

Extreme API with Python

For Extreme Networks Products

Part Number 9036931-00 Rev AA

February 2021

Copyright © 2021 Extreme Networks, Inc. All rights reserved.

Table of Contents

1 Preface .. 5

1.1 References .. 5

1.2 Acknowledgements ... 5

2 Introduction .. 6

2.1 Using Python ... 6

2.1.1 Install Python .. 6

2.1.2 Update Your PATH .. 6

2.1.3 Virtual Environment .. 7

2.1.4 PIP ... 7

2.1.5 Editors and IDE .. 7

2.2 REST APIs ... 8

2.2.1 URLs ... 8

2.2.2 HTTP Status Codes .. 9

2.2.3 HTTP Request Methods... 9

2.2.4 HTTP Headers .. 9

2.2.5 Manipulating Headers with Python .. 11

2.3 Authentication and Authorization .. 12

2.3.1 Basic Authentication ... 12

2.3.2 Bearer Authentication ... 12

2.3.3 API Key .. 13

2.3.4 OAuth 2.0 .. 13

2.3.5 Managing Passwords or Tokens with Python ... 13

2.4 Understanding JSON ... 15

2.5 Manipulating JSON with Python ... 16

2.6 Interact with a REST API using Python .. 18

2.6.1 Urllib .. 18

2.6.2 Requests .. 20

2.6.3 Testing a REST API ... 25

2.7 Webhooks ... 27

2.8 HTTPS with Python .. 28

3 EXOS APIs .. 29

3.1 On-Switch APIs .. 29

3.1.1 Python Scripting .. 29

3.1.2 Python Application .. 35

3.2 External APIs ... 40

3.2.1 RESTCONF API ... 41

3.2.2 JSON-RPC API .. 49

4 VOSS API ... 55

4.1 VOSS RESTCONF Documentation .. 55

4.2 Enable RESTCONF .. 55

4.3 Use RESTCONF with Python .. 55

4.4 EXOS & VOSS Restconf Python Classes ... 58

5 XMC API .. 59

5.1 Python Scripting Engine .. 59

5.1.1 Default Location for Scripts ... 59

5.1.2 Add a User-Created Script ... 59

5.1.3 Python Modules Shipped with XMC ... 59

5.1.4 System Path and Precedence .. 60

5.1.5 Install a Library .. 60

5.1.6 XMC Python Module ... 60

5.2 Workflow Engine ... 69

5.2.1 emc_vars ... 69

5.2.2 Create Workflows ... 71

5.2.3 Create Variables .. 73

5.2.4 emc_results ... 77

5.2.5 Add User Inputs ... 81

5.2.6 Automate Workflow Execution ... 83

5.2.7 Workflow Example .. 88

5.3 NorthBound Interface API ... 93

5.3.1 emc_nbi ... 94

5.3.2 GraphQL Query ... 94

5.3.3 GraphQL Mutation .. 100

5.3.4 RBAC for API Usage ... 102

5.3.5 External Access to the NBI API .. 103

5.3.6 Use NBI to Execute a Workflow .. 106

5.4 Axis API .. 109

5.4.1 Analytics Methods... 109

5.4.2 Analytics API with Python ... 113

6 ExtremeCloud IQ API ..116

6.1 Connect to the xAPI .. 116

6.1.1 Create Tokens ... 116

6.1.2 Headers for the xAPI ... 119

6.1.3 xAPI Endpoints .. 119

6.1.4 Parameters .. 121

6.2 Use Python with XIQ ... 123

6.2.1 Use GET ... 123

6.2.2 Use POST ... 125

6.2.3 Use Webhooks .. 128

7 Extreme Campus Controller API ...134

7.1 Set Up Authorization ... 134

7.2 Use GET method ... 136

7.3 Use POST ... 139

7.4 Use PUT ... 141

7.5 Use DELETE .. 143

E x t r e m e A P I w i t h P y t h o n

P a g e | 5

Part no.9036931-00 Rev AA February 2021

1 Preface
This document is provided for information only, to share technical experience and knowledge. Do not
use this document to validate designs, features, or scalability.

1.1 References
The following references are used extensively in the preparation of this document:

EXOS 30.6 User Guide

EXOS 30.6 RestConf Developer Guide

XMC 8.4.3 GraphQL API

Configuring User Interfaces and Operating Systems for VOSS 8.1.5

ExtremeCloud IQ Developer Portal

Engineering API/Application Documentation

Extreme Developer Center

Extreme Networks product documentation (software)

RFC 8040 RESTCONF Protocol

RFC 8343 A Yang Data Model for Interface Management

RFC 8259 The JavaScript Object Notation (JSON) Data Interchange Format

HTTPS://www.python.org/

HTTPS://www.openconfig.net/

1.2 Acknowledgements
Document author: Stéphane Grosjean, Principal Systems Engineer

Content in this document is based on training modules provided by Markus Nispel and lab guides
developed by the Extreme Systems Engineering team.

https://documentation.extremenetworks.com/exos_30.6/GUID-7D648968-51CD-4E05-828C-8606BD5C0474.shtml
https://documentation.extremenetworks.com/exos_restconf_30.6/EXOS_RESTCONF_Developer_Guide_30_6.pdf
https://documentation.extremenetworks.com/XMC_API/8.4/GraphQLschema/index.html
https://documentation.extremenetworks.com/VOSS/SW/81x/ConfigUIOSVOSS_8.1.5_CG.pdf
https://developer.aerohive.com/
http://api.extremenetworks.com/
https://www.extremenetworks.com/support/documentation-api/
https://www.extremenetworks.com/support/documentation/product-type/software/
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc8343
https://tools.ietf.org/html/rfc8259
https://www.python.org/
https://www.openconfig.net/

E x t r e m e A P I w i t h P y t h o n

P a g e | 6

Part no.9036931-00 Rev AA February 2021

2 Introduction
This document provides an easy approach to the various APIs within Extreme Networks solutions.

The programming language used here is Python 3, but other languages can also be used. The Python 3
was selected based on how easy it is for beginners to learn, and its wide use in the market.

2.1 Using Python
At the time this document was written, Python had two major versions: Python 2.7 and Python 3.
Although Python 2 has seen wide use and is often the default version of the programming language
installed on OS (Linux, MacOS), it has reached an end-of-support milestone (January 1st, 2020) and no
further development is planned. The current version of Python 2 is 2.7.18, released in April 2020. As a
result, this document references only the most recent version of Python 3, which is 3.8.3.

2.1.1 Install Python
This document does not address Python installation details. There are many resources available in
blogs, YouTube videos, and books.

The recommendation is to download the latest version of Python 3 directly from the Python website
(HTTPS://www.python.org/downloads/) if you haven’t already installed it on your system. Linux and
MacOS had Python 2.7 pre-installed, however it is not included by default with Windows.

Use the commands shown below to verify which release you have from the command shell. These are
examples for Windows 10 and Ubuntu 20.04:

C:\Users\stgrosjean>python --version
Python 3.7.7

stef@ubuntu-lab:~$ python --version
Python 2.7.18rc1
stef@ubuntu-lab:~$ python3 --version
Python 3.8.2

Note: On the Ubuntu output, we have both Python 2 and Python 3 installed. To differentiate
between the two, you need to type either python (for Python 2) or python3 (for Python 3).

2.1.2 Update Your PATH
Update your PATH system variable to execute Python from anywhere on your PC. The most recent
Python installer can do this for you automatically.

https://www.python.org/downloads/

E x t r e m e A P I w i t h P y t h o n

P a g e | 7

Part no.9036931-00 Rev AA February 2021

2.1.3 Virtual Environment
The easiest way to manage multiple packages, modules and libraries is to work with virtual
environments. If you do not use a virtual environment, every time you install a new package, module, or
library, it is added into the global Python installation. This becomes problematic if you install packages
with dependencies that may require older or more recent versions of modules you are already using. In
these cases, some applications can fail as versions of existing modules are changed.

A virtual environment creates a fresh copy of the Python global environment. You can create multiple
virtual environments and install the packages you want only into the environment you specify, without
breaking existing installations and applications.

HTTPS://docs.python.org/3/library/venv.html

Note: How you create and manage virtual environments has changed with Python 3.6. Make
sure to use the recommended methods.

2.1.4 PIP
The best tool for installing new modules and libraries is PIP, which is highly recommended, and installed
by default with Python since release 3.4.

HTTPS://docs.python.org/3/installing/index.html

2.1.5 Editors and IDE
You will need a text editor to work with a programming language. Although nearly any text editor will do
the job, specialized editors and IDEs (integrated development environments) can help simplify your
workflow.

Many popular text editors and IDEs have Python support built-in, for example:

- Vim
- Sublime Text
- Notepad++
- Visual Studio Code

PyCharm
Spyder
Jupyter

These editors and environments may provide a color scheme to quickly identify reserved words,
functions, and variables. Many also have an integrated help system, and intelligent auto-completion.
Depending on the tool, auto-completion may propose functions and methods associated with variables,
depending on various factors.

Typically, if you use a simple text editor, you test your code from the command line in a separate
window. Using Python, simply type python (or python3) to enter the Python interactive shell and type
and test your code.

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/installing/index.html
https://www.vim.org/
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://code.visualstudio.com/

E x t r e m e A P I w i t h P y t h o n

P a g e | 8

Part no.9036931-00 Rev AA February 2021

Note: If you need more information about a function, method or library, Python has a built-in help
system. In the Python interactive shell, type help(<method>) or dir(<method>.

If you use an IDE, you can run code directly from the editor and, with more advanced IDEs, you can
manage virtual environments and execute selected portions of code. Spyder and Jupyter are part of the
Anaconda distribution, which is a typical environment for data science.

2.2 REST APIs
This document describes with forms and variants of REST APIs, sometimes using Openconfig or GraphQL
for more standard ones, or a specific API for some others. They all share the same generic logic,
requiring you to access a specific URL via HTTP to retrieve data, most likely, formatted in JSON. To do
this, you may need to install some Python libraries.

First it is necessary to understand URLs.

2.2.1 URLs
URL stands for Uniform Resource Locator, which is a string you enter in a browser, typically to access a
site. This string contains a great deal of information.

HTTPS://en.wikipedia.org/wiki/JSON?key=value&data=info#Example

For example, this URL can be broken down into the following elements:

The protocol, which can be HTTPS, HTTP, ftp, etc.
The host, often an IP address, which is the location of the server you want to reach.
The host is sometimes followed by “:” and a value, which is the port number. If this is not
present, then the browser defaults to the default protocol value (HTTP = 80, HTTPS = 443, for
example).
The path at the destination server to reach the content. In the context of a REST API, this is
often called an endpoint.
A query string follows an optional ?, and is used to pass arguments to the server, typically in
name=value pairs. To pass several arguments, use the & character to separate them.
A fragment appears after an optional #, and leads directly to a given part of the content.

https://www.anaconda.com/
https://en.wikipedia.org/wiki/JSON?key=value&data=info#Example

E x t r e m e A P I w i t h P y t h o n

P a g e | 9

Part no.9036931-00 Rev AA February 2021

2.2.2 HTTP Status Codes
When working with HTTP, it is important to understand the status code that is returned in a CALL. There
are five status code categories:

1xx: informational response
2xx: successful
3xx: redirection
4xx: client error
5xx: server error

You should see a 200 when everything is operating normally (OK). Error codes such as 403 (forbidden
access) or 404 (not found) help identify issues.

A complete list of the status codes is available in several locations, such as Wikipedia:

HTTPS://en.wikipedia.org/wiki/List_of_HTTP_status_codes

2.2.3 HTTP Request Methods
In REST, you send commands centered around a resource, which is anything that can be pointed to via
HTTP protocol. CALL the API using standard HTTP request methods, such as: GET, POST, PUT, DELETE,
and PATCH. There are more methods, but for REST APIs they are usually not required.

HTTPS://www.w3schools.com/tags/ref_httpmethods.asp

Note: This is sometimes referred to as CRUD (Create, Read, Update, Delete), which is basically a cycle for
database records.

It is important to understand the role of the request methods:

Use GET to request data from a specified resource. You can think of it as a read.
Use POST to send data to a server to create or update a resource.
Use PUT to send data to a server to create or update a resource. This might seem redundant
with POST, but there is a difference between them: PUT is idempotent. That is, if you are calling
multiple times using the same PUT request, it will always produce the same result. POST will
create multiples of the same resource.
Use PATCH to send data to a server to update an existing resource.
Use DELETE to delete a specified resource.

The API dictates the method you use. For example, if you use PUT instead of POST, you will receive an
error from the server.

2.2.4 HTTP Headers
With HTTP, the data you transfer can be separated in headers and body. The body contains the usable
data (the html to represent a web page, the data in JSON, etc.). The headers are very important because
they provide crucial information about the body content.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://www.w3schools.com/tags/ref_httpmethods.asp

E x t r e m e A P I w i t h P y t h o n

P a g e | 10

Part no.9036931-00 Rev AA February 2021

Wen working with REST API, (and any API using HTTP), you will most likely need to manipulate the
headers using the content-type, accept, authorization and x-auth-token commands.

Note: The HTTP Archive site is an excellent resource for learning more about HTTP. This site
monitors the top 1.3M web sites and extracts the HTTP information for analyses. This
information, along with reports such as State of the Web , are accessible to the public.

2.2.4.1 Content-Type
The content-type indicates, as the name implies, what is the format of the data in the body. This is a
very important piece of knowledge, as you would not treat that data the same way if this is pure text
html, some binary form or some JSON data for an application.

In your context of a REST API, you’ll most likely use the “application/json” value for this parameter, as
long as you are, indeed, transmitting data in JSON format.

Content-Type: application/json

HTTPS://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

2.2.4.2 Accept
The client uses the Accept header to advertise which content types it can understand. The server
informs the client of the choice using the Content-Type header. In REST API, the accept header is often
set to “application/json”.

Accept: application/json

HTTPS://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept

2.2.4.3 Authorization
The authorization request header contains the credentials required to authenticate a user agent (a
client) with a server. The authorization header value format is <type> <credential> with a space
between them.

The typical Basic authentication type concatenates the username and the password in a single string,
separated by a colon (:). This means that a username cannot also contain a colon. The result is encoded
in base64. This is not an encryption because it is reversible.

To access an online tool that can encode and decode in base64, visit: HTTPS://www.base64encode.org/

As an example, the string stef:extreme is encoded in base64 as c3RlZjpleHRyZW1l.

authorization: Basic c3RlZjpleHRyZW1l

HTTPS://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

https://httparchive.org/
https://httparchive.org/reports/state-of-the-web
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://www.base64encode.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

E x t r e m e A P I w i t h P y t h o n

P a g e | 11

Part no.9036931-00 Rev AA February 2021

2.2.4.4 X-Auth-Token
The X-Auth-Token is an unregistered header and is not subject to formal specification. Its presence and
content are always tied to a respective application. It typically stores a token for authorization and can
be considered as a shortcut of the bearer token defined in OAuth 2.0.

For Extreme APIs, the X-Auth-Token will be used with EXOS and VOSS Restconf implementation.

2.2.5 Manipulating Headers with Python
The requests module, and by extension the Urllib module, provide easy access to HTTP Headers. From
requests, headers are simply a Python dictionary, and you can manipulate both the request and
response headers.

import requests

r = requests.get("HTTPS://api.nasa.gov/planetary/apod")

print("Headers sent: ", r.request.headers)
print("\nHeaders received: ", r.headers)

The result is shown below:

C:\Extreme API with Python> headers-example.py
Headers sent: {'User-Agent': 'python-requests/2.22.0', 'Accept-Encoding':
'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive'}
Headers received: {'Server': 'openresty', 'Date': 'Sun, 14 Jun 2020 14:55:49
GMT', 'Content-Type': 'application/json', 'Transfer-Encoding': 'chunked',
'Connection': 'keep-alive', 'Vary': 'Accept-Encoding', 'Access-Control-Allow-
Origin': '*', 'X-Cache': 'MISS', 'Strict-Transport-Security': 'max-
age=31536000; preload', 'Content-Encoding': 'gzip'}

You can easily customize headers using the requests module:

import requests

headers = {
 'content-type': 'application/json',
 'x-auth-token': 'c3RlZjpleHRyZW1l'
}

r = requests.get("HTTPS://httpbin.org/get", headers=headers)

print("Headers sent: ", r.request.headers)
print("\nHeaders received: ", r.headers)

E x t r e m e A P I w i t h P y t h o n

P a g e | 12

Part no.9036931-00 Rev AA February 2021

The result is shown below:

C:\Extreme API with Python> headers-example.py
Headers sent: {'User-Agent': 'python-requests/2.22.0', 'Accept-Encoding':
'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'content-type':
'application/json', 'x-auth-token': 'c3RlZjpleHRyZW1l'}

Headers received: {'Date': 'Sun, 14 Jun 2020 15:03:53 GMT', 'Content-Type':
'application/json', 'Content-Length': '390', 'Connection': 'keep-alive',
'Server': 'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-
Control-Allow-Credentials': 'true'}

2.3 Authentication and Authorization
Most APIs will ask for some form of authentication or authorization before granting access to data.
Some form of authentication will be necessary even when you are accessing public data.

Because HTTP is stateless, this is a key aspect of HTTP transport . Being stateless means a server, API,
has no idea who is requesting/sending data for every transaction. So, if that data is not public,
authentication/authorization information must be sent in every request. As you cannot expect to type
your login/password for every CALL, there’s a need to have an alternate way to manage that
authentication process.

As a quick reminder, although authentication and authorization are related, they are different concepts.
Authentication validates who you are, to give you access to what belongs to your profile, while
authorization is more about what data you can access.

The most common authentication methods include Basic, Bearer, API key, and OAuth.

Several other methods exist, and some are standardized.

http://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

These methods are described in the following sections.

2.3.1 Basic Authentication
Basic authentication is a classic and is well-defined with HTTP. These are the usual login and password
credentials that you provide when identifying yourself to the API. These credentials are stored in the
authorization portion of the HTTP headers. The credentials are not sent in plain text but are encoded in
base64. Because this encoding mechanism is not an encryption, the best practice is to use it only with
HTTPS.

2.3.2 Bearer Authentication
This method is also called token authentication and involves security tokens called bearer tokens. The
name can be understood as “give access to the bearer of this token”. The token is a cryptic string
generated by the server in response to a login request, and is sent in the authorization headers. The

http://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

E x t r e m e A P I w i t h P y t h o n

P a g e | 13

Part no.9036931-00 Rev AA February 2021

bearer scheme was created as part of OAuth 2.0 (rfc 6750), but is sometimes used alone. As the token
must remain secret, the best practice is to use it only with HTTPS.

2.3.3 API Key
API keys are common. This is what you would typically use when working with YouTube APIs, for
example.

The benefit of this method is that it uses a different set of identification credentials than those used for
the account itself, (for example, what basic authentication doesn’t provide). The drawback with this
method is that it is not standardized, and so the API determines how the key is passed. It could be
hidden in the body, in the authorization header, in a cookie, or as a query string. Because the key must
remain a secret, the best practice is to use it only with HTTPS.

2.3.4 OAuth 2.0
The Open Authorization protocol gives an API client limited access to user data. GitHub, Google, and
Facebook APIs notably use it. This standard is defined in rfc 8252.

With OAuth 2.0, the authentication scenarios are called flows. Flows allow the resource owner to share
the protected content from the resource server without sharing their credentials. For this purpose,
access tokens (see bearer tokens) are issued by the server to client applications, giving them access the
protected data.

Several flows are defined in the standard:

- Authorization code
- Implicit
- Resource owner password credentials
- Client credentials

Learn more about how to use flows on the getting started official site:

HTTPS://oauth.net/getting-started/

2.3.5 Managing Passwords or Tokens with Python
When you are writing applications that need to access APIs, the best practice is to not store credentials
(hard-code them) in the code. Although this approach is convenient for testing purposes, it presents an
obvious security risk.

One way to handle this situation is to ask for credentials when executing the application, using at a
minimum a library (such as getpass) to hide the password. This approach is simple, but it requires
someone in front of the application to enter the information.

import getpass

username = input("Username: ")

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc8252
https://oauth.net/getting-started/

E x t r e m e A P I w i t h P y t h o n

P a g e | 14

Part no.9036931-00 Rev AA February 2021

password = getpass.getpass()

print("\nYou entered:\nUsername: {} Password: {}".format(username, password))

The result is shown below:
C:\Extreme API with Python> auth-examples.py
Username: Stef
Password:

You entered:
Username: Stef Password: extreme

If the application is running on a secure environment, another way to is to store passwords, keys, and
tokens as environment variables that the application can access. How you create environment variables
will depend on your operating system:

- In Windows, create environment variables from Control Panel > System > Advanced System
Settings > Environment Variables.

- With MacOS and Linux, add variables in the .batch_profile file, located in your home directory.
The syntax is export <Var Name>=”<Value>”. There are no spaces between the variable name, the
= sign and the value.

You can then access these environment variables with the OS module.

In this example, you have created (on Windows 10) 2 environment variables:

- MY_USER
- MY_PASSWORD

You can retrieve them from Python, without exposing them in the code:

import os

username = os.environ.get('MY_USER')
password = os.environ.get('MY_PASSWORD')

print("Username is: {}\nPassword is: {}".format(username, password))

The result:

C:\Extreme API with Python> auth-examples.py
Username is: Stef
Password is: extreme

E x t r e m e A P I w i t h P y t h o n

P a g e | 15

Part no.9036931-00 Rev AA February 2021

2.4 Understanding JSON
JSON (JavaScript Object Notation) is an open standard file format, defined in RFC 8259
(HTTPS://tools.ietf.org/html/rfc8259), widely used to format the data transmitted and stored with
modern APIs and tools. Despite its name, JSON is language-independent and is used with whatever
programming language needed.

It is the preferred data format when working with REST APIs, but also is widely used as config files for
many applications (from your child’s Minecraft server settings to XMC settings, for example). It’s worth
to note that the first version of the JSON RFC (rfc 4627) registered the media type “application/json”.

JSON is a text format, human-readable tool that has been widely adopted to replace other standards
such as XML. The JSON format accepts basic data types such as number, string (delimited with double-
quotation marks), Boolean (true or false), array (ordered list of any type delimited with square brackets,
and each element separated with a comma), objects (collection of key-value pairs where the key is a
string) and empty value with the word null. A JSON object is always delimited between curly brackets or
square brackets. Each entry is separated with a comma, except for the last one for each object.

The following example was taken from Wikipedia (HTTPS://en.wikipedia.org/wiki/JSON#Example):

{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
],
 "children": [],
 "spouse": null
}

Comments are not allowed in a JSON document.

Although JSON is not the only format for APIs, it is currently the most widely used. It comes with some
limitations that open doors for new formats. However, when you need a text file format with

https://tools.ietf.org/html/rfc8259
https://en.wikipedia.org/wiki/JSON#Example

E x t r e m e A P I w i t h P y t h o n

P a g e | 16

Part no.9036931-00 Rev AA February 2021

information that can be read by humans, JSON is currently the most efficient tool. Nevertheless, when
you need to exchange a vast amount of information, performance and efficiency become more
important and you can consider new standards. These alternatives are not yet used in external Extreme
APIs, although binary formats, such as Protobuf, are becoming popular as well. JSON and Protobuf are
expected to co-exist, serving different needs.

2.5 Manipulating JSON with Python
Manipulating JSON-formatted data with Python is simple because the data types are well matched. The
standard library, included by default with Python, has a JSON module that converts JSON to Python, and
vice-versa, as defined in the Python documentation, and shown in this table:

JSON Python
Object dict
Array list
String str
number (int) int
number (real) float
true True
false False
null None

HTTPS://docs.python.org/3/library/json.html#encoders-and-decoders

View the functions and methods available with JSON using the print(dir(json)) command:

import json

print(dir(json))

The result:

['JSONDecodeError', 'JSONDecoder', 'JSONEncoder', '__all__', '__author__',
'__builtins__', '__cached__', '__doc__', '__file__', '__loader__',
'__name__', '__package__', '__path__', '__spec__', '__version__',
'_default_decoder', '_default_encoder', 'codecs', 'decoder',
'detect_encoding', 'dump', 'dumps', 'encoder', 'load', 'loads', 'scanner']

The methods most often used are highlighted in this example. The following examples illustrate how to
use some of these methods.

https://docs.python.org/3/library/json.html#encoders-and-decoders

E x t r e m e A P I w i t h P y t h o n

P a g e | 17

Part no.9036931-00 Rev AA February 2021

import json

json_sample = '''
{
 "whisky": [
 {
 "name": "Hibiki",
 "type": "Blended",
 "age": 17
 },
 {
 "name": "Old Pulteney",
 "type": "Single Malt",
 "age": 21
 }
],
 "stock": null,
 "alcohol": true
}
'''

data = json.loads(json_sample)
print(type(data))
print(data)

new_data = json.dumps(data)
print(type(new_data))

print(new_data)

This example imports the JSON module and manipulates a JSON entry in Python. You must first
transform it to an editable dictionary, then reconvert it to JSON format. The null and Boolean values
change accordingly.

<class 'dict'>
{'whisky': [{'name': 'Hibiki', 'type': 'Blended', 'age': 17}, {'name': 'Old
Pulteney', 'type': 'Single Malt', 'age': 21}], 'stock': None, 'alcohol':
True}
<class 'str'>

E x t r e m e A P I w i t h P y t h o n

P a g e | 18

Part no.9036931-00 Rev AA February 2021

{"whisky": [{"name": "Hibiki", "type": "Blended", "age": 17}, {"name": "Old
Pulteney", "type": "Single Malt", "age": 21}], "stock": null, "alcohol":
true}

In this example, a string is the source, but you could also have uploaded information from a file, and
saved it back to a file using the json.load() and json.dump() commands.

2.6 Interact with a REST API using Python
Now that you have a basic understanding of what a REST API is, the following examples show how you
to interact with one using Python.

2.6.1 Urllib
When you are working with Python, you can access HTTP or HTTPS URLs using the standard (included)
Urllib package. For details about how to use Urllib, see the official documentation, or use any of the
many tutorials available online.

HTTPS://docs.python.org/3/library/urllib.html

Urllib has several modules, the request module being the most useful.

HTTPS://docs.python.org/3/library/urllib.request.html#module-urllib.request

2.6.1.1 Urllib examples
Enter dir() of the urllib.request to see the list of available methods and functions.

from urllib import request

print(dir(request))

The output is shown below, with the most useful function highlighted.

['AbstractBasicAuthHandler', 'AbstractDigestAuthHandler',
'AbstractHTTPHandler', 'BaseHandler', 'CacheFTPHandler',
'ContentTooShortError', 'DataHandler', 'FTPHandler', 'FancyURLopener',
'FileHandler', 'HTTPBasicAuthHandler', 'HTTPCookieProcessor',
'HTTPDefaultErrorHandler', 'HTTPDigestAuthHandler', 'HTTPError',
'HTTPErrorProcessor', 'HTTPHandler', 'HTTPPasswordMgr',
'HTTPPasswordMgrWithDefaultRealm', 'HTTPPasswordMgrWithPriorAuth',
'HTTPRedirectHandler', 'HTTPSHandler', 'MAXFTPCACHE', 'OpenerDirector',
'ProxyBasicAuthHandler', 'ProxyDigestAuthHandler', 'ProxyHandler', 'Request',
'URLError', 'URLopener', 'UnknownHandler', '__all__', '__builtins__',
'__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__',
'__spec__', '__version__', '_cut_port_re', '_ftperrors', '_have_ssl',
'_localhost', '_noheaders', '_opener', '_parse_proxy',
'_proxy_bypass_macosx_sysconf', '_randombytes', '_safe_gethostbyname',
'_thishost', '_url_tempfiles', 'addclosehook', 'addinfourl', 'base64',
'bisect', 'build_opener', 'contextlib', 'email', 'ftpcache', 'ftperrors',

https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.request.html#module-urllib.request

E x t r e m e A P I w i t h P y t h o n

P a g e | 19

Part no.9036931-00 Rev AA February 2021

'ftpwrapper', 'getproxies', 'getproxies_environment', 'getproxies_registry',
'hashlib', 'http', 'install_opener', 'io', 'localhost', 'noheaders', 'os',
'parse_http_list', 'parse_keqv_list', 'pathname2url', 'posixpath',
'proxy_bypass', 'proxy_bypass_environment', 'proxy_bypass_registry', 'quote',
're', 'request_host', 'socket', 'splitattr', 'splithost', 'splitpasswd',
'splitport', 'splitquery', 'splittag', 'splittype', 'splituser',
'splitvalue', 'ssl', 'string', 'sys', 'tempfile', 'thishost',
'time', 'to_bytes', 'unquote', 'unquote_to_bytes', 'unwrap', 'url2pathname',
'urlcleanup', 'urljoin', 'urlopen', 'urlparse', 'urlretrieve', 'urlsplit',
'urlunparse', 'warnings']

The following example shows how to use urlopen, and how to find other functions:

from urllib import request

resp = request.urlopen('HTTPS://www.youtube.com')
print(dir(resp))

Perform a dir() of the object returned from request.urlopen to see more functions.

['__abstractmethods__', '__class__', '__del__', '__delattr__', '__dict__',
'__dir__', '__doc__', '__enter__', '__eq__', '__exit__', '__format__',
'__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__iter__', '__le__', '__lt__', '__module__', '__ne__',
'__new__', '__next__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_abc_impl',
'_checkClosed', '_checkReadable', '_checkSeekable', '_checkWritable',
'_check_close', '_close_conn', '_get_chunk_left', '_method', '_peek_chunked',
'_read1_chunked', '_read_and_discard_trailer', '_read_next_chunk_size',
'_read_status', '_readall_chunked', '_readinto_chunked', '_safe_read',
'_safe_readinto', 'begin', 'chunk_left', 'chunked', 'close', 'closed',
'code', 'debuglevel', 'detach', 'fileno', 'flush', 'fp', 'getcode',
'getheader', 'getheaders', 'geturl', 'headers', 'info', 'isatty', 'isclosed',
'length', 'msg', 'peek', 'read', 'read1', 'readable', 'readinto',
'readinto1', 'readline', 'readlines', 'reason', 'seek', 'seekable', 'status',
'tell', 'truncate', 'url', 'version', 'will_close', 'writable', 'write',
'writelines']

The following example shows how to use these functions:

from urllib import request

resp = request.urlopen('HTTPS://www.python.org')

print(resp.code)
print(resp.length)

data = resp.read()

E x t r e m e A P I w i t h P y t h o n

P a g e | 20

Part no.9036931-00 Rev AA February 2021

print(type(data))
print(len(data))

The result is shown below:

200
48959
<class 'bytes'>
48959

This example shows the success HTTP status code (200), and the amount of data returned in bytes.

2.6.2 Requests
Although Urllib provides all the required tools to manipulate URLs and HTTP CALLs, a better package
called Requests is commonly used.

HTTPS://requests.readthedocs.io/en/master/

The best practice is to install Requests with PIP.

Note: The Requests module is part of XMC Python scripting engine and EXOS Python scripting capability.

The following example creates a virtual environment in Windows 10 to demonstrate how to create and
activate a venv.

C:\> python -m venv "c:\Extreme API with Python"

C:\> cd "\Extreme API with Python"

C:\Extreme API with Python> dir

Directory of C:\Extreme API with Python

05-Jun-20 09:19 <DIR> .
05-Jun-20 09:19 <DIR> ..
03-Jun-20 16:00 <DIR> Extreme API with Python
05-Jun-20 01:47 492,137 Extreme API.docx
03-Jun-20 11:55 <DIR> Include
04-Jun-20 00:59 453 json-example.py
03-Jun-20 11:55 <DIR> Lib
02-Jun-20 19:43 5,537,071 Presentation1.pptx
03-Jun-20 11:55 125 pyvenv.cfg
04-Jun-20 13:47 167 requests-example.py
03-Jun-20 12:03 <DIR> Scripts
03-Jun-20 01:11 177 urllib-example.py
 6 File(s) 6,030,130 bytes
 6 Dir(s) 691,064,119,296 bytes free

C:\Extreme API with Python>
C:\Extreme API with Python> Scripts\activate.bat

(Extreme API with Python) C:\Extreme API with Python> pip install requests
Collecting requests

https://requests.readthedocs.io/en/master/

E x t r e m e A P I w i t h P y t h o n

P a g e | 21

Part no.9036931-00 Rev AA February 2021

 Downloading
HTTPS://files.pythonhosted.org/packages/1a/70/1935c770cb3be6e3a8b78ced23d7e0f3b187f5cb
fab4749523ed65d7c9b1/requests-2.23.0-py2.py3-none-any.whl (58kB)
 |████████████████████████████████| 61kB 1.9MB/s
Collecting certifi>=2017.4.17 (from requests)
 Downloading
HTTPS://files.pythonhosted.org/packages/57/2b/26e37a4b034800c960a00c4e1b3d9ca5d7014e98
3e6e729e33ea2f36426c/certifi-2020.4.5.1-py2.py3-none-any.whl (157kB)
 |████████████████████████████████| 163kB 6.4MB/s
Collecting idna<3,>=2.5 (from requests)
 Downloading
HTTPS://files.pythonhosted.org/packages/89/e3/afebe61c546d18fb1709a61bee788254b40e736c
ff7271c7de5de2dc4128/idna-2.9-py2.py3-none-any.whl (58kB)
 |████████████████████████████████| 61kB 4.1MB/s
Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 (from requests)
 Downloading
HTTPS://files.pythonhosted.org/packages/e1/e5/df302e8017440f111c11cc41a6b432838672f5a7
0aa29227bf58149dc72f/urllib3-1.25.9-py2.py3-none-any.whl (126kB)
 |████████████████████████████████| 133kB 3.3MB/s
Collecting chardet<4,>=3.0.2 (from requests)
 Using cached
HTTPS://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec751
0b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl
Installing collected packages: certifi, idna, urllib3, chardet, requests
Successfully installed certifi-2020.4.5.1 chardet-3.0.4 idna-2.9 requests-2.23.0
urllib3-1.25.9

(Extreme API with Python) C:\Extreme API with Python>

To better illustrate its use, you can create some GET and POST examples. A good resource for making
HTTP CALLs is HTTPS://httpbin.org which is a simple HTTP request and response service. These can be
considered the first REST API CALLs.

Note: The httpbin.org service has been written by the same author than the Requests module.

Examine the GET method. The response content type is set to application/json by default. Keep this
setting so that you can manipulate JSON data.

https://httpbin.org/

E x t r e m e A P I w i t h P y t h o n

P a g e | 22

Part no.9036931-00 Rev AA February 2021

Make a REST CALL, using GET to retrieve data. This service lets you add parameters (arguments) to the
URL in a query string, so that the server also returns this information .

Requests has an integrated JSON function that you can use also, as shown below :

import requests

qstring = {"h2g2": 42, "elite": 1337}
r = requests.get('HTTPS://httpbin.org/get', params=qstring)

print(r.url)
print(r.status_code)
print(r.headers['content-type'])
print(r.encoding)
print(r.text)

data = r.json()
print(type(data))
print(data)

In this example, the query string has been separated from the URL. You could have added the
parameters directly to the URL, but it is a good practice to work this way, which allows you to reuse the
same URL with different parameters. When you test using this method, you use the GET function with
requests and the GET path on httpbin.org.

The result of a test is the shown below:

E x t r e m e A P I w i t h P y t h o n

P a g e | 23

Part no.9036931-00 Rev AA February 2021

https://httpbin.org/get?h2g2=42&elite=1337
200
application/json
None
{
 "args": {
 "elite": "1337",
 "h2g2": "42"
 },
 "headers": {
 "Accept": "*/*",
 "Accept-Encoding": "gzip, deflate",
 "Host": "httpbin.org",
 "User-Agent": "python-requests/2.22.0",
 "X-Amzn-Trace-Id": "Root=1-5ed8c610-484d6854daf7112485a3b020"
 },
 "origin": "109.13.132.180",
 "url": "https://httpbin.org/get?h2g2=42&elite=1337"
}

<class 'dict'>
{'args': {'elite': '1337', 'h2g2': '42'}, 'headers': {'Accept': '*/*',
'Accept-Encoding': 'gzip, deflate', 'Host': 'httpbin.org', 'User-Agent':
'python-requests/2.22.0', 'X-Amzn-Trace-Id': 'Root=1-5ed8c610-
484d6854daf7112485a3b020'}, 'origin': '109.13.132.180', 'url':
'https://httpbin.org/get?h2g2=42&elite=1337'}

Next, send data to the service by using the POST method from requests and changing the path to the
service to POST. Because you are now sending data to the service, you must remove the params
keyword and replace it with the data keyword, as shown below:

import requests

payload = {"h2g2": 42, "elite": 1337}
r = requests.post('HTTPS://httpbin.org/post', data=payload)

print(r.url)
print(r.status_code)
print(r.headers['content-type'])
print(r.text)

data = r.json()

E x t r e m e A P I w i t h P y t h o n

P a g e | 24

Part no.9036931-00 Rev AA February 2021

print(type(data))
print(data)

In the results, you can see that the URL no longer contains a query string, and in the JSON returned,
there is a form entry with the data you sent.

HTTPS://httpbin.org/post
200
application/json
{
 "args": {},
 "data": "",
 "files": {},
 "form": {
 "elite": "1337",
 "h2g2": "42"
 },
 "headers": {
 "Accept": "*/*",
 "Accept-Encoding": "gzip, deflate",
 "Content-Length": "17",
 "Content-Type": "application/x-www-form-urlencoded",
 "Host": "httpbin.org",
 "User-Agent": "python-requests/2.22.0",
 "X-Amzn-Trace-Id": "Root=1-5ed8cb37-4c412bacebb72bbcaf3e5bfc"
 },
 "json": null,
 "origin": "109.13.132.180",
 "url": "HTTPS://httpbin.org/post"
}

<class 'dict'>
{'args': {}, 'data': '', 'files': {}, 'form': {'elite': '1337', 'h2g2':
'42'}, 'headers': {'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate',
'Content-Length': '17', 'Content-Type': 'application/x-www-form-urlencoded',
'Host': 'httpbin.org', 'User-Agent': 'python-requests/2.22.0', 'X-Amzn-Trace-
Id': 'Root=1-5ed8cb37-4c412bacebb72bbcaf3e5bfc'}, 'json': None, 'origin':
'109.13.132.180', 'url': 'HTTPS://httpbin.org/post'}

Another option when using the requests.get function is the timeout parameter. Without this parameter,
the requests module waits indefinitely for an answer, which can be a problem if you have made a
mistake. This can also result in very slow server speeds and you don’t want the application to spend too
much time waiting. You can set a limit before raising an error. Httpbin can help you to simulate this,
with the delay service in the dynamic data menu. To call it, add /delay/<value in seconds> to the URL.

For example:

import requests

E x t r e m e A P I w i t h P y t h o n

P a g e | 25

Part no.9036931-00 Rev AA February 2021

r = requests.get('HTTPS://httpbin.org/delay/4', timeout=3)

Add a delay of 4 seconds for the answer with a timeout of 3 seconds. Running the script gives you a
traceback:

Traceback (most recent call last):
[…]
 raise ReadTimeout(e, request=request)
requests.exceptions.ReadTimeout: HTTPSConnectionPool(host='httpbin.org',
port=443): Read timed out. (read timeout=3)

You can also use a Python try/except, which provides a cleaner result without breaking code.

import requests

try:
 r = requests.get('HTTPS://httpbin.org/delay/4', timeout=3)
except requests.exceptions.Timeout:
 print("Server is too long to answer")

2.6.3 Testing a REST API
Now that you are familiar with REST and Python, another useful tool when working with a REST API is
Postman.

Note: You can add Postman to some browsers via plug-in or it can be run as an external application on
most systems.

When you work with an API, you must know exactly what URL to use, and which data format to send or
receive. Having the ability to quickly test a CALL and interpret the results without having to write the
code for it is extremely useful. This is where Postman can help.

The Postman GUI can be broken down into three main sections, as shown below:

https://www.postman.com/

E x t r e m e A P I w i t h P y t h o n

P a g e | 26

Part no.9036931-00 Rev AA February 2021

These sections are the Request builder, the Response window, and the Explorer window. In the Request
builder, you create the HTTP CALL, specify the URL, add parameters, and set the authentication and
headers. The Request and Response windows display requests and responses.

Zoom into the Request builder, to see (in this example) an HTTP GET method, the URL for the API next to
it, and several tabs where you can personalize the CALL. In this example, no authorization is necessary
(this is very rare) so you just must set JSON as the application.

Select Send to see the response from the API.

E x t r e m e A P I w i t h P y t h o n

P a g e | 27

Part no.9036931-00 Rev AA February 2021

In the response window, you can see the HTTP Status code, in this case an encouraging 200, and the
data sent back in JSON by the API. You can now use this information in the application, as you can see
the keys and value types returned.

You can now write a Python application to interface with this API.

import requests

headers = {"Accept": "application/json"}
try:
 r = requests.get('HTTPS://icanhazdadjoke.com/', headers=headers, timeout=3)
except requests.exceptions.Timeout:
 print("Service is currently unavailable, please try again later")
 exit(0)

if r.ok:
 joke = r.json()
 print(joke["joke"])
else:
 print("No joke today!")

You can now access the joke for the day:

I am so good at sleeping I can do it with my eyes closed!

2.7 Webhooks
When dealing with APIs, it is sometimes more practical to rely on webhook services than making REST
CALLs. Webhooks are sometimes referred to as reverse API, as they push data automatically from a
service to an application, instead of having the application request data. This approach can be more
elegant when you want to update data as it changes, and this can also be a better way to interact with
an official API, as it can potentially limit your number of CALLs per day.

There are several sites to help you test webhooks, such as the Webhook.site.

https://webhook.site/#!/

E x t r e m e A P I w i t h P y t h o n

P a g e | 28

Part no.9036931-00 Rev AA February 2021

2.8 HTTPS with Python
Usually, when you work with an API that uses HTTP as the transfer protocol, such as REST API, you will
be required to use HTTPS for obvious security reasons. If you are using self-signed certificates, you will
see warnings and errors. To avoid this, in the code, add the disable_warnings method from Urllib3 and
add the verify=False argument with requests.

import requests
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

r = requests.get(url, verify=False, params=payload, headers=getHeaders)

E x t r e m e A P I w i t h P y t h o n

P a g e | 29

Part no.9036931-00 Rev AA February 2021

3 EXOS APIs
EXOS offers several APIs for developers that support on-switch automation and external automation.
The following sections describe these options.

3.1 On-Switch APIs
EXOS has included automation and scripting since its original inception. The first scripting
interface offered to the users, and still present today, is called CLI Scripting and uses TCL functions
for advanced scripting. You’ll not cover this scripting interface in this guide, but rather focus on
the more modern Python capabilities.

3.1.1 Python Scripting
Starting with the release of EXOS 15.6, Python has been added to the EXOS scripting toolbox. The
Python version used is 2.7, and more precisely it was 2.7.3 before being upgraded with EXOS 30.1 to
version 2.7.15.

The standard library is available, along with extra modules such as Argparse and Requests.

To see the full list of available modules, create a simple one-line script and execute it on a switch:

help('modules')

3.1.1.1 Create a Python Script
There are several options for creating a script on an EXOS switch. Either you create it directly on it, from
the CLI, or you do it on your computer and send it to switch when completed.

From the CLI, you can access a light version of vi using either the command “vi” or “edit”. When you
create a new file with this command, it must have a supported file extension by EXOS. The supported
file extensions are .pol, .pkt, .xsf, .py and .xml. Obviously, when writing a Python script, you must use the
official .py file extension.

Note: when you create a file, it is located by default into /config, which is an alias for
/usr/local/cfg.

Some text editors and IDE can edit a remote file using SSH, SCP or similar transfer protocols. This
capability can be built-in or added using a plug-in. It may be easier to manipulate files this way.

3.1.1.2 Copying Python Scripts to a Switch
If you are not working directly from the switch CLI, you can copy the files to the switch using TFTP or
SCP. For example, assuming you have a TFTP server running on your PC (such as tftpd64) and pointing
to the correct directory, you can copy the files from the CLI this way:

sw1.2 # tftp get 192.168.56.1 vr VR-Mgmt MyScript.py

http://tftpd32.jounin.net/tftpd32_download.html

E x t r e m e A P I w i t h P y t h o n

P a g e | 30

Part no.9036931-00 Rev AA February 2021

3.1.1.3 Execute a Python Script
There are two CLI commands you can use to execute an existing Python script from the CLI:

- run script <script_name>.py
- load script <script_name>.py

The first command was introduced specifically for executing Python script. The second one is the legacy
command, used for CLI Scripting.

3.1.1.4 EXOS CLI Module
You can use an EXOS module called exsh to execute a Python script on EXOS. This module allows you to
execute any CLI command and returns the output either as a string, XML, both, or none.

exsh.clicmd(cmd, capture=False, xml=False, args=None)

Parameters:

- cmd: a string containing any valid EXOS CLI command.
- capture: a Boolean, defaulting to False if not specified, returning as a text (string) the CLI

output of the command.
- xml: a Boolean, defaulting to False if not specified, returning the XML that EXOS used to

create the CLI output
- args: a string to provide additional input to some EXOS commands that prompt for more

information

Returns:

- None: if both capture and xml are False
- Captured text: if capture is True
- XML: if xml is True
- Captured text and xml: if both capture and xml are True

Raises:

- RuntimeError: EXOS command is invalid or encountered an error

When you work with JSON data, you can be tempted to use the embedded cli2json.py script.
Calling a script from another script is not supported, as each script has its own session.

This is an example of a simple script:

import exsh

for vid in range(10, 15):
 exsh.clicmd("create vlan {}".format(vid))

The result:

E x t r e m e A P I w i t h P y t h o n

P a g e | 31

Part no.9036931-00 Rev AA February 2021

sw1.2 # run script createVlans.py
sw1.3 # show vlan
Untagged ports auto-move: Inform

Name VID Protocol Addr Flags Proto Ports Virtual
 Active router
 /Total

Default 1 --------------------------------T------------- ANY 5 /5 VR-Default
Mgmt 4095 192.168.56.121 /24 -------------------------- ANY 1 /1 VR-Mgmt
VLAN_0010 10 -- ANY 0 /0 VR-Default
VLAN_0011 11 -- ANY 0 /0 VR-Default
VLAN_0012 12 -- ANY 0 /0 VR-Default
VLAN_0013 13 -- ANY 0 /0 VR-Default
VLAN_0014 14 -- ANY 0 /0 VR-Default

Flags : (B) BFD Enabled, (c) 802.1ad customer VLAN, (C) EAPS Control VLAN,
 (d) Dynamically created VLAN, (D) VLAN Admin Disabled,
 (E) ESRP Enabled, (f) IP Forwarding Enabled,
 (F) Learning Disabled, (i) ISIS Enabled,
 (I) Inter-Switch Connection VLAN for MLAG, (k) PTP Configured,
 (l) MPLS Enabled, (L) Loopback Enabled, (m) IPmc Forwarding Enabled,
 (M) Translation Member VLAN or Subscriber VLAN, (n) IP Multinetting Enabled,
 (N) Network Login VLAN, (o) OSPF Enabled, (O) Virtual Network Overlay,
 (p) PIM Enabled, (P) EAPS protected VLAN, (r) RIP Enabled,
 (R) Sub-VLAN IP Range Configured, (s) Sub-VLAN, (S) Super-VLAN,
 (t) Translation VLAN or Network VLAN, (T) Member of STP Domain,
 (v) VRRP Enabled, (V) VPLS Enabled, (W) VPWS Enabled,
 (Y) Policy Enabled

Total number of VLAN(s) : 7

3.1.1.5 Automate the Python Script Execution
EXOS offers the ability to dynamically execute scripts when a particular event is met using a feature
called UPM.

3.1.1.5.1 UPM

UPM can trigger a script based on time of the day (for example every second, or twice a day at a fixed
time or on a given date), LLDP events, or based on events in the log. This capability combined with
Python scripting allows for very powerful on-switch automation. UPM can pass event-related
parameters to the script; for example, a port number associated to a monitored event, or a MAC
address, etc.

As a basic example, when a port goes up or down in the logs, you can ask UPM to trigger a basic Python
script to create a VLAN and add this port to it, or delete this VLAN and add the port back to the default
VLAN. Obviously, this example is too basic for a real use-case, but it shows the concepts involved. The
Python script would look like this:

import exsh
import sys

if len(sys.argv) < 3:

E x t r e m e A P I w i t h P y t h o n

P a g e | 32

Part no.9036931-00 Rev AA February 2021

 print "Missing arguments\nExpected arguments are Port and Action\nValid Actio
ns are down and up"
 exit(0)

if sys.argv[2] == "down":
 exsh.clicmd("delete vlan 42")
 exsh.clicmd("config vlan Default add port {}".format(sys.argv[1]))
else:
 exsh.clicmd("create vlan 42")
 exsh.clicmd("config vlan 42 add port {}".format(sys.argv[1]))

UPM config requires that you create a profile and a log filter to monitor the event you want associated
with this profile.

create upm profile Up_Down_Profile

enable cli scripting

IF (!$MATCH($EVENT.LOG_COMPONENT_SUBCOMPONENT,vlan.msgs) &&
!$MATCH($EVENT.LOG_EVENT,portLinkStateDown)) THEN
 run script upm_port.py $EVENT.LOG_PARAM_0 down
ENDIF

IF (!$MATCH($EVENT.LOG_COMPONENT_SUBCOMPONENT,vlan.msgs) &&
!$MATCH($EVENT.LOG_EVENT,portLinkStateUp)) THEN
 run script upm_port.py $EVENT.LOG_PARAM_0 up
ENDIF
.

create log filter Port_Up_Down

config log filter Port_Up_Down add event vlan.msgs.portLinkStateUp
config log filter Port_Up_Down add event vlan.msgs.portLinkStateDown

create log target upm Up_Down_Profile
enable log target upm Up_Down_Profile
config log target upm Up_Down_Profile filter Port_Up_Down severity Info

You can validate the correct execution on the switch as the event happened:

sw1.29 # sh log
06/07/2020 11:03:51.39 <Noti:UPM.Msg.upmMsgExshLaunch> Launched profile
Up_Down_Profile for the event log-message
06/07/2020 11:03:51.38 <Info:vlan.msgs.portLinkStateUp> Port 1 link UP at speed 100
Mbps and full-duplex
06/07/2020 11:03:44.42 <Noti:UPM.Msg.upmMsgExshLaunch> Launched profile
Up_Down_Profile for the event log-message
06/07/2020 11:03:44.42 <Info:vlan.msgs.portLinkStateDown> Port 1 link down
sw1.30 #

E x t r e m e A P I w i t h P y t h o n

P a g e | 33

Part no.9036931-00 Rev AA February 2021

sw1.30 # sh upm history

Exec Event/ Profile Port Status Time Launched
Id Timer/ Log filter

2 Log-Message(Port_Up_ Up_Down_Profile --- Pass 2020-06-07 11:03:51
1 Log-Message(Port_Up_ Up_Down_Profile --- Pass 2020-06-07 11:03:44

Number of UPM Events in Queue for execution: 0
sw1.31 #
sw1.31 # sh upm history exec-id 2

UPM Profile: Up_Down_Profile
Event: Log-Message(Port_Up_Down)
Profile Execution start time: 2020-06-07 11:03:51
Profile Execution Finish time: 2020-06-07 11:03:51
Execution Identifier: 2 Execution Status: Pass

Execution Information:
3 # enable cli scripting
4 # configure cli mode non-persistent
5 # set var EVENT.NAME LOG_MESSAGE
6 # set var EVENT.LOG_FILTER_NAME "Port_Up_Down"
7 # set var EVENT.LOG_DATE "06/07/2020"
8 # set var EVENT.LOG_TIME "11:03:51.38"
9 # set var EVENT.LOG_COMPONENT_SUBCOMPONENT "vlan.msgs"
10 # set var EVENT.LOG_EVENT "portLinkStateUp"
11 # set var EVENT.LOG_SEVERITY "Info"
12 # set var EVENT.LOG_MESSAGE "Port %0% link UP at speed %1% and %2%"
13 # set var EVENT.LOG_PARAM_0 "1"
14 # set var EVENT.LOG_PARAM_1 "100 Mbps"
15 # set var EVENT.LOG_PARAM_2 "full-duplex"
16 # set var EVENT.LOG_PARAM_3 "1"
17 # set var EVENT.PROFILE Up_Down_Profile
19 # enable cli scripting
21 # IF (!$MATCH($EVENT.LOG_COMPONENT_SUBCOMPONENT,vlan.msgs) &&
!$MATCH($EVENT.LOG_EVENT,portLinkStateDown)) THEN
22 # run script upm_port.py $EVENT.LOG_PARAM_0 down
23 # ENDIF
25 # IF (!$MATCH($EVENT.LOG_COMPONENT_SUBCOMPONENT,vlan.msgs) &&
!$MATCH($EVENT.LOG_EVENT,portLinkStateUp)) THEN
26 # run script upm_port.py $EVENT.LOG_PARAM_0 up
27 # ENDIF

Number of UPM Events in Queue for execution: 0

The VLAN is created:
sw1.29 # sh vlan
Untagged ports auto-move: Inform

Name VID Protocol Addr Flags Proto Ports Virtual
 Active router
 /Total
--

E x t r e m e A P I w i t h P y t h o n

P a g e | 34

Part no.9036931-00 Rev AA February 2021

Default 1 --------------------------------T------------- ANY 0 /0 VR-Default
Mgmt 4095 192.168.56.121 /24 -------------------------- ANY 1 /1 VR-Mgmt
VLAN_0042 42 -- ANY 1 /1 VR-Default
--
Flags : (B) BFD Enabled, (c) 802.1ad customer VLAN, (C) EAPS Control VLAN,
[…]
Total number of VLAN(s) :

3.1.1.5.2 Startup Files

Potential companions for Python Scripting and UPM are the EXOS startup files. Historically, two startup
files can be used with EXOS:

- default.xsf
- autoexec.xsf

The autoexec.xsf file starts at every boot of the switch, while the default.xsf is only executed when the
switch boots with no configuration (in factory default config or after an unconfigure switch all
command). The default.xsf has a higher precedence. An autoexec.xsf cannot be used if default.xsf has
been started.

Both startup files execute valid CLI commands, which must be executed within 500 seconds. The startup
file aborts after 500 seconds without executing the remaining commands.

Note: The results of the startup file execution can be seen using the command show script output {default
| autoexec}.

With the introduction of Python support in EXOS, these two files have been added to Python, and with
EXOS 21.1 the .py versions are also supported.

default.py
autoexec.py

EXOS 22.3 introduced a new startup file in EXOS named exshrc.xsf. This file is executed after a successful
login in EXOS, and lets you execute specific CLI commands, or scripts, at each login. You can see who is
connected and start a required script per user. This can be helpful when creating a menu for specific
operators, for example.

In the following example, using the CLI Scripting built-in variables, and, specifically, $CLI.USER, returns
the user of the current session. There are many built-in variables available. Refer the EXOS User Guide,
in the CLI Scripting chapter, for more information.

sw1.1 # vi exshrc.xsf
enable cli scripting
IF (!$MATCH($CLI.USER,admin)) THEN
 create log message "User Admin just connected!"
ENDIF
disable cli scripting
sw1.2 #

If you disconnect from the switch then reconnect as admin, you see the following:

E x t r e m e A P I w i t h P y t h o n

P a g e | 35

Part no.9036931-00 Rev AA February 2021

sw1.1 # sh log
07/01/2020 00:51:44.26 <Info:System.userComment> User Admin just connected!
07/01/2020 00:51:44.26 <Info:AAA.authPass> Login passed for user admin
through telnet (192.168.56.1)
07/01/2020 00:51:37.20 <Info:AAA.logout> Administrative account (admin)
logout from telnet (192.168.56.1)
07/01/2020 00:51:30.32 <Noti:log.ClrLogMsg> User admin: Cleared the log
messages in memory-buffer.
A total of 4 log messages were displayed.

Use this feature to execute specific scripts or apps based on the user connected to the switch.

3.1.2 Python Application
Starting with EXOS 15.7, Python application development capability has been added to EXOS.

Instead of writing a script to run to completion every time it is executed (manually or dynamically using
UPM), you can create an application that lives as a new process in the system. This process can be
started, terminated, or deleted, and runs into a dedicated Linux CGroup named “Other”, while official
EXOS processes run in the “EXOS” CGroup.

Note: The Linux CGroup was introduced with EXOS 22. Prior to this release there was no differentiation
between system and user-created processes. CGroups ensure that user-created applications cannot
significantly impact processes in another CGroup. “Other” CGroup is limited, by default, to 10% CPU
usage and 5% RAM usage, however these parameters are configurable.

Processes run in a different system environment than user-created scripts. This environment is called
expy and requires a different development approach. It is a more powerful environment that offers
access to the dataplane.

The detailed API is documented here:

HTTPS://api.extremenetworks.com/EXOS/ProgramInterfaces/PYTHONAPI/

This API is based on the C SDK for EXOS and offers a wide variety of methods and functions to retrieve
large amounts of data. For example, it can check if the process is running on a stackable switch, what
role it has, it can manipulate packets, interact with the CLI to pass commands but also create its own CLI
command, handle Authentication and so on.

To illustrate the use of this API, create a process that monitors the VLAN events on the switch. You need
to subscribe to the event, as provided by the API.

import exos.api.throwapi as throwapi

def event_cb(event, subs):
 print event

ev = throwapi.Subscription("vlan")

https://api.extremenetworks.com/EXOS/ProgramInterfaces/PYTHONAPI/

E x t r e m e A P I w i t h P y t h o n

P a g e | 36

Part no.9036931-00 Rev AA February 2021

ev.sub(event_cb)

3.1.2.1 Create a Process
Enter the create process command and provide the necessary parameters:

The process name
The process creation (must be python-module)
The name of the Python application, without the .py suffix
The startup behavior, which can be either on-demand or auto
The VR from which you want it to run. The default is VR-Mgmt

The startup behavior, on-demand, runs once like a script would. Auto keeps the process running and
adds the config line into the config file so it can be automatically restarted when a switch is rebooted.

Assuming your previous code example was in a file named “test.py”, you would create the process:

sw1.26 # create process test python-module test start auto

Verify that the process is running:

sw1.27 # show process test
Process Name Version Restart State Start Time Group

test User 0 LoadCfg Sun Jun 7 13:31:37 2020 Other

First verify that this process is present and running, then validate that it is running in the Other CGroup.

3.1.2.2 Create an Application
Manually create two VLANs, 42 and 43, and then connect something on the switch that will trigger the
UPM script you configured in the previous chapter (this adds the port that goes up to VLAN 42). You will
see the result on the switch, but no messages are displayed if you are connected via Telnet or SSH.
When working with process, a print is only redirected to the console. To access the information, you
must use the logging capability.

You must terminate and delete the process before you modify your program, after which you can
recreate the process.

sw1.48 # terminate process test graceful
Do you want to save configuration changes to currently selected configuration
file (primary.cfg)? (y or n) No
You will lose test's configuration if you save the configuration after
terminating this process. Do you want to continue? (y/N) Yes
Successful graceful termination for test
sw1.49 #
sw1.49 # delete process test

E x t r e m e A P I w i t h P y t h o n

P a g e | 37

Part no.9036931-00 Rev AA February 2021

Your program with the logging capability should look like this:

from exos import api
import exos.api.throwapi as throwapi
import logging
logger = logging.getLogger('test')
logger.setLevel(logging.DEBUG)
logHandler = api.TraceBufferHandler("testbuf", 20480)
logHandler.setLevel(logging.DEBUG)
logHandler.setFormatter(logging.Formatter("%(levelname)s:%(name)s:%(funcName)s.%(
lineno)s:: %(message)s"))
logger.addHandler(logHandler)
def event_cb(event, subs):
 logger.info(event)
ev = throwapi.Subscription("vlan")
ev.sub(event_cb)

You now can access the information when reading the trace buffer of your application:

sw1.50 # create process test python-module test start auto
creating test...
sw1.51 #
sw1.51 # create vlan 10-12
sw1.52 #
sw1.52 # debug ems show trace test testbuf
06/07/2020 14:06:37.002965 [200] <test:testbuf> Begin trace buffer
06/07/2020 14:06:54.479653 [221] <test:testbuf> INFO:test:event_cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.48, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr_name': 'VR-Default', 'vlan_name':
'VLAN_0010'}}
06/07/2020 14:06:54.485521 [224] <test:testbuf> INFO:test:event_cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.49, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr_name': 'VR-Default', 'vlan_name':
'VLAN_0011'}}
06/07/2020 14:06:54.491825 [227] <test:testbuf> INFO:test:event_cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.49, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr_name': 'VR-Default', 'vlan_name':
'VLAN_0012'}}

Move a port from one VLAN to another to trigger additional information.

sw1.53 # config vlan 12 add port 1
VLAN 12 VLAN_0012: Port 1 untagged has been auto-moved from VLAN "VLAN_0042"
to "VLAN_0012".

sw1.54 #
sw1.54 # debug ems show trace test testbuf

E x t r e m e A P I w i t h P y t h o n

P a g e | 38

Part no.9036931-00 Rev AA February 2021

06/07/2020 14:06:37.002965 [200] <test:testbuf> Begin trace buffer
06/07/2020 14:06:54.479653 [221] <test:testbuf> INFO:test:event_cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.48, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr_name': 'VR-Default', 'vlan_name':
'VLAN_0010'}}
06/07/2020 14:06:54.485521 [224] <test:testbuf> INFO:test:event_cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.49, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr_name': 'VR-Default', 'vlan_name':
'VLAN_0011'}}
06/07/2020 14:06:54.491825 [227] <test:testbuf> INFO:test:event_cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.49, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr_name': 'VR-Default', 'vlan_name':
'VLAN_0012'}}
06/07/2020 14:15:16.676949 [230] <test:testbuf> INFO:test:event_cb.15::
{'meta': {'action': 'update', 'timestamp': 1591539316.68, 'object': 'vlan',
'id': 'exos.vlan.update'}, 'data': {'added': False, 'type': 'port', 'port':
(0, 0, 0), 'vlan_name': 'VLAN_0042'}}
06/07/2020 14:15:16.677836 [233] <test:testbuf> INFO:test:event_cb.15::
{'meta': {'action': 'update', 'timestamp': 1591539316.68, 'object': 'vlan',
'id': 'exos.vlan.update'}, 'data': {'added': True, 'type': 'port', 'port':
(1, 1, 0), 'vlan_name': 'VLAN_0012', 'vlan_id': 12}}

3.1.2.3 Add Proper Environment Validation
To demonstrate environment validation in more detail, first write another application with the basic
checks any program should contain. Processes run in the expy environment, so when you write an
application, make sure you are running in that environment.

def main():
 # Verify you are running under EXPY. You can't live without it.
 if not hasattr(sys, 'expy') or not sys.expy:
 print "Must be run within EXPY"
 return

Write a new App. This example uses the CLI method for illustration, as this is a common CALL for an App.

exos.api.exec_cli(cmds, timeout=0, ignore_errors=False)

Parameters:

- cmds: list of strings containing valid EXOS CLI command
- timeout: defaults to 0. This is a synchronous CALL, and the timeout tells the system how long it

should wait for a return
- ignore_errors: Boolean. If set to False, which is the default, execution will stop after the first

failed command

Returns: The output of the command: string

E x t r e m e A P I w i t h P y t h o n

P a g e | 39

Part no.9036931-00 Rev AA February 2021

Raises:

- CLICommandError(error_msg, cmd): A CLI command returned an error message. The error_msg
attribute is the message received from the CLI and cmd is the command that was being run at
the time

- CLITimeoutError: A CLI request timed out

Note: You are presenting the synchronous CALL in this example, but asynchronous CALLs exist as well.

Enhance your previous example by creating or deleting a VLAN is on the switch:

from exos import api
import exos.api.throwapi as throwapi
import sys
import logging

logger = logging.getLogger('test')
logger.setLevel(logging.DEBUG)

logHandler = api.TraceBufferHandler("testbuf", 20480)
logHandler.setLevel(logging.DEBUG)
logHandler.setFormatter(logging.Formatter("%(levelname)s:%(name)s:%(funcName)s.%(
lineno)s:: %(message)s"))

logger.addHandler(logHandler)
def event_cb(event, subs):
 meta = event.get('meta')
 data = event.get('data')

 # Here are some CLI commands based on VLAN events
 if meta.get('action') == 'create':
 api.exec_cli(['config vlan {} description "This is a description for VLAN
 {}"'.format(data.get('vlan_name'), data.get('vlan_name'))])
 elif meta.get('action') == 'delete':
 api.exec_cli(['create log message "Ohoh! VLAN {} has been deleted"'.forma
t(data.get('vlan_name'))])

def main():
 # Verify you are running under EXPY. You can't live without it.
 if not hasattr(sys, 'expy') or not sys.expy:
 print "Must be run within EXPY"
 return

E x t r e m e A P I w i t h P y t h o n

P a g e | 40

Part no.9036931-00 Rev AA February 2021

 # Subscribe to vlan events
 ev = throwapi.Subscription("vlan")
 ev.sub(event_cb)
main()

Note: When you need double quotes for a CLI command in a Python string, you can use a single quote to
delimit the string. Another solution is to use double quote and escape the inner ones with a backslash
“\”. Failing to this will result in an error.

Your program reacts as expected on a switch.

sw1.12 # create process test python-module test start auto
creating test...
* sw1.13 #
* sw1.13 # create vlan 42
* sw1.14 #
* sw1.14 # sh vlan description

Name VID Description

Default 1
interco 4094
Mgmt 4095 Management VLAN
VLAN_0042 42 This is a description for VLAN VLAN_0042

> Indicates description string truncated past 57 characters

Total number of VLAN(s) : 4
* sw1.15 #
* sw1.15 # delete vlan 42
* sw1.16 #
* sw1.16 # sh log
06/08/2020 12:03:34.58 <Info:System.userComment> Ohoh! VLAN VLAN_0042 has
been deleted
06/08/2020 12:03:14.89 <Noti:log.ClrLogMsg> User admin: Cleared the log
messages in memory-buffer.

A total of 2 log messages are displayed.

3.2 External APIs
More advanced automation solutions manage switches from external resources, running from an
application on a server or VM. EXOS offers several APIs.

E x t r e m e A P I w i t h P y t h o n

P a g e | 41

Part no.9036931-00 Rev AA February 2021

3.2.1 RESTCONF API
The latest API introduced with EXOS is the RESTConf, which follows the Openconfig model and works in
conjunction with the Python module restconf.pyz. This module is available on Extreme Networks github:

HTTPS://github.com/extremenetworks/EXOS_Apps/tree/master/REST

Note: The RESTConf module is bundled in EXOS since release 22.4, but is backward compatible with EXOS
22.1, by adding the restconf.pyz module to the system.

3.2.1.1 RESTCONF Documentation
The documentation is accessible either from the Extreme Networks documentation site, or directly from
a switch running the minimal version required (the EXOS web server must be enabled).

The link to the documentation on Extreme Networks site is:

http://api.extremenetworks.com/EXOS/ProgramInterfaces/RESTCONF/RESTCONF.html

To access the documentation directly from a switch (or VM):

http(s)://<switch IP>/apps/restconfdoc

3.2.1.2 Working with EXOS RESTCONF
This section describes some examples using Python 3 to work with EXOS switches. To facilitate the use
of RESTCONF CALLs, Extreme Networks offers a Python class the teaches you how to create the CALLs.
The Python class is available on github:

HTTPS://github.com/extremenetworks/EXOS_Apps/blob/master/REST/examples/restconf.py

Note: The restconf python class is included by default with XMC Python Engine since XMC 8.2. The latest
version of the class – v1.2.0.0 at the time of writing - should be part of XMC 8.5.

3.2.1.3 How to Access Restconf
EXOS Restconf supports GET, POST, PUT, PATCH and DELETE HTTP methods.

You must authenticate to access the API. By default, basic authentication using a login and password is
available. When the session is successfully authenticated, a token is generated. This token allows you to
make multiple API CALLs without the need to reauthenticate, as long as the token is included as a cookie
in the request header.

Note: The duration of the token is set to 86400 seconds, which is 1 day.

EXOS Restconf implementation supports both HTTP and HTTPS protocols. By default, out-of-the-box,
EXOS switches only have HTTP enabled. The Python class restconf.py tries both protocols, starting with
HTTPS. However, the best practice is to use HTTPS for data integrity and confidentiality.

https://github.com/extremenetworks/EXOS_Apps/tree/master/REST
http://api.extremenetworks.com/EXOS/ProgramInterfaces/RESTCONF/RESTCONF.html
https://github.com/extremenetworks/EXOS_Apps/blob/master/REST/examples/restconf.py

E x t r e m e A P I w i t h P y t h o n

P a g e | 42

Part no.9036931-00 Rev AA February 2021

To access the Restconf server on a switch, RFC 8040 requires a common URL as the root. The root
resource for EXOS is /rest/restconf/. The datastore is represented by a node named data.

Note: All methods are supported on data.

Enable HTTPS on EXOS
To enable HTTPS on an EXOS switch, first enable SSL. The following example starts with a factory default
switch (or VM):

sw1.2 # show ssl
HTTPS Port Number: 443 (Disabled)
Signature Algorithm configured: sha512 With RSA Encryption
Certificate and Private key not configured
Manufacturing certificate: Not present
sw1.3 #
sw1.3 # config ssl certificate privkeylen 4096 country fr organization extreme common-
name extreme
................++
...................................++
Storing the private key. This may take some time.
.Done
sw1.4 #
sw1.4 # show ssl
HTTPS Port Number: 443 (Enabled)
Signature Algorithm configured: sha512 With RSA Encryption
Private Key matches the Certificate's public key.
RSA Private Key: 4096
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 0 (0x0)
 Signature Algorithm: sha512WithRSAEncryption
 Issuer: C=fr, O=extreme, CN=extreme
 Validity
 Not Before: Jun 9 10:38:42 2020 GMT
 Not After : Jun 9 10:38:42 2021 GMT
 Subject: C=fr, O=extreme, CN=extreme

Manufacturing certificate: Not present
sw1.4 #
sw1.4 # enable web HTTPS
sw1.5 # disable web http

This example uses self-signed certificates. This is adequate for testing but will generate warning
messages and could potentially result in errors for some applications.

Note: The requests module, and especially urllib3, produces exceptions if you use HTTPS with insecure
certificates. To remove these exceptions, add the following line to the Python class, after you import
urllib3.
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

E x t r e m e A P I w i t h P y t h o n

P a g e | 43

Part no.9036931-00 Rev AA February 2021

You will also need to add the verify=False parameter to the request CALLs.

EXOS allows you to install customer certificates that have been signed by trusted authorities.

3.2.1.4 Using Restconf with Python
Use the restconf.py class available on Extreme Networks Github. At the time of writing of this document,
the version of the class is 1.2.0.0.

Note: The restconf.py class is compatible with Python 2.7 and 3.x. It tries HTTPS first, then fallback to HTTP
if unsuccessful.

This example creates a session to your switch and list all available VLANs. This example uses Argparse to
manage the parameters from the command line.

from restconf import Restconf
import json
import getpass
import argparse
manage your arguments
def get_params():
 parser = argparse.ArgumentParser(prog = 'RestDemo')
 parser.add_argument('-i', '--ip',
 help='IP Address of the switch',
 required=True)
 parser.add_argument('-u', '--username',
 help='Login username for the remote system')
 parser.add_argument('-p', '--password',
 help='Login password for the remote system',
 default='')
 args = parser.parse_args()
 return args

def main():
 args = get_params()

 if args.username is None:
 # prompt for username
 args.username = input('Enter remote system username: ')
 # also get password
 args.password = getpass.getpass('Remote system password: ')
 # open a restconf session
 rest = Restconf(args.ip, args.username, args.password)

E x t r e m e A P I w i t h P y t h o n

P a g e | 44

Part no.9036931-00 Rev AA February 2021

 # you make a GET API call for all the vlans
 info = rest.get('data/openconfig-vlan:vlans')
 data = info.json()

 vlans = data.get('openconfig-vlan:vlans').get('vlan')
 for vlan in vlans:
 print("Found VLAN {} with VID {}".format(vlan.get('state').get('name'), v
lan.get('vlan-id')))
main()

As a result, you can see all existing VLANs on the switch:

C:\Extreme API with Python> rest_example.py -i 192.168.56.121 -u admin
Found VLAN Default with VID 1
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094

Locating existing VLANs is easy, as it was just a CALL to the root of the VLANs datastore. For
demonstration purposes, you can enhance this example to create a new VLAN and delete an existing
one. To modify the configuration, you must understand the YANG model, used in Openconfig.

Refer to the Restconf documentation, or do a GET (using postman for example) you will see the
following information about VLANs:

{
 "openconfig-vlan:vlans": {
 "vlan": [
 {
 "vlan-id": "1",
 "state": {
 "status": "ACTIVE",
 "vlan-id": 1,
 "name": "Default",
 "tpid": "oc-vlan-types:TPID_0x8100"
 },
 "config": {
 "status": "ACTIVE",
 "vlan-id": 1,
 "name": "Default",
 "tpid": "oc-vlan-types:TPID_0x8100"
 }
 },
[…]
}

E x t r e m e A P I w i t h P y t h o n

P a g e | 45

Part no.9036931-00 Rev AA February 2021

Below your endpoint is a VLAN entry which is a list of the VLANs. For each entry in the list, you will see
the element id (in this case, the VLAN id), a state container and a config container.

The Openconfig data model is very consistent, which means that once you understand it, you can easily
access any data: it always follows the same pattern.

To create a VLAN, manipulate the config container following the same structure. To delete a VLAN,
simply point to the endpoint.

from restconf import Restconf
import json
import getpass
import argparse

manage your arguments
def get_params():
 parser = argparse.ArgumentParser(prog = 'RestDemo')
 parser.add_argument('-i', '--ip',
 help='IP Address of the switch',
 required=True)
 parser.add_argument('-u', '--username',
 help='Login username for the remote system')
 parser.add_argument('-p', '--password',
 help='Login password for the remote system',
 default='')
 args = parser.parse_args()
 return args

def list_vlans(rest):
 # you make a GET API call for all the vlans
 info = rest.get('data/openconfig-vlan:vlans')
 data = info.json()

 vlans = data.get('openconfig-vlan:vlans').get('vlan')
 for vlan in vlans:
 print("Found VLAN {} with VID {}".format(vlan.get('state').get('name'), v
lan.get('vlan-id')))

def main():
 args = get_params()

E x t r e m e A P I w i t h P y t h o n

P a g e | 46

Part no.9036931-00 Rev AA February 2021

 if args.username is None:
 # prompt for username
 args.username = input('Enter remote system username: ')
 # also get password
 args.password = getpass.getpass('Remote system password: ')

 # open a restconf session
 rest = Restconf(args.ip, args.username, args.password)

 # you list the existing vlans prior adding one
 list_vlans(rest)

 # you prepare the data to send
 url = "data/openconfig-vlan:vlans/"
 data = {}
 vlan = {}

 vlan["config"] = {"name": "H2G2", "status": "ACTIVE", "tpid": "oc-vlan-
types:TPID_0x8100", "vlan-id": 42}
 data["openconfig-vlan:vlans"] = [vlan]

 # you make a POST API call
 r = rest.post(url, data)

 # you list the existing vlans after adding one to check
 print("-"*42)
 list_vlans(rest)

 # you delete it now
 del_url = url + "vlan=42"
 rest.delete(del_url)

 # you list the existing vlans after to check again
 print("-"*42)
 list_vlans(rest)

main()

E x t r e m e A P I w i t h P y t h o n

P a g e | 47

Part no.9036931-00 Rev AA February 2021

The result:

C:\Extreme API with Python> rest_example.py -i 192.168.56.121 -u admin
Found VLAN Default with VID 1
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094
--
Found VLAN Default with VID 1
Found VLAN H2G2 with VID 42
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094
--
Found VLAN Default with VID 1
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094

On the switch, you can see the actions have happened, assuming your Python application (from chapter
3.1.2) is still running.

sw1.10 # sh log
06/09/2020 23:17:01.39 <Info:AAA.logout> Administrative account (admin)
logout from app (192.168.56.1)
06/09/2020 23:16:49.58 <Info:System.userComment> Ohoh! VLAN H2G2 has been
deleted
06/09/2020 23:16:41.39 <Info:AAA.authPass> Login passed for user admin
through app (192.168.56.1)
06/09/2020 23:16:30.52 <Noti:log.ClrLogMsg> User admin: Cleared the log
messages in memory-buffer.

A total of 4 log messages are displayed.

To change the configuration of an existing VLAN, use the PATCH HTTP method directly on the endpoint’s
config container to send the modified parameter.

Add the following piece of code to your example:

 # you add the vlan again
 r = rest.post(url, data)

 # you list the existing vlans after to check again
 print("-"*42)
 list_vlans(rest)

 # you change the name
 patch_url = url + "vlan=42" + "/config/"
 info = {}
 info["openconfig-vlan:config"] = {"name": "Zaphod"}
 rest.patch(patch_url, info)

E x t r e m e A P I w i t h P y t h o n

P a g e | 48

Part no.9036931-00 Rev AA February 2021

 # you list the existing vlans after to check again
 print("-"*42)
 list_vlans(rest)

Adding this code results in re-creating VLAN “H2G2”, and then renaming it to Zaphod:

C:\Extreme API with Python> rest_example.py -i 192.168.56.121 -u admin
Found VLAN Default with VID 1
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094
--
Found VLAN Default with VID 1
Found VLAN H2G2 with VID 42
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094
--
Found VLAN Default with VID 1
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094
--
Found VLAN Default with VID 1
Found VLAN H2G2 with VID 42
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094
--
Found VLAN Default with VID 1
Found VLAN Zaphod with VID 42
Found VLAN VLAN_0054 with VID 54
Found VLAN interco with VID 4094

The result also appears for the switch:
sw1.11 # sh log
06/09/2020 23:30:29.75 <Info:AAA.logout> Administrative account (admin) logout from app
(192.168.56.1)
06/09/2020 23:30:17.91 <Info:System.userComment> Ohoh! VLAN H2G2 has been deleted
06/09/2020 23:30:09.74 <Info:AAA.authPass> Login passed for user admin through app (192.168.56.1)
06/09/2020 23:17:01.39 <Info:AAA.logout> Administrative account (admin) logout from app
(192.168.56.1)
06/09/2020 23:16:49.58 <Info:System.userComment> Ohoh! VLAN H2G2 has been deleted
06/09/2020 23:16:41.39 <Info:AAA.authPass> Login passed for user admin through app (192.168.56.1)
06/09/2020 23:16:30.52 <Noti:log.ClrLogMsg> User admin: Cleared the log messages in memory-
buffer.

A total of 7 log messages are displayed.
* sw1.11 #
* sw1.11 # sh vlan
Untagged ports auto-move: Inform

Name VID Protocol Addr Flags Proto Ports Virtual
 Active router
 /Total

E x t r e m e A P I w i t h P y t h o n

P a g e | 49

Part no.9036931-00 Rev AA February 2021

Default 1 -- ANY 0 /0 VR-Default
interco 4094 10.1.1.2 /24 -f------------------------ ANY 1 /1 VR-Default
Mgmt 4095 192.168.56.121 /24 -------------------------- ANY 1 /1 VR-Mgmt
VLAN_0054 54 -- ANY 0 /0 VR-Default
Zaphod 42 -- ANY 0 /0 VR-Default

Flags : (B) BFD Enabled, (c) 802.1ad customer VLAN, (C) EAPS Control VLAN,
[…]

Total number of VLAN(s) : 5

The same logic applies to any datastore and allows you to manage switches in a programmatic way,
using an open standard.

3.2.2 JSON-RPC API
The JSON-RPC API offers another way to interact with EXOS switches. To see documentation, visit this
link:

HTTPS://documentation.extremenetworks.com/app_notes/MMI/121152_MMI_Application_Re
lease_Notes.pdf

This document also exists in html:

HTTPS://api.extremenetworks.com/EXOS/ClientApplications/JSONRPC/

Note: This capability was introduced with EXOS 21.1 and requires that the web server be enabled. This is
the default behavior for EXOS.

You can also find information and examples of JSON-RPC on the Extreme Networks github:

HTTPS://github.com/extremenetworks/EXOS_Apps/tree/master/JSONRPC

3.2.2.1 JSON-RPC Overview
JSON-RPC is a Remote Procedure CALL (RPC) returning JSON formatted information. It allows you to
send CLI commands, run scripts remotely, or run a Python application via HTTP and receive a response
formatted in JSON.

The main benefits are ease-of-use, and the lack of a requirement for strict data modeling on the system.
Using JSON-RPC with EXOS allows you to send any valid CLI command, meaning that all features are
accessible immediately.

3.2.2.2 EXOS JSON-RPC
The EXOS JSON-RPC implementation supports both HTTPS and HTTP protocols. It requires basic
authentication (login and password) but supports a token for subsequent requests. The token is added
as a cookie in the request header. The duration of the token defaults to 86400 seconds, which is 1 day.

https://documentation.extremenetworks.com/app_notes/MMI/121152_MMI_Application_Release_Notes.pdf
https://documentation.extremenetworks.com/app_notes/MMI/121152_MMI_Application_Release_Notes.pdf
https://api.extremenetworks.com/EXOS/ClientApplications/JSONRPC/
https://github.com/extremenetworks/EXOS_Apps/tree/master/JSONRPC

E x t r e m e A P I w i t h P y t h o n

P a g e | 50

Part no.9036931-00 Rev AA February 2021

3.2.2.3 Using JSON-RPC with Python
As with the RESTCONF API, a Python class is proposed on the Extreme Networks github to facilitate its
use.

HTTPS://github.com/extremenetworks/EXOS_Apps/blob/master/JSONRPC/jsonrpc.py

Note: At the time of writing of this document, the latest version of the JSON-RPC class is 2.0.0.4.

The class uses different methods, depending on the use case. The most common method is using CLI
commands. This is not the only solution, however, and you can also use it to remotely run scripts on a
switch or run a Python application. Scripts that you run remotely on a switch are not present on the
switch but live instead in your system. This method handles the transfer to the switch for you.

This section describes the CLI method, which is the most common method.

Note: The JSON-RPC Python class is included by default with XMC Scripting Engine since XMC 8.2.

First, create a few VLANs on a switch (or VM) using the provided Python class. To make things a bit
different from previous examples, in this example, you manipulate a file as the input for your
application. The file must contain the CLI commands, one per line, that you want to run on a switch.

Name the CLI commands file cmds.txt:

create vlan 10-15
config vlan 10-15 add port 1 tag
show vlan port 1

The following example shows one way to code your application:

from jsonrpc import JsonRPC
import argparse
import getpass
import json

manage your arguments
def get_params():
 parser = argparse.ArgumentParser(prog = 'JSONRPCDemo')
 parser.add_argument('-i', '--ip',
 help='IP Address of the switch',
 required=True)
 parser.add_argument('-f', '--filename',
 help='Filename with valid EXOS CLI commands',
 required=True)
 parser.add_argument('-u', '--username',
 help='Login username for the remote system')

https://github.com/extremenetworks/EXOS_Apps/blob/master/JSONRPC/jsonrpc.py

E x t r e m e A P I w i t h P y t h o n

P a g e | 51

Part no.9036931-00 Rev AA February 2021

 parser.add_argument('-p', '--password',
 help='Login password for the remote system',
 default='')
 args = parser.parse_args()
 return args
def main():
 args = get_params()

 if args.username is None:
 # prompt for username
 args.username = input('Enter remote system username: ')
 # also get password
 args.password = getpass.getpass('Remote system password: ')

 with open(args.filename, "r") as f:
 cmds = f.read().splitlines()

 # you open a jsonrpc session to the switch
 jsonrpc = JsonRPC(args.ip, args.username, args.password)

 # you execute the CLI commands from the file
 for cmd in cmds:
 response = jsonrpc.cli(cmd)
 rslt = response.get('result')
 print("Executed CLI command {}".format(cmd))
 print("result: {}".format(rslt[0].get('CLIoutput')))
main()

The goal is to present the concepts and show how to manipulate APIs. As a result, these code examples
are not meant to be the most efficient or handle all exceptions and errors.

In this example you send the CLI commands to the switch using JSON-RPC and print the CLI output from
the response. The CLI output is a string of what is displayed on the switch if you are connected to it via
Console, Telnet or SSH. It is normal for some of the CLI commands to have no output.

When you run the application, you should see output similar to this:
C:\Extreme API with Python> jsonrpc_example.py -f cmds.txt -i 192.168.56.121 -u admin
Executed CLI command create vlan 10-15
result:
Executed CLI command config vlan 10-15 add port 1 tag
result:
Executed CLI command show vlan port 1
result: Untagged ports auto-move: Inform

E x t r e m e A P I w i t h P y t h o n

P a g e | 52

Part no.9036931-00 Rev AA February 2021

Name VID Protocol Addr Flags Proto Ports Virtual
 Active router
 /Total

interco 4094 10.1.1.2 /24 -f------------------------ ANY 1 /1 VR-Default
VLAN_0010 10 -- ANY 1 /1 VR-Default
VLAN_0011 11 -- ANY 1 /1 VR-Default
VLAN_0012 12 -- ANY 1 /1 VR-Default
VLAN_0013 13 -- ANY 1 /1 VR-Default
VLAN_0014 14 -- ANY 1 /1 VR-Default
VLAN_0015 15 -- ANY 1 /1 VR-Default

Flags : (B) BFD Enabled, (c) 802.1ad customer VLAN, (C) EAPS Control VLAN,
 (d) Dynamically created VLAN, (D) VLAN Admin Disabled,
 (E) ESRP Enabled, (f) IP Forwarding Enabled,
 (F) Learning Disabled, (i) ISIS Enabled,
 (I) Inter-Switch Connection VLAN for MLAG, (k) PTP Configured,
 (l) MPLS Enabled, (L) Loopback Enabled, (m) IPmc Forwarding Enabled,
 (M) Translation Member VLAN or Subscriber VLAN, (n) IP Multinetting Enabled,
 (N) Network Login VLAN, (o) OSPF Enabled, (O) Virtual Network Overlay,
 (p) PIM Enabled, (P) EAPS protected VLAN, (r) RIP Enabled,
 (R) Sub-VLAN IP Range Configured, (s) Sub-VLAN, (S) Super-VLAN,
 (t) Translation VLAN or Network VLAN, (T) Member of STP Domain,
 (v) VRRP Enabled, (V) VPLS Enabled, (W) VPWS Enabled,
 (Y) Policy Enabled

Total number of VLAN(s) : 9 (7 displayed)

However, the real focus is to work with JSON output, which is easier from a programming perspective.

Note: The JSON output is not documented, you must test your CALLs prior to writing your application.

The following example lists all the VLANs from two switches, and extracts and displays information
about these VLANs. For simplicity, hard code the information about the switches and the CLI command
you want to use.

from jsonrpc import JsonRPC

IPS = ["192.168.56.121", "192.168.56.122"]
USER = "admin"
PW = ""

def main():
 vlans = []

 for ip in IPS:
 # you open a jsonrpc session to the switch
 jsonrpc = JsonRPC(ip, USER, PW)

 response = jsonrpc.cli("show vlan")

E x t r e m e A P I w i t h P y t h o n

P a g e | 53

Part no.9036931-00 Rev AA February 2021

 sw = {}
 sw['ip'] = ip
 sw['vlans'] = []
 for vlan in response.get('result'):
 if vlan.get('status') in ["MORE", "SUCCESS"]:
 info = {}
 data = vlan.get('vlanProc')
 info['ip'] = data.get('ipAddress')
 info['netmask'] = data.get('maskForDisplay')
 info['name'] = data.get('name1')
 info['vid'] = data.get('tag')

 sw['vlans'].append(info)

 vlans.append(sw)

 for entry in vlans:
 print("\nSwitch {} has {} VLANs".format(entry.get('ip'), len(entry.get('v
lans'))))
 print("data structure of the vlans:\n{}".format(entry.get('vlans')))
main()

The result:

C:\Extreme API with Python> jsonrpc_example.py

Switch 192.168.56.121 has 9 VLANs
data structure of the vlans:
[{'ip': '0.0.0.0', 'netmask': 0, 'name': 'Default', 'vid': 1}, {'ip':
'10.1.1.2', 'netmask': 24, 'name': 'interco', 'vid': 4094}, {'ip':
'192.168.56.121', 'netmask': 24, 'name': 'Mgmt', 'vid': 4095}, {'ip':
'0.0.0.0', 'netmask': 0, 'name': 'VLAN_0010', 'vid': 10}, {'ip': '0.0.0.0',
'netmask': 0, 'name': 'VLAN_0011', 'vid': 11}, {'ip': '0.0.0.0', 'netmask':
0, 'name': 'VLAN_0012', 'vid': 12}, {'ip': '0.0.0.0', 'netmask': 0, 'name':
'VLAN_0013', 'vid': 13}, {'ip': '0.0.0.0', 'netmask': 0, 'name': 'VLAN_0014',
'vid': 14}, {'ip': '0.0.0.0', 'netmask': 0, 'name': 'VLAN_0015', 'vid': 15}]

Switch 192.168.56.122 has 8 VLANs
data structure of the vlans:
[{'ip': '0.0.0.0', 'netmask': 0, 'name': 'Default', 'vid': 1}, {'ip':
'192.168.10.1', 'netmask': 24, 'name': 'foo1', 'vid': 4093}, {'ip':
'192.168.20.1', 'netmask': 24, 'name': 'foo2', 'vid': 4092}, {'ip':
'192.168.30.1', 'netmask': 24, 'name': 'foo3', 'vid': 4091}, {'ip':
'192.168.56.122', 'netmask': 24, 'name': 'Mgmt', 'vid': 4095}, {'ip':
'0.0.0.0', 'netmask': 0, 'name': 'VLAN_0020', 'vid': 20}, {'ip': '21.1.1.1',

E x t r e m e A P I w i t h P y t h o n

P a g e | 54

Part no.9036931-00 Rev AA February 2021

'netmask': 24, 'name': 'VLAN_0021', 'vid': 21}, {'ip': '0.0.0.0', 'netmask':
0, 'name': 'VLAN_0022', 'vid': 22}]

The JSON output is a result of the EXOS CLI command shows the data structures that have been used to
create this display on EXOS. It can be sometimes difficult to find the exact information for a given
feature or protocol parameter.

Note: JSON output is created with the cli2json.py embedded Python script in EXOS. You can use it directly
to see the output for any given command. The output cannot be formatted, so you must create a script to
improve readability in printed output.

Another method is to use the undocumented debug cfgmgr show commands. These commands
directly access the CM objects in the backend. These commands can be very helpful and can be used
with on-switch Python scripting, however their use is not always straightforward, and may require
parameters that are impossible for you to find or to guess.

E x t r e m e A P I w i t h P y t h o n

P a g e | 55

Part no.9036931-00 Rev AA February 2021

4 VOSS API
VOSS offers a RESTCONF API using the Openconfig model. VOSS powers the VSP product family.

Note: RESTCONF was added to VOSS starting with version 8.0.

4.1 VOSS RESTCONF Documentation
The Configuring User Interfaces and Operating Systems for VOSS document is provided with any new
release of the OS. This document uses VOSS 8.1.5 for the examples.

The link to this document for VOSS 8.1.5 is:

HTTPS://documentation.extremenetworks.com/VOSS/SW/81x/ConfigUIOSVOSS_8.1.5_CG.pdf

On-switch documentation is also available when the feature is enabled on the switch.

4.2 Enable RESTCONF
The RESCONF server is not enabled by default with VOSS. You must configure it on the switch.

voss01:1>enable
voss01:1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
voss01:1(config)#application
voss01:1(config-app)#restconf enable

When this is done, you can access on-switch documentation for RESTCONF here:

http://<Switch_IP>:8080/apps/restconfdoc/

As with EXOS, both HTTPS and HTTP protocols are supported for RESTCONF on VOSS. To use HTTPS, you
must enable TLS and install a certificate, using the following procedure:

Switch:1>enable
Switch:1#configure terminal
Enter configuration commands, one per line. End with CTRL/Z.
Switch:1(config)#application
Switch:1(config-app)#no restconf enable
Switch:1(config-app)#restconf install-cert-file /intflash/.cert/restconf-
cert.pem
Switch:1(config-app)#restconf tls
Switch:1(config-app)#restconf enable

4.3 Use RESTCONF with Python
Extreme Networks provides a Python class called RESTCONF, which is similar to the one for EXOS.

https://documentation.extremenetworks.com/VOSS/SW/81x/ConfigUIOSVOSS_8.1.5_CG.pdf

E x t r e m e A P I w i t h P y t h o n

P a g e | 56

Part no.9036931-00 Rev AA February 2021

The way to use RESTCONF is identical to that of EXOS, and the endpoints follow the same logic. Be
careful to use the default port used in VOSS for RESTCONF, which is 8080 for HTTP. It must be provided
along with the IP address.

The RESTCONF Python class is available on the Extreme Networks github:

HTTPS://github.com/extremenetworks/ExtremeScripting/blob/master/VOSS/restconf.py

Note: Starting with XMC 8.5, the restconf_voss.py Python class is shipped by default with XMC.

The following example retrieves all existing VLANs on a VOSS switch (or a VM), then adds one and then
deletes it. To better illustrate how similar this process is to EXOS and VOSS, the same code base is
reused, except the data required to create a VLAN on VOSS is modified to add a new parameter.

from restconf_voss import Restconf
import getpass
import argparse

DEFAULT_TCP_PORT = '8080'

manage your arguments
def get_params():
 parser = argparse.ArgumentParser(prog = 'VossRestDemo')
 parser.add_argument('-i', '--ip',
 help='IP Address of the switch',
 required=True)
 parser.add_argument('-u', '--username',
 help='Login username for the remote system')
 parser.add_argument('-p', '--password',
 help='Login password for the remote system',
 default='')
 args = parser.parse_args()
 return args

def list_vlans(rest):
 # you make a GET API call for all the vlans
 info = rest.get('data/openconfig-vlan:vlans')
 data = info.json()

 vlans = data.get('openconfig-vlan:vlans').get('vlan')
 for vlan in vlans:

https://github.com/extremenetworks/ExtremeScripting/blob/master/VOSS/restconf.py

E x t r e m e A P I w i t h P y t h o n

P a g e | 57

Part no.9036931-00 Rev AA February 2021

 print("Found VLAN {} with VID {}".format(vlan.get('state').get('name'), v
lan.get('vlan-id')))

def main():
 args = get_params()

 if args.username is None:
 # prompt for username
 args.username = input('Enter remote system username: ')
 # also get password
 args.password = getpass.getpass('Remote system password: ')

 # open a restconf session - you are assuming http
 rest = Restconf(args.ip + ':' + DEFAULT_TCP_PORT, args.username, args.passwor
d)

 # you list the existing vlans prior adding one
 list_vlans(rest)

 # you prepare the data to send
 url = "data/openconfig-vlan:vlans/"
 data = {}
 vlan = {}

 vlan["config"] = {"extreme-mod-oc-vlan:stg-id": 1, "name": "H2G2", "vlan-
id": 42}
 data["openconfig-vlan:vlans"] = [vlan]

 # you make a POST API call
 r = rest.post(url, data)

 # you list the existing vlans after adding one to check
 print("-"*42)
 list_vlans(rest)

 # you delete it now
 del_url = url + "vlan=42"
 rest.delete(del_url)

E x t r e m e A P I w i t h P y t h o n

P a g e | 58

Part no.9036931-00 Rev AA February 2021

 # you list the existing vlans after to check again
 print("-"*42)
 list_vlans(rest)

main()

The result:

C:\Extreme API with Python> rest_voss.py -i 192.168.56.141
Enter remote system username: rwa
Remote system password:
Found VLAN Test with VID 40
Found VLAN Default with VID 1
--
Found VLAN Test with VID 40
Found VLAN H2G2 with VID 42
Found VLAN Default with VID 1
--
Found VLAN Test with VID 40
Found VLAN Default with VID 1

4.4 EXOS & VOSS Restconf Python Classes
On the Extreme Networks github, both Restconf Python classes share the same name (restconf.py) but
have a different name in XMC 8.5. If you plan to use both Python classes together, you can rename one
and import it with the “as” keyword to differentiate it, as shown here:

from restconf import Restconf as EXOSRestconf
from restconf_voss import Restconf as VOSSRestconf

Or place them in different sub-directories with __init__.py (empty) file, as shown here:

~/extreme $ tree
VOSS/
├── README.md
├── __init__.py
└── restconf.py
EXOS/
├── README.md
├── __init__.py
└── restconf.py

It would then resemble this:

from EXOS.restconf import Restconf as exos_restconf
from VOSS.restconf import Restconf as voss_restconf

E x t r e m e A P I w i t h P y t h o n

P a g e | 59

Part no.9036931-00 Rev AA February 2021

5 XMC API
XMC (Extreme Management Center) uses several APIs, and the focus in this section is on the most
recent addition with GraphQL support. This is also referred to as the NBI API (NorthBound Interface),
through the extensive use of the Python capability built into XMC. This API can be accessed either
externally or internally via the Python Scripting Engine.

Note: GraphQL is a query language developed by Facebook, before becoming public in 2015. It accesses
data via HTTP and receives the content formatted in JSON. It is very similar to a REST API but has the
benefit of sending only the information requested, instead of the entire tree. It provides a more efficient
system, which is very appealing when manipulating large databases.

This section is an updated (with XMC 8.4.4) and summary of the document available here:

HTTPS://api.extremenetworks.com/XMC/Scripting/Python_with_XMC_8.1_v0.94.pdf

5.1 Python Scripting Engine
XMC includes a Python Scripting Engine (Tasks > Scripts) based on Jython and running Jython 2.7.0.8.
Support for Jython has been included with XMC 8.0.4 and several modules have been installed in
addition to the standard library, such as requests and pip utility.

5.1.1 Default Location for Scripts
When you create or modify a script in the XMC UI, the script is saved in the following location:

/usr/local/Extreme_Networks/NetSight/appdata/scripting/overrides/

5.1.2 Add a User-Created Script
To add a user-created script, copy the Python script to this directory:

/usr/local/Extreme_Networks/NetSight/appdata/scripting/extensions/

From the embedded Python scripts, import the module.

Note: This directory doesn’t exist by default. When created, it is automatically added to the system path
and so becomes available for importing.

5.1.3 Python Modules Shipped with XMC
With the release of XMC 8.1.2, some default Python modules ship with XMC. They are located into the
following directory:

/usr/local/Extreme_Networks/NetSight/appdata/scripting/system/

This is also where jsonrpc.py, restconf.py and restconf_voss.py are located. While Extreme Networks has
an ongoing effort to update the included versions, the timing of releases may prevent their ability to

https://graphql.org/
https://api.extremenetworks.com/XMC/Scripting/Python_with_XMC_8.1_v0.94.pdf

E x t r e m e A P I w i t h P y t h o n

P a g e | 60

Part no.9036931-00 Rev AA February 2021

ship the latest revision of the modules. These are available on the Extreme Networks Github, and it is
advisable to update them to the latest version available.

Note: At the time of writing of this document, latest versions are v2.0.0.4 for jsonrpc.py, v1.2.0.0
for restconf.py and v1.0.0.1 for restconf_voss.py.

5.1.4 System Path and Precedence
The following paths are automatically added to the system path:

appdata/scripting/overrides
appdata/scripting/extensions
appdata/scripting/system
appdata/scripting/
NetSight/jython/Lib
NetSight/jython/Lib/site-packages
NetSight/jython

If identical Python modules are found, the expected precedence is that overrides is used first.

5.1.5 Install a Library
To install a library, the easiest way is to use PIP. Starting with XMC 8.1.2, the PIP utility is part of the
default XMC server installation. The commands to use the PIP utility to install a library are:

cd /usr/local/Extreme_Networks/NetSight/jython/bin
export JAVA_HOME=/usr/local/Extreme_Networks/NetSight/java
sudo chmod a+x pip
sudo chmod a+x jython
./pip install <module>

5.1.6 XMC Python Module

5.1.6.1 emc_vars
When you are writing Python scripts to be run directly from XMC, you can use a global variable named
emc_vars. This variable is a Python dictionary containing all global variables in the system.

It is important to understand this key element. When a Python script must be executed on a device, this
global variable can provide a great deal of useful information about that device, such as IP address,
vendor profile, product family, etc.

With information easily accessible, you can create powerful scripts to run on different products. Another
benefit of XMC is that you do not need to manage device access or store login credentials.

The XMC 8.4.4 list of variables in the emc_vars dictionary is shown below, as returned from this script
executed in XMC:

E x t r e m e A P I w i t h P y t h o n

P a g e | 61

Part no.9036931-00 Rev AA February 2021

for key,value in emc_vars.iteritems():
 print key

You can sort the output by category for easier reading, with explanations for the variable use.

time current time at server (HH:mm:ss z)
date current date at server (yyyy-MM-dd)

userDomain XMC user domain name
userName XMC user name
username
domain

serverVersion server version
serverIP server IP address
serverName server host name
auditLogEnabled True/False if audit log is supported

isExos True/False. Is this device an EXOS device?
vendor vendor name
family device family name

deviceConfigPwd
deviceASN AS number of the selected device
deviceSysOid device system object id
devicePwd login password for the selected device
deviceLogin login user for the selected device
deviceId device DB ID
deviceName DNS name of selected device
deviceVR device virtual router name
deviceSoftwareVer software image version number on the device
deviceType device type of the selected device
deviceIP IP address of the selected device
deviceCliType method used to connect (Telnet/SSH)
deviceEnablePwd

managementPorts all ports with config role management
ports all device ports
accessPorts all ports with config role access
interSwitchPorts all ports with config role interswitch

scriptTimeout max script timeout in secs
abort_on_error True/False
scriptOwner scripts owner

javax.script.name
javax.script.engine_version
javax.script.language
javax.script.filename
javax.script.engine

E x t r e m e A P I w i t h P y t h o n

P a g e | 62

Part no.9036931-00 Rev AA February 2021

jboss.http.port
jboss.server.log.dir
jboss.bind.address
jboss.bind.address.management
jboss.HTTPS.port

STATUS
USE_IPV6
extreme.hideLegacyDesktopApps

The ports variable returns a string containing all the ports, separated by commas.

5.1.6.2 emc_cli.send()
Another tool provided by XMC is the emc_cli.send() Python object. This object accepts several
parameters. The first parameter is a string containing the CLI command, the second parameter is a
Boolean value that enables you to choose to wait for a system or shell prompt, or not wait. If you set the
Boolean value to False, no CLI output is returned. The Boolean value is optional, and the default is True.
A third (optional) parameter is a timer, in seconds, to wait for information if needed.

There are several ways to use this Python object to retrieve information from CLI command execution:

- isSucces(): Boolean to represent outcome of the last command
- getError(): if it fails, contains the error as a string
- getOutput(): output captured or echoed back from the device (including the CLI command

prompt) as a string

isSuccess()does not indicate whether the CLI command was successful or not, but it does show
whether the send() has been completed correctly. The script handles the result of this CLI command
by analyzing the CLI output.

For example:

executes a show vlan command and prints the output
cli_results = emc_cli.send("show vlan")
cli_output = cli_results.getOutput()
print cli_output

creates a dummy UPM profile
emc_cli.send("create upm profile \"Test\"", False)
emc_cli.send("Test", False)
cli_results = emc_cli.send(".")

example of using timer – waiting for 3 seconds
emc_cli.send("show config", False, 3)

In this example, EXOS is the NOS. This is not restricted to one specific NOS. Any other NOS is eligible, if
the device is accessible from XMC with a correct CLI Profile.

E x t r e m e A P I w i t h P y t h o n

P a g e | 63

Part no.9036931-00 Rev AA February 2021

Because the emc_cli object connects to the device using either Telnet or SSH, any device from any
vendor is accessible, however login banners and sub-prompts can vary from one vendor to another.
XMC has a list of CLI rules to access the device.

Starting with XMC 8.1.2, you can customize the CLI rules or the regular expressions for prompt
detection, by creating a file named myCLIRules.xml, located in the same directory as the
CLIRules.xml file (names are case-sensitive).

/usr/local/Extreme_Networks/NetSight/appdata/scripting/

This file should be divided into sections containing regular expressions per vendor, in a similar fashion to
that of the CLIRules.xml file. Typically, BOSS and VOSS access also uses this file.

Note: CLI scripting for BOSS and VOSS is very inconsistent. Devices have a variety of different login
banners and subprompts. Make sure that the CLI profile for a device is correct, as emc_cli relies on the
CLI profile that is set for that device. By default, emc_cli will try to use the regular expressions defined in
CLIRules.xml under the "Avaya" section, but because not all commands and prompts have been
added. As a result, this might be the reason the script fails even if your CLI profile is correct.

When you create the myCLIRules.xml file, the following logic applies when XMC tries to connect to
a device:

- Checks if myCLIRules.xml exists. If it does, use the cliRule name in it.
- Checks if cliRule name exists in CLIRules.xml, if yes use this one.
- Finally, use the default rule name of “*”

The cliRule name normally comes from the device vendor profile. Each device (family, subfamily or
device type) should have a property called cliRuleFileName (this name is misleading, it is really the
cliRuleName, not a file name).

Note: To set the cliRuleName dynamically from Python, invoke emc_cli.setCliRule.

For example:
must be called before using emc_cli.send
emc_cli.setCliRule("ruleName")

The CLI output returned by emc_cli.send() is a string that contains the CLI command used (first
line).

Note: For XMC 8.0.4 up to XMC 8.1.1, the string returned also included the trailing CLI prompt. XMC 8.1.2
removed it, and XMC 8.1.3 brought it back. You may need to update existing Python scripts.

One way to remove extra lines, which is especially important if you are waiting for JSON-formatted
output, is shown here:

import re

RegexPrompt = re.compile('.*[\?\$%#>]\s?$')

E x t r e m e A P I w i t h P y t h o n

P a g e | 64

Part no.9036931-00 Rev AA February 2021

Remove echoed command and final prompt from output
def cleanOutput(outputStr):
 lastLine = outputStr.splitlines()[-1:][0]
 if RegexPrompt.match(lastLine):
 lines = outputStr.splitlines()[1:-1]
 else:
 lines = outputStr.splitlines()[1:]
 return '\n'.join(lines)

5.1.6.3 Additional emc_cli Methods
This section has covered the most common method used for the emc_cli Python object. However, there
are several other methods that can be useful. Examples of these are shown below.

You can list all the functions and methods provided with this object using a very basic Python code. The
output with XMC 8.4.4 is shown below.

print dir(emc_cli)

The result:

['SSHEnabled', '__class__', '__copy__', '__deepcopy__', '__delattr__',
'__doc__', '__ensure_finalizer__', '__eq__', '__format__',
'__getattribute__', '__hash__', '__init__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str__',
'__subclasshook__', '__unicode__', 'class', 'cliRule', 'cliRuleObject',
'close', 'commandPrompt', 'commandReply', 'commandTimeout',
'commandTimeoutInMillis', 'connect', 'connected', 'equals', 'errorMessage',
'getClass', 'getCliRule', 'getCliRuleObject', 'getCommandPrompt',
'getCommandReply', 'getCommandTimeout', 'getIpAddress', 'getMaxCliOut',
'getPasswd', 'getPort', 'getSSHEnabled', 'getSaveCommand',
'getSessionTimeout', 'getShellPrompt', 'getUser', 'getVendor', 'hashCode',
'ipAddress', 'isConnected', 'logDebugMessage', 'logErrorMessage',
'logMessage', 'maxCliOut', 'notify', 'notifyAll', 'passwd', 'port', 'read',
'saveCommand', 'send', 'sessionTimeout', 'setCliRule', 'setCommandPrompt',
'setCommandReply', 'setCommandTimeout', 'setCommandTimeoutInMillis',
'setErrorMessage', 'setIpAddress', 'setMaxCliOut', 'setPasswd', 'setPort',
'setSSHEnabled', 'setSaveCommand', 'setSessionTimeout', 'setShellPrompt',
'setUser', 'setVendor', 'shellPrompt', 'toString', 'user', 'vendor', 'wait']

You can also find many set methods to use with emc_cli, for example, the session timeout.

set the session timeout to 80 seconds
emc_cli.setSessionTimeout(80)

E x t r e m e A P I w i t h P y t h o n

P a g e | 65

Part no.9036931-00 Rev AA February 2021

5.1.6.4 Add User-Input Variables to a Script
As of XMC 8.0.4, the metadata used with TCL can still be used as is, even if the syntax is more TCL-
centric than it is compliant with Python. Starting with XMC 8.1.2, the Metadata fields with Python
scripting have evolved so that the name field and the value field can be referenced directly.

Note: The legacy “set var name value” syntax is still supported for backward compatibility.

Script interaction must be defined between the Metadata tags.

#@MetaDataStart
…
#@MetaDataEnd

You can add a description, but the most important part is the user-input variable definition. You must
use the specific meta data shown below to define a variable that the user is prompted to set at when
the script is executed.

#@VariableFieldLabel (description = "Enter Tag Type",
type = String,
required = yes,
validValues = [tag,untag],
readOnly = no,
name = "myVar",
value = "42"
)

To specify multiple variables if needed, repeat the above definition.

You can specify multiple values in the VariableFieldLabel metadata.

- description: this is displayed before the value field
- type: the data format of data.
- scope: global (default) or device specific.
- required: yes or no
- validValues: a list of possible values, inside square brackets and comma-separated
- readOnly: access privilege setting, yes or no
- name: the name of the variable
- value: the default value of the variable, which you can override

As of XMC 8.4.4, the data type is string only. In this example, you define the user-input variable fields
and their scope with a description.

#@MetaDataStart
#@DetailDescriptionStart

This script setups Fabric Connect for VOSS. It assumes reachabilty to each

E x t r e m e A P I w i t h P y t h o n

P a g e | 66

Part no.9036931-00 Rev AA February 2021

Fabric node (VSP) is available (via OoB or else)

#@DetailDescriptionEnd

#@SectionStart (description = "Service Definition to create")
@VariableFieldLabel (description = "BVLAN 1",
type = string,
required = yes,
readOnly = no,
name = "bvlan1",
value = "4051"
)

@VariableFieldLabel (description = "BVLAN 2",
type = string,
required = yes,
readOnly = no,
name = "bvlan2",
value = "4052"
)

@VariableFieldLabel (description = "AREA",
type = string,
required = yes,
readOnly = no,
name = "area",
value = "49.0000"
)

@VariableFieldLabel (description = "Nickname",
type = string,
required = yes,
readOnly = no,
validValues = [auto,custom],
name = "nickname",
value = "auto"
)

E x t r e m e A P I w i t h P y t h o n

P a g e | 67

Part no.9036931-00 Rev AA February 2021

@VariableFieldLabel (description = "Multicast Enable",
type = string,
required = yes,
readOnly = no,
validValues = [yes,no],
name = "multicast",
value = "no"
)
#@SectionEnd

#@SectionStart (description = "Device Specific Data")
@VariableFieldLabel (description = "NNI Fabric Port List",
type = string,
required = yes,
readOnly = no,
name = "portlist",
value = "1/1-1/3",
scope = device
)

@VariableFieldLabel (description = "Nickname Custom",
type = string,
required = no,
readOnly = no,
name = "nicknameCustom",
value = "",
scope = device
)
#@SectionEnd
#@MetaDataEnd

These variables are then accessible from the emc_vars dictionary, which uses the name as the key.

This code snippet illustrates this principle:

def main():
 # you first perform some sanity checks
 familyType = emc_vars["family"]
 if familyType != "VSP Series":
 raise RuntimeError('Error: This script needs to be executed on a VSP')

E x t r e m e A P I w i t h P y t h o n

P a g e | 68

Part no.9036931-00 Rev AA February 2021

 if int(emc_vars["bvlan1"]) > 4094 or int(emc_vars["bvlan1"]) < 2:
 raise RuntimeError('BVLAN 1 Id is out of range')
 if int(emc_vars["bvlan2"]) > 4094 or int(emc_vars["bvlan2"]) < 2:
 raise RuntimeError('BVLAN 2 Id is out of range')
 if int(emc_vars["bvlan1"]) == int(emc_vars["bvlan2"]):
 raise RuntimeError('Error: BVLAN 1 Id is identical than BVLAN 2 Id')

Writing a script from XMC is simple. The following example validates BGP information on an EXOS
switch, using Restconf:

from restconf import Restconf

if emc_vars['family'] != 'Summit Series':
 print 'Must be run on EXOS'
 exit(0)

r = Restconf(emc_vars['deviceIP'], emc_vars['deviceLogin'], emc_vars['devicePwd'])

data = r.get('data/openconfig-bgp:bgp/neighbors')
bgp_data = data.json()

if bgp_data:
 bgp = bgp_data.get('openconfig-bgp:neighbors').get('neighbor')
 print 'Found {} BGP neigbhors'.format(len(bgp))

 for neighbor in bgp:
 print 'Received {} prefixes from {} in ASN {}'.format(
 neighbor['afi-safis']['afi-safi'][0]['state']['prefixes'].get('received'),
 neighbor['neighbor-address'],
 neighbor['state'].get('peer-as'))

When you run the script against a BGP router, you will see a result similar to:

Script Name: BGP Test
Date and Time: 2020-06-21T02:20:34.617
XMC User: root
XMC User Domain:
IP: 192.168.56.121
Found 1 BGP neighbors
Received 3 prefixes from 10.0.0.1 in ASN 65002

E x t r e m e A P I w i t h P y t h o n

P a g e | 69

Part no.9036931-00 Rev AA February 2021

5.2 Workflow Engine
The Workflow Engine, Introduced with XMC 8.2, enables you to create complex actions based on events
or alarms or that can be manually triggered. These actions execute several tasks in a logical progression,
depending on the result of the previous task. This improvement enables you to create custom features.

The Workflow Engine relies on Python scripting, with some extra parameters and a few differences,
which are described in the following sections.

5.2.1 emc_vars
With XMC 8.4.4, the emc_vars Python dictionary returns the following keys:

time
date

userDomain
userName
domain
username

serverVersion
serverIP
serverHTTPSPort
serverName
hostName

isExos
family
vendor
vrName

deviceNosIdName
deviceConfigPwd
devicePwd
deviceName
deviceVR
deviceType
deviceEnablePwd
deviceNosId
deviceASN
deviceSysOid
deviceLogin
deviceSoftwareVer
deviceCliType
deviceIP
devices

workflowPath
workflowStatus
workflowCreatedDateTime
workflowMessage
workflowCategory

E x t r e m e A P I w i t h P y t h o n

P a g e | 70

Part no.9036931-00 Rev AA February 2021

workflowUpdatedBy
workflowexecutionId
workflowUpdatedDateTime
workflowDescription
workflowTimeout
workflowNosIds
workflowCreatedBy
workflowName
workflowVersion

activityMessage
activityDescription
activityCustomId
activityName
activityNosIds

scriptOwner
scriptName
scriptAssignment
scriptTimeout
scriptType
abort_on_error

javax.script.name
javax.script.engine_version
javax.script.language
javax.script.engine

output
STATUS
auditLogEnabled
failFast
extreme.hideLegacyDesktopApps
status
ports
USE_IPV6

jboss.http.port
jboss.bind.address.management
jboss.server.log.dir
jboss.bind.address
jboss.HTTPS.port

As shown, there are more keys in the emc_vars dictionary. Using a Python script, you can see the
differences between the two environments, using as XMC 8.4.4 as a reference:

There are 46 entries in emc_vars in Scripting Engine
There are 72 entries in emc_vars in Workflow Engine

emc_vars not in Workflow Engine:
Not found: deviceId
Not found: managementPorts
Not found: accessPorts

E x t r e m e A P I w i t h P y t h o n

P a g e | 71

Part no.9036931-00 Rev AA February 2021

Not found: interSwitchPorts
Not found: javax.script.filename
emc_vars not in Scripting Engine:
Not found: serverHTTPSPort
Not found: hostName
Not found: vrName
Not found: deviceNosIdName
Not found: deviceNosId
Not found: devices
Not found: workflowPath
Not found: workflowStatus
Not found: workflowCreatedDateTime
Not found: workflowMessage
Not found: workflowCategory
Not found: workflowUpdatedBy
Not found: workfloyouxecutionId
Not found: workflowUpdatedDateTime
Not found: workflowDescription
Not found: workflowTimeout
Not found: workflowNosIds
Not found: workflowCreatedBy
Not found: workflowName
Not found: workflowVersion
Not found: activityMessage
Not found: activityDescription
Not found: activityCustomId
Not found: activityName
Not found: activityNosIds
Not found: scriptName
Not found: scriptAssignment
Not found: scriptType
Not found: output
Not found: failFast
Not found: status

As a result, when you work with Python scripts that could be used in both environments, be careful
when collecting information from emc_vars.

5.2.2 Create Workflows
The Workflow Engine is accessible from the Tasks menu (Tasks > Workflows). You will need an Advanced
license to create User-Workflows.

Select the gear icon, at the bottom of the page, then select “Create Workflow”. The new workflow
appears in the User Workflows tab.

E x t r e m e A P I w i t h P y t h o n

P a g e | 72

Part no.9036931-00 Rev AA February 2021

Note: You can also select an existing workflow and save it with a different name to use as a template for
a new workflow.

After you have created a new workflow, and entered a name and a description for it, you are ready to
start editing it. Several windows are displayed.

Next to the Menu bar, on the left side, you can see the Workflow List, the Palette, the Designer and
finally the Details window.

From the Workflow List you can select any workflows available on the system. The Palette and the
Designer panels allow you to create the logic of the workflow in a graphical and intuitive way.

From the Palette, select an item to place in the Designer by dragging and dropping the item between the
Start and End buttons. The available items are grouped in categories, depending on their purpose:

- Activities are piece of code or actions that produce something. The Script Activity is most often
used, but other activities are also available.

Script Activity
Shell Activity

E x t r e m e A P I w i t h P y t h o n

P a g e | 73

Part no.9036931-00 Rev AA February 2021

HTTP Activity
Mail Activity
CLI Activity
Activity Group

- Gateways are objects that allow different execution paths.
Inclusive Parallel
Parallel

- Boundary is a timer object that can be executed if an activity does not complete during a
specified time. This allows you to follow a given path in the Workflow if this happens. The
Workflow Engine checks every 10 seconds and triggers a timer in a range of N to N+10 seconds.
Events allow you to end a path or generate an event when reached.

The Details panel is where you configure these settings.

5.2.3 Create Variables
In Workflows, you can create variables to manipulate them. From the Details panel, in the Variables tab,
you will see a list of all available variables. The items that appear in are dependent on the activity
selected.

Using XMC 8.4.4 as an example, the list of variables that appears when you have no activity selected in a
workflow is shown here:

E x t r e m e A P I w i t h P y t h o n

P a g e | 74

Part no.9036931-00 Rev AA February 2021

If you select a Python script, the list expands to include the variables shown here:

E x t r e m e A P I w i t h P y t h o n

P a g e | 75

Part no.9036931-00 Rev AA February 2021

These variables are from your emc_vars dictionary, and some are only significant in some situations,
running with a given activity.

To create a new variable, select the Add button at the top of the Details panel. You can set the default
value, type, and scope.

E x t r e m e A P I w i t h P y t h o n

P a g e | 76

Part no.9036931-00 Rev AA February 2021

When created, in this example as a string type, the variable becomes accessible from the Python Script
through the emc_vars dictionary.

Here’s a quick example, creating a Python Script in a workflow. You connect the script with the Start and
End gateways, using the arrows from one object to the other, then you can click on the Run button to
execute the workflow, after a save.

The script is:

print emc_vars['MyVariable']

emc_vars['MyVariable'] = "Extreme!"

print emc_vars['MyVariable']

Note: Directly modifying an entry of emc_vars is not recommended.

E x t r e m e A P I w i t h P y t h o n

P a g e | 77

Part no.9036931-00 Rev AA February 2021

The output:

Script Name: StefTest_Script_-_4
Date and Time: 2020-06-26T19:32:36.361
XMC User: root
XMC User Domain:
IP:
extreme
Extreme!

Note: If an activity does not need to be run against a device, delete the devices variable so
that the engine will not ask you to provide this input.

5.2.4 emc_results
When you work with Workflows that have Inclusive Parallel gateways, you should provide the outcome
of the action to select the path to follow using the emc_results Python object.

This Python object contains the following methods and functions:

print dir(emc_results)

The output, from XMC 8.4.4:

['DATE_FORMAT', 'DATE_FORMAT_STRING', 'ResultType', 'Status',
'TIMESTAMP_FORMAT', 'TIMESTAMP_FORMAT_STRING', 'TIMESTAMP_FORMAT_STRING_24',
'TIME_FORMAT', 'TIME_FORMAT_STRING', '__class__', '__copy__', '__deepcopy__',
'__delattr__', '__doc__', '__ensure_finalizer__', '__eq__', '__format__',
'__getattribute__', '__hash__', '__init__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str__',
'__subclasshook__', '__unicode__', 'addResult', 'batchId', 'childResults',
'class', 'clear', 'deviceIP', 'deviceId', 'elapsedTimeInMillis',
'elaspsedTimeInSecs', 'equals', 'errorMessage', 'fileName', 'get',
'getBatchId', 'getChildResults', 'getClass', 'getDeviceIP', 'getDeviceId',
'getElapsedTimeInMillis', 'getElaspsedTimeInSecs', 'getErrorMessage',
'getFileName', 'getId', 'getMessage', 'getName', 'getOutput',
'getOutputType', 'getResultUrl', 'getStartTime', 'getStatus', 'getStopTime',
'getVariables', 'hasErrors', 'hashCode', 'id', 'isOutputTruncated',
'message', 'name', 'notify', 'notifyAll', 'output', 'outputTruncated',
'outputType', 'put', 'putAll', 'resultUrl', 'setBatchId', 'setDeviceIP',
'setDeviceId', 'setErrorMessage', 'setFileName', 'setId', 'setMessage',
'setName', 'setOutput', 'setOutputTruncated', 'setOutputType',
'setResultUrl', 'setStartTime', 'setStatus', 'setStopTime', 'startTime',
'status', 'stopTime', 'toString', 'variables', 'wait']

PUT is the most common method you will use.

E x t r e m e A P I w i t h P y t h o n

P a g e | 78

Part no.9036931-00 Rev AA February 2021

With this method, you pass an argument variable as a string that you created previously in the activity,
and its value, also as a string. You can test this value with gateways, and other activities. This is the
correct way to change a variable value (if the variable has a scope of workflow).

Note: You can also use this method to pass JSON data, using json.dumps().
emc_results.put("MyVariable", "true")

To better illustrate this, modify your workflow so that you select a path based on the value of a variable.
Delete the link between the script and the “End” gateway by selecting it then selecting on the trash can
icon. Then add an inclusive parallel gateway leading to two new scripts that will end the workflow by
adding another “End” gateway and connecting the scripts to it.

To evaluate the value of MyVariable, first change its scope. In the previous example, this variable was
defined with a scope of Activity. This means its value is not accessible outside of the activity. To check it
with the inclusive parallel gateway, you need to increase its scope by setting it to Workflow.

E x t r e m e A P I w i t h P y t h o n

P a g e | 79

Part no.9036931-00 Rev AA February 2021

After you have done this, the variable is accessible throughout the workflow. To test it with the inclusive
parallel gateway, select one of the output links and set the condition. This dictates what must be met to
follow this path.

In your example, you defined two paths; one that checks if “My Variable” is equal to “OK”, and the other
to “KO”. The resulting script prints the path has been followed.

E x t r e m e A P I w i t h P y t h o n

P a g e | 80

Part no.9036931-00 Rev AA February 2021

The first script (Script-4) sets the value to the variable for the rest of the workflow, using
emc_results.put().

print emc_vars['MyVariable']

emc_results.put("MyVariable", "KO")

After you save and run your workflow, you can watch a visual representation of execution of the
workflow. Every step that is completed successfully turns green, while failed steps appear red.

E x t r e m e A P I w i t h P y t h o n

P a g e | 81

Part no.9036931-00 Rev AA February 2021

5.2.5 Add User Inputs
Workflows also allows for users to be prompted for inputs. In the previous example, you replaced the
hardcoded value of My Variable with a field to select the value you want to use and made sure only valid
values are available.

Select your script (Script-4) and select the Inputs tab in the Details panel. At the top of the Inputs tab,
select the gear icon (Manage Inputs…).

Create a new Input by setting a name, a type, the valid values to be entered and the variable that will be
set to this value. You can also choose to make this input required and prompt the user for it.

E x t r e m e A P I w i t h P y t h o n

P a g e | 82

Part no.9036931-00 Rev AA February 2021

Select a ComboBox with Valid Values of OK and KO. This is what you expect for your inclusive parallel
gateway. Then select the correct variable (My Variable). Your script will no longer modify the variable.

When you run your workflow, you must choose between OK and KO. The path that is followed depends
on your choice.

E x t r e m e A P I w i t h P y t h o n

P a g e | 83

Part no.9036931-00 Rev AA February 2021

The result:

5.2.6 Automate Workflow Execution
As with Python scripting with EXOS, automation is important because it provides dynamic triggers,
based on specific events, in a workflow.

Workflows in XMC can be triggered by multiple events, such as:

- Alarms
- API CALLs
- ExtremeControl
- Scheduler
- Manually by right-clicking on a port, a device, or a group of devices

You can find a description of how a workflow is executed in the workflow, if you are using a script, by
accessing the emc_vars Python dictionary.

E x t r e m e A P I w i t h P y t h o n

P a g e | 84

Part no.9036931-00 Rev AA February 2021

For example, using XMC 8.4.4, the list shown below displays the keys in the emc_vars Python dictionary
when a workflow is triggered by an Alarm, compared to a script in a workflow:

There are 92 entries in emc_vars in Alarm Workflow Engine
There are 72 entries in emc_vars in Workflow Engine

emc_vars not in Workflow Engine:
Not found: deviceIp
Not found: eventCategory
Not found: sysDescr
Not found: chassisId
Not found: alarmSource
Not found: sysName
Not found: deviceFirmware
Not found: deviceIpCtx
Not found: eventClient
Not found: alarmName
Not found: eventType
Not found: sysUpTime
Not found: deviceStatus
Not found: eventTitle
Not found: deviceBootProm
Not found: alarmId
Not found: eventUser
Not found: severity
Not found: eventSeverity
Not found: deviceNickName
Not found: message
Not found: chassisType
Not found: sysContact

emc_vars not in Alarm Workflow Engine:
Not found: hostName
Not found: extreme.hideLegacyDesktopApps
Not found: ports

In this example, the Alarm context adds context-specific variables in the emc_vars dictionary. Notice
that there is also a deviceIp variable that appears beside the usual deviceIP variable.

This section describes a simple workflow to show how to configure an Alarm that can execute a specific
workflow, using the new variables.

Start with a regular workflow, and run a Python script when an alarm for a Device Down appears in
XMC. This script is not especially useful, but it illustrates the framework.

The script you run first checks to make sure it is triggered by the Alarms and Events process and that it
can detect specific device types.

You want to be notified by this workflow only if specific network devices are down
You could also look at the model type to narrow even further the worflow

E x t r e m e A P I w i t h P y t h o n

P a g e | 85

Part no.9036931-00 Rev AA February 2021

if emc_vars['family'] not in ["VSP Series", "Summit Series"]:
 print "This type of device is not supported by this workflow ({})".format(emc_var
s['family'])
 exit(0)

This is one way to make sure the workflow is triggered from alarm
This key is alarm context-specific
if 'alarmName' not in emc_vars:
 print "This workflow must be executed within an Alarm"
 exit(0)

A not very useful script, just for illustration
print "You received an alarm that device {}, with the IP {} is {}.".format(emc_vars['
deviceNickName'], emc_vars['deviceIp'], emc_vars['message'])

After you have created this workflow, configure the rights and menus where this workflow can be
executed in the Details panel, in the Menus tab of the global workflow. Make sure no activities are
selected.

Next, select the Alarm menu. From the Alarms & Events XMC menu, select the alarm type you want to
modify. You can create a new alarm or edit an existing one, depending on the use case. In this example,
you will edit the existing Device Down alarm.

E x t r e m e A P I w i t h P y t h o n

P a g e | 86

Part no.9036931-00 Rev AA February 2021

From the Actions tab, add a new Task Action and select your workflow.

E x t r e m e A P I w i t h P y t h o n

P a g e | 87

Part no.9036931-00 Rev AA February 2021

Select Save. As soon as a Device Down alarm is received by XMC, your workflow is executed. You can
track it from the Workflow Dashboard.

Double-click the workflow to see details and confirm the output of your script.

Script Name: Alarm-Down_Script_-_6
Date and Time: 2020-06-28T15:01:56.478

E x t r e m e A P I w i t h P y t h o n

P a g e | 88

Part no.9036931-00 Rev AA February 2021

XMC User: NetSight Server
XMC User Domain:
IP: 192.168.56.121
You received an alarm that device IP Campus_08:00:27:35:2A:E4, with the IP
192.168.56.121 is SNMP Contact Lost: No SNMP reply from device 192.168.56.121
caused by SNMP Error: Timeout[4098], last uptime was 0 Days 00:02:56.

5.2.7 Workflow Example
In this example, you will create a new workflow, using different resources for illustration. You will
retrieve data from a web server and use it in a script.

To see a list of blocked IP addresses, go to this link:

HTTPS://iplists.firehol.org/files/firehol_level1.netset

You will use this for your workflow, using the HTTP Activity. You must do a GET on this URL.

To use the content returned by this URL, in the script following the HTTP activity, define a new variable
and set the “Variable Reference” field to the output of the ID of the HTTP Activity.

Note: This ID can be found in the General tab of an activity, in is the “custom ID” field.

Limit the scope of the new variable to the activity since you will not be using it elsewhere.

https://iplists.firehol.org/files/firehol_level1.netset

E x t r e m e A P I w i t h P y t h o n

P a g e | 89

Part no.9036931-00 Rev AA February 2021

Your script counts the number of IPs and, based on this, will trigger a different script. To make the
workflow easier to read, enable the link edit mode to you can add a description to each test.

E x t r e m e A P I w i t h P y t h o n

P a g e | 90

Part no.9036931-00 Rev AA February 2021

Your workflow should look like this:

The simple Count IP script counts all the IPs in the file received, and removes the comment lines.

Create a second variable called MyVar2 to test for path selection.

received_blacklist = emc_vars['ip_blacklist']

blist = received_blacklist.splitlines()

i = 0

for ip in blist:
 if ip.startswith("#"):

E x t r e m e A P I w i t h P y t h o n

P a g e | 91

Part no.9036931-00 Rev AA February 2021

 continue
 else:
 i += 1

if (i % 2):
 emc_results.put("MyVar2", "1")
else:
 emc_results.put("MyVar2", "0")

emc_results.put("IPCount", str(i))

The inclusive parallel gateway tests if the MyVar2 variable is equal to 0 or 1.

The final scripts do the same thing, but for the purpose of this example, this is duplicated for each path.

print "There are {} entries in the IP list".format(emc_vars["IPCount"])

Run your workflow to see the output:

E x t r e m e A P I w i t h P y t h o n

P a g e | 92

Part no.9036931-00 Rev AA February 2021

E x t r e m e A P I w i t h P y t h o n

P a g e | 93

Part no.9036931-00 Rev AA February 2021

5.3 NorthBound Interface API
The NBI API is based on GraphQL. Through the NBI, you can access data stored in the database of XMC,
which means virtually everything that XMC manages in the network.

XMC provides the emc_nbi Python object to interact with the NBI API.

This NBI is accessible both internally through the Python Scripting Engine (and by extension the
Workflow Engine), and externally to any authorized application requesting data.

GraphQL is a query language that allows for extremely efficient data transfers where only the necessary
information is transmitted, unlike plain JSON. You can both read and write data from and to the
database. In GraphQL vocabulary, a read is a query and a write is a mutation.

This chapter explores in detail the GraphQL capabilities.

E x t r e m e A P I w i t h P y t h o n

P a g e | 94

Part no.9036931-00 Rev AA February 2021

5.3.1 emc_nbi
The emc_nbi Python object includes several functions and methods. As of XMC 8.4.4, the example below
shows what is available:

print dir(emc_nbi)

The output is:

['__class__', '__copy__', '__deepcopy__', '__delattr__', '__doc__',
'__ensure_finalizer__', '__eq__', '__format__', '__getattribute__',
'__hash__', '__init__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__str__', '__subclasshook__', '__unicode__',
'class', 'equals', 'example1', 'example2', 'getClass', 'getName', 'hashCode',
'mutation', 'name', 'notify', 'notifyAll', 'query', 'toString', 'wait']

The two methods that you will use the most are query and mutation.

Note: It is possible to use the query method for mutation, but you will use each method for their
respective usage for clarity. However, only the query method supports graphql variables, as presented
here: HTTPS://graphql.org/learn/queries/#variables.

Use query to access the XMC database as read-only, and mutation to edit (write) to the database.

Note: When using mutation, be careful not to corrupt the XMC database. The best practice is to always
have a backup of your database.

5.3.2 GraphQL Query
XMC integrates GraphQL, an interface that lets you test queries and view the output. You can access
GraphQL at the following URL on a given XMC server:

HTTPS://<xmc server IP>:8443/nbi/graphiql/index.html

You use the GraphQL NBI to create queries that retrieve information.

Note: The GraphiQL interface can also be accessed from XMC, in the following menu: Administration >
Diagnostics > Server > Server Utilities > NBI Explorer.

https://graphql.org/learn/queries/#variables

E x t r e m e A P I w i t h P y t h o n

P a g e | 95

Part no.9036931-00 Rev AA February 2021

A query is a read-only operation. This has been supported since XMC 8.1.2 as a beta feature and in 8.2
as GA code.

A query is a string that can be formatted as a JSON object. The most important part of a query are the
fields. Each field is defined in a schema that is dynamically created by the runtime. Some arguments may
be used with some fields.

The top-level field stipulates a query or a mutation. The sub-systems supported are:

accessControl,
administration,
inventory,
network,
policy,
wireless,
workflows

Fields

device(ip: “192.168.1.20”) {
 serialNumber
 sysContact
}

Argument

E x t r e m e A P I w i t h P y t h o n

P a g e | 96

Part no.9036931-00 Rev AA February 2021

You can access the GraphQL schema description as an IDL file or a JSON file, at the following URLs on an
XMC server:

HTTPS://<xmc-ip-address>:8443/nbi/graphql/schema.idl

HTTPS://<xmc-ip-address>:8443/nbi/graphql/schema.json

Using the GraphiQL interface, you can browse the fields available to us. Let’s have an example and say
you want to retrieve the list of devices managed by XMC, and have their MAC address, firmware version
and site location.

By expanding the Docs panel (on the far right), you have access to all the information available.

Here you can find available fields, field types and sub-fields. Typically, the field type is on the left (in
blue) and the field value is on the right (in orange).

Start at the top with the Query field, then browse the sub-fields to find the Network section.

https://172.16.10.210:8443/nbi/graphql/schema.idl

E x t r e m e A P I w i t h P y t h o n

P a g e | 97

Part no.9036931-00 Rev AA February 2021

The Device field contains several sub-fields. Build your query in the Network input panel and include the
fields you want to search between curly brackets. Some fields are mandatory, which is indicated by a !.

E x t r e m e A P I w i t h P y t h o n

P a g e | 98

Part no.9036931-00 Rev AA February 2021

A query example is shown here:

{
 network {
 devices {
 baseMac
 firmware
 sitePath
 }
 }
}

If you run your query from GraphiQL, you will see this (truncated) output from your XMC server:

Note: The list for this device consists of VMs running on a PC, with XMC also running on the same PC
along with a VM. This is a practical and safe way to test queries, workflows, and scripts.

E x t r e m e A P I w i t h P y t h o n

P a g e | 99

Part no.9036931-00 Rev AA February 2021

This example clearly shows the GraphQL query syntax and the expected output to expect. The output is
formatted in JSON in GraphiQL, but the data is returned as a Java hashmap within a script. This should
be treated as a regular Python dictionary. From here, you have all the tools you need to include NBI
CALLs within your Python scripts and workflows.

Using this same query example in a Python script is easy:

query = '''
{
 network {
 devices {
 baseMac
 firmware
 sitePath
 }
 }
}
'''

res = emc_nbi.query(query)

i = 0
j = 0
for item in res['network']['devices']:
 if item['sitePath'] == "/World/Extreme Fabric Connect":
 i += 1
 elif item['sitePath'] == "/World/IP Campus":
 j += 1
 else:
 continue

print "There are {} devices in Extreme Fabric Connect site".format(i)
print "There are {} devices in IP Campus site".format(j)

Copy and paste your query from GraphiQL as a string in your Python code, and then CALL it using the
provided emc_nbi Python object, with the query method.

The hashmap data format is natively converted to a Python dictionary. This data should not be treated
as JSON, which will trigger an error.

The output is:

Script Name: NBI Test
Date and Time: 2020-06-27T17:56:20.166

E x t r e m e A P I w i t h P y t h o n

P a g e | 100

Part no.9036931-00 Rev AA February 2021

XMC User: root
XMC User Domain:
IP: 192.168.56.121
There are 5 devices in Extreme Fabric Connect site
There are 9 devices in IP Campus site

5.3.3 GraphQL Mutation
A mutation lets you add, delete, or modify content in the XMC database. This can be potentially risky, so
be sure you are not deleting important data, or corrupting the database content.

Note: GraphQL mutation is supported in XMC 8.3 and later.

The mutation framework is the same as for query: browse the GraphiQL interface to find the format of
your CALL, and the fields to complete.

When you created a query, you did not specify the top query field in your CALL, which is the default and
as such implied. For mutation, however, you must start your CALL with the top mutation field.

To illustrate mutation, create a Python script that creates a new site. Because this is a simple script is for
demonstration, it is short. A real script and workflow would be much longer.

SiteName = "/World/NewSite"

mutation = '''
 mutation {
 network {
 createSite(input: {siteLocation: "%s"}) {
 status
 message
 siteId
 }
 }
 }
''' % SiteName

res = emc_nbi.mutation(mutation)

print "\nData returned: ", res

if res['network']['createSite']['status'] != "SUCCESS":
 print "\nCannot create Site {} because {}".format(
 SiteName,
 res['network']['createSite']['message'])

E x t r e m e A P I w i t h P y t h o n

P a g e | 101

Part no.9036931-00 Rev AA February 2021

else:
 print "\nSuccessfully created Site {}".format(SiteName)

The string starts with the mutation field. Browse the GraphiQL interface to the createSite field. Enter the
required arguments, such as the siteLocation (which is mandatory when creating a new site).

Specify the output you want to receive from this action. Select from the GraphiQL list.

Print the result to display the data returned, and print a comment depending on the outcome.

If you run this script before the new site exists, you can also confirm that the site has been created.

Script Name: NBI Mutation
Date and Time: 2020-06-28T16:00:20.726
XMC User: root
XMC User Domain:
IP: 192.168.56.122

Data returned: {network: {createSite={status=SUCCESS, message=, siteId=10}}}

Successfully created Site /World/NewSite

When the site exists, if you run the script again, you will see an error:

Script Name: NBI Mutation
Date and Time: 2020-06-28T16:02:23.390
XMC User: root
XMC User Domain:
IP: 192.168.56.121

E x t r e m e A P I w i t h P y t h o n

P a g e | 102

Part no.9036931-00 Rev AA February 2021

Data returned: {network: {createSite={status=ERROR, message=Site already
exists 'NewSite', siteId=null}}}

Cannot create Site /World/NewSite because Site already exists 'NewSite'

5.3.4 RBAC for API Usage
Another feature of XMC is the ability to limit access to the API based on user requests. Administrators
may have a root access, and thus all access privileges, but you can use XMC to create separate users and
groups, with specific privileges.

The Northbound API access rights, as with many other capabilities, can be applied very precisely.

Scripts, workflow, external NBI CALLs can be limited to specific user groups.

There are two authorization methods for external NBI access:

- basic authorization
- OAuth 2.0.

E x t r e m e A P I w i t h P y t h o n

P a g e | 103

Part no.9036931-00 Rev AA February 2021

Basic authorization is the standard approach, using the authorization header in HTTP or HTTPS.
However, this simple access method is not very secure, as discussed in chapter 2.3.

The OAuth 2.0 method is recommended when security is an important factor. This method requires you
to create a client in the Client API Access tab in the Administration > Users menu.

This generates a Client ID and a Client Secret that can be used for NBI CALLs only.

Use this Client ID and Client Secret to receive an access token from the oAuth server that can be used to
make valid NBI CALLs.

To receive the access token, initiate a POST to this URL:

HTTPS://<xmc-ip-address>:8443/oauth/token/access-token?grant_type=client_credentials

Include the Content-Type header and set it to application/x-www-form-urlencoded. Set the
authorization header with the Client ID and the Client Secret as password.

The response is a JSON-formatted data with the access_token key containing the value expected.

Additional CALLs use Accept and Content-Type headers set to application/json and Authorization set to
Bearer <access_token>.

5.3.5 External Access to the NBI API
Here is a simple example that accesses XMC via GraphQL from an external program. This example uses
the basic authentication method for simplicity.

E x t r e m e A P I w i t h P y t h o n

P a g e | 104

Part no.9036931-00 Rev AA February 2021

#!/usr/bin/env python

import json
import requests
from requests import Request, Session
from requests.auth import HTTPBasicAuth
from requests.packages.urllib3.exceptions import InsecureRequestWarning
import argparse
import getpass

def get_params():
 parser = argparse.ArgumentParser(prog = 'nbi')
 parser.add_argument('-u', '--username',
 help='Login username for the remote system')
 parser.add_argument('-p', '--password',
 help='Login password for the remote system',
 default='')
 parser.add_argument('-i', '--ip',
 help='IP of the XMC 8.1.2+ server')
 args = parser.parse_args()
 return args

args = get_params()
if args.username is None:
 # prompt for username
 args.username = input('Enter remote system username: ')
 # also get password
 args.password = getpass.getpass('Remote system password: ')

if args.ip is None:
 #prompt for XMC's IP
 args.ip = input('Enter IP of the XMC server: ')

To disable SSL certificate verification
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

prepare HTTPS session
session = Session()

E x t r e m e A P I w i t h P y t h o n

P a g e | 105

Part no.9036931-00 Rev AA February 2021

session.verify = False
session.timeout = 10
session.auth = (args.username, args.password)
session.headers.update(
 { 'Accept': 'application/json',
 'Content-type': 'application/json',
 'Cache-Control': 'no-cache',
 }
)

define XMC-NBI query
nbiQuery = '{ network{ devices { ip nickName } } }'

execute NBI call
nbiUrl = 'HTTPS://' + args.ip + ':8443/nbi/graphql'
response = session.post(nbiUrl, json= {'query': nbiQuery})

if response.status_code != 200:
 print('ERROR: HTTP ' + response.reason + '(' + str(response.status_code) + ')
')
else:
 # convert JSON string to a data structure
 inbound_data = json.loads(response.text)

 for device in inbound_data['data']['network']['devices']:
 print(device['ip'] + ' \t' + device['nickName'])

The output is:

C:\Extreme API with Python> nbi.py
Enter remote system username: root
Remote system password:
Enter IP of the XMC server: 192.168.56.10
192.168.56.121 IP Campus_08:00:27:35:2A:E4
192.168.56.143 voss03
192.168.56.125 IP Campus_08:00:27:7D:DB:E6
192.168.56.142 voss02
192.168.56.129 IP Campus_08:00:27:AD:C4:CB
192.168.56.145 voss05
192.168.56.126 IP Campus_08:00:27:07:56:3D
192.168.56.144 voss04
192.168.56.124 IP Campus_08:00:27:DD:A3:DA
192.168.56.12 FabricManager

E x t r e m e A P I w i t h P y t h o n

P a g e | 106

Part no.9036931-00 Rev AA February 2021

192.168.56.123 IP Campus_08:00:27:C5:83:32
192.168.56.127 sw7
192.168.56.128 sw8
192.168.56.11 192.168.56.11
192.168.56.141 voss01
192.168.56.122 IP Campus_08:00:27:2A:B1:DF

5.3.6 Use NBI to Execute a Workflow
So far, NBI examples have been created mostly from the network field. This example uses the workflows
field.

To execute a workflow from the NBI, you need to know the ID of the workflow you want to run, and you
need to do a mutation.

Initiate a query to see the IDs for all existing workflows, as shown:

{
 workflows {
 allWorkflows {
 id
 name
 }
 }
}

Even if there is a limited number of user workflows, this query returns most of them, including system
workflows.

Reuse your workflow with the “OK/KO” path selection, but this time the you execute the script from an
NBI CALL. In this workflow, initially you only print the path that has been followed. Instead of doing a
print of the message, set workflowMessage to the value you need. This message is displayed on the
Workflow Dashboard when a workflow is successfully executed.

Rewrite the line of code in the output script of OK path to say:

emc_results.put("workflowMessage", "OK path has been followed")

Modify the KO path as well. Now, each time this workflow is successfully executed, it will print the
corresponding message in the message column in the Workflow Dashboard.

Now write a quick script using the NBI to execute this workflow. First find the ID of your workflow, then
execute your workflow, setting MyVariable to either OK or KO. Next, validate the execution of your
workflow and print the result.

The example below uses the Python string replace method to adapt your GraphQL CALLs with your
dynamic values.

E x t r e m e A P I w i t h P y t h o n

P a g e | 107

Part no.9036931-00 Rev AA February 2021

from time import sleep

idQuery = '''
{
 workflows {
 allWorkflows {
 id
 name
 }
 }
}
'''

exeMutation = '''
mutation {
 workflows {
 startWorkflow (input: { id: <id>
 variables: {
 MyVariable: "<state>"
 }
 }) {
 status
 errorCode
 executionId
 message
 }
 }
}
'''

messageQuery = '''
{
 workflows {
 execution(executionId: <id>) {
 variables
 }
 }
}

E x t r e m e A P I w i t h P y t h o n

P a g e | 108

Part no.9036931-00 Rev AA February 2021

'''

WorkflowName = "StefWorkflow"
WorkflowID = 0
Action = "OK"
WAIT = 1

res = emc_nbi.query(idQuery)

for workflow in res['workflows']['allWorkflows']:
 if workflow['name'] == WorkflowName:
 WorkflowID = workflow['id']
 break

exeMutation = exeMutation.replace("<id>", str(WorkflowID)).replace("<state>", Action)
res = emc_nbi.mutation(exeMutation)

sleep(WAIT)

if res['workflows']['startWorkflow']['status'] == "SUCCESS":
 execId = res['workflows']['startWorkflow']['executionId']
 messageQuery = messageQuery.replace("<id>", str(execId))
 info = emc_nbi.query(messageQuery)
 print info['workflows']['execution']['variables'].get('workflowMessage')
else:
 print res

You must include a wait timer after the execution of your workflow, so that it has enough time to
complete.

When you run your script, you should see the following output:

Script Name: NBI Workflow
Date and Time: 2020-06-29T19:32:46.221
XMC User: root
XMC User Domain:
IP: 192.168.56.126
"OK path has been followed"

On the Workflow Dashboard, you can see the same output.

E x t r e m e A P I w i t h P y t h o n

P a g e | 109

Part no.9036931-00 Rev AA February 2021

5.4 Axis API
Prior to the NBI API, XMC offered the Axis API. The Axis API is also sometimes called XMC Web Services.
The Axis API is a REST API, returning data formatted as XML.

This API is still available, but not recommended for use anymore, with the exception of
ExtremeAnalytics, because the NBI API does not provide an interface to ExtremeAnalytics.

Note: The ExtremeAnalytics web service is called Purview, which was the original name of the solution.

To access the ExtremeAnalytics web service description language, go to:

HTTPS://<XMC-IP-Address>:8443/axis/services/PurviewWebService?wsdl

To connect to the ExtremeAnalytics web service, go to:

HTTPS://<XMC-IP-Address>:8443/axis/services/PurviewWebService

Methods are available to query specific resources that the API exposes. The method is added to the URL
Each method has parameters that must be transmitted to receive the appropriate data. The API
supports Basic authentication.

5.4.1 Analytics Methods
Analytics methods are described in the following sections.

5.4.1.1 addLocation
This command creates a new location with the specified name.

Parameters:

Name Type Description
locationGroup string Location group name

E x t r e m e A P I w i t h P y t h o n

P a g e | 110

Part no.9036931-00 Rev AA February 2021

Name Type Description
name string Name of new location
description string Location description

masks string IP subnets and masks of location

Returns: A string status.

5.4.1.2 addLocationGroup
This function creates a new location group.

Parameters:

Name Type Description
name string Name of new location group

description string Description of location group

Returns: A string status.

5.4.1.3 getAppliances
Retrieve the list of Extreme Appliances.

Returns: A list of Extreme appliances in JSON format.

5.4.1.4 getApplicationBrowserTableData
Retrieve data from the application browser.

Parameters:

Name Type Description
tableId int The table to retrieve the data from, available options are:

0 – appid_attribute (client & server data)
1 – appid_datapoint (application data)
2 – topn_tables
3 – application_usage_default (hourly application data)
4 – application_usage_hr_default (high rate application data)

E x t r e m e A P I w i t h P y t h o n

P a g e | 111

Part no.9036931-00 Rev AA February 2021

Name Type Description
target string The target to retrieve data from, available options are:

application
application_group
location
profile
target_address
client
target
source
target_type
datafamily
user_data

TopN specific targets:
appsByClient
server

statistics string The statistic to retrieve, available options are:
byte_count – total byte count
flow_count – total flow count
target_address – client/server IP address
app_rsp_time – application response time
tcp_rsp_time – network response time
total – total clients, used with TopN
tx_byte_count – transmit byte count
rx_byte_count – receive byte count
tx_flow_count – transmit flow count
rx_flow_count – receive flow count
client_count – client count
server_count – server count
application_count – application count
user_data – user data contains different fields based on the tableId
all_stats – all the above stats

searchCriteria string Key value (key=value) pair used in the database query. The available
targets, with the exception of TopN, and statistics can be used as a
key.

start long Starting timestamp for the query in milliseconds
end long Ending timestamp for the query in milliseconds

limit int Number of results to return

queryType string Query type, available options are:
grid
chartovertime

E x t r e m e A P I w i t h P y t h o n

P a g e | 112

Part no.9036931-00 Rev AA February 2021

Name Type Description
aggType string Aggregation type, available options are:

SUM – sum
AVG - average

Returns: TableData with a structure defined by the following table.

Name Type Description
extraData anyType Additional data from the operation

lastChange long Timestamp of last valid data

noChange boolean True if the data is being stored

success boolean True if operation is successful
tableData string JSON data

5.4.1.5 getBidirectionalFlowsData
Retrieve the latest filtered bidirectional flow data from an Extreme Analytics appliance.

Parameters:

Name Type Description
maxRows int Maximum number of flows to return

searchString string Search string used to query the data
source string Extreme Analytics appliance IP address

Returns: flow data in JSON format.

5.4.1.6 getLocations
Retrieve the list of location groups and locations.

Returns: A list of location groups and locations in JSON format.

5.4.1.7 getUnidirectionalFlowsData
Retrieve the latest flow data from an Extreme Analytics appliance.

Parameters:

Name Type Description
maxRows int Maximum number of flows to return

searchString string Search string used to query the data

E x t r e m e A P I w i t h P y t h o n

P a g e | 113

Part no.9036931-00 Rev AA February 2021

Name Type Description
source string Extreme Analytics appliance IP address

Returns: flow data in JSON format.

5.4.1.8 getVersion
Retrieve Extreme Analytics version.

Returns: Version as a string.

5.4.1.9 importLocationCSV
This creates locations with a provided CSV string.

Parameters:

Name Type Description
locationGroup string Location group name

csv string CSV data, data must be in a format where line 1 contains
“name,ipmask” without quotes. Subsequent lines will contain the
“<location name>,<IP subnet/mask>” without quotes.

overwrite boolean True to replace locations with the same name
purge boolean True to remove any locations not imported

protect boolean True to block operation if any locations would be overwritten

Returns: A string status.

5.4.2 Analytics API with Python
This section contains examples using the Axis API with Analytics web services. The examples retrieve
data from the Applications tab as a bidirectional flow, and check the appliance version.

Although you must format the payload data as JSON, the API returns query results in XML format.

import xml.etree.ElementTree as ET
import json
import os
import requests
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

login = os.environ.get('xmclogin')
passw = os.environ.get('xmcpassw')

url = 'HTTPS://192.168.20.80:8443/axis/services/PurviewWebService/'

E x t r e m e A P I w i t h P y t h o n

P a g e | 114

Part no.9036931-00 Rev AA February 2021

payload = {'maxRows': 2, 'searchString': 'Extreme', 'source': '192.168.20.88'}
getHeaders = {'Accept': 'application/json'}

r = requests.get(url + 'getBidirectionalFlowsData',
 verify=False,
 auth=(login, passw),
 params=payload,
 headers=getHeaders)

root = ET.fromstring(r.text)
data = json.loads(root[0].text)
print('json data: ', data)

r = requests.get(url + 'getVersion',
 verify=False,
 auth=(login, passw),
 headers=getHeaders)

root = ET.fromstring(r.text)
print(root[0].text)

The result is:

C:\Extreme API with Python> analytics.py
json data: {'root': [{'pp': '', 'fsip': '192.168.20.83', 'hn': '', 'dl':
'192.168.254.1/VMNIC_0_20.199 (ge.1.3)', 'acm': False, 'tid': -1, 'dt': '', 'du':
4349000874, 'scc': '', 'uk': 38356, 'ic': 14349, 'tapp': False, 'net': -1, 'app': -1,
'ag': 'Protocols', 'an': 'NetBIOS', 'et': 1593629388421, 'rb': 0, 'rc': 14323, 'stos':
'', 're': '', 'fsa': 'student2-o20vd8 (192.168.20.83)', 'ctos': '', 'fc': 14311,
'fsi': 'ge.1.3 [12003 - VMNIC_0_20.199]', 'rp': 0, 'fsm': '00:50:56:bf:11:c2', 'np':
'Pass Through NAC Profile', 'dcc': '', 'fst': 'NetFlow', 'omd':
'HalfSession=2\nuuid=b5df20ee', 'fdip': '192.168.20.56', 'sc': '', 'sl':
'/World/Extreme Networks France', 'ss': '192.168.254.1', 'st': 1589275522843, 'fda':
'192.168.20.56', 'bps': 0, 'aceg': '', 'fdi': 'ge.1.4 [12004 - VMNIC_0_20_198]',
'uav': '192.168.20.83\t192.168.20.56\t137\t17\tNetBIOS', 'l': '/World/Extreme Networks
France', 'ttl': '128 (C)', 'fdm': 'e8:fc:af:e7:3b:34', 'tb': 1632822, 'ct': '', 'r':
'', 'fdp': 'netbios-ns [137]', 'pd': '', 'u': '', 'tsloc': True, 'tloc': True, 'tp':
14323, 'pn': 'UDP', 'dc': ''}, {'pp': '', 'fsip': '192.168.254.161', 'hn': '', 'dl':
'', 'acm': False, 'tid': -1, 'dt': '', 'du': 5839574494, 'scc': '', 'uk': 38357, 'ic':
230146, 'tapp': False, 'net': 1805, 'app': 8540, 'ag': 'Web Applications', 'an':
'netsight.', 'et': 1593629370053, 'rb': 74163096.0, 'rc': 60244, 'stos': '', 're': '',
'fsa': '192.168.254.161', 'ctos': '', 'fc': 60104, 'fsi': 'ge.1.48 [12048]', 'rp':
299986, 'fsm': '00:04:96:9f:d8:b5', 'np': '', 'dcc': '', 'fst': 'NetFlow', 'omd':
'IssuerIdAtCommonName=Netsight
Enterasys\nSignatureAlgorithmId=shaWithRSAEncryption\nSSLVersion=TLS
1.0\nSubjectCount=6\nIssuerIdAtOrganizationName=Enterasys\nValidNotAfter=250111230000Z

E x t r e m e A P I w i t h P y t h o n

P a g e | 115

Part no.9036931-00 Rev AA February 2021

\nPublicKeySize=2048\nCertificateVersion=v3\nValidNotBefore=150111230000Z\ncommonName=
Netsight.\nTLSServerName=extremecontrol\nIssuerCount=6\nSubjectOrganizationalUnitName=
NetSight
Server\nCertificateLength=798\nuuid=f7d61177\nHalfSession=0\nFlow_HostName=Netsight.\n
ServerIP=192.168.20.80', 'fdip': '192.168.20.80', 'sc': '', 'sl': '/World/Extreme
Networks France', 'ss': '192.168.254.1', 'st': 1590674777472, 'fda': 'xmc
(192.168.20.80)', 'bps': 0.0820000022649765, 'aceg': '', 'fdi': 'ge.1.3 [12003 -
VMNIC_0_20.199]', 'uav': '192.168.254.161\t192.168.20.80\t8443\t6\tnetsight.', 'l':
'', 'ttl': '63', 'fdm': '00:50:56:bf:0f:6b', 'tb': 405628416.0, 'ct': '', 'r': '',
'fdp': 'Alternate HTTPS [8443]', 'pd': '', 'u': '', 'tsloc': True, 'tloc': False,
'tp': 480195, 'pn': 'TCP', 'dc': ''}], 'count': 2}
8.4.4.26

E x t r e m e A P I w i t h P y t h o n

P a g e | 116

Part no.9036931-00 Rev AA February 2021

6 ExtremeCloud IQ API
ExtremeCloud IQ (XIQ) is a 4th generation cloud-based network management system.

XIQ is entirely API driven internally, and offers an external API (xAPI) as an addition of the internal API to
users. This is a REST API.

The XIQ xAPI is made up of four APIs:

- Identity Management
- Monitoring
- Configuration
- Presence and Location

There are dozens of endpoints to choose from.

Presence and Location require a streaming data service via a webhook.

6.1 Connect to the xAPI
To access the xAPI, first connect to HTTPS://developer.aerohive.com and register for a developer portal
account. This account is free and self-approving. This is where you will access the documentation and
manage tokens for authentication.

6.1.1 Create Tokens
There are two ways to authenticate to the xAPI:

- Bearer Token
- OAuth 2.0

The easiest way is to use the Bearer token, although the OAuth 2.0 method is the most secure.

After you are registered and connected to your account, you can access your profile to create a token.

https://developer.aerohive.com/

E x t r e m e A P I w i t h P y t h o n

P a g e | 117

Part no.9036931-00 Rev AA February 2021

Create an app to obtain a client ID and a client secret.

The Redirect URL is necessary regardless of the authentication method you use. XIQ offers two methods:
Bearer Token (basic) and OAuth 2.0 (advanced).

With Bearer Token, the URL you use does not need to be real, but it must use HTTPS, and must match
the URL in the headers of your requests.

Connect to your XIQ account:

HTTPS://extremecloudiq.com

From here, navigate to the Global Settings in the upper right corner.

From the API menu, go to the API Token Management. Click + to create a new API Access token. You
must provide your client ID.

https://extremecloudiq.com/

E x t r e m e A P I w i t h P y t h o n

P a g e | 118

Part no.9036931-00 Rev AA February 2021

By default, the token is valid for 30 days but can be extended up to 365 days.

You should see two new tokens:

- The Access token that you will use to authenticate for every request. This is the Bearer token.
- The Refresh token.

E x t r e m e A P I w i t h P y t h o n

P a g e | 119

Part no.9036931-00 Rev AA February 2021

6.1.2 Headers for the xAPI
Because XIQ uses a REST API, connections must be made via HTTPS. Specific headers are required when
making a CALL to the xAPI.

- X-AH-API-CLIENT-SECRET
- X-AH-API-CLIENT-ID
- X-AH-API-CLIENT-REDIRECT-URI
- Authorization

The first three headers are proprietary, and the last one is the regular authorization header.

As the names imply, the first three headers must be configured with, respectively, the Client Secret, the
Client ID, and the Redirect URL generated on the developer portal account. The Authorization header is
a Bearer token, that is, a string containing the word Bearer, with a trailing space, followed with the
Access Token generated in your XIQ account.

6.1.3 xAPI Endpoints
The documentation on the developer portal is the best place to find the correct URL and HTTP methods
supported for each endpoint. All the endpoints are documented with Swagger in the API Details menu.

E x t r e m e A P I w i t h P y t h o n

P a g e | 120

Part no.9036931-00 Rev AA February 2021

Swagger is easy to browse, and lists all URLs and the methods that are supported, including a brief
description. Select an URL to expand it and see what type of data is expected and how the response will
be displayed.

E x t r e m e A P I w i t h P y t h o n

P a g e | 121

Part no.9036931-00 Rev AA February 2021

6.1.4 Parameters
The information between curly brackets in the URL is optional, with the exception of the ownerId
parameter, which is mandatory. This parameter is the VIQ ID in your XIQ account, in the “About
ExtremeCloud IQ” menu.

E x t r e m e A P I w i t h P y t h o n

P a g e | 122

Part no.9036931-00 Rev AA February 2021

Nearly every endpoint has a pageSize parameter. By default, XIQ sends data at a maximum of 100
entries at a time, on one return, which can be too small when collecting the clients list, for example. The
pageSize parameter lets you change this value to better match your needs.

The pagination entry in the data returned provides valuable information.

'pagination': {
 'offset': 0,
 'countInPage': 7,
 'totalCount': 7
}

In this example, you know that there are 7 objects and that you received 7, and you have received
everything on page 0, so you don’t need more pages to display the information.

If you need more than 100 objects, you must set the pageSize accordingly, or request the page numbers
using the page parameter.

E x t r e m e A P I w i t h P y t h o n

P a g e | 123

Part no.9036931-00 Rev AA February 2021

The clientId or deviceId optional parameters are unique IDs for each client or device. They are found
when listing the appropriate data, and when they are added to the endpoint, where they point to more
information.

6.2 Use Python with XIQ
After you have created all the tokens necessary to connect to XIQ, you can write a Python script to
interact with and provide information about your XIQ account.

The best practice is to create environment variables on your OS, so that you can share your code
without leaking secret information. This approach is described in chapter 2.3.5.

6.2.1 Use GET
The example below shows one way to format your headers and connect to XIQ using Python 3.x (3.7.7 in
this example) and the requests library.

import requests

import os

import sys

baseURL = "HTTPS://ie.extremecloudiq.com/"

clientSecret = os.environ.get('clientSecret')

clientId = os.environ.get('clientId')

redirectURI = 'HTTPS://foo.com'

authToken = os.environ.get('authToken')

ownerID = os.environ.get('ownerID')

requestHeaders = { 'X-AH-API-CLIENT-SECRET': clientSecret,

 'X-AH-API-CLIENT-ID': clientId,

 'X-AH-API-CLIENT-REDIRECT-URI': 'HTTPS://foo.com',

 'Authorization': authToken

 }

params = {'ownerId': ownerID}

try:

 r = requests.get(baseURL + 'xapi/v1/monitor/devices', headers=requestHeaders, params=params)

 if r.status_code != 200:

 print("Connection failure! Unable to connect to API")

 sys.exit(1)

E x t r e m e A P I w i t h P y t h o n

P a g e | 124

Part no.9036931-00 Rev AA February 2021

except requests.exceptions.RequestException as e:

 print("There was an error accessing XIQ API")

 sys.exit(1)

data = r.json()

EXOSList = []

VSPList = []

for device in data.get('data'):

 entry = {}

 if device.get('simType') == "SIMULATED":

 continue

 entry['model'] = device.get('model')

 entry['ip'] = device.get('ip')

 entry['firmware'] = device.get('osVersion')

 entry['deviceID'] = device.get('deviceId')

 entry['connected'] = device.get('connected')

 if device.get('model').startswith("X"):

 EXOSList.append(entry)

 elif device.get('model').startswith("VSP"):

 VSPList.append(entry)

print("Found {} EXOS switches and {} VSP switches".format(len(EXOSList), len(VSPList)))

if len(EXOSList):

 print("\nEXOS switches:")

 for exos in EXOSList:

 print('\t{} with IP {} running EXOS version {}'.format(exos['model'],

 exos['ip'],

 exos['firmware']))

 try:

 r = requests.get(baseURL + 'xapi/v1/monitor/devices/{}'.format(exos['deviceID']),

 headers=requestHeaders,

 params=params)

 if r.status_code != 200:

 print("Connection failure! Unable to connect to API")

 sys.exit(1)

E x t r e m e A P I w i t h P y t h o n

P a g e | 125

Part no.9036931-00 Rev AA February 2021

 except requests.exceptions.RequestException as e:

 print("There was an error accessing XIQ API")

 sys.exit(1)

 data = r.json()

 up = 0

 down = 0

 for port in data.get('data').get('ports'):

 if port.get('status') == "UP":

 up += 1

 elif port.get('status') == "DOWN":

 down += 1

 print("\t{} ports UP and {} ports DOWN".format(up, down))

if len(VSPList):

 print("\nVSP switches:")

 for vsp in VSPList:

 print('\t{} with IP {} running VOSS version {}'.format(vsp['model'],

 vsp['ip'],

 vsp['firmware']))

It is important to note the following:

- The URL to XIQ depends on your RDC. This is the URL in your browser when you are connected
to your account. In this example, this is HTTPS://ie.extremecloudiq.com.

- The endpoint that you use, in this case v1/monitor/devices, must be prepended by
xapi/.

When you run the Python script, you should see the following:

C:\Extreme API with Python> xiq.py
Found 1 EXOS switches and 0 VSP switches

EXOS switches:
 X460_G2_24p_10_G4 with IP 192.168.254.160 running EXOS version
30.6.1.11 patch1-11
 2 ports UP and 33 ports DOWN

6.2.2 Use POST
To send data to XIQ, you must use either a POST or a PUT, depending on the endpoint. The
documentation describes which one to use.

The framework is similar to that of the GET method, but now you need to build the JSON data to send to
XIQ.

https://ie.extremecloudiq.com/

E x t r e m e A P I w i t h P y t h o n

P a g e | 126

Part no.9036931-00 Rev AA February 2021

When sending JSON data, you must add two headers:

- Content-Type
- Accept

They both must be set to application/json.

In this example, you assign a network policy to a device. You know the serial number and the policy
name of this device, and the rest of the information is retrieved from the API.

import requests
import os
import sys
import json

baseURL = "HTTPS://ie.extremecloudiq.com/"

clientSecret = os.environ.get('clientSecret')
clientId = os.environ.get('clientId')
redirectURI = 'HTTPS://foo.com'
authToken = os.environ.get('authToken')
ownerID = os.environ.get('ownerID')

requestHeaders = { 'X-AH-API-CLIENT-SECRET': clientSecret,
 'X-AH-API-CLIENT-ID': clientId,
 'X-AH-API-CLIENT-REDIRECT-URI': 'HTTPS://foo.com',
 'Authorization': authToken
 }

params = {'ownerId': ownerID}

POLICY = "PolicyAPI"
PolicyID = 0
DeviceID = 0
SN = "1441N-41334"
assignPolicy = {"sns": ["1441N-41334"]}

def restGet(url):
 try:
 r = requests.get(baseURL + url, headers=requestHeaders, params=params)
 if r.status_code != 200:
 print("Connection failure! Unable to connect to API")

E x t r e m e A P I w i t h P y t h o n

P a g e | 127

Part no.9036931-00 Rev AA February 2021

 sys.exit(1)
 except requests.exceptions.RequestException as e:
 print("There was an error accessing XIQ API")
 sys.exit(1)

 return r.json()

data = restGet('xapi/v1/configuration/networkpolicy/policies')
for policy in data.get('data'):
 if policy['name'] == POLICY:
 PolicyID = policy['id']
 break

data = restGet('xapi/v1/monitor/devices')
for device in data.get('data'):
 if device['serialId'] == SN:
 DeviceID = device['deviceId']
 break

assignPolicy['deviceIds'] = [DeviceID]

postHeaders = { 'X-AH-API-CLIENT-SECRET': clientSecret,
 'X-AH-API-CLIENT-ID': clientId,
 'X-AH-API-CLIENT-REDIRECT-URI': 'HTTPS://foo.com',
 'Authorization': authToken,
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 }

try:
 r = requests.post(baseURL + 'xapi/v1/configuration/networkpolicy/{}/devices'.form
at(PolicyID), headers=postHeaders, params=params, json=assignPolicy)

 if r.status_code != 200:
 print("Connection failure! error code: {}".format(r.status_code))
 sys.exit(1)
except requests.exceptions.RequestException as e:
 print("There was an error accessing XIQ API")
 sys.exit(1)

E x t r e m e A P I w i t h P y t h o n

P a g e | 128

Part no.9036931-00 Rev AA February 2021

print(r.json())

Run this script on your test XIQ account. The following information is returned:

C:\Extreme API with Python> xiq2.py
{'data': {'status': 200, 'successMessage': 'Network Policy 382247794480476
applied to devices successfully.'}}

You have now successfully assigned a network policy to your EXOS switch.

6.2.3 Use Webhooks
Webhooks allow you to work in a reverse API, meaning instead of continuously requesting information
from the API, to monitor changes (for example in doing a hash of the answer to quickly locate a change),
you wait for the API to notify you when an event occurs. This approach is far more efficient and saves a
great deal of bandwidth and server processing time.

XIQ offers webhook services for Presence and Location.

To configure a webhook, and receive data, several steps are necessary:

- Presence Analytics must be enabled in the Network Policy for the AP
- The application, that receives the data from XIQ, must have subscribed to it

To test your webhook, you will be using the Webhook.site website. This service provides the URL you
need to configure a webhook. The XIQ webhook must send the data to this URL.

To subscribe to a webhook, you need to send a POST to the endpoint specified by the documentation.
The content of the body is also detailed there.

For example:

import requests
import os
import sys
import json

baseURL = "HTTPS://ie.extremecloudiq.com/"

clientSecret = os.environ.get('clientSecret')
clientId = os.environ.get('clientId')
redirectURI = 'HTTPS://foo.com'
authToken = os.environ.get('authToken')
ownerID = os.environ.get('ownerID')

subscriptionHeaders = { 'X-AH-API-CLIENT-SECRET': clientSecret,

E x t r e m e A P I w i t h P y t h o n

P a g e | 129

Part no.9036931-00 Rev AA February 2021

 'X-AH-API-CLIENT-ID': clientId,
 'X-AH-API-CLIENT-REDIRECT-URI': 'HTTPS://foo.com',
 'Authorization': authToken,
 'Accept': 'application/json',
 'Content-type': 'application/json'
 }

webhookurl = 'HTTPS://webhook.site/5b8f683d-e2e5-4373-aea8-9149a762357d'

params = {'ownerId': int(ownerID), 'application': 'WebhookTest', 'url': webhookurl, '
secret': 'test', 'messageType': 'LOCATION_AP_CENTRIC', 'eventType': 'LOCATION'}
params = json.dumps(params)

try:
 r = requests.post(baseURL + 'xapi/v1/configuration/webhooks', headers=subscriptio
nHeaders, data=params)
 if r.status_code != 200:
 print("Connection failure! Unable to connect to API. error code: {}".format(r
.status_code))
 sys.exit(1)
except requests.exceptions.RequestException as e:
 print("There was an error accessing XIQ API")
 sys.exit(1)

print(r.text)

After you execute this code, you should see the following result:

C:\Extreme API with Python> webhook.py
{"data":{"ownerId":88999,"application":"WebhookTest","secret":"test","url":"H
TTPS://webhook.site/5b8f683d-e2e5-4373-aea8-
9149a762357d","messageType":"LOCATION_AP_CENTRIC","createdAt":"2020-07-
03T07:22:46.230Z","id":382247794480746}}

If you connect to your XIQ account, you can see the webhook is configured from the Global Settings
menu, in the API Data Management panel.

E x t r e m e A P I w i t h P y t h o n

P a g e | 130

Part no.9036931-00 Rev AA February 2021

Enable Presence Analytics in your network policy in the Additional Settings panel.

The default trap interval is set to 60 seconds.

Look at your webhook tester to see if you are receiving data every minute.

E x t r e m e A P I w i t h P y t h o n

P a g e | 131

Part no.9036931-00 Rev AA February 2021

To stop the webhook, send a DELETE to the API endpoint, and specify the correct subscription ID. You
can also list and modify all your webhooks.

This example shows how to list your webhooks:

import requests
import os
import sys

baseURL = "HTTPS://ie.extremecloudiq.com/"

clientSecret = os.environ.get('clientSecret')
clientId = os.environ.get('clientId')
redirectURI = 'HTTPS://foo.com'
authToken = os.environ.get('authToken')
ownerID = os.environ.get('ownerID')

requestHeaders = { 'X-AH-API-CLIENT-SECRET': clientSecret,

 'X-AH-API-CLIENT-ID': clientId,

 'X-AH-API-CLIENT-REDIRECT-URI': 'HTTPS://foo.com',
 'Authorization': authToken

E x t r e m e A P I w i t h P y t h o n

P a g e | 132

Part no.9036931-00 Rev AA February 2021

 }

params = {'ownerId': ownerID}

def restGet(url):
 try:
 r = requests.get(baseURL + url, headers=requestHeaders, params=params)
 if r.status_code != 200:
 print("Connection failure! Unable to connect to API")
 print(r.content)
 sys.exit(1)
 except requests.exceptions.RequestException as e:
 print("There was an error accessing XIQ API")
 sys.exit(1)

 return r.json()

data = restGet('xapi/v1/configuration/webhooks')
print(data)

The result should match your current configuration:

C:\Extreme API with Python> webhookget.py
{'data': [{'ownerId': 88999, 'application': 'WebhookTest', 'secret': 'test',
'url': 'HTTPS://webhook.site/5b8f683d-e2e5-4373-aea8-9149a762357d',
'messageType': 'LOCATION_AP_CENTRIC', 'createdAt': '2020-07-
03T07:22:46.230Z', 'id': 382247794480746}], 'pagination': {'offset': 0,
'countInPage': 1, 'totalCount': 1}}

Stop the webhook by adding the following code at the end of your previous example:

subID = 0
for webhook in data.get('data'):
 if webhook.get('application') == "WebhookTest":
 subID = webhook.get('id')
 break

if subID:
 r = requests.delete(baseURL + 'xapi/v1/configuration/webhooks/{}'.format(subID),
 headers=requestHeaders, params=params)
 print(r.status_code)
 print(r.text)

E x t r e m e A P I w i t h P y t h o n

P a g e | 133

Part no.9036931-00 Rev AA February 2021

The result is shown here:

C:\Extreme API with Python> webhookget.py
{'data': [{'ownerId': 88999, 'application': 'WebhookTest', 'secret': 'test',
'url': 'HTTPS://webhook.site/5b8f683d-e2e5-4373-aea8-9149a762357d',
'messageType': 'LOCATION_AP_CENTRIC', 'createdAt': '2020-07-
03T07:22:46.230Z', 'id': 382247794480746}], 'pagination': {'offset': 0,
'countInPage': 1, 'totalCount': 1}}
200

Validate that the webhook subscription is no longer part of your XIQ configuration.

E x t r e m e A P I w i t h P y t h o n

P a g e | 134

Part no.9036931-00 Rev AA February 2021

7 Extreme Campus Controller API
Extreme Campus Controller is a wired and wireless management solution for campus and IoT networks.
As with most Extreme Networks solutions, it also provides a REST API. It supports Bearer tokens and
OAuth 2.0 for authentication and authorization.

The Extreme Campus Controller REST API is divided into three main parts:

- Application Manager API
- Platform Manager API
- Gateway API

The full documentation for each part is available at:

https://www.extremenetworks.com/support/documentation/extreme-campus-controller-
latest-documentation/

The Application Manager API provides a programmatic interface to install and manage applications,
create and manage containers, manage storage and images, and access system information and
features.

The Platform Manager API provides a programmatic interface to access and manage backup files, flash
memory, license information, controller logs, network test data and platform settings.

The Gateway API provides a single entry point between external requesting clients and the multiple
internal APIs that help install, manage, and extend applications that are supported by the Extreme
Campus Controller platform.

Everything that is part of the UI is accessible with the REST API.

7.1 Set Up Authorization
To obtain a token for accessing the API, you must do a POST to the endpoint shown below and include
your login and password.

HTTPS://<XCC-IP-Address>:5825/management/v1/oauth2/token

The body must be in JSON format, with the following data and structure:

{
 'grantType': 'password',
 'userId': '<login>',
 'password': '<password>'
}

Add the scope entry in the body, to specify a given scope for this access.

As of version 5.06, the following scopes are available:

https://www.extremenetworks.com/support/documentation/extreme-campus-controller-latest-documentation/
https://www.extremenetworks.com/support/documentation/extreme-campus-controller-latest-documentation/

E x t r e m e A P I w i t h P y t h o n

P a g e | 135

Part no.9036931-00 Rev AA February 2021

"scopes" : {
 "site" : "RW",
 "network" : "RW",
 "deviceAp" : "RW",
 "deviceSwitch" : "RW",
 "eGuest" : "RW",
 "adoption" : "RW",
 "troubleshoot" : "RW",
 "onboardAaa" : "RW",
 "onboardCp" : "RW",
 "onboardGroupsAndRules" : "RW",
 "onboardGuestCp" : "RW",
 "platform" : "RW",
 "account" : "RW",
 "application" : "RW",
 "license" : "RW",
 "cliSupport" : "RW"
 }

In return, the Extreme Campus Controller server issues a token. This is the Bearer token that you will use
for REST API CALLs. The token has a finite lifetime that defaults to 7200 seconds (which is 2 hours).

Depending on the configured user privileges, the adminRole is either FULL, allowing access in read-write
(RW) to everything, or read (R), granting read-only access.

This information is part of the response from the Extreme Campus Controller server. For example:

import os
import requests
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

xcclogin = os.environ.get('xcclogin')
xccpassw = os.environ.get('xccpassw')

auth_url = 'HTTPS://192.168.20.90:5825/management/v1/oauth2/token'
auth_body = {'grantType': 'password', 'userId': xcclogin, 'password': xccpassw}

r = requests.post(auth_url, verify=False, json=auth_body)

print(r.text)

The response:

E x t r e m e A P I w i t h P y t h o n

P a g e | 136

Part no.9036931-00 Rev AA February 2021

C:\Extreme API with Python> xcc.py
{
 "access_token" :
"eyJraWQiOiIxODI1RS1DMjYwMSIsInR5cCI6IkpXVCIsImFsZyI6IlJTMjU2In0.eyJzdWIiOiJVbmRlZmluZ
WQ6MTgyNUUtQzI2MDEiLCJsaWNlbnNlIjoib2siLCJzY29wZSI6IntcInNpdGVcIjpcIlJXXCIsXCJuZXR3b3J
rXCI6XCJSV1wiLFwiZGV2aWNlQXBcIjpcIlJXXCIsXCJkZXZpY2VTd2l0Y2hcIjpcIlJXXCIsXCJlR3Vlc3RcI
jpcIlJXXCIsXCJhZG9wdGlvblwiOlwiUldcIixcInRyb3VibGVzaG9vdFwiOlwiUldcIixcIm9uYm9hcmRBYWF
cIjpcIlJXXCIsXCJvbmJvYXJkQ3BcIjpcIlJXXCIsXCJvbmJvYXJkR3JvdXBzQW5kUnVsZXNcIjpcIlJXXCIsX
CJvbmJvYXJkR3Vlc3RDcFwiOlwiUldcIixcInBsYXRmb3JtXCI6XCJSV1wiLFwiYWNjb3VudFwiOlwiUldcIix
cImFwcGxpY2F0aW9uXCI6XCJSV1wiLFwibGljZW5zZVwiOlwiUldcIixcImNsaVN1cHBvcnRcIjpcIlJXXCJ9I
iwiaXNzIjoiYOUNDLjE4MjVFLUMyNjAxIiwiZXh0cmVtZV9yb2xlIjoiRlVMTCIsImV4cCI6MTU5Mzk1MDkxOS
wianRpIjoieW9zdHJvdnMifQ.IckhxZnvkF3JZSJd5fBaBtM_aOlGhxHKaul5vcTbZ6cklhPojKz5EEZR0zs7V
G09qhhwUrKmmMCRlb6JRAnZYZFC3ZZlTJWrZzUlLJtImn2fLsX8FcEy6Ep0j3tVBVD6yjNnzR2zLQM6btbBTie
zl_dUd2s5jT2JCckbOhMW_sUqDb2pKxqO2KN9-xa0QT7lTFpVFFAwqPvCLnHBvMu7Ab3v-cFCWmFt34fVaw-
vS5gm3dj7S612cNek2fhFDg_2CcWGWc3xGBjmZGNqfKf3yeuJ2YQm1ezIlHRQ8qHGIBwnqdtbejzmKqM11S3E6
gzI-OSGU3qrdXn5CvxGdtR0YQ",
 "token_type" : "Bearer",
 "expires_in" : 7200,
 "idle_timeout" : 356400,
 "refresh_token" : "a33d28c028959457acf46cde6385a3",
 "adminRole" : "FULL",
 "scopes" : {
 "site" : "RW",
 "network" : "RW",
 "deviceAp" : "RW",
 "deviceSwitch" : "RW",
 "eGuest" : "RW",
 "adoption" : "RW",
 "troubleshoot" : "RW",
 "onboardAaa" : "RW",
 "onboardCp" : "RW",
 "onboardGroupsAndRules" : "RW",
 "onboardGuestCp" : "RW",
 "platform" : "RW",
 "account" : "RW",
 "application" : "RW",
 "license" : "RW",
 "cliSupport" : "RW"
 }
}

When you have the Bearer token, you can add it to the Authorization header along with the Accept and
Content-Type headers, set to application/json.

In the documentation, locate the endpoint you want to use to access, modify, create, or delete
information on the Extreme Campus Controller server.

7.2 Use GET method
In this example, you can count how many APs are connected to your Extreme Campus Controller server.
To do this, use the /v1/aps endpoint. This endpoint is under the management root path.

E x t r e m e A P I w i t h P y t h o n

P a g e | 137

Part no.9036931-00 Rev AA February 2021

One way to obtain this information using Python is shown here:

import os
import requests
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

xcclogin = os.environ.get('xcclogin')
xccpassw = os.environ.get('xccpassw')

baseURL = 'HTTPS://192.168.20.90:5825'
auth_url = baseURL + '/management/v1/oauth2/token'
auth_body = {'grantType': 'password', 'userId': xcclogin, 'password': xccpassw}

r = requests.post(auth_url, verify=False, json=auth_body)
bearerToken = r.json().get('access_token')

myHeaders = {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + bearerToken
}

E x t r e m e A P I w i t h P y t h o n

P a g e | 138

Part no.9036931-00 Rev AA February 2021

def restGet(endpoint):
 try:
 r = requests.get(baseURL + endpoint, verify=False, headers=myHeaders, timeout=5)
 except requests.exceptions.Timeout:
 print("Timeout!")
 return None

 if r.status_code != 200:
 print("Cannot access XCC REST API! Error code: {}".format(r.status_code))
 print(r.content)
 return None

 return r.json()

data = restGet('/management/v1/aps')
if data:
 print(len(data))

Executing the script results in the following:

C:\Extreme API with Python> xcc.py

35

You can also modify your code to count the number of AP models.

data = restGet('/management/v1/aps')
if data:
 APList = []
 print(len(data))
 for ap in data:
 APList.append(ap.get('platformName'))

 for count, model in sorted(((APList).count(ap), ap) for ap in set(APList)):
 print("{} {}".format(model, count))

You should see the following:

C:\Extreme API with Python> xcc.py
35
AP310 1
AP3917 1
AP460 1
AP3912 3

E x t r e m e A P I w i t h P y t h o n

P a g e | 139

Part no.9036931-00 Rev AA February 2021

AP3935 3
AP410 3
AP510 3
AP3915 4
AP3916 4
AP505 4
SA201 8

7.3 Use POST
The PUT or POST method is very similar to GET. The main difference is that you must pass the data
structure you want to add or modify during the REST API CALL.

For example, create a new role (for Policy) in Extreme Campus Controller. Name it Stef. According to the
documentation, there are three required types of information in the JSON you will send, and the
expected response should be a 201 status code.

Tweak your previous CALL to minimize the output length and store the information in a more practical
way. Next, issue a POST to create the new role, if it doesn’t already exist.

data = restGet('/management/v1/aps')
if data:
 APList = []
 print("There are {} APs".format(len(data)))
 for ap in data:
 APList.append(ap.get('platformName'))

 new_list = []
 for count, model in sorted(((APList).count(ap), ap) for ap in set(APList)):
 entry = {}
 entry['model'] = model
 entry['count'] = count
 new_list.append(entry)

 print(new_list)
data = restGet('/management/v3/roles')
if data:
 print("\nThere are {} roles".format(len(data)))
 found = False
 for name in data:
 if name.get('name') == "Stef":
 print("The role Stef already exists")
 found = True

E x t r e m e A P I w i t h P y t h o n

P a g e | 140

Part no.9036931-00 Rev AA February 2021

 break

 if not found:
 role = {'name': 'Stef', 'defaultAction': 'allow', 'defaultCos': None}
 r = requests.post(baseURL + '/management/v3/roles', verify=False,
 headers=myHeaders, json=role)
 if r.status_code != 201:
 print("Cannot access XCC REST API! Error code: {}".format(r.status_code))
 print(r.content)
 exit(0)

The output should look like this:

C:\Extreme API with Python> xcc.py
There are 35 APs
[{'model': 'AP310', 'count': 1}, {'model': 'AP3917', 'count': 1}, {'model':
'AP460', 'count': 1}, {'model': 'AP3912', 'count': 3}, {'model': 'AP3935',
'count': 3}, {'model': 'AP410', 'count': 3}, {'model': 'AP510', 'count': 3},
{'model': 'AP3915', 'count': 4}, {'model': 'AP3916', 'count': 4}, {'model':
'AP505', 'count': 4}, {'model': 'SA201', 'count': 8}]

There are 42 roles

Log in to your Extreme Campus Controller server to confirm that you have one more role (43) and the
role you created is listed.

E x t r e m e A P I w i t h P y t h o n

P a g e | 141

Part no.9036931-00 Rev AA February 2021

7.4 Use PUT
In this example, rename your newly created role. You must do a PUT on the role, using its ID in the
endpoint, and sending the updated JSON data structure.

Make a slight modification to your code:

data = restGet('/management/v3/roles')
if data:
 print("\nThere are {} roles".format(len(data)))
 found = False
 for name in data:
 if name.get('name') == "Stef":
 print("The role Stef already exists")
 found = True
 role = name
 break
 if not found:
 role = {'name': 'Stef', 'defaultAction': 'allow', 'defaultCos': None}
 r = requests.post(baseURL + '/management/v3/roles', verify=False,
 headers=myHeaders, json=role)

E x t r e m e A P I w i t h P y t h o n

P a g e | 142

Part no.9036931-00 Rev AA February 2021

 if r.status_code != 201:
 print("Cannot access XCC REST API! Error code: {}".format(r.status_code))
 print(r.content)
 exit(0)
 else:
 role['name'] = "H2G2"

 r = requests.put(baseURL + '/management/v3/roles/{}'.format(role['id']),
 verify=False, headers=myHeaders, json=role)
 if r.status_code != 200:
 print("Cannot access XCC REST API! Error code: {}".format(r.status_code))
 print(r.content)
 else:
 print("Role name changed")

The result:
C:\Extreme API with Python> xcc.py
There are 35 APs
[{'model': 'AP310', 'count': 1}, {'model': 'AP3917', 'count': 1}, {'model':
'AP460', 'count': 1}, {'model': 'AP3912', 'count': 3}, {'model': 'AP3935',
'count': 3}, {'model': 'AP410', 'count': 3}, {'model': 'AP510', 'count': 3},
{'model': 'AP3915', 'count': 4}, {'model': 'AP3916', 'count': 4}, {'model':
'AP505', 'count': 4}, {'model': 'SA201', 'count': 8}]
There are 43 roles
The role Stef already exists
Role name changed

In Extreme Campus Controller, you can confirm that the role name has been changed.

E x t r e m e A P I w i t h P y t h o n

P a g e | 143

Part no.9036931-00 Rev AA February 2021

7.5 Use DELETE
This example shows you how to delete the role you just created using DELETE. Add the instruction at
the end of your code, as shown below:

data = restGet('/management/v3/roles')
if data:
 for name in data:
 if name.get('name') in ["Stef", "H2G2"]:
 print("Deleting role {}".format(name.get('name')))
 r = requests.delete(baseURL + '/management/v3/roles/{}'.format(name['id']),
 verify=False, headers=myHeaders)
 print(r.content)

Run the script to see the following:

C:\Extreme API with Python> xcc.py
There are 35 APs
[{'model': 'AP310', 'count': 1}, {'model': 'AP3917', 'count': 1}, {'model':
'AP460', 'count': 1}, {'model': 'AP3912', 'count': 3}, {'model': 'AP3935',
'count': 3}, {'model': 'AP410', 'count': 3}, {'model': 'AP510', 'count': 3},

E x t r e m e A P I w i t h P y t h o n

P a g e | 144

Part no.9036931-00 Rev AA February 2021

{'model': 'AP3915', 'count': 4}, {'model': 'AP3916', 'count': 4}, {'model':
'AP505', 'count': 4}, {'model': 'SA201', 'count': 8}]

There are 43 roles
Deleting role H2G2
b''
Deleting role Stef
b''

Because you executed the entire code, it created Stef again because Stef no longer existed after you
renamed it to H2G2. The new piece of code found and deleted each new entry. Because this was a
successful delete, no response was returned.

	1 Preface
	1.1 References
	1.2 Acknowledgements

	2 Introduction
	2.1 Using Python
	2.1.1 Install Python
	2.1.2 Update Your PATH
	2.1.3 Virtual Environment
	2.1.4 PIP
	2.1.5 Editors and IDE

	2.2 REST APIs
	2.2.1 URLs
	2.2.2 HTTP Status Codes
	2.2.3 HTTP Request Methods
	2.2.4 HTTP Headers
	2.2.4.1 Content-Type
	2.2.4.2 Accept
	2.2.4.3 Authorization
	2.2.4.4 X-Auth-Token

	2.2.5 Manipulating Headers with Python

	2.3 Authentication and Authorization
	2.3.1 Basic Authentication
	2.3.2 Bearer Authentication
	2.3.3 API Key
	2.3.4 OAuth 2.0
	2.3.5 Managing Passwords or Tokens with Python

	2.4 Understanding JSON
	2.5 Manipulating JSON with Python
	2.6 Interact with a REST API using Python
	2.6.1 Urllib
	2.6.1.1 Urllib examples

	2.6.2 Requests
	2.6.3 Testing a REST API

	2.7 Webhooks
	2.8 HTTPS with Python

	3 EXOS APIs
	3.1 On-Switch APIs
	3.1.1 Python Scripting
	3.1.1.1 Create a Python Script
	3.1.1.2 Copying Python Scripts to a Switch
	3.1.1.3 Execute a Python Script
	3.1.1.4 EXOS CLI Module
	3.1.1.5 Automate the Python Script Execution
	3.1.1.5.1 UPM
	3.1.1.5.2 Startup Files

	3.1.2 Python Application
	3.1.2.1 Create a Process
	3.1.2.2 Create an Application
	3.1.2.3 Add Proper Environment Validation

	3.2 External APIs
	3.2.1 RESTCONF API
	3.2.1.1 RESTCONF Documentation
	3.2.1.2 Working with EXOS RESTCONF
	3.2.1.3 How to Access Restconf
	Enable HTTPS on EXOS
	3.2.1.4 Using Restconf with Python

	3.2.2 JSON-RPC API
	3.2.2.1 JSON-RPC Overview
	3.2.2.2 EXOS JSON-RPC
	3.2.2.3 Using JSON-RPC with Python

	4 VOSS API
	4.1 VOSS RESTCONF Documentation
	4.2 Enable RESTCONF
	4.3 Use RESTCONF with Python
	4.4 EXOS & VOSS Restconf Python Classes

	5 XMC API
	5.1 Python Scripting Engine
	5.1.1 Default Location for Scripts
	5.1.2 Add a User-Created Script
	5.1.3 Python Modules Shipped with XMC
	5.1.4 System Path and Precedence
	5.1.5 Install a Library
	5.1.6 XMC Python Module
	5.1.6.1 emc_vars
	5.1.6.2 emc_cli.send()
	5.1.6.3 Additional emc_cli Methods
	5.1.6.4 Add User-Input Variables to a Script

	5.2 Workflow Engine
	5.2.1 emc_vars
	5.2.2 Create Workflows
	5.2.3 Create Variables
	5.2.4 emc_results
	5.2.5 Add User Inputs
	5.2.6 Automate Workflow Execution
	5.2.7 Workflow Example

	5.3 NorthBound Interface API
	5.3.1 emc_nbi
	5.3.2 GraphQL Query
	5.3.3 GraphQL Mutation
	5.3.4 RBAC for API Usage
	5.3.5 External Access to the NBI API
	5.3.6 Use NBI to Execute a Workflow

	5.4 Axis API
	5.4.1 Analytics Methods
	5.4.1.1 addLocation
	5.4.1.2 addLocationGroup
	5.4.1.3 getAppliances
	5.4.1.4 getApplicationBrowserTableData
	5.4.1.5 getBidirectionalFlowsData
	5.4.1.6 getLocations
	5.4.1.7 getUnidirectionalFlowsData
	5.4.1.8 getVersion
	5.4.1.9 importLocationCSV

	5.4.2 Analytics API with Python

	6 ExtremeCloud IQ API
	6.1 Connect to the xAPI
	6.1.1 Create Tokens
	6.1.2 Headers for the xAPI
	6.1.3 xAPI Endpoints
	6.1.4 Parameters

	6.2 Use Python with XIQ
	6.2.1 Use GET
	6.2.2 Use POST
	6.2.3 Use Webhooks

	7 Extreme Campus Controller API
	7.1 Set Up Authorization
	7.2 Use GET method
	7.3 Use POST
	7.4 Use PUT
	7.5 Use DELETE

