F= Extreme

networks

Extreme APl with Python

For Extreme Networks Products

Part Number 9036931-00 Rev AA
February 2021

Copyright © 2021 Extreme Networks, Inc. All rights reserved.

F= Extreme

networks

Table of Contents

1 Prefacelll'lll..ll..ll.UII.llI.lll.lll.lll.llllllll'lll'lll..ll.-ll..ll.llI.lll.lll.lll.llllllll' 5
1.1 RETEIEINCES ..ottt e e e et e e e e e e e sttt aeeeeeeeesasteaeeaaaesaanstraaeeaaesesanstasseaaasansnnnes 5
1.2 ACKNOWIEBAZEMENTS e e e e e et e e e e e e e e atbteeeeaeeessnnstaaeeeeseennnssnenes 5

p 2 191 { o Yo [V 1ot o [] o (PSRN -

2.1 1Y = SV Vo o PSP SP 6
2.1.1 Ta 1S &= L1 V24 To o PSPPSR 6
2.1.2 (T eTo 1o Lo TU L o = N - PRSP 6
2.13 Virtual ENVIFONMENTciiiiieiiii ettt ettt ettt e st e et esabe e sbeesbeeesabeesabeeens 7
214 PP et et et e eeee e ettt et ettt et ettt ettt et et et et et et e e e e e e aaeaaaaaaaaaaaaaaaaaaaaaaaaans 7
2.1.5 EItOrs @nd IDEottt et st s e e s re e e nnee s 7

2.2 REST APIS ..ttt ettt ettt et et e ee et e ettt et e et e et et et ettt et e et e et et et et e e e eataeaeaeaaaeaaaaaaaaaaaaaaaans 8
2.2.1 U RS .ottt ettt et et et e et e e e e e ee e e e e e et et et ettt e ettt e et et et et et et et e e e e e e e e e e e et eaeaaaeaaaaaaaaaaaaaans 8
2.2.2 HTTP StatusS COOES ..eeiniiiiuiieiiieeiie ettt ettt sttt e sat e st e s b e s sme e sare e sneessmeeesmreesneeenneeas 9
2.2.3 HTTP REQUEST MEENOMUS. ...t et e e e e e be e e e e nre e e e aees 9
224 HTTP HEAARIS ..ttt s e s 9
2.2.5 Manipulating Headers With PYthonoooiiiiiie e 11

2.3 Authentication and AUthOIIZationc.coiiiiiiiiei e 12
231 Basic AULhENTICATION ..ot s s 12
2.3.2 Bearer AUtheNtICAtiONc.ui ittt 12
233 F Y o I 1 P PP PSP PP PP PPPPPPPPPPPPPPP 13
234 (07N T 14 2K 0 PSP 13
235 Managing Passwords or Tokens with Pythoncooviiiiiiiiiiccicc e 13

2.4 UNerstanding JSONuoiiiiiiiie ittt ettt e e et e e e e bt e e e e sabaeeessabaeeesantaeessnsteeessseeeenans 15

2.5 Manipulating JSON With PYthoncooiiiiiiiic et e e aae e 16

2.6 Interact with @ REST API USING PYLhON ..oviiiiiiee ettt 18

2.6.1 UFTTID e ettt et e st e bt e e st e e st e e s be e e sabeesabeesbeeesnbeesabeeeanes 18

F= Extreme

networks

2.6.2
2.6.3
2.7
2.8

REOUESES ..ttt e e et e et e e ettt et et et et et et et et et et et eeaeaaaeaeaeaaaeaaeareaes 20
TESEING @ REST AP ..ttt e e et e e e e eeeeeeeeteeeseseseseseseseseeeeesaeaeeeaes 25
WEBRNOOKS ..ttt ettt e ettt e st e e sbe e e abe e st e e sabe e e naeesabeesanes 27
HTTPS WIth PYTRON .ceiiiee ettt ettt e s esne e e e s 28

3.1
3.11
3.1.2

3.2
3.21
3.2.2

ON=SWILCN APIS ...ttt ettt ettt sttt ettt e e b e e sbeesbeenbeenneennees 29
VA oo T g Yol o) T o =SOSR 29
VA d oo T g 1Y o] o] [ToF: 4 o Yo FH PR 35

EXTEINAI APIS ..ttt s st st ettt b e bt e she e s san e ettt reenreens 40
RESTCONF API ettt ettt e e et et eeee et ee e e teteeeteseseseseseseseseseseseseeeseeeeaes 41
JSON-RPC AP ettt et eeee e e et e e ee e et e e et e se s et esesesesesasesareeeeaeaeeeees 49

4.1
4.2
4.3
4.4

5 XM

51
51.1
5.1.2
5.13
5.14
5.15
5.1.6

5.2
5.21
5.2.2
5.2.3
524

VOSS RESTCONF DOCUMENTAtION ...cciiiiiiiiiiiiiiiiiciiicc it 55
EN@blE RESTCONF.....coiiiiieiite ittt sttt sttt et e bt e sb e sbe e satesanesanesabeeneebeenneens 55
Use RESTCONF With PYTRONcoiiiiie ettt e et e e et eatae e s snraee e 55
EXOS & VOSS Restconf PYLhoN Classes......cccuiiiiiciiieiiiiiiecciieeeecitee e e e e e e ssav e e esaae e e s sannee s 58
PYthon SCripting ENGINEcuuiiiieii it e e e e s e e e e e e s e anba e e e e e e e sennanreneeeeeesanns 59
(L] £ 1] L o ToF 1 o] TR o] g Yol] o] K-SR 59
Add @ User-Created SCriPL.. .ttt e e e e e e e e s b ree e e e e s e s nenrnneeeas 59
Python Modules Shipped With XIMICooeiiiiiieeec e svrree e e e e 59
System Path and PreCeAENCE.ociciiii ittt et e e are e e e reeas 60
Ta I = LI T o] =Y YRR 60
XIMC PYthOn MOGUIEoeieieee ettt e e e ate e e e e rte e e e s rae e e enees 60
AV o oLV =3 V=41 RSP RP 69
(=] 0 Lo = | PO UUPTPTPPR 69
Create WOIKFIOWSeiiieeeie ettt st e b e e eesareas 71
Create Variables ... i ee e e e arae e e nees 73

L= g ol = U USSP 77

F= Extreme

networks

5.2.5 Vo o I U K=Y o oYU SR SPR 81
5.2.6 Automate WOorkflow EXECULION.........eiiiiiiriiiiiie ettt 83
5.2.7 WOTKFIOW EXGMPIE oottt ettt e e e e e e e e ate e e e sbte e e esabaeeeennees 88
53 NOrthBouNd INTErface APL........co ittt st ettt st e s abe e sbee e sanes 93
53.1 L= 0 ol o o PSPPSR 94
5.3.2 (€T =T o] 0[O]I LU T=T USRS 94
533 (G =T o [O 1INV [V 1 d o o ISR 100
5.3.4 RBAC fOF APl USGEE .eeeiiieeiiiiiiieee e e e ectitte e e e e e erettte e e e e e e e sastseeeeeesesanebaaeeaseeesnnntaaneeeesennnsnsenns 102
5.3.5 External Access t0 the NBI APoo it 103
5.3.6 Use NBI to Execute @ WOrKFIOWcc.uieiiiiiiieiieee e 106
Bu AXIS APl h e ettt sttt e b e bt e bt e bt e nhe e sheesaeesare e 109
5.4.1 ANAIYEICS MEENOMS.viiie e e e et e e e et e e e seata e e e eateeesebaeeeeans 109
5.4.2 ANalytics API WIth PYtON c....ooiiiiie et e e e 113

6 ExtremeCloud IQ APlcceceirerirererrerererereresesececesesasesasasasssssssssssssl16

6.1
6.1.1
6.1.2
6.1.3
6.1.4

6.2
6.2.1
6.2.2
6.2.3

CONNECE 10 ThE XAPI ..ottt e st sb e s be e s anee e sareesaneeeas 116
CrEate TOKENS ..ottt ettt e st e e s be e e sab e e sabeesbeesneeesareesneeennes 116
Headers fOr the XAPI ... e 119
D EAN B g Yo | Yo 1o} SRR 119
ParamMELErS .. e 121

UsE PYthon With XIQU.......uiiiiiiiie ettt ettt e st e e et e e e e sat e e e s ennb e e e sensteeesnnaeeas 123
USE GET ittt st 123
USE POST ettt ettt 125
USE WEDNOOKS ...ttt sttt bbbt s s e 128

7 Extreme Campus Controller APlccccovvrveiivniireiieniiincieennene.. 134

7.1
7.2
7.3
7.4
7.5

Set UP AULNOTIZAtION .. .uuiiiiie i e e e et rre e e e e e e e abraaae e e e e e nsnraees 134
USE GET METNOM ...ttt st e sab e st e s be e e sareesaneeeanee 136
USE POST .ttt ettt sttt ettt ettt ettt et e e bt e ebe e eh e e sh e e sae e e aeeeab e eabe et e e beeebeeebeeeheenheenaeas 139
USE PUT L.ttt sttt st ettt ettt e bt e bt e s bt e s bt e eaeeeaeesateeaeeeabeeabeebeeabeebeenbeenneas 141

USE DELETE...i i e 143

F= Extreme

networks

1 Preface

Extreme API with Python

Page |5

This document is provided for information only, to share technical experience and knowledge. Do not

use this document to validate designs, features, or scalability.

1.1 References

The following references are used extensively in the preparation of this document:
EXOS 30.6 User Guide
EXOS 30.6 RestConf Developer Guide
XMC 8.4.3 GraphQL API

Confiquring User Interfaces and Operating Systems for VOSS 8.1.5

ExtremeCloud 1Q Developer Portal

Engineering APIl/Application Documentation

Extreme Developer Center

Extreme Networks product documentation (software)

RFC 8040 RESTCONF Protocol
RFC 8343 A Yang Data Model for Interface Management
RFC 8259 The JavaScript Object Notation (JSON) Data Interchange Format

HTTPS://www.python.org/
HTTPS://www.openconfig.net/

1.2 Acknowledgements

Document author: Stéphane Grosjean, Principal Systems Engineer

Content in this document is based on training modules provided by Markus Nispel and lab guides

developed by the Extreme Systems Engineering team.

Part no.9036931-00 Rev AA

February 2021

https://documentation.extremenetworks.com/exos_30.6/GUID-7D648968-51CD-4E05-828C-8606BD5C0474.shtml
https://documentation.extremenetworks.com/exos_restconf_30.6/EXOS_RESTCONF_Developer_Guide_30_6.pdf
https://documentation.extremenetworks.com/XMC_API/8.4/GraphQLschema/index.html
https://documentation.extremenetworks.com/VOSS/SW/81x/ConfigUIOSVOSS_8.1.5_CG.pdf
https://developer.aerohive.com/
http://api.extremenetworks.com/
https://www.extremenetworks.com/support/documentation-api/
https://www.extremenetworks.com/support/documentation/product-type/software/
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc8343
https://tools.ietf.org/html/rfc8259
https://www.python.org/
https://www.openconfig.net/

Extreme API with Python

F= Extreme

networks
Page |6

2 Introduction
This document provides an easy approach to the various APIs within Extreme Networks solutions.

The programming language used here is Python 3, but other languages can also be used. The Python 3
was selected based on how easy it is for beginners to learn, and its wide use in the market.

2.1 Using Python

At the time this document was written, Python had two major versions: Python 2.7 and Python 3.
Although Python 2 has seen wide use and is often the default version of the programming language
installed on OS (Linux, MacOS), it has reached an end-of-support milestone (January 1%, 2020) and no
further development is planned. The current version of Python 2 is 2.7.18, released in April 2020. As a
result, this document references only the most recent version of Python 3, which is 3.8.3.

2.1.1 Install Python

This document does not address Python installation details. There are many resources available in
blogs, YouTube videos, and books.

The recommendation is to download the latest version of Python 3 directly from the Python website
(HTTPS://www.python.org/downloads/) if you haven’t already installed it on your system. Linux and
MacOS had Python 2.7 pre-installed, however it is not included by default with Windows.

Use the commands shown below to verify which release you have from the command shell. These are
examples for Windows 10 and Ubuntu 20.04:

C:\Users\stgrosjean>python --version
Python 3.7.7

stef@ubuntu-lab:~$ python --version
Python 2.7.18rcl

stef@ubuntu-lab:~$ python3 --version
Python 3.8.2

Note: On the Ubuntu output, we have both Python 2 and Python 3 installed. To differentiate
between the two, you need to type either python (for Python 2) or python3 (for Python 3).

2.1.2 Update Your PATH

Update your PATH system variable to execute Python from anywhere on your PC. The most recent
Python installer can do this for you automatically.

Part n0.9036931-00 Rev AA February 2021

https://www.python.org/downloads/

Extreme API with Python

[= Extreme

networks
Page |7

2.1.3 Virtual Environment

The easiest way to manage multiple packages, modules and libraries is to work with virtual
environments. If you do not use a virtual environment, every time you install a new package, module, or
library, it is added into the global Python installation. This becomes problematic if you install packages
with dependencies that may require older or more recent versions of modules you are already using. In
these cases, some applications can fail as versions of existing modules are changed.

A virtual environment creates a fresh copy of the Python global environment. You can create multiple
virtual environments and install the packages you want only into the environment you specify, without
breaking existing installations and applications.

HTTPS://docs.python.org/3/library/venv.html

Note: How you create and manage virtual environments has changed with Python 3.6. Make
sure to use the recommended methods.

2.1.4 PIP

The best tool for installing new modules and libraries is PIP, which is highly recommended, and installed
by default with Python since release 3.4.

HTTPS://docs.python.org/3/installing/index.html

2.1.5 Editors and IDE

You will need a text editor to work with a programming language. Although nearly any text editor will do
the job, specialized editors and IDEs (integrated development environments) can help simplify your
workflow.

Many popular text editors and IDEs have Python support built-in, for example:

- Vim

- Sublime Text

- Notepad++

- Visual Studio Code
PyCharm
Spyder
Jupyter

These editors and environments may provide a color scheme to quickly identify reserved words,
functions, and variables. Many also have an integrated help system, and intelligent auto-completion.
Depending on the tool, auto-completion may propose functions and methods associated with variables,
depending on various factors.

Typically, if you use a simple text editor, you test your code from the command line in a separate
window. Using Python, simply type python (or python3) to enter the Python interactive shell and type
and test your code.

Part n0.9036931-00 Rev AA February 2021

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/installing/index.html
https://www.vim.org/
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://code.visualstudio.com/

Extreme API with Python

[= Extreme

networks
Page |8

Note: If you need more information about a function, method or library, Python has a built-in help
system. In the Python interactive shell, type help (<method>) or dir (<method>.

If you use an IDE, you can run code directly from the editor and, with more advanced IDEs, you can
manage virtual environments and execute selected portions of code. Spyder and Jupyter are part of the
Anaconda distribution, which is a typical environment for data science.

2.2 REST APIs

This document describes with forms and variants of REST APIs, sometimes using Openconfig or GraphQL
for more standard ones, or a specific API for some others. They all share the same generic logic,
requiring you to access a specific URL via HTTP to retrieve data, most likely, formatted in JSON. To do
this, you may need to install some Python libraries.

First it is necessary to understand URLs.

2.2.1 URLs

URL stands for Uniform Resource Locator, which is a string you enter in a browser, typically to access a
site. This string contains a great deal of information.

HTTPS://en.wikipedia.org/wiki/JSON?key=value&data=info#Example

For example, this URL can be broken down into the following elements:

The protocol, which can be HTTPS, HTTP, ftp, etc.

The host, often an IP address, which is the location of the server you want to reach.

The host is sometimes followed by “:” and a value, which is the port number. If this is not
present, then the browser defaults to the default protocol value (HTTP = 80, HTTPS = 443, for
example).

The path at the destination server to reach the content. In the context of a REST AP, this is
often called an endpoint.

A query string follows an optional ?, and is used to pass arguments to the server, typically in
name=value pairs. To pass several arguments, use the & character to separate them.

A fragment appears after an optional #, and leads directly to a given part of the content.

https://en.wikipedia.org/wiki/JSON? #Example
" | . | ' T
Protocol Host (:Port) Path Querystring Fragment

Part n0.9036931-00 Rev AA February 2021

https://www.anaconda.com/
https://en.wikipedia.org/wiki/JSON?key=value&data=info#Example

Extreme API with Python

F= Extreme

networks
Page |9

2.2.2 HTTP Status Codes

When working with HTTP, it is important to understand the status code that is returned in a CALL. There
are five status code categories:

1xx: informational response
2xx: successful

3xx: redirection

4xx: client error

5xx: server error

You should see a 200 when everything is operating normally (OK). Error codes such as 403 (forbidden
access) or 404 (not found) help identify issues.

A complete list of the status codes is available in several locations, such as Wikipedia:

HTTPS://en.wikipedia.org/wiki/List of HTTP status codes

2.2.3 HTTP Request Methods

In REST, you send commands centered around a resource, which is anything that can be pointed to via
HTTP protocol. CALL the API using standard HTTP request methods, such as: GET, POST, PUT, DELETE,
and PATCH. There are more methods, but for REST APIs they are usually not required.

HTTPS://www.w3schools.com/tags/ref httpmethods.asp

Note: This is sometimes referred to as CRUD (Create, Read, Update, Delete), which is basically a cycle for
database records.

It is important to understand the role of the request methods:

Use GET to request data from a specified resource. You can think of it as a read.

Use POST to send data to a server to create or update a resource.

Use PUT to send data to a server to create or update a resource. This might seem redundant
with POST, but there is a difference between them: PUT is idempotent. That is, if you are calling
multiple times using the same PUT request, it will always produce the same result. POST will
create multiples of the same resource.

Use PATCH to send data to a server to update an existing resource.

Use DELETE to delete a specified resource.

The API dictates the method you use. For example, if you use PUT instead of POST, you will receive an
error from the server.

2.2.4 HTTP Headers

With HTTP, the data you transfer can be separated in headers and body. The body contains the usable
data (the html to represent a web page, the data in JSON, etc.). The headers are very important because
they provide crucial information about the body content.

Part n0.9036931-00 Rev AA February 2021

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://www.w3schools.com/tags/ref_httpmethods.asp

Extreme API with Python

F= Extreme

networks
Page |10

Wen working with REST API, (and any API using HTTP), you will most likely need to manipulate the
headers using the content-type, accept, authorization and x-auth-token commands.

Note: The HTTP Archive site is an excellent resource for learning more about HTTP. This site
monitors the top 1.3M web sites and extracts the HTTP information for analyses. This
information, along with reports such as State of the Web, are accessible to the public.

2.2.4.1 Content-Type

The content-type indicates, as the name implies, what is the format of the data in the body. Thisis a
very important piece of knowledge, as you would not treat that data the same way if this is pure text
html, some binary form or some JSON data for an application.

In your context of a REST API, you’ll most likely use the “application/json” value for this parameter, as
long as you are, indeed, transmitting data in JSON format.

Content-Type: application/json

HTTPS://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

2.2.4.2 Accept

The client uses the Accept header to advertise which content types it can understand. The server
informs the client of the choice using the Content-Type header. In REST API, the accept header is often
set to “application/json”.

Accept: application/json

HTTPS://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept

2.2.4.3 Authorization

The authorization request header contains the credentials required to authenticate a user agent (a
client) with a server. The authorization header value format is <type> <credential> with a space
between them.

The typical Basic authentication type concatenates the username and the password in a single string,
separated by a colon (:). This means that a username cannot also contain a colon. The result is encoded
in base64. This is not an encryption because it is reversible.

To access an online tool that can encode and decode in base64, visit: HTTPS://www.base64encode.org/

As an example, the string stef : extreme is encoded in base64 as c3R1ZjpleHRyZW11.

authorization: Basic c3R1ZjpleHRyZWl1ll

HTTPS://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Part n0.9036931-00 Rev AA February 2021

https://httparchive.org/
https://httparchive.org/reports/state-of-the-web
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://www.base64encode.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Extreme API with Python

[= Extreme

networks
Page |11

2.2.4.4 X-Auth-Token

The X-Auth-Token is an unregistered header and is not subject to formal specification. Its presence and
content are always tied to a respective application. It typically stores a token for authorization and can
be considered as a shortcut of the bearer token defined in OAuth 2.0.

For Extreme APIs, the X-Auth-Token will be used with EXOS and VOSS Restconf implementation.

2.2.5 Manipulating Headers with Python

The requests module, and by extension the Urllib module, provide easy access to HTTP Headers. From
requests, headers are simply a Python dictionary, and you can manipulate both the request and
response headers.

import requests

requests.get("HTTPS://api.nasa.gov/planetary/apod")

print("Headers sent: ", r.request.headers)
print("\nHeaders received: ", r.headers)

The result is shown below:

C:\Extreme API with Python> headers-example.py

Headers sent: {'User-Agent': 'python-requests/2.22.0', 'Accept-Encoding':
'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive'}

Headers received: {'Server': 'openresty', 'Date': 'Sun, 14 Jun 2020 14:55:49
GMT', 'Content-Type': 'application/json', 'Transfer-Encoding': 'chunked',
'Connection': 'keep-alive', 'Vary': 'Accept-Encoding', 'Access-Control-Allow-
Origin': '*', 'X-Cache': 'MISS', 'Strict-Transport-Security': 'max-
age=31536000; preload', 'Content-Encoding': 'gzip'}

You can easily customize headers using the requests module:
import requests
headers =

‘content-type': 'application/json’,
'X-auth-token': 'c3R1ZjpleHRyZW1l'

requests.get("HTTPS://httpbin.org/get", headers=headers)

print("Headers sent: ", r.request.headers)
print("\nHeaders received: ", r.headers)

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

F= Extreme

networks

Page |12
The result is shown below:
C:\Extreme API with Python> headers-example.py
Headers sent: {'User-Agent': 'python-requests/2.22.0', 'Accept-Encoding':
'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'content-type':
'application/json', 'x-auth-token': 'c3R1ZjpleHRyZWI11l'}
Headers received: {'Date': 'Sun, 14 Jun 2020 15:03:53 GMT', 'Content-Type':
'application/json', 'Content-Length': '390', 'Connection': 'keep-alive',
'Server': 'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-
Control-Allow-Credentials': 'true'}

2.3 Authentication and Authorization

Most APIs will ask for some form of authentication or authorization before granting access to data.
Some form of authentication will be necessary even when you are accessing public data.

Because HTTP is stateless, this is a key aspect of HTTP transport . Being stateless means a server, AP,
has no idea who is requesting/sending data for every transaction. So, if that data is not public,
authentication/authorization information must be sent in every request. As you cannot expect to type
your login/password for every CALL, there’s a need to have an alternate way to manage that
authentication process.

As a quick reminder, although authentication and authorization are related, they are different concepts.
Authentication validates who you are, to give you access to what belongs to your profile, while
authorization is more about what data you can access.

The most common authentication methods include Basic, Bearer, APl key, and OAuth.
Several other methods exist, and some are standardized.

http://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

These methods are described in the following sections.

2.3.1 Basic Authentication

Basic authentication is a classic and is well-defined with HTTP. These are the usual login and password
credentials that you provide when identifying yourself to the API. These credentials are stored in the
authorization portion of the HTTP headers. The credentials are not sent in plain text but are encoded in
baseb4. Because this encoding mechanism is not an encryption, the best practice is to use it only with
HTTPS.

2.3.2 Bearer Authentication

This method is also called token authentication and involves security tokens called bearer tokens. The
name can be understood as “give access to the bearer of this token”. The token is a cryptic string
generated by the server in response to a login request, and is sent in the authorization headers. The

Part n0.9036931-00 Rev AA February 2021

http://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

Extreme API with Python

[= Extreme

networks
Page |13

bearer scheme was created as part of OAuth 2.0 (rfc 6750), but is sometimes used alone. As the token
must remain secret, the best practice is to use it only with HTTPS.

2.3.3 APIKey

APl keys are common. This is what you would typically use when working with YouTube APIs, for
example.

The benefit of this method is that it uses a different set of identification credentials than those used for
the account itself, (for example, what basic authentication doesn’t provide). The drawback with this
method is that it is not standardized, and so the API determines how the key is passed. It could be
hidden in the body, in the authorization header, in a cookie, or as a query string. Because the key must
remain a secret, the best practice is to use it only with HTTPS.

2.3.4 OAuth 2.0

The Open Authorization protocol gives an API client limited access to user data. GitHub, Google, and
Facebook APIs notably use it. This standard is defined in rfc 8252.

With OAuth 2.0, the authentication scenarios are called flows. Flows allow the resource owner to share
the protected content from the resource server without sharing their credentials. For this purpose,
access tokens (see bearer tokens) are issued by the server to client applications, giving them access the
protected data.

Several flows are defined in the standard:
- Authorization code
Implicit
- Resource owner password credentials
Client credentials

Learn more about how to use flows on the getting started official site:

HTTPS://oauth.net/getting-started/

2.3.5 Managing Passwords or Tokens with Python

When you are writing applications that need to access APIs, the best practice is to not store credentials
(hard-code them) in the code. Although this approach is convenient for testing purposes, it presents an
obvious security risk.

One way to handle this situation is to ask for credentials when executing the application, using at a
minimum a library (such as getpass) to hide the password. This approach is simple, but it requires
someone in front of the application to enter the information.

import getpass

username = input("Username: ")

Part n0.9036931-00 Rev AA February 2021

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc8252
https://oauth.net/getting-started/

Extreme API with Python

[= Extreme

networks
Page |14

password = getpass.getpass()

print("\nYou entered:\nUsername: Password: ".format(username, password))

The result is shown below:

C:\Extreme API with Python> auth-examples.py
Username: Stef
Password:

You entered:
Username: Stef Password: extreme

If the application is running on a secure environment, another way to is to store passwords, keys, and
tokens as environment variables that the application can access. How you create environment variables
will depend on your operating system:

- In Windows, create environment variables from Control Panel > System > Advanced System
Settings > Environment Variables.

- With MacOS and Linux, add variables in the .batch_profile file, located in your home directory.
The syntax is export <Var Name>="<Value>". There are no spaces between the variable name, the
=sign and the value.

You can then access these environment variables with the OS module.
In this example, you have created (on Windows 10) 2 environment variables:

- MY_USER
- MY_PASSWORD

You can retrieve them from Python, without exposing them in the code:

import os

username = os.environ.get('MY_USER")

password = os.environ.get('MY_PASSWORD")

print("Username is: \nPassword is: ".format(username, password))

The result:

C:\Extreme API with Python> auth-examples.py
Username is: Stef
Password is: extreme

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |15

2.4 Understanding JSON

JSON (JavaScript Object Notation) is an open standard file format, defined in RFC 8259
(HTTPS://tools.ietf.org/html/rfc8259), widely used to format the data transmitted and stored with
modern APIs and tools. Despite its name, JSON is language-independent and is used with whatever
programming language needed.

It is the preferred data format when working with REST APIs, but also is widely used as config files for
many applications (from your child’s Minecraft server settings to XMC settings, for example). It’s worth
to note that the first version of the JSON RFC (rfc 4627) registered the media type “application/json”.

JSON is a text format, human-readable tool that has been widely adopted to replace other standards
such as XML. The JSON format accepts basic data types such as number, string (delimited with double-
guotation marks), Boolean (true or false), array (ordered list of any type delimited with square brackets,
and each element separated with a comma), objects (collection of key-value pairs where the key is a
string) and empty value with the word null. A JSON object is always delimited between curly brackets or
square brackets. Each entry is separated with a comma, except for the last one for each object.

The following example was taken from Wikipedia (HTTPS://en.wikipedia.org/wiki/JSON#Example):

{

"firstName": "John",
"lastName": "Smith",
"isAlive": true,

"age": 27,

"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

b

"phoneNumbers": [

{
"type": "home",
"number": "212 555-1234"
b
{
"type": "office",
"number": "646 555-4567"

}
1,
"children": [],
"spouse": null

}

Comments are not allowed in a JSON document.

Although JSON is not the only format for APls, it is currently the most widely used. It comes with some
limitations that open doors for new formats. However, when you need a text file format with

Part n0.9036931-00 Rev AA February 2021

https://tools.ietf.org/html/rfc8259
https://en.wikipedia.org/wiki/JSON#Example

Extreme API with Python

F= Extreme

networks
Page |16

information that can be read by humans, JSON is currently the most efficient tool. Nevertheless, when
you need to exchange a vast amount of information, performance and efficiency become more
important and you can consider new standards. These alternatives are not yet used in external Extreme
APIs, although binary formats, such as Protobuf, are becoming popular as well. JSON and Protobuf are
expected to co-exist, serving different needs.

2.5 Manipulating JSON with Python

Manipulating JSON-formatted data with Python is simple because the data types are well matched. The
standard library, included by default with Python, has a JSON module that converts JSON to Python, and
vice-versa, as defined in the Python documentation, and shown in this table:

JSON Python
Object dict
Array list
String str
number (int) int
number (real) float
true True
false False
null None

HTTPS://docs.python.org/3/library/json.html#encoders-and-decoders

View the functions and methods available with JSON using the print (dir (json)) command:

import json

print(dir(json))

The result:

['JSONDecodeError', 'JSONDecoder', 'JSONEncoder', ' all ', ' author ',
' builtins ', ' cached ', ' doc_ ', ' file ', ' loader_ ',

' name ', ' package ', ' path ', ' spec ', ' version ',

' default decoder', ' default encoder', 'codecs', 'decoder',

'detect encoding', 'dump', 'dumps', 'encoder', 'load', 'loads', 'scanner']

The methods most often used are highlighted in this example. The following examples illustrate how to
use some of these methods.

Part n0.9036931-00 Rev AA February 2021

https://docs.python.org/3/library/json.html#encoders-and-decoders

Extreme API with Python

[= Extreme

networks
Page |17

import json
json_sample = "'
{
"whisky": [
{

"name": "Hibiki",

"type": "Blended",

"age": 17

"0ld Pulteney",
"Single Malt",

1B

"stock": null,
"alcohol": true

data = json.loads(json_sample)
print(type(data))
print(data)

new_data = json.dumps(data)
print(type(new_data))
print(new_data)

This example imports the JSON module and manipulates a JSON entry in Python. You must first
transform it to an editable dictionary, then reconvert it to JSON format. The null and Boolean values
change accordingly.

<class 'dict'>

{'whisky': [{'name': 'Hibiki', 'type': 'Blended', 'age': 17}, {'name': '0Old
Pulteney', 'type': 'Single Malt', 'age': 21}], 'stock': None, 'alcohol':
True}

<class 'str'>

Part n0.9036931-00 Rev AA February 2021

, Extreme API with Python
F= Extreme

networks
Page |18
{"whisky": [{"name": "Hibiki", "type": "Blended", "age": 17}, {"name": "Old
Pulteney", "type": "Single Malt", "age": 21}], "stock": null, "alcohol":

true}

In this example, a string is the source, but you could also have uploaded information from a file, and
saved it back to a file using the json.load () and json.dump () commands.

2.6 Interact with a REST API using Python

Now that you have a basic understanding of what a REST APl is, the following examples show how you
to interact with one using Python.

2.6.1 Urllib

When you are working with Python, you can access HTTP or HTTPS URLs using the standard (included)
Urllib package. For details about how to use Urllib, see the official documentation, or use any of the
many tutorials available online.

HTTPS://docs.python.org/3/library/urllib.html

Urllib has several modules, the request module being the most useful.

HTTPS://docs.python.org/3/library/urllib.request.html#module-urllib.request

2.6.1.1 Urllib examples

Enterdir () oftheurllib.request to see the list of available methods and functions.

from urllib import request

print(dir(request))

The output is shown below, with the most useful function highlighted.

['AbstractBasicAuthHandler', 'AbstractDigestAuthHandler',
'AbstractHTTPHandler', 'BaseHandler', 'CacheFTPHandler',
'ContentTooShortError', 'DataHandler', 'FTPHandler', 'FancyURLopener',
'FileHandler', 'HTTPBasicAuthHandler', 'HTTPCookieProcessor',
'"HTTPDefaultErrorHandler', 'HTTPDigestAuthHandler', 'HTTPError',
'HTTPErrorProcessor', 'HTTPHandler', 'HTTPPasswordMgr',
'HTTPPasswordMgrWithDefaultRealm', 'HTTPPasswordMgrWithPriorAuth',
'HTTPRedirectHandler', 'HTTPSHandler', 'MAXFTPCACHE', 'OpenerDirector',
'ProxyBasicAuthHandler', 'ProxyDigestAuthHandler', 'ProxyHandler', 'Request',
'URLError', 'URLopener', 'UnknownHandler', ' all ', ' Dbuiltins ',

' cached ', ' doc ', ' file ', ' loader ', ' name ', ' package ‘',
' spec_ ', ' wversion ', ' cut port re', ' ftperrors', ' have ssl',

' localhost', ' noheaders', ' opener', ' parse proxy',

' proxy bypass macosx sysconf', ' randombytes', ' safe gethostbyname',

' thishost', ' url tempfiles', 'addclosehook', 'addinfourl', 'base64',
'bisect', 'build opener', 'contextlib', 'email', 'ftpcache', 'ftperrors',

Part n0.9036931-00 Rev AA February 2021

https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.request.html#module-urllib.request

Extreme API with Python
[= Extreme

networks
Page |19

'ftpwrapper', 'getproxies', 'getproxies environment', 'getproxies registry',
'hashlib', 'http', 'install opener', 'io', 'localhost', 'noheaders', 'os',
'parse http list', 'parse keqv list', 'pathnameZurl', 'posixpath',

'proxy bypass', 'proxy bypass environment', 'proxy bypass registry', 'quote',
're', 'request host', 'socket', 'splitattr', 'splithost', 'splitpasswd',
'splitport', 'splitquery', 'splittag', 'splittype', 'splituser',
'splitvalue', 'ssl', 'string', 'sys', 'tempfile', 'thishost',

'time', 'to bytes', 'unquote', 'unquote to bytes', 'unwrap', 'urlZ2pathname'’,
'urlcleanup', 'urljoin', 'urlopen', 'urlparse', 'urlretrieve', 'urlsplit',
'urlunparse', 'warnings']

The following example shows how to use urlopen, and how to find other functions:

from urllib import request

resp = request.urlopen('HTTPS://www.youtube.com")
print(dir(resp))

Performa dir () of the object returned from request.urlopen to see more functions.

[' abstractmethods ', ' class ', ' del ', ' delattr ', ' dict ',

' dir ', ' doc_ ', ' enter ', ' eq ', ' exit ', ' format ',

' ge ', ' getattribute ', ' gt ', ' hash ', ' init ',

' init subclass ', ' iter ', ' le ', ' 1t ', ' module ', ' ne ',
' new ', ' mnext ', ' reduce ', ' reduce ex ', ' repr ',

' setattr ', ' sizeof ', ' str ', ' subclasshook ', ' abc impl',

' checkClosed', ' checkReadable', ' checkSeekable', ' checkWritable',

' check close', ' close conn', ' get chunk left', ' method', ' peek chunked',
' readl chunked', ' read and discard trailer', ' read next chunk size',

' read status', ' readall chunked', ' readinto chunked', ' safe read',

' safe readinto', 'begin', 'chunk left', 'chunked', 'close', 'closed',
'code', 'debuglevel', 'detach', 'fileno', 'flush', 'fp', 'getcode',
'getheader', 'getheaders', 'geturl', 'headers', 'info', 'isatty', 'isclosed',
'length', 'msg', 'peek', 'read', 'readl', 'readable', 'readinto',
'readintol', 'readline', 'readlines', 'reason', 'seek', 'seekable', 'status',
'tell', 'truncate', 'url', 'version', 'will close', 'writable', 'write',
'writelines']

The following example shows how to use these functions:

from urllib import request

resp = request.urlopen('HTTPS://www.python.org")

print(resp.code)
print(resp.length)

data = resp.read()

Part n0.9036931-00 Rev AA February 2021

F= Extr

eme

networks

Extreme API with Python

Page |20

print(type(data))
print(len(data))

The result is shown below:

200
48959

<class 'bytes'>

48959

This example shows the success HTTP status code (200), and the amount of data returned in bytes.

2.6.2 Requests

Although Urllib provides all the required tools to manipulate URLs and HTTP CALLs, a better package
called Requests is commonly used.

HTTPS://requests.readthedocs.io/en/master/

The best practice is to install Requests with PIP.

Note: The Requests module is part of XMC Python scripting engine and EXOS Python scripting capability.

The following example creates a virtual environment in Windows 10 to demonstrate how to create and
activate a venv.

C:\> python -m venv "c:\Extreme API with Python"

C:\> cd "\Extreme API with Python"

C:\Extreme API with Python> dir

Directory of C:\Extreme API with Python

05-Jun-20
05-Jun-20
03-Jun-20
05-Jun-20
03-Jun-20
04-Jun-20
03-Jun-20
02-Jun-20
03-Jun-20
04-Jun-20
03-Jun-20
03-Jun-20

C:\Extreme
C:\Extreme

09:
09:
16:
01:
11:
00:
11:
19:
11:
13:
12:
01:

APT
API

Extreme API with Python
Extreme API.docx
Include

Jjson-example.py

Lib

Presentationl.pptx
pyvenv.cfg
requests-example.py
Scripts
urllib-example.py

6,030,130 bytes
691,064,119,296 bytes free

19 <DIR>

19 <DIR>

00 <DIR>

47 492,137
55 <DIR>

59 453
55 <DIR>

43 5,537,071
55 125
47 167
03 <DIR>

11 177
6 File(s)

6 Dir(s)

with Python>

with Python> Scripts\activate.bat

(Extreme API with Python)

Collecting requests

C:\Extreme API with Python> pip install requests

Part no.9036931-00 Rev AA

February 2021

https://requests.readthedocs.io/en/master/

Extreme API with Python

[= Extreme

networks
Page |21

Downloading
HTTPS://files.pythonhosted.org/packages/1a/70/1935c770cb3bebe3a8b78ced23d7e0f3b187f5ch
fab4749523ed65d7¢c9bl/requests-2.23.0-py2.py3-none-any.whl (58kB)

I | i .oV
Collecting certifi>=2017.4.17 (from requests)

Downloading
HTTPS://files.pythonhosted.org/packages/57/2b/26e37a4b034800c960a00c4elb3d9cabd7014e98
3e6e729e33ea2f36426c/certifi-2020.4.5.1-py2.py3-none-any.whl (157kB)

N | 165 E .4V
Collecting idna<3,>=2.5 (from requests)

Downloading
HTTPS://files.pythonhosted.org/packages/89/e3/afebe61c546d18fb1709a61bee788254b40e736¢C
f£f7271c7de5de2dc4128/idna-2.9-py2.py3-none-any.whl (58kB)

N | i {1V
Collecting urllib3!=1.25.0,!'=1.25.1,<1.26,>=1.21.1 (from requests)

Downloading
HTTPS://files.pythonhosted.org/packages/el/e5/df302e8017440f111cllcc41abb432838672£5a7
0aa29227bf58149dc72f/urllib3-1.25.9-py2.py3-none-any.whl (126kB)

[[EEEEEReE
Collecting chardet<4,>=3.0.2 (from requests)

Using cached
HTTPS://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bblddec7cab5ec751
0b22e4c51£14098443b8/chardet-3.0.4-py2.py3-none-any.whl
Installing collected packages: certifi, idna, urllib3, chardet, requests
Successfully installed certifi-2020.4.5.1 chardet-3.0.4 idna-2.9 requests-2.23.0
urllib3-1.25.9

(Extreme API with Python) C:\Extreme API with Python>

To better illustrate its use, you can create some GET and POST examples. A good resource for making
HTTP CALLs is HTTPS://httpbin.org which is a simple HTTP request and response service. These can be
considered the first REST API CALLs.

Note: The httpbin.org service has been written by the same author than the Requests module.

Examine the GET method. The response content type is set to application/json by default. Keep this
setting so that you can manipulate JSON data.

Part n0.9036931-00 Rev AA February 2021

https://httpbin.org/

Extreme API with Python

[= Extreme

networks
Page |22
] hitpbinerg x
<« c @ © @ hitpsi//hitpbin.org/#/HTTP_Methods/get_get RO | Recherche |
HTTP Methods Testing different HTTP verbs o
‘m Jdelete Therequest's DELETE parameters.
/get The request's query parameters.

No parameters

The request’s query parameters.

/patch The request's PATCH paramet ters
/POSt The request's POST parametars.

/put The request's PUT parameters.

Make a REST CALL, using GET to retrieve data. This service lets you add parameters (arguments) to the
URL in a query string, so that the server also returns this information .

Requests has an integrated JSON function that you can use also, as shown below :
import requests

gstring = {"h2g2": 42, "elite": 1337}
requests.get('HTTPS://httpbin.org/get’', params=qstring)

print(r.url)
print(r.status_code)

print(r.headers['content-type'])
print(r.encoding)
print(r.text)

data = r.json()
print(type(data))
print(data)

In this example, the query string has been separated from the URL. You could have added the
parameters directly to the URL, but it is a good practice to work this way, which allows you to reuse the
same URL with different parameters. When you test using this method, you use the GET function with
requests and the GET path on httpbin.org.

The result of a test is the shown below:

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |23
https://httpbin.org/get?h2g2=42&elite=1337
200
application/json
None
{
"args": |
"elite": "1337",
"h2g2™: "42"
b
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Host": "httpbin.org",
"User-Agent": "python-requests/2.22.0",
"X-Amzn-Trace-Id": "Root=1-5ed8c610-484d6854daf7112485a3b020"
b
"origin": "109.13.132.180",
"url": "https://httpbin.org/get?h2g2=42&elite=1337"
}
<class 'dict'>
{'args': {'elite': '1337', 'h2g2': '42'}, 'headers': {'Accept': '*/*',
'Accept-Encoding': 'gzip, deflate', 'Host': 'httpbin.org', 'User-Agent':
'python-requests/2.22.0', 'X-Amzn-Trace-Id': 'Root=1-5ed8c610-
484d6854daf7112485a3b020'}, 'origin': '109.13.132.180', 'url':

'https://httpbin.org/get?h2g2=42&elite=1337"}

Next, send data to the service by using the POST method from requests and changing the path to the
service to POST. Because you are now sending data to the service, you must remove the params
keyword and replace it with the data keyword, as shown below:

import requests

payload = {"h2g2": 42, "elite": 1337}
r = requests.post('HTTPS://httpbin.org/post’', data=payload)

print(r.url)
print(r.status_code)
print(r.headers['content-type'])
print(r.text)

data = r.json()

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |24

print(type(data))

print(data)

In the results, you can see that the URL no longer contains a query string, and in the JSON returned,
there is a form entry with the data you sent.

HTTPS://httpbin.org/post
200
application/json
{
"args": {},
"data": "",
"files": {1},
"form": {
"elite"™: "1337",
"h2g2™: "42"
b
"headers": {
"Accept": "*x/*",
"Accept-Encoding": "gzip, deflate",
"Content-Length": "17",
"Content-Type": "application/x-www-form-urlencoded",
"Host": "httpbin.org",
"User-Agent": "python-requests/2.22.0",
"X-Amzn-Trace-Id": "Root=1-5ed8cb37-4c4l2bacebb72bbcaf3eSbfc"
b
"json": null,
"origin": "109.13.132.180",
"url": "HTTPS://httpbin.org/post"
}

<class 'dict'>

{'args': {}, 'data': '', 'files': {}, 'form': {'elite': '1337', 'h2g2':

'42'}, 'headers': {'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate',
'Content-Length': '17', 'Content-Type': 'application/x-www-form-urlencoded',
'Host': 'httpbin.org', 'User-Agent': 'python-requests/2.22.0', 'X-Amzn-Trace-
Id': 'Root=1-5ed8cb37-4c4l2bacebb72bbcaf3eSbfc'}, 'json': None, 'origin':
'109.13.132.180', 'url': 'HTTPS://httpbin.org/post'}

Another option when using the requests.get function is the timeout parameter. Without this parameter,
the requests module waits indefinitely for an answer, which can be a problem if you have made a
mistake. This can also result in very slow server speeds and you don’t want the application to spend too
much time waiting. You can set a limit before raising an error. Httpbin can help you to simulate this,
with the delay service in the dynamic data menu. To call it, add /delay/<value in seconds> to the URL.

For example:

import requests

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks

Page |25

requests.get('HTTPS://httpbin.org/delay/4"', timeout=3)

Add a delay of 4 seconds for the answer with a timeout of 3 seconds. Running the script gives you a
traceback:

Traceback (most recent call last):
[...]

raise ReadTimeout (e, request=request)
requests.exceptions.ReadTimeout: HTTPSConnectionPool (host="httpbin.org',
port=443) : Read timed out. (read timeout=3)

You can also use a Python try/except, which provides a cleaner result without breaking code.

import requests

try:

r = requests.get('HTTPS://httpbin.org/delay/4', timeout=3)
except requests.exceptions.Timeout:
print("Server is too long to answer")

2.6.3 Testing a REST API

Now that you are familiar with REST and Python, another useful tool when working with a REST API is
Postman.

Note: You can add Postman to some browsers via plug-in or it can be run as an external application on
most systems.

When you work with an API, you must know exactly what URL to use, and which data format to send or
receive. Having the ability to quickly test a CALL and interpret the results without having to write the
code for it is extremely useful. This is where Postman can help.

The Postman GUI can be broken down into three main sections, as shown below:

Part n0.9036931-00 Rev AA February 2021

https://www.postman.com/

. Extreme API with Python
F= Extreme

networks

Page | 26

&8 My Workspace ¥

mQ

s B 1

These sections are the Request builder, the Response window, and the Explorer window. In the Request
builder, you create the HTTP CALL, specify the URL, add parameters, and set the authentication and
headers. The Request and Response windows display requests and responses.

GET v hups://icanhazdadjoke.com/ m.

User-Agent

Accept-Encoding

Zoom into the Request builder, to see (in this example) an HTTP GET method, the URL for the APl next to
it, and several tabs where you can personalize the CALL. In this example, no authorization is necessary
(this is very rare) so you just must set JSON as the application.

Select Send to see the response from the API.

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |27
Body Cookies Headers TestRe 2000 = 7
Pretty Raw Preview Visualize JSON + -
2 "id": "GeFQZ89h",
"joke": "The rotation of earth really makes my day.",

4 Vedakie®: 00
4 status”:. Z@e

In the response window, you can see the HTTP Status code, in this case an encouraging 200, and the
data sent back in JSON by the API. You can now use this information in the application, as you can see
the keys and value types returned

You can now write a Python application to interface with this API.

import requests

= {"Accept": "application/json"}

= requests.get('HTTPS://icanhazdadjoke.com/"', headers=headers, timeout=3)
except requests.exceptions.Timeout:
print("Service is currently unavailable, please try again later")

exit(9)

if r.ok:
joke = r.json()
print(joke["joke"])
else:
print("No joke today!")

You can now access the joke for the day:

|I am so good at sleeping I can do it with my eyes closed!

2.7 Webhooks

When dealing with APlIs, it is sometimes more practical to rely on webhook services than making REST
CALLs. Webhooks are sometimes referred to as reverse API, as they push data automatically from a
service to an application, instead of having the application request data. This approach can be more
elegant when you want to update data as it changes, and this can also be a better way to interact with
an official API, as it can potentially limit your number of CALLs per day

There are several sites to help you test webhooks, such as the Webhook.site.

Part n0.9036931-00 Rev AA February 2021

https://webhook.site/#!/

Extreme API with Python

F= Extreme

networks
Page |28

2.8 HTTPS with Python

Usually, when you work with an API that uses HTTP as the transfer protocol, such as REST API, you will
be required to use HTTPS for obvious security reasons. If you are using self-signed certificates, you will
see warnings and errors. To avoid this, in the code, add the disable_warnings method from Urllib3 and
add the verify=False argument with requests

import requests
import urllib3

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

requests.get(url, verify= , params=payload, headers=getHeaders)

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |29

3 EXOS APIs

EXOS offers several APIs for developers that support on-switch automation and external automation.
The following sections describe these options.

3.1 On-Switch APIs

EXOS has included automation and scripting since its original inception. The first scripting
interface offered to the users, and still present today, is called CLI Scripting and uses TCL functions
for advanced scripting. You'll not cover this scripting interface in this guide, but rather focus on
the more modern Python capabilities.

3.1.1 Python Scripting

Starting with the release of EXOS 15.6, Python has been added to the EXOS scripting toolbox. The
Python version used is 2.7, and more precisely it was 2.7.3 before being upgraded with EXOS 30.1 to
version 2.7.15.

The standard library is available, along with extra modules such as Argparse and Requests.

To see the full list of available modules, create a simple one-line script and execute it on a switch:

help('modules")

3.1.1.1 Create a Python Script

There are several options for creating a script on an EXOS switch. Either you create it directly on it, from
the CLI, or you do it on your computer and send it to switch when completed.

From the CLI, you can access a light version of vi using either the command “vi” or “edit”. When you
create a new file with this command, it must have a supported file extension by EXOS. The supported
file extensions are .pol, .pkt, .xsf, .py and .xml. Obviously, when writing a Python script, you must use the
official .py file extension.

Note: when you create a file, it is located by default into /config, which is an alias for
/usr/local/cftgq.

Some text editors and IDE can edit a remote file using SSH, SCP or similar transfer protocols. This
capability can be built-in or added using a plug-in. It may be easier to manipulate files this way.

3.1.1.2 Copying Python Scripts to a Switch

If you are not working directly from the switch CLI, you can copy the files to the switch using TFTP or
SCP. For example, assuming you have a TFTP server running on your PC (such as tftpd64) and pointing
to the correct directory, you can copy the files from the CLI this way:

swl.2 # tftp get 192.168.56.1 vr VR-Mgmt MyScript.py

Part n0.9036931-00 Rev AA February 2021

http://tftpd32.jounin.net/tftpd32_download.html

Extreme API with Python

[= Extreme

networks
Page |30

3.1.1.3 Execute a Python Script
There are two CLI commands you can use to execute an existing Python script from the CLI:

- run script <script name>.py
- load script <script name>.py

The first command was introduced specifically for executing Python script. The second one is the legacy
command, used for CLI Scripting.

3.1.1.4 EXOS CLI Module

You can use an EXOS module called exsh to execute a Python script on EXOS. This module allows you to
execute any CLI command and returns the output either as a string, XML, both, or none.

exsh.clicmd (cmd, capture=False, xml=False, args=None)

Parameters:

- cmd: a string containing any valid EXOS CLI command.

- capture: a Boolean, defaulting to False if not specified, returning as a text (string) the CLI
output of the command.

- xml: a Boolean, defaulting to False if not specified, returning the XML that EXOS used to
create the CLI output

- args: a string to provide additional input to some EXOS commands that prompt for more
information

Returns:

- None: if both capture and xml are False

- Captured text: if capture is True

- XML: if xml is True

- Captured text and xml: if both capture and xml are True

Raises:
- RuntimeError: EXOS command is invalid or encountered an error

When you work with JSON data, you can be tempted to use the embedded c1i2json.py script.
Calling a script from another script is not supported, as each script has its own session.

This is an example of a simple script:

import exsh

for vid range(10, 15):
exsh.clicmd("create vlan ".format(vid))

The result:

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |31
swl.2 # run script createVlans.py
swl.3 # show vlan
Untagged ports auto-move: Inform
Name VID Protocol Addr Flags Proto Ports Virtual
Active router
/Total
Default 1 — o—cccsososososososssososososemes Tosososoomomm= ANY 5 /5 VR-Default
Mgmt 4095 192.168.56.121 /24 ——————————mmm—m——m— ANY 1 /1 VR-Mgmt
VLAN 0010 10 oecececeeesesessssesese s e e e e D e S eSS S ANY 0 /0 VR-Default
VLAN 0011 11 — —eemsooccosoccossoooossosssssmmessonsossssssss ANY 0 /0 VR-Default
VLAN 0012 12 ormmmscmoms s e s s e e e S S S eSS S S EEES ANY 0 /0 VR-Default
VLAN 0013 13— ANY 0 /0 VR-Default
VLAN 0014 14 mmm ANY 0 /0 VR-Default
Flags BFD Enabled, (c) 802.lad customer VLAN, (C) EAPS Control VLAN,

(B)
(d) Dynamically created VLAN, (D) VLAN Admin Disabled,

(E) ESRP Enabled, (f) IP Forwarding Enabled,

(F) Learning Disabled, (i) ISIS Enabled,

(I) Inter-Switch Connection VLAN for MLAG, (k) PTP Configured,

(1) MPLS Enabled, (L) Loopback Enabled, (m) IPmc Forwarding Enabled,

(M) Translation Member VLAN or Subscriber VLAN, (n) IP Multinetting Enabled,
(N) Network Login VLAN, (o) OSPF Enabled, (0) Virtual Network Overlay,

(p) PIM Enabled, (P) EAPS protected VLAN, (r) RIP Enabled,

(R) Sub-VLAN IP Range Configured, (s) Sub-VLAN, (S) Super-VLAN,

(t) Translation VLAN or Network VLAN, (T) Member of STP Domain,

(v) VRRP Enabled, (V) VPLS Enabled, (W) VPWS Enabled,

(Y) Policy Enabled

Total number of VLAN(s) : 7

3.1.1.5 Automate the Python Script Execution

EXOS offers the ability to dynamically execute scripts when a particular event is met using a feature
called UPM.

3.1.1.5.1 UPM

UPM can trigger a script based on time of the day (for example every second, or twice a day at a fixed
time or on a given date), LLDP events, or based on events in the log. This capability combined with
Python scripting allows for very powerful on-switch automation. UPM can pass event-related
parameters to the script; for example, a port number associated to a monitored event, or a MAC
address, etc.

As a basic example, when a port goes up or down in the logs, you can ask UPM to trigger a basic Python
script to create a VLAN and add this port to it, or delete this VLAN and add the port back to the default
VLAN. Obviously, this example is too basic for a real use-case, but it shows the concepts involved. The
Python script would look like this:

import exsh
import sys

if len(sys.argv) < 3:

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |32

print "Missing arguments\nExpected arguments are Port and Action\nValid Actio
ns are down and up"
exit(9)

if sys.argv[2] == "down":

exsh.clicmd("delete vlan 42")

exsh.clicmd("config vlan Default add port {}".format(sys.argv[1]))
else:

exsh.clicmd("create vlan 42")

exsh.clicmd("config vlan 42 add port {}".format(sys.argv[1]))

UPM config requires that you create a profile and a log filter to monitor the event you want associated
with this profile.

create upm profile Up Down Profile
enable cli scripting

IF (!$MATCH (SEVENT.LOG COMPONENT SUBCOMPONENT,vlan.msgs) &&
! SMATCH ($SEVENT .LOG_EVENT, portLinkStateDown)) THEN

run script upm port.py S$SEVENT.LOG PARAM 0 down
ENDIF

IF (!$MATCH (SEVENT.LOG COMPONENT SUBCOMPONENT,vlan.msgs) &&
! SMATCH (SEVENT.LOG_EVENT,portLinkStateUp)) THEN

run script upm port.py SEVENT.LOG PARAM 0 up
ENDIF

create log filter Port Up Down

config log filter Port Up Down add event vlan.msgs.portLinkStateUp
config log filter Port Up Down add event vlan.msgs.portLinkStateDown

create log target upm Up Down Profile
enable log target upm Up Down Profile
config log target upm Up Down Profile filter Port Up Down severity Info

You can validate the correct execution on the switch as the event happened

swl.29 # sh log

06/07/2020 11:03:51.39 <Noti:UPM.Msg.upmMsgExshLaunch> Launched profile

Up Down Profile for the event log-message

06/07/2020 11:03:51.38 <Info:vlan.msgs.portLinkStateUp> Port 1 link UP at speed 100
Mbps and full-duplex

06/07/2020 11:03:44.42 <Noti:UPM.Msg.upmMsgExshLaunch> Launched profile

Up Down Profile for the event log-message

06/07/2020 11:03:44.42 <Info:vlan.msgs.portLinkStateDown> Port 1 link down

swl.30 #

Part n0.9036931-00 Rev AA February 2021

F= Extreme

networks

swl.30 # sh upm history

Status

Event/
Id Timer/ Log filter

--— Pass
--—- Pass

2 Log-Message (Port Up Up Down Profile
1 Log-Message (Port Up Up Down Profile

Number of UPM Events in Queue for execution: 0
swl.31 #
swl.31 # sh upm history exec-id 2

UPM Profile: Up Down Profile

Event: Log-Message (Port Up Down)

Profile Execution start time: 2020-06-07 11:03:51
Profile Execution Finish time: 2020-06-07 11:03:51
Execution Identifier: 2 Execution Status: Pass

Execution Information:

enable cli scripting

configure cli mode non-persistent

set var EVENT.NAME LOG MESSAGE

set var EVENT.LOG FILTER NAME "Port Up Down"
set var EVENT.LOG DATE "06/07/2020"

set var EVENT.LOG TIME "11:03:51.38"

e -

set var EVENT.LOG EVENT "portLinkStateUp"
set var EVENT.LOG SEVERITY "Info"

set var EVENT.LOG PARAM 0O "1"

set var EVENT.LOG PARAM 1 "100 Mbps"
var EVENT.LOG PARAM 2 "full-duplex"
set var EVENT.LOG PARAM 3 "1"

set var EVENT.PROFILE Up Down Profile
enable cli scripting

H
o

He oW S HE S S S 4 $E
n
10}
=,

21
! SMATCH ($SEVENT.LOG_EVENT, portLinkStateDown))
22 #
23 # ENDIF

THEN

25 # IF (!SMATCH (SEVENT.LOG COMPONENT SUBCOMPONENT,vlan.

! SMATCH ($EVENT.LOG_EVENT, portLinkStateUp)) THEN
26 # run script upm port.py S$EVENT.LOG PARAM 0 up
27 # ENDIF

Number of UPM Events in Queue for execution: 0

Extreme API

set var EVENT.LOG COMPONENT SUBCOMPONENT "vlan.msgs"

run script upm port.py SEVENT.LOG PARAM 0 down

with Python

Page |33

Time Launched

2020-06-07 11:03:51
2020-06-07 11:03:44

set var EVENT.LOG MESSAGE "Port %0% link UP at speed %1% and %2%"

IF (!SMATCH (SEVENT.LOG COMPONENT SUBCOMPONENT,vlan.msgs) &&

msgs) &&

The VLAN is created:

swl.29 # sh vlan
Untagged ports auto-move: Inform

Name VID Protocol Addr

Ports Virtual
Active router
/Total

Proto

Part no.9036931-00 Rev AA

February 2021

Extreme API with Python

[= Extreme

networks
Page | 34
Default et E e i ANY 0 /0 VR-Default
Mgmt 4095 192.168,56,121 J24 cemmmmmmmmemememmemeeemm=E= ANY 1/1 VR-Mgmt
VLAN 0042 42 ANY 1 /1 VR-Default
Flags : (B) BFD Enabled, (c) 802.lad customer VLAN, (C) EAPS Control VLAN,

Total number of VLAN (s)

3.1.1.5.2 Startup Files

Potential companions for Python Scripting and UPM are the EXOS startup files. Historically, two startup
files can be used with EXOS:

- default.xsf
- autoexec.xsf

The autoexec.xsf file starts at every boot of the switch, while the default.xsf is only executed when the
switch boots with no configuration (in factory default config or after an unconfigure switch all
command). The default.xsf has a higher precedence. An autoexec.xsf cannot be used if default.xsf has
been started.

Both startup files execute valid CLI commands, which must be executed within 500 seconds. The startup
file aborts after 500 seconds without executing the remaining commands.

Note: The results of the startup file execution can be seen using the command show script output {default
| autoexec}.

With the introduction of Python support in EXOS, these two files have been added to Python, and with
EXOS 21.1 the .py versions are also supported.

default.py
autoexec.py

EXOS 22.3 introduced a new startup file in EXOS named exshrc.xsf. This file is executed after a successful
login in EXOS, and lets you execute specific CLI commands, or scripts, at each login. You can see who is
connected and start a required script per user. This can be helpful when creating a menu for specific
operators, for example.

In the following example, using the CLI Scripting built-in variables, and, specifically, SCLI.USER, returns
the user of the current session. There are many built-in variables available. Refer the EXOS User Guide,
in the CLI Scripting chapter, for more information.

swl.l # vi exshrc.xsf
enable cli scripting
IF (!SMATCH ($CLI.USER,admin)) THEN
create log message "User Admin just connected!"
ENDIF
disable cli scripting
swl.2 #

If you disconnect from the switch then reconnect as admin, you see the following:

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |35

swl.l # sh log

07/01/2020 00:51:44.26 <Info:System.userComment> User Admin just connected!
07/01/2020 00:51:44.26 <Info:AAA.authPass> Login passed for user admin
through telnet (192.168.56.1)

07/01/2020 00:51:37.20 <Info:AAA.logout> Administrative account (admin)
logout from telnet (192.168.56.1)

07/01/2020 00:51:30.32 <Noti:log.ClrLogMsg> User admin: Cleared the log
messages in memory-buffer.

A total of 4 log messages were displayed.

Use this feature to execute specific scripts or apps based on the user connected to the switch.

3.1.2 Python Application
Starting with EXOS 15.7, Python application development capability has been added to EXOS.

Instead of writing a script to run to completion every time it is executed (manually or dynamically using
UPM), you can create an application that lives as a new process in the system. This process can be
started, terminated, or deleted, and runs into a dedicated Linux CGroup named “Other”, while official
EXOS processes run in the “EXOS” CGroup.

Note: The Linux CGroup was introduced with EXQOS 22. Prior to this release there was no differentiation
between system and user-created processes. CGroups ensure that user-created applications cannot
significantly impact processes in another CGroup. “Other” CGroup is limited, by default, to 10% CPU
usage and 5% RAM usage, however these parameters are configurable.

Processes run in a different system environment than user-created scripts. This environment is called
expy and requires a different development approach. It is a more powerful environment that offers
access to the dataplane.

The detailed APl is documented here:
HTTPS://api.extremenetworks.com/EXOS/Programinterfaces/PYTHONAPI/

This APl is based on the C SDK for EXOS and offers a wide variety of methods and functions to retrieve
large amounts of data. For example, it can check if the process is running on a stackable switch, what
role it has, it can manipulate packets, interact with the CLI to pass commands but also create its own CLI
command, handle Authentication and so on.

To illustrate the use of this API, create a process that monitors the VLAN events on the switch. You need
to subscribe to the event, as provided by the API.

import exos.api.throwapi as throwapi

def event_cb(event, subs):
print event

throwapi.Subscription(“vlan")

Part n0.9036931-00 Rev AA February 2021

https://api.extremenetworks.com/EXOS/ProgramInterfaces/PYTHONAPI/

Extreme API with Python

[= Extreme

networks
Page |36

ev.sub(event_cb)

3.1.2.1 Create a Process
Enter the create process command and provide the necessary parameters:

The process name

The process creation (must be python-module)

The name of the Python application, without the .py suffix

The startup behavior, which can be either on-demand or auto
The VR from which you want it to run. The default is VR-Mgmt

The startup behavior, on-demand, runs once like a script would. Auto keeps the process running and
adds the config line into the config file so it can be automatically restarted when a switch is rebooted.

Assuming your previous code example was in a file named “test.py”, you would create the process:

swl.26 # create process test python-module test start auto

Verify that the process is running:

swl.27 # show process test
Process Name Version Restart State Start Time Group

test User 0 LoadCfg Sun Jun 7 13:31:37 2020 Other

First verify that this process is present and running, then validate that it is running in the Other CGroup.

3.1.2.2 Create an Application

Manually create two VLANSs, 42 and 43, and then connect something on the switch that will trigger the
UPM script you configured in the previous chapter (this adds the port that goes up to VLAN 42). You will
see the result on the switch, but no messages are displayed if you are connected via Telnet or SSH.
When working with process, a print is only redirected to the console. To access the information, you
must use the logging capability.

You must terminate and delete the process before you modify your program, after which you can
recreate the process.

swl.48 # terminate process test graceful

Do you want to save configuration changes to currently selected configuration
file (primary.cfg)? (y or n) No

You will lose test's configuration if you save the configuration after
terminating this process. Do you want to continue? (y/N) Yes

Successful graceful termination for test

swl.49 #

swl.49 # delete process test

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |37

Your program with the logging capability should look like this:

from exos import api

import exos.api.throwapi as throwapi

import logging

logger = logging.getLogger('test")
logger.setlLevel(logging.DEBUG)

logHandler = api.TraceBufferHandler("testbuf", 20480)
logHandler.setLevel(logging.DEBUG)

logHandler.setFormatter(logging.Formatter("%(levelname)s:%(name)s:%(funcName)s.%(
lineno)s:: %(message)s"))
logger.addHandler (logHandler)
def event_cb(event, subs):
logger.info(event)
= throwapi.Subscription("vlan")
ev.sub(event_cb)

You now can access the information when reading the trace buffer of your application:

swl.50 # create process test python-module test start auto

creating test...

swl.51 #

swl.51 # create vlan 10-12

swl.52 #

swl.52 # debug ems show trace test testbuf

06/07/2020 14:06:37.002965 [200] <test:testbuf> Begin trace buffer
06/07/2020 14:06:54.479653 [221] <test:testbuf> INFO:test:event cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.48, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr name': 'VR-Default', 'vlan name':
'"VLAN 0010'}}

06/07/2020 14:06:54.485521 [224] <test:testbuf> INFO:test:event cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.49, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr name': 'VR-Default', 'vlan name':
'"VLAN 0011'}}

06/07/2020 14:06:54.491825 [227] <test:testbuf> INFO:test:event cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.49, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr name': 'VR-Default', 'vlan name':
'"VLAN 0012'}}

Move a port from one VLAN to another to trigger additional information.

swl.53 # config vlan 12 add port 1
VLAN 12 VLAN 0012: Port 1 untagged has been auto-moved from VLAN "VLAN 0042"
to "VLAN 0012".

swl.54 #
swl.54 # debug ems show trace test testbuf

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |38

06/07/2020 14:06:37.002965 [200] <test:testbuf> Begin trace buffer
06/07/2020 14:06:54.479653 [221] <test:testbuf> INFO:test:event cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.48, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr name': 'VR-Default', 'vlan name':
'"VLAN 0010'}}

06/07/2020 14:06:54.485521 [224] <test:testbuf> INFO:test:event cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.49, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr name': 'VR-Default', 'vlan name':
'"VLAN 0011'}}

06/07/2020 14:06:54.491825 [227] <test:testbuf> INFO:test:event cb.15::
{'meta': {'action': 'create', 'timestamp': 1591538814.49, 'object': 'vlan',
'id': 'exos.vlan.create'}, 'data': {'vr name': 'VR-Default', 'vlan name':
'"VLAN 0012'}}

06/07/2020 14:15:16.676949 [230] <test:testbuf> INFO:test:event cb.15::

{'meta': {'action': 'update', 'timestamp': 1591539316.68, 'object': 'vlan',
'id': 'exos.vlan.update'}, 'data': {'added': False, 'type': 'port', 'port':
(0, 0, 0), 'vlan name': 'VLAN 0042'}}

06/07/2020 14:15:16.677836 [233] <test:testbuf> INFO:test:event cb.15::
{'meta': {'action': 'update', 'timestamp': 1591539316.68, 'object': 'vlan',
'id': 'exos.vlan.update'}, 'data': {'added': True, 'type': 'port', 'port':
(1, 1, 0), 'vlan name': 'VLAN 0012', 'vlan id': 12}}

3.1.2.3 Add Proper Environment Validation

To demonstrate environment validation in more detail, first write another application with the basic
checks any program should contain. Processes run in the expy environment, so when you write an
application, make sure you are running in that environment.

main():

if hasattr(sys, 'expy') SyS.expy:
print "Must be run within EXPY"
return

Write a new App. This example uses the CLI method for illustration, as this is a common CALL for an App.

exos.api.exec cli(cmds, timeout=0, ignore errors=False)

Parameters:

- cmds: list of strings containing valid EXOS CLI command

- timeout: defaults to 0. This is a synchronous CALL, and the timeout tells the system how long it
should wait for a return

- ignore_errors: Boolean. If set to False, which is the default, execution will stop after the first
failed command

Returns: The output of the command: string

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |39

Raises:

- CLICommandError(error_msg, cmd): A CLI command returned an error message. The error_msg
attribute is the message received from the CLI and cmd is the command that was being run at
the time

- CLITimeoutError: A CLI request timed out

Note: You are presenting the synchronous CALL in this example, but asynchronous CALLs exist as well.

Enhance your previous example by creating or deleting a VLAN is on the switch:

from exos import api

import exos.api.throwapi as throwapi
import sys

import logging

logger = logging.getLogger('test")
logger.setlLevel(logging.DEBUG)

logHandler = api.TraceBufferHandler("testbuf", 20480)
logHandler.setLevel(logging.DEBUG)
logHandler.setFormatter(logging.Formatter("

"))

logger.addHandler (logHandler)
event cb(event, subs):

meta = event.get('meta’)
data = event.get('data’')

if meta.get('action') == 'create':
api.exec_cli(['config vlan description "This is a description for VLAN
.format(data.get('vlan name'), data.get('vlan name'))])
elif meta.get('action') == 'delete':
api.exec_cli(['create log message "Ohoh! VLAN has been deleted"'.forma
t(data.get('vlan name'))])

main():

if hasattr(sys, 'expy") SyS.expy:
print "Must be run within EXPY"
return

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |40

= throwapi.Subscription("vlan")

ev.sub(event_cb)
main()

Note: When you need double quotes for a CLI command in a Python string, you can use a single quote to
delimit the string. Another solution is to use double quote and escape the inner ones with a backslash
“\”. Failing to this will result in an error.

Your program reacts as expected on a switch.

swl.12 # create process test python-module test start auto
creating test...

* swl.13 #

* swl.13 # create vlan 42

* swl.l4 #

* swl.1l4 # sh vlan description

Name VID Description

Default 1

interco 4094

Mgmt 4095 Management VLAN

VLAN 0042 42 This is a description for VLAN VLAN 0042

> Indicates description string truncated past 57 characters

Total number of VLAN(s) : 4

* swl.1l5 #

* swl.15 # delete vlan 42

* swl.lo #

* swl.16 # sh log

06/08/2020 12:03:34.58 <Info:System.userComment> Ohoh! VLAN VLAN 0042 has
been deleted

06/08/2020 12:03:14.89 <Noti:log.ClrLogMsg> User admin: Cleared the log
messages in memory-buffer.

A total of 2 log messages are displayed.

3.2 External APIs

More advanced automation solutions manage switches from external resources, running from an
application on a server or VM. EXOS offers several APIs.

Part n0.9036931-00 Rev AA February 2021

, Extreme API with Python
F= Extreme

networks
Page |41

3.2.1 RESTCONF API

The latest API introduced with EXOS is the RESTConf, which follows the Openconfig model and works in
conjunction with the Python module restconf.pyz. This module is available on Extreme Networks github:

HTTPS://github.com/extremenetworks/EXOS Apps/tree/master/REST

Note: The RESTConf module is bundled in EXOS since release 22.4, but is backward compatible with EXOS
22.1, by adding the restconf.pyz module to the system.

3.2.1.1 RESTCONF Documentation

The documentation is accessible either from the Extreme Networks documentation site, or directly from
a switch running the minimal version required (the EXOS web server must be enabled).

The link to the documentation on Extreme Networks site is:

http://api.extremenetworks.com/EXOS/Programinterfaces/RESTCONF/RESTCONF.html

To access the documentation directly from a switch (or VM):

http(s)://<switch IP>/apps/restconfdoc

3.2.1.2 Working with EXOS RESTCONF

This section describes some examples using Python 3 to work with EXOS switches. To facilitate the use
of RESTCONF CALLs, Extreme Networks offers a Python class the teaches you how to create the CALLs.
The Python class is available on github:

HTTPS://github.com/extremenetworks/EXOS Apps/blob/master/REST/examples/restconf.py

Note: The restconf python class is included by default with XMC Python Engine since XMC 8.2. The latest
version of the class —v1.2.0.0 at the time of writing - should be part of XMC 8.5.

3.2.1.3 How to Access Restconf
EXOS Restconf supports GET, POST, PUT, PATCH and DELETE HTTP methods.

You must authenticate to access the API. By default, basic authentication using a login and password is
available. When the session is successfully authenticated, a token is generated. This token allows you to
make multiple API CALLs without the need to reauthenticate, as long as the token is included as a cookie
in the request header.

Note: The duration of the token is set to 86400 seconds, which is 1 day.

EXOS Restconf implementation supports both HTTP and HTTPS protocols. By default, out-of-the-box,
EXOS switches only have HTTP enabled. The Python class restconf.py tries both protocols, starting with
HTTPS. However, the best practice is to use HTTPS for data integrity and confidentiality.

Part n0.9036931-00 Rev AA February 2021

https://github.com/extremenetworks/EXOS_Apps/tree/master/REST
http://api.extremenetworks.com/EXOS/ProgramInterfaces/RESTCONF/RESTCONF.html
https://github.com/extremenetworks/EXOS_Apps/blob/master/REST/examples/restconf.py

, Extreme API with Python
F= Extreme

networks
Page |42

To access the Restconf server on a switch, RFC 8040 requires a common URL as the root. The root
resource for EXOSis /rest/restconf/. The datastore is represented by a node named data.

Note: All methods are supported on data.

Enable HTTPS on EXOS

To enable HTTPS on an EXOS switch, first enable SSL. The following example starts with a factory default
switch (or VM):

swl.2 # show ssl

HTTPS Port Number: 443 (Disabled)

Signature Algorithm configured: shab5l12 With RSA Encryption

Certificate and Private key not configured

Manufacturing certificate: Not present

swl.3 #

swl.3 # config ssl certificate privkeylen 4096 country fr organization extreme common-
name extreme

................ PP
................................... ++

Storing the private key. This may take some time.
.Done

swl.4 #

swl.4 # show ssl
HTTPS Port Number: 443 (Enabled)
Signature Algorithm configured: sha5l12 With RSA Encryption
Private Key matches the Certificate's public key.
RSA Private Key: 4096
Certificate:
Data:

Version: 3 (0x2)

Serial Number: 0 (0x0)

Signature Algorithm: sha5l12WithRSAEncryption
Issuer: C=fr, O=extreme, CN=extreme
Validity

Not Before: Jun 9 10:38:42 2020 GMT
Not After : Jun 9 10:38:42 2021 GMT
Subject: C=fr, O=extreme, CN=extreme

Manufacturing certificate: Not present
swl.4 #

swl.4 # enable web HTTPS

swl.5 # disable web http

This example uses self-signed certificates. This is adequate for testing but will generate warning
messages and could potentially result in errors for some applications.

Note: The requests module, and especially urllib3, produces exceptions if you use HTTPS with insecure
certificates. To remove these exceptions, add the following line to the Python class, after you import
urllib3.

urllib3.disable warnings (urllib3.exceptions.InsecureRequestWarning)

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |43

‘ You will also need to add the verify=False parameter to the request CALLs.

EXOS allows you to install customer certificates that have been signed by trusted authorities.

3.2.1.4 Using Restconf with Python

Use the restconf.py class available on Extreme Networks Github. At the time of writing of this document,
the version of the class is 1.2.0.0.

Note: The restconf.py class is compatible with Python 2.7 and 3.x. It tries HTTPS first, then fallback to HTTP
if unsuccessful.

This example creates a session to your switch and list all available VLANSs. This example uses Argparse to
manage the parameters from the command line.

from restconf import Restconf
import json

import getpass

import argparse

def get params():
parser = argparse.ArgumentParser(prog = 'RestDemo")
parser.add_argument('-i', '--ip’,
help="IP Address of the switch',
required=True)
parser.add_argument('-u', '--username’,
help="'Login username for the remote system')
parser.add_argument('-p', '--password’,
help='Login password for the remote system',
default="")
args = parser.parse_args()
return args

def main():
args = get params()

if args.username is None:

args.username = input('Enter remote system username: ')

args.password getpass.getpass('Remote system password:

rest = Restconf(args.ip, args.username, args.password)

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page | 44

info rest.get('data/openconfig-vlan:vlans")
data info.json()

vlans = data.get('openconfig-vlan:vlans').get('vlan')
for vlan in vlans:
print("Found VLAN {} with VID {}".format(vlan.get('state').get('name'), v
lan.get('vlan-id')))
main()

As a result, you can see all existing VLANs on the switch:

C:\Extreme API with Python> rest example.py -i 192.168.56.121 -u admin
Found VLAN Default with VID 1

Found VLAN VLAN 0054 with VID 54

Found VLAN interco with VID 4094

Locating existing VLANSs is easy, as it was just a CALL to the root of the VLANSs datastore. For
demonstration purposes, you can enhance this example to create a new VLAN and delete an existing
one. To modify the configuration, you must understand the YANG model, used in Openconfig.

Refer to the Restconf documentation, or do a GET (using postman for example) you will see the
following information about VLANSs:

{

"openconfig-vlan:vlans": {
"vlan": [
{

"vlan-id": "1",

"state": {
"status": "ACTIVE",
"vlan-id": 1,
"name": "Default",
"tpid": "oc-vlan-types:TPID 0x8100"

}y

"config": {
"status": "ACTIVE",
"vlan-id": 1,
"name": "Default",
"tpid": "oc-vlan-types:TPID 0x8100"

}y

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |45

Below your endpoint is a VLAN entry which is a list of the VLANs. For each entry in the list, you will see
the element id (in this case, the VLAN id), a state container and a config container.

The Openconfig data model is very consistent, which means that once you understand it, you can easily
access any data: it always follows the same pattern.

To create a VLAN, manipulate the config container following the same structure. To delete a VLAN,
simply point to the endpoint.

from restconf import Restconf
import json

import getpass

import argparse

get params():
parser = argparse.ArgumentParser(prog = 'RestDemo")
parser.add_argument('-i', '--ip’,
help="IP Address of the switch',
required=)
parser.add_argument('-u', '--username’,
help="'Login username for the remote system')
parser.add_argument('-p', '--password’,
help='Login password for the remote system',
default="")
args = parser.parse_args()
return args

list_vlans(rest):

info rest.get('data/openconfig-vlan:vlans")
data = info.json()

vlans = data.get('openconfig-vlan:vlans').get('vlan')
for vlan vlans:

print("Found VLAN with VID {}".format(vlan.get('state').get('name'), v
.get('vlan-id")))

main():
args = get params()

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |46

if args.username

args.username = input('Enter remote system username: ')

args.password getpass.getpass('Remote system password: ')

rest = Restconf(args.ip, args.username, args.password)

list_vlans(rest)

url = "data/openconfig-vlan:vlans/"
data = {}
vlan = {}

vlan["config"] = {"name": "H2G2", "status": "ACTIVE", "tpid": "oc-vlan-
types:TPID_0x8100", "vlan-id": 42}
data["openconfig-vlan:vlans"] = [vlan]

rest.post(url, data)

print("-"*42)
list_vlans(rest)

del url = url + "vlan=42"
rest.delete(del url)

print("-"*42)
list_vlans(rest)

main()

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |47

The result:

C:\Extreme API with Python> rest example.py -i 192.168.56.121 -u admin
Found VLAN Default with VID 1
Found VLAN VLAN_OO54 with VID 54
Found VLAN interco with VID 4094
Found VLAN Default with VID 1
Found VLAN H2G2 with VID 42
Found VLAN VLAN_OO54 with VID 54
Found VLAN interco with VID 4094
Found VLAN Default with VID 1
Found VLAN VLAN70054 with VID 54
Found VLAN interco with VID 4094

On the switch, you can see the actions have happened, assuming your Python application (from chapter
3.1.2) is still running.

swl.10 # sh log

06/09/2020 23:17:01.39 <Info:AAA.logout> Administrative account (admin)
logout from app (192.168.56.1)

06/09/2020 23:16:49.58 <Info:System.userComment> Ohoh! VLAN H2G2 has been
deleted

06/09/2020 23:16:41.39 <Info:AAA.authPass> Login passed for user admin
through app (192.168.56.1)

06/09/2020 23:16:30.52 <Noti:log.ClrLogMsg> User admin: Cleared the log
messages in memory-buffer.

A total of 4 log messages are displayed.

To change the configuration of an existing VLAN, use the PATCH HTTP method directly on the endpoint’s
config container to send the modified parameter.

Add the following piece of code to your example:

rest.post(url, data)

print("-"*42)
list vlans(rest)

patch_url = url + "vlan=42" + "/config/
info = {}
info["openconfig-vlan:config"] = {"name": "Zaphod"}
rest.patch(patch url, info)

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

[= Extreme

networks
Page |48

print("-"*42)
list vlans(rest)

Adding this code results in re-creating VLAN “H2G2”, and then renaming it to Zaphod:

C:\Extreme API with Python> rest example.py -i 192.168.56.121 -u admin
Found VLAN Default with VID 1
Found VLAN VLAN_OO54 with VID 54
Found VLAN interco with VID 4094
Found VLAN Default with VID 1
Found VLAN H2G2 with VID 42
Found VLAN VLAN_OO54 with VID 54
Found VLAN interco with VID 4094
Found VLAN Default with VID 1
Found VLAN VLAN_OO54 with VID 54
Found VLAN interco with VID 4094
Found VLAN Default with VID 1
Found VLAN H2G2 with VID 42
Found VLAN VLAN_OO54 with VID 54
Found VLAN interco with VID 4094
Found VLAN Default with VID 1
Found VLAN Zaphod with VID 42
Found VLAN VLAN_OO54 with VID 54
Found VLAN interco with VID 4094

The result also appears for the switch:

swl.1ll # sh log

06/09/2020 23:30:29.75 <Info:AAA.logout> Administrative account (admin) logout from app
(192.168.56.1)

06/09/2020 23:30:17.91 <Info:System.userComment> Ohoh! VLAN H2G2 has been deleted

06/09/2020 23:30:09.74 <Info:AAA.authPass> Login passed for user admin through app (192.168.56.1)
06/09/2020 23:17:01.39 <Info:AAA.logout> Administrative account (admin) logout from app
(192.168.56.1)

06/09/2020 23:16:49.58 <Info:System.userComment> Ohoh! VLAN H2G2 has been deleted

06/09/2020 23:16:41.39 <Info:AAA.authPass> Login passed for user admin through app (192.168.56.1)
06/09/2020 23:16:30.52 <Noti:log.ClrLogMsg> User admin: Cleared the log messages in memory-
buffer.

A total of 7 log messages are displayed.

* swl.ll #

* swl.1ll # sh vlan

Untagged ports auto-move: Inform

Name VID Protocol Addr Flags Proto Ports Virtual
Active router
/Total

Part n0.9036931-00 Rev AA February 2021

Extreme API with Python

F= Extreme

networks
Page |49

Default i ANY 0 /0 VR-Default
interco 4094 10.1.1.2 128 —ffemrememeeeeeeesmomm=m=m= ANY 1 /1 VR-Default
Mgmt 4095 192.168.56.121 /24 —————————————————————————— ANY 1 /1 VR-Mgmt
VLAN 0054 e ANY 0 /0 VR-Default
Zaphod I i ANY 0 /0 VR-Default
Flags : (B) BFD Enabled, (c) 802.lad customer VLAN, (C) EAPS Control VLAN,
(=]
Total number of VLAN(s) : 5

The same logic applies to any datastore and allows you to manage switches in a programmatic way,
using an open standard.

3.2.2 JSON-RPCAPI

The JSON-RPC API offers another way to interact with EXOS switches. To see documentation, visit this
link:

HTTPS://documentation.extremenetworks.com/app notes/MMI/121152 MMI Application Re
lease Notes.pdf

This document also exists in html:

HTTPS://api.extremenetworks.com/EXOS/ClientApplications/JSONRPC/

Note: This capability was introduced with EXOS 21.1 and requires that the web server be enabled. This is
the default behavior for EXOS.

You can also find information and examples of JSON-RPC on the Extreme Networks github:

HTTPS://github.com/extremenetworks/EXOS Apps/tree/master/JSONRPC

3.2.2.1 JSON-RPC Overview

JSON-RPC is a Remote Procedure CALL (RPC) returning JSON formatted information. It allows you to
send CLI commands, run scripts remotely, or run a Python application via HTTP and receive a response
formatted in JSON.

The main benefits are ease-of-use, and the lack of a requirement for strict data modeling on the system.
Using JSON-RPC with EXOS allows you to send any valid CLI command, meaning that all features are
accessible immediately.

3.2.2.2 EXOS JSON-RPC

The EXOS JSON-RPC implementation supports both HTTPS and HTTP protocols. It requires basic
authentication (login and password) but supports a token for subsequent requests. The token is added
as a cookie in the request header. The duration of the token defaults to 86400 seconds, which is 1 day.

Part n0.9036931-00 Rev AA February 2021

https://documentation.extremenetworks.com/app_notes/MMI/121152_MMI_Application_Release_Notes.pdf
https://documentation.extremenetworks.com/app_notes/MMI/121152_MMI_Application_Release_Notes.pdf
https://api.extremenetworks.com/EXOS/ClientApplications/JSONRPC/
https://github.com/extremenetworks/EXOS_Apps/tree/master/JSONRPC

Extreme API with Python

[= Extreme

networks
Page |50

3.2.2.3 Using JSON-RPC with Python

As with the RESTCONF API, a Python class is proposed on the Extreme Networks github to facilitate its
use.

HTTPS://github.com/extremenetworks/EXOS Apps/blob/master/JSONRPC/jsonrpc.py

Note: At the time of writing of this document, the latest version of the JSON-RPC class is 2.0.0.4.

The class uses different methods, depending on the use case. The most common method is using CLI
commands. This is not the only solution, however, and you can also use it to remotely run scripts on a
switch or run a Python application. Scripts that you run remotely on a switch are not present on the
switch but live instead in your system. This method handles the transfer to the switch for you.

This section describes the CLI method, which is the most common method.

Note: The JSON-RPC Python class is included by default with XMC Scripting Engine since XMC 8.2.

First, create a few VLANSs on a switch (or VM) using the provided Python class. To make things a bit
different from previous examples, in this example, you manipulate a file as the input for your
application. The file must contain the CLI commands, one per line, that you want to run on a switch.
