change

due to Protocol Packet Prioritization (PPP) at the ingress. Since the node needs to forward the packet without altering the packet priority, Brocade recommends using this command when forwarding non-

CCM packets.

The**no** form of the command reverts the command behavior back to default; non-CCM packets are

forwarded with altered packet prioritization.

The command is saved upon reload.

#### NOTE

The command is supported on Brocade NetIron XMR Series and Brocade NetIron MLX Series devices.

#### **Examples**

The following example forwards the non-CCM packet without altering the packet priority.

device(config) #dotlag-transparent

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# ip ssh encryption disable-aes-cbc

Disables the Advanced Encryption Standard - Cipher-Block Chaining (AES-CBC) encryption mode for the Secure Shall (SSLI) protected

the Secure Shell (SSH) protocol.

Syntax ip ssh encryption disable-aes-cbc

no ip ssh encryption disable-aes-cbc

default. In the standard mode, the AES-CBC encryption mode is enabled.

Modes Global configuration mode

Usage Guidelines The no form of the command enables the AES-CBC encryption mode.

**Examples** The following example disables the AES-CBC encryption mode.

device# configure terminal
device(config)# ip ssh encryption disable-aes-cbc

| Release version | Command history              |
|-----------------|------------------------------|
| 5.8.00          | This command was introduced. |

## jitc enable

Enables the Joint Interoperability Test Command (JITC) mode.

Syntax jitc enable

no jitc enable

Modes Global configuration mode

#### **Usage Guidelines**

When JITC is enabled, the Advanced Encryption Standard - Cipher-Block Chaining (AES-CBC) encryption mode for the Secure Shell (SSH) protocol is disabled and the AES-CTR (Counter) encryption mode is enabled. To enable the AES-only mode for SSH, use the <code>ip</code> ssh encryption aes-only command. To disable the AES-CBC encryption mode, use the <code>ip</code> ssh encryption disable-aes-cbc command. When the <code>jitc</code> enable command is configured, the <code>ip</code> ssh encryption aes-only command and the <code>ip</code> ssh encryption disable-aes-cbc command are automatically enabled.

When JITC is enabled, the MD5 authentication scheme for NTP is disabled. The SHA1 authentication scheme is available to define the authentication key for NTP.

The **no** form of the command disables the JITC mode and puts the system back to the standard mode and enables both AES-CBC encryption mode and MD5 authentication configuration. The **ip ssh encryption disable-aes-cbc** command is removed from the running configuration. The **ip ssh encryption aes-only** command configuration is retained in the running configuration.

#### **Examples**

The following example enables the JITC mode.

```
device# configure terminal
device(config)# jitc enable
```

In the output below, when the JITC mode is configured, the running configuration displays MD5 as disabled. The **ip ssh encryption aes-only** command and the **ip ssh encryption disable-aes-cbc** command are enabled. The commands are highlighted below.

#### **NOTE**

In the output below, the authentication-key entry is displayed when the authentication key for NTP is configured separately.

```
device(config) # show run | begin jitc
!
jitc enable
!
ntp
disable authenticate md5
authentication-key key-id 1 sha1 2 $b24tb25V
!
ip ssh encryption aes-only
ip ssh encryption disable-aes-cbc
```

| Release version | Command history              |
|-----------------|------------------------------|
| 5.8.00          | This command was introduced. |

# mac-move-det-syslog

Enables the display of MAC movement syslog messages.

Syntax mac-move-det-syslog

no mac-move-det-syslog

**Command Default** By default, MAC movement syslog messages are displayed.

Modes Global configuration mode

Usage Guidelines The no form of the command disables the display of MAC movement syslog messages.

#### **NOTE**

This command is only supported on Brocade NetIron MLX Series devices.

#### **Examples**

The following example shows the MAC movement syslog message output when **mac-move-det-syslog** command is used.

```
device(config) # mac-move-det-syslog
device(config) # show arp
Total number of ARP entries: 2
(In all VRFs)
Entries in default routing instance:
                                                 Age Port (Vpls-Id, Vlan) / Vpls-Id:Peer
IP Address
                    MAC Address
                                       Type
    10.19.19.1 0010.9400.0606 Dynamic 1 172.26.67.1 0024.381c.b900 Dynamic 1
                                                      1/24
                                                      mgmt1
device(config) # exit
device#
SYSLOG: <12>Sep 25 02:43:07 IP/ARP: IP address 19.19.19.1 MAC movement detected, changed from MAC 0010.9400.0606 / port 1/24 to MAC 0010.9400.0001 / port 1/24
device#
device#
device# configure terminal
device(config) # show arp
Total number of ARP entries: 2
(In all VRFs)
Entries in default routing instance:
IP Address
                    MAC Address
                                                 Age Port (Vpls-Id, Vlan) / Vpls-Id:Peer
                                       Type
                   0010.9400.0001 Dynamic 1
0024.381c.b900 Dynamic 2
    10.19.19.1
                                                      1/24
    172.26.67.1
                                                      mgmt1
device(config)#
device (config) #
SYSLOG: <12>Sep 25 02:43:40 IP/ARP: IP address 19.19.19.1 MAC movement detected,
         changed from MAC 0010.9400.0001 / port 1/24 to MAC 0010.9400.0606 / port 1/24
```

The following example shows the MAC movement syslog message output when the display is disabled.

```
device(config) #no mac-move-det-syslog
device(config) #
device(config) # exit
device# show arp
Total number of ARP entries: 2
(In all VRFs)

Entries in default routing instance:
IP Address MAC Address Type Age Port (Vpls-Id, Vlan) / Vpls-Id:Peer
```

|         | 0010.9400.0001<br>0024.381c.b900 | 4          |   |     |
|---------|----------------------------------|------------|---|-----|
| device# | 0021.0010.2300                   | D J HOME O | _ | 901 |

#### History

| Release version | Command history              |
|-----------------|------------------------------|
| 5.7.00          | This command was introduced. |

# show cpu histogram

Displays task CPU usage information, including the percentage, and total percentage of the CPU utilization of a task histogram at 1, 5, and 10 second average duration.

Syntax show cpu histogram { hold | wait | interrupt | timer } [ above threshold-value | noclear | taskname name ]

show cpu histogram { util-10s | util-1s | util-5s } [ above  $\it{threshold-value}$  | noclear | taskname  $\it{name}$  ]

show cpu histogram { util-all-10s | util-all-1s | util-all-5s } [ above threshold-value | noclear ]

#### Parameters hold

Specifies the display of task hold time information.

wait

Specifies the display of task wait time information.

interrupt

Specifies the display of task user-interrupt usage information.

timer

Specifies the display of task sys-timer time usage information.

util-10s

Specifies the CPU utilization per task histogram at a 10 second average

duration.

util-1s

Specifies the CPU utilization per task histogram at a 1 second average

duration.

util-5s

Specifies the CPU utilization per task histogram at a 5 second average

duration.

util-all-10s

Specifies the total CPU utilization of a task histogram at a 10 second average

duration.

util-all-1s

Specifies the total CPU utilization of a task histogram at a 1 second average

duration.

util-all-5s

Specifies the total CPU utilization of a task histogram at a 5 second average

duration.

above threshold-value

Specifies the display of histogram information for tasks whose maximum hold

time is above the specified value.

noclear

Specifies that histogram data should not be cleared after display. By default, information is cleared on read.

#### taskname name

Specifies the display of histogram information for a specific task.

#### Modes User EXEC mode

Privileged EXEC mode

Global configuration mode

#### **Usage Guidelines**

Use the command to display the task CPU usage information.

Use the **show cpu histogram** { util-10s | util-1s | util-5s } command to display the CPU percentage of a task histogram utilizing high CPU conditions at 1, 5, and 10 second durations. To display the total CPU unitization of a task histogram at 1, 5, and 10 second average duration, use the **show cpu histogram** { util-all-1s | util-all-5s } command. This command is supported on the management module and the interface module. The CPU percent utilization and time stamps are displayed for the durations. Tasks that may use high CPU utilization include packet burst in the interface module, multiple protocols flapping at the same time, a protocol task in a wrong state that keeps the CPU busy, and high route processing that causes high CPU conditions in the management module and interface module CPUs.

#### **Examples**

The following example displays task hold time information:

```
device# show cpu histogram hold
HISTOGRAM CPU HISTOGRAM INFO
 No of Bucket
 Bucket Granularity: 10 ms
                    : 2012.07.10-07:29:20.704
: 67
 Last cleared at
 No of Task
Task Name Bkt
                     Bkt
                               No of Time
                                             HoldTime
                                                          HoldTime
                                                                                      Time
           Num
                     Time(ms)
                                             Total(s)
                                                          Max(ms)
                                             .000463
                    000-010
                                      4
                                                          .201 2012.07.10-07:29:20.701
ip rx
                                             .000025
                                                           .025
vlan
                     000-010
                                                                 2012.07.10-07:29:20.700
                                                                 2012.07.10-07:29:20.701
                                             .000010
                                                           .010
                     000-010
mac mgr
             1
                                                                 2012.07.10-07:29:20.700
2012.07.10-07:29:20.700
                                             .000025
                                                           .025
             1
                     000-010
                                       1
mrp
                                                           .025
                                             .000025
             1
                     000-010
erp
                     000-010
                                             .000009
                                                                 2012.07.10-07:29:20.700
             1
                                        1
                                                           .009
mxrp
                                                                 2012.07.10-07:29:20.700
                     000-010
                                             .000062
                                                           .062
                                       1
             1
rt.m
                                                                 2012.07.10-07:29:20.700
                                             .000091
rtm6
                     000-010
                                        1
                                                           .091
             1
                                                                 2012.07.10-07:29:20.700
                    000-010
                                             .000207
                                                           .207
                                        1
             1
ip tx
                                                                 2012.07.10-07:29:20.701
2012.07.10-07:29:20.700
                                                           .018
                                             .000018
12vpn
             1
                     000-010
                                        1
                                             .000046
                    000-010
                                                           .046
ospf
             1
                                        1
                                                                 2012.07.10-07:29:20.700
2012.07.10-07:29:20.700
                                             .000009
                                                           .009
                     000-010
                                        1
isis
             1
                     000-010
                                                           .017
mcast
             1
                                        1
                                             .000017
                                             .000012
                                                           .012
                     000-010
                                        1
                                                                 2012.07.10-07:29:20.700
ospf6
             1
                                             .000012
mcast6
             1
                     000-010
                                        1
                                                           .012
                                                                 2012.07.10-07:29:20.700
                                                                 2012.07.10-07:29:20.700
2012.07.10-07:29:20.700
web
                                             .000029
             1
                     000-010
                                        1
                                                           .029
lacp
                     000-010
                                        1
                                             .000013
                                                           .013
                                                           .009
loop_detect 1
                     000-010
                                             .000009
                                                                 2012.07.10-07:29:20.701
                                                                 2012.07.10-07:29:20.701
cluster mgr 1
                     000-010
                                             .000011
                                                           .011
                                                 .003
telnet \overline{0}
                     000-010
                                        4
                                                                 2012.07.10-07:29:20.672
```

### The following example displays the CPU utilization of a task histogram at a 5 second average duration.

device# show cpu histogram util-5s HISTOGRAM CPU UTIL PER TASK INFO (5sec average) .\_\_\_\_\_ No of Bucket

Bucket Granularity: 5%
Last cleared at: 2014.09.04-18:18:39.607
No of Task: 72 No of Task : 72 Task Name Bkt No of Time Util Time Total(%) Value(%) Num Max(%) 000-005 \$flash 4 4 4 2014.09.10-01:08:29.500 005-010 17 7 7 \$flash 2014.09.14-05:28:22.450 000-005 1 17 1 main 2014.09.04-18:18:44.350 000-005 18 1 1 005-010 1 37 7 2 console 000-005 7 1 2014.09.15-11:32:08.400 005-010 1 8 console 17 2014.09.04-18:18:44.350

| Output field       | Description                                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No of bucket       | The task run time that is divided into interval buckets. For example, bucket 1(0-50ms), bucket2 (50-100ms), and bucket3(100-150ms).                               |
| Bucket Granularity | The bucket granularity is 5%. Each bucket contains values within 5% of range. For example, bucket 1 contains values 0-4, bucket 2 contains values 5-9, and so on. |
| Last Cleared at    | The time at which the values are cleared last.                                                                                                                    |
| No of Task         | The total number of tasks running in the system at a time.                                                                                                        |
| Task Name          | The name of the task displayed.                                                                                                                                   |
| BktNum             | The bucket number -1,2, or 3 that corresponds with the value it belongs to.                                                                                       |
| Bkt Value (%)      | The time range of the bucket.                                                                                                                                     |
| No of Time         | The number of times the value in the bucket range is utilizing CPU. For example, task, sfm_mgr, was using the CPU in the range of 10-15, at 83 times.             |
| CPU Util Total (%) | The total CPU utilization of a task.                                                                                                                              |
| Util Time Max      | The maximum CPU utilization value of a bucket.                                                                                                                    |
| Time               | The time stamp of the most recent CPU utilization for a particular task.                                                                                          |
|                    |                                                                                                                                                                   |

| History | Release | Command History              |  |  |  |  |
|---------|---------|------------------------------|--|--|--|--|
|         | 05.5.00 | This command was introduced. |  |  |  |  |

# show cpu histogram sequence

Displays sequential execution of CPU task information.

show cpu histogram sequence [ taskname name | above threshold-value | trace ]

Parameters sequence

Syntax

Specifies the display of sequential execution of CPU task information.

taskname name

Specifies the display of histogram information for a specific CPU task.

above threshold-value

Specifies the display of histogram information for CPU tasks whose maximum

hold time is above the specified value.

trace

Specifies the display of high CPU condition task trace information.

Modes User EXEC mode

Privileged EXEC mode

Global configuration mode

### **Examples** The follow example displays sequential execution of CPU task information:

device# show cpu histogram sequence HISTOGRAM TASK SEQUENCE INFO

THRESHOLD : 10 ms
DURATION : 30 s

| _     |     | . 30 3    |         |                      |              |              |            |
|-------|-----|-----------|---------|----------------------|--------------|--------------|------------|
| Seq 1 | No. | Task Name | Context | HoldTime<br>Max (ms) | Start Time   | End Time     | Date       |
|       | 1   | snms      | TASK    | 16                   | 07:33:08.790 | 07:33:08.806 | 2012.07.10 |
|       | 2   | snms      | TASK    | 16                   | 07:33:08.772 | 07:33:08.789 | 2012.07.10 |
|       | 3   | snms      | TASK    | 17                   | 07:33:08.755 | 07:33:08.772 | 2012.07.10 |
|       | 4   | snms      | TASK    | 16                   | 07:23:08.790 | 07:23:08.806 | 2012.07.10 |
|       | 5   | snms      | TASK    | 16                   | 07:23:08.772 | 07:23:08.789 | 2012.07.10 |
|       | 6   | snms      | TASK    | 17                   | 07:23:08.755 | 07:23:08.772 | 2012.07.10 |
|       | 7   | snms      | TASK    | 16                   | 07:13:08.790 | 07:13:08.806 | 2012.07.10 |
|       | 8   | snms      | TASK    | 16                   | 07:13:08.772 | 07:13:08.789 | 2012.07.10 |
|       | 9   | snms      | TASK    | 17                   | 07:13:08.755 | 07:13:08.772 | 2012.07.10 |
| 1     | 10  | snms      | TASK    | 16                   | 07:03:08.790 | 07:03:08.806 | 2012.07.10 |
| 1     | 11  | snms      | TASK    | 16                   | 07:03:08.772 | 07:03:08.789 | 2012.07.10 |
|       |     | snms      | TASK    |                      |              | 07:03:08.772 |            |
| 1     | 13  | snms      | TASK    | 16                   | 06:53:08.790 | 06:53:08.806 | 2012.07.10 |
| 1     | 14  | telnet 0  | TASK    | 50                   | 09:51:50.091 | 09:51:50.142 | 2012.07.05 |
| 1     | 15  | telnet 0  | TASK    | 50                   | 09:51:35.184 | 09:51:35.234 | 2012.07.05 |
| 1     | 16  | console   | TASK    |                      |              | 09:51:11.501 |            |
| 1     | 17  | telnet_0  | TASK    |                      |              | 09:47:01.509 |            |
| 1     | 18  | console   | TASK    |                      |              | 09:46:32.496 |            |
| 1     | 19  | mpls      | TIMER   | 12                   | 09:46:32.428 | 09:46:32.441 | 2012.07.05 |
| 2     | 20  | telnet_0  | TASK    | 54                   | 09:46:03.018 | 09:46:03.072 | 2012.07.05 |
| 2     | 21  | telnet 0  | TASK    | 52                   | 09:44:31.749 | 09:44:31.802 | 2012.07.05 |
| 2     | 22  | telnet_0  | TASK    |                      |              | 09:44:18.034 |            |
| 2     | 23  | telnet_0  | TASK    |                      |              | 09:43:43.689 |            |
|       |     | telnet_0  | TASK    |                      |              | 09:43:43.636 |            |
|       |     | telnet_0  | TASK    |                      |              | 09:43:20.724 |            |
|       |     | snms      | TASK    |                      |              | 09:43:08.756 |            |
| 3     | 37  | snms      | TASK    | 16                   | 09:43:08.723 | 09:43:08.740 | 2012.07.05 |

### History

| Release  | Command History             |
|----------|-----------------------------|
| R05.5.00 | This command was introduced |

# show memory histogram

Displays task memory usage information.

Syntax show memory histogram [ pool pool-id | below threshold-value | trace taskname]

Parameters poolpool-id

Specifies the display of memory histogram information for a specific memory pool. The valid range is 0-3, where "0" = OS, "1" = Shared, "2" = Global and "3" = User Private.

belowthreshold-value

Specifies the display of memory histogram information when available memory falls below the specified percentage (5, 10 or 20 percent).

tracetaskname

pecifies the display of high CPU condition task traces.

Modes User EXEC mode

Privileged EXEC mode

### Global configuration mode

### **Examples**

The following example displays memory histogram information:

device# show memory histogram HISTOGRAM MEMORY SEQUENCE INFO

DURATION : 60 s SEQ IDX : 1 TIME : 2012.07.10-11:14:08.539 AVAIL MEM : below 5 %

| POOL                                                                                                                     | Total Memor<br>(bytes |                                                                                                                              | Memory<br>bytes) | Available Memory<br>(bytes)                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Global                                                                                                                   | 285527244             | 8 2843                                                                                                                       | 262976           | 12009472                                                                                                                                                                                       |
| Task Name                                                                                                                |                       | Alloc-Number                                                                                                                 | Al               | loc-Size(bytes)                                                                                                                                                                                |
| main itc tmr ip_rx scp lpagent console vlan mac_mgr mrp vsrp erp mxrp snms rtm trm6 ip_tx rip ospf_msg_telnet_0 telnet_1 | task                  | 1355<br>4<br>63<br>425<br>748<br>63<br>101<br>44<br>40<br>26<br>28<br>28<br>26<br>192<br>98<br>109<br>151<br>70<br>177<br>28 |                  | 28486529<br>645<br>10173<br>396453<br>17995881<br>31309<br>3515673<br>5814177<br>2305485<br>8541<br>8557<br>7527<br>188337<br>33724605<br>1918717<br>1274437<br>323733<br>7453<br>7689<br>7817 |

## History

| Release | Command History             |
|---------|-----------------------------|
| 05.5.00 | This command was introduced |

# show sysmon config

Displays the system monitoring configuration.

**Syntax** show sysmon config

Modes User EXEC mode

Privileged EXEC mode

Global configuration mode

## $\textbf{Examples} \qquad \text{The following example displays the monitoring configuration}.$

| device# show sysmon config | +               | +  | L       |              |
|----------------------------|-----------------|----|---------|--------------|
| EVENT                      | ACTION          | •  | •       | LOG BACK-OFF |
| TM. Link Monitoring        | SHUTDOWN-LINK   | 60 | 5 in 10 | 1800         |
| Port CRC Monitoring        | SYSLOG          | 60 | 3 in 5  | 1800         |
| FE. Link Monitoring        | SHUTDOWN-LINK   | 60 | 5 in 10 | 1800         |
| NP Memory Error Monitoring | SYSLOG-AND-TRAP | 10 | N/A     | N/A          |

| Release | Command History                                                                          |
|---------|------------------------------------------------------------------------------------------|
| 05.6.00 | This command was enhanced to display the NP memory error monitoring event configuration. |

# show sysmon schedule

Displays details of scheduled tests.

Syntax show sysmon sched name of the test

Parameters name of the test

The name of the scheduled test.

Modes User EXEC mode

Privileged EXEC mode
Global configuration mode

**Command Output** 

The **show sysmon schedule** command displays the following information:

| Output field        | Description                                                                                                                                                 |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEST NAME           | Name of the test.                                                                                                                                           |
| SCHEDULED AT        | The scheduled time in hh:mm:ss mm-dd-yy format. Here the first instance of mm is minutes and the second instance is months. For example, 14:30:00 08-20-13. |
| MP/LP               | Type of slot.                                                                                                                                               |
| # OF RUNS           | The number of runs. The range is between 1 and 31.                                                                                                          |
| THRESHOLD           | Threshold value of the diagnostic test.                                                                                                                     |
| TEST INTERVAL (SEC) | The test interval value in seconds.                                                                                                                         |

### **Examples**

The following example displays information about the port-crc-test.

| device(config) #show sysmon | schedule port-crc-test |         |        | <b>.</b>  |
|-----------------------------|------------------------|---------|--------|-----------|
| + TEST NAME                 |                        | MP/LP   |        | THRESHOLD |
| TEST                        | AT                     |         | RUNS   |           |
| INTERVAL                    | 1                      | ' '<br> | 110110 |           |
| (SEC)                       | '-+                    | +       |        | +         |
| +Port CRC Monitoring   60   | 2014.05.23-06:39:28    | LP      | 4      |           |
| +                           |                        | '       |        | ı         |

## The following example displays information about the np-memory-errors test.

| device(config) #show sysmon schedule np-memory-errors |     |                     |    |     |      |     |           |
|-------------------------------------------------------|-----|---------------------|----|-----|------|-----|-----------|
| +                                                     | т-  |                     | T  |     |      |     |           |
| TEST NAME                                             |     | SCHEDULED           | MP | /LP | # OF | - 1 | THRESHOLD |
| 1531                                                  |     | AT                  | I  | - 1 | RUNS | 1   | 1         |
| INTERVAL                                              | 1   |                     |    |     |      |     | 1         |
| (SEC)                                                 | 1   |                     |    | '   |      | 1   | ı         |
| +                                                     | -+- |                     | +  | +   |      | +-  |           |
| NP Memory Error Monitoring   60                       | 1   | 2014.05.23-06:39:34 |    | LP  | 4    | 1   | 0         |
| ±                                                     | -+- |                     | +  | +   |      | +-  |           |

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# show sysmon results brief

Displays details of scheduled test results in brief without providing the instance information.

Syntax show sysmon results name of the test brief

Parameters name of the test

The name of the scheduled test.

Modes User EXEC mode

Privileged EXEC mode
Global configuration mode

**Command Output** The **show sysmon results brief** command displays the following information:

| Output field                      | Description                                                                                          |
|-----------------------------------|------------------------------------------------------------------------------------------------------|
| EVENT                             | Name of the diagnostic test.                                                                         |
| ACTION                            | Action to be taken in case of a failure of the test.                                                 |
| SLOTS                             | Slots on which the test is configured to run.                                                        |
| MODE                              | Mode of running for the test. The modes are Continuously polling or Scheduling.                      |
| POLL PERIOD (SEC)                 | The polling period in seconds.                                                                       |
| THRESHOLD #(PER POLL in #POLL)    | The number of failed tests out of the number of pollings (applicable only for threshold based test). |
| LOGBACK-OFF                       | The number of event logs to be skipped before logging again.                                         |
| SLOT                              | The slot number.                                                                                     |
| TEST TYPE                         | The specific scheduling test type.                                                                   |
| BRIEF RESULT (LAST RUN/<br>CYCLE) | The brief results showing only the status (passed/ failed) of the test on each slot.                 |

### **Examples**

### The following example displays information about the port-crc-test.

device(config) #show sysmon results port-crc-test brief Module is(are) not UP in slot(s) 3 4 5 The configuration of port-crc-test is +----+ | MODE EVENT |ACTION SLOTS | POLL PERIOD| THRESHOLD | LOGBACK-OFF (SEC) | #(PER POLL | | in #POLL) | Port CRC Monitoring | SYSLOG | ALL | SCHEDULING 60 | 3 in 4 | 1 |SCHEDULING| +----Brief result of port-crc-test is -----SLOT | BRIEF RESULT (LAST RUN/ TEST TYPE CYCLE) \_\_\_\_\_ Slot 1 | Scheduled at 2014.05.27-10:56:52 PASSED ------+----Slot 2 | Scheduled at 2014.05.27-10:56:52 PASSED Slot 6 | Scheduled at 2014.05.27-10:56:52 PASSED +----Slot 7 | Scheduled at 2014.05.27-10:56:52 PASSED Slot 8 | Scheduled at 2014.05.27-10:56:52 PASSED

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# show sysmon results detail

Displays details of scheduled test results in detail per slot basis. It includes instance information and other details as well.

Syntax show sysmon results name of the test detail slot\_id

Parameters name of the test

The name of the scheduled test.

slot\_id / all

The slot numbers to be specified to run the test.

Modes User EXEC mode

Privileged EXEC mode

Global configuration mode

**Command Output** 

The **show sysmon results detail** command displays the following information:

| Output field                   | Description                                                                                          |
|--------------------------------|------------------------------------------------------------------------------------------------------|
| EVENT                          | Name of the diagnostic test.                                                                         |
| ACTION                         | Action to be taken in case of a failure of the test.                                                 |
| SLOTS                          | Slots on which the test is configured to run.                                                        |
| MODE                           | Mode of running for the test. The modes are Continuously polling or Scheduling.                      |
| POLL PERIOD (SEC)              | The polling period in seconds.                                                                       |
| THRESHOLD #(PER POLL in #POLL) | The number of failed tests out of the number of pollings (applicable only for threshold based test). |
| LOGBACK-OFF                    | The number of event logs to be skipped before logging again.                                         |
| INSTANCE                       |                                                                                                      |
| TEST TYPE                      | The specific scheduling test type.                                                                   |
| # OF RUNS                      | The number of times test is run.                                                                     |
| # OF FAILURES                  | The number of times the test failed (out of the number of runs).                                     |

### **Examples** The following example displays information about the port-crc-test.

device(config) #show sysmon results port-crc-test detail 1 The configuration of port-crc-test is EVENT |SLOTS MODE | POLL PERIOD| THRESHOLD | LOGBACK-OFF (SEC) | # (PER POLL | | in #POLL) | -+-----Port CRC Monitoring 60 | 3 in 4 | 1 LSYSTOG LATIT ISCHEDULING The detail result (LAST RUN/CYCLE) of port-crc-test on LP 1 is | # OF | # OF | RUNS | FAILURES TNSTANCE | TYPE Port 1/1 | Scheduled at 2014.05.27-10:56:52 | 4 | 0 Port 1/2 | Scheduled at 2014.05.27-10:56:52 | Port 1/3 | Scheduled at 2014.05.27-10:56:52 | 4 | 0 Port 1/4 | Scheduled at 2014.05.27-10:56:52 | 4 | 0

#### History

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

## sysmon np memory-errors

Configures memory error monitoring and reporting on interface modules.

Syntax sysmon np memory-errors { poll-interval secs | action { syslog-and-trap | syslog | trap | none } }

no sysmon np memory-errors { poll-interval  $secs \mid action \{ syslog-and-trap \mid syslog \mid trap \mid none \} \}$ 

### Parameters poll-interval secs

Specifies the frequency of polling for NP memory errors. The range is from 1

through 65535. The default value is 60 seconds.

action

Specifies the action taken when NP memory errors are detected. The default action is syslog-and-trap.

syslog-and-trap

Generate a syslog message and a SNMP trap.

syslog

Generate a syslog message.

trap

Send a SNMP trap.

none

No action; reporting of errors is disabled. In the no form of the command, specifying the action as none restores the default action (syslog-and-trap).

#### Modes

Privileged EXEC configuration mode.

### **Usage Guidelines**

If action is configured as syslog followed by configuration as trap, the action will become syslog-and-trap.

The **poll-interval** parameter determines the interval between checks for NP memory errors. Reporting may not happen within the polling interval; it may be delayed by factors such as a high CPU load on either the interface or management modules, low memory, etc.

The **action** parameter controls the generation of syslog messages or SNMP traps. These messages cannot be controlled by the **no snmp-server enable traps** command or the **no logging enable** command.

Memory errors are detected on the interface module. Errors may not be reported if there is a communication problem between the management module and the interface module.

The **no** form of this command disables memory error monitoring on interface modules.

#### Examples

The following example specifies polling for NP memory errors at 10 second intervals.

device(config) # sysmon np memory-errors poll-interval 10

The following example disables reporting of NP memory errors.

device(config) # sysmon np memory-errors action none

The following example disables monitoring of memory errors on interface modules.

device(config) # no sysmon np memory-errors

The no form of the command specifying a *poll-interval* value restores the default polling interval. For example, the following command restores the polling interval to the default value (60 seconds).

device(config) # no sysmon np memory-errors poll-interval 1000

The no form of the command specifying the action as syslog-and-trap, syslog, or trap removes the specified action. The following command removes the syslog action.

device(config) # no sysmon np memory-errors action syslog

.The no form of the command specifying the action as none restores the default action (syslog-and-trap) . For example:

device(config) # no sysmon np memory-errors action none

| Release | Command History             |
|---------|-----------------------------|
| 05.6.00 | This command was introduced |

## sysmon port port-crc-test

Enables the port CRC error monitoring test. Syntax sysmon port port-crc-test [ action {none | port-disable | syslog } ] sysmon port port-crc-test [ counter port-crc-counter less-than crc-count ] sysmon port port-crc-test [ log-backoff num ] sysmon port port-crc-test [ polling-period seconds ] sysmon port port-crc-test [ schedule { afterdd:hh:mm runs | at hh:mm:ss mm-dd-yy runs | now } ] sysmon port port-crc-test [ slot { all | s/ot } ] sysmon port port-crc-test [ threshold num-failures num-polls ] no sysmon port port-crc-test [ action {none | port-disable | syslog } ] no sysmon port port-crc-test [ counter port-crc-counter less-than crc-count ] no sysmon port port-crc-test [ log-backoff num ] no sysmon port port-crc-test [ polling-period seconds ] no sysmon port port-crc-test [ schedule { afterdd:hh:mm runs | at hh:mm:ss mm-dd-yy runs | now } ] no sysmon port port-crc-test [ slot { all | s/ot } ] no sysmon port port-crc-test [ threshold num-failures num-polls ] **Parameters** action Specifies a sysmon action configuration. none No action. port-disable Disable port. syslog Generates a syslog message. counter port-crc-counter less-than crc-count Specifies the port CRC error count limit for the configured polling period. The range of values is 0 through 65535. The default value is 20. polling-period secs Specifies the polling period in seconds. The range of values is 0 through 65535. The default value is 60 seconds. schedule Specifies the schedule of the test. afterdd:hh:mm runs Specifies that the test is run after the specified amount of time and for the number of test runs. at hh:mm:ss mm-dd-yy runs

Specifies that the test is run at the specified time and date and for the

number of test runs.

now

Specifies that the test is run immediately. This is defined as on-demand

testing.

slot

Specifies the slots on which the test is run.

all

Specifies that the test is run on all slots.

slot

Specifies the slot number on which the test is to be run. You can specify up

to 8 slot numbers.

threshold

Specifies the threshold of the diagnostic test.

num-failures

Specifies the number of failed test runs. The range of values is 1 through

31.

num-polls

Specifies the number of polls (tests). The range of values is 2 through 31.

Modes Global configuration mode

Usage Guidelines The no form of this command disables the port CRC error monitoring test.

**Examples** The following example disables the port CRC error monitoring test.

device(config)# no sysmon port port-crc-test

The following example sets the diagnostic action to disable the port when the port CRC error limit crosses the configured threshold.

device(config) # sysmon port port-crc-test action port-disable

The following example configures the port CRC error counter limit to 20.

device(config) # sysmon port port-crc-test counter port-crc-counter less-than 20

### History

| Release | Command History              |
|---------|------------------------------|
| 5.5.00  | This command was introduced. |

# sysmon port port-crc-test action

Configures the diagnostic action for the port CRC error monitoring test.

Syntax sysmon port port-crc-test action { none | syslog | port-disable }

Parameters none

No action.

port-disable

Disable port.

syslog

Generates a syslog message.

Global configuration mode Modes

**Usage Guidelines** Use the **none** parameter to disable the port CRC error monitoring test diagnostic action.

**Examples** The following example sets the diagnostic action to disable the port when the port CRC error limit

crosses the configured threshold.

device(config) # sysmon port port-crc-test action port-disable

History

| Release | Command History              |
|---------|------------------------------|
| 05.5.00 | This command was introduced. |

## sysmon port port-crc-test counter

Configures the port CRC error count limit for the configured polling period for the port CRC error monitoring test.

sysmon port port-crc-test counter port-crc-counter less-than crc-count

**Parameters** crc-count

**Syntax** 

Specifies the port CRC error count limit for the configured polling period. The range of values is 0 through 65535. The default value is 20.

Modes Global configuration mode.

**Usage Guidelines** Use the **no** for of this command to disable the configuration for the port CRC error count limit.

**Examples** The following example configures the port CRC error counter limit to 20.

device(config)# sysmon port port-crc-test counter port-crc-counter less-than 20

History

| Release | Command History              |
|---------|------------------------------|
| 05.5.00 | This command was introduced. |

## sysmon port port-crc-test log-backoff

Disables syslog messages for a specified number of events, before they are logged again for the port CRC error monitoring test.

**Syntax** sysmon port port-crc-test log-backoff num

**Parameters** num Specifies the number of events to skip before logging syslog messages again. The range of values is 1 through 14,400.

Modes Global configuration mode.

Use the no form of the command to restore the default sysmon syslog messages.

**Examples** The following example disables syslog for 1,000 events.

device(config) # sysmon port port-crc-test log-backoff 1000

History

| Release | Command History              |
|---------|------------------------------|
| 05.5.00 | This command was introduced. |

## sysmon port port-crc-test polling-period

Configures the polling period for the port CRC error monitoring test.

Syntax sysmon port port-crc-test polling-period secs

Parameters secs

Specifies the polling period in seconds. The range of values is 0 through 65535.

The default value is 60 seconds.

Modes Global configuration mode.

**Examples** The following example configures the port CRC error monitoring test to run every 60 seconds.

device(config)# sysmon port port-crc-test polling-period 60

History

| Release | Command History              |
|---------|------------------------------|
| 05.5.00 | This command was introduced. |

# sysmon port port-crc-test threshold

Configures the threshold for diagnostic action for the port CRC error monitoring test.

Syntax sysmon port port-crc-test threshold num-failuresnum-polls

Parameters num-failures

Specifies the number of failed test runs. The range of values is 1 through 31.

num-polls

Specifies the number of polls (tests). The range of values is 2 through 31.

Modes Global configuration mode.

### **Examples**

The following example configures the threshold to trigger the configured diagnostic action if the test fails more than three times in five consecutive polls.

device(config)# sysmon port port-crc-test threshold 3 5

| Release | Command History              |
|---------|------------------------------|
| 05.5.00 | This command was introduced. |

# sysmon schedule after

Schedules the test to start after the specified time from the current time.

Syntax sysmon name of the test schedule after time no of runs runs

no sysmonname of the test

Command Default By default, a test is not scheduled.

Parameters name of the test

The name of the test.

time

The time in hh:mm:ss format.

runs

The number of runs a user wants of a particular test. The range is between 1

and 31.

Modes Global configuration mode.

Usage Guidelines Theno form of the command cancels a scheduled test.

The following command example is used to configure port CRC test with 10 runs and 2.5 hours from the

current time.

device(config) # sysmon port portcrc schedule after 00:02:30 10

History

**Examples** 

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# sysmon schedule at

Schedules the test to start at the exact time that is specified.

Syntax sysmon name of the test schedule at time no of runs runs

no sysmonname of the test

**Command Default** By default, a test is not scheduled at the specified time.

Parameters name of the test

The name of the test.

time

The time in *hh:mm:ss mm-dd-yy* format. Here the first instance of mm is minutes and the second instance is months. For example, 14:30:00 08-20-13.

runs

The number of runs a user wants of a particular test. The range is between 1

and 31.

Modes Global configuration mode.

**Usage Guidelines** The **no** form of the command cancels a scheduled test.

**Examples** The following example indicates configuring 8 runs of NP error monitoring test at 9 AM on August 20,

2013

sysmon np memory-errors schedule at 09:00:00 08-20-13 8

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# sysmon schedule now

Schedules a test on demand as and when the user specifies it.

Syntax sysmon name of the test schedule now no of runs runs

Command Default By default, a test is not scheduled at the specified time.

Parameters name of the test

The name of the test.

runs

The number of runs a user wants of a particular test. The range is between 1

and 31.

Modes Global configuration mode.

Usage Guidelines This command does not support the no form of the command.

Examples The following command example is used to configure 20 runs of port CRC test with a test interval 60

seconds on-demand.

device(config) # sysmon port portcrc schedule now 20

History Release

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# sysmon sfm walk auto

Enables an option that automatically triggers a high-speed Switch Fabric Module (hSFM) walk automatically upon reaching a configured threshold.

Syntax sysmon sfm walk auto

no sysmon sfm walk auto

Modes Global configuration mode.

Usage Guidelines The no form of this command disables the automatic triggering of sysmon sfm walk auto.

### **NOTE**

Auto-tuning and hSFM auto-walk cannot function at the same time. To avoid conflict, auto-tuning and hSFM auto-walk consecutively performs . Whichever triggers first runs, after which the other one runs.

**Examples** The following example enables **sysmon sfm walk auto**.

device# configure terminal
device(config)# sysmon sfm walk auto

| Release version | Command history             |
|-----------------|-----------------------------|
| 5.7.00b         | This command is introduced. |

# sysmon sfm walk polling-period

Configuring a polling period for re-assembly errors located on a high-speed Switch Fabric Module

(hSFM).

Syntax sysmon sfm walk polling-periodvalue

Modes Global configuration mode.

**Usage Guidelines** The range of *value* is from 1 to 600 seconds. The default setting is 30 seconds.

**Examples** The following example configures the sfm polling-period to 50.

device# configure terminal
device(config)# sysmon sfm walk polling-period 50

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00b        | This command was introduced. |

# sysmon sfm walk redundancy-check

Setting an option to automatically trigger a N+1 SFM redundancy check during high-speed Switch

Fabric Module (hSFM) walk.

Syntax sysmon sfm walk redundancy-check

no sysmon sfm walk redundancy-check

Command Default The default setting for sysmon sfm walk redundancy-check is enabled.

Modes Global configuration mode.

Usage Guidelines For an SFM walk to begin, a redundant SFM is required. The no form of this command will trigger auto

hsfm walk if N+1 SFMs are unavailable.

Examples The following example enables sysmon sfm walk redundancy-check.

device# configure terminal
device(config)# sysmon sfm walk redundancy-check

| Release version | Command history             |
|-----------------|-----------------------------|
| R5.7.00b        | This command is introduced. |

# sysmon sfm walk start

Enabling a manual high-speed Switch Fabric Module (hSFM) walk.

Syntax sysmon sfm walk start

Modes Global configuration mode.

Usage Guidelines The command is only to be used to manually start a sysmon sfm walk.

### **NOTE**

Auto-tuning and hSFM walk cannot function at the same time. To avoid conflict, auto-tuning and hSFM walk will be performed consecutively. Whichever is triggered first will run and then the other will be performed.

## **Examples**

The following example manually enables sysmon sfm walk.

device# configure terminal
device(config)# sysmon sfm walk start

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00b        | This command was introduced. |

# sysmon sfm walk status

Displays the status of a high-speed Switch Fabric Module (hSFM) walk.

Syntax sysmon sfm walk status

Command Default This command will show the status of the current SFM walk. If the auto sfm walk is disabled, the status

of the last walk will be displayed.

Modes Global configuration mode.

Usage Guidelines The command is used to display the current status of an active sfm walk or sfm auto-walk.

**Examples** The following example enables **sysmon sfm walk status**.

```
device# configure terminal
device(config)# sysmon sfm walk status
```

```
______
SFM Walk status
                          : Isolated an SFM
Number of SFM walk done
Auto walk
                          : Enabled
Manual walk
                          : Not started
Autotune in progress
                          : 0
Autotunes on isolated SFM
                          : 0
AutoWalk timers
   Threshold for re-assembly 1, polling period 30, Counter reset time 10000
Redundancy check
                          : Enable
AutoWalk result
   Isolated SFM 3, Current SFM 3 (SFM range (1-4), FE (1-3))
Re-assembly error count 0, MCAST FID updates 0
Reachability register (0x461) dump
SFM1/FE1: val=0x01f3f009 : 00000001-11110001-11110000-00001001b [Reachable, autotune
FM1/FE2: val=0x01f3f009 : 00000001-11110001-11110000-00001001b [Reachable, autotune
SFM1/FE3: val=0x01f3f009 : 00000001-11110011-11110000-00001001b [Reachable, autotune
SFM2/FE1: val=0x01f3f009: 00000001-11110011-11110000-00001001b [Reachable, autotune
FM2/FE2: val=0x01f3f009 : 00000001-11110011-11110000-00001001b [Reachable, autotune
SFM2/FE3: val=0x01f3f009 : 00000001-11110011-11110000-00001001b [Reachable, autotune
SFM3/FE1: val=0x01f3f000 : 00000001-11110011-11110000-00000000b [Non-reachable,
autotune 01
SFM3/FE2: val=0x01f3f000 : 00000001-11110011-11110000-00000000b [Non-reachable,
autotune 01
SFM3/FE3: val=0x01f3f000 : 00000001-11110001-11110000-00000000b [Non-reachable,
autotune 01
SFM4/FE1: val=0x01f3f009 : 00000001-11110001-11110000-00001001b [Reachable, autotune
SFM4/FE2: val=0x01f3f009 : 00000001-11110011-11110000-00001001b [Reachable, autotune
SFM4/FE3: val=0x01f3f009: 00000001-11110011-11110000-00001001b [Reachable, autotune
0]
```

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00b        | This command was introduced. |

# sysmon sfm walk threshold

Configuring the threshold for minimum re-assembly count to isolate an SFM during an SFM walk.

Syntax sysmon sfm walk threshold value

no sysmon sfm walk threshold

**Command Default** The command is configured with a value of 1 by default.

Modes Global configuration mode.

Usage Guidelines The no form of this command will configure the default threshold value. The re-assembly count range is

1 to 65535. The default setting is 1.

**Examples** The following example configures **sysmon sfm walk threshold** to 5.

```
device# configure terminal
device(config)# sysmon sfm walk threshold 5
```

### The following is an example of the syslog showing the

```
SYSLOG: <9>Oct 14 00:41:18 System: Health Monitoring: TM Egress data errors detected on LP 15/\text{TM}\ 1
SYSLOG: <14>Oct 14 00:41:18 System: SFM-WALK: Auto SFM walk started SYSLOG: <14>Oct 14 00:41:18 System: SFM-WALK: Disabling SFM \#1
SYSLOG: <9>Oct 14 00:41:32 System: Health Monitoring detects an issue on egress LP
SYSLOG: <14>Oct 14 00:41:32 System: SFM-WALK: Auto SFM walk started SYSLOG: <14>Oct 14 00:41:32 System: SFM-WALK: SFM walk in progress
SYSLOG: <9>Oct 14 00:41:46 System: Health Monitoring detects an issue on egress LP
\dot{\text{SYSLOG}}\colon <14>\text{Oct}\ 14 00:41:46 System: SFM-WALK: Auto SFM walk started SYSLOG: <14>Oct 14 00:41:46 System: SFM-WALK: SFM walk in progress
SYSLOG: <9>Oct 14 00:41:48 System: Health Monitoring detects an issue on egress LP
2/TM 2
SYSLOG: <14>Oct 14 00:41:48 System: SFM-WALK: Auto SFM walk started SYSLOG: <14>Oct 14 00:41:48 System: SFM-WALK: SFM walk in progress
SYSLOG: <14>Oct 14 00:42:01 System: SFM-WALK: Re-assembly errors (125) more than
threshold (5). Move to next SFM #2.
SYSLOG: <14>Oct 14 00:42:42 System: SFM-WALK: Re-assembly errors (126) more than
threshold (5). Move to next SFM #3.
SYSLOG: <14>Oct 14 00:43:22 System: SFM-WALK: Re-assembly errors (0) less than
threshold (5). Isolated SFM #3.
SYSLOG: <14>Oct 14 00:43:22 System: SFM-WALK: SFM walk completed. Faulted SFM #3 and
removed from service.
```

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00b        | This command was introduced. |

# sysmon slot

Limits executing the monitoring tests to the specified slots.

Syntax sysmon name of the test slot slot\_id / all

Command Default By default, runs the test for all slots.

Parameters name of the test

The name of the test.

slot\_id / all

The slot numbers to be specified to run the test.

Modes Global configuration mode.

not support the no form of the command.

#### NOTE

To return to the default configuration, the user can use the following **sysmon** *name-of-the-test* **slots** *all* command.

### **Examples**

The following command example is used to configure the np monitoring test on slot number 2 and 5 on an 8-slot chassis.

device(config)# sysmon np memory-errors slot 2 5

The following command example is used to configure port CRC test on all the slots in the chassis.

device(config) # sysmon port portcrc slot all

| Release version | Command history              |
|-----------------|------------------------------|
| 05.7.00         | This command was introduced. |

# system-init fe-access-recovery-disable

Disables a RAS feature that will power-cycle switch fabric module if SW cannot access fabric element.

Syntax system-init fe-access-recovery-disable

Modes User EXEC mode

Priviledged EXEC mode

Usage Guidelines The system does the periodic monitoring of FE access and keeps a log for this by code monitoring

fabric links and kicks off when number of links down exceeds defined threshold for traffic. However if

failure detection configuration is enabled, you need to use these commands for recovery.

**Command Output** The **system-init** command configures the following information:

| Command                    | Description                                                              |
|----------------------------|--------------------------------------------------------------------------|
| block-g1-sfm               | Configure the system to block g1 switch fabric module.                   |
| fabric-data-mode           | Configure the fabric data mode.                                          |
| fabric-failure-detection   | Configure the system to automatically detect and shutdown failure fabric |
| fe-access-recovery-disable | Configure fabric element access failure recovery disable.                |
| max-tm-queues              | Configure maximum number queues in traffic manager to 4.                 |
| mlxe32-24x10g-enable       | Configure the system to accept 24x10G module.                            |
| tm-credit-size             | Configure traffic manager credit size.                                   |

### **Examples**

device(config) #system-init fe-access-recovery-disable
device(config) #system-init fe-access-recovery-disable
device(config) #no system-init fe-access-recovery-disable
device(config) #

| Release version | Command history              |
|-----------------|------------------------------|
| NI05.7.00a      | This command was introduced. |

# terminal enable timestamp

Enables and disables the time-stamp recording for all show commands.

Syntax terminal enable timestamp [ iso8601-format]

no terminal enable timestamp [ iso8601-format]

Parameters iso8601-format

Prints in ISO8601 format time-stamp - YYYY-MM-DDThh:mm:ssTZD (e.g. 1997-07-16T19:20:30+01:00). The format is explained as follows:

YYYY = four-digit year

MM = two-digit month (01=January)

DD = two-digit day of month (01 through 31)

hh = two digits of hour (00 through 23) (am/pm is NOT allowed)

mm = two digits of minute (00 through 59)

ss = two digits of second (00 through 59)

TZD = time zone designator (Z or +hh:mm or -hh:mm)

The default mode is displayed in the system clock format as <HH>:<MM>:<SS>.<MSC> <TZ> <Wk> <Mon> <Day> <Year> (e.g. 11:41:45.565 GMT+00 Sat Feb 24 2014). The format is explained as follows:

HH = 2 digit hours (in 24 hour format)

MM = 2 digit minutes

SS = 2 digit seconds

MSC = 3 digit milliseconds

TZ = Timezone

Wk = 3 characters of the weekday

Mon = 3 characters of the month

Day = 2 digit date

Year = 4 digit year

Modes Privileged EXEC level.

### **Usage Guidelines**

Use this command to enable the time-stamp recording in the default mode to be displayed at the beginning of each show command output. By default, the time-stamp recording is not displayed in the show CLI command outputs. The time-stamp recording is applicable only to the current terminal session, and not saved to the startup configuration. The use of this command can assist with troubleshooting or debugging issues. The no form of the command disables the time-stamp recording at the beginning of each show command output.

#### NOTE

Prior to the 05.9.00 release, some existing CLI show commands, e.g. show tasks, show cpu-utilization display the timestamp as part of the show command output. When the **terminal enable timestamp** 

command is enabled, an additional timestamp recording will now appear at the beginning of the show command outputs.

### **Examples**

The following example enables the time-stamp recording in default mode. The recording is displayed in the **show ip interface** command output.

```
device#terminal enable timestamp
device#show ip interface
11:41:45.565 GMT+00 Sat Feb 24 2014
Flags : U - Unnumbered, S - Secondary, US - Unnumbered Secondary, V - VE over VPLS,
VS - VE over VPLS Secondary
                 IP-Address
                                      Method Status
Interface
                                  OK?
                                                          Protocol
VRF
                                             FLAG
                100.1.1.1
                                       NVRAM
                                  YES
                                                                   default-
eth 1/2
                                             up
                                                          up
vrf
eth 2/8
                216.1.1.1
                                  YES
                                       NVRAM
                                              admin/down down
                                                                   default-
vrf
eth 4/2
                 42.1.1.1
                                      NVRAM
                                              admin/down down
                                                                   default-
                                  YES
vrf
                10.25.113.41
                                      NVRAM
mgmt 1
                                  YES
                                              up
                                                          up
                                                                   default -
vrf
ve 10
                110.1.1.1
                                      NVRAM
                                  YES
                                              up
                                                          up
                                                                   default-
vrf
ve 20
                120.1.1.1
                                  YES
                                      NVRAM
                                              up
                                                          up
                                                                   default-
vrf
ve 36
                36.1.1.1
                                  YES
                                      NVRAM
                                              down
                                                          down
                                                                   default-
vrf
ve 44
                 44.1.1.1
                                  YES
                                      NVRAM
                                              down
                                                          down
                                                                   default-
vrf
ve 45
                 45.1.1.1
                                  YES
                                       NVRAM
                                              down
                                                          down
                                                                   default-
vrf
ve 48
                 48.1.1.1
                                  YES
                                      NVRAM
                                              down
                                                          down
                                                                   default-
vrf
```

The following example enables the time-stamp recording in iso8601-format mode. The recording is displayed in the **show ip interface** command output.

```
device#terminal enable timestamp
device#show ip interface
2014-01-13T19:20:30+01:00
Flags : U - Unnumbered, S - Secondary, US - Unnumbered Secondary, V - VE over VPLS,
VS - VE over VPLS Secondary
                IP-Address
                                      Method Status
Interface
                                 OK?
                                                          Protocol
VRF
                                             FLAG
eth 2/1
                                      NVRAM up
                21.1.1.5
                                 YES
                                                                   default-
                                                          up
vrf
eth 4/1
                10.1.1.1
                                 YES
                                      manual admin/down down
vrf1
mamt 1
                10.37.73.171
                                 YES
                                      NVRAM
                                                                   default-
                                              up
                                                          up
vrf
ve 101
                11.1.1.1
                                 YES
                                       NVRAM
                                                                   default-
                                              up
                                                          up
vrf
                11.1.2.1
ve 101
                                 YES
                                      NVRAM
                                                                   default-
                                              uρ
                                                          αu
vrf
ve 102
                12.1.1.1
                                 YES
                                      NVRAM
                                                                   default-
                                              up
                                                          up
vrf
ve 103
                13.1.1.1
                                      NVRAM
                                 YES
                                                                   default-
                                              ามก
                                                          up
vrf
ve 106
                16.1.1.1
                                 YES manual up
                                                          up
vrf1
```

| Release version | Command history              |
|-----------------|------------------------------|
| 05.9.00         | This command was introduced. |