Extreme NetIron Routing Configuration Guide, 06.0.00a

Supporting NetIron OS 06.0.00a

53-1004207-06
15 June 2018
Contents

Preface..23
 Document conventions..23
 Notes, cautions, and warnings...23
 Text formatting conventions...23
 Command syntax conventions...24
 Extreme resources..24
 Document feedback...24
 Contacting Extreme Technical Support..25

About This Document..27
 Supported hardware and software..27
 What's new in this document...27
 How command information is presented in this guide..27

ARP...29
 Configuring ARP parameters..29
 How ARP works...29
 Rate limiting ARP packets..30
 Changing the ARP aging period..31
 Enabling proxy ARP..31
 Enabling local proxy ARP..31
 Disabling gratuitous ARP requests for local proxy ARP...32
 Creating static ARP entries...32
 Changing the ARP timer...33
 Changing the ARP pending retry timer...33
 Generating syslog notification for differing Ethernet source MAC and ARP sender MAC addresses.................................33
 Displaying ARP entries...34
 Displaying the ARP cache...34
 Displaying the static ARP table...35
 Dynamic ARP inspection..36
 ARP poisoning..36
 How DAI works...36
 Configuring DAI..36
 Displaying ARP inspection information..41
 Clearing ARP inspection counters..43
 ARP Guard..43
 ARP guard use case scenarios..45
 ARP Hijacking due to wrong configuration of IP address...45
 ARP hijacking with proxy-ARP..46
 Configuration considerations and limitations for ARP Guard..47
 Configuring ARP guard..47

IP Addressing...51
 The IP packet flow...51
 ARP cache table..53
 Static ARP table..53
 IP route table..54
 IP forwarding cache...55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP packet queuing</td>
<td>55</td>
</tr>
<tr>
<td>Basic IP parameters and defaults</td>
<td>55</td>
</tr>
<tr>
<td>When parameter changes take effect</td>
<td>56</td>
</tr>
<tr>
<td>IP global parameters</td>
<td>56</td>
</tr>
<tr>
<td>IP interface parameters</td>
<td>59</td>
</tr>
<tr>
<td>GRE IP tunnel</td>
<td>60</td>
</tr>
<tr>
<td>Considerations in implementing this feature</td>
<td>60</td>
</tr>
<tr>
<td>GRE MTU enhancements</td>
<td>61</td>
</tr>
<tr>
<td>Configuring a GRE IP Tunnel</td>
<td>61</td>
</tr>
<tr>
<td>GRE tunnel VRF support</td>
<td>70</td>
</tr>
<tr>
<td>Multicast over GRE tunnel</td>
<td>74</td>
</tr>
<tr>
<td>Configuring PIM GRE tunnel</td>
<td>74</td>
</tr>
<tr>
<td>Configuring PIM GRE tunnel using the strict RPF check</td>
<td>75</td>
</tr>
<tr>
<td>Tunnel statistics for a GRE tunnel or IPv6 manual tunnel</td>
<td>75</td>
</tr>
<tr>
<td>Reload behavior and the source-ingress CAM partition</td>
<td>75</td>
</tr>
<tr>
<td>Operational notes</td>
<td>76</td>
</tr>
<tr>
<td>Enabling IP tunnel or manual IPv6 statistics</td>
<td>78</td>
</tr>
<tr>
<td>GRE tunnels and MPLS handoff</td>
<td>79</td>
</tr>
<tr>
<td>Restrictions for GRE tunnel handoff to MPLS</td>
<td>79</td>
</tr>
<tr>
<td>GRE MPLS handoff without VRF configuration example</td>
<td>80</td>
</tr>
<tr>
<td>GRE MPLS handoff with VRF configuration example</td>
<td>81</td>
</tr>
<tr>
<td>Verifying GRE tunnel handoff to MPLS</td>
<td>84</td>
</tr>
<tr>
<td>Restart global timers</td>
<td>84</td>
</tr>
<tr>
<td>Configuring the graceful-restart max-hold-timer</td>
<td>85</td>
</tr>
<tr>
<td>Graceful-restart protocols-converge-timer</td>
<td>85</td>
</tr>
<tr>
<td>Configuring IP parameters</td>
<td>86</td>
</tr>
<tr>
<td>Configuring IP addresses</td>
<td>86</td>
</tr>
<tr>
<td>IP Unnumbered Interfaces</td>
<td>88</td>
</tr>
<tr>
<td>Configuring an unnumbered interface</td>
<td>89</td>
</tr>
<tr>
<td>Displaying unnumbered interfaces</td>
<td>90</td>
</tr>
<tr>
<td>ARP suppression on unnumbered interfaces</td>
<td>90</td>
</tr>
<tr>
<td>Enabling and disabling ARP suppression</td>
<td>91</td>
</tr>
<tr>
<td>Caveats and limitations for IP Unnumbered Interfaces</td>
<td>91</td>
</tr>
<tr>
<td>Configuration considerations for IP Unnumbered Interfaces</td>
<td>91</td>
</tr>
<tr>
<td>Sample configuration for IP Unnumbered Interfaces</td>
<td>92</td>
</tr>
<tr>
<td>Support for a 31-bit subnet mask on point-to-point networks</td>
<td>93</td>
</tr>
<tr>
<td>Enabling hardware forwarding of IP option packets based on Layer 3 destination</td>
<td>94</td>
</tr>
<tr>
<td>Configuring domain name server (DNS) resolver</td>
<td>96</td>
</tr>
<tr>
<td>Using Telnet and Secure Shell</td>
<td>97</td>
</tr>
<tr>
<td>Changing the encapsulation type for IP packets</td>
<td>97</td>
</tr>
<tr>
<td>Setting the maximum frame size globally</td>
<td>98</td>
</tr>
<tr>
<td>Changing the MTU</td>
<td>98</td>
</tr>
<tr>
<td>Changing the router ID</td>
<td>99</td>
</tr>
<tr>
<td>Recalculating the router ID</td>
<td>100</td>
</tr>
<tr>
<td>IPv6 ND Global Router Advertisement Control</td>
<td>101</td>
</tr>
<tr>
<td>Specifying a single source interface for Telnet, SSH, NTP, TFTP, TACACS/TACACS+, or RADIUS packets</td>
<td>102</td>
</tr>
<tr>
<td>Configuring an interface as the source for Syslog packets</td>
<td>104</td>
</tr>
<tr>
<td>Configuring forwarding parameters</td>
<td>105</td>
</tr>
<tr>
<td>Changing the TTL threshold</td>
<td>105</td>
</tr>
<tr>
<td>Enabling forwarding of directed broadcasts</td>
<td>105</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>IPv6 Addressing</td>
<td>145</td>
</tr>
<tr>
<td>IPv6 addressing overview</td>
<td>145</td>
</tr>
<tr>
<td>IPv6 address types</td>
<td>146</td>
</tr>
<tr>
<td>IPv6 stateless auto-configuration</td>
<td>147</td>
</tr>
<tr>
<td>Enabling IPv6 routing</td>
<td>148</td>
</tr>
<tr>
<td>Configuring IPv6 on each interface</td>
<td>148</td>
</tr>
<tr>
<td>Configuring a global or unique local IPv6 unicast address</td>
<td>149</td>
</tr>
<tr>
<td>Configuring a link-local IPv6 address</td>
<td>150</td>
</tr>
<tr>
<td>Configuring IPv6 anycast addresses</td>
<td>151</td>
</tr>
<tr>
<td>Configuring IPv6 127 bit mask address</td>
<td>151</td>
</tr>
<tr>
<td>Benefits of using 127 bit mask</td>
<td>151</td>
</tr>
<tr>
<td>Configuring the management port for an IPv6 automatic address config</td>
<td>152</td>
</tr>
<tr>
<td>IPv6 host support</td>
<td>152</td>
</tr>
<tr>
<td>IPv6 host supported features</td>
<td>152</td>
</tr>
<tr>
<td>Restricting SNMP access to an IPv6 node</td>
<td>153</td>
</tr>
<tr>
<td>Specifying an IPv6 SNMP trap receiver</td>
<td>153</td>
</tr>
<tr>
<td>Restricting Telnet access by specifying an IPv6 ACL</td>
<td>153</td>
</tr>
<tr>
<td>Restricting SSH access by specifying an IPv6 ACL</td>
<td>154</td>
</tr>
<tr>
<td>Restricting Web management access by specifying an IPv6 ACL</td>
<td>154</td>
</tr>
<tr>
<td>Restricting SNMP access by specifying an IPv6 ACL</td>
<td>154</td>
</tr>
<tr>
<td>Restricting Web management access to your device to a specific IPv6 host</td>
<td>155</td>
</tr>
<tr>
<td>Specifying an IPv6 Syslog server</td>
<td>155</td>
</tr>
</tbody>
</table>

IPv6 Addressing

IPv6 Addressing overview

IPv6 address types

IPv6 stateless auto-configuration

Enabling IPv6 routing

Configuring IPv6 on each interface

Configuring a global or unique local IPv6 unicast address

Configuring a link-local IPv6 address

Configuring IPv6 anycast addresses

Configuring IPv6 127 bit mask address

Benefits of using 127 bit mask

Configuring the management port for an IPv6 automatic address configuration

IPv6 host support

IPv6 host supported features

Restricting SNMP access to an IPv6 node

Specifying an IPv6 SNMP trap receiver

Restricting Telnet access by specifying an IPv6 ACL

Restricting SSH access by specifying an IPv6 ACL

Restricting Web management access by specifying an IPv6 ACL

Restricting SNMP access by specifying an IPv6 ACL

Restricting Web management access to your device to a specific IPv6 host

Specifying an IPv6 Syslog server
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing IPv6 SNMP server addresses</td>
<td>156</td>
</tr>
<tr>
<td>Disabling router advertisement and solicitation messages</td>
<td>156</td>
</tr>
<tr>
<td>IPv6 Non stop routing and graceful restart</td>
<td>156</td>
</tr>
<tr>
<td>Limitations</td>
<td>156</td>
</tr>
<tr>
<td>Supported protocols</td>
<td>157</td>
</tr>
<tr>
<td>Restart global timers</td>
<td>157</td>
</tr>
<tr>
<td>Configuring NSR and graceful restart on OSPFv3</td>
<td>158</td>
</tr>
<tr>
<td>Configuring Non Stop Routing on IS-IS</td>
<td>161</td>
</tr>
<tr>
<td>Configuring BGP graceful restart</td>
<td>161</td>
</tr>
<tr>
<td>IPv6 Hitless OS upgrade</td>
<td>163</td>
</tr>
<tr>
<td>Configuring IPv4 and IPv6 protocol stacks</td>
<td>164</td>
</tr>
<tr>
<td>IPv6 Over IPv4 tunnels in hardware</td>
<td>164</td>
</tr>
<tr>
<td>Configuring a IPv6 IP tunnel</td>
<td>165</td>
</tr>
<tr>
<td>Configuring a manual IPv6 tunnel</td>
<td>165</td>
</tr>
<tr>
<td>Configuring an automatic 6to4 tunnel</td>
<td>166</td>
</tr>
<tr>
<td>Bypassing ACLs in an IPv6-over-IPv4 tunnel</td>
<td>171</td>
</tr>
<tr>
<td>Displaying IPv6 tunneling information</td>
<td>171</td>
</tr>
<tr>
<td>IPv6 over IPv4 GRE tunnel</td>
<td>174</td>
</tr>
<tr>
<td>Configuring a GRE tunnel for IPv6 traffic</td>
<td>175</td>
</tr>
<tr>
<td>Verifying IPv6 over GRE Tunnel</td>
<td>176</td>
</tr>
<tr>
<td>Configuring IPv6 Domain Name Server (DNS) resolver</td>
<td>178</td>
</tr>
<tr>
<td>Defining a DNS entry</td>
<td>178</td>
</tr>
<tr>
<td>IPv6 Non-Stop Routing support</td>
<td>179</td>
</tr>
<tr>
<td>Limitations</td>
<td>179</td>
</tr>
<tr>
<td>Configuring IPv6 NSR support</td>
<td>179</td>
</tr>
<tr>
<td>ECMP load sharing for IPv6</td>
<td>180</td>
</tr>
<tr>
<td>Disabling or re-enabling ECMP load sharing for IPv6</td>
<td>180</td>
</tr>
<tr>
<td>Changing the maximum number of load sharing paths for IPv6</td>
<td>180</td>
</tr>
<tr>
<td>Configuring IPv6 ICMP</td>
<td>180</td>
</tr>
<tr>
<td>Configuring ICMP rate limiting</td>
<td>181</td>
</tr>
<tr>
<td>Enabling ICMP redirect messages</td>
<td>181</td>
</tr>
<tr>
<td>Disabling or re-enabling ICMP redirect messages</td>
<td>182</td>
</tr>
<tr>
<td>Disabling ICMP error messages for source-routed IPv6 packets</td>
<td>182</td>
</tr>
<tr>
<td>Enabling ICMP error messages for an unreachable address</td>
<td>182</td>
</tr>
<tr>
<td>Enabling ICMP messages for an unreachable route</td>
<td>183</td>
</tr>
<tr>
<td>Enabling ICMP error messages for IPv6 packets with hop-limit 0</td>
<td>183</td>
</tr>
<tr>
<td>Enabling ICMP error messages for multicast Too Big packets</td>
<td>183</td>
</tr>
<tr>
<td>Configuring IPv6 neighbor discovery</td>
<td>184</td>
</tr>
<tr>
<td>Neighbor solicitation and advertisement messages</td>
<td>185</td>
</tr>
<tr>
<td>Router advertisement and solicitation messages</td>
<td>185</td>
</tr>
<tr>
<td>Neighbor redirect messages</td>
<td>186</td>
</tr>
<tr>
<td>Setting neighbor solicitation parameters for duplicate address detection</td>
<td>186</td>
</tr>
<tr>
<td>Setting IPv6 router advertisement parameters</td>
<td>186</td>
</tr>
<tr>
<td>Controlling prefixes advertised in IPv6 router advertisement messages</td>
<td>187</td>
</tr>
<tr>
<td>Configuring the Domain Name of DNS suffix</td>
<td>188</td>
</tr>
<tr>
<td>Configuring the recursive DNS server addresses and lifetime multiplier</td>
<td>188</td>
</tr>
<tr>
<td>Setting flags in IPv6 router advertisement messages</td>
<td>189</td>
</tr>
<tr>
<td>Configuring reachable time for remote IPv6 nodes</td>
<td>190</td>
</tr>
<tr>
<td>IPv6 ND Prefix Suppress</td>
<td>190</td>
</tr>
</tbody>
</table>

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06
IPv4 Static Routing... 225

Configuring static routes... 225
Static route types... 225
Static IP route parameters.. 225
Multiple static routes to the same destination provide load sharing and redundancy... 226
Static route states follow port states.. 226
Configuring a static IP route... 227
Configuring a static IP route between VRFs.. 228
Configuring a null route.. 230
Configuring load balancing and redundancy using multiple static routes to the same destination... 232
Configuring standard static IP routes and interface or null static routes to the same destination... 232
Static route configuration .. 235
IPv6 Static Routes... 241
Static IPv6 Routes.. 241
Configuring a static IPv6 route.. 241
Configuring a IPv6 static multicast route.. 242
GPRS Tunneling Protocol.. 245
GPRS Tunneling Protocol Overview.. 245
GPRS Tunneling Protocol Filtering and Load-balancing... 245
About GTP load-balance configuration.. 245
Enable masking of the TEID (Tunnel endpoint identifier) field for GTP packets... 247
MPLS unknown label handling.. 247
Enabling internal loopback.. 248
GTP Profile configuration commands... 248
BiDirectional Forwarding Detection (BFD)... 255
Number of BFD sessions supported... 256
Configuring BFD parameters... 256
Disabling BFD Syslog messages... 257
Displaying BFD information.. 257
Clearing BFD neighbor sessions... 261
Configuring BFD for the specified protocol.. 261
Configuring BFD for OSPFv2... 261
Configuring BFD for OSPFv3... 262
Configuring BFD for IS-IS.. 263
Configuring BFD for BGP4.. 264
Displaying BFD for BGP4... 268
Displaying summary neighbor information... 272
BFD for static routes.. 272
Configuration considerations.. 273
Configuring BFD for static routes... 273
Show commands... 274
BFD for RSVP-TE LSP... 275
BFD session creation.. 276
BFD session deletion.. 276
BFD session modification... 277
BFD session down handling.. 277
Configuring BFD for RSVP-TE LSPs.. 277
BFD session support per-router and per-interface module.. 278
BFD session creation.. 278
Enabling the IP router alert option... 280
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring time delay for setup of BFD single-hop session</td>
<td>281</td>
</tr>
<tr>
<td>Configuring time delay for setup of BFD multihop session</td>
<td>281</td>
</tr>
<tr>
<td>Displaying MPLS BFD information</td>
<td>281</td>
</tr>
<tr>
<td>Displaying BFD application information</td>
<td>282</td>
</tr>
<tr>
<td>Displaying BFD MPLS information</td>
<td>282</td>
</tr>
<tr>
<td>Displaying BFD MPLS detailed information</td>
<td>283</td>
</tr>
<tr>
<td>Displaying MPLS BFD global configuration information</td>
<td>283</td>
</tr>
<tr>
<td>Configuring BGP4 (IPv4)</td>
<td>285</td>
</tr>
<tr>
<td>BGP4 overview</td>
<td>285</td>
</tr>
<tr>
<td>Relationship between the BGP4 route table and the IP route table</td>
<td>286</td>
</tr>
<tr>
<td>How BGP4 selects a path for a route (BGP best path selection algorithm)</td>
<td>287</td>
</tr>
<tr>
<td>BGP4 message types</td>
<td>288</td>
</tr>
<tr>
<td>Grouping of RIB-out peers</td>
<td>290</td>
</tr>
<tr>
<td>Implementation of BGP4</td>
<td>290</td>
</tr>
<tr>
<td>BGP4 restart</td>
<td>290</td>
</tr>
<tr>
<td>BGP4 Peer notification during a management module switchover</td>
<td>291</td>
</tr>
<tr>
<td>BGP4 neighbor local AS</td>
<td>292</td>
</tr>
<tr>
<td>Basic configuration and activation for BGP4</td>
<td>294</td>
</tr>
<tr>
<td>Disabling BGP4</td>
<td>294</td>
</tr>
<tr>
<td>BGP4 parameters</td>
<td>295</td>
</tr>
<tr>
<td>Parameter changes that take effect immediately</td>
<td>296</td>
</tr>
<tr>
<td>Parameter changes that take effect after resetting neighbor sessions</td>
<td>297</td>
</tr>
<tr>
<td>Parameter changes that take effect after disabling and re-enabling redistribution</td>
<td>297</td>
</tr>
<tr>
<td>Memory considerations</td>
<td>297</td>
</tr>
<tr>
<td>Basic configuration tasks required for BGP4</td>
<td>297</td>
</tr>
<tr>
<td>Enabling BGP4 on the device</td>
<td>297</td>
</tr>
<tr>
<td>Changing the device ID</td>
<td>297</td>
</tr>
<tr>
<td>Setting the local AS number</td>
<td>298</td>
</tr>
<tr>
<td>Adding a loopback interface</td>
<td>299</td>
</tr>
<tr>
<td>Adding BGP4 neighbors</td>
<td>300</td>
</tr>
<tr>
<td>Adding a BGP4 peer group</td>
<td>309</td>
</tr>
<tr>
<td>Optional BGP4 configuration tasks</td>
<td>311</td>
</tr>
<tr>
<td>Changing the Keep Alive Time and Hold Time</td>
<td>312</td>
</tr>
<tr>
<td>Changing the BGP4 next-hop update timer</td>
<td>312</td>
</tr>
<tr>
<td>Enabling fast external failover</td>
<td>312</td>
</tr>
<tr>
<td>Changing the maximum number of paths for BGP4 Multipath load sharing</td>
<td>313</td>
</tr>
<tr>
<td>Customizing BGP4 Multipath load sharing</td>
<td>314</td>
</tr>
<tr>
<td>Specifying a list of networks to advertise</td>
<td>315</td>
</tr>
<tr>
<td>Changing the default local preference</td>
<td>316</td>
</tr>
<tr>
<td>Using the IP default route as a valid next-hop for a BGP4 route</td>
<td>316</td>
</tr>
<tr>
<td>Changing the default MED (Metric) used for route redistribution</td>
<td>316</td>
</tr>
<tr>
<td>Enabling next-hop recursion</td>
<td>317</td>
</tr>
<tr>
<td>Changing administrative distances</td>
<td>319</td>
</tr>
<tr>
<td>Requiring the first AS to be the neighbor AS</td>
<td>320</td>
</tr>
<tr>
<td>Disabling or re-enabling comparison of the AS-Path length</td>
<td>321</td>
</tr>
<tr>
<td>Enabling or disabling comparison of device IDs</td>
<td>321</td>
</tr>
<tr>
<td>Configuring the device to always compare Multi-Exit Discriminators</td>
<td>322</td>
</tr>
<tr>
<td>Treating missing MEDs as the worst MEDs</td>
<td>322</td>
</tr>
<tr>
<td>Configuring route reflection parameters</td>
<td>323</td>
</tr>
<tr>
<td>Configuring confederations</td>
<td>325</td>
</tr>
</tbody>
</table>
Limitations of BGP best external... 431
Upgrade and downgrade considerations.. 431
Configuring BGP4+.. 432
 Enabling BGP4+.. 432
 Configuring BGP4+ neighbors using global or unique link local IPv6 addresses.. 433
 Adding BGP4+ neighbors using link-local addresses.......................... 433
 Configuring a BGP4+ peer group.. 435
 Advertising the default BGP4+ route.. 437
 Importing routes into BGP4+ .. 437
 Redistributing prefixes into BGP4+ .. 438
 Aggregating routes advertised to BGP4 neighbors............................ 438
 Using route maps.. 439
 Enabling next-hop recursion... 439
 Configuring BGP4+ additional-paths and additional-path selection for the default VRF.. 441
 Configuring BGP4+ additional-paths and additional-path selection for a non-default VRF instance.................... 442
 Configuring BGP4+ additional-paths for a specified neighbor............ 443
 Configuring BGP additional-paths for a specified BGP4+ neighbor..... 445
 Configuring BGP4+ best external... 445
Clearing BGP4+ information.. 446
 Removing route flap dampening.. 446
 Clearing route flap dampening statistics.. 447
 Clearing BGP4+ local route information... 447
 Clearing BGP4+ neighbor information... 447
 Clearing and resetting BGP4+ routes in the IPv6 route table.............. 450
 Clearing traffic counters for all BGP4+ neighbors............................... 450
Displaying BGP4+ information... 450
 Displaying the BGP4+ route table... 450
 Displaying BGP4+ route information.. 455
 Displaying BGP4+ route-attribute entries... 457
 Displaying the BGP4+ running configuration..................................... 458
 Displaying dampened BGP4+ paths.. 459
 Displaying filtered-out BGP4+ routes... 459
 Displaying route flap dampening statistics....................................... 463
 Displaying BGP4+ neighbor information.. 464
 Displaying BGP4+ peer group configuration information............... 483
 Displaying BGP4+ summary.. 483
Configuring BGP4+ graceful restart... 485
 Configuring BGP4+ graceful restart for the global routing instance... 485
 Configuring timers for BGP4+ graceful restart (optional).................. 485
 Displaying BGP4+ graceful restart neighbor information............... 486
DHCPv4... 487
 DHCP snooping... 487
 How DHCP snooping works.. 487
 System reboot and the binding database....................................... 488
 Configuring DHCP snooping... 488
 DHCP snooping suboptions.. 489
 Clearing the DHCP binding database... 489
 DHCP option 82 insertion.. 490
 Displaying DHCP snooping status and ports.................................... 491
OSPFv3... 715
Displaying the configured OSPF area prefix list... 683
Modify OSPF traps generated... 684
Modify OSPF standard compliance setting.. 685
Modify exit overflow interval... 685
Specify types of OSPF Syslog messages to log.. 686
Configuring an OSPF network type.. 686
Configuring OSPF Graceful Restart.. 687
Configuring OSPF router advertisement.. 689
Configuring OSPF shortest path first throttling.. 690
Displaying OSPF information.. 691
Displaying general OSPF configuration information.. 691
Displaying CPU utilization and other OSPF tasks... 693
Displaying OSPF area information.. 694
Displaying OSPF neighbor information... 695
Displaying OSPF interface information.. 697
Displaying OSPF interface brief information... 698
Displaying OSPF route information.. 700
Displaying OSPF database information.. 702
Displaying OSPF external link state information... 703
Displaying OSPF database-summary information... 704
Displaying OSPF database link state information... 705
Displaying OSPF ABR and ASBR information... 706
Displaying OSPF trap status... 707
Viewing Configured OSPF point-to-point links.. 707
Displaying OSPF virtual neighbor and link information... 708
Clearing OSPF neighbors... 710
Displaying OSPF Graceful Restart information... 710
Displaying OSPF Router Advertisement information... 711
Displaying the OSPF area translator status information... 712
Clearing OSPF information.. 712
Clearing OSPF neighbors.. 712
Disabling and re-enabling the OSPF process... 713
Clearing OSPF routes.. 713

OSPFv3... 715
OSPFv3 overview.. 715
LSA types for OSPFv3... 715
Configuring OSPFv3.. 716
Enabling OSPFv3.. 716
Assigning OSPFv3 areas... 717
Assigning an area cost for OSPFv3 (optional parameter).. 721
Specifying a network type... 722
Configuring virtual links.. 723
Changing the reference bandwidth for the cost on OSPFv3 interfaces... 724
Redistributing routes into OSPFv3.. 726
Filtering OSPFv3 routes... 729
Configuring default route origination.. 731
Modifying Shortest Path First timers.. 732
Modifying administrative distance.. 733
Configuring the OSPFv3 LSA pacing interval... 733
RIPng

Configuring RIPng... 787
 Enabling RIPng... 787
 Configuring RIPng timers.. 788
 Configuring route learning and advertising parameters.. 789
 Redistributing routes into RIPng.. 790
 Controlling distribution of routes through RIPng.. 791
 Configuring poison reverse parameters.. 791
Clearing RIPng routes from IPv6 route table... 792
Clearing RIPng for a VRF instance.. 792
Displaying RIPng information.. 792
Displaying RIPng configuration.. 792
Displaying RIPng routing table... 793

VRRPv2

VRRPv2 overview.. 795
 VRRP terminology.. 797
 VRRP hold timer.. 798
 VRRP interval timers.. 798
 VRRP authentication.. 799
 VRRP master device abdication to backup device.. 799
 ARP and VRRP control packets... 800
Enabling an owner VRRP device... 800
Enabling a backup VRRP device... 802
Configuring simple text authentication on VRRP interfaces... 803
Configuring MD5 authentication on VRRP interfaces.. 804
Abdicating VRRP master device status.. 805
Tracked ports and track priority with VRRP and VRRP-E.. 807
 Tracking ports and setting the VRRP priority.. 807
VRRP backup preemption... 808
 Disabling VRRP backup preemption... 808
Virtual router MAC address.. 809
 Configuring unique virtual MAC addresses per VRID.. 809
Suppressing RIP route advertisements on VRRP backup devices.. 811
VRRP-Ev2 overview... 812
Enabling a VRRP-E device.. 812
VRRP-E load-balancing using short-path forwarding.. 814
 Packet routing with short-path forwarding to balance traffic load... 814
 Short-path forwarding with revert priority.. 815
 Configuring VRRP-E load-balancing using short-path forwarding.. 815
VRRP-E slow start timer... 816
 Configuring a VRRP-E slow-start timer... 816
Multiple virtual IP address support for VRRP-E.. 817
 Configuring multiple virtual IP addresses for VRRP-E.. 817
 Displaying multiple virtual IP addresses for VRRP-E information.. 819
VRRP-E scaling using logical groups.. 820
 Configuring VRRP-E scaling... 821
 Displaying VRRP-E scaling information... 822
Displaying VRRPv2 information... 822
Clearing VRRPv2 statistics.. 824
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRRPv3 overview</td>
<td>825</td>
</tr>
<tr>
<td>Enabling an IPv6 VRRPv3 owner device</td>
<td>826</td>
</tr>
<tr>
<td>Enabling an IPv6 VRRPv3 backup device</td>
<td>827</td>
</tr>
<tr>
<td>Enabling an IPv4 VRRPv3 owner device</td>
<td>828</td>
</tr>
<tr>
<td>Enabling an IPv4 VRRPv3 backup device</td>
<td>829</td>
</tr>
<tr>
<td>Tracked ports and track priority with VRRP and VRRP-E</td>
<td>830</td>
</tr>
<tr>
<td>Tracking ports and setting VRRP priority using VRRPv3</td>
<td>830</td>
</tr>
<tr>
<td>Tracked IPsec tunnels and track priority with VRRP and VRRP-E</td>
<td>831</td>
</tr>
<tr>
<td>Configuring VRRP tracking for IPsec tunnels</td>
<td>832</td>
</tr>
<tr>
<td>Configuring VRRP-E tracking for IPsec tunnels</td>
<td>833</td>
</tr>
<tr>
<td>Accept mode for backup VRRP devices</td>
<td>835</td>
</tr>
<tr>
<td>Enabling accept mode on a backup VRRP device</td>
<td>835</td>
</tr>
<tr>
<td>Alternate VRRPv2 checksum for VRRPv3 IPv4 sessions</td>
<td>836</td>
</tr>
<tr>
<td>Enabling the VRRPv2 checksum computation method in a VRRPv3 IPv4 session</td>
<td>837</td>
</tr>
<tr>
<td>Displaying alternate VRRPv2 checksum settings</td>
<td>838</td>
</tr>
<tr>
<td>Automatic generation of a virtual link-local address for VRRPv3</td>
<td>838</td>
</tr>
<tr>
<td>Enabling auto-generation of an IPv6 virtual link-local address</td>
<td>839</td>
</tr>
<tr>
<td>Displaying VRRPv3 statistics</td>
<td>840</td>
</tr>
<tr>
<td>Clearing VRRPv3 statistics</td>
<td>842</td>
</tr>
<tr>
<td>VRRP-Ev3 Overview</td>
<td>842</td>
</tr>
<tr>
<td>Enabling an IPv6 VRRP-Ev3 device</td>
<td>842</td>
</tr>
<tr>
<td>VRRP-Ev3 sub-second failover</td>
<td>844</td>
</tr>
<tr>
<td>Configuring sub-second failover using VRRP-Ev3</td>
<td>844</td>
</tr>
<tr>
<td>Displaying and clearing VRRP-Ev3 statistics</td>
<td>845</td>
</tr>
</tbody>
</table>
Preface

- Document conventions ... 23
- Extreme resources ... 24
- Document feedback ... 24
- Contacting Extreme Technical Support .. 25

Document conventions

The document conventions describe text formatting conventions, command syntax conventions, and important notice formats used in Extreme technical documentation.

Notes, cautions, and warnings

Notes, cautions, and warning statements may be used in this document. They are listed in the order of increasing severity of potential hazards.

NOTE
A Note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information.

ATTENTION
An Attention statement indicates a stronger note, for example, to alert you when traffic might be interrupted or the device might reboot.

CAUTION
A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.

DANGER
A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Text formatting conventions

Text formatting conventions such as boldface, italic, or Courier font may be used to highlight specific words or phrases.

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold text</td>
<td>Identifies command names.</td>
</tr>
<tr>
<td></td>
<td>Identifies keywords and operands.</td>
</tr>
<tr>
<td></td>
<td>Identifies the names of GUI elements.</td>
</tr>
<tr>
<td></td>
<td>Identifies text to enter in the GUI.</td>
</tr>
</tbody>
</table>

italic text Identifies emphasis.
Identifies variables.
Identifies document titles.

Courier font Identifies CLI output.
Command syntax conventions

Bold and italic text identify command syntax components. Delimiters and operators define groupings of parameters and their logical relationships.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold text</td>
<td>Identifies command names, keywords, and command options.</td>
</tr>
<tr>
<td>italic text</td>
<td>Identifies a variable.</td>
</tr>
<tr>
<td>[]</td>
<td>Syntax components displayed within square brackets are optional.</td>
</tr>
<tr>
<td>{ x</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>< ></td>
<td>Nonprinting characters, for example, passwords, are enclosed in angle brackets.</td>
</tr>
<tr>
<td>...</td>
<td>Repeat the previous element, for example, member[member...].</td>
</tr>
<tr>
<td>\</td>
<td>Indicates a “soft” line break in command examples. If a backslash separates two lines of a command input, enter the entire command at the prompt without the backslash.</td>
</tr>
</tbody>
</table>

Extreme resources

Visit the Extreme website to locate related documentation for your product and additional Extreme resources.

White papers, data sheets, and the most recent versions of Extreme software and hardware manuals are available at www.extremenetworks.com. Product documentation for all supported releases is available to registered users at www.extremenetworks.com/support/documentation.

Document feedback

Quality is our first concern at Extreme, and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you.

You can provide feedback in two ways:

- Use our short online feedback form at http://www.extremenetworks.com/documentation-feedback-pdf/
- Email us at internalinfodev@extremenetworks.com

Provide the publication title, part number, and as much detail as possible, including the topic heading and page number if applicable, as well as your suggestions for improvement.
Contacting Extreme Technical Support

As an Extreme customer, you can contact Extreme Technical Support using one of the following methods: 24x7 online or by telephone. OEM customers should contact their OEM/solution provider.

If you require assistance, contact Extreme Networks using one of the following methods:

- **GTAC (Global Technical Assistance Center)** for immediate support
 - Phone: 1-800-998-2408 (toll-free in U.S. and Canada) or +1 408-579-2826. For the support phone number in your country, visit: www.extremenetworks.com/support/contact.
 - Email: support@extremenetworks.com. To expedite your message, enter the product name or model number in the subject line.

- **GTAC Knowledge** - Get on-demand and tested resolutions from the GTAC Knowledgebase, or create a help case if you need more guidance.

- **The Hub** - A forum for Extreme customers to connect with one another, get questions answered, share ideas and feedback, and get problems solved. This community is monitored by Extreme Networks employees, but is not intended to replace specific guidance from GTAC.

- **Support Portal** - Manage cases, downloads, service contracts, product licensing, and training and certifications.

Before contacting Extreme Networks for technical support, have the following information ready:

- Your Extreme Networks service contract number and/or serial numbers for all involved Extreme Networks products
- A description of the failure
- A description of any action(s) already taken to resolve the problem
- A description of your network environment (such as layout, cable type, other relevant environmental information)
- Network load at the time of trouble (if known)
- The device history (for example, if you have returned the device before, or if this is a recurring problem)
- Any related RMA (Return Material Authorization) numbers
About This Document

- Supported hardware and software..27
- What's new in this document ...27
- How command information is presented in this guide.. 27

Supported hardware and software

The hardware platforms in the following table are supported by this release of this guide.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XMR 4000</td>
<td>MLX-4</td>
<td>CES 2024C</td>
<td>CER 2024C</td>
</tr>
<tr>
<td>XMR 8000</td>
<td>MLX-8</td>
<td>CES 2024F</td>
<td>CER-RT 2024C</td>
</tr>
<tr>
<td>XMR 16000</td>
<td>MLX-16</td>
<td>CES 2048C</td>
<td>CER 2024F</td>
</tr>
<tr>
<td>XMR 32000</td>
<td>MLX-32</td>
<td>CES 2048CX</td>
<td>CER-RT 2024F</td>
</tr>
<tr>
<td></td>
<td>MLXe-4</td>
<td>CES 2048F</td>
<td>CER 2048C</td>
</tr>
<tr>
<td></td>
<td>MLXe-8</td>
<td>CES 2048FX</td>
<td>CER-RT 2048C</td>
</tr>
<tr>
<td></td>
<td>MLXe-16</td>
<td></td>
<td>CER 2048CX</td>
</tr>
<tr>
<td></td>
<td>MLXe-32</td>
<td></td>
<td>CER-RT 2048CX</td>
</tr>
</tbody>
</table>

What’s new in this document

On October 30, 2017, Extreme Networks, Inc. acquired the data center networking business from Brocade Communications Systems, Inc. This document has been updated to remove or replace references to Brocade Communications, Inc. with Extreme Networks., Inc., as appropriate.

For the complete list of supported features and the summary of enhancements and configuration notes for this release, refer to the Extreme NetIron OS Release Notes.

How command information is presented in this guide

Starting with Extreme NetIron 5.6.00, command syntax and parameter descriptions are removed from commands that are referenced in configuration tasks. To find the full description of a specific command, including all required and optional keywords and variables, refer to the Extreme NetIron Command Reference for your software release.
ARP

- Configuring ARP parameters...29
- Displaying ARP entries..34
- Dynamic ARP inspection...36
- ARP Guard..43

Configuring ARP parameters

Address Resolution Protocol (ARP) is a standard IP protocol that enables the Extreme device to obtain the MAC address of another device’s interface when the Extreme device knows the IP address of the interface. ARP is enabled by default and cannot be disabled.

How ARP works

The Extreme device needs to know a destination’s MAC address when forwarding traffic, because the Extreme device encapsulates the IP packet in a Layer 2 packet (MAC layer packet) and sends the Layer 2 packet to a MAC interface on a device directly attached to the Extreme device. The device can be the packet’s final destination or the next-hop router toward the destination.

The Extreme device encapsulates IP packets in Layer 2 packets regardless of whether the ultimate destination is locally attached or is multiple router hops away. Since the Extreme device’s IP route table and IP forwarding cache contain IP address information but not MAC address information, the Extreme device cannot forward IP packets based solely on the information in the route table or forwarding cache. The Extreme device needs to know the MAC address that corresponds with the IP address of either the packet’s locally attached destination or the next-hop router that leads to the destination.

For example, to forward a packet whose destination is multiple router hops away, the Extreme device must send the packet to the next-hop router toward its destination, or to a default route or default network route if the IP route table does not contain a route to the packet’s destination. In each case, the Extreme device must encapsulate the packet and address it to the MAC address of a locally attached device, the next-hop router toward the IP packet’s destination.

To obtain the MAC address required for forwarding a datagram, the Extreme device does the following:

- First, the Extreme device looks in the ARP cache (not the static ARP table) for an entry that lists the MAC address for the IP address. The ARP cache maps IP addresses to MAC addresses. The cache also lists the port attached to the device and, if the entry is dynamic, the age of the entry. A dynamic ARP entry enters the cache when the Extreme device receives an ARP reply or receives an ARP request (which contains the sender’s IP address and MAC address). A static entry enters the ARP cache from the static ARP table (which is a separate table) when the interface for the entry comes up. To ensure the accuracy of the ARP cache, each dynamic entry has its own age timer. The timer is reset to zero each time the Extreme device receives an ARP reply or ARP request containing the IP address and MAC address of the entry. If a dynamic entry reaches its maximum allowable age, the entry times out and the software removes the entry from the table. Static entries do not age out and can be removed only by you.

- If the ARP cache does not contain an entry for the destination IP address, the Extreme device broadcasts an ARP request out all its IP interfaces. The ARP request contains the IP address of the destination. If the device with the IP address is directly attached to the Extreme device, the device sends an ARP response containing its MAC address. The response is a unicast packet addressed directly to the Extreme device. The Extreme device places the information from the ARP response into the ARP cache. ARP requests contain the IP address and MAC address of the sender, so all devices that receive the request learn the MAC address and IP address of the sender and can update their own ARP caches accordingly.
NOTE
The ARP request broadcast is a MAC broadcast, which means the broadcast goes only to devices that are directly attached to
the Extreme device. A MAC broadcast is not routed to other networks. However, some routers, including the Extreme device,
can be configured to reply to ARP requests from one network on behalf of devices on another network. Refer to Enabling proxy
ARP on page 31.

NOTE
If the device receives an ARP request packet that it is unable to deliver to the final destination because of the ARP timeout and
no ARP response is received (the Extreme device knows of no route to the destination address), the device sends an ICMP
Host Unreachable message to the source.

Rate limiting ARP packets
For rate-limiting purposes, ARP traffic destined for the CPU is assigned a separate global QoS ID 0xFFE. You can configure the rate-
limit parameters using the following global CONFIG command.

```
device(config)# ip rate-limit arp policy-map policy-map-name
```

By default, the rate-limit parameters for QoS ID 0xFFE will be initialized to allow line-rate traffic. The rate-limit parameters specified
using the policy-map are applicable on a per-PPCR basis.

To display ARP accounting statistics, enter the following command.

```
device(config)# show rate-limit arp
```

This command displays the byte counters corresponding to QoS ID 0xFFE.

```
device(config)# clear rate-limit arp
```

This command clears the byte counters corresponding to QoS ID 0xFFE.

When priority-based rate limiting is enabled, QoS IDs 0x3FE, 0x7FE and 0xBFE will be re-mapped to 0xFFE. When priority-based rate
limiting is disabled, QoS IDs 0x3FE, 0x7FE and 0xBFE will not be re-mapped to 0xFFE. In either case, only QoS ID 0xFFE will be
added to the list of used QoS IDs.

To enable the dynamic addition, deletion, or change in rate-limit values of a policy-map, enter the following command.

```
device(config)# ip rate-limit arp policy-map policy-map-name
```

This command takes effect automatically, without unbinding and rebinding the ARP RL policy. If the ARP Rate Limit policy specifies
an undefined policy-map, rate limit values are initialized to line-rate values. Dynamic enabling and disabling of priority based rate limiting on
a global basis takes effect automatically for the ARP RL policy.

NOTE
ARP packets destined for the CPU will be not be rate-limited by interface-level Layer 2 RL-ACLs. To rate-limit switched ARP
packets using interface-level Layer 2 ACLs, you must define an explicit ACL filter with an “etype arp” option, as shown in the
following example:

To define an explicit ACL filter, enter commands similar to the following.

```
device(config)# access-list 410 permit any any any etype arp
device(config)# int eth 4/1
device(config-if-e10000-4/1)# rate-limit in access-gr 410 policy-map view
```

NOTE
Since ARP packets are broadcast packets, ARP packets are switched by default within a VLAN by the CPU. Thus to rate-limit
switched ARP packets using interface-level Layer 2 ACLs, you must also configure vlan-cpu-protection.
Changing the ARP aging period

When the Extreme device places an entry in the ARP cache, the Extreme device also starts an aging timer for the entry. The aging timer ensures that the ARP cache does not retain learned entries that are no longer valid. An entry can become invalid when the device with the MAC address of the entry is no longer on the network.

The ARP age affects dynamic (learned) entries only, not static entries. The default ARP age is ten minutes. On the Extreme device, you can change the ARP age to a value from 0 - 240 minutes. If you set the ARP age to zero, aging is disabled and entries do not age out.

To globally change the ARP aging parameter to 20 minutes, enter the following command.

```
device(config)# ip arp-age 20
```

Syntax: `[no]`ip arp-age num

The `num` parameter specifies the number of minutes and can be from 0 - 240. The default is 10. If you specify 0, aging is disabled.

To override the globally configured IP ARP age on an individual interface, enter a command such as the following at the interface configuration level.

```
device(config-if-e1000-1/1)# ip arp-age 30
```

Enabling proxy ARP

Proxy ARP allows the Extreme device to answer ARP requests from devices on one network on behalf of devices in another network. Since ARP requests are MAC-layer broadcasts, they reach only the devices that are directly connected to the sender of the ARP request. Thus, ARP requests do not cross routers.

For example, if Proxy ARP is enabled on the Extreme device connected to two subnets, 10.10.10.0/24 and 10.20.20.0/24, the Extreme device can respond to an ARP request from 10.10.10.69 for the MAC address of the device with IP address 10.20.20.69. In standard ARP, a request from a device in the 10.10.10.0/24 subnet cannot reach a device in the 10.20.20.0 subnet if the subnets are on different network cables, and thus is not answered.

NOTE

An ARP request from one subnet can reach another subnet when both subnets are on the same physical segment (Ethernet cable), since MAC-layer broadcasts reach all the devices on the segment.

Proxy ARP is disabled by default.

To enable IP proxy ARP, enter the following command.

```
device(config)# ip proxy-arp
```

To again disable IP proxy ARP, enter the following command.

```
device(config)# no ip proxy-arp
```

Syntax: `[no]` ip proxy-arp

Enabling local proxy ARP

Under some Layer-2 configurations such as uplink-switch or private VLAN, broadcast packets are not flooded to every port in a VLAN. In these configurations, an ARP request from one host may not reach another host. Enabling the Local Proxy ARP feature on a port directs the device to reply on behalf of a target host if it exists. The ARP reply returned contains the device’s mac address instead of the mac address of the target host. In this transaction, the traffic sent to the target host is Layer-3 forwarded rather than Layer-2 switched.
To enable Local Proxy ARP, the global-level command `ip proxy-arp` must first be enabled as described in Enabling proxy ARP on page 31. After `ip proxy-arp` has been enabled globally, Local Proxy ARP can be enabled on a specified interface using the following command.

```
device(config-if-e1000-1/1)# interface ethernet 1/1
device(config-if-e1000-1/1)# ip local-proxy-arp
```

Syntax: `[no] ip local-proxy-arp`

Disabling gratuitous ARP requests for local proxy ARP

When the Local Proxy ARP is configured under the IP interface, the Extreme device will reply to ARP requests on behalf of the hosts inside the subnet using its own MAC address. Refer to Enabling local proxy ARP on page 31 for information on configuring the Local Proxy ARP command. In this configuration, when a host comes up, the host tries to ping its own IP address to make sure there is no duplicated IP address by issuing a gratuitous ARP request to its only IP address. The Extreme device will reply to this request because it is required under the Local Proxy ARP configuration. When the host receives the ARP reply, the host incorrectly assumes that there is another host using the same IP address.

A gratuitous ARP request packet is defined as an ARP request packet with the sender protocol address that equals to the target protocol address. By disabling Gratuitous ARP Requests for Local Proxy ARP, you are able to control whether to reply to gratuitous ARP requests under the Local Proxy ARP configuration.

To enable the `ignore-gratuitous-arp` parameter when the `ip local-proxy-arp` command is turned on, enter the following command.

```
device(config-if-e1000-1/6)# ip local-proxy-arp ignore-gratuitous-arp
```

To disable only the `ignore-gratuitous-arp` parameter when the Local Proxy ARP is configured, enter the following command.

```
device(config-if-e1000-1/6)# no ip local-proxy-arp ignore-gratuitous-arp
```

To disable both the Local Proxy ARP command and the `ignore-gratuitous-arp` parameter, enter the following command.

```
device(config-if-e1000-1/6)# no ip-local-proxy-arp
```

Syntax: `[no] ip local-proxy-arp [ignore-gratuitous-arp]`

When using the `no ip local-proxy-arp ignore-gratuitous-arp` command, only the `ignore-gratuitous-arp` parameter is turned off. The `ip-local-proxy-arp` command is still turned on.

The Extreme device drops all ARP packets that are sent from its own interface. When the `ignore-gratuitous-arp` parameter is turned on, the Extreme device will not reply to a gratuitous ARP request even if the target protocol address matches the configured interface IP address.

Creating static ARP entries

The Extreme device has a static ARP table, in addition to the regular ARP cache. The static ARP table contains entries that you configure. Static entries are useful in cases where you want to pre-configure an entry for a device that is not connected to the Extreme device, or you want to prevent a particular entry from aging out. The software removes a dynamic entry from the ARP cache if the ARP aging interval expires before the entry is refreshed. Static entries do not age out, regardless of whether the device receives an ARP request from the device that has the entry’s address.

You can increase the number of configurable static ARP entries. Refer to Changing the ARP timer on page 33.

To display the ARP cache and static ARP table, refer to the following:

- To display the ARP table, refer to Displaying the ARP cache on page 34.
Changing the ARP timer

When an entry is initially added to the ARP table, it is listed as “Pending.” When it is in this state, a series of ARP requests are made to determine if it is a valid entry. If the first attempt succeeds, the status of the entry is changed to “dynamic.” It is then subject to the normal rules for dynamic entries. If three attempts fail, the entry is removed from the table.

The ARP timer determines the amount of time that elapses after the ARP request is sent before determining that the request has failed. The `arp-timer` command allows you to change the length of the ARP timer as shown in the following.

```
device(config)# ip arp-timer 12
```

Syntax: `[no] ip arp-timer timer-value`

The `timer-value` variable has now been changed so that you are able to enter a value between 1 and 500. Each increment represents 100 ms. Consequently, the minimum value of 1 equals 100 ms.

The default value is 10 which equals 1 sec.

This value can be used to adjust how frequently an ARP request is sent out for a pending ARP entry.

Changing the ARP pending retry timer

The ARP Pending Retry Timer for Extreme device will send out three ARP request packets for the configured period until ARP is resolved to prevent large amounts of ARP requests from flooding the network during network host scanning activity. The ARP Pending Retry Timer is configurable depending upon the requirements of your system configurations.

The `arp-pending-retry-timer` command allows you to change the length of the ARP pending retry timer as shown in the following.

```
device(config)# ip arp-pending-retry-timer 120
```

Syntax: `[no] ip arp-pending-retry-timer timer-value`

The `timer-value` variable is a value between 10 to 3600 seconds. The default value is 60 seconds.

Generating syslog notification for differing Ethernet source MAC and ARP sender MAC addresses

The NetIron OS devices generate a syslog notification whenever there is a mismatch between the Layer 2 header source MAC address and the ARP sender MAC address.

This syslog notification is supported on the XMR Series, MLX Series, CER 2000 Series, and CES 2000 Series platforms.

Configuration step

Enter the `logging enable mac-mismatch-detection` command for syslog notification due to MAC address mismatch.

The syslog message helps you identify the root cause for the traffic outage scenario and you can proceed with the static MAC address workaround in MCT by configuring the static MAC address in the CCEP port. The following syslog message is displayed when there is a MAC address mismatch.

```
SYSLOG: <14>Dec 16 05:53:23 MLX_1 MAC_MISMATCH_DETECTION: ARP pkt received with diff eth source MAC and diff ARP sender MAC. Eth src MAC: 0024.3892.4c02 ARP sender MAC: 0034.2867.2c01.
```
Displaying ARP entries

You can display the ARP cache and the static ARP table. The ARP cache contains entries for devices attached to the Extreme device. The static ARP table contains the user-configured ARP entries. An entry in the static ARP table enters the ARP cache when the entry’s interface comes up.

The tables require separate display commands.

Displaying the ARP cache

To display the contents of the ARP cache, enter the following command at any CLI level.

```
device# show arp
```

```
Total number of ARP entries: 5

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Type</th>
<th>Age</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.95.6.102</td>
<td>0000.5afc.ea21</td>
<td>Dynamic</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>10.95.6.101</td>
<td>0000.24d2.04ed</td>
<td>Dynamic</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>10.95.6.54</td>
<td>00a0.24ab.cd2b</td>
<td>Dynamic</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>10.95.6.211</td>
<td>00c0.2638.ac9c</td>
<td>Dynamic</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>10.30.30.15</td>
<td>none</td>
<td>Pending</td>
<td>0</td>
<td>v1</td>
</tr>
</tbody>
</table>
```

Syntax: `show arp [ethernet slot/port | mac-address xxxx.xxxx.xxxx [mask] | ip-addr [ip-mask]] [num] [begin expression | exclude expression | include expression]`

The `ethernet slot/portnum` parameter lets you restrict the display to entries for a specific port.

The `mac-address xxxx.xxxx.xxxx` parameter lets you restrict the display to entries for a specific MAC address.

The `mask` parameter lets you specify a mask for the `mac-address xxxx.xxxx.xxxx` parameter to display entries for multiple MAC addresses. Specify the MAC address mask as fs and 0s, where fs are significant bits.

The `ip-addr` and `ip-mask` parameters let you restrict the display to entries for a specific IP address and network mask. Specify the IP address masks in standard decimal mask format (for example, 255.255.0.0).

NOTE

The `ip-mask` parameter and `mask` parameter perform different operations. The `ip-mask` parameter specifies the network mask for a specific IP address, whereas the `mask` parameter provides a filter for displaying multiple MAC addresses that have specific values in common.

The `num` parameter lets you display the table beginning with a specific entry number.

NOTE

The entry numbers in the ARP cache are not related to the entry numbers for static ARP table entries.

This display shows the following information. The number in the left column of the CLI display is the row number of the entry in the ARP cache. This number is not related to the number you assign to static MAC address entries in the static ARP table.

TABLE 2 CLI display of ARP cache

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the device.</td>
</tr>
<tr>
<td>Type</td>
<td>The type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Dynamic - The Extreme device learned the entry from an incoming packet.</td>
</tr>
</tbody>
</table>
TABLE 2 CLI display of ARP cache (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
</table>
| | • Static - The Extreme device loaded the entry from the static ARP table when the device for the entry was connected to the Extreme device.
• Pending - The Extreme device added the entry to the ARP table and is in the process of sending a series of ARP requests to determine if it is a valid entry. |

Age

The number of minutes the entry has remained unused. If this value reaches the ARP aging period, the entry is removed from the table.

To display the ARP aging period, refer to Displaying global IP configuration information on page 128. To change the ARP aging interval, refer to Changing the ARP aging period on page 31.

NOTE

Static entries do not age out.

Port

The port on which the entry was learned.

Displaying the static ARP table

To display the static ARP table, enter the following command at any CLI level.

```
device# show ip static-arp
```

```
Total no. of entries: 4

<table>
<thead>
<tr>
<th>Index</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Port</th>
<th>VLAN</th>
<th>ESI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.1.1</td>
<td>0001.0001.0001</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.6.6.2</td>
<td>0002.0002.0002</td>
<td>1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10.6.6.7</td>
<td>1111.1111.1111</td>
<td>2/1...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ports : ethe 2/1 to 2/7 ethe 3/1 to 3/2</td>
</tr>
<tr>
<td>4</td>
<td>10.7.7.7</td>
<td>0100.5e42.7f40</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

This example shows four static entries, one of which is multi-port. Multi-port static ARP entries are supported only on the XMR Series and MLX Series devices. Note that for multi-port entries the Port column shows a single port number followed by an ellipsis; the full list of ports associated with that ARP entry is displayed on the following line.

Syntax: show ip static-arp [ethernet slot/portnum] [mac-address xxxxxxxxxx [mask]] [ip-addr [ip-mask]] [num] [| begin expression | exclude expression | include expression]

For information on the command syntax, see the syntax of the show arp command under Displaying the ARP cache on page 34.

TABLE 3 CLI display of static ARP table

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>The number of this entry in the table.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the device.</td>
</tr>
<tr>
<td>Port</td>
<td>The port attached to the device the entry is for. In the case of a multi-port static ARP, this will display a single port followed by an ellipsis, and the full list of ports will be displayed on the line below.</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN associated with this entry, if any.</td>
</tr>
<tr>
<td>ESI</td>
<td>Ethernet Service Instance (ESI) associated with this entry, if any.</td>
</tr>
</tbody>
</table>
Dynamic ARP inspection

NOTE
This feature is supported on Layer 2 and Layer 3 code.

Dynamic ARP Inspection (DAI) enables the device to intercept and examine all ARP request and response packets in a subnet and discard those packets with invalid IP to MAC address bindings. DAI can prevent common man-in-the-middle (MiM) attacks such as ARP cache poisoning, and disallow mis-configuration of client IP addresses.

ARP poisoning
ARP provides IP communication within a Layer 2 broadcast domain by mapping an IP address to a MAC address. Before a host can talk to another host, it must map the IP address to a MAC address first. If the host does not have the mapping in its DAI table, it creates an ARP request to resolve the mapping. All computers on the subnet will receive and process the ARP requests, and the host whose IP address matches the IP address in the request will send an ARP reply.

An ARP poisoning attack can target hosts, switches, and routers connected to the Layer 2 network by poisoning the ARP caches of systems connected to the subnet and by intercepting traffic intended for other hosts on the subnet. For instance, a malicious host can reply to an ARP request with its own MAC address, thereby causing other hosts on the same subnet to store this information in their DAI tables or replace the existing ARP entry. Furthermore, a host can send gratuitous replies without having received any ARP requests. A malicious host can also send out ARP packets claiming to have an IP address that actually belongs to another host (e.g. the default router). After the attack, all traffic from the device under attack flows through the attacker’s computer and then to the router, switch, or host.

How DAI works
DAI allows only valid ARP requests and responses to be forwarded.

A device on which ARP Inspection is configured does the following:

• Intercepts ARP packets received by the system CPU
• Inspects all ARP requests and responses received on untrusted ports
• Verifies that each of the intercepted packets has a valid IP-to-MAC address binding before updating the ARP table, or before forwarding the packet to the appropriate destination
• Drops invalid ARP packets

When you enable ARP Inspection on a VLAN, by default, all member ports are untrusted. You must manually configure trusted ports. In a typical network configuration, ports connected to host ports are untrusted. You configure ports connected to other switches or routers as trusted.

DAI inspects ARP packets received on untrusted ports, as shown in Figure 1. DAI carries out the inspection based on IP-to-MAC address bindings stored in a trusted binding database. For the Extreme device, the binding database is the ARP table, which supports DAI, DHCP snooping, and IP Source Guard. To inspect an ARP request packet, DAI checks the source IP and source MAC address against the ARP table. For an ARP reply packet, DAI checks the source IP, source MAC, destination IP, and destination MAC addresses. DAI forwards the valid packets and discards those with invalid IP-to-MAC address bindings.

When ARP packets reach a trusted port, DAI lets them through, as shown in Figure 1.
FIGURE 1 Dynamic ARP inspection at work

ARP entries

DAI uses the IP/MAC mappings in the ARP table to validate ARP packets received on untrusted ports. ARP entries in the ARP table derive from the following:

- **ARP Inspection** - statically configured VRF+VLAN+IP/MAC mapping.
- **ARP** - statically configured VRF+IP/MAC/port mapping.
- **DHCP-Snooping ARP** - information collected from snooping DHCP packets when DHCP snooping is enabled on VLANs.

Configuring DAI

NOTE

An index number is no longer needed to configure static ARP entries.

Follow the steps listed below to configure DAI.

1. Configure inspection of ARP entries for hosts on untrusted ports. Enable ARP Inspection on a VLAN to inspect ARP packets.
2. Configure the trust settings of the VLAN members. ARP packets received on trusted ports bypass the DAI validation process. ARP packets received on untrusted ports go through the DAI validation process.
3. Enable DHCP snooping to populate the DHCP snooping IP-to-MAC binding database. Refer to DHCP binding database on page 488 for more information.

The following shows the default settings of ARP Inspection.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic ARP Inspection</td>
<td>Disabled</td>
</tr>
<tr>
<td>Trust setting for ports</td>
<td>Untrusted</td>
</tr>
</tbody>
</table>

Enabling dynamic ARP inspection on a VLAN

ARP and Dynamic inspection ARP entries need to be configured for hosts on untrusted ports. Otherwise, when Dynamic ARP Inspection checks ARP packets from these hosts against entries in the ARP table, it will not find any entries for them, and the device will not allow and learn ARP from an untrusted host.
Dynamic ARP Inspection is disabled by default. To enable Dynamic ARP Inspection on an existing VLAN or a range of VLANs, enter the following command.

```
device(config)# ip arp-inspection vlan 18 to 20
```

The command enables Dynamic ARP Inspection on VLAN 18 through VLAN 20. ARP packets from untrusted ports in VLAN 18 through VLAN 20 will undergo Dynamic ARP Inspection.

Syntax:

```
[no] ip-arp inspection vlan vlan_id to vlan_id
```

The `vlan_id` variable specifies the ID of a configured VLAN or VLAN range. Valid VLAN ranges are 1-4090.

Configuring static ARP on a VLAN and port

In the Extreme device configuration, the DHCP binding database is integrated with the ARP Inspection table. The ARP inspection table stores the DAI IP/MAC binding information, which is used to build the IP source guard ACL. The `static arp` command allows you to configure both the vlan id and port parameters on a layer 2 interface.

To configure a static arp entry for a vlan id, enter the following command.

```
device(config)#arp 10.1.0.2 aabb.cc00.0100 vlan 10
```

Syntax:

```
[no] arp ip mac [vlan vlan_id] [port]
```

The `ip` variable specifies the IP address for the static IP ARP entry.

The `mac` variable specifies the MAC address for the static IP ARP entry.

The `vlan_id` variable configures the static ARP entry for a vlan. The VLAN ID range is 1-4090.

The `port` variable configures the static ARP entry for a port.

If the `vlan_id` is not configured when IP source guard is turned on, the IP address is assumed to be valid on all the vlans on the port.

If both the `vlan_id` and the `port` are not configured when IP source guard is turned on, the IP address is assumed to be valid for all vlans.

Enabling trust on a port

The default trust setting for a port is untrusted. For ports that are connected to host ports, leave their trust settings as untrusted.

To enable trust on a port, enter commands such as the following.

```
device(config)# interface ethernet 1/4
device(config-if-e10000-1/4)# arp-inspection-trust
```

The commands change the CLI to the interface configuration level of port 1/4 and set the trust setting of port 1/4 to trusted.

Syntax:

```
[no] arp-inspection-trust
```

Creating ARP entries

Static entries are useful in cases where you want to pre-configure an entry for a device that is not connected to the Extreme device, or you want to prevent a particular entry from aging out. The software removes a dynamic entry from the ARP cache if the ARP aging interval expires before the entry is refreshed. Static entries do not age out, regardless of whether the device receives an ARP request from the device that has the entry’s address.

To create a static ARP entry for a static MAC entry, enter a command such as the following.

```
device(config)# arp 10.53.4.2 1245.7654.2348 vlan 10
```

The command adds a static ARP entry that maps IP address 10.53.4.2 to MAC address 1245.7654.2348. The entry is for a MAC address connected to VLAN 10 of the Extreme device.

Syntax:
```
[no] arp ip-addr mac-addr [ ethernet slot/port | vlan vlan_id ]
```

The `ip-addr` parameter specifies the IP address of the device that has the MAC address of the entry.

The `mac-addr` parameter specifies the MAC address of the entry.

The `ethernet slot/port` command specifies the port number attached to the device that has the MAC address of the entry.

The `vlan vlan_id` variable specifies the ID of a configured VLAN or VLAN range. Valid VLAN ranges are 1-4090.

Creating multi-port ARP entries

On the device devices, multiple ports belonging to the same VE can be assigned to a single static ARP.

NOTE

The multi-port ARP feature can be used in a pure Layer 3 forwarding environment to forward IPv4 traffic to multiple ports and should not be used in conjunction with Multi-port static MAC.

To create a multi-port static ARP entry, enter a command such as the following.

```
device(config)# arp 10.53.4.2 1245.7654.2348 multi-ports ethernet 2/1 to 2/7 ethernet 3/1 to 3/2
```

The command above adds a static ARP entry that maps IP address 10.53.4.2 to MAC address 1245.7654.2348. If all conditions are met and the multi-port static ARP entry is instantiated in the dynamic ARP table, then packets with a destination IP address of 10.53.4.2 will be sent out on Ethernet ports 2/1-2/7 and 3/1-3/2.

Syntax:
```
[no] arp ip-address mac-address [ port | multi-ports ethernet [ slot1/port1 | [ slot1/port1 to slot1/port ] .. ethernet [ slot/port to slot/port ]] ]
```

The `ip-address` parameter specifies the IP address of the device that has the MAC address of the entry.

The `mac-address` parameter specifies the MAC address of the entry.

The `ethernet slot/port` command specifies the port number attached to the device that has the MAC address of the entry. (The `ethernet` keyword is repeated before each individual port or range of ports to be included in the multi-port ARP entry.)

VRF Considerations

The configuration command above creates a static ARP entry associated with the default VRF. To configure the multi-port ARP for a non-default VRF, first enter the configuration mode for the non-default VRF, then enter address family command mode using commands such as the following.

```
device(config)# vrf test
device(config-vrf-test)# address-family ipv4
device(config-vrf-test-ipv4)# arp 10.6.6.7 0001.0001.0001 multi-ports ethernet 2/1 to 2/7
device(config-vrf-test-ipv4)# ethernet 3/2 to 3/2
device(config-vrf-test-ipv4)# exit-address-family
device(config-vrf-test)# exit vrf
```

The above commands create a multi-port ARP entry associated with a non-default VRF called “test.”

NOTE

This feature is supported on both the XMR Series, MLX Series and CER 2000 Series, CES 2000 Series series platforms.
Instantiation in the ARP table

NOTE
Configuring a multi-port static ARP entry does not automatically create a dynamic ARP entry!

NOTE
The multi-port ARP feature can be used in a pure Layer 3 forwarding environment to forward IPv4 traffic to multiple ports and should not be used in conjunction with Multi-port static MAC.

The following four conditions must be met in order for a user-created multi-port static ARP entry to be instantiated in the dynamic ARP table:

1. All the ports configured in the multi-port static ARP entry need to belong to the same VE.
2. The IP address of the multi-port static ARP entry needs to match the subnet of the VE to which the ports belong, and it must be in the same VRF.
3. At least one of the ports in the configured port list needs to be up.
4. MPLS uplink must not be configured on the VE that subnets the static ARP IP address.

If these four conditions are met, a conflict check is performed before adding the static ARP entry to the dynamic ARP table. If a dynamic entry already exists with the same IP address and VRF, the static ARP will override the dynamic entry and packets will be forwarded to the FID for this dynamic ARP entry.

Changes in these conditions (VE port membership changes, port up/down status changes, etc.) can trigger reevaluation of the static ARP and may result in the entry being added to or removed from the ARP table.

Supported applications
- **PBR** PBR supports use of a multi-port static ARP entry as an IP next hop.
- **Trunk ports** Primary trunk ports can be configured in multi-port static ARPs. If a secondary trunk port is included in a multi-port ARP entry, however, the trunk will not be deployed.
- **ARP inspection** ARP inspection is performed for multi-port static ARPs the same as for normal static ARP entries.

Unsupported applications
- **IP tunnel** If an IP tunnel’s next hop is resolved to a multi-port static ARP entry, the tunnel will not be brought up.
- **MPLS next-hop** Configuring an MPLS uplink on the VE interface associated with a multi-port static ARP will prevent instantiation of the ARP.
- **MCT** The ICL ports in MCT and clients are not supported by multi-port static ARP and MAC.
- **PB/PBB** The non-default port types are not supported by multi-port static ARP and MAC on PB/PBB.

Creating a floating static ARP entry
You can create a static ARP entry without port assignments.

When a floating static ARP entry (Static ARP Inspection entry without port defined) is added to ARP Inspection table, the mapping is checked against the current static ARP table. If ARP entry with a matching IP but mismatch MAC is found, it will be deleted and a re-arp on the IP will be issued.

When an ARP entry is deleted from ARP Inspection table, the corresponding entry in the static ARP table will also be deleted.
To create a floating static ARP entry for a static MAC entry, enter a command such as the following.

```
device(config)# arp 10.53.4.2 1245.7654.2348
```

The command adds a floating static ARP entry that maps IP address 10.53.4.2 to MAC address 1245.7654.2348.

Syntax: [no] arp ip-addr mac-addr [ethernet portnum | vlan vlan_id]

The `ip-addr` parameter specifies the IP address of the device that has the MAC address of the entry.

The `mac-addr` parameter specifies the MAC address of the entry.

The `ethernet portnum` parameter specifies the port number attached to the device that has the MAC address of the entry, and is only valid for original static ARP entries.

The `vlan vlan_id` parameter specifies the ID of a configured VLAN.

Configuring a Virtual Routing Instance (VRF)

To configure a virtual routing instance (VRF), enter a command such as the following.

```
device(config)# vrf vpn1
```

Syntax: [no] vrf vrf-name

The `vrf` parameter specifies the virtual routing instance (VRF) specified by the variable `vrf-name`.

Adding an ARP entry for a VRF

IP Addresses can be uniquely determined by VRF. The VLAN number is not needed because the VLAN information is obtained through the ARP protocol. To define an ARP inspection entry for a specific VRF, enter commands such as the following.

```
device(config)# vrf vpn1
device(config-vrf-vpn1)# arp 10.53.4.2 1245.7654.2348 e 3/5
```

This command creates an ARP entry for vrf with IP address 10.53.4.2 and MAC address of 1245.7654.2348 on ethernet 3/5.

Syntax: [no] arp ip-addr mac-addr [ethernet slot/port]

The `vrf-name` parameter specifies the VRF you are configuring a static ARP entry for.

The `ip-addr` parameter specifies the IP address of the device that has the MAC address of the entry.

The `mac-addr` parameter specifies the MAC address of the entry.

The `ethernet slot/port` variable specifies the port number attached to the device that has the MAC address of the entry.

Displaying ARP inspection information

You can display ARP inspection information using the `show ip arp-inspection` and the `show ip static-arp` commands as shown in the following.

```
device# show ip arp-inspection
ARP inspected VLANs:
1000
ARP inspection trusted ports:
ethe 2/1
```

Displaying ARP inspection status and ports

To display the ARP inspection status for a VLAN and the trusted/untrusted ports in the VLAN, enter the following command.

```
device# show ip arp-inspection
ARP inspection trusted ports:
ethe 2/1
```
Syntax: show ip arp-inspection [vlan vlan_id]

The `vlan vlan_id` parameter specifies the ID of a configured VLAN.

Displaying ARP inspection statistics

You can use the `show ip arp-statistics` command to display ARP inspection counters for all ports on the device, as shown in the following.

```
device# show ip arp-inspection-statistics
Module 1:
Port   Arp Packets Captured Arp Packets Failed Inspection
1/1    0                       0
1/2    0                       0
1/3    0                       0
1/4    0                       0
1/5    0                       0
1/6    0                       0
1/7    0                       0
1/8    0                       0
1/9    0                       0
1/10   0                       0
1/11   0                       0
1/12   0                       0
1/13   0                       0
1/14   0                       0
1/15   0                       0
1/16   0                       0
1/17   0                       0
1/18   0                       0
1/19   0                       0
1/20   0                       0
Module 3:
Port   Arp Packets Captured Arp Packets Failed Inspection
3/1    0                       0
3/2    0                       0
3/3    0                       0
3/4    690                     153
```

Specifying a port number with the `show ip arp-statistics` command displays the statistics for that port only, along with details of the last five ARP packets that failed inspection, as shown in the following.

```
device# show ip arp-inspection-statistics ethernet 3/4
Arp packets captured: 695
Arp packets failed inspection: 158
Last 5 packets failed inspection:
  Time      Op  Target IP  Target Mac  Source IP  Source Mac  Vlan
2007-10-24 18:53:28 2 10.1.1.1 000c.dbe2.9353 10.1.1.2 0000.0900.0005 1
2007-10-24 18:53:29 2 10.1.1.1 000c.dbe2.9353 10.1.1.2 0000.0900.0005 1
2007-10-24 18:53:30 2 10.1.1.1 000c.dbe2.9353 10.1.1.2 0000.0900.0005 1
2007-10-24 18:53:32 2 10.1.1.1 000c.dbe2.9353 10.1.1.2 0000.0900.0005 1
2007-10-24 18:53:33 2 10.1.1.1 000c.dbe2.9353 10.1.1.2 0000.0900.0005 1
```

Syntax: show ip arp-inspection-statistics [slot slot-num | ethernet slot/port]

The `slot` option allows you to limit the display of ARP inspection statistics to the Ethernet interface module in the slot specified by the `slot-num` variable.

The `ethernet` option allows you to limit the display of ARP inspection statistics to the port specified by the `slot/port` variable. It also provides details of the last five ARP packets received by the specified port that failed inspection.

This display shows the following information.
Clearing ARP inspection counters

You can use the clear arp-inspection-statistics command to clear the ARP inspection statistics counters for all ports on the device or for a specified module or port as shown in the following.

```
clear arp-inspection-statistics ethernet 3/1
```

Syntax: clear ip arp-inspection-statistics [slot slot-num | ethernet slot/port]

The `slot` option allows you to clear ARP inspection statistics for a single Ethernet interface module in a slot specified by the `slot-num` variable.

The `ethernet` option allows you to clear ARP inspection statistics for a single port specified by the `slot/port` variable.

Displaying the ARP table

To display the ARP Inspection table, enter the following command.

```
device# show ip static-arp
```

<table>
<thead>
<tr>
<th>Index</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Port</th>
<th>VLAN</th>
<th>ESI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.1.1</td>
<td>0001.0001.0001</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.6.6.2</td>
<td>0002.0002.0002</td>
<td>1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10.6.6.7</td>
<td>1111.1111.1111</td>
<td>2/1...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.7.7.7</td>
<td>0100.5e42.7f40</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ports : ethe 2/1 to 2/7 ethe 3/1 to 3/2

The command displays all ARP entries in the system.

The above output includes a multi-port static ARP entry.

Syntax: show ip static-arp

ARP Guard

Internet exchange points (IXPs) are designed based on the flat layer 2 topology to provide any-to-any connectivity among BGP routers from different ISPs, CSPs and Enterprises, connecting to it.
As an IP host, each BGP peering router makes use of ARP protocol to determine the MAC address of its BGP peers. Since ARP is not a secure protocol, any BGP router can reply to the ARP request for any IP address and any BGP router can generate gratuitous ARP to claim itself to be the owner of any IP address in the router.

When the network administrator of a BGP border router connecting to the IXP wrongly configures the router IP address or unknowingly turns on the proxy-ARP feature on the interface facing the IXP, this may cause valid traffic to be destined to wrong destination on the wrongly configured BGP border router until ARP cache expiry on the other routers.

The ARP guard feature uses an ACL-like, CLI parameters (which include VLAN ID, source MAC address and source IP address) to build a table of allowed IP addresses on the link on which this feature is enabled. So, when an ARP reply (either due to gratuitous ARP or normal ARP reply, when proxy-ARP is enabled) arrives at our box on a port facing the BGP router, the ARP packets will be inspected based on the IP address parameter configured using `permit` command. Those ARP packets that do not match the entries in the ACL will be dropped and those which match will be forwarded based on normal forwarding routines.
ARP guard use case scenarios

ARP Hijacking due to wrong configuration of IP address

The network diagram explains how ARP guard functions when IP is wrongly configured on the network.

Layer 2 network with ARP guard:

In the above diagram, assume that the correct IP address of router C is 20.0.0.22 and the network administrator of router C mis-configured the router IP address as 20.0.0.2 (which happens to be the IP address of router B from AS 1).

After entering the wrong IP address or after the link from router C to an MLXe device comes up, router C sends out gratuitous ARP to claim itself to be 20.0.0.2. Without the ARP guard feature, router A may update its ARP entry for 20.0.0.2 with the MAC address of router C causing traffic originally destined to router B to be black-holed on router C. With the ARP guard feature on an MLXe device, the device is configured to just allow gratuitous ARPs for 20.0.0.22 from the link connecting to router C to enter the VLAN or VPLS L2 Network. Upon receiving gratuitous ARP for 20.0.0.2 from router C, it will drop the ARP packet and/or log a message.
ARP hijacking with proxy-ARP
The network diagram illustrates how ARP guard functions when proxy-ARP is enabled on the network.

FIGURE 2 Layer 2 network with ARP Guard

In the previous figure, assume that the network administrator for router C configures its IP address correctly as 20.0.0.22 but unknowingly turns on proxy-ARP. When router A tries to resolve the MAC address for the IP address 20.0.0.2 on router B through ARP, router C sends an ARP reply claiming ownership of the IP address.

When ARP Guard is not enabled, router A may mistake the MAC address of router C as the MAC address for the IP address 20.0.0.2 of router B, causing traffic originally destined to router B to be black-holed on router C. When ARP Guard is enabled on MLXe devices, the devices are configured to allow ARP replies for 20.0.0.22 only from the link connecting to router C to enter the VLAN or VPLS L2 network. ARP replies for IP address 20.0.0.2 from router C are dropped, and a message may be logged.
Configuration considerations and limitations for ARP Guard

ARP Guard configuration issues are as follows.

- ARP Guard configuration is limited to "permit" options for the following parameters:
 - VLAN ID
 - Source MAC address
 - Source IP address

- If a Layer 2 ACL is used to specify the `arp-guard` keyword to shunt ARP packets to the CPU, incoming traffic cannot be rate limited. Because available CPU may be constrained when multiple Layer 2 ACLs are applied to the same interface, any increase in the rate of ARP traffic to the CPU may create high CPU conditions.

- Extreme recommends that you use a Layer 2 ACL to limit the rate of ARP traffic on an interface where ARP Guard is enabled.

- ARP Guard is supported only on physical interfaces.

- ARP Guard and IPv4 cannot be configured on the same physical interface.

- ARP Guard cannot be configured on a route-only interface.

- ARP Guard statistics are not retained after a switchover.

- When ARP Guard is enabled on a LAG and a member port is removed from the LAG, ARP Guard properties are retained on the port that has been removed from the LAG.

- The `show running-config` command does not display ARP Guard configurations with default conditions.

- When ARP Guard is enabled on any interface, the global route-only option cannot be configured on a device.

- ARP Guard `show` commands are supported only for the management processor (MP).

Configuring ARP guard

The following commands configure ARP guard on a NetIron device.

Enabling filtering of incoming ARP packets to LP-CPU:

The following command enables the required L2 ACL rules to filter the incoming ARP packets to the CPU. In the following option, an additional key word "arp-guard" is supported in the existing L2 access-list command syntax. The user should specify this key word when creating the L2 ACL rules for filtering the ARP packets to CPU.

```
device(config)# access-list 400 permit any any any etype arp arp-guard
```

Syntax: `[no] access-list num permit src-mac / mask | any dest-mac/mask | any vlan-id | any etype arp arp-guard`

This configuration creates a standard Layer-2 ACL with an ID of 400.

- `etype arp`: L2 ACL applied only for the ARP packets.
- `arp-guard`: ARP-Guard will filter all the ARP packets to the LP-CPU.

Bind Layer 2 ACL to an interface:

Layer 2 ACL needs to be bound to an interface where ARP guard would be required. The below configuration will punt all incoming ARP packets to LP-CPU based on the L2-ACL rules provided.

```
device(config-if-e10000-1/1)# mac access-group 400 in
```
NOTE
The keyword “arp-guard” is mandatory for MLX Series and XMR Series series of device to handle the programming of the ARP guard ACLs in hardware in order to punt the received ARP packets to LP CPU for processing.
For CER 2000 Series and CES 2000 Series platforms, by default all ARP packets are trapped to CPU. Hence, the keyword “arp-guard” is not required to handle the programming of ARP guard ACLs in hardware. Also the binding of ACLs to the associated interface is not required in CER 2000 Series and CES 2000 Series devices.

Creating ARP guard access-list table:
The rules for filtering of ARP packets are done through ACL like commands in the global configuration mode, which are configured through the following commands. The no form of the command would disable that particular rule.

device(config)# arp-guard-access-list AS201
device(config-arp-guard-access-list-AS201)# permit 1.1.1.1
device(config-arp-guard-access-list-AS201)# permit 1.1.1.2 1111.1111.1111
device(config-arp-guard-access-list-AS201)# permit 1.1.1.3 any
device(config-arp-guard-access-list-AS201)# permit 10 1.1.1.4
device(config-arp-guard-access-list-AS201)# permit 10 1.1.1.4 1111.2222.3333

Syntax: [no] arp-guard-access-list [arp-guard-access-list]
Syntax: [no] permit [vlan-id] [src-ip-addr] [src-mac-addr] [any]

Parameters

arp-guard-access-list specifies the name of the ARP guard access-list.
permit specifies the required set of rules for the associated ARP guard group.

Binding of ARP guard to an interface:
The following commands are used to enable ARP guard under the interface configuration mode. Using “log” option, would capture the log information of the dropped ARP packet such as “the name of the port”, “vlan-id”(if any), “name of the ACL” which detected the violation, “MAC-address”, and “IP address”. The no form of the command would disable ARP guard.

device(config-if-e10000-1/1)# arp-guard AS201
device(config-if-e10000-1/1)# arp-guard AS201 log
device(config-if-e10000-1/1)# arp-guard AS201 log 20

Syntax: [no] arp-guard [arp-guard-access-list log number of violations to cache]

Parameters

arp-guard enables ARP guard in the interface configuration mode.
arp-guard-access-list specifies the name of the ARP guard access-list which contains the list of rules.
log option is used to log the information about the dropped packets.
number of violations to cache specifies the number of dropped packets to cache. Range is 5 to 32.

NOTE
If user does not specify number of violations, then by default; last 5 violated dropped packets will be printed on the active console at every default interval or configured interval.

Modifying ARP guard rules:
If user modifies an existing bound ARP-Guard access-list, then apply-arp-guard command should be used to apply the changed rules on the associated interfaces.

device(config-arp-guard-access-list-AS201)#apply-arp-guard

Syntax: apply-arp-guard
apply-arp-guard will program all the newly updated rules (if any) for that session (console/telnet/SSH) to all the associated ports.

NOTE
Invalid rules will be discarded in the following scenarios.

• When user jumps into different prompt from the ARP-Guard prompt.
• When user triggers "end"/"exit" from the ARP-Guard prompt.
• When the current session is closed (telnet/SSH).
• When the active MP switches over to the standby MP.

Steps to configure ARP guard:
1. Configure L2-ACL rules for ARP packet filtering to LP-CPU. The example below uses MAC ACLs, even RL ACLs can be used for the same.

 device(config)#access-list 400 permit any any any etype arp arp-guard
 device(config-if-e1000-1/24)#mac access-group 400 in

2. Configure arp-guard-access-list to specify the set of rules/filters for this ARP ACL.

 device(config)#arp-guard-access-list AS201
 device(config-arp-guard-access-list)#permit 20.0.0.2 0001.0002.0003
 device(config-arp-guard-access-list)#exit

3. Apply the arp-guard-access-list on the interface using the arp-guard command as shown below.

 device(config)#interface ethe 1/1
 device(config-if)#arp-guard AS201 log

Syslog Information
If log option is specified in the arp-guard command, then a syslog message is generated to log the dropped ARP packet. The arp-guard-syslog-timer command can be used to modify the interval at which the sylogs need to be generated.

Syslog message contains the following:

• Port ID
• arp-guard-group name
• VLAN-id (if any)
• MAC address and the IP address

All violations are noted down in Software and at the configured syslog interval for the ARP Guard entry the violations are logged.

Following are the Syslog message output display:

SYSLOG: <14>Mar 14 1905 22:37:21 MLX-Dist1 ARP_GUARD DROP LOG:10 Violations occurred on port=4/1 having Access_Grp=AS201 Most recent 5 violations are:
SYSLOG: <14>Mar 14 1905 22:37:21 MLX-Dist1 ARP_GUARD DROP LOG:Violation occurred at time Mar 14 22:37:20: on Trunk port=4/1 having Access_Grp=AS201, for the incoming packet with MAC_ADDR=0000.5823.0a9b IP_ADDR=2.1.1.2 VLAN: 1
SYSLOG: <14>Mar 14 1905 22:37:21 MLX-Dist1 ARP_GUARD DROP LOG:Violation occurred at time Mar 14 22:37:20: on Trunk port=4/1 having Access_Grp=AS201, for the incoming packet with MAC_ADDR=0000.5823.0a9b IP_ADDR=2.1.1.2 VLAN: 1
The IP packet flow

Figure 3 shows how an IP packet moves through this device.
Figure 3 shows the following packet flow.

1. When the Extreme device receives an IP packet, the Extreme device checks for IP ACL filters on the receiving interface. If a deny filter on the interface denies the packet, the Extreme device discards the packet and performs no further processing. If logging is enabled for the filter, then the Extreme device generates a Syslog entry and SNMP trap message.

2. If the packet is not denied, the Extreme device checks for Policy Based Routing (PBR). If the packet matches a PBR policy applied on the incoming port, the PBR processing is performed and either drops the packet or forwards it to a port, based on the route map rules.
3. If the incoming packet does not match PBR rules, the Extreme device looks in the hardware IP routing table to perform IP routing. The hardware routing table is pre-loaded with the complete routing table, except for the directly connected host entries. Default and statically defined routes are also pre-loaded in the hardware routing table. If the incoming packet matches a route entry, the packet is routed according to the information provided in the route entry. The ECMP and LAG load balancing is done by the hardware, if needed, to select the outgoing port.

4. If there is no match in the IP routing table and a default route is not configured, the packet is dropped. For an IP packet whose destination IP address is to a directly connected host, the first packet is forwarded to the CPU. If the ARP is resolved and the host is reachable, the CPU creates a route entry in the hardware to route subsequent packets in hardware.

The software enables you to display the ARP cache and static ARP table, the IP route table, the IP forwarding cache.

You also can change the capacity of the following tables by changing the memory allocation for the table:

- ARP cache table on page 53
- Static ARP table on page 53
- IP route table on page 54
- IP forwarding cache on page 55

ARP cache table

The Address Resolution Protocol (ARP) is supported on the Extreme device. Refer to Configuring ARP parameters on page 29.

The ARP cache contains entries that map IP addresses to MAC addresses. Generally, the entries are for devices that are directly attached to the Extreme device.

An exception is an ARP entry for an interface-based static IP route that goes to a destination that is one or more router hops away. For this type of entry, the MAC address is either the destination device’s MAC address or the MAC address of the router interface that answered an ARP request on behalf of the device, using proxy ARP.

The ARP cache can contain dynamic (learned) entries and static (user-configured) entries. The software places a dynamic entry in the ARP cache when the Extreme device learns a device’s MAC address from an ARP request or ARP reply from the device.

The software can learn an entry when the Extreme device receives an ARP request from another IP forwarding device or an ARP reply.

<table>
<thead>
<tr>
<th>Dynamic entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Each entry contains the destination device’s IP address and MAC address.

Static ARP table

In addition to the ARP cache, the Extreme device has a static ARP table.

Entries in the static ARP table are user-configured. You can add entries to the static ARP table regardless of whether the device the entry is for is connected to the Extreme device.

The software places an entry from the static ARP table into the ARP cache when the entry’s interface comes up.

<table>
<thead>
<tr>
<th>Static ARP entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Each entry lists the information you specified when you created the entry.
To display ARP entries, refer to the following:

- [Displaying the ARP cache](#) on page 34
- [Displaying the static ARP table](#) on page 35

To configure other ARP parameters, refer to [Configuring ARP parameters](#) on page 29.

To increase the size of the ARP cache and static ARP table, refer to the following:

- For dynamic entries, refer to “Displaying and modifying default settings for system parameters”. The ip-arp parameter controls the ARP cache size.

IP route table

The IP route table contains paths to IP destinations.

The IP route table can receive the paths from the following sources:

- A directly-connected destination, which means there are no router hops to the destination
- A static IP route, which is a user-configured route
- A route learned through RIP
- A route learned through OSPF
- A route learned through IS-IS
- A route learned through BGP4

The IP route table contains the best path to a destination:

- When the software receives paths from more than one of the sources listed above, the software compares the administrative distance of each path and selects the path with the lowest administrative distance. The administrative distance is a protocol-independent value from 1 - 255.
- When the software receives two or more best paths from the same source and the paths have the same metric (cost), the software can load share traffic among the paths based on Layer 2, Layer 3 and TCP/UDP information.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/8</td>
<td>10.20.176.1</td>
<td>mgmt 1</td>
<td>1/1</td>
<td>S</td>
<td>11m59s</td>
</tr>
</tbody>
</table>

Each IP route table entry contains the destination’s IP address and subnet mask and the IP address of the next-hop router interface to the destination. Each entry also indicates the port attached to the destination or the next-hop to the destination, the route’s IP metric (cost), and the type. The type indicates how the IP route table received the route.

To display the IP route table, refer to [Displaying the IP route table](#) on page 135.

To configure a static IP route, refer to [Configuring static routes](#) on page 225.

To clear a route from the IP route table, refer to [Clearing IP routes](#) on page 139.

To increase the size of the IP route table for learned and static routes, refer to “Displaying and modifying default settings for system parameters”.

Consider the following:

- For learned routes, modify the ip-route parameter.
- For static routes, modify the ip-static-route parameter.
IP forwarding cache

The Extreme device maintains a software cache table for fast processing of IP packets that are forwarded or generated by the CPU. The cache also contains forwarding information that is normally contained in the IP routing table. For example, the cache contains information on the physical outgoing port, priority, VLAN, and the type of cache entry. Also, cache entries have hardware information, which is useful for debugging and aging.

There are two types of IP cache entries.

1. **Directly connected host entries** - These entries are created when the CPU receives the first packet destined to a directly connected host. Host entries are set to age out after a certain period if no traffic is seen for that entry.

2. **Network entries** - These entries are created when a route table entry is created in software. These entries are not subjected to aging. A route table entry is created when routes are learned by routing protocols such as OSPF or when routes are statically configured.

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Next Hop</th>
<th>MAC</th>
<th>Type</th>
<th>Port</th>
<th>Vlan</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.11</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PU</td>
<td>n/a</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Each IP forwarding cache entry contains the IP address of the destination, and the IP address and MAC address of the next-hop router interface to the destination. If the destination is actually an interface configured on the Extreme device itself, as shown here, then next-hop information indicates this. The port through which the destination is reached is also listed, as well as the VLAN and Layer 4 QoS priority associated with the destination if applicable.

To display the IP forwarding cache, refer to Displaying the forwarding cache on page 134.

IP packet queuing

When the user wants to send a packet to a local host, the software looks up the IP in the ARP cache. If the address is found, it gets the MAC address, constructs an Ethernet header with the correct source or destination MAC addresses, and sends it.

If the address is not found in the table, ARP broadcasts a packet to every host on the Ethernet, except the one from which it received the packet. The packet contains the IP address for which an Ethernet address is sought. If a receiving host identifies the IP address as its own, it will send its Ethernet address back to the requesting host.

For management of IP packet queuing when a packet is received for a directly connected host when there is no MAC address available, the `ip drop-arp-pending-packets` command has been added to allow the packets in the CPU to be dropped.

To set all packets in the LP buffer to be dropped when ARP resolution is going on, enter a command such as the following:

```
device(config-g)#ip drop-arp-pending-packets
```

Syntax: [no] ip drop-arp-pending-packets

Use the `no ip drop-arp-pending-packets` command to return to the default behavior of continue with pending IP packets while ARP resolution.

Basic IP parameters and defaults

IP is enabled by default. The following protocols are disabled by default:

- Route exchange protocols (RIP, OSPF, IS-IS, BGP4)
- Multicast protocols (IGMP, PIM-DM, PIM-SM)
• Router redundancy protocols (VRRP-E, VRRP, FSRP)

When parameter changes take effect

Most IP parameters described in this chapter are dynamic. They take effect immediately, as soon as you enter the CLI command. You can verify that a dynamic change has taken effect by displaying the running configuration. To display the running configuration, enter the `show running-config` or `write terminal` command at any CLI prompt.

To save a configuration change permanently so that the change remains in effect following a system reset or software reload, save the change to the startup configuration file. Enter the `write memory` command from the Privileged EXEC level of any configuration level of the CLI.

Changes to memory allocation require you to reload the software after you save the changes to the startup configuration file. When reloading the software is required to complete a configuration change, the procedure that describes the configuration change includes a step for reloading the software.

IP global parameters

The following table lists the IP global parameters, their default values, and where to find configuration information.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP state</td>
<td>The Internet Protocol, version 4</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: You cannot disable IP.</td>
</tr>
<tr>
<td>IP address and mask notation</td>
<td>Format for displaying an IP address and its network mask information. You can enable one of the following:</td>
<td>Class-based</td>
</tr>
<tr>
<td></td>
<td>• Class-based format; example: 192.168.1.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Classless Interdomain Routing (CIDR) format; example: 192.168.1.1/24</td>
<td></td>
</tr>
<tr>
<td>Router ID</td>
<td>The value that routers use to identify themselves to other routers when exchanging route information. OSPF and BGP4 use router IDs to identify routers. RIP does not use the router ID.</td>
<td>The IP address configured on the lowest-numbered loopback interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If no loopback interface is configured, then the lowest-numbered IP address configured on the device.</td>
</tr>
<tr>
<td>IP Maximum Transmission Unit (MTU)</td>
<td>The maximum length an Ethernet packet can be without being fragmented.</td>
<td>1500 bytes for Ethernet II encapsulation 1492 bytes for SNAP encapsulation</td>
</tr>
<tr>
<td>Address Resolution Protocol (ARP)</td>
<td>A standard IP mechanism that routers use to learn the Media Access Control (MAC) address of a device on the network. The router sends the IP address of a device in the ARP request and receives the device’s MAC address in an ARP reply.</td>
<td>Enabled</td>
</tr>
<tr>
<td>ARP rate limiting</td>
<td>Lets you specify a maximum number of ARP packets the device will accept each second. If the device receives more ARP packets than you specify, the device drops additional ARP packets for the remainder of the one-second interval.</td>
<td>Disabled</td>
</tr>
<tr>
<td>ARP age</td>
<td>The amount of time the device keeps a MAC address learned through ARP in the device’s ARP cache. The device resets the timer to zero</td>
<td>Ten minutes</td>
</tr>
</tbody>
</table>
TABLE 5 IP global parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>each time the ARP entry is refreshed and removes the entry if the timer reaches the ARP age. Note: You also can change the ARP age on an individual interface basis. Refer to IP interface parameters on page 59.</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Proxy ARP</td>
<td>An IP mechanism a router can use to answer an ARP request on behalf of a host, by replying with the interface’s own MAC address instead of the host’s.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Static ARP entries</td>
<td>An ARP entry you place in the static ARP table. Static entries do not age out.</td>
<td>No entries</td>
</tr>
<tr>
<td>Time to Live (TTL)</td>
<td>The maximum number of routers (hops) through which a packet can pass before being discarded. Each router decreases a packet’s TTL by 1 before forwarding the packet. If decreasing the TTL causes the TTL to be 0, the router drops the packet instead of forwarding it.</td>
<td>64 hops</td>
</tr>
<tr>
<td>Directed broadcast forwarding</td>
<td>A directed broadcast is a packet containing all ones (or in some cases, all zeros) in the host portion of the destination IP address. When a router forwards such a broadcast, it sends a copy of the packet out each of its enabled IP interfaces. Note: You also can enable or disable this parameter on an individual interface basis. Refer to IP interface parameters on page 59.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Directed broadcast mode</td>
<td>The packet format the router treats as a directed broadcast. The following formats can be directed broadcast: All ones in the host portion of the packet’s destination address. All zeroes in the host portion of the packet’s destination address. Note: If you enable all-zeroes directed broadcasts, all-ones directed broadcasts remain enabled.</td>
<td>All ones</td>
</tr>
<tr>
<td>Source-routed packet forwarding</td>
<td>A source-routed packet contains a list of IP addresses through which the packet must pass to reach its destination.</td>
<td>Enabled</td>
</tr>
<tr>
<td>Internet Control Message Protocol (ICMP) messages</td>
<td>The Extreme device can send the following types of ICMP messages: Echo messages (ping messages) Destination Unreachable messages Redirect messages Note: You also can enable or disable ICMP Redirect messages on an individual interface basis. Refer to IP interface parameters on page 59.</td>
<td>Enabled</td>
</tr>
<tr>
<td>ICMP Router Discovery Protocol (IRDP)</td>
<td>An IP protocol a router can use to advertise the IP addresses of its router interfaces to directly attached hosts. You can enable or disable the protocol.</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
TABLE 5 IP global parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol, and change the following protocol parameters:</td>
<td>Forwarding method (broadcast or multicast)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hold time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum advertisement interval</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum advertisement interval</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router preference level</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>You also can enable or disable IRDP and configure the parameters on an individual interface basis. Refer to IP interface parameters on page 59.</td>
<td></td>
</tr>
<tr>
<td>Maximum BootP relay hops</td>
<td>The maximum number of hops away a BootP server can be located from a router and still be used by the router’s clients for network booting.</td>
<td>Four</td>
</tr>
<tr>
<td>Domain name for Domain Name Server (DNS) resolver</td>
<td>A domain name (example: extreme.router.com) you can use in place of an IP address for certain operations such as IP pings, trace routes, and Telnet management connections to the device.</td>
<td>None configured</td>
</tr>
<tr>
<td>DNS default gateway addresses</td>
<td>A list of gateways attached to the device through which clients attached to the device can reach DNS.</td>
<td>None configured</td>
</tr>
<tr>
<td>IP load sharing</td>
<td>A feature that enables the device to balance traffic to a specific destination across multiple equal-cost paths. Load sharing is based on a combination of destination MAC address, source MAC address, destination IP address, source IP address, and IP protocol. Note: Load sharing is sometimes called Equal Cost Multi Path (ECMP).</td>
<td>Enabled</td>
</tr>
<tr>
<td>Maximum IP load sharing paths</td>
<td>The maximum number of equal-cost paths across which the Extreme device is allowed to distribute traffic.</td>
<td>Four</td>
</tr>
<tr>
<td>Origination of default routes</td>
<td>You can enable a device to originate default routes for the following route exchange protocols, on an individual protocol basis: RIP, OSPF, BGP4</td>
<td>Disabled</td>
</tr>
<tr>
<td>Default network route</td>
<td>The device uses the default network route if the IP route table does not contain a route to the destination and also does not contain an explicit default route (0.0.0.0 0.0.0.0 or 0.0.0.0/0).</td>
<td>None configured</td>
</tr>
<tr>
<td>Static route</td>
<td>An IP route you place in the IP route table.</td>
<td>No entries</td>
</tr>
<tr>
<td>Source interface</td>
<td>The IP address the device uses as the source address for Telnet, RADIUS, or TACACS/TACACS+ packets originated by the device. The lowest-numbered IP address on the interface the packet is sent on.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5 IP global parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>device can select the source address based on either of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The lowest-numbered IP address on the interface the packet is sent on.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The lowest-numbered IP address on a specific interface. The address is used as the source for all packets of the specified type regardless of interface the packet is sent on.</td>
<td></td>
</tr>
</tbody>
</table>

IP interface parameters

Table 6 lists the interface-level IP parameters for the Extreme device, their default values, and where to find configuration information.

TABLE 6 IP interface parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP state</td>
<td>The Internet Protocol, version 4</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You cannot disable IP.</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>A Layer 3 network interface address</td>
<td>None configured</td>
</tr>
<tr>
<td></td>
<td>The Extreme device has separate IP addresses on individual interfaces.</td>
<td></td>
</tr>
<tr>
<td>Encapsulation type</td>
<td>The format of the packets in which the device encapsulates IP datagrams. The encapsulation format can be one of the following:</td>
<td>Ethernet II</td>
</tr>
<tr>
<td></td>
<td>• Ethernet II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SNAP</td>
<td></td>
</tr>
<tr>
<td>IP Maximum Transmission Unit (MTU)</td>
<td>The maximum length (number of bytes) of an encapsulated IP datagram the device can forward.</td>
<td>1500 for Ethernet II encapsulated packets 1492 for SNAP encapsulated packets</td>
</tr>
<tr>
<td>ARP age</td>
<td>Locally overrides the global setting. Refer to IP global parameters on page 56.</td>
<td>Ten minutes</td>
</tr>
<tr>
<td>Directed broadcast forwarding</td>
<td>Locally overrides the global setting. Refer to IP global parameters on page 56.</td>
<td>Disabled</td>
</tr>
<tr>
<td>ICMP Router Discovery Protocol (IRDP)</td>
<td>Locally overrides the global IRDP settings. Refer to IP global parameters on page 56.</td>
<td>Disabled</td>
</tr>
<tr>
<td>ICMP Redirect messages</td>
<td>Locally overrides the global setting. Refer to IP global parameters on page 56.</td>
<td>Enabled</td>
</tr>
<tr>
<td>DHCP gateway stamp</td>
<td>The device can assist DHCP/BootP Discovery packets from one subnet to reach DHCP/BootP servers on a different subnet by placing the IP address of the device interface that receives the request in the request packet's Gateway field. You can override the default and specify the IP address to use for the Gateway field in the packets.</td>
<td>The lowest-numbered IP address on the interface that receives the request</td>
</tr>
</tbody>
</table>
TABLE 6 IP interface parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>UDP broadcast forwarding for client DHCP/BootP requests (bootpc) must be enabled and you must configure an IP helper address (the server’s IP address or a directed broadcast to the server’s subnet) on the port connected to the client.</td>
<td></td>
</tr>
<tr>
<td>UDP broadcast forwarding</td>
<td>The device can forward UDP broadcast packets for UDP applications such as BootP. By forwarding the UDP broadcasts, the device enables clients on one subnet to find servers attached to other subnets.</td>
<td></td>
</tr>
<tr>
<td>NOTE</td>
<td>To completely enable a client’s UDP application request to find a server on another subnet, you must configure an IP helper address consisting of the server’s IP address or the directed broadcast address for the subnet that contains the server. Refer to the next row.</td>
<td></td>
</tr>
<tr>
<td>IP helper address</td>
<td>The IP address of a UDP application server (such as a BootP or DHCP server) or a directed broadcast address. IP helper addresses allow the device to forward requests for certain UDP applications from a client on one subnet to a server on another subnet.</td>
<td>None configured</td>
</tr>
</tbody>
</table>

GRE IP tunnel

NetIron software supports the tunneling of packets with the Generic Routing Encapsulation (GRE) mechanism over an IP network, as described in RFC 2784. With GRE, packets are encapsulated in a transport protocol packet at a tunnel source and delivered to a tunnel destination, where they are unpacked and made available for delivery.

Considerations in implementing this feature

The considerations in implementing this feature are as follows:

- As a point-to-point tunnel configuration, GRE requires both ends of the tunnel to be configured.
- Only four-byte GRE headers are supported at the ingress (even though eight-byte headers can be processed at a transit node or the egress point).
- This device does not support the key and sequence numbering option with GRE (per RFC 2890).
- The current maximum number of tunnels is 8192 (with default as 256 tunnels).

NOTE

Do not forward packets from one type of tunnel to another type of tunnel in XPP. Packets may not be routed properly.

Figure 4 describes the GRE header format.
Checksum - This field is assumed to be zero in this version. If set to 1 means that the Checksum (optional) and Reserved (optional) fields are present and the Checksum (optional) field contains valid information.

Reserved0 - Bits 6:0 of the field are reserved for future use and must be set to 0 in transmitted packets. If bits 11:7 of the field are non-0, then a receiver must discard the packet. This field is assumed to be 0 in this version.

Ver - This field must be set to 0. This field is assumed to be 0 in this version.

Protocol Type - This field contains the EtherType of the payload protocol.

For details on configuring a GRE IP tunnel, refer Examples on page 127.

GRE MTU enhancements

Enhancements have been introduced to support GRE MTU in support of RFC 4459. This includes support for the following:

- Signaling the Lower MTU to the Sources as described in Section 3.2 of RFC 4459
- Fragmentation of the Inner packet as described in Section 3.4 of RFC 4459

This enhancement also allows you to set a specific MTU value for packets entering a configured GRE tunnel. Packets whose size is greater than the configured value are fragmented and encapsulated with IP/GRE headers for transit through the tunnel. This feature supports Jumbo packets although they may be fragmented based on the MTU value configured.

Configuring a GRE IP Tunnel

To configure a GRE IP Tunnel, configure the following parameters:

- CAM restrictions on page 62
- Maximum Number of Tunnels (optional)
- Tunnel Interface
- Source Address or Source Interface for the Tunnel
- Destination address for the Tunnel
- GRE Encapsulation
- IP address for the Tunnel
- Keep Alive Support (optional)
- TTL Value (optional)
- TOS Value (optional)
- MTU Value (optional)

Configuration considerations

1. To enable keepalive when a GRE source and destination are directly connected, you must disable ICMP redirect on the tunnel source port on the GRE nodes. Otherwise, the keepalive packets go to the CPU where they can degrade CPU performance.

2. Whenever multiple IP addresses are configured on a tunnel source, the primary address of the tunnel is always used for forming the tunnel connections. Consequently, you must carefully check the configurations when configuring the tunnel destination.
3. GRE tunneling is supported for non-default VRFs.

4. When a GRE tunnel is configured, you cannot configure the same routing protocol on the tunnel through which you learn the route to the tunnel destination. For example, if the Extreme device learns the tunnel destination route through OSPF protocol, you cannot configure the OSPF protocol on the same Tunnel and vice-versa. When a tunnel has OSPF configured, the Extreme device cannot learn the tunnel destination route through OSPF. This could cause the system to become unstable.

NOTE

With GRE Dynamic-cam mode, at the Egress node, when a GRE packet is received, the Extreme device programs the CAM entries to forward the packets based on Inner DPA. These host CAM entries will be aging even if the traffic is hitting that CAM entries. This will cause the CAM entries to become aged out and recreated which could cause a small packet loss.

Configuring ECMP for routes through an IP GRE tunnel

If multiple routes are using IP GRE tunnels to a destination, packets are automatically load-balanced between tunnels. This feature allows for load distribution of traffic among the available IP GRE tunnels. If the routes to a destination are both normal IP routes and routes through IP GRE tunnels, ECMP is not enabled.

CAM restrictions

CAMs are partitioned on this device by a variety of profiles that you can select for your specific application.

To implement a CAM partition for a GRE tunnel, enter a command such as the following.

```
device(config)# cam-partition profile ipv4
```

Syntax: `[no] cam-partition profile { ipv4 | ipv4-ipv6 | ipv4-vpls | ipv4-vpn | ipv6 | l2-metro | l2-metro-2 | mpls-l3vpn | mpls-l3vpn-2 | mpls-vpls | mpls-vpls-2 | mpls-vpn-vpls | multi-service | multi-service-2 | multi-service-3 | multi-service-4 }
```

The `ipv4` parameter adjusts the CAM partitions, as described in the tables below, to optimize the device for IPv4 applications.

**NOTE**

The `ipv4` parameter is effective only if you first entered the following command:

```
device(config)# system-max ipv6-mcast-cam 0
```

The `ipv4-ipv6` parameter adjusts the CAM partitions, as described in the tables below to optimize the device for IPv4 and IPv6 dual stack applications.

The `ipv4-vpls` parameter adjusts the CAM partitions, as described in the tables below to optimize the device for IPv4 and MPLS VPLS applications.

The `ipv4-vpn` parameter adjusts the CAM partitions, as described in the tables below to optimize the device for IPv4 and MPLS Layer-3 VPN applications.

The `ipv6` parameter adjusts the CAM partitions, as described in the tables below to optimize the device for IPv6 applications.

The `l2-metro` parameter adjusts the CAM partitions, as described in the tables below to optimize the device for Layer 2 Metro applications.

The `l2-metro-2` parameter provides another alternative to `l2-metro` to optimize the device for Layer 2 Metro applications. It adjusts the CAM partitions, as described in the tables below for the XMR Series.
The **mpls-l3vpn** parameter adjusts the CAM partitions, as described in the tables below, to optimize the device for Layer 3, BGP or MPLS VPN applications.

The **mpls-l3vpn-2** parameter provides another alternative to **mpls-l3vpn** to optimize the device for Layer 3, BGP or MPLS VPN applications.

The **mpls-vpls** parameter adjusts the CAM partitions, as described in the tables below to optimize the device for MPLS VPLS applications.

The **mpls-vpls-2** parameter provides another alternative to **mpls-vpls** to optimize the device for MPLS VPLS applications. It adjusts the CAM partitions, as described in the tables below.

The **mpls-vpn-vpls** parameter adjusts the CAM partitions, as described in the tables below, to optimize the device for MPLS Layer-3 and Layer-2 VPN applications.

The **multi-service** parameter adjusts the CAM partitions, as described in the tables below to optimize the device for Multi-Service applications.

The **multi-service-2** parameter provides another alternative to multi-service to optimize the device for Multi-Service applications.

The **multi-service-3** parameter provides another alternative to multi-service to optimize the device for Multi-Service applications to support IPv6 VRF.

The **multi-service-4** parameter provides another alternative to multi-service to optimize the device for Multi-Service applications to support IPv6 VRF.

**CAM partition profiles for the XMR Series and MLX Series devices**

Not all CAM profiles are compatible for running Layer 2 switching and configuring GRE tunnels simultaneously on this device.

**TABLE 7 Partition profiles for the XMR Series and MLX Series devices**

<table>
<thead>
<tr>
<th>Compatible CAM profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
</tr>
<tr>
<td>ipv4</td>
</tr>
<tr>
<td>ipv6</td>
</tr>
<tr>
<td>ipv4-vpn</td>
</tr>
<tr>
<td>mpls-l3vpn</td>
</tr>
<tr>
<td>mpls-l3vpn-2</td>
</tr>
<tr>
<td>multi-service-2 (Does not support GRE tunnel with VE interface as the source address in this profile.)</td>
</tr>
<tr>
<td>multi-service-3 (Does not support GRE tunnel with VE interface as the source address in this profile.)</td>
</tr>
<tr>
<td>multi-service-4 (Does not support GRE tunnel with VE interface as the source address in this profile.)</td>
</tr>
</tbody>
</table>

**Configuring the maximum number of tunnels supported**

You can configure the devices to support a specified number of tunnels using the following command.

```
device(config)# system-max ip-tunnels 512
device(config)# write memory
```

**Syntax: system-max ip-tunnels number**

The **number** variable specifies the number of GRE tunnels that can be supported.

The XMR Series and MLX Series permissible range is 1 - 8192. The default value is 256. The permissible range for CES 2000 Series devices is 32 - 128. The default value is 32. The permissible range for CER 2000 Series devices is 32 - 256. The default value is 32.
NOTE
Multicast over GRE tunnels for PIM can support up to the default system max of 256 tunnels if the required hardware resources are available.

NOTE
You must write this command to memory and perform a system reload for this command to take effect.

Configuring a tunnel interface
To configure a tunnel interface, use the following command.

```
device(config)# interface tunnel 1
device(config-tnif-1)
```

Syntax: [no] interface tunnel tunnel-id

The `tunnel-id` variable is a numerical value that identifies the tunnel being configured. Possible range is from 1 to the maximum configured tunnels in the system.

Configuring a source address or source interface for a tunnel interface
To configure a source address for a specific tunnel interface, enter the following command.

```
device(config)# interface tunnel 1
device(config-tnif-1)tunnel source 10.0.8.108
```

To configure a source interface for a specific tunnel interface, enter the following command.

```
device(config)# interface tunnel 100
device(config-tnif-100)tunnel source ethernet 3/1
```

Syntax: [no] tunnel source ip-address | port-no

You can specify either of the following:

The `ip-address` variable is the source IP address being configured for the specified tunnel. The `port-no` variable is the source slot or port of the interface being configured for the specified tunnel. When you configure a source interface, there must be at least one IP address configured on that interface. Otherwise, the interface will not be added to the tunnel configuration and an error message like the following will be displayed: Error - Tunnel source interface 3/1 has no configured ip address.

It can be a physical or virtual interface (ve).

Configuring a destination address for a tunnel interface
To configure a destination address for a specific tunnel interface, enter the following command.

```
device(config)# interface tunnel 1
device(config-tnif-1)tunnel destination 10.108.5.2
```

Syntax: [no] tunnel destination ip-address

The `ip-address` variable is the destination IP address being configured for the specified tunnel.

NOTE
If GRE is configured with a tunnel destination reachable over LAG ports, load balancing will only work with the following LAG types: server LAG or LACP with server LAG. Traffic cannot be load-balanced across multiple ports of a switch LAG.
NOTE
Traffic from a GRE tunnel entering a MPLS tunnel is not supported.

**Configuring a tunnel interface for GRE encapsulation**

To configure a specified tunnel interface for GRE encapsulation, enter the following command.

```plaintext
device(config)# interface tunnel 1
device(config-tnif-1)tunnel mode gre ip
```

**Syntax:** `[no] tunnel mode gre ip`

The `gre` parameter specifies that the tunnel will use GRE encapsulation

The `ip` parameter specifies that the tunnel protocol is IP.

**Configuring an IP address for a tunnel interface**

To configure an IP address for a specified tunnel interface, enter the following command.

```plaintext
device(config)# interface tunnel 1
device(config-tnif-1)ip address 10.10.3.1/24
```

**Syntax:** `[no] ip address ip-address`

The `ip-address` variable is the IP address being configured for the specified tunnel interface.

**Configuring keep alive support**

This parameter is optional. It lets the device maintain a tunnel in an up or down state based upon the periodic sending of keep alive packets and the monitoring of responses to the packet. If the packets fail to reach the tunnel's far end more frequently than the configured number of retries, the tunnel is placed in a down state. A keep alive packet is a GRE IP packet with no payload.

To configure the keep alive option, enter the following command.

```plaintext
device(config)# interface tunnel 1
device(config-tnif-1)keepalive 5 4
```

**Syntax:** `[no] keepalive seconds retries`

The `seconds` variable specifies the number of seconds between each initiation of a keep alive message. The range for this interval is 1 - 32767 seconds. The default value is 10 seconds.

The `retries` variable specifies the number of times that a packet is sent before the system places the tunnel in the down state. Possible values are from 1 - 255. The default number of retries is 3.

**Configuring a TTL value**

This is an optional parameter that allows you to set the Time-to-Live value for the outer IP header of the GRE tunnel packets.

To configure the TTL value, enter the following command.

```plaintext
device(config)# interface tunnel 1
device(config-tnif-1)tunnel ttl 100
```

**Syntax:** `[no] tunnel ttl ttl-value`

The `ttl-value` variable specifies a TTL value for the outer IP header. Possible values are 1 - 255. The default value is 255.
**Configuring a TOS value**

This is an optional parameter that allows you to set the TOS value for the outer IP header of the GRE tunnel packets.

To configure the TOS value, enter the following command.

```
device(config)# interface tunnel 1
device(config-tnif-1)tunnel tos 100
```

**Syntax:** `[no] tunnel tos tos-value`

The `tos-value` variable specifies a TOS value for the outer IP header.

The XMR Series and MLX Series possible values are 0 - 255. The default value is 0.

The CES 2000 Series and CER 2000 Series devices possible values are 0 - 63. The default value is 0.

**Configuring GRE session enforce check**

The `gre-session-enforce-check` command lets you enable the GRE session enforce check. When a GRE packet arrives and this feature is enabled, the system tries to match the GRE packet source and destination address pair with the tunnel configured destination and source pair. If the pairs do not match, the packet is dropped in the hardware. The default behavior when this command is disabled is to terminate the GRE tunnel based on the destination IP address.

**NOTE**

The CES 2000 Series and CER 2000 Series devices currently do not support the `ip-tunnel-policy` and the `accounting-enable` commands.

To configure the GRE session enforce check, go to the IP tunnel policy context, and then enter the `gre-session-enforce-check` command.

```
device(config)#ip-tunnel-policy
device(config-ip-tunnel-policy)#gre-session-enforce-check
```

**Syntax:** `[no] gre-session-enforce-check`

To disable the GRE session enforce check, use the `no` form of this command. This command is disabled by default. You might have to write the configuration to memory and reload the system whenever the configuration of this command is changed because a one-time creation of a source-ingress CAM partition is necessary. The system prompts you if the memory write and reload are required.

The first-time execution of certain commands necessitates the creation of a source-ingress CAM partition, after which you write to memory and reload. These commands are `gre-session-enforce-check`, `ipv6-session-enforce-check`, and `accounting-enable`. After this CAM partition is created, it is not necessary to follow either of the other two commands with a memory write and reload. The CAM partition is created out of the Layer 4 CAM and has no impact on the Layer 3 route scalability.

**Configuring a maximum MTU value for a tunnel interface**

You can set an MTU value for packets entering the tunnel. Packets that exceed either the default MTU value of 1476 bytes or the value that you set using this command are fragmented for transit through the tunnel. The default MTU value is set to 1476.

**NOTE**

The tunnel MTU should be configured explicitly for packet size greater than 1476 bytes.

The following command allows you to change the MTU value for packets transiting “tunnel 1”.

```
device(config)# interface tunnel 1
device(config-tnif-1)tunnel mtu 1500
```
Syntax: [no] tunnel mtu packet-size

The packet-size variable specifies the maximum MTU size in bytes for the packets transiting the tunnel.

NOTE
To prevent packet loss after the 24 byte GRE header is added, make sure that any physical interface that is carrying GRE tunnel traffic has an IP MTU setting at least 24 bytes greater than the tunnel MTU setting.

Bypassing ACLs in a GRE tunnel

Use this procedure to disable IPv4 and IPv6 ACLs on the terminating node of a GRE tunnel for internal traffic coming over the tunnel.

NOTE
Disabling ACL processing on GRE tunnels also disables support for the following features on all GRE tunnels:

• All features employing IPv4 or IPv6 ACLs
• BFD over MPLS
• Multicast
• PBR
• OpenFlow

1. Access global configuration mode.
   
   device# configure terminal

2. Access ACL global policy configuration mode.
   
   device(config)# acl-policy

3. Enter the disable-acl-for-gre command.
   
   device(config-acl-policy)# disable-acl-for-gre

Example of a GRE IP tunnel configuration

In this example, a GRE IP Tunnel is configured between the Extreme A device and the Extreme B device. Traffic between networks 10.10.1.0/24 and 10.10.2.0/24 is encapsulated in a GRE IP packet sent through the tunnel on the 10.10.3.0 network, and unpacked and sent to the destination network. A static route is configured at each device to go through the tunnel interface to the target network.
Configuration example for Extreme A

device(config)# interface ethernet 3/1
device(config)# ip address 36.0.8.108/24
device(config)# interface tunnel 1
device(config)# vrf forwarding red
device(config-tnif-1)# tunnel source 36.0.8.108
device(config-tnif-1)# tunnel destination 131.108.5.2
device(config-tnif-1)# tunnel mode gre ip
device(config-tnif-1)# ip address 10.10.3.1/24
device(config-tnif-1)# int loopback 1
device(config-tnif-1)# vrf forwarding red
device(config-tnif-1)# ip address 10.10.1.1/32
device(config-tnif-1)# keepalive 5 4
device(config-tnif-1)# vrf red
device(config-tnif-1)# rd 1:1
device(config-tnif-1)# address-family ipv4
device(config-tnif-1)# ip route 10.10.2.0/24 10.10.3.2
device(config-tnif-1)# exit
device(config)# ip route 10.10.2.0/24 10.10.3.2

Configuration example for Extreme B

device(config)# interface ethernet 5/1
device(config-if-e10000-5/1)# ip address 131.108.5.2/24
device(config)# interface tunnel 1
device(config)# vrf forwarding red
device(config-tnif-1)# tunnel source ethernet 5/1
device(config-tnif-1)# tunnel destination 36.0.8.108
device(config-tnif-1)# tunnel mode gre ip
device(config-tnif-1)# ip address 10.10.3.2/24
device(config-tnif-1)# int loopback 1
device(config-tnif-1)# vrf forwarding red
device(config-tnif-1)# ip address 10.10.1.1/32
device(config-tnif-1)# keepalive 5 4
device(config-tnif-1)# vrf red
device(config-tnif-1)# rd 2:2
device(config-tnif-1)# address-family ipv4
device(config-tnif-1)# ip route 10.10.2.0/24 10.10.3.2
device(config-tnif-1)# exit
device(config)# ip route 10.10.2.0/24 10.10.3.2

NOTE
Traffic from a GRE tunnel entering a MPLS tunnel is not supported.

Displaying GRE tunneling information
You can display GRE tunneling information using the show ip interface, show ip route and show interface tunnel commands as shown in the following.

device# show ip interface tunnel 1
Interface Tunnel 1
  port enabled
  port state: UP
  ip address: 10.255.255.13/24
  Port belongs to VRF: red
  encapsulation: ETHERNET, mtu: 1476
  directed-broadcast-forwarding: disabled
  ip icmp redirect: enabled
  No inbound ip access-list is set
  No outbound ip access-list is set
  No Helper Addresses are configured.

Syntax: show ip interface tunnel tunnel-no

The show ip route command displays routes that are pointing to a GRE tunnel as shown in the following.

Syntax: show ip tunnel tunnel-no

device# show ip route
  Total number of IP routes: 2
  Type Codes - B:BGP D:Connected I:ISIS S:Static R:RIP O:OSPF; Cost -Dist/Metric
  Destination  Gateway               Port  Cost  Type  Uptime  src-vrf
  1          10.10.2.0/24         10.10.3.2          gre_tnl 1        1/1          S    7h55m  -
  2          10.10.3.0/24       DIRECT             gre_tnl 1        0/0          D    7h55m  -

device# show interface tunnel 1
  Tunnel 1 is up, line protocol is up
  Hardware is Tunnel
  Tunnel source 10.45.3.3
  Tunnel destination is 10.45.48.1
  Tunnel mode gre ip
  No port name
  Internet address is 10.255.255.13/24,
  Tunnel TOS 0, Tunnel TTL 255 MTU 1476 bytes
  Keepalive is not Enabled
  VRF Forwarding: Red

Syntax: show ip tunnel tunnel-no

device# show ip-tunnels 1
  IPv4 tnnl 1 UP : src_ip 36.0.8.108, dst_ip 131.108.5.2
  TTL 255, TOS 0, NHT 0, MTU 1480, vrf: red
GRE tunnel VRF support

GRE tunnel VRF support maintains end - end VRF autonomy with the GRE tunnel. You can also create separate GRE tunnels on a per-VRF basis.

GRE tunnel VRF support overview

VRFs are used to segment the traffic associated with various customers of interest (CIs). These CIs are spread across geographical areas. Hence CIs enable use of GRE tunnels for non-default VRFs.

Configuration considerations

- The `vrf forwarding` command is optional. If this command is not specified, then the VRF is assumed as default VRF.
- The configured VRF must exist in the MLX Series device.
- Configured VRFs should be same on both nodes of the GRE tunnel, for proper working of GRE.
- Configuration is allowed for two tunnels when the tunnel destination addresses are the same and the corresponding source addresses are different. Also, configuration is allowed for two tunnels when the tunnel source addresses are the same and the corresponding destination addresses are different.
- The `vrf forwarding` configuration is supported only for GRE tunnel.
- L3VPN ID information with respect to each tunnel is configured by the `vrf forwarding` command under the tunnel interface.

Configuring the GRE VRF tunnel

Syntax: `vrf forwarding vrf-name`

Error messages

The following messages are displayed for different VRF configurations.

1. If a tunnel is configured with the VRF configuration and tunnel mode is non-GRE IP, then the following error message is displayed.
   - Error: Tunnel mode should be GRE IP/ IPSec when VRF forwarding is configured on tunnel.

2. If the tunnel source interface is on a non-supported card, then the configuration will be rejected, if the tunnel source is a physical interface or a virtual interface.
   - Error: Tunnel source interface eth 1/2 or ve103 cannot be a BR-MLX-10Gx24-DM/Gen1.1 port.

3. If the tunnel source is a loopback interface, a warning will be displayed if a BR-MLX-10Gx24-DM/Gen1.1 card is present in the chassis.
   - Warning: Tunnel source configured as loopback could be using a BR-MLX-10Gx24-DM/Gen1.1 port.

4. The VRF forwarding configuration is supported only if tunnel source is pre-configured. Otherwise, an error message is displayed.
   - Error: Please configure tunnel source before configuring tunnel VRF.

5. The VRF forwarding configuration is rejected if GRE is configured as MPLS interface and GRE is part of the VRF.
   - Error: GRE configured as MPLS interface with VRF not supported.

Example of a GRE VRF tunnel configuration:

In the following example, a GRE VRF tunnel is configured between the Netiron OS A device and the Netiron OS B device. Traffic between networks 10.10.1.0/24 (VRF red) and 10.10.2.0/24 (VRF red) is encapsulated in a GRE IP packet (Tunnel 1 corresponding to VRF red) sent through the tunnel on the 10.10.3.0 network and unpacked and sent to the destination network. A static route is configured at each device to go through the tunnel interface to the target network.

On the B device, the GRE tunneled packet is received in default VRF. It is unpacked and sent to the destination network on VRF red.
In this example, VRF is configured to the tunnel interface configuration using the `vrf forwarding` command (as done for all other interfaces like physical interface, the loopback interface, and so on).

**GRE VRF tunnel configuration example**

```
(NetIron A)
device(config)# interface eth 3/1
device(config-int-e10000-3/1)# ip address 36.0.8.108/32
device(config)# interface tunnel 1
device(config-tnif-1)# tunnel mode gre ip
device(config-tnif-1)# tunnel source 36.0.8.108
device(config-tnif-1)# tunnel destination 131.108.5.2
device(config-tnif-1)# vrf forwarding red
device(config-tnif-1)# ip address 10.10.3.1/24
device(config-tnif-1)# int loopback 1
device(config-lbif-1)# vrf forwarding red
```

**Configuration example for NetIron A**

![Diagram of GRE VRF tunnel configuration example]

In this example, VRF is configured to the tunnel interface configuration using the `vrf forwarding` command (as done for all other interfaces like physical interface, the loopback interface, and so on).
device(config-lbif-1)# ip address 10.10.1.1/32
device(config-tnif-1)# vrf red
device(config-vrf-red)# rd 1:1
device(config-vrf-red)# address-family ipv4
device(config-vrf-red-ipv4)# ip route 10.10.2.0/24 10.10.3.2
device(config-vrf-red-ipv4)# exit-vrf

(NetIron A)

device(config)# interface eth 3/1
device(config-int-e10000-3/1)# ip address 36.0.9.108/32
device(config-tnif-1)# interface tunnel 1
device(config-tnif-1)# tunnel mode gre ip
device(config-tnif-1)# tunnel source 36.0.9.108
device(config-tnif-1)# tunnel destination 131.109.5.2
device(config-tnif-1)# vrf forwarding green
device(config-tnif-1)# ip address 12.12.3.1/24
device(config-tnif-1)# interface eth 3/1
device(config-if-e10000-3/1)# ip address 36.0.9.108/32
device(config-if-e10000-3/1)# int loopback 2
device(config-lbif-2)# vrf forwarding green
device(config-lbif-2)# ip address 12.12.1.1/32
device(config-tnif-1)# vrf red
device(config-vrf-red)# rd 1:1
device(config-vrf-red)# address-family ipv4
device(config-vrf-red-ipv4)# ip route 12.12.2.0/24 12.12.3.2
device(config-vrf-red-ipv4)# exit-vrf

Configuration example for NetIron B

(NetIron B)

device(config)# interface eth 3/1
device(config-int-e10000-3/1)# ip address 131.108.5.2/32
device(config)# interface tunnel 1
device(config-tnif-1)# tunnel mode gre ip
device(config-tnif-1)# tunnel source 131.108.5.2
device(config-tnif-1)# tunnel destination 36.0.8.108
device(config-tnif-1)# vrf forwarding red
device(config-tnif-1)# ip address 10.10.3.2/24
device(config-tnif-1)# int loopback 1
device(config-lbif-1)# vrf forwarding red
device(config-lbif-1)# ip address 10.10.2.1/32
device(config-tnif-1)# vrf red
device(config-vrf-red)# rd 2:2
device(config-vrf-red)# address-family ipv4
device(config-vrf-red-ipv4)# ip route 10.10.1.0/24 10.10.3.1
device(config-vrf-red-ipv4)# exit-vrf

(NetIron B)

device(config)# interface eth 3/1
device(config-int-e10000-3/1)# ip address 131.109.5.2/32
device(config-tnif-1)# interface tunnel 1
device(config-tnif-1)# tunnel mode gre ip
device(config-tnif-1)# tunnel source 131.109.5.2
device(config-tnif-1)# tunnel destination 36.0.9.108
device(config-tnif-1)# vrf forwarding green
device(config-tnif-1)# ip address 12.12.3.2/24
device(config-tnif-1)# interface eth 3/1
device(config-if-e10000-3/1)# ip address 36.0.9.108/32
device(config-if-e10000-3/1)# int loopback 2
device(config-lbif-2)# vrf forwarding green
device(config-lbif-2)# ip address 12.12.2.1/32
device(config-tnif-1)# vrf red
device(config-vrf-red)# rd 2:2
device(config-vrf-red)# address-family ipv4
device(config-vrf-red-ipv4)# ip route 12.12.1.0/24 12.12.3.1
device(config-vrf-red-ipv4)# exit-vrf
Once the configuration is completed, the tunnel interface will come up operationally and become part of the corresponding VRF. Both MP and LP will have VRF information corresponding to the tunnel.

The route entry in that VRF shows the tunnel interface as a directly connected interface. Once a static route is configured with a destination as the CI in a VRF, the next hop will point to the corresponding tunnel interface for that VRF.

**MP CPU forwarding**

When the MP has to send a packet over the GRE tunnel, it creates the GRE encapsulated IP packet and sends it to the LP for transmission out of the port. The MP also supports fragmentation of packets going out of GRE.

With respect to GRE support for VRF, the MP does a route lookup on the packet for that VRF. The route look points to GRE tunnel as next hop. Control packets, such as ping and routing protocol packets for a VRF, will be encapsulated by the GRE and sent across the GRE tunnel, and sent to the LP for transmission out of the port.

**LP CPU forwarding**

When the incoming IP packet is more than 1476 bytes (in the default IP MTU scenario) or exceeds the IP MTU of the tunnel interface, the packets must be fragmented and sent with GRE encapsulation. The LP does the fragmentation and sends out the packets. To forward the packets to the correct GRE tunnel as per the VRF of incoming packet, mapping is provided by route entry. This works once the route entry in VRF points to the GRE tunnel as the next hop.

**NOTE**

Other tunnel optional configurable parameters for tunnel like Keep alive, TTL, TOS, and so on, are supported by the GRE tunnel.

**GRE tunnel VRF limitations**

- The GRE tunnel VRF supports only the IPv4 addresses.
- Multicast is not supported on GRE tunnel.
- There is no dynamic CAM model for the IP GRE.
- GRE encapsulation of MPLS packet is also not supported.
- The GRE tunnel VRF support is applicable to all Gen 2 cards except BR-MLX-10Gx24-DM.
- ISIS is not supported for interface having VRF configuration. Hence only static, OSPF, BGP and RIP protocols are supported.
- PBR does not support VRF in current release. However, if we apply a PBR policy to an interface with VRF configured, then PBR will not work, but PBR policies’ next-hop can be a tunnel interface irrespective of the tunnel being in any VRF.
- CER 2000 Series and CES 2000 Series devices do not support VRF over GRE tunnel.

Following `show` commands display the following VRF information:

```plaintext
device(config)#show interface tunnel 1
Tunnel is up, line protocol is up
 Hardware is Tunnel
 Tunnel source 36.0.8.108
 Tunnel destination is 131.108.5.2
 Tunnel mode gre ip
 No port name
 Internet address is: 10.10.3.1/24
 Tunnel TOS 0, Tunnel TTL 255, Tunnel MTU 1476 bytes
 Keepalive is Enabled : Interval 10, No.of Retries 3
 Total Keepalive Pkts Tx: 2, Rx: 2
 VRF Forwarding: Red

device(config)#show ip interface tunnel 1
Interface Tunnel 1
 port enabled
 port state: UP
 ip address: 10.10.3.1/24
 Port belongs to VRF: red
```
encapsulation: ETHERNET, mtu: 1476
directed-broadcast-forwarding: disabled
ip icmp redirect: enabled
ip local proxy arp: disabled
No inbound ip access-list is set
No outbound ip access-list is set
No Helper Addresses are configured.

device(config)# show ip-tunnels 1
IPv4 tnnl 1 UF : src_ip 36.0.8.108, dst_ip 131.108.5.2
TTL 255, TOS 0, NHT 0, MTU 1480, vrf: red

Multicast over GRE tunnel

NOTE
MTU fragmentation for multicast traffic is not enabled over a GRE tunnel. Packets are transmitted without MTU fragmentation. This behavior is applicable on MLX Series, XMR Series, CER 2000 Series, and CES 2000 Series devices.

NetIron software supports Multicast over a point-to-point GRE tunnel. Multicast over a GRE tunnel allows multicast packets to be transported through a GRE tunnel across an IP cloud towards its receiver. A GRE tunnel is provisioned at each end of the IP cloud. A GRE tunnel is a virtual IP tunnel; the IP tunnel source can also be a VE interface. The IP cloud sitting in between the two GRE endpoints serves as a PIM enabled logical link. As bidirectional control messages are sent over the GRE tunnel, the multicast distribution tree is established across the IP cloud. Multicast data is encapsulated with a predefined GRE header at the ingress node. The GRE packet is routed within the IP cloud using the outer unicast GRE destination address. As the packet reaches the egress node of the tunnel, the packet is decapsulated. The multicast packet continues on its way to the multicast distribution tree to reach its receivers.

Configuring PIM GRE tunnel

The Extreme device PIM GRE tunnel configuration allows you to enable PIM Sparse (PIM-SM) and PIM Dense (PIM-DM) on a GRE tunnel.

Enabling PIM-SM on a GRE tunnel interface

To enable PIM-SM on a GRE Tunnel Interface, enter the following command.

device(config)#interface tunnel 20
device(config-tnif-20)#ip pim-sparse

Syntax: [no] ip pim-sparse

Enabling PIM-DM on a GRE tunnel interface

To enable PIM-DM on a GRE Tunnel Interface, enter the following command.

device(config)#interface tunnel 20
device(config-tnif-20)#ip pim

Syntax: [no] ip pim
Configuring PIM GRE tunnel using the strict RPF check

The device PIM GRE tunnel configuration allows you to enforce strict rpf check rules on (s,g) entry on a GRE tunnel interface. The (s,g) entry uses the GRE tunnel as a RPF interface. During unicast routing transit, GRE tunnel packets may arrive at different physical interfaces. The `ip pim tunnel rpf-strict` command allows you to limit a specific port to accept the (s,g) GRE tunnel traffic.

**NOTE**

The configuration is not recommended for all users, it is only needed if the user wants to override the default behavior.

When the GRE encapsulated multicast packet is received, hardware processing attempts to find a match in the CAM session based on the inner (s,g) entry. If hardware processing cannot find the inner (s,g) entry in the CAM session, the packet will be dropped. If the `ip pim tunnel rpf-strict` command is configured on a GRE tunnel interface, hardware processing will check on the (s,g) entry, and verify that the packet matches the physical port on the GRE tunnel interface, and the GRE tunnel vlan id.

To limit a specific port to accept the (s,g) GRE tunnel traffic, enter the following command.

```
device(config)#interface tunnel 20
device(config-tnif-20)#ip pim tunnel rpf-strict
```

Syntax: `[no] ip pim tunnel [ rpf-strict ]`

The rpf-strict option allows you to set the strict rpf check on the multicast entry.

---

Tunnel statistics for a GRE tunnel or IPv6 manual tunnel

At a global level, you can enable the collection of statistics for generic routing encapsulation (GRE) tunnels and manual IPv6 tunnels. With this feature, the Extreme device collects the statistics for GRE and IPv6 manual tunnels and displays packet counters for tunnels at the management processor (MP). This feature collects and displays unicast and multicast packets over both directions of the tunnels.

Statistics collection is not enabled by default, so you need to enter the IP tunnel policy configuration level and then issue the `accounting-enable` command to start collecting the statistics for GRE and IPv6 manual tunnels. This procedure is described in Enabling tunnel statistics on page 78. This required preliminary ensures that the source-ingress CAM partition is not allocated unless statistics collection or tunnel session enforcement checks are actually needed. (Because the statistics enable does not enforce the GRE and IPv6 tunnel session checks by default, these capabilities have their own enable commands in the IP tunnel policy CLI level. The applicable commands are described in Configuring GRE session enforce check on page 66 and Configuring IPv6 session enforce check on page 78.) You can view examples of related show command output in Displaying GRE tunnel information and statistics on page 142.

The remainder of this introduction to tunnel statistics describes reload behavior for certain commands and detailed notes and restrictions that apply to the support for tunnel statistics.

---

Reload behavior and the source-ingress CAM partition

When one of the three tunnel-related commands is configured at the CLI level for IP tunnel policy (entered by use of the `ip-tunnel-policy` command), you might need to save the configuration and reload the device to create the required source-ingress-CAM partition. If the memory write and reload are needed, the system prompts for these steps after you finish the enable commands. The condition for which you might need to write and reload is the absence of the source-ingress-CAM partition. If this partition does not exist, the first time that
you run either the `gre-session-enforce-check`, `ipv6-session-enforce-check`, or `accounting-enable` command, the system prompts you. Thereafter, when you run any of these three commands to disable or enable a feature, the system does not prompt. Removing any of the configurations can be done at anytime and does not necessitate a reload. The new configuration immediately becomes effective, but the source-ingress CAM partition is removed only upon the next reload.

**Operational notes**

The subsections that following describe operational characters that relate to the statistics collection.

**Source-ingress-CAM partition**

The CAM profile restrictions for this feature are the same as those for the tunnel session enforce-check configuration. This feature is not supported in those CAM profiles for which the system cannot allocate the source-ingress-CAM partition that is needed to support the accounting and session check enforcement. The CLI engine checks for compliance and rejects an attempt to enable statistics in this situation. Currently the following CAM profiles are not supported for IP tunnel statistics:

- IPv6
- L2-metro-2
- MPLS-L3VPN-2
- MPLS-VPLS-2
- MPLS-VPN-VPLS
- multi-service-2
- multi-service-3
- multi-service-4

**6to4 automatic tunnels**

Statistics collection is supported only for manual IPv6 and GRE tunnels. The system does not support statistics collection for 6to4 automatic IPv6 tunnels because, for automatic 6to4 tunnels, only tunnel source-ip is configured, and the destination is known only at runtime when a remote node tries to use this tunnel. The destination points can come up or go down without the local router having any information on how many destinations are to be used for 6to4 tunnels. This uncertainty can cause scalability issues, so neither statistics collection nor session-enforce check are not supported for 6to4 automatic tunnels.

**Multicast-over-GRE packets**

This feature counts multicast over GRE packets. You can see the multicast packet count by using the `show interface tunnel` command. You can use other CLI commands to display the aggregate unicast and multicast statistics for the GRE tunnels. For a description of all the applicable show commands, refer to Displaying GRE tunnel information and statistics on page 142.

**Statistics polling on the MP and LP**

The LP module polls the statistics once every second. For every one second, the module polls the statistics either for 5000 entries or until the completion of a specific application. (The same polling mechanism is also used for other applications, such as IP, MPLS, L3VPN, VLL, VPLS and IP Tunnel.) After all the applications are polled, the system waits for 220 seconds to schedule the next polling event. However, the LP module synchronizes statistics to the MP every 30 seconds, so 30 seconds is the granularity of statistics.

The LP synchronizes statistics to the MP in background every 30 seconds, and the MP stores the statistics for all tunnels for every LP module. If a LP module at either the tunnel ingress or egress, the system uses the current stored statistics for that LP module for display
(and continue to poll the rest of working modules to get the latest statistics). This mechanism ensures that the tunnel counters never go down (if no clear statistics command is performed on the tunnel).

When a tunnel is down, the LP does not poll the statistics for that tunnel. The LP keeps the old counters as is until you explicitly clear them on the CLI. These counters are displayed when the tunnel is down. When the tunnel comes back up, it resumes polling and adds the new packet counts to the stored statistics and displays the updated statistics.

**Clearing the statistics**

When you issue the `clear statistics tunnel` command with specific parameters, the operation clears statistics for either one or all of the tunnels regardless of the circumstance—whether the tunnel is up or down, on an ingress or egress module, and so on. Refer to Clearing GRE tunnel and manual IPv6 tunnel statistics on page 78 for a description of the clear statistics tunnel command.

**Tunneled packets that encounter an ACL**

If a packet reaches the ACL permit or deny clauses for the inner IPv4 or IPv6 addresses when it comes through the IP tunnel at the egress node, the packet is not counted as a receive-from-tunnel packet. Instead, it is counted as an ACL packet. You can view ACL packets by using the show access-list accounting command.

IPv6 ACL lookup is performed on the inner IPv6 packet at the tunnel egress. This depends on the port register for the Layer 2 ACL or Layer 3 ACL control, which is performed in parallel.

**Switchover behavior**

The LP sends statistics to both the active and the standby MP modules. If an MP switches over, the new-active MP polls the statistics again so it can display the latest statistics. The counters are equal to or greater than the statistics before the switchover for the working modules. If any module goes down before the switchover, the new active MP uses the stored counters to display the statistics for that module.

**Hitless operating system upgrade behavior**

When a hitless operating system (OS) upgrade occurs, the tunnel statistics are saved and retrieved after the reset of the LP is complete. The system can retrieve the old statistics and do the polling to get the latest PRAM statistics. After the hitless upgrade, the system can display the correct packet counters.

**Behavior after an LP failure**

If LP module goes down, the counters for that LP are preserved. After the LP comes back up, the preserved counters for that LP can be displayed.

**Feature scalability**

An XMR Series device supports 256 tunnels by default and 8000 tunnels for its maximum number of tunnels. The system supports statistics for all tunnels because the source ingress CAM partition has 16000 entries that can support the statistics for all tunnels.
Enabling IP tunnel or manual IPv6 statistics

This section describes how to enable and clear statistics for GRE or manual IPv6 tunnels. The enable for this feature is global in scope. The enabling command is one of three enable commands that you run in the IP tunnel policy context of the CLI. (These commands are `gre-session-enforce-check`, `ipv6-session-enforce-check`, and `accounting-enable` . The `ip-tunnel-policy` command puts the CLI in the mode for executing them.) To see examples of tunnel statistics, refer to Displaying GRE tunnel information and statistics on page 142.

Enabling tunnel statistics

NOTE
The CES 2000 Series and CER 2000 Series devices currently do not support the `ip-tunnel-policy` and the `accounting-enable` commands.

To enable the GRE tunnel or manual IPv6 tunnel statistics, go to the IP tunnel policy mode of the CLI and issue the `accounting-enable` command, as the following example illustrates.

```
device(config)#ip-tunnel-policy
device(config-ip-tunnel-policy)#accounting-enable
```

Syntax: `[no] accounting-enable`

To turn off tunnel statistics gathering, use the keyword `no` to the `accounting-enable` command.

The system might prompt you to write the configuration to memory and reload the system. If the system has not yet allocated a source-ingress CAM partition, it prompts you to write the results of the current configuration to memory and reload the system.

The first-time execution of certain commands can prompt the allocation of a source-ingress CAM partition that is required by certain features. These commands are `gre-session-enforce-check`, `ipv6-session-enforce-check`, and `accounting-enable`. After this CAM partition is allocated, you do not need to do the memory write and reload after the first-time execution of the other two commands.

Clearing GRE tunnel and manual IPv6 tunnel statistics

You can clear all of the statistics for either one or all tunnels by using the clear statistics tunnel command, as the following example illustrates.

```
device#clear statistics tunnel 1
```

Syntax: `clear statistics tunnel [ tunnel ID ]`

To clear statistics for a specific tunnel, include the ID of that tunnel.

Configuring IPv6 session enforce check

You can enable the IPv6 session enforce check by using the `ipv6-session-enforce-check` command. When an IPv6 packet arrives and this feature is enabled, the system tries to match the IPv6 packet source and destination address pair with the tunnel configured destination and source pair. If the pairs do not match, the packet is dropped in hardware.

NOTE
The CES 2000 Series and CER 2000 Series devices currently do not support the `ip-tunnel-policy` command or IPv6 tunnels.

To configure the IPv6 session enforce check, go to the IP tunnel policy context and enter the `ipv6-sessionenforce-check` command.

```
device(config)#ip-tunnel-policy
device(config-ip-tunnel-policy)#ipv6-session-enforce-check
```
Syntax: [no] ipv6-session-enforce-check

To disable the IPv6 session enforce check, use the no form of this command.

The system might prompt you to write the configuration to memory and reload the system. If the system has not yet allocated a source-ingress CAM partition, it prompts you to write the results of the current configuration to memory and reload the system.

The first-time execution of certain commands can prompt the allocation of a source-ingress CAM partition that is required by certain features. These commands are gre-session-enforce-check, ipv6-session-enforce-check, and accounting-enable. After this CAM partition is allocated, you do not need to do the memory write and reload after the first-time execution of the other two commands.

NOTE
The ipv6-sessions-enforce-check command is not supported for 6to4 automatic tunnels.

GRE tunnels and MPLS handoff

Two MPLS networks can communicate using GRE tunnels with the handoff occurring at the same device.

Generic Routing Encapsulation (GRE) encapsulates data packets inside of a transport protocol and transmit the packets from one tunnel endpoint to another. Multiprotocol Label Switching (MPLS) is used in large data centers to control and forward traffic. In the situation where a data center exists without an MPLS connection, and MPLS traffic must be forwarded to another MPLS network, GRE tunnels can be deployed. The handoff to and from MPLS occurs at the same node as the GRE tunnel configuration.

Three main configuration steps are required for the handoff to and from a GRE tunnel to MPLS:

• Configure a GRE tunnel
• Configure MPLS LSP on the same node as the GRE tunnel ingress and egress nodes
• Configure an IP route to handoff the traffic from MPLS to the GRE tunnel and from the GRE tunnel to MPLS

NOTE
The GRE tunnel handoff to MPLS is only supported on MLXe and XMR devices. Not all interface cards on these devices are supported. See the Feature Support Matrix for more details.

Restrictions for GRE tunnel handoff to MPLS

Some Multiprotocol Label Switching (MPLS) technologies are not supported by the GRE tunnel handoff to MPLS feature.

The following MPLS technologies are not supported:

• GRE MPLS handoff to Layer 3 Virtual Private Network (L3VPN)
• GRE MPLS handoff to Virtual Ethernet (VE) over Virtual Private LAN Service (VPLS)
• GRE MPLS handoff with Virtual Routing and Forwarding (VRF) over VE over VPLS

NOTE
The number of GRE tunnels supported is 512.
**GRE MPLS handoff without VRF configuration example**

Configuration example for a handoff of MPLS data from a GRE tunnel when VRF is not configured.

This example configuration shows how to configure a GRE handoff to MPLS when Virtual routing and forwarding (VRF) is not configured. In the diagram the node at the edge of the MPLS network has both MPLS and GRE configured. MPLS traffic from Host1 is encapsulated at the GRE1 routing device and travels through the GRE tunnel for a handoff at the GREMPLS routing device where it can travel across the MPLS network. The Label Edge Router (LER) device forwards it to its destination at Host2.

**FIGURE 6** GRE MPLS tunnel diagram without VRF

**GRE1 configuration**

The following example configures the GRE1 device in the above diagram as one endpoint of the GRE tunnel.

```bash
interface ethernet 2/3
 enable
 ip address 10.5.5.1/24

interface tunnel 1
 tunnel mode gre ip
 tunnel source 10.5.5.1
 tunnel destination 10.5.5.2
 ip address 10.10.3.1/24

 ip route 10.2.2.0/24 10.10.3.2
```
**GRE MPLS configuration**

The following example configures the GRE MPLS device in the above diagram as the other endpoint of the GRE tunnel. The configuration covers both GRE and MPLS because this is the device on which the MPLS handoff occurs.

```
 ip route 10.2.2.0/24 10.50.50.50
 ip route next-hop-enable-mpls

 interface ethernet 1/2
 ip address 10.5.5.2/24

 interface tunnel 1
 tunnel mode gre ip
 tunnel source 10.5.5.2
 tunnel destination 10.5.5.1
 ip address 10.10.3.2/24

 interface loopback 1
 ip address 10.25.25.25/24

 router mpls
 lsp to_dut4
 to 10.50.50.50
 shortcuts ospf
 tunnel-interface 1
 enable
```

**LER2 configuration**

The following example configures the LER2 device in the above diagram.

```
 interface loopback 1
 ip address 10.50.50.50/24

 router mpls
 lsp to_dut2
 to 10.25.25.25
 shortcuts ospf
 tunnel-interface 1
 enable
```

**GRE MPLS handoff with VRF configuration example**

Configuration example for a handoff of Multiprotocol Label Switching (MPLS) data from a Generic Routing Encapsulation (GRE) tunnel. VRFs are configured.

This example configuration shows how to configure a GRE handoff to MPLS when Virtual Routing and Forwarding (VRF) is configured. In the diagram the node at the edge of the MPLS network has both MPLS and GRE configured. MPLS traffic from Host1 is encapsulated at the GRE1 routing device and travels through the GRE tunnel for a handoff at the GRE MPLS routing device where it can travel across the MPLS network. The Label Edge Router (LER) device forwards it to its destination at Host2. The default VRF is configured as the next hop from the GRE MPLS device and the VRF-RED red is configured at GRE1.
GRE1 configuration

The following example configures the GRE1 routing device in the above diagram as one endpoint of the GRE tunnel.

```plaintext
vrf red
 rd 1:1
 address-family ipv4
 ip route 10.2.2.0/24 10.10.3.2
 exit-address-family
 exit-vrf

interface ethernet 2/3
 enable
 vrf forwarding red
 ip address 10.5.5.1/24

interface tunnel 1
 tunnel mode gre ip
 tunnel source 10.5.5.1
 tunnel destination 10.5.5.2
 vrf forwarding red
 ip address 10.10.3.1/24
 keepalive 10 3
```
**GREMPLS configuration**

The following example configures the GREMPLS device in the above diagram as the other endpoint of the GRE tunnel. The configuration covers both GRE and MPLS because this is the device on which the MPLS handoff occurs.

```
vrf red
 rd 2:2
 address-family ipv4
 ip route 10.2.2.0/24 next-hop-vrf default-vrf 10.50.50.50
 exit-address-family
 exit-vrf

 ip route next-hop-enable-mpls

interface tunnel 1
 tunnel mode gre ip
 tunnel source 10.5.5.2
 tunnel destination 10.5.5.1
 vrf forwarding red
 ip address 10.10.3.2/24
 keepalive 10 3

interface loopback 1
 ip address 10.25.25.25/24

router mpls
 lsp to_dut4
 to 10.50.50.50
 shortcuts ospf
 tunnel-interface 1
 enable
```

**LER2 configuration**

The following example configures the LER2 device in the above diagram.

```
interface loopback 1
 ip address 10.50.50.50/24

router mpls
 lsp to_dut2
 to 10.25.25.25
 shortcuts ospf
 tunnel-interface 1
 enable
```
Verifying GRE tunnel handoff to MPLS

The configuration of GRE tunnel handoff to MPLS can be verified using various show commands.

1. To view tunnel interface configuration information, use the `show interface tunnel` command. In the following example, information about the GRE tunnel and the VRF named Red is shown.

   ```
 device(config)# show interface tunnel 1
 Tunnel1 is up, line protocol is up
 Hardware is Tunnel
 Tunnel source 10.5.5.1
 Tunnel destination is 10.5.5.2
 Tunnel mode gre ip
 Configured BW is 0 kbps
 No port name
 Internet address is: 10.10.3.1/24
 Tunnel TOS 0, Tunnel TTL 255, Tunnel MTU 1476 bytes
 Keepalive is Enabled : Interval 10, No.of Retries 3
 Total Keepalive Pkts Tx: 2, Rx: 2
 VRF Forwarding: Red
   ```

2. To view MPLS Label Switching Protocol (LSP) information, use the following command.

   ```
 device(config)# show mpls lsp
 Note: LSPs marked with * are taking a Secondary Path
 Admin Oper Tunnel Up/Dn Retry Active
 Name To State State Intf Times No. Path
 To_dut4 10.50.50.50 UP DOWN tnl0 0 0 --
   ```

Restart global timers

Restart contains two global timers that:

- Limit the amount of time used for re-syncing routes between the backup Management module and Interface modules (LPs) within the same chassis
- Allow a buffer time for protocols to converge and solve dependencies among each other

If the protocol-based restart features are configured when a Management module (MP) performs a switchover to its backup, routes are maintained on the LPs through the protocol-based restart processes for a specified period of time while the new MP learns the network routes. Once the MP learns all of its routes, the routes from the MP are synced with the routes on the LPs.

The two timers introduced here are called the `max-hold-timer` and the `protocols-converge-timer`.

The process of syncing routes between a new MP and its LPs using the new timers is illustrated in Figure 8 and described in the following steps.

1. The MP switchover from active to redundant MP begins.
2. The system `max-hold-timer` starts.
3. The IGP/BGP restart process begins.
4. If the IGP/BGP restart process is completed before the system `max-hold-timer` expires, the system `max-hold-timer` is cancelled and the `protocols-converge-timer` starts.
5. Once the **protocols-converge-timer** expires, the MP syncs up forwarding information with the LPs.
6. If the system **max-hold-timer** expires before the IGP/BGP restart process is completed, the MP syncs up forwarding information with the LPs at that time and the **protocols-converge-timer** is never started.

![FIGURE 8 MP to LP re-syncing process](image)

**Configuring the graceful-restart max-hold-timer**

This timer defines the maximum hold time before a management module syncs up new forwarding information to interface modules during the restart process. While the default value of 300 seconds will work in most cases, if a device is loaded with a very large number of routes and OSPF/BGP peering adjacencies you might want to fine-tune your device’s performance by increasing this value.

The value of this timer can be set using the command shown in the following.

```bash
device(config)# graceful-restart max-hold-timer 500
```

**Syntax:** `[no]graceful-restart max-hold-timer hold-time`

The **hold-time** variable is the maximum number of seconds that a management routing module waits before it syncs up new forwarding information to the interface modules during a restart. The range for the hold time is 30 - 3600 seconds. The default time is 300 seconds.

**Graceful-restart protocols-converge-timer**

This timer defines the time that this device waits for restarting protocols to converge at the final step in the restart process. In a heavily loaded system where BGP/OSPF/GRE/Static protocols can have a dependency on each other, their restart procedures may also depend on each other. This timer is to allow protocols to solve inter-dependencies after individual restart processes and before routing modules sync up new forwarding information to interface module. The default value of 5 seconds will work in most cases but if a system is heavily loaded and has protocols that depend on each other, you might want to fine-tune your system by increasing this value.

The value of this timer can be set using the command shown in the following.

```bash
device(config)# graceful-restart protocols-converge-timer 20
```

**Syntax:** `[no] graceful-restart protocols-converge-timer hold-time`

The **hold-time** variable is the maximum hold time in seconds before management routing modules sync up new forwarding information to interface modules during restart. The range of permissible values is 0 to 1200 seconds. The default value is 5 seconds.
Configuring IP parameters

Some parameters can be configured globally while others can be configured on individual interfaces. Some parameters can be configured globally and overridden for individual interfaces.

Configuring IP addresses

You can configure an IP address on the following types of the Extreme device interfaces:

- Ethernet port
- Virtual routing interface (also called a Virtual Ethernet or “VE”)
- Loopback interface

By default, you can configure up to 24 IP addresses on each interface.

**NOTE**

After you configure a virtual routing interface on a VLAN, you cannot configure Layer 3 interface parameters on individual ports in the VLAN. Instead, you must configure the parameters on the virtual routing interface itself. Also, after an IP address is configured on an interface, the hardware is programmed to route all IP packets that are received on the interface. Consequently, all IP packets not destined for this device’s MAC address are not bridged and are dropped.

The Extreme device supports both classical IP network masks (Class A, B, and C subnet masks, and so on) and Classless Interdomain Routing (CIDR) network prefix masks.

- To enter a classical network mask, enter the mask in IP address format. For example, enter “10.157.22.99 255.255.255.0” for an IP address with a Class-C subnet mask.
- To enter a prefix network mask, enter a forward slash (/) and the number of bits in the mask immediately after the IP address. For example, enter “10.157.22.99/24” for an IP address that has a network mask with 24 significant bits (ones).

By default, the CLI displays network masks in classical IP address format (example: 255.255.255.0). You can change the display to prefix format.

Assigning an IP address to an Ethernet port

To assign an IP address to port 1/1, enter the following commands.

```
device(config)# interface ethernet 1/1
device(config-if-e1000-1/1)# ip address 10.45.6.1 255.255.255.0
```

**NOTE**

You also can enter the IP address and mask in CIDR format, as follows.

```
device(config-if-e10000-1/1)# ip address 10.45.6.1/24
```

**Syntax:** `[no] interface ethernet [slot[/]port`

**Syntax:** `[no] ip address ip-addr ip-mask | ip-addr/mask-bits [ ospf-ignore | ospf-passive | secondary ]`

The `ospf-ignore` and `ospf-passive` parameters modify the Extreme device defaults for adjacency formation and interface advertisement. Use one of these parameters if you are configuring multiple IP subnet addresses on the interface but you want to prevent OSPF from running on some of the subnets:

- `ospf-passive` - disables adjacency formation with OSPF neighbors (but does not disable advertisement of the interface into OSPF). By default, when OSPF is enabled on an interface, the software forms OSPF router adjacencies between each primary IP address on the interface and the OSPF neighbor attached to the interface.
• **ospf-ignore** - disables OSPF adjacency formation and advertisement of the interface into OSPF. The subnet is completely ignored by OSPF.

Use the **secondary** parameter if you have already configured an IP address within the same subnet on the interface.

**NOTE**

When you configure more than one address in the same subnet, all but the first address are secondary addresses and do not form OSPF adjacencies.

### Assigning an IP address to a loopback interface

Loopback interfaces are always up, regardless of the states of physical interfaces. They can add stability to the network because they are not subject to route flap problems that can occur due to unstable links between this device and other devices.

You can configure up to 64 loopback interfaces on this device.

You can add up to 24 IP addresses to each loopback interface.

**NOTE**

If you configure the Extreme device to use a loopback interface to communicate with a BGP4 neighbor, you also must configure a loopback interface on the neighbor and configure the neighbor to use that loopback interface to communicate with the Extreme device.

To add a loopback interface, enter commands such as those shown in the following example.

```
device(config-bgp-router)# exit
device(config)# int loopback 1
device(config-lbif-1)# ip address 10.0.0.1/24
```

**Syntax:** `[no] interface loopback num`

For the syntax of the IP address, refer to Assigning an IP address to an Ethernet port on page 86.

### Assigning an IP address to a virtual interface

A virtual interface is a logical port associated with a Layer 3 Virtual LAN (VLAN) configured on this device.

**NOTE**

Other sections in this chapter that describe how to configure interface parameters also apply to virtual interfaces.

**NOTE**

The Extreme device uses the lowest MAC address on the device (the MAC address of port 1 or 1/1) as the MAC address for all ports within all virtual interfaces you configure on the device.

To add a virtual interface to a VLAN and configure an IP address on the interface, enter commands such as the following.

```
device(config)# vlan 2 name IP-Subnet_10.1.2.0/24
device(config-vlan-2)# untag e1/1 to 1/4
device(config-vlan-2)# router-interface ve1
device(config-vlan-2)# interface ve1
device(config-vif-1)# ip address 10.1.2.1/24
```

The first two commands create a Layer 3 protocol-based VLAN named "IP-Subnet_10.1.2.0/24" and add a range of untagged ports to the VLAN. The `router-interface` command creates virtual interface 1 as the routing interface for the VLAN. The last two commands change to the interface configuration level for the virtual interface and assign an IP address to the interface.

**Syntax:** `[no] router-interface ve num`
Syntax: [no] interface ve num

The num parameter specifies the virtual interface number. You can specify from 1 to the maximum number of virtual interfaces supported on the device. To display the maximum number of virtual interfaces supported on the device, enter the show default values command. The maximum is listed in the System Parameters section, in the Current column of the virtual-interface row.

For the syntax of the IP address, refer to Assigning an IP address to an Ethernet port on page 86.

Assigning a MAC address to a virtual interface

By default, the Extreme device uses the MAC address of the first port (1 or 1/1) as the MAC address for all virtual routing interfaces configured on the device. You can specify a different MAC address for the virtual routing interfaces. If you specify another MAC address for the virtual routing interfaces, the address applies to all the virtual routing interfaces configured on the device. To specify the MAC address for virtual routing interfaces, enter commands such as the following.

```
device(config)# virtual-interface-mac aaaa.bbbb.cccc
device(config)# write memory
device(config)# end
device# reload
```

Syntax: [no] virtual-interface-mac mac-addr

Enter the MAC address in the following format: HHHH.HHHH.HHHH

NOTE
You must save the configuration and reload the software to place the change into effect.

Deleting an IP address

To delete an IP address, enter a command such as the following.

```
device(config-if-e1000-1/1)# no ip address 10.1.2.1
```

This command deletes IP address 10.1.2.1. You do not need to enter the subnet mask.

To delete all IP addresses from an interface, enter the following command.

```
device(config-if-e1000-1/1)# no ip address *
```

Syntax: no ip address ip-addr

IP Unnumbered Interfaces

The IP Unnumbered Interfaces feature saves IPv4 address space by allowing unnumbered interfaces to inherit the IP address of a donor interface, thus allowing all ports to share the same subnet. This feature not only preserves IP addresses, but also reduces the IP routing table size. This feature also provides ARP suppression (reducing the number of ARP requests sent to hosts) on unnumbered interfaces, thus increasing the number of hosts that are supported under the same subnet.

- The donor interface is the interface with an IP address configured on it.
- The unnumbered interface is the interface with no IP address configured on it. The unnumbered interface inherits the IP address of the donor interface.

For example, consider a DSLAM deployment scenario with multiple users connected to a device (refer to Figure 9). Instead of configuring IP addresses for every VE on the Extreme device, you can designate one VE as the donor interface and configure all the other VEs to inherit the IP address of the donor VE interface.
The donor interface must be one of the following:
- Loopback interface
- VE interface
- Ethernet interface (can be part of a LAG interface; must be untagged if in a VLAN)

The unnumbered interfaces can be the following:
- VE interface
- Ethernet interface (must be untagged if in a VLAN)

**Configuring an unnumbered interface**

To enable an unnumbered interface to inherit the IP address of a donor interface, enter commands such as the following:

```
device (config)# interface ve 10
device (config-vif-10)# ip unnumbered ve 9
```

The commands enable interface ve 10 to inherit the IP address of ve 9. Interface ve 10 is the unnumbered interface and interface ve 9 is the donor interface.

Syntax: `[no] ip unnumbered [ ethernet slot/port | ve num | loopback num ]`

- The `ethernet slot/port` parameter specifies the donor interface by an Ethernet port number.
- The `ve num` parameter specifies the donor interface by virtual interface number.
- The `loopback num` parameter specifies the donor interface by loopback interface number.

Use the `no ip unnumbered` command to remove the IP address from the unnumbered interface.

**NOTE**
You do not need to configure an interface to be a donor interface. An interface becomes a donor interface automatically when an unnumbered interface inherits its IP address.
Displaying unnumbered interfaces

The `show ip interface` command displays information about unnumbered interfaces.

In the following example, note that interfaces ve 9 and ve 10 have the same IP address. Interface ve 10 is an unnumbered interface, as indicated by the **U** in the **Flag** column.

```
 Interface IP-Address OK? Method Status Protocol VRF FLAG
 mgmt 1 10.21.108.35 YES NVRAM up up default-vrf
 ve 6 6.1.1.1 YES NVRAM up up default-vrf
 ve 9 1.1.1.1 YES NVRAM up up default-vrf
 ve 10 1.1.1.1 YES NVRAM up up default-vrf U
```

In the following example, the first highlighted line indicates that interface ve 10 is an unnumbered interface, inheriting the IP address of ve 9, which is the donor interface.

```
 device# show ip interface ve 10
 Interface Ve 10
 members: ethe 4/1
 active: ethe 4/1
 port enabled
 port state: UP
 ip address: 1.1.1.1/24
 Unnumbered interface, Using IP address of ve 9
 unnumbered arp-suppression is enabled
 Port belongs to VRF: default-vrf
 (output truncated)
```

The second highlighted line indicates whether ARP suppression is enabled or disabled. Refer to [ARP suppression on unnumbered interfaces](#) on page 90 for information about ARP suppression.

ARP suppression on unnumbered interfaces

When you configure unnumbered interfaces, those interfaces are configured with ARP suppression by default. This means that ARP requests are not sent out on unnumbered interfaces. If many VLANs belong to the same subnet, this avoids an ARP storm.

Donor interfaces continue to send out ARP requests because, by default, ARP suppression is disabled on donor interfaces.

ARP suppression is achieved by enabling ARP suppression and performing one of the following:

- Configure DHCP option 82 (recommended).

This configuration must be enabled on each VLAN belonging to the donor or unnumbered interface. When DHCP option 82 is enabled, the ARP request is sent only to the corresponding VLAN (identified in the Dynamic ARP Inspection (DAI) table) instead of all the unnumbered VLANs. For details of DHCP option 82 and the DAI table, refer to [DHCP option 82 insertion](#) on page 490.

- Configure static DAI entries.

You must configure static DAI entries for scenarios where the host is not discovered through DHCP, such as when a host is provided with a static IP address. Refer to [Configuring DAI](#) on page 37 for instructions.

**NOTE**

If you enable ARP suppression on a donor interface, you must configure static Dynamic ARP Inspection (DAI) entries for protocol neighbor IP addresses to ensure that protocol operations on the donor interface succeed.

Refer to [How ARP works](#) on page 29 for information about ARP requests.
Enabling and disabling ARP suppression

To enable or disable ARP suppression on an unnumbered or donor interface, enter commands such as the following:

```
device (config)# interface ve 9
device (config-vif-9)# ip unnumbered-arp-suppression
device (config)# interface ve 10
device (config-vif-10)# no ip unnumbered-arp-suppression
```

The commands enable ARP suppression on ve 9 and disable ARP suppression on ve 10. To fully achieve ARP suppression, configure one of the following:

- DHCP option 82 (refer to Enabling DHCP snooping on a VLAN on page 488)
- Static DAI entries (refer to Configuring DAI on page 37)

Syntax: `[no] ip unnumbered-arp-suppression`

Use the `no ip unnumbered-arp-suppression` command to disable ARP suppression on the interface.

This command is applicable only to donor and unnumbered interfaces. It has no effect on other interfaces.

You can use the `show ip interface` command to display whether ARP suppression is enabled or disabled, as shown in Displaying unnumbered interfaces on page 90.

Caveats and limitations for IP Unnumbered Interfaces

- The IP Unnumbered Interfaces feature is not supported for IPv6 addresses.
- Multicast and MPLS protocols are not supported on donor interfaces.
- Routing protocols, multicast, and MPLS are not supported on the unnumbered interfaces.
- The IP Unnumbered Interfaces feature is supported only on the default VRF. Both donor and the unnumbered interfaces must be in the default VRF.
- If the donor interface is down (link state or administrative state), a ping to the donor IP address fails, even if the unnumbered interfaces that inherited the IP address are up.
- VRRP and VRRP-E operations are not supported on unnumbered interfaces.
- RPF strict mode is not supported on unnumbered interfaces.

Configuration considerations for IP Unnumbered Interfaces

- You can have multiple donor interfaces in the device. A donor interface can have multiple unnumbered interfaces inheriting its IP address. An unnumbered interface can have only one donor interface.
- You can configure multiple primary and multiple secondary IP addresses on the donor interface. The unnumbered interface inherits all primary and secondary addresses of the donor interface.
- The unnumbered interface inherits only the IP address from the donor interface. All other donor interface configurations are not passed on to the unnumbered interface. You must configure other features, such as IP Source Guard and forwarding of directed broadcasts, on the unnumbered interfaces separately.
- The following routing protocols are supported on the donor interface:
  - Open Shortest Path First (OSPF)
  - Intermediate System - Intermediate System (IS-IS)
  - Routing Information Protocol (RIP)
  - Border Gateway Protocol (BGP)
• If DHCP clients are configured on an unnumbered interface, then DHCP option 82 must be configured on that interface; otherwise, the DHCP client cannot get the IP address from the DHCP server.
• If reachability is needed between two hosts within the same subnet, you must configure local proxy ARP on the unnumbered interfaces. Refer to Enabling local proxy ARP on page 31 for more information.

Static route considerations for unnumbered interfaces

• If you configure a static route with an unnumbered interface or donor interface as the next hop, it is recommended that you configure a standard static route instead of an interface-based static route.
• If you configure an interface-based static route on a donor or unnumbered interface, you must ensure that ARP suppression is disabled on the interface. Refer to Enabling and disabling ARP suppression on page 91 for instructions.

Refer to Static route types on page 225 and Configuring a static IP route on page 227 for information about static routes.

DHCP host subnet selection

If the donor interface is configured with multiple subnets, and the DHCP clients need to receive addresses in a specific subnet, use the \texttt{ip bootp-gateway} command to select the local donor interface IP address of the specific subnet.

This functionality can be used when the DHCP clients are moved from one subnet to another subnet.

Refer to Changing the IP address used for stamping BootP or DHCP requests on page 125 for instructions on using the \texttt{ip bootp-gateway} command. Note that the \texttt{ip bootp-gateway} command is used only when the hosts are DHCP hosts.

Support for other features

IP address configurations are the only configurations that the unnumbered interfaces inherit from the donor interface.

All other configurations (such as ICMP, ACLs, DHCP, and PBR) that are configured on the donor interface apply only to the donor interface and are not inherited by the unnumbered interfaces. You must configure these features separately on the unnumbered interfaces.

Sample configuration for IP Unnumbered Interfaces

This example shows how to configure IP unnumbered interfaces with a DHCP server. In this example, loopback 1 is the donor interface, and ve 20 and ve 30 are the unnumbered interfaces.

After configuring an IP address on the donor interface, configure the two VE interfaces to inherit the IP address of the donor interface as shown in the following example.

```plaintext
device(config)# interface loopback 1
device(config-lbif-1)# ip address 10.10.10.1/24
device(config-lbif-1)# vlan 20
device(config-vlan-20)# router-interface ve 20
device(config-vlan-20)# interface ve 20
device(config-vif-20)# ip unnumbered loopback 1
device(config-vif-20)# vlan 30
device(config-vlan-30)# router-interface ve 30
device(config-vlan-30)# interface ve 30
device(config-vif-30)# ip unnumbered loopback 1
```

Configure the DHCP server. In this example, the DHCP server address is 10.40.40.4.

```plaintext
device(config-vif-30)# interface ethernet 1/2
device(config-if-e1000-1/2)# ip address 10.40.40.1/24
device(config-if-e1000-1/2)# dhcp-snooping-trust
```
Configure the DHCP server address in the unnumbered interfaces.

```
device(config-if-e1000-1/2)# interface ve 20
device(config-vif-20)# ip helper-address 10.40.40.4
device(config-vif-20)# interface ve 30
device(config-vif-30)# ip helper-address 10.40.40.4
device(config-vif-30)# exit
```

Configure DHCP option 82 in the unnumbered interface VLANs.

```
device(config)# ip dhcp-snooping vlan 20 to 30 insert-relay-information
device(config)# ip dhcp-snooping vlan 1 insert-relay-information
```

**Support for a 31-bit subnet mask on point-to-point networks**

**NOTE**
The configuration of an IPv4 address with a 31-bit subnet mask is supported on MLX Series, XMR Series, and CER 2000 Series and CES 2000 Series devices.

In an effort to conserve IPv4 address space, a 31-bit subnet mask can be assigned to point-to-point networks. Support for an IPv4 address with a 31-bit subnet mask is described in RFC 3021. Previously, four IP addresses with a 30-bit subnet mask were allocated on point-to-point networks. A 31-bit subnet mask uses only two IP addresses; all zero bits and all one bits in the host portion of the IP address. The two IP addresses are interpreted as host addresses, and do not require broadcast support because any packet that is transmitted by one host is always received by the other host at the receiving end. Therefore, directed broadcast on a point-to-point interface is eliminated. Also, a broadcast address with all one bits in the host portion of the IP address is not allocated for point-to-point interface configuration.

**NOTE**
IP-directed broadcast CLI configuration at the global level, or the per-interface level, is not applicable on interfaces configured with a 31-bit subnet mask IP address.

**Configuring an IPv4 address with a 31-bit subnet mask**

To configure an IPv4 address with a 31-bit subnet mask, enter the following commands.

**NOTE**
You can configure an IPv4 address with a 31-bit subnet mask on any interface (for example, Ethernet, loopback, VE, or tunnel interfaces), and on all VRFs (default and non-default VRFs).

```
device(config)# interface ethernet 1/5
device(config-if-e1000-1/5)# ip address 10.9.9.9 255.255.255.254
```

You can also enter the IP address and mask in the Classless Interdomain Routing (CIDR) format, as follows.

```
device(config-if-e1000-1/5)# ip address 10.9.9.9/31
```

**Syntax:** `[no] ip address ip-address/p-mask`

**Syntax:** `[no] ip address ip-address/subnetmask-bits`

The `ip-address` variable specifies the host address. The `ip-mask` variable specifies the IP network mask. The `subnet mask-bits` variable specifies the network prefix mask.

To disable configuration for an IPv4 address with a 31-bit subnet mask on any interface, use the `no` form of the command.
You cannot configure a secondary IPv4 address with a 31-bit subnet mask on any interface. The following error message is displayed when a secondary IPv4 address with a 31-bit subnet mask is configured.

device(config-if-e1000-1/5)# ip address 10.8.8.8/31 secondary
IP/Port: Errno(10) Cannot assign /31 subnet address as secondary

**Displaying the configuration for an IPv4 address with a 31-bit subnet mask**

To display the interface running configuration when an IPv4 address with a 31-bit subnet mask is configured, enter the following command at any level of the CLI.

device(config-if-e1000-1/5)# show run interface ethernet 1/5
interface ethernet 1/5
   enable
   ip address 10.2.2.3/31
   ip address 10.4.4.4/31

In the previous example, interface ethernet 1/5 is assigned two IPv4 addresses (10.2.2.3/31 and 10.4.4.4/31) with a 31-bit subnet mask.

To display the configuration for an IPv4 address with a 31-bit subnet mask on a virtual ethernet (VE) interface, enter the following command at any level of the CLI. In the example below, VE interface 10 is assigned two IPv4 addresses (10.25.25.255/31 and 10.168.32.0/31) with a 31-bit subnet mask.

device(config-if-e1000-2/5)# show run interface ve 10
interface ve 10
   ip ospf area 0
   ip address 10.25.25.255/31
   ip address 10.168.32.0/31

Syntax: show run interface [ethernet slot/port | loopback number | tunnel number | ve number]

The `show ip route` command displays routes that are directly connected with interfaces configured with IPv4 addresses with a 31-bit subnet mask.

device(config-if-e1000-2/5)# show ip route
Total number of IP routes: 21

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10.2.2.2/31</td>
<td>DIRECT</td>
<td>eth 1/5</td>
<td>0/0</td>
<td>D</td>
<td>2h19m</td>
</tr>
<tr>
<td>2 10.4.4.4/31</td>
<td>DIRECT</td>
<td>eth 1/5</td>
<td>0/0</td>
<td>D</td>
<td>2h19m</td>
</tr>
<tr>
<td>3 10.25.25.254/31</td>
<td>DIRECT</td>
<td>ve 10</td>
<td>0/0</td>
<td>D</td>
<td>2h25m</td>
</tr>
<tr>
<td>4 10.168.32.0/31</td>
<td>DIRECT</td>
<td>ve 10</td>
<td>0/0</td>
<td>D</td>
<td>2h25m</td>
</tr>
</tbody>
</table>

Syntax: show ip route

**Enabling hardware forwarding of IP option packets based on Layer 3 destination**

The IP option field in an IP header is variable in length. A packet can have zero or more options and an option can have either of the following forms:

- a single octet of option-type
- an option-type octet, an option-length octet, and option-data octets

The option-type octet consists of the following three fields:

- 1 bit copied flag
- 2 bits option class
- 5 bits option number
By default, IP option packets are sent to the CPU for forwarding. When configured on a physical interface, the `ignore-options` command directs the device to ignore all options in IP option packets that are received at the configured port. These packets are then treated as if there were no options configured and forwarded based on their Layer-3 destination. The `ignore-options` command is configured as shown in the following:

```
device(config)# interface ethernet 1/1
device(config-if-e1000-1/1)# ignore-options
```

**Syntax:** `[no] ignore-options`

This command only applies to IP option packets in the default VRF.

When the `ignore-options` command is configured on a port, RSVP router alert packets incoming on that port will not be sent to the CPU. Consequently, MPLS should not be configured on a physical port where the `ignore-options` command is configured.

**Using the ignore-options command in a LAG configuration**

The `ignore-options` command can be used on a LAG but it must apply to all ports on the LAG. This applies to both static and LACP LAGs as described in the following:

**Configuring the ignore-options command on a static LAG**

To configure the `ignore-options` command on a static LAG, each port on the LAG must be configured with the command. You can do this by configuring the command on each port before the LAG configuration or configuring the `ignore-options` command on the primary port of the LAG which automatically applies the command to all ports on the LAG as shown in the following.

```
device(config)# trunk e 3/1 to 3/4
trunk transaction done.
device(config-trunk-3/1-3/4)# exit
device(config)# interface ethernet 3/1
device(config-if-e1000-3/1)# ignore-options
```

If the LAG is removed, the `ignore-options` command will be propagated to all ports that were previously in the LAG.

If you try to create a LAG where some of the ports have the `ignore-options` command configured and some do not, the LAG will not be allowed as shown in the following example.

```
device(config)# trunk e 3/1 to 3/2
port 3/1 ignore-options is Enabled, but port 3/2 ignore-options is Disabled
Error: port 3/1 and port 3/2 have different configurations
trunk transaction failed: trunk Config Vetoed
```

**Configuring the ignore-options command on a LACP LAG**

Just as with static LAGs, if you want to configure the `ignore-options` command on an LACP LAG, the command must be enabled on all ports within the LAG. If it is not, the LACP LAG will not be accepted as shown in the following.

```
device(config)#lag sta_lag static
device(config-lag-sta_lag)#ports e 1/3 to 1/4
device(config-lag-sta_lag)#primary-port 1/3
device(config-lag-sta_lag)#deploy
device(config-lag-sta_lag)#int e 1/3
device(config-if-e1000-1/3)#ignore-options
device(config)#lag sta_lag static
device(config-lag-sta_lag)#ports e 1/3 e 1/4
device(config-lag-sta_lag)#primary-port 1/3
device(config-lag-sta_lag)#deploy
port 1/3 ignore-options is Enabled, but port 1/4 ignore-options is Disabled
Error: port 1/3 and port 1/4 have different configurations
LAG sta_lag deployment failed!
device(config)#int e 1/3
```
Configuring domain name server (DNS) resolver

The DNS resolver lets you use a host name to perform Telnet, ping, and traceroute commands. You can also define a DNS domain on this device and thereby recognize all hosts within that domain. After you define a domain name, the device automatically appends the appropriate domain to the host and forwards it to the domain name server.

For example, if the domain "newyork.com" is defined on a device and you want to initiate a ping to host "NYC01" on that domain, you need to reference only the host name in the command instead of the host name and its domain name. For example, you could enter either of the following commands to initiate the ping.

```
device# ping nyc01
device# ping nyc01.newyork.com
```

Multiple DNS queries can be executed simultaneously, making it possible for the device to run multiple simultaneous Telnet, ping or traceroute commands using host names.

**Defining an IPv4 DNS entry**

You can define up to four DNS servers for each DNS entry. The first entry serves as the primary default address. If a query to the primary address fails to be resolved after three attempts, the next gateway address is queried (also up to three times). This process continues for each defined gateway address until the query is resolved. The order in which the default gateway addresses are polled is the same as the order in which you enter them.

Suppose you want to define the domain name of abc.com on a device and then define four possible default DNS gateway addresses. To do so using IPv4 addressing, you would enter the following commands.

```
device(config)# ip dns domain-name abc.com
device(config)# ip dns server-address 10.157.22.199 10.96.7.15 10.95.7.25 10.98.7.15
```

Syntax: `[no] ip dns server-address ip-addr [ ip-addr ] [ ip-addr ] [ ip-addr ]`

In this example, the first IP address in the `ip dns server-address` command becomes the primary gateway address and all others are secondary addresses. Because IP address 10.98.7.15 is the last address listed, it is also the last address consulted to resolve a query.

**DNS queries of IPv4 and IPv6 DNS servers**

IPv4 and IPv6 DNS record queries search through IPv4 and IPv6 DNS servers as described in the following:

**For IPv4 DNS record queries:**
- Loop thru all configured IPv4 DNS servers,
- If no IPv4 DNS servers were configured, then loop through all configured IPv6 DNS servers (if any).

**For IPv6 DNS record queries:**
- Loop thru all configured IPv6 DNS servers,
- If no IPv6 DNS servers were configured, then loop through all configured IPv4 DNS servers (if any).
Using a DNS name to initiate a trace route

Suppose you want to trace the route from this device to a remote server identified as NYC02 on domain newyork.com.

FIGURE 10 Querying a host on the newyork.com domain

Because the newyork.com domain is already defined on the Extreme device, you need to enter only the host name, NYC02, as noted below.

```
 device# traceroute nyc02
```

Syntax: `[no] traceroute host-ip-addr [ maxttl value ] [ minttl value ] [ numeric ] [ timeout value ] [ source-ip ip addr ]`

The only required parameter is the IP address of the host at the other end of the route.

After you enter the command, a message indicating that the DNS query is in process and the current gateway address (IP address of the domain name server) being queried appear on the screen.

```
 Type Control-c to abort
 Sending DNS Query to 10.157.22.199
 Tracing Route to IP node 10.157.22.80:
 IP Address Round Trip Time1 Round Trip Time2
 10.95.6.30 93 msec 121 msec
```

**NOTE**

In the above example, 10.157.22.199 is the IP address of the domain name server (default DNS gateway address), and 10.157.22.80 represents the IP address of the NYC02 host.

Using Telnet and Secure Shell

Up to six inbound and five outbound Telnet connections can be supported simultaneously by the Extreme device. The Extreme device also supports Secure Shell (SSH) access to management functions.

Changing the encapsulation type for IP packets

The Extreme device encapsulates IP packets into Layer 2 packets, to send the IP packets on the network. A Layer 2 packet is also called a MAC layer packet or an Ethernet frame. The MAC address of the Extreme device interface sending the packet is the source address of the Layer 2 packet. The Layer 2 packet’s destination address can be one of the following:

- The MAC address of the IP packet’s destination. In this case, the destination device is directly connected to the Extreme device.
• The MAC address of the next-hop gateway toward the packet’s destination.
• An Ethernet broadcast address.

The entire IP packet, including the source address, destination address, other control information, and the data, is placed in the data portion of the Layer 2 packet. Typically, an Ethernet network uses one of two different formats of Layer 2 packet:
• Ethernet II
• Ethernet SNAP (also called IEEE 802.3)

The control portions of these packets differ slightly. All IP devices on an Ethernet network must use the same format. The Extreme device uses Ethernet II by default. You can change the IP encapsulation to Ethernet SNAP on individual ports if needed.

NOTE
All devices connected to the Extreme device port must use the same encapsulation type.

To change the IP encapsulation type on interface 1/5 to Ethernet SNAP, enter the following commands.

```
 device(config)# int e 1/5
 device(config-if-e1000-1/5)# ip encapsulation snap
```

Syntax: `[no] ip encapsulation snap | ethernet-2`

### Setting the maximum frame size globally

You can set the default maximum frame size to control the maximum size of Ethernet frames that the Ethernet MAC framers will accept or transmit. The size is counted from the beginning of Ethernet header to the end of CRC field. The default maximum frame size must be greater than an IP MTU value set using the Globally changing the IP MTU on page 100.

To set a maximum frame size that applies to the device for Ethernet ports, enter a command such as the following.

```
 device(config)# default-max-frame-size 2000
 device(config)# write memory
 device(config)# reload
```

Syntax: `[no] default-max-frame-size bytes`

Enter 1298 - 9216 for `bytes`. On XMR Series and MLX Series devices, the default is 1548 bytes for Ethernet ports.

On CES 2000 Series devices, the `bytes` variable specifies an even number of bytes between 1298 - 9216. The default value is 1548 bytes.

**NOTE**
You must run the `write memory` command and reload the Extreme device for the `default-max-frame-size` command to take effect.

**NOTE**
In a VLAN-tagged port, the device can accept a frame size up to the default maximum frame size with or without the VLAN-tagged frame. However, it can only transmit a frame size up to the default maximum frame size plus vlan tag 4 bytes.
Changing the MTU

The IP MTU is the maximum length of an IP packet that a Layer 2 packet can contain. If an IP packet is larger than the IP MTU allowed by the Layer 2 packet, the Extreme device fragments the IP packet into multiple parts that will fit into Layer 2 packets, and sends the parts of the fragmented IP packet separately, in different Layer 2 packets. The device that receives the multiple fragments of the IP packet reassembles the fragments into the original packet. The default IP MTU is 1500 bytes for Ethernet II packets. You can change the IP MTU globally or for individual IP interfaces. You can increase the IP MTU size to accommodate large packet sizes, such as jumbo packets, globally or on individual IP interfaces. However, IP MTU cannot be set higher than the maximum frame size, minus 18.

NOTE
For multicast data traffic, frames are not fragmented and the IP MTU setting is ignored.

For jumbo packets, the Extreme device supports hardware forwarding of Layer 3 jumbo packets. Layer 3 IP unicast jumbo packets received on a port that supports the frame’s IP MTU size and forwarded to another port that also supports the frame’s IP MTU size are forwarded in hardware.

NOTE
Policy Based Routing (PBR) currently does not support this IP MTU feature.

Configuration considerations for increasing the IP MTU:

- The maximum value of an IP MTU cannot exceed the configured maximum frame size, minus 18. For example, global IP MTU cannot exceed the value of default-max-frame-size, minus 18 bytes. IP MTU for an interface cannot exceed the value of the maximum frame size configured, minus 18 bytes. The 18 bytes are used for Ethernet header and CRC.
- When you increase the IP MTU size of for an IP interface, the increase uses system resources. Increase the IP MTU size only on the IP interfaces that need it. For example, if you have one IP interface connected to a server that uses jumbo frames and two other IP interfaces connected to clients that can support the jumbo frames, increase the IP MTU only on those three IP interfaces. Leave the IP MTU size on the other IP interfaces at the default value (1500 bytes). Globally increase the IP MTU size only if needed.
- The difference between IP MTU and default-max-frame size should be as follows.
  - 18 bytes for untagged packets
  - 22 bytes for single-tagged packets and
  - 26 bytes for dual-tagged packets

How To determine the actual MTU value

An IPv4 interface can obtain it’s MTU value from any of the following sources:

- Default IP MTU setting
- Global MTU Setting
- Interface MTU Setting

An interface determines its actual MTU value through the process described below.

1. If an IPv4 Interface MTU value is configured, that value will be used.
2. If an IPv4 Interface MTU value is not configured and an IPv4 Global MTU value is configured, the configured global MTU value will be used.
3. If neither an IPv4 Interface MTU value or an IPv4 Global MTU value are configured, the default IPv4 MTU value of 1500 will be used.
Globally changing the IP MTU

To globally enable jumbo support on all IP interfaces, enter commands such as the following.

```device(config)# ip global-mtu 5000
device(config)# write memory```

Syntax: `[no] ip global-mtu bytes`

The `bytes` parameter specifies the maximum IP packet size to be forwarded on a port. You may enter any number within the range of 576 - 9198. However, this value must be 18 bytes less than the value of the global maximum frame size.

NOTE
The global IP MTU change does not get applied to IP tunnel interfaces such as GRE interface. The MTU for these interfaces has to be changed on interface level.

Changing the maximum transmission unit on an individual interface

By default, the maximum IP MTU sizes are as follows:

- 1500 bytes - The maximum for Ethernet II encapsulation

NOTE
The IP MTU configured at the IP interface level takes precedence over the IP MTU configured at the global level for that IP interface.

To change the IP MTU for interface 1/5 to 1000, enter the following commands.

```device(config)# int e 1/5
device(config-if-e10000-5)# ip mtu 1000```

**Syntax:** `[no] ip mtu bytes`

The `bytes` variable specifies the IP MTU. However, the value of IP MTU on an interface cannot exceed the configured value `default-max-frame-size`, minus 18 bytes. The default IP MTU for Ethernet II packets is 1500.

If the interface is part of a VLAN, then ensure that you change the IP MTU only at the VE interface and not at the physical port. To change the IP MTU at the VE interface, enter the following commands:

```device(config)# int ve 103
device(config-vif-103)# ip mtu 1000```

NOTE
All member ports of a VLAN will have the same IP MTU value as the VE interface.

Changing the router ID

In most configurations, this Extreme device has multiple IP addresses, usually configured on different interfaces. As a result, a device’s identity to other devices varies depending on the interface to which the other device is attached. Some routing protocols, including OSPF and BGP4, identify a device by just one of the IP addresses configured on the device, regardless of the interfaces that connect the devices. This IP address is the router ID.

NOTE
RIP does not use the router ID.

NOTE
If you change the router ID, all current BGP4 sessions are cleared.
By default, the router ID on the Extreme device is one of the following:

- If the device has loopback interfaces, the default router ID is the IP address configured on the lowest numbered loopback interface configured on the device. For example, if you configure loopback interfaces 1, 2, and 3 as follows, the default router ID is 10.9.9.9/24:
 - Loopback interface 1, 10.9.9.9/24
 - Loopback interface 2, 10.4.4.4/24
 - Loopback interface 3, 10.1.1.1/24
- If the IP address from loopback1 interface (lowest numbered loopback interface) is removed, the next lowest loopback interface IP address is selected as router-id.
- If a loopback interface is not configured, then the lowest IP address configured over the physical interface is selected as the router ID.

If you prefer, you can explicitly set the router ID to any valid IP address. The IP address should not be in use on another device in the network.

You can set a router ID for a specific VRF as described within this section. In order to make the route ID calculation more deterministic, the device calculates the router-id value during bootup and does not calculate or change the router-id value unless the IP address used for the router-id value on the device is deleted, or the clear router-id command is issued. Additionally, setting a router-id value overrides the existing router-id value and takes effect immediately. Once a router-id value set by a user is removed using the no ip router-id command, the device will again recalculate the router-id value based on current information.

NOTE
The Extreme device uses the same router ID for both OSPF and BGP4. If the device is already configured for OSPF, you may want to use the router ID that is already in use on the device rather than set a new one. To display the router ID, enter the show ip command at any CLI level.

To change the router ID, enter a command such as the following.

```
device(config)# ip router-id 10.157.22.26
```

Syntax: `[no] ip router-id ip-addr`

The `ip-addr` can be any valid, unique IP address.

To set the router ID within a VRF, enter a command such as the following.

```
device(config)# vrf blue
device(config-vrf-blue)# ip router-id 10.157.22.26
```

Syntax: `[no] ip router-id ip-addr`

NOTE

The command for setting the router ID for a specified VRF is exactly the same as for the default VRF. The only difference is that when setting it for a specific VRF, the `ip router-id` command is configured within the VRF as shown in the example.

NOTE

You can specify an IP address used for an interface, but do not specify an IP address in use by another device.

Recalculating the router ID

You can use the `clear ip router-id` command to direct a device to recalculate the IP router ID. This can be done for the default VRF or for a specified VRF, as shown in the following.

```
device(config)# clear ip router-id
```

```
device(config)# vrf blue
device(config-vrf-blue)# clear ip router-id
```
Syntax: clear ip router-id [vrf vrf-name]

Using this command without the vrf option recalculates the IP router ID for the default VRF.

You can use the vrf option to recalculate the IP router ID for a specific VRF that is specified by the vrf-name variable.

IPv6 ND Global Router Advertisement Control

IPv6 ND Global Router Advertisement Control allows for disabling sending out router advertisements at the global system level. The no ipv6 nd global-suppress-ra command at the interface level allows the user to disable and enable the sending of the ND Router Advertisement on an interface. By default, the sending of ND Router Advertisement (RA) is enabled on all interfaces, except for the tunnel and loopback interfaces, providing that the IPv6 Unicast Routing is enabled and the interfaces are active for IPv6.

The IPv6 ND Global Router Advertisement Control gives the ability to quickly turn off the sending of IPv6 ND Router Advertisement message on all IPv6 enabled interfaces.

By default,
- The ND Router Advertisement is enabled.
- Interface is enabled to send ND Router Advertisements.
- The ipv6 nd suppress-ra and ipv6 nd send-ra interface commands, when configured, override the system and VRF global ipv6 nd global-suppress-ra command.

Users sometimes require the ability to quickly turn off the sending of IPv6 ND Router Advertisement message on all IPv6 enabled interfaces. This is achieved by providing the following additional configuration command at system and VRF level:

```
device(config-vrf-red-ipv6)[no]ipv6 nd global-suppress-ra
```

The ipv6 nd send-ra command is a new interface level command added as part of this enhancement. This allows the user to configure the sending of RA messages on some selected interfaces when the ipv6 nd global-suppress-ra command is set to disable the sending of RA messages on all other interfaces.

Syntax: [no] ipv6 nd global-suppress-ra

Configuring IPv6 ND global router advertisement globally on the default VRF

When configuring the ipv6 nd global-suppress-ra command, the ND Router Advertisement messages is not sent out on any interface in the default VRF, unless the ipv6 nd send-ra is set on the interface. By default, ipv6 nd global-suppress-ra is not set for the IPv6 VRF.

Use the following command under address-family ipv6 for a specific VRF is added and applies to the IPv6 VRF:

```
device(config)# vrf red
device(config-vrf-red)#address-family ipv6
device(config-vrf-red-ipv6)#ipv6 nd global-suppress-ra
```

Syntax: [no] ipv6 nd global-suppress-ra

The following command when set ensures that IPv6 ND Router Advertisement messages are sent out on the interface regardless of the setting of the ipv6 nd global-suppress-ra for the interface's VRF.

Syntax: [no] ipv6 nd send-ra

By default, ipv6 nd send-ra is not set on the interface. When ipv6 nd send-ra is set, the ipv6 nd suppress-ra command is unset. However, ipv6 nd suppress-ra is not set when ipv6 nd send-ra is issued on the interface. This is similar to when a user issue existing ipv6 nd suppress-ra command is on an interface, the ipv6 nd send-ra is unset. By default, ipv6 nd suppress-ra is not set.
If sending of RA messages is required on some selected interfaces to continue, then you must set the `ipv6 nd send-ra` command on these interfaces before setting the `ipv6 nd global-suppress-ra` command to disable the sending of RA messages on all other interfaces. Otherwise, the RA messages are not sent out until the `ipv6 nd send-ra` command is set on each of the selected interfaces.

The interface `ipv6 nd send-ra` and `ipv6 nd suppress-ra` commands are sticky in that they are independent of the `ipv6 nd global-suppress-ra` command and either `ipv6 nd send-ra` or `ipv6 nd suppress-ra` can still be present in configuration even when the `ipv6 nd global-suppress-ra` is also in configuration.

Show commands

The output of `show ipv6 interface` command is modified when the sending of router advertisement is disabled on the interface or globally. Use the `show ipv6 interface` command to display the output of the interface.

```
device#show ipv6 int eth 2/1
Interface Ethernet 2/1 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::200:ff:fe03:c030 [Preferred]
Global unicast address(es):
    31:1:1::3 [Preferred], subnet is 31:1:1::/64
    31:1:1:: [Anycast], subnet is 31:1:1::/64
Joined group address(es):
    ff02::6
    ff02::5
    ff02::1:ff00:3
    ff02::1:ff03:c030
    ff02::2
    ff02::1
Port belongs to VRF: default-vrf
MTU is 1500 bytes
ICMP redirects are disabled
ND DAD is enabled, number of DAD attempts: 3
ND reachable time is 30 seconds
ND advertised reachable time is 0 seconds
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements suppressed
No Inbound Access List Set
No Outbound Access List Set
IPv6 RPF mode: None IPv6 RPF Log: Disabled
OSPF enabled
RxPkts: 0           TxPkts: 0
RxBytes: 0          TxBytes: 0
IPv6 unicast RPF drop: 0
IPv6 unicast RPF suppressed drop: 0
device#
```

Syntax: `show ipv6 interface [interface [port-number | number]]`

The `interface` parameter displays detailed information for a specified interface. For the interface, the user can specify the Ethernet, loopback, tunnel, or VE keywords. If the user specifies an Ethernet interface, then the user must also specify the port number associated with the interface. If the user specifies a loopback, tunnel, or VE interface, the user must also specify the number associated with the interface.

Table 8 defines the `show ipv6 interface` command output display that shows the following information:

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing protocols</td>
<td>A one-letter code that represents a routing protocol that can be enabled on an interface.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface type, and the port number or number of the interface.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the interface. The entry in the Status field will be either</td>
</tr>
</tbody>
</table>
TABLE 8 General IPv6 interface information fields (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“up/up” or “down/down”</td>
<td></td>
</tr>
<tr>
<td>Routing</td>
<td>The routing protocols enabled on the interface.</td>
</tr>
<tr>
<td>Global Unicast Address</td>
<td>The global unicast address of the interface.</td>
</tr>
</tbody>
</table>

Specifying a single source interface for Telnet, SSH, NTP, TFTP, TACACS/TACACS+, or RADIUS packets

When the Extreme device originates a Telnet, SSH, NTP, TFTP, TACACS/TACACS+, or RADIUS packet, the source address of the packet is the lowest-numbered IP address on the interface that sends the packet. You can configure the Extreme device to always use the lowest-numbered IP address on a specific interface as the source addresses for these types of packets. When you configure the Extreme device to use a single source interface for all Telnet, TACACS/TACACS+, or RADIUS packets, the Extreme device uses the same IP address as the source for all packets of the specified type, regardless of the ports that actually sends the packets.

Identifying a single source IP address for Telnet, SSH, NTP, TFTP, TACACS/TACACS+, or RADIUS packets provides the following benefits:

- If your Telnet, SSH, NTP, TFTP, TACACS/TACACS+, or RADIUS server is configured to accept packets only from specific IP addresses, you can use this feature to simplify configuration of the server by configuring the device to always send the packets from the same link or source address.

- If you specify a loopback interface as the single source for Telnet, SSH, NTP, TFTP, TACACS/TACACS+, or RADIUS packets, servers can receive the packets regardless of the states of individual links. Thus, if a link to the server becomes unavailable but the client or server can be reached through another link, the client or server still receives the packets, and the packets still have the source IP address of the loopback interface.

The software contains separate CLI commands for specifying the source interface for Telnet, SSH, NTP, TFTP, TACACS/TACACS+, or RADIUS packets. You can configure a source interface for one or more of these types of packets separately.

Configuring an interface as the source for Syslog packets

You can configure the device to use the lowest-numbered IP or IPv6 address configured on a loopback interface, virtual interface, or Ethernet port as the source for all Syslog packets from the device. The software uses the lowest-numbered IP or IPv6 address configured on the interface as the source IP address for the packets.

For example, to specify the lowest-numbered IP address configured on a virtual interface as the device's source for all Syslog packets, enter commands such as the following.

```
device(config)# int ve 1
device(config-vif-1)# ip address 10.0.0.4/24
device(config-vif-1)# exit
device(config)# ip syslog source-interface ve 1
```

The commands in this example configure virtual interface 1, assign IP address 10.0.0.4/24 to the interface, then designate the interface’s address as the source address for all Syslog packets.

Syntax: [no] ip syslog source-interface ethernet [slotnum/] portnum | loopback num | ve num
The `num` parameter is a loopback interface or virtual interface number. If you specify an Ethernet, the `slotnum[/]portnum` is the port's number including the slot number, if you are configuring a device.

The default is the lowest-numbered IP or IPv6 address configured on the port through which the packet is sent. The address therefore changes, by default, depending on the port.

With this new command, the source ip of syslog is no longer controlled by the `snmp-server trap-source` command.

Configuring forwarding parameters

The following configurable parameters control the forwarding behavior of the Extreme device:

- Time-To-Live (TTL) threshold
- Forwarding of directed broadcasts
- Forwarding of source-routed packets
- Ones-based and zero-based broadcasts

All these parameters are global and thus affect all IP interfaces configured on the Extreme device.

To configure these parameters, use the procedures in the following sections.

Changing the TTL threshold

The TTL threshold prevents routing loops by specifying the maximum number of router hops an IP packet originated by the Extreme device can travel through. Each device capable of forwarding IP that receives the packet decreases the packet's TTL by one. If a device receives a packet with a TTL of 1 and reduces the TTL to zero, the device drops the packet.

The default TTL is 64. You can change the TTL to a value from 1-255.

To modify the TTL threshold to 25, enter the following commands.

```
device(config)# ip ttl 25
```

Syntax: `[no] ip ttl 1-255`

Enabling forwarding of directed broadcasts

A directed broadcast is an IP broadcast to all devices within a single directly-attached network or subnet. A net-directed broadcast goes to all devices on a given network. A subnet-directed broadcast goes to all devices within a given subnet.

NOTE

A less common type, the all-subnets broadcast, goes to all directly-attached subnets. Forwarding for this broadcast type also is supported, but most networks use IP multicasting instead of all-subnet broadcasting.

Forwarding for all types of IP directed broadcasts is disabled by default. You can enable forwarding for all types if needed. You cannot enable forwarding for specific broadcast types.

To enable forwarding of IP directed broadcasts, enter the following command.

```
device(config)# ip directed-broadcast
```

Syntax: `[no] ip directed-broadcast`
The software makes the forwarding decision based on the device’s knowledge of the destination network prefix. Routers cannot determine that a message is unicast or directed broadcast apart from the destination network prefix. The decision to forward or not forward the message is by definition only possible in the last hop router.

To disable the directed broadcasts, enter the following command in the CONFIG mode.

```
device(config)# no ip directed-broadcast
```

To enable directed broadcasts on an individual interface instead of globally for all interfaces, enter commands such as the following.

```
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# ip directed-broadcast
```

Syntax: [no] ip directed-broadcast

Disabling forwarding of IP source-routed packets

A source-routed packet specifies the exact router path for the packet. The packet specifies the path by listing the IP addresses of the router interfaces through which the packet must pass on its way to the destination. The Extreme device supports both types of IP source routing:

- **Strict source routing** - requires the packet to pass through only the listed routers. If the Extreme device receives a strict source-routed packet but cannot reach the next hop interface specified by the packet, the Extreme device discards the packet and sends an ICMP Source-Route-Failure message to the sender.

 NOTE
 The Extreme device allows you to disable sending of the Source-Route-Failure messages. Refer to Disabling ICMP messages on page 108.

- **Loose source routing** - requires that the packet pass through all of the listed routers but also allows the packet to travel through other routers, which are not listed in the packet.

The Extreme device forwards both types of source-routed packets by default. You cannot enable or disable strict or loose source routing separately.

To disable forwarding of IP source-routed packets, enter the following command.

```
device(config)# no ip source-route
```

Syntax: [no] ip source-route

To re-enable forwarding of source-routed packets, enter the following command.

```
device(config)# ip source-route
```

Enabling support for zero-based IP subnet broadcasts

By default, the Extreme device treats IP packets with all ones in the host portion of the address as IP broadcast packets. For example, the Extreme device treats IP packets with 10.157.22.255/24 as the destination IP address as IP broadcast packets and forwards the packets to all IP hosts within the 10.157.22.x subnet (except the host that sent the broadcast packet to the Extreme device).

Most IP hosts are configured to receive IP subnet broadcast packets with all ones in the host portion of the address. However, some older IP hosts instead expect IP subnet broadcast packets that have all zeros instead of all ones in the host portion of the address. To accommodate this type of host, you can enable the Extreme device to treat IP packets with all zeros in the host portion of the destination IP address as broadcast packets.
NOTE
When you enable the Extreme device for zero-based subnet broadcasts, the Extreme device still treats IP packets with all ones the host portion as IP subnet broadcasts too. Thus, the Extreme device can be configured to support all ones only (the default) or all ones and all zeroes.

NOTE
This feature applies only to IP subnet broadcasts, not to local network broadcasts. The local network broadcast address is still expected to be all ones.

To enable the Extreme device for zero-based IP subnet broadcasts in addition to ones-based IP subnet broadcasts, enter the following command.

```
device(config)# ip broadcast-zero
```

Syntax: [no] ip broadcast-zero

Allowing multicast addresses as source IP addresses

By default packets with multicast addresses as source IP address are dropped at the packet processor in the line card. You can now disable the dropping of packets with multicast addresses as source IP address.

Unicast or multicast destination IP address forwarding works as usual, regardless of whether you enable or disable this feature. You can allow multicast addresses as source IP address for all packets or switched traffic packets only. Packets with class D and E addresses as source IPv4 address and packets with prefixes beginning with 0xFF as source IPv6 addresses (for example FF01::11), are also allowed once you enable this feature.

NOTE
Unicast Reverse Path Forwarding is disabled once you allow multicast addresses as source IP addresses.

Perform the following steps to allow multicast addresses as source IP addresses.

1. Enter global configuration mode.
2. To allow multicast addresses as source IP addresses enter the `ip allow-src-multicast` command followed by the options `decimal` or `all`.

 The following example allows multicast addresses as source IP address for all traffic.

   ```
   device(config)# ip allow-src-multicast all
   ```
3. To allow multicast addresses as source IP address for only switched traffic, enter the `ip allow-src-multicast switched-traffic` command followed by the options `decimal` or `all`.

 The following example allows multicast addresses as source IP address for switched traffic on a specific slot.

   ```
   device(config)# ip allow-src-multicast switched-traffic 3
   ```
4. To view if the disable packet drop for multicast IPv4 or IPv6 as source IP is enabled or disabled for switched-traffic only, use the `show ip allow-src-multicast switched-only` command.
5. To view if the disable packet drop for multicast IPv4 or IPv6 as source IP is enabled or disabled for all traffic use the `show ip allow-src-multicast` command.
Configuring the maximum ICMP error message rate

NOTE
The maximum ICMP error message rate configuration only supports IPv4 traffic.

The Extreme device configuration allows 200 ICMP error messages per second per IP interface. You can now configure the maximum ICMP error message rate on all Interface Modules. The maximum configured value is increased to 5000 error messages per second. The maximum ICMP error message rate configuration uses an ICMP error metering mechanism. The process for the ICMP error metering mechanism is as follows:

• There is a meter counter for each interface. There is one total meter counter per Interface Module.
• The interface counter and the total counter will increment every time an icmp error message is sent out.
• The timer will rest all counters to 0 every second.
• Before an error message is sent out, it check the interface meter counter against the user configured icmp error limit (5000 max). The total counter will check against 10000. The error message is dropped if one any counter is larger the checked value.

The total error rate for all IP interfaces on an Interface Module is 10,000 errors per second. The ICMP error metering mechanism is per IP interface; this includes VRF IP interfaces.

Since the ICMP error metering code implementation is similar between the Management Module and Interface Module code, this change will also affect the Management Module ICMP error rate.

To configure the maximum ICMP error rate, enter the following command.

```
device(config)# ip icmp max-err-msg-rate 600
```

Syntax: [no] ip icmp max-err-msg-rate error per second

The error per second variable specifies the maximum error rate in errors per second. The maximum configured value has a range from 0 (minimum) to 5000 (maximum) error message per second. The default value is 400.

Disabling ICMP messages

The Extreme device is enabled to reply to ICMP echo messages and send ICMP Destination Unreachable messages by default.

You can selectively disable the following types of Internet Control Message Protocol (ICMP) messages:

• Echo messages (ping messages) - The Extreme device replies to IP pings from other IP devices.
• Destination Unreachable messages - If the Extreme device receives an IP packet that it cannot deliver to its destination, the Extreme device discards the packet and sends a message back to the device that sent the packet. The message informs the device that the destination cannot be reached by the Extreme device.

Disabling replies to broadcast ping requests

By default, the Extreme device is enabled to respond to broadcast ICMP echo packets, which are ping requests.

To disable response to broadcast ICMP echo packets (ping requests), enter the following command.

```
device(config)# no ip icmp echo broadcast-request
```

Syntax: [no] ip icmp echo broadcast-request

If you need to re-enable response to ping requests, enter the following command.

```
device(config)# ip icmp echo broadcast-request
```
Disabling ICMP destination unreachable messages

By default, when this Extreme device receives an IP packet that the device cannot deliver, the device sends an ICMP Unreachable message back to the host that sent the packet. You can selectively disable a device's response to the following types of ICMP Unreachable messages:

- **Administration** - The packet was dropped by the device due to a filter or ACL configured on the device.
- **Fragmentation-needed** - The packet has the Do not Fragment bit set in the IP Flag field, but the device cannot forward the packet without fragmenting it.
- **Host** - The destination network or subnet of the packet is directly connected to the device, but the host specified in the destination IP address of the packet is not on the network.
- **Network** - The device cannot reach the network specified in the destination IP address of the packet.
- **Port** - The destination host does not have the destination TCP or UDP port specified in the packet. In this case, the host sends the ICMP Port Unreachable message to the device, which in turn sends the message to the host that sent the packet.
- **Protocol** - The TCP or UDP protocol on the destination host is not running. This message is different from the Port Unreachable message, which indicates that the protocol is running on the host but the requested protocol port is unavailable.
- **Source-route-failure** - The device received a source-routed packet but cannot locate the next-hop IP address indicated in the packet's Source-Route option.

You can disable the device from sending these types of ICMP messages on an individual basis.

NOTE
Disabling an ICMP Unreachable message type does not change the device's ability to forward packets. Disabling ICMP Unreachable messages prevents the device from generating or forwarding the Unreachable messages.

To disable all ICMP Unreachable messages, enter the following command.

```
device(config)# no ip icmp unreachable
```

Syntax: `[no] ip icmp unreachable [network | host | protocol | administration | fragmentation-needed | port | source-route-fail]`

- If you enter the command without specifying a message type (as in the example above), all types of ICMP Unreachable messages listed above are disabled. If you want to disable only specific types of ICMP Unreachable messages, you can specify the message type. To disable more than one type of ICMP message, enter the `no ip icmp unreachable` command for each messages type.
- The `network` parameter disables ICMP Network Unreachable messages.
- The `host` parameter disables ICMP Host Unreachable messages.
- The `protocol` parameter disables ICMP Protocol Unreachable messages.
- The `administration` parameter disables ICMP Unreachable (caused by Administration action) messages.
- The `fragmentation-needed` parameter disables ICMP Fragmentation-Needed But Do not-Fragment Bit Set messages.
- The `port` parameter disables ICMP Port Unreachable messages.
- The `source-route-fail` parameter disables ICMP Unreachable (caused by Source-Route-Failure) messages.

To disable ICMP Host Unreachable messages and ICMP Network Unreachable messages but leave the other types of ICMP Unreachable messages enabled, enter the following commands instead of the command shown above.

```
device(config)# no ip icmp unreachable host
device(config)# no ip icmp unreachable network
```
If you have disabled all ICMP Unreachable message types but want to re-enable certain types, you can do so by entering commands such as the following.

device(config)# ip icmp unreachable host
device(config)# ip icmp unreachable network

These commands re-enable ICMP Unreachable Host messages and ICMP Network Unreachable messages.

Disabling ICMP redirect messages

ICMP redirect messages can be disabled or re-enabled. By default, the Extreme device sends an ICMP redirect message to the source of a misdirected packet in addition to forwarding the packet to the appropriate router. You can disable ICMP redirect messages on a global basis or on an individual port basis.

NOTE
An unusually high receipt of multiple Internet Control Message Protocol (ICMP) Redirect packets that are used to change routing table entries in a short period of time may cause high CPU utilization. This can be avoided by configuring the maximum ICMP error message rate using `ip icmp max-err-msg-rate` command, 0 (minimum) to 5000 (maximum) error message per second. The default value is 400. The total error rate for all IP interfaces (SYSTEM) is 10,000 errors per second.

NOTE
The device forwards misdirected traffic to the appropriate router, even if you disable the redirect messages.

To disable ICMP redirect messages globally, enter the following command at the global CONFIG level of the CLI.

NOTE
The `ip icmp redirects` command is applicable to the MLX Series and XMR Series devices only.

```
device(config)# no ip icmp redirects
```

Syntax: `[no] ip icmp redirects`

To disable ICMP redirect messages on a specific interface, enter the following command at the configuration level for the interface.

```
device(config)# int e 3/11
device(config-if-e100-3/11)# no ip redirect
```

Syntax: `[no] ip redirect`

Configuring IP load sharing

The IP route table can contain more than one path to a given destination. When this occurs, the Extreme device selects the path with the lowest cost as the path for forwarding traffic to the destination. If the IP route table contains more than one path to a destination and the paths each have the lowest cost, then the Extreme device uses IP load sharing to select a path to the destination.

IP load sharing is based on the destination address of the traffic. Extreme devices support load sharing based on individual host addresses or on network addresses.

You can enable a device to load balance across up to eight equal-cost paths. The default maximum number of equal-cost load sharing paths is four.

NOTE
IP load sharing is not based on source routing, only on next-hop routing.
NOTE
The term "path" refers to the next-hop router to a destination, not to the entire route to a destination. Thus, when the software compares multiple equal-cost paths, the software is comparing paths that use different next-hop routers, with equal costs, to the same destination. In many contexts, the terms "route" and "path" mean the same thing. Most of the user documentation uses the term "route" throughout. The term "path" is used in this section to refer to an individual next-hop router to a destination, while the term "route" refers collectively to the multiple paths to the destination. Load sharing applies when the IP route table contains multiple, equal-cost paths to a destination.

NOTE
The Extreme device also performs load sharing among the ports in aggregate links.

How multiple equal-cost paths enter the IP route table
IP load sharing applies to equal-cost paths in the IP route table. Routes eligible for load sharing can enter the table from the following sources:

- IP static routes
- Routes learned through RIP, OSPF, and BGP4

Administrative distance
The administrative distance is a unique value associated with each type (source) of IP route. Each path has an administrative distance. It is used when evaluating multiple equal-cost paths to the same destination from different sources, such as RIP, OSPF, and so on, but not used when performing IP load sharing.

The value of the administrative distance is determined by the source of the route. The Extreme device is configured with a unique administrative distance value for each IP route source.

When the software receives paths from different sources to the same destination, the software compares their administrative distances, selects the one with the lowest distance, and puts it in the IP route table. For example, if the Extreme device has a path learned from OSPF and a path learned from RIP for a given destination, only the path with the lower administrative distance enters the IP route table.

Here are the default administrative distances on the Extreme device:

- Directly connected - 0 (this value is not configurable)
- Static IP route - 1 (applies to all static routes, including default routes and default network routes)
- Exterior Border Gateway Protocol (EBGP) - 20
- OSPF - 110
- RIP - 120
- Interior Gateway Protocol (IBGP) - 200
- Local BGP - 200
- Unknown - 255 (the device will not use this route)

Lower administrative distances are preferred over higher distances. For example, if the device receives routes for the same network from OSPF and from RIP, the device will prefer the OSPF route by default.

NOTE
You can change the administrative distances individually. Refer to the configuration chapter for information.
Since the software selects only the path with the lowest administrative distance, and the administrative distance is determined by the path’s source, IP load sharing does not apply to paths from different route sources. IP load sharing applies only when the IP route table contains paths from the same IP route source to the same destination.

Path cost

The cost parameter provides a basis of comparison for selecting among paths to a given destination. Each path in the IP route table has a cost. When the IP route table contains multiple paths to a destination, the Extreme device chooses the path with the lowest cost. When the IP route table contains more than one path with the lowest cost to a destination, the Extreme device uses IP load sharing to select one of the lowest-cost paths.

The source of a path’s cost value depends on the source of the path:

- **IP static route** - The value you assign to the metric parameter when you configure the route. The default metric is 1. Refer to Configuring load balancing and redundancy using multiple static routes to the same destination on page 232.
- **RIP** - The number of next-hop routers to the destination.
- **OSPF** - The Path Cost associated with the path. The paths can come from any combination of inter-area, intra-area, and external Link State Advertisements (LSAs).
- **BGP4** - The path’s Multi-Exit Discriminator (MED) value.

NOTE

If the path is redistributed between two or more of the above sources before entering the IP route table, the cost can increase during the redistribution due to settings in redistribution filters.

Static route, OSPF, and BGP4 load sharing

IP load sharing and load sharing for static routes, OSPF routes, and BGP4 routes are individually configured. Multiple equal-cost paths for a destination can enter the IP route table only if the source of the paths is configured to support multiple equal-cost paths. For example, if BGP4 allows only one path with a given cost for a given destination, the BGP4 route table cannot contain equal-cost paths to the destination. Consequently, the IP route table will not receive multiple equal-cost paths from BGP4.

Table 9 lists the default and configurable maximum numbers of paths for each IP route source that can provide equal-cost paths to the IP route table. The table also lists where to find configuration information for the route source’s load sharing parameters.

The load sharing state for all the route sources is based on the state of IP load sharing. Since IP load sharing is enabled by default on the Extreme device, load sharing for static IP routes, RIP routes, OSPF routes, and BGP4 routes also is enabled by default.

TABLE 9 Default load sharing parameters for route sources

<table>
<thead>
<tr>
<th>Route source</th>
<th>Default maximum number of paths</th>
<th>Maximum number of paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static IP route</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>RIPv4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>OSPF</td>
<td>4</td>
<td>32</td>
</tr>
</tbody>
</table>

NOTE

This value depends on the value for IP load sharing, and is not separately configurable.
TABLE 9 Default load sharing parameters for route sources (continued)

<table>
<thead>
<tr>
<th>Route source</th>
<th>Default maximum number of paths</th>
<th>Maximum number of paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP4</td>
<td>1</td>
<td>32</td>
</tr>
</tbody>
</table>

NOTE
Suppose you have a route that points to an ECMP next hop and the route paths consist of more than one type, then only the first path is programmed in the hardware for forwarding. The number of paths for ECMP is set to 1.

Options for IP load sharing and LAGs

The following options have been added to refine the hash calculations used for IP load sharing and LAGs. These include the following:

- **Speculate UDP or TCP Headers** - This option is applied to ECMP and LAG index hash calculations.
- **Mask Layer-3 and Layer-4 Information** - This option is applied to ECMP and LAG index hash calculations.
- **Mask Layer-2 Information** - This option is applied to ECMP and LAG index hash calculations.
- **Mask MPLS label information** - This option is applied to ECMP and LAG index hash calculations.
- **Diversification** - This option is applied to ECMP and LAG index hash calculations.
- **Hash Rotate** - This option is applied to ECMP hash calculations and to LAG index calculations.
- **Symmetric** - This option is applied to trunk hash calculations.

NOTE
The CES 2000 Series devices do not support the same options as the XMR Series and MLX Series devices. Refer to the CES 2000 Series and CER 2000 Series Link Aggregation chapter for additional information on hash calculations used for IP load sharing and LAGs on the CES 2000 Series devices.

Speculate UDP or TCP packet headers

With this option set, the packet headers following IPv4 headers are used for the ECMP and LAG index hash calculations even if the packet is not a TCP or UDP packet. If the packet is a non-fragmented, no-IP options, TCP or UDP packet, the TCP or UDP ports are used for hash calculations unless the `load-balance mask ip` or `load-balance mask ipv6` commands are used. This behavior is disabled by default and can be enabled using the following command.

```
device(config)# load-balance force-l4-hashing all
```

Syntax: `[no] load-balance force-l4-hashing [all | slot-number | slot-number np-id]`

The `all` option applies the command to all ports within the device.

Specifying a slot number using the `slot-number` variable limits the command to an individual module.

Specifying a slot number and a network processor ID using the `slot-number` and `np-id` variables limits the command to the ports supported by the specified network processor on the specified interface module.

NOTE
Problems can occur with the `Ping` and `Traceroute` functions when this option is enabled.

Masking Layer 3 and Layer 4 information

Masking in networking means that a specific header field is used for hashing. With the Layer 3 and Layer 4 masking option set, the following values can be masked during ECMP and LAG index hash calculations: TCP or UDP source and destination port information, source and destination IP address, IPv4 protocol ID, and IPv6 next header.
When used with the `load-balance force-l4-hashing` command, the `load-balance mask ip` command takes precedence. The masking option can be set using the following commands for IPv4 addresses.

```
device(config)# load-balance mask ip src-l4-port all
```

Syntax:
```
```

Use the `src-l4-port` option when you want to mask the Layer 4 source port.

Use the `dst-l4-port` option when you want to mask the Layer 4 destination port.

Use the `src-ip` option when you want to mask the source IP address. The `src-ip` keyword contains the `pre-symmetriclb` option that masks the source IP address before symmetric load balancing can occur.

Use the `dst-ip` option when you want to mask the destination IP address. The `dst-ip` keyword contains the `pre-symmetriclb` option that masks the destination IP address before symmetric load balancing can occur.

Use the `protocol` option when you want to mask the IPv4 protocol ID.

The `all` option applies the command to all ports within the device.

Specifying a slot number using the `slot-number` variable limits the command to an individual module.

Specifying a slot number and a network processor ID using the `slot-number` and `np-id` variables limits the command to the ports supported by the specified network processor on the specified interface module.

The masking option can be set using the following commands for IPv6 addresses.

```
device(config)# load-balance mask ipv6 src-l4-port all
```

Syntax:
```
```

Except for the `next-hdr` option, the command options described for the `load-balance mask ip` command are valid for the `load-balance mask ipv6`.

Use the `next-hdr` option when you want to mask the IPv6 next header.

Use the `src-ip` option when you want to mask the source IPv6 address. The `src-ip` keyword contains the `pre-symmetriclb` option that masks the source IPv6 address before symmetric load balancing can occur. The symmetric load balancing can be either static or dynamic LAG load balancing.

Use the `dst-ip` option when you want to mask the destination IPv6 address. The `dst-ip` keyword contains the `pre-symmetriclb` option that masks the destination IPv6 address before symmetric load balancing can occur.

The `[no] load-balance mask ip` and `[no] load-balance mask ipv6` commands are disabled by default.

NOTE
The `Masking Layer 3 and Layer 4 information` feature supports both static and dynamic LAG load balancing.

Masking Layer 2 information

With the `load-balance mask ethernet` command set, the following Layer 2 values can be masked during ECMP and LAG index hash calculations: source and destination MAC address, VLAN, Ethertype, and Inner VLAN. To mask Layer 2 information, use the `load-balance mask ethernet` command, as shown in the following.

```
device(config)# load-balance mask ethernet sa-mac all
```

Syntax:
```
[no] load-balance mask ethernet [ sa-mac | da-mac | vlan | etype | inner-vlan ] [ all | slot-number | slot-number np-id ]
```
Use the `sa-mac` option when you want to mask the source MAC address.

Use the `da-mac` option when you want to mask the destination MAC address.

Use the `vlan` option when you want to mask the VLAN ID.

Use the `etype` option when you want to mask the Ethertype.

Use the `inner-vlan` option when you want to mask the inner VLAN ID.

The `all` option applies the command to all ports within the device.

Specifying a slot number using the `slot-number` variable limits the command to an individual module.

Specifying a slot number and a network processor ID using the `slot-number` and `np-id` variables limits the command to the ports supported by the specified network processor on the specified interface module.

Configuring mask option for load balancing

In an MPLS network, when the L2VPN is configured using a LDP tunnel, which in turn is using a RSVP bypass tunnel, then the packets will include four labels. The four labels are:

- RSVP bypass label - Label 0 which is the outermost MPLS label
- RSVP protected label - Label 1
- LDP label - Label 2
- VC label - Label 3 which is the innermost MPLS label

In the Figure 11, all the packets routed between the routers, R2 and R5 include four MPLS labels which are masked for calculating the ECMP and LAG index hash value.

FIGURE 11 L2VPN packets over a LDP tunnel

To mask the MPLS labels, enter the following command.

```
device(config)# load-balance mask mpls label0 all
```
Syntax: [no] load-balance mask mpls [label0 | label1 | label2 | label3] [all | slot-number | slot-number np-id]

Use the label0 option to mask MPLS Label 0, which is the innermost MPLS label in a packet.

Use the label1 option to mask MPLS Label 1, which is the next innermost MPLS label in a packet from MPLS Label 2.

Use the label2 option to mask MPLS Label 2, which is the next innermost MPLS label in a packet with four labels or the outermost MPLS label in a packet with three labels.

Use the label3 option to mask MPLS Label 3, which is the outermost MPLS label in a packet with four labels.

The all option applies the command to all ports within the router.

Specifying a slot number using the slot-number variable limits the command to an individual module.

Specifying a slot number and a network processor ID using the slot-number and np-id variables limits the command to the ports supported by the specified network processor on the specified interface module.

Displaying MPLS masking information

To display the masking information, enter the following command.

```plaintext
device# show load-balance mask mpls
Mask MPLS options -
   Mask MPLS Label0 is enabled on -
   No Slots
   Mask MPLS Label1 is enabled on -
   No Slots
   Mask MPLS Label2 is enabled on -
   No Slots
   Mask MPLS Label3 is enabled on -
   All Slots
```

Table 10 describes the output parameters of the show load-balance mask mpls command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>Shows the slot of the interface on which the MPLS masking is enabled.</td>
</tr>
<tr>
<td>Mask MPLS Label</td>
<td>Shows whether or not the following labels are masked.</td>
</tr>
<tr>
<td></td>
<td>• Label0 - Shows if the Label 0 is masked on the interface.</td>
</tr>
<tr>
<td></td>
<td>• Label1 - Shows if the Label 1 is masked on the interface.</td>
</tr>
<tr>
<td></td>
<td>• Label2 - Shows if the Label 2 is masked on the interface.</td>
</tr>
<tr>
<td></td>
<td>• Label3 - Shows if the Label 3 is masked on the interface.</td>
</tr>
</tbody>
</table>

To display current running configuration, enter the following command.

```plaintext
device# show running-config
!
load-balance mask mpls label3 all
!
```
Hash diversification for LAGs and IP load balancing

In a multi-stage network a traffic flow will normally use the same LAG port or same path (for IP load balancing) at each stage. The Hash Diversification feature works within an earlier stage of the hash calculation than the hash rotate feature. Using the `load-balance hash-diversify` command, you can provide a unique hash diversify value to a device, or a sub-set of ports on a device. This unique value is used in calculation of the ECMP and LAG index hash. Consequently, instead of a traffic flow always following the same port group or path, it will be distributed over different LAG or ECMP members. To apply hash diversification, use the following command.

```
device(config)# load-balance hash-diversify random all
```

Syntax: `[no] load-balance hash-diversify [number | random | slot] [all | slot-number | slot-number np-id]`

You can set the unique hash diversify value using one of the following options:

- **number** option allows you to specify a value from 0 - 255.
- **random** option directs the CPU to generate a random number for each packet processor and program it as the hash diversification value.
- **slot** option specifies the slot ID as the hash diversification number.

The default value for the diversification number is 0 and the **no** version of the command resets the value to 0 regardless of any value previously set. Also, the most recent command added overrides any previous instances of the command. For example, if the `random` option is entered first and is then followed by the `slot` option, the value of the slot ID for the specified slot will be used.

- The **all** option applies the command to all ports within the device.
- Specifying a slot number using the `slot-number` variable limits the command to an individual module.
- Specifying a slot number and a network processor ID using the `slot-number` and `np-id` variables limits the command to the ports supported by the specified network processor on the specified interface module.

This option can also be used in a multi-stage network to avoid the same traffic flow to always use one path of an ECMP or the same LAG member index at each stage. Using the hash rotate function the same set of traffic flows forwarded out of one LAG member or ECMP path to the next router can be distributed across different paths of the LAG member or ECMP path to the next router.

Hash rotate for LAGs and IP load balancing

The hash rotate function provides another option (in addition to hash diversification) for diversifying traffic flow in a multi-stage network. Using this feature, the ECMP hash index can be rotated by a specified number of bits after it has been calculated. This allows path selection within IP load balancing to be more diverse.

To configure hash rotate to LAG index calculations, enter a command such as the following.

```
device(config)# load-balance hash-rotate 3 all
```

Syntax: `[no] load-balance hash-rotate rotate-number [all | slot-number | slot-number np-id]`

- The `rotate-number` value specifies number of bits between 0 and 7 that you want to rotate the ECMP hash index value.
- The **all** option applies the command to all ports within the device.
- Specifying a slot number using the `slot-number` variable limits the command to an individual module.
- Specifying a slot number and a network processor ID using the `slot-number` and `np-id` variables limits the command to the ports supported by the specified network processor on the specified interface module.

NOTE

The hash diversification and hash rotate features can be applied separately or together. Depending on your network configuration, either or both of these features may need to be configured.
Symmetric load balancing for LAGs

For many monitoring and security applications, bidirectional conversations flowing through the system must be carried on the same port of a LAG. For Network Telemetry applications, network traffic is tapped and sent to the Extreme devices, which can load balance selected traffic to the application servers downstream. Each server analyzes the bidirectional conversations. Therefore, the Extreme devices must enable symmetric load balancing to accomplish bidirectional conversations. In addition, firewalls between the Extreme devices can be configured to allow the bidirectional conversations per link of the LAG. These applications also require symmetric load balancing on the LAGs between the Extreme devices. Figure 12 depicts the symmetric load balancing for LAGs feature.

NOTE
The symmetric load balancing option is applicable only for MLX Series and XMR Series devices. The CER 2000 Series and CES 2000 Series devices load balance all traffic on the LAGs symmetrically. Therefore, the CER 2000 Series and CES 2000 Series devices do not support the symmetric load balancing commands.

With the symmetric load balancing option set, the trunk hash calculation is determined using all or a combination of the following parameters: MAC source and destination addresses, IPv4 source and destination addresses, IPv6 source and destination addresses, TCP or UDP source and destination port information, inner MAC source and destination addresses, inner IPv4 source and destination addresses, and inner IPv6 source and destination addresses.

To enable the symmetric load balancing option on an interface, enter commands such as the following.

```
device(config)# load-balance symmetric ethernet 2
device(config)# load-balance symmetric ip all
device(config)# load-balance symmetric ipv6 2
device(config)# load-balance symmetric l4_ip 2
device(config)# load-balance symmetric l4_ipv6 2
device(config)# load-balance symmetric inner_ethernet 2
device(config)# load-balance symmetric inner_ip 2
device(config)# load-balance symmetric inner_ipv6 2
```

Syntax: `[no] load-balance symmetric ethernet | ip | ipv6 | l4_ip | l4_ipv6 | inner_ethernet | inner_ip | inner_ipv6 | packet [all | slot-number | slot-number np-id]`

The `ethernet` option specifies the Ethernet header fields.

The `ip` option specifies the IP header fields.

The `ipv6` option specifies the IPv6 header fields.

The `l4_ip` option specifies the Layer 4 IP fields.

The `l4_ipv6` option specifies the Layer 4 IPv6 fields.

The `inner_ethernet` option specifies the inner Ethernet fields.

The `inner_ip` option specifies the inner IP fields.

The `inner_ipv6` option specifies the inner IPv6 fields.
The `inner_ipv6` option specifies the inner IPv6 fields.

The `packet` option specifies all the packet fields.

The `all` option applies the command to all ports within the router.

Specifying a slot number using the `slot-number` variable limits the command to an individual module.

Specifying a slot number and a network processor ID using the `slot-number` and `np-id` variables limits the command to the ports supported by the specified network processor on the specified interface module.

The `no` option is used to turn off the previously enabled symmetric load balancing option.

Displaying symmetric load balancing information

To display the symmetric load balancing information for the interface, enter the following command:

```
device# show load-balance symmetric-options
```

Symmetric Ethernet options -
 Symmetric Ethernet is enabled on -
 Slot 2
 Slot 3
Symmetric IP options -
 Symmetric IP is enabled on -
 All Slots
Symmetric IPv6 options -
 Symmetric IPv6 is enabled on -
 Slot 1
 Slot 2
Symmetric IP Layer 4 IP options -
 Symmetric Layer 4 IP is enabled on -
 Slot 2
Symmetric IPv6 Layer 4 IPv6 options -
 Symmetric Layer 4 IPv6 is enabled on -
 Slot 2
Symmetric INNER Ethernet options -
 Symmetric INNER Ethernet is enabled on -
 Slot 2
Symmetric INNER IP options -
 Symmetric INNER IP is enabled on -
 Slot 2
Symmetric INNER IPv6 options -
 Symmetric INNER IPv6 is enabled on -
 Slot 2

Syntax: `show load-balance symmetric-options ethernet | ip | l4_ip | l4_ipv6 | inner_ethernet | inner_ip | inner_ipv6 | packet`

Table 11 describes the output parameters of the `show load-balance symmetric-options` command.

TABLE 11. Output parameters of the show load-balance symmetric-options command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>Shows the slot number of the interface on which the symmetric load balancing option is enabled.</td>
</tr>
<tr>
<td>Symmetric options</td>
<td>Shows whether or not the symmetric option is enabled on the following interfaces:</td>
</tr>
<tr>
<td></td>
<td>• Symmetric Ethernet options - Shows if the symmetric option is enabled on the Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>• Symmetric IP options - Shows if the symmetric option is enabled on the IP interface.</td>
</tr>
<tr>
<td></td>
<td>• Symmetric IPv6 options - Shows if the symmetric option is enabled on the IPv6 interface.</td>
</tr>
<tr>
<td></td>
<td>• Symmetric Layer 4 IP options - Shows if the symmetric option is enabled on the Layer 4 IP interface.</td>
</tr>
</tbody>
</table>
TABLE 11 Output parameters of the show load-balance symmetric-options command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Symmetric Layer 4 IPv6 options</td>
<td>Shows if the symmetric option is enabled on the Layer 4 IPv6 interface.</td>
</tr>
<tr>
<td>• Symmetric INNER Ethernet options</td>
<td>Shows if the symmetric option is enabled on the inner Ethernet interface.</td>
</tr>
<tr>
<td>• Symmetric INNER IP options</td>
<td>Shows if the symmetric option is enabled on the inner IP interface.</td>
</tr>
<tr>
<td>• Symmetric INNER IPv6 options</td>
<td>Shows if the symmetric option is enabled on the inner IPv6 interface.</td>
</tr>
<tr>
<td>• Symmetric packet options</td>
<td>Shows if the symmetric option is enabled on all the interfaces.</td>
</tr>
</tbody>
</table>

How IP load sharing works

On the Extreme device, IP load sharing is done by the hardware. If there is more than one path to a given destination, a hash is calculated based on the source MAC address, destination MAC address, source IP address, destination IP address, VLAN-ID (if applicable), IPv4 protocol number, IPv6 next header and TCP/UDP source port and destination port if the packet is also a TCP/UDP packet. This hash is used to select one of the paths.

Changing the maximum number of load sharing paths

By default, IP load sharing allows IP traffic to be balanced across up to four equal path. You can change the maximum number of paths that the Extreme device supports to a value between 2 and 32.

NOTE
The maximum number of paths supported by the BR-MLX-10Gx24-DM module is 16.

For optimal results, set the maximum number of paths to a value equal to or greater than the maximum number of equal-cost paths that your network typically contains. For example, if the Extreme device has six next-hop routers, set the maximum paths value to six.

NOTE
If the setting for the maximum number of paths is lower than the actual number of equal-cost paths, the software does not use all the paths for load sharing.

To change the maximum number of load sharing paths, enter the following command:

device(config)# ip load-sharing 32

Syntax: [no] ip load-sharing number

The number parameter specifies the number of ECMP load sharing paths. Enter a value between 2 and 32 for number to set the maximum number of paths. The default value is 4.

NOTE
A new maximum-paths use-load-sharing command was introduced under the BGP configuration that allows support for BGP routes in IP load sharing but does not enable BGP multipath load sharing.
Response to path state changes

If one of the load-balanced paths becomes unavailable, the IP route table in hardware is modified to stop using the unavailable path. The traffic is load balanced between the available paths using the same hashing mechanism described above. (Refer to How IP load sharing works on page 120.)

Configuring IRDP

The Extreme device uses ICMP Router Discovery Protocol (IRDP) to advertise the IP addresses of its device interfaces to directly attached hosts. IRDP is disabled by default. You can enable it globally or on individual ports.

Consider the following when you enable or disable IRDP globally:

- If you enable IRDP globally, all ports use the default values for the IRDP parameters.
- If you leave IRDP disabled globally but enable it on individual ports, you also can configure the IRDP parameters on an individual port basis.

NOTE

You can configure IRDP parameters only on an individual port basis. To do so, IRDP must be disabled globally and enabled only on individual ports. You cannot configure IRDP parameters if the feature is globally enabled.

When IRDP is enabled, the Extreme device periodically sends Router Advertisement messages out the IP interfaces on which the feature is enabled. The messages advertise the Extreme device's IP addresses to directly attached hosts who listen for the messages. In addition, hosts can be configured to query the Extreme device for the information by sending Router Solicitation messages.

Some types of hosts use the Router Solicitation messages to discover their default gateway. When IRDP is enabled, the Extreme device responds to the Router Solicitation messages. Some clients interpret this response to mean that the Extreme device is the default gateway. If another router is actually the default gateway for these clients, leave IRDP disabled on the Extreme device.

IRDP uses the following parameters. If you enable IRDP on individual ports rather than globally, you can configure these parameters on an individual port basis. The IRDP parameters are as follows:

- **Packet type** - The Extreme device can send Router Advertisement messages as IP broadcasts or as IP multicasts addressed to IP multicast group 224.0.0.1. The packet type is IP broadcast.

- **Maximum message interval and minimum message interval** - When IRDP is enabled, the Extreme device sends the Router Advertisement messages every 450 - 600 seconds by default. The time within this interval that the Extreme device selects is random for each message and is not affected by traffic loads or other network factors. The random interval minimizes the probability that a host will receive Router Advertisement messages from other routers at the same time. The interval on each IRDP-enabled Extreme device interface is independent of the interval on other IRDP-enabled interfaces. The default maximum message interval is 600 seconds. The default minimum message interval is 450 seconds.

- **Hold time** - Each Router Advertisement message contains a hold time value. This value specifies the maximum amount of time the host should consider an advertisement to be valid until a newer advertisement arrives. When a new advertisement arrives, the hold time is reset. The hold time is always longer than the maximum advertisement interval. Therefore, if the hold time for an advertisement expires, the host can reasonably conclude that the router interface that sent the advertisement is no longer available. The default hold time is three times the maximum message interval.

- **Preference** - If a host receives multiple Router Advertisement messages from different routers, the host selects the router that sent the message with the highest preference as the default gateway. The preference can be a number from 4294967296 to 4294967295. The default is 0.
Enabling IRDP globally

To globally enable IRDP, enter the following command.

 device(config)# ip irdp

This command enables IRDP on the IP interfaces on all ports. Each port uses the default values for the IRDP parameters. The parameters are not configurable when IRDP is globally enabled.

Enabling IRDP on an individual port

To enable IRDP on an individual interface and change IRDP parameters, enter commands such as the following.

 device(config)# interface ethernet 1/3
 device(config-if-e10000-1/3)# ip irdp maxadvertinterval 400

This example shows how to enable IRDP on a specific port and change the maximum advertisement interval for Router Advertisement messages to 400 seconds.

 NOTE
 To enable IRDP on individual ports, you must leave the feature globally disabled.

Syntax:

 [no] ip irdp [broadcast | multicast] [holdtime seconds] [maxadvertinterval seconds] [minadvertinterval seconds] [preference number]

The broadcast and multicast parameter specifies the packet type the Extreme device uses to send Router Advertisement.

- broadcast - The Extreme device sends Router Advertisement as IP broadcasts. This is the default.
- multicast - The Extreme device sends Router Advertisement as multicast packets addressed to IP multicast group 224.0.0.1.

The holdtime seconds parameter specifies how long a host that receives a Router Advertisement from the Extreme device should consider the advertisement to be valid. When a host receives a new Router Advertisement message from the Extreme device, the host resets the hold time for the Extreme device to the hold time specified in the new advertisement. If the hold time of an advertisement expires, the host discards the advertisement, concluding that the router interface that sent the advertisement is no longer available. The value must be greater than the value of the maxadvertinterval parameter and cannot be greater than 9000. The default is three times the value of the maxadvertinterval parameter.

The maxadvertinterval parameter specifies the maximum amount of time the Extreme device waits between sending Router Advertisements. You can specify a value from 1 to the current value of the holdtime parameter. The default is 600 seconds.

The minadvertinterval parameter specifies the minimum amount of time the Extreme device can wait between sending Router Advertisements. The default is three-fourths (0.75) the value of the maxadvertinterval parameter. If you change the maxadvertinterval parameter, the software automatically adjusts the minadvertinterval parameter to be three-fourths the new value of the maxadvertinterval parameter. If you want to override the automatically configured value, you can specify an interval from 1 to the current value of the maxadvertinterval parameter.

The preference number parameter specifies the IRDP preference level of the Extreme device. If a host receives Router Advertisements from multiple routers, the host selects the router interface that sent the message with the highest interval as the host’s default gateway. The valid range is 4294967296 to 4294967295. The default is 0.

Configuring UDP broadcast and IP helper parameters

Some applications rely on client requests sent as limited IP broadcasts addressed to the UDP’s application port. If a server for the application receives such a broadcast, the server can reply to the client. Routers do not forward subnet directed broadcasts, so the client and server must be on the same network for the broadcast to reach the server. If the client and server are on different networks (on opposite sides of a router), the client’s request cannot reach the server.
To configure the Extreme device to forward client requests to UDP application servers:

- Enable forwarding support for the UDP application port, if forwarding support is not already enabled.
- Configure a helper address on the interface connected to the clients. Specify the helper address to be the IP address of the application server or the subnet directed broadcast address for the IP subnet the server is in. A helper address is associated with a specific interface and applies only to client requests received on that interface. The Extreme device forwards client requests for any of the application ports the Extreme device is enabled to forward to the helper address.

Forwarding support for the following application ports is enabled by default:

- bootps (port 67)
- dns (port 53)
- tftp (port 69)
- time (port 37)
- netbios-ns (port 137)
- netbios-dgm (port 138)
- tacacs (port 65)

NOTE
The application names are the names for these applications that the Extreme device recognizes, and might not match the names for these applications on some third-party devices. The numbers listed in parentheses are the UDP port numbers for the applications. The numbers come from RFC 1340.

NOTE
As shown above, forwarding support for BootP or DHCP is enabled by default. If you are configuring the Extreme device to forward BootP or DHCP requests, refer to Configuring BootP or DHCP forwarding parameters on page 125.

You can enable forwarding for other applications by specifying the application port number.

You also can disable forwarding for an application.

NOTE
If you disable forwarding for a UDP application, forwarding of client requests received as broadcasts to helper addresses is disabled. Disabling forwarding of an application does not disable other support for the application. For example, if you disable forwarding of Telnet requests to helper addresses, other Telnet support on the Extreme device is not also disabled.

Enabling forwarding for a UDP application

If you want the Extreme device to forward client requests for UDP applications that the Extreme device does not forward by default, you can enable forwarding support for the port. To enable forwarding support for a UDP application, use either of the following methods. You also can disable forwarding for an application using these methods.

NOTE
You also must configure a helper address on the interface that is connected to the clients for the application. The Extreme device cannot forward the requests unless you configure the helper address. Refer to Configuring an IP helper address on page 125.

To enable the forwarding of specific UDP application broadcasts, enter the following command.

```
device(config)# ip forward-protocol udp bootpc
```

Syntax: `[no] ip forward-protocol udp udp-port-name | udp-port-num`
The `udp-port-name` parameter can have one of the following values. For reference, the corresponding port numbers from RFC 1340 are shown in parentheses. If you specify an application name, enter the name only, not the parentheses or the port number shown here:

- `bootpc` (port 68)
- `bootps` (port 67)
- `discard` (port 9)
- `dns` (port 53)
- `echo` (port 7)
- `mobile-ip` (port 434)
- `netbios-dgm` (port 138)
- `netbios-ns` (port 137)
- `ntp` (port 123)
- `tacacs` (port 65)
- `talk` (port 517)
- `time` (port 37)
- `tftp` (port 69)

In addition, you can specify any UDP application by using the application’s UDP port number.

The `udp-port-num` parameter specifies the UDP application port number. If the application you want to enable is not listed above, enter the application port number. You also can list the port number for any of the applications listed above.

To disable forwarding for an application, enter a command such as the following.

```
device(config)# no ip forward-protocol udp well known application port number
```

This command disables forwarding of specific UDP application requests to the helper addresses configured on Extreme device interfaces.

Configuring a IP helper address

To forward a client’s broadcast request for a UDP application when the client and server are on different networks, you must configure a helper address on the interface connected to the client. Specify the server’s IP address or the subnet directed broadcast address of the IP subnet the server is in as the helper address.

You can configure up to 16 helper addresses on each interface. You can configure a helper address on an Ethernet port or a virtual interface.

To configure a helper address on interface 2 on chassis module 1, enter the following commands.

```
device(config)# interface e 1/2
device(config-if-e1000-1/2)# ip helper-address 10.95.7.6
```

The commands in this example change the CLI to the configuration level for port 1/2, then add a helper address for server 10.95.7.6 to the port. If the port receives a client request for any of the applications that the Extreme device is enabled to forward, the Extreme device forwards the client’s request to the server.

Syntax: `[no] ip helper-address ip-addr`

The `ip-addr` command specifies the server’s IP address or the subnet directed broadcast address of the IP subnet the server is in.
Configuring BootP or DHCP forwarding parameters

A host on an IP network can use BootP or DHCP to obtain its IP address from a BootP or DHCP server. To obtain the address, the client sends a BootP or DHCP request. The request is a subnet directed broadcast and is addressed to UDP port 67. A limited IP broadcast is addressed to IP address 255.255.255.255 and is not forwarded by the Extreme device or other IP routers.

When the BootP or DHCP client and server are on the same network, the server receives the broadcast request and replies to the client. However, when the client and server are on different networks, the server does not receive the client's request, because the Extreme device does not forward the request.

You can configure the Extreme device to forward BootP or DHCP requests. To do so, configure a helper address on the interface that receives the client requests, and specify the BootP or DHCP server’s IP address as the address you are helping the BootP or DHCP requests to reach. Instead of the server's IP address, you can specify the subnet directed broadcast address of the IP subnet the server is in.

NOTE
The IP subnet configured on the port which is directly connected to the device sending a BootP or DHCP request, does not have to match the subnet of the IP address given by the DHCP server.

BootP or DHCP forwarding parameters
The following parameters control the Extreme device's forwarding of BootP or DHCP requests:

- **Helper address** - The BootP or DHCP server’s IP address. You must configure the helper address on the interface that receives the BootP or DHCP requests from the client. The Extreme device cannot forward a request to the server unless you configure a helper address for the server.

- **Gateway address** - The Extreme device places the IP address of the interface that received the BootP or DHCP request in the request packet's Gateway Address field (sometimes called the Router ID field). When the server responds to the request, the server sends the response as a unicast packet to the IP address in the Gateway Address field. (If the client and server are directly attached, the Gateway ID field is empty and the server replies to the client using a unicast or broadcast packet, depending on the server.) By default, the Extreme device uses the lowest-numbered IP address on the interface that receives the request as the Gateway address. You can override the default by specifying the IP address you want the Extreme device to use.

- **Hop Count** - Each router that forwards a BootP or DHCP packet increments the hop count by 1. Routers also discard a forwarded BootP or DHCP request instead of forwarding the request if the hop count is greater than the maximum number of BootP or DHCP hops allowed by the router. By default, the Extreme device forwards a BootP or DHCP request if its hop count is four or less, but discards the request if the hop count is greater than four. You can change the maximum number of hops the Extreme device will allow to a value from 1 - 15.

 NOTE
The BootP or DHCP hop count is not the TTL parameter.

Configuring an IP helper address
The procedure for configuring a helper address for BootP or DHCP requests is the same as the procedure for configuring a helper address for other types of UDP broadcasts. Refer to Configuring an IP helper address on page 124.

Changing the IP address used for stamping BootP or DHCP requests
When the Extreme device forwards a BootP or DHCP request, the Extreme device "stamps" the Gateway Address field. The default value the Extreme device uses to stamp the packet is the lowest-numbered IP address configured on the interface that received the request.
The BootP or DHCP stamp address is an interface parameter. Change the parameter on the interface that is connected to the BootP or DHCP client.

To change the IP address used for stamping BootP or DHCP requests received on interface 1/1, enter commands such as the following:

```
device(config)# int e 1/1
device(config-if-e1000-1/1)# ip bootp-gateway 10.157.22.26
```

These commands change the CLI to the configuration level for port 1/1, then change the BootP or DHCP stamp address for requests received on port 1/1 to 10.157.22.26. The Extreme device will place this IP address in the Gateway Address field of BootP or DHCP requests that the Extreme device receives on port 1/1 and forwards to the BootP or DHCP server.

Syntax: `[no] ip bootp-gateway ip-addr`

If the `ip bootp-source-address` command is configured on the interface where the BootP or DHCP request is received, then the configured address will be used as the source IP address for the forwarded packets.

```
device(config-if-e1000-1/1)# ip bootp-source-address 10.157.22.26
```

Syntax: `[no] ip bootp-source-address ip-addr`

Changing the maximum number of hops to a BootP relay server

Each BootP or DHCP request includes a field Hop Count field. The Hop Count field indicates how many routers the request has passed through. When the Extreme device receives a BootP or DHCP request, the Extreme device looks at the value in the Hop Count field:

- If the hop count value is equal to or less than the maximum hop count the Extreme device allows, the Extreme device increments the hop count by one and forwards the request.
- If the hop count is greater than the maximum hop count the Extreme device allows, the Extreme device discards the request.

NOTE
The BootP or DHCP hop count is not the TTL parameter.

To modify the maximum number of BootP or DHCP hops, enter the following command.

```
device(config)# bootp-relay-max-hops 10
```

This command allows the Extreme device to forward BootP or DHCP requests that have passed through up to ten previous hops before reaching the Extreme device.

Syntax: `[no] bootp-relay-max-hops 1-15`

Default: 4

Filtering Martian addresses

Martian addresses are obviously invalid host or network addresses. They commonly are sent by improperly configured systems on the network. Martian address filtering allows the system to automatically filter out those invalid addresses. When Martian address filtering is enabled, the BGP protocol applies the Martian address filters to all in-bound routes as received from all neighbors. Unlike BGP protocol, IGP protocols will rely on the RTM (routing table manager) to do the route filtering.

If no match is found, the route is accepted. This will be the case for almost all routes. If a match is found, the route is discarded (default action - deny), unless the action is set to permit. Martian address filtering is in addition to normal BGP in-bound route policies.

To enable Martian address filtering, enter the following command.

```
device(config)# ip martian filtering-on
```
Syntax: [no] ip martian \(vrf\) name \(filtering-on\)

The \(vrf\) name option applies martian filtering to a specified VRF.

NOTE

Martian address filtering is disabled by default.

When Martian address filtering is first enabled, the device will automatically load the following default Martian addresses:

- * 0.0.0.0/8
- * 10.0.0.0/8
- * 127.0.0.0/8
- * 172.16.0.0/12
- * 192.168.0.0/16
- * 224.0.0.0/4
- * 240.0.0.0/4

Adding, deleting or modifying Martian addresses

As described previously, there are a set number of Martian addresses that are loaded by default when Martian addressing is enabled. You can add, subtract or modify addresses that are filtered by martian addressing. Although there is no limit of the number of martian address can be configured, it's expected the size of martian address list should be small, generally less than 100. If the user adds a new martian address after routes are already learnt, they will be taken out of the routing table. Likewise if the user removes a martian address after routes are deleted from the routing table, they should be put back into the routing table.

To add an address to the Martian filtering list, use a command such as the following.

```
device(config)# ip martian 192.168.0.0/16
```

Syntax: [no] ip martian \(vrf\) name \(destination-prefix/prefix-length\) \(permit\)

The \(destination-prefix/prefix-length\) variable specifies the address and the prefix range to apply the martian filtering to. The matching rule is for prefix range match. It includes exact match, or with a longer prefix length match. For example, if the Martian address rule is 192.168.0.0/16, then routes 192.168.0.0/16, and 192.168.1.0/24 are matches. However route 192.0.0.0/8 is not a match.

The \(vrf\) name option applies the modification to the martian filtering list to a specified VRF.

The **no command** removes an address from the martian filtering list.

The **[permit]** option changes the default action of a martian address filter to permit. In this case, a route matches the "permit" martian address is accepted by the routing table manager. This option is only used if a user wants to allow a prefix “hole” in an otherwise denied martian address.

The default Martian addresses are described in: Filtering Martian addresses on page 126

Examples

To remove a user defined Martian address or a system default Martian address, use the "no" form of the command.

```
device(config)# no ip martian 0.0.0.0/8
```
The following example configuration, creates a "hole" for 192.168.1.0/24 in the martian address 192.168.0.0/16.

```
device(config)# ip martian 192.168.1.0/24 permit
device(config)# ip martian 192.168.0.0/16
```

To display the currently configured Martian addresses refer to Displaying martian addressing information on page 143.

Displaying IP information

You can display the following IP configuration information statistics:

- **Global IP parameter settings** - refer to Displaying global IP configuration information on page 128.
- **IP interfaces** - refer to Displaying IP interface information on page 129.
- **ARP entries** - refer to Displaying ARP entries on page 34.
- **Static ARP entries** - refer to Displaying ARP entries on page 34.
- **IP forwarding cache** - refer to Displaying the forwarding cache on page 134.
- **IP route table** - refer to Displaying the IP route table on page 135.
- **IP traffic statistics** - refer to Displaying IP traffic statistics on page 140.

The sections below describe how to display this information.

In addition to the information described below, you can display the following IP information:

- RIP information
- OSPF information
- BGP4 information
- PIM information

Displaying global IP configuration information

To display IP configuration information, enter the following command at any CLI level.

```
device> show ip
Global Settings
  IP CAM Mode: dynamic IPv6 CAM Mode: static
ttl: 64, arp-age: 10, bootp-relay-max-hops: 4, icmp-error-rate: 400
  IP Router-Id: 10.5.5.5
  enabled: UDP-Broadcast-Forwarding ICMP-Redirect Source-Route Load-Sharing
  RARP BGP4 OSPF
  disabled: Directed-Broadcast-Forwarding drop-arp-pending-packets IRDP Proxy
  -ARP RPF-Check RPF-Exclude-Default RIP IS-IS VRRP VRRP-Extended VSRP
Configured Static Routes: 31
Configured Static Mroutes: 30
```

Syntax: show ip

NOTE

This command has additional options, which are explained in other sections in this guide, including the sections below this one.

This display shows the following information.

TABLE 12 CLI display of global IP configuration information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global settings</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 12 CLI display of global IP configuration information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttl</td>
<td>The Time-To-Live (TTL) for IP packets. The TTL specifies the maximum number of router hops a packet can travel before reaching the Extreme device. If the packet's TTL value is higher than the value specified in this field, the device drops the packet. To change the maximum TTL, refer to Changing the TTL threshold on page 105.</td>
</tr>
<tr>
<td>arp-age</td>
<td>The ARP aging period. This parameter specifies how many minutes an inactive ARP entry remains in the ARP cache before the device ages out the entry. To change the ARP aging period, refer to Changing the ARP aging period on page 31.</td>
</tr>
<tr>
<td>bootp-relay-max-hops</td>
<td>The maximum number of hops away a BootP server can be located from the device and still be used by the device's clients for network booting. To change this value, refer to Changing the maximum number of hops to a BootP relay server on page 126.</td>
</tr>
<tr>
<td>router-id</td>
<td>The 32-bit number that uniquely identifies the device. By default, the router ID is the numerically lowest IP interface configured on the device. To change the router ID, refer to Changing the router ID on page 100.</td>
</tr>
<tr>
<td>enabled</td>
<td>The IP-related protocols that are enabled on the device.</td>
</tr>
<tr>
<td>disabled</td>
<td>The IP-related protocols that are disabled on the device.</td>
</tr>
</tbody>
</table>

Displaying IP interface information

To display IP interface information, enter the following command at any CLI level.

```
Interface       IP-Address      OK?  Method Status     Protocol VRF
eth 3/10        10.25.25.3      YES  NVRAM  down       down     default-vrf
eth 3/19        10.11.11.3      YES  NVRAM  up         up       default-vrf
eth 3/20        10.33.32.1      YES  NVRAM  up         up       default-vrf
mgmt 1          10.25.106.12    YES  NVRAM  up         up       default-vrf
loopback 1      10.5.5.5        YES  NVRAM  up         up       default-vrf
```

Syntax: show ip interface [ethernet slot/port] | [loopback num] | [ve num]

This display shows the following information.

TABLE 13 CLI display of interface IP configuration information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The type and the slot and port number of the interface.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>The IP address of the interface. NOTE If an "s" is listed following the address, this is a secondary address. When the address was configured, the interface already had an IP address in the same subnet, so the software required the "secondary" option before the software could add the interface.</td>
</tr>
<tr>
<td>OK?</td>
<td>Whether the IP address has been configured on the interface.</td>
</tr>
</tbody>
</table>
TABLE 13 CLI display of interface IP configuration information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Whether the IP address has been saved in NVRAM. If you have set the IP address for the interface in the CLI, but have not saved the configuration, the entry for the interface in the Method field is “manual”.</td>
</tr>
<tr>
<td>Status</td>
<td>The link status of the interface. If you have disabled the interface with the disable command, the entry in the Status field will be “administratively down”. Otherwise, the entry in the Status field will be either “up” or “down”.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Whether the interface can provide two-way communication. If the IP address is configured, and the link status of the interface is up, the entry in the protocol field will be “up”. Otherwise the entry in the protocol field will be “down”.</td>
</tr>
<tr>
<td>VRF</td>
<td>Specifies the VRF type applied to the interface.</td>
</tr>
</tbody>
</table>

Displaying IP interface information for a specified interface

To display detailed IP information for a specific interface, enter a command such as the following.

device# show ip interface ethernet e 3/1
Interface Ethernet 3/1 (80)
port enabled
port state: up
ip address: 10.1.1.2/24
Port belongs to VRF: default
encapsulation: ETHERNET, mtu: 1500
MAC Address 0004.80a0.4050
directed-broadcast-forwarding: disabled
No inbound ip access-list is set
No outbound ip access-list is set
RPF mode: None
RPF Log: Disabled
0 unicast RPF drop
0 unicast RPF suppressed drop
RxPkts: 1200
TxPkts: 1200
RxBytes: 60000
TxBytes: 60000

NOTE
Interface counters (received packets and received bytes) are not supported on the CES 2000 Series or the CER 2000 Series devices. These values will always be 0.

The Extreme device software supports IPv4 and IPv6 packet and byte counters. The contents of these counters is displayed for a defined port as the result of the show ip interface ethernet command. In the above example, the fields in bold text display this content. Table 14 describes each of the fields that display interface counter statistics.

TABLE 14 Interface counter display statistics

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface that counter statistics are being displayed for.</td>
</tr>
<tr>
<td>RxPkts</td>
<td>The number of packets received at the specified port.</td>
</tr>
<tr>
<td>TxPkts</td>
<td>The number of packets transmitted from the specified port.</td>
</tr>
<tr>
<td>RxBytes</td>
<td>The number of bytes received at the specified port.</td>
</tr>
<tr>
<td>TxBytes</td>
<td>The number of bytes transmitted from the specified port.</td>
</tr>
</tbody>
</table>

Displaying interface counters for all ports

The Extreme device supports IPv4 and IPv6 packet and byte counters. The contents of these counters can be displayed for all ports on a device or per-port.
Commands have been added under IPv4 and IPv6 to display the interface counters for all ports on a device. The following example uses the `show ip interface counters` command to display to packet and byte counter information for all ports.

```
device# show ip interface counters
Interface      RxPkts     TxPkts      RxBytes    TxBytes
eth 3/1         1200      1200        600000     60000
eth 3/2         500       500         25000      25000
```

Syntax: `show ip interface counters`

Default byte counters include the 20-byte per-packet Ethernet overhead. You can configure an Extreme device to exclude the 20-byte per-packet Ethernet overhead from byte accounting by configuring the `vlan-counter exclude-overhead` command. Displaying IP interface information for a specified interface on page 130 describes each of the fields that display interface counter statistics.

TABLE 15 Interface counter display statistics

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface that counter statistics are being displayed for.</td>
</tr>
<tr>
<td>RxPkts</td>
<td>The number of packets received at the specified port.</td>
</tr>
<tr>
<td>TxPkts</td>
<td>The number of packets transmitted from the specified port.</td>
</tr>
<tr>
<td>RxBytes</td>
<td>The number of bytes received at the specified port.</td>
</tr>
<tr>
<td>TxBytes</td>
<td>The number of bytes transmitted from the specified port.</td>
</tr>
</tbody>
</table>

Clearing the interface counters

Use the following command to clear all interface counters on a device.

```
NOTE
The clear ip interface counters command is available for the CES 2000 Series and the CER 2000 Series devices; however, the counters are not supported and the values will always be 0.
```

```
device# clear ip interface counters
```

Syntax: `clear ip interface counters`

Use the following command to clear the interface counters for a specified port.

```
device# clear ip interface ethernet 3/2
```

Syntax: `clear ip interface ethernet port-number`

The `port-number` variable specifies the slot and port number that you want to clear the interface counters for.

Displaying interface name in Syslog

By default an interface's slot number (if applicable) and port number are displayed when you display Syslog messages. You can display the name of the interface instead of its number by entering a command such as the following.

```
device(config)# ip show-portname
```

This command is applied globally to all interfaces on the Extreme device.

Syntax: `[no] ip show-portname`
When you display the messages in the Syslog, you see the interface name under the Dynamic Log Buffer section. The actual interface number is appended to the interface name. For example, if the interface name is "lab" and its port number is "2", you see "lab2" displayed as in the example below.

```
device# show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
  Buffer logging: level ACDMEINW, 3 messages logged
    level code: A=alert C=critical D=debugging M=emergency E=error
    I=informational N=notification W=warning
Static Log Buffer:
  Dec 15 19:04:14:A:Fan 1, fan on right connector, failed
Dynamic Log Buffer (50 entries):
  Dec 15 18:46:17:I:Interface ethernet Lab2, state up
  Dec 15 18:45:15:I:Warm start
```

Displaying ARP entries

You can display the ARP cache and the static ARP table. The ARP cache contains entries for devices attached to the Extreme device. The static ARP table contains the user-configured ARP entries. An entry in the static ARP table enters the ARP cache when the entry’s interface comes up.

The tables require separate display commands.

Displaying the ARP cache

To display the contents of the ARP cache, enter the following command at any CLI level.

```
device# show arp
Total number of ARP entries: 5
  IP Address  MAC Address        Type        Age     Port
1  10.95.6.102  0800.5afc.ea21  Dynamic  0         6
2  10.95.6.18   00a0.24d2.04ed  Dynamic  3         6
3  10.95.6.54   00a0.24ab.cd2b  Dynamic  0         6
4  10.95.6.101  0800.207c.a7fa  Dynamic  0         6
5  10.95.6.211  00c0.2638.ac9c  Dynamic  0         6
6  10.30.30.15  none           Pending  0         v1
```

Syntax: `show arp [ethernet slot/port | mac-address xxxxxxxxxx [mask] | ip-addr [ip-mask]] [num] [| begin expression | exclude expression | include expression]`

The `ethernetslot/portnum` parameter lets you restrict the display to entries for a specific port.

The `mac-address` `xxxxxxx` parameter lets you restrict the display to entries for a specific MAC address.

The `mask` parameter lets you specify a mask for the `mac-address` `xxxxxxx` parameter to display entries for multiple MAC addresses. Specify the MAC address mask as fs and Os, where fs are significant bits.

The `ip-addr` and `ip-mask` parameters let you restrict the display to entries for a specific IP address and network mask. Specify the IP address masks in standard decimal mask format (for example, 255.255.0.0).

NOTE

The `ip-mask` parameter and `mask` parameter perform different operations. The `ip-mask` parameter specifies the network mask for a specific IP address, whereas the `mask` parameter provides a filter for displaying multiple MAC addresses that have specific values in common.

The `num` parameter lets you display the table beginning with a specific entry number.

NOTE

The entry numbers in the ARP cache are not related to the entry numbers for static ARP table entries.
This display shows the following information. The number in the left column of the CLI display is the row number of the entry in the ARP cache. This number is not related to the number you assign to static MAC address entries in the static ARP table.

TABLE 16 CLI display of ARP cache

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the device.</td>
</tr>
</tbody>
</table>
| Type | The type, which can be one of the following:
 - Dynamic - The Extreme device learned the entry from an incoming packet.
 - Static - The Extreme device loaded the entry from the static ARP table when the device for the entry was connected to the Extreme device.
 - Pending - The Extreme device added the entry to the ARP table and is in the process of sending a series of ARP requests to determine if it is a valid entry. |
| Age | The number of minutes the entry has remained unused. If this value reaches the ARP aging period, the entry is removed from the table.
To display the ARP aging period, refer to Displaying global IP configuration information on page 128. To change the ARP aging interval, refer to Changing the ARP aging period on page 31.
NOTE
Static entries do not age out. |

Port
The port on which the entry was learned.

Displaying the static ARP table

To display the static ARP table, enter the following command at any CLI level.

```
device# show ip static-arp
```

<table>
<thead>
<tr>
<th>Index</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Port</th>
<th>VLAN</th>
<th>ESI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.1.1</td>
<td>0001.0001.0001</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.6.6.2</td>
<td>0002.0002.0002</td>
<td>1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10.6.6.7</td>
<td>1111.1111.1111</td>
<td>2/1...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.7.7.7</td>
<td>0100.5e42.7f40</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example shows four static entries, one of which is multi-port. Multi-port static ARP entries are supported only on the XMR Series and MLX Series devices. Note that for multi-port entries the Port column shows a single port number followed by an ellipsis; the full list of ports associated with that ARP entry is displayed on the following line.

Syntax: show ip static-arp [ethernet slot/portnum | mac-address xxxx.xxxxx.xxxx [mask] | ip-addr [ip-mask]] [num] [| begin expression | exclude expression | include expression]

For information on the command syntax, see the syntax of the show arp command under Displaying the ARP cache on page 34.

TABLE 17 CLI display of static ARP table

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>The number of this entry in the table.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the device.</td>
</tr>
</tbody>
</table>
TABLE 17 CLI display of static ARP table (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port attached to the device the entry is for. In the case of a multi-port static ARP, this will display a single port followed by an ellipsis, and the full list of ports will be displayed on the line below.</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN associated with this entry, if any.</td>
</tr>
<tr>
<td>ESI</td>
<td>Ethernet Service Instance (ESI) associated with this entry, if any.</td>
</tr>
</tbody>
</table>

Displaying the forwarding cache

To display the IP Forwarding Cache for directly connected hosts, enter the following command.

```
device> show ip cache
```

Cache Entry Usage on LPs:

<table>
<thead>
<tr>
<th>Module</th>
<th>Host</th>
<th>Network</th>
<th>Free</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6</td>
<td>6</td>
<td>204788</td>
<td>204800</td>
</tr>
</tbody>
</table>

Syntax: `show ip cache [ip-addr] [| begin expression | exclude expression | include expression]`

The `ip-addr` parameter displays the cache entry for the specified IP address.

The `show ip cache` command shows the forwarding cache usage on each interface module CPU. The CPU on each interface module builds its own forwarding cache, depending on the traffic. To see the forwarding cache of a particular interface module, use the `rconsole`.

```
device>rconsole 15
Connecting to slave CPU 15/1... (Press CTRL-Shift-6 X to exit)
rconsole-15/1@LP>show ip cache
Total number of host cache entries 3
D: Dynamic P:Permanent, F:Forward U:Us C:Conected Network
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Next Hop</th>
<th>MAC</th>
<th>Type</th>
<th>Port</th>
<th>VLAN</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10.1.0.0</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PU</td>
<td>2/5</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>2 10.2.0.0</td>
<td>DIRECT</td>
<td>0125.0a57.1c02</td>
<td>D</td>
<td>3/5</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>3 10.7.7.3</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PU</td>
<td>4/2</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>
```

You also use the `rconsole` to display the IP Forwarding Cache for network entries.

```
device>rconsole 15
Connecting to slave CPU 15/1... (Press CTRL-Shift-6 X to exit)
rconsole-15/1@LP>show ip network
Total number of host cache entries 3
D: Dynamic P:Permanent, F:Forward U:Us C:Conected Network
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Next Hop</th>
<th>MAC</th>
<th>Type</th>
<th>Port</th>
<th>VLAN</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.0.0.0/0</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PK</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2 10.1.1.0/24</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PC</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3 10.40.40.0/24</td>
<td>10.2.1.10</td>
<td>0000.0000.0033</td>
<td>FF</td>
<td>15/14</td>
<td>154</td>
<td>1</td>
</tr>
</tbody>
</table>
```

You also use the `rconsole` to display the IP Forwarding Cache for network entries.

The `show ip cache` and `show ip network` commands entered on the rconsole display the following information.

TABLE 18 CLI display of IP forwarding cache

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the destination.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The IP address of the next-hop router to the destination. This field contains either an IP address or the value DIRECT. DIRECT means the destination is either directly attached or the destination is an address on this device. For example, the next hop for loopback addresses and broadcast addresses is shown as DIRECT.</td>
</tr>
<tr>
<td>MAC</td>
<td>The MAC address of the destination.</td>
</tr>
</tbody>
</table>
Displaying IP information

Extreme NetIron Routing Configuration Guide, 06.0.00a

53-1004207-06

TABLE 18 CLI display of IP forwarding cache (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>If the entry is type U (indicating that the destination is this device), the address consists of zeroes.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of host entry, which can be one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• D - Dynamic</td>
</tr>
<tr>
<td></td>
<td>• P - Permanent</td>
</tr>
<tr>
<td></td>
<td>• F - Forward</td>
</tr>
<tr>
<td></td>
<td>• U - Us</td>
</tr>
<tr>
<td></td>
<td>• C - Complex Filter</td>
</tr>
<tr>
<td></td>
<td>• W - Wait ARP</td>
</tr>
<tr>
<td></td>
<td>• I - ICMP Deny</td>
</tr>
<tr>
<td></td>
<td>• K - Drop</td>
</tr>
<tr>
<td></td>
<td>• R - Fragment</td>
</tr>
<tr>
<td></td>
<td>• S - Snap Encap</td>
</tr>
<tr>
<td>Port</td>
<td>The port through which this device reaches the destination. For destinations that are located on this device, the port number is shown as ‘n/a’.</td>
</tr>
<tr>
<td>VLAN</td>
<td>Indicates the VLANs the listed port is in.</td>
</tr>
<tr>
<td>Pri</td>
<td>The QoS priority of the port or VLAN.</td>
</tr>
</tbody>
</table>

Dual Active Console

The Dual Active Console command enables the standby terminal console to mirror the features of the active console, such that the standby console appears as active console itself. Hence, you can manage the system from either active or standby console and it will not be necessary to switch the console cable after the active-standby management module switchover.

To enable this feature, enter the following command,

```plaintext
device(config)#dual-active-console
device(config)#wr mem
Write startup-config done.
device(config)#
```

To disable this feature, enter the following command,

```plaintext
device(config)#no dual-active-console
device(config)#wr mem
Write startup-config done.
device(config)#
```

Displaying the IP route table

To display the IP route table, enter the `show ip route` command at any CLI level.

```plaintext
device# show ip route
Total number of IP routes: 4
Type Codes - B:BGP D:Connected I:ISIS S:Static R:RIP O:OSPF; Cost - Dist/Metric

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10.0.0.0/24</td>
<td>DIRECT</td>
<td>eth 1/1</td>
<td>0/0</td>
<td>D</td>
<td>45m18s</td>
</tr>
<tr>
<td>2 10.10.0.0/24</td>
<td>DIRECT</td>
<td>eth 1/2</td>
<td>0/0</td>
<td>D</td>
<td>1h0m</td>
</tr>
<tr>
<td>3 10.20.0.0/24</td>
<td>10.0.0.2</td>
<td>eth 1/1</td>
<td>1/1</td>
<td>S</td>
<td>13m18s</td>
</tr>
<tr>
<td>4 10.30.0.0/24</td>
<td>10.0.0.2</td>
<td>eth 1/1</td>
<td>1/1</td>
<td>S</td>
<td>2m42s</td>
</tr>
</tbody>
</table>
```
Syntax: show ip route num [[ip-addr [ip-mask] [debug | detail | longer]] | connected | bgp | isis | ospf | rip | static | [summary] | nexthop [nexthop_id | ref-routes]] | [begin expression | exclude expression | include expression]

The **num** option displays the route table entry whose row number corresponds to the number you specify. For example, if you want to display the tenth row in the table, enter “10”.

The **ip-addr** parameter displays the route to the specified IP address.

The **ip-mask** parameter lets you specify a network mask or, if you prefer CIDR format, the number of bits in the network mask. If you use CIDR format, enter a forward slash immediately after the IP address, then enter the number of mask bits (for example: 10.157.22.0/24 for 10.157.22.0 255.255.255.0).

The **longer, detail, and debug** parameter applies only when you specify an IP address and mask. This option displays only the routes for the specified IP address and mask.

The **bgp** option displays the BGP4 routes.

The **connected** option displays only the IP routes that are directly attached to the Extreme device.

The **ospf** option displays the OSPF routes.

The **rip** option displays the RIP routes.

The **isis** option displays the RIP routes.

The **static** option displays only the static IP routes.

The **nexthop** option displays next-hop information for all next hops in the routing table or for a specific entry.

Showing route details by IP address

You can display detailed information about a route by providing the IP address and using the **detail** option, as the following example illustrates.

device>show ip route 10.1.1.2 detail
Type Codes - B:BGP D:Connected I:ISIS 0:OSPF R:RIP S:Static; Cost - Dist/Metric
ISIS Codes - L1:Level-1 L2:Level-2
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2 s:Sham Link

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.1.0/24</td>
<td>eth 1/15</td>
<td>0/0</td>
<td>D</td>
<td>7h11m</td>
</tr>
<tr>
<td>Nexthop Entry ID:14, Paths: 1, Ref_Count:1/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10.1.1.2</td>
<td>eth 1/15</td>
<td>115/20</td>
<td>IL2</td>
<td>7h11m</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>10.0.0.18</td>
<td>eth 4/11</td>
<td>115/20</td>
<td>IL2</td>
<td>7h11m</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>10.0.0.30</td>
<td>eth 4/7</td>
<td>115/20</td>
<td>IL2</td>
<td>7h11m</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>10.0.0.34</td>
<td>eth 4/14</td>
<td>115/20</td>
<td>IL2</td>
<td>7h11m</td>
</tr>
<tr>
<td>Nexthop Entry ID:68343, Paths: 4, Ref_Count:8/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D:Dynamic P:Permanent F:Forward U:Us C:Connected Network
W:Wait ARP I:ICMP Deny K:Drop R:Fragment S:Snap Encap N:CamInvalid

Module S1:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Next Hop</th>
<th>MAC</th>
<th>Type</th>
<th>Port</th>
<th>Vlan</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.0/24</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PC</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OutgoingIf</td>
<td>ArpIndex</td>
<td>PFCR_ID</td>
<td>CamLevel</td>
<td>DontAge Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eth 1/15</td>
<td>65535</td>
<td>1:2</td>
<td>1</td>
<td>0</td>
<td>69203192</td>
<td></td>
</tr>
<tr>
<td>U_flags</td>
<td>0x0000220</td>
<td>0x1a8fc</td>
<td>(L3, right)</td>
<td>0x00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAM Entry Flag: 0x00000003H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFCR : 1:2 CIXD: 0x1a8fc (L3, right) (IP_NETWORK: 0x68703)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFCR : 1:1 CIXD: 0x1a8fc (L3, right) (IP_NETWORK: 0x68703)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ip route ip-addr detail

The IP address can be just the IP address but can also include shorthand for the mask: ip-address/prefix-length.
Using the summary option

The summary option displays a summary of the information in the IP route table. After the summary keyword, the pipe symbol (|) points to three options for modifying the presentation of the summary information, as follows:

- **begin** lets you start the display with the first matching line.
- **exclude** lets you exclude matching lines from the display.
- **include** lets you include matching lines in the display.

The default routes are displayed first.

Using the connected option

Here is an example of how to use the connected option. To display only the IP routes that go to devices directly attached to the Extreme device.

```
device(config)# show ip route connected
```

Notice that the route displayed in this example has “D” in the Type field, indicating the route is for a directly connected device.

Using the static option

Here is an example of how to use the static option. To display only the static IP routes.

```
device(config)# show ip route static
```

Notice that the route displayed in this example has “S” in the Type field, indicating the route is static.

Using the longer option

Here is an example of how to use the longer option. To display only the routes for a specified IP address and mask, enter a command such as the following.

```
device(config)# show ip route 10.159.0.0/16 longer
```

This example shows all the routes for networks beginning with 209.159. The mask value and longer parameter specify the range of network addresses to be displayed. In this example, all routes within the range 209.159.0.0 - 209.159.255.255 are listed.

Using the summary option

The summary option displays a summary of the information in the IP route table. The following is an example of the output from this command.

```
device# show ip route summary
```

IP Routing Table - 35 entries:
6 connected, 28 static, 0 RIP, 1 OSPF, 0 BGP, 0 ISIS, 0 MPLS
Number of prefixes:
/0: 1 /16: 27 /22: 1 /24: 5 /32: 1

Syntax: show ip route summary
In this example, the IP route table contains 35 entries. Of these entries, 6 are directly connected devices, 28 are static routes, and 1 route was calculated through OSPF. One of the routes has a zero-bit mask (this is the default route), 27 have a 22-bit mask, 5 have a 24-bit mask, and 1 has a 32-bit mask.

Using the nexthop option
You can display next-hop information for all next hops in the routing table or for a specific entry. For the first example, use the show ip route nexthop command to display all the next-hop entries, and then use the option to display the next hop for a specific table entry.

device#show ip route nexthop
Total number of IP nexthop entries: 30; Forwarding Use: 24

<table>
<thead>
<tr>
<th>NextHopIp</th>
<th>Port</th>
<th>RefCount</th>
<th>ID</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>mgmt 1</td>
<td>0/1</td>
<td>1536</td>
<td>80682</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>eth 1/15</td>
<td>1/1</td>
<td>14</td>
<td>80632</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>eth 1/16</td>
<td>1/1</td>
<td>15</td>
<td>16626</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>eth 1/18</td>
<td>1/1</td>
<td>17</td>
<td>16626</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>eth 1/43</td>
<td>1/1</td>
<td>42</td>
<td>35923</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>eth 1/47</td>
<td>1/1</td>
<td>46</td>
<td>80641</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>eth 2/2</td>
<td>1/1</td>
<td>49</td>
<td>16630</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>eth 2/4</td>
<td>1/1</td>
<td>51</td>
<td>16630</td>
</tr>
<tr>
<td>10.1.1.2</td>
<td>eth 1/15</td>
<td>0/2</td>
<td>68347</td>
<td>16620</td>
</tr>
<tr>
<td>10.1.2.2</td>
<td>eth 1/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.18</td>
<td>eth 4/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.25</td>
<td>eth 4/9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.1.2</td>
<td>eth 1/15</td>
<td>0/3</td>
<td>68352</td>
<td>16615</td>
</tr>
<tr>
<td>10.0.0.10</td>
<td>eth 2/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.21</td>
<td>eth 4/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.0</td>
<td>eth 4/1</td>
<td>1/1</td>
<td>144</td>
<td>16624</td>
</tr>
<tr>
<td>10.0.0.0</td>
<td>eth 4/3</td>
<td>1/1</td>
<td>146</td>
<td>16641</td>
</tr>
<tr>
<td>10.0.0.0</td>
<td>eth 4/4</td>
<td>1/1</td>
<td>147</td>
<td>16624</td>
</tr>
<tr>
<td>10.0.0.0</td>
<td>eth 4/6</td>
<td>1/1</td>
<td>149</td>
<td>16624</td>
</tr>
<tr>
<td>10.0.0.0</td>
<td>eth 4/7</td>
<td>1/1</td>
<td>150</td>
<td>16641</td>
</tr>
</tbody>
</table>

Syntax: show ip route nexthop [nexthop_id]
The nexthop_id is under the column labeled ID in the output of the show ip route nexthop command. For example, use nexthop ID 1536 from the first row of the preceding example to show only that entry.

device#show ip route nexthop 1536

<table>
<thead>
<tr>
<th>NextHopIp</th>
<th>Port</th>
<th>RefCount</th>
<th>ID</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>mgmt 1</td>
<td>0/1</td>
<td>1536</td>
<td>80685</td>
</tr>
</tbody>
</table>

Displaying IP routes with nexthop ID
By using the nexthop option with the ref-routes keyword, you can display IP routes in the forwarding table that refer to the specified nexthop entry, as the following example illustrates (using nexthop ID 65575).

device#show ip route nexthop 65537 ref-routes
Type Codes - B:BGP D:Connected I:ISIS O:OSPF R:RIP S:Static; Cost = Dist/Metric
ISIS Codes - L1:Level-1 L2:Level-2
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2 s:Sham Link

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.1/32</td>
<td>10.2.1.1</td>
<td>eth 1/11</td>
<td>115/10</td>
<td>IL2</td>
<td>7h51m</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>10.2.1.1</td>
<td>eth 1/11</td>
<td>115/10</td>
<td>IL2</td>
<td>7h51m</td>
</tr>
<tr>
<td>10.1.1.1/32</td>
<td>10.2.1.1</td>
<td>eth 1/11</td>
<td>115/40</td>
<td>IL2</td>
<td>7h51m</td>
</tr>
</tbody>
</table>

Syntax: show ip route nexthop [nexthop_id [ref-routes]]
Description of command output fields

The following table lists the information in the `show ip route` output when you use no optional arguments.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The destination network of the route.</td>
</tr>
<tr>
<td>NetMask</td>
<td>The network mask of the destination address.</td>
</tr>
<tr>
<td>Gateway</td>
<td>The next-hop router.</td>
</tr>
<tr>
<td>Port</td>
<td>The port through which this device sends packets to reach the route's destination.</td>
</tr>
<tr>
<td>Cost</td>
<td>The route's cost.</td>
</tr>
<tr>
<td>Type</td>
<td>The route type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• B - The route was learned from BGP.</td>
</tr>
<tr>
<td></td>
<td>• D - The destination is directly connected to this Extreme device.</td>
</tr>
<tr>
<td></td>
<td>• R - The route was learned from RIP.</td>
</tr>
<tr>
<td></td>
<td>• S - The route is a static route.</td>
</tr>
<tr>
<td></td>
<td>• * - The route is a candidate default route.</td>
</tr>
<tr>
<td></td>
<td>• O - The route is an OSPF route. Unless you use the ospf option to display the route table, “O” is used for all OSPF routes. If you do use the ospf option, the following type codes are used:</td>
</tr>
<tr>
<td></td>
<td>• O - OSPF intra area route (within the same area).</td>
</tr>
<tr>
<td></td>
<td>• IA - The route is an OSPF inter area route (a route that passes from one area into another).</td>
</tr>
<tr>
<td></td>
<td>• E1 - The route is an OSPF external type 1 route.</td>
</tr>
<tr>
<td></td>
<td>• E2 - The route is an OSPF external type 2 route.</td>
</tr>
<tr>
<td>Uptime</td>
<td>The amount of time since the route was last modified. The format of this display parameter may change depending upon the age of the route to include the seconds (s), minutes (m), hours (h), and days (d), as described in the following:</td>
</tr>
<tr>
<td></td>
<td>400d - Only days (d) displayed</td>
</tr>
<tr>
<td></td>
<td>20d23h - days (d) and hours (h) displayed</td>
</tr>
<tr>
<td></td>
<td>14h33m - hours (h) and minutes (m) displayed</td>
</tr>
<tr>
<td></td>
<td>10m59s - minutes (m) and seconds (s) displayed</td>
</tr>
</tbody>
</table>

Clearing IP routes

If needed, you can clear the entire route table or specific individual routes.

To clear all routes from the IP route table.

 device# clear ip route

To clear route 10.157.22.0/24 from the IP routing table.

 device# clear ip route 10.157.22.0/24

Syntax: clear ip route [ip-addr ip-mask | ip-addr/mask-bits]
Displaying IP traffic statistics

To display IP traffic statistics, enter the following command at any CLI level.

```
NOTE
In the Extreme device, only those packets that are forwarded or generated by the CPU are included in the IP traffic statistics. Hardware forwarded packets are not included.
```

```
device# show ip traffic
IP Statistics
1265602 total received, 690204 mp received, 225395 sent, 0 forwarded
0 filtered, 0 fragmented, 0 bad header
0 failed reassembly, 0 reassembled, 0 reassembly required
2051 no route, 0 unknown proto, 0 no buffer, 0 other errors
ARP Statistics
489279 total recv, 488154 req recv, 1125 rep recv, 1159 req sent, 3960 rep sent
0 pending drop, 0 invalid source, 0 invalid dest
ICMP Statistics
Received:
0 total, 0 errors, 0 unreachable, 0 time exceed
0 parameter, 0 source quench, 0 redirect, 0 echo, 0 echo reply
0 timestamp, 0 timestamp reply, 0 address mask, 0 address mask reply
0 irdp advertisement, 0 irdp solicitation
Sent:
2146 total, 0 errors, 2146 unreachable, 0 time exceed (0 mpls-response)
0 parameter, 0 source quench, 0 redirect, 0 echo, 0 echo reply
0 timestamp, 0 timestamp reply, 0 address mask, 0 address mask reply
0 irdp advertisement, 0 irdp solicitation
UDP Statistics
184784 received, 75473 sent, 110196 no port, 0 input errors
TCP Statistics
86199 in segments, 84392 out segments, 909 retransmission, 0 input errors
ip packet list pool
pool: 237598e3, unit_size: 9362, initial_number:32, upper_limit:128
total_number:32, allocated_number:0, alloc_failure 0
flag: 0, pool_index:1, avail_data:27100000
ip reassembly list pool
pool: 23759783, unit_size: 23, initial_number:16, upper_limit:64
total_number:16, allocated_number:0, alloc_failure 0
flag: 0, pool_index:1, avail_data:270df800
ip fragments list pool
pool: 23759833, unit_size: 20, initial_number:32, upper_limit:128
total_number:32, allocated_number:0, alloc_failure 0
flag: 0, pool_index:1, avail_data:270e0800
```

Syntax: show ip traffic

The `show ip traffic` command displays the following information.

<table>
<thead>
<tr>
<th>TABLE 20 CLI display of IP traffic statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>IP statistics</td>
</tr>
<tr>
<td>received</td>
</tr>
<tr>
<td>sent</td>
</tr>
<tr>
<td>forwarded</td>
</tr>
<tr>
<td>filtered</td>
</tr>
<tr>
<td>fragmented</td>
</tr>
<tr>
<td>reassembled</td>
</tr>
<tr>
<td>bad header</td>
</tr>
</tbody>
</table>
TABLE 20 CLI display of IP traffic statistics (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>no route</td>
<td>The number of packets dropped by the device because there was no route.</td>
</tr>
<tr>
<td>unknown proto</td>
<td>The number of packets dropped by the device because the value in the Protocol field of the packet header is unrecognized by this device.</td>
</tr>
<tr>
<td>no buffer</td>
<td>This information is used by Extreme customer support.</td>
</tr>
<tr>
<td>other errors</td>
<td>The number of packets that this device dropped due to error types other than the types listed above.</td>
</tr>
</tbody>
</table>

ICMP statistics

The ICMP statistics are derived from RFC 792, “Internet Control Message Protocol”, RFC 950, “Internet Standard Subnetting Procedure”, and RFC 1256, “ICMP Router Discovery Messages”. Statistics are organized into Sent and Received. The field descriptions below apply to each.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>The total number of ICMP messages sent or received by the device.</td>
</tr>
<tr>
<td>errors</td>
<td>This information is used by Extreme customer support.</td>
</tr>
<tr>
<td>unreachable</td>
<td>The number of Destination Unreachable messages sent or received by the device.</td>
</tr>
<tr>
<td>time exceed</td>
<td>The number of Time Exceeded messages sent or received by the device.</td>
</tr>
<tr>
<td>parameter</td>
<td>The number of Parameter Problem messages sent or received by the device.</td>
</tr>
<tr>
<td>source quench</td>
<td>The number of Source Quench messages sent or received by the device.</td>
</tr>
<tr>
<td>redirect</td>
<td>The number of Redirect messages sent or received by the device.</td>
</tr>
<tr>
<td>echo</td>
<td>The number of Echo messages sent or received by the device.</td>
</tr>
<tr>
<td>echo reply</td>
<td>The number of Echo Reply messages sent or received by the device.</td>
</tr>
<tr>
<td>timestamp</td>
<td>The number of Timestamp messages sent or received by the device.</td>
</tr>
<tr>
<td>timestamp reply</td>
<td>The number of Timestamp Reply messages sent or received by the device.</td>
</tr>
<tr>
<td>addr mask</td>
<td>The number of Address Mask Request messages sent or received by the device.</td>
</tr>
<tr>
<td>addr mask reply</td>
<td>The number of Address Mask Replies messages sent or received by the device.</td>
</tr>
<tr>
<td>irdp advertisement</td>
<td>The number of ICMP Router Discovery Protocol (IRDP) Advertisement messages sent or received by the device.</td>
</tr>
<tr>
<td>irdp solicitation</td>
<td>The number of IRDP Solicitation messages sent or received by the device.</td>
</tr>
</tbody>
</table>

UDP statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>received</td>
<td>The number of UDP packets received by the device.</td>
</tr>
<tr>
<td>sent</td>
<td>The number of UDP packets sent by the device.</td>
</tr>
<tr>
<td>no port</td>
<td>The number of UDP packets dropped because the packet did not contain a valid UDP port number.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Extreme customer support.</td>
</tr>
</tbody>
</table>

TCP statistics

The TCP statistics are derived from RFC 793, “Transmission Control Protocol”.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active opens</td>
<td>The number of TCP connections opened by this device by sending a TCP SYN to another device.</td>
</tr>
<tr>
<td>passive opens</td>
<td>The number of TCP connections opened by this device in response to connection requests (TCP SYNs) received from other devices.</td>
</tr>
<tr>
<td>failed attempts</td>
<td>This information is used by Extreme customer support.</td>
</tr>
</tbody>
</table>
TABLE 20 CLI display of IP traffic statistics (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>active resets</td>
<td>The number of TCP connections this device reset by sending a TCP RESET message to the device at the other end of the connection.</td>
</tr>
<tr>
<td>passive resets</td>
<td>The number of TCP connections this device reset because the device at the other end of the connection sent a TCP RESET message.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Extreme customer support.</td>
</tr>
<tr>
<td>in segments</td>
<td>The number of TCP segments received by the device.</td>
</tr>
<tr>
<td>out segments</td>
<td>The number of TCP segments sent by the device.</td>
</tr>
<tr>
<td>retransmission</td>
<td>The number of segments that this device retransmitted because the retransmission timer for the segment had expired before the device at the other end of the connection had acknowledged receipt of the segment.</td>
</tr>
</tbody>
</table>

Displaying GRE tunnel information and statistics

Several show commands display information about configured GRE tunnels.

You must enable GRE statistics gathering using the `accounting-enable` and the `gre-session-enforce-check` commands under IP Tunnel Policy configuration mode.

These commands are optional and do not have to be entered in any specific order. Checking the output is recommended to verify the configuration and operation of the GRE tunnels.

NOTE

When reviewing the keepalive packet statistics in the output of the `show interface tunnel` command for a GRE tunnel, note that the transmitted keepalive packets are hardware generated and are not counted in the “Rcv-from-tnnl” and “Xmit-to-tnnl” statistics.

1. To display information about all GRE tunnels configured on a device, enter the following command.

   ```
   device# show gre
   Total Valid GRE Tunnels : 1, GRE Session Check Enforce: FALSE
   GRE tnnl 1 UP : src_ip 10.25.25.4, dst_ip 10.15.15.3
   TTL 255, TOS 0, NHT 0, MTU 1476
   ```

2. Use the `show statistics tunnel` command with a specific `tunnel-id` to display statistics for a single tunnel. In this example, the tunnel type is GRE.

   ```
   device# show statistics tunnel 1
   Packets
   Tunnel Id  Tunnel Type  In-Port(s)    [Rcv-from-tnnl Xmit-to-tnnl]
   1          GRE          e2/1 - e2/2   586046           287497
   e2/3 - e2/4   100340           150034
   ```

3. Use the `show statistics brief tunnel` command to display the aggregate statistics for a specific tunnel or for all tunnels. The feature combines both unicast and multicast statistics into one counter.

   ```
   device# show statistics brief tunnel
   Packets
   Tunnel Id  Tunnel Type  [Rcv-from-tnnl Xmit-to-tnnl]
   1          GRE          586046           287497
   2          GRE          0                0
   3          IPV6-Manual  0                0
   ```
4. Use the **show interface tunnel** command to display information about one or all of the tunnels.

```
device# show interface tunnel 1

Tunnel 1 is up, line protocol is up
Hardware is Tunnel
Tunnel source 10.30.30.1
Tunnel destination is 10.20.20.1
Tunnel mode gre ip
No port name
Internet address is: 10.50.50.4/24
Tunnel TOS 0, Tunnel TTL 255, Tunnel MTU 1476 bytes
Keepalive is not Enabled
Tunnel Packet Statistics:

<table>
<thead>
<tr>
<th>In-Port(s)</th>
<th>Unicast Packets</th>
<th>Multicast Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Rcv-from-tnnl]</td>
<td>[Xmit-to-tnnl]</td>
</tr>
<tr>
<td></td>
<td>[Rcv-from-tnnl]</td>
<td>[Xmit-to-tnnl]</td>
</tr>
<tr>
<td>e5/1 - e5/20</td>
<td>0</td>
<td>16511754</td>
</tr>
<tr>
<td>e6/1 - e6/20</td>
<td>0</td>
<td>14147748</td>
</tr>
<tr>
<td>e7/1 - e7/24</td>
<td>21493545</td>
<td>0</td>
</tr>
<tr>
<td>e16/1 - e16/2</td>
<td>0</td>
<td>3916998</td>
</tr>
<tr>
<td>e16/3 - e16/4</td>
<td>0</td>
<td>13476342</td>
</tr>
</tbody>
</table>
```

Displaying martian addressing information

To display Martian Addressing information, use the following command.

```
device# show ip martian
ip martian filtering on
0.0.0.0/8 deny
10.0.0.0/8 deny
127.0.0.0/8 deny
191.255.0.0/16 deny
192.0.0.0/24 deny
223.255.255.0/24 deny
240.0.0.0/4 deny
```

Syntax: show [vrf name] ip martian

You can use the **vrf** option to display martian addresses for a specific VRF.
IPv6 Addressing

- IPv6 addressing overview.. 145
- IPv6 stateless auto-configuration.. 147
- Enabling IPv6 routing.. 148
- Configuring IPv6 on each interface... 148
- Configuring the management port for an IPv6 automatic address configuration... 152
- IPv6 host support... 152
- IPv6 Non stop routing and graceful restart... 156
- Configuring IPv4 and IPv6 protocol stacks.. 164
- IPv6 Over IPv4 tunnels in hardware... 164
- IPv6 over IPv4 GRE tunnel... 174
- Configuring IPv6 Domain Name Server (DNS) resolver.. 178
- IPv6 Non-Stop Routing support... 179
- ECMP load sharing for IPv6.. 180
- Configuring IPv6 ICMP.. 184
- Configuring IPv6 neighbor discovery.. 184
- IPv6 ND Prefix Suppress... 190
- IPv6 source routing security enhancements.. 192
- Changing the IPv6 MTU... 196
- Configuring static neighbor entries... 197
- Limiting the number of hops an IPv6 packet can traverse... 197
- Information about IPv6 prefix list.. 198
- Displaying prefix list information.. 198
- Managing a Device Over IPv6.. 205
- Clearing global IPv6 information.. 206
- Displaying global IPv6 information.. 206

IPv6 addressing overview

This chapter includes overview information about the following topics:

- IPv6 addressing.
- The IPv6 stateless auto-configuration feature, which enables a host on a local link to automatically configure its interfaces with new and globally unique IPv6 addresses associated with its location.

A limitation of IPv4 is its 32-bit addressing format, which is unable to satisfy potential increases in the number of users, geographical needs, and emerging applications. To address this limitation, IPv6 introduces a new 128-bit addressing format.

An IPv6 address is composed of 8 fields of 16-bit hexadecimal values separated by colons (:). Figure 13 shows the IPv6 address format.

FIGURE 13 IPv6 address format

```
+----------------+----------------+
| Network Prefix | Interface ID   |
+----------------+----------------+
| HHHH HHHH HHHH HHHH | HHHH HHHH |
+----------------+----------------+
```

128 Bits

HHHH = Hex Value 0000 – FFFF
As shown in Figure 13, HHHH is a 16-bit hexadecimal value, while H is a 4-bit hexadecimal value. The following is an example of an IPv6 address:

2001:DB8:0000:0000:002D:D0FF:FE48:4672

Note that the sample IPv6 address includes hexadecimal fields of zeros. To make the address less cumbersome, you can do the following:

• Omit the leading zeros; for example, 2001:DB8:0:0:2D:D0FF:FE48:4672.
• Compress the successive groups of zeros at the beginning, middle, or end of an IPv6 address to two colons (:) once per address; for example, 2001:DB8::2D:D0FF:FE48:4672.

When specifying an IPv6 address in a command syntax, keep the following in mind:

• You can use the two colons (:) once in the address to represent the longest successive hexadecimal fields of zeros.
• The hexadecimal letters in the IPv6 addresses are not case-sensitive.

As shown in Figure 13, the IPv6 network prefix is composed of the left-most bits of the address. As with an IPv4 address, you can specify the IPv6 prefix using the prefix or prefix-length format, where the following applies:

The prefix parameter is specified as 16-bit hexadecimal values separated by a colon.

The prefix-length parameter is specified as a decimal value that indicates the left-most bits of the IPv6 address.

The following is an example of an IPv6 prefix:

2001:DB8:49EA:D088::/64

IPv6 address types

As with IPv4 addresses, you can assign multiple IPv6 addresses to a device interface. Table 21 presents the three major types of IPv6 addresses that you can assign to a device interface.

A major difference between IPv4 and IPv6 addresses is that IPv6 addresses support scope, which describes the topology in which the address may be used as a unique identifier for an interface or set of interfaces.

Unicast and multicast addresses support scoping as follows:

• Unicast addresses support two types of scope: global scope and local scope. In turn, local scope supports link-local addresses. Table 21 describes global and link-local addresses and the topologies in which they are used.
• Multicast addresses support a scope field, which Table 21 describes.

TABLE 21 IPv6 address types

<table>
<thead>
<tr>
<th>Address type</th>
<th>Description</th>
<th>Address structure</th>
</tr>
</thead>
</table>
| Unicast | An address for a single interface. A packet sent to a unicast address is delivered to the interface identified by the address. | Depends on the type of the unicast address:
 • Aggregatable global address -- An address equivalent to a global or public IPv4 address. The address structure is as follows: a fixed prefix of 2000::/3 [001], a 45-bit global routing prefix, a 16-bit subnet ID, and a 64-bit interface ID.
 • Unique local address -- An address used within a site or intranet. For more information on ULAs, refer to RFC 4193.
 • Link-local address -- An address used between directly connected nodes on |
Table 21 IPv6 address types (continued)

<table>
<thead>
<tr>
<th>Address type</th>
<th>Description</th>
<th>Address structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast</td>
<td>An address for a set of interfaces belonging to different nodes. Sending a packet to a multicast address results in the delivery of the packet to all interfaces in the set.</td>
<td>A multicast address has a fixed prefix of FF00::/8 (1111 1111 0000 0000 0000 0000 0000 0000). The next 4 bits define the address as a permanent or temporary address. The next 4 bits define the scope of the address (node, link, site, organization, global).</td>
</tr>
<tr>
<td>Anycast</td>
<td>An address for a set of interfaces belonging to different nodes. Sending a packet to an anycast address results in the delivery of the packet to the closest interface identified by the address.</td>
<td>An anycast address looks similar to a unicast address, because it is allocated from the unicast address space. If you assign a unicast address to multiple interfaces, it is an anycast address. An interface assigned an anycast address must be configured to recognize the address as an anycast address. An anycast address can be assigned to a router only. An anycast address must not be used as the source address of an IPv6 packet.</td>
</tr>
</tbody>
</table>

A device automatically configures a link-local unicast address for an interface by using the prefix of FE80::/10 (1111 1110 1000 0000 0000 0000 0000 0000) and a 64-bit interface ID. The 128-bit IPv6 address is then subjected to duplicate address detection to ensure that the address is unique on the link. If desired, you can override this automatically configured address by explicitly configuring an address.

IPv6 stateless auto-configuration

Extreme devices use the IPv6 stateless auto-configuration feature to enable a host on a local link to automatically configure its interfaces with new and globally unique IPv6 addresses associated with its location. The automatic configuration of a host interface is performed without the use of a server, such as a Dynamic Host Configuration Protocol (DHCP) server, or manual configuration.

The automatic configuration of a host interface works in the following way: a router on a local link periodically sends router advertisement messages containing network-type information, such as the 64-bit prefix of the local link and the default route, to all nodes on the link.
When a host on the link receives the message, it takes the local link prefix from the message and appends a 64-bit interface ID, thereby automatically configuring its interface. (The 64-bit interface ID is derived from the MAC address of the host’s NIC.) The 128-bit IPv6 address is then subjected to duplicate address detection to ensure that the address is unique on the link.

The duplicate address detection feature verifies that a unicast IPv6 address is unique before it is assigned to a host interface by the stateless auto configuration feature. Duplicate address detection uses neighbor solicitation messages to verify that a unicast IPv6 address is unique.

NOTE
For the stateless auto configuration feature to work properly, the advertised prefix length in router advertisement messages must always be 64 bits.

The IPv6 stateless auto-configuration feature can also automatically reconfigure a host’s interfaces if you change the ISP for the host’s network. (The host’s interfaces must be renumbered with the IPv6 prefix of the new ISP.)

The renumbering occurs in the following way: a router on a local link periodically sends advertisements updated with the prefix of the new ISP to all nodes on the link. (The advertisements still contain the prefix of the old ISP.) A host can use the addresses created from the new prefix and the existing addresses created from the old prefix on the link. When you are ready for the host to use the new addresses only, you can configure the lifetime parameters appropriately using the `ipv6 nd prefix-advertisement` command. During this transition, the old prefix is removed from the router advertisements. At this point, only addresses that contain the new prefix are used on the link.

Enabling IPv6 routing

By default, IPv6 routing is enabled. If forwarding of IPv6 traffic globally on the device has been disabled, you can enable it by entering the following command.

```
device(config)# ipv6 unicast-routing
```

Syntax: `[no] ipv6 unicast-routing`

To disable the forwarding of IPv6 traffic globally on the device, enter the `no` form of this command.

NOTE
Downgrading from release 04.1.00 to an earlier release of the software can impact IPv6 routing. In earlier versions of the NetIron software, IPv6 routing was disabled by default. As of release 04.1.00, IPv6 routing is enabled by default and therefore does not appear in the configuration. If you are downgrading from 04.1.00 to an earlier version of the software and want IPv6 routing to be enabled, you must add the line “ipv6 unicast-routing” to the configuration.

Configuring IPv6 on each interface

To forward IPv6 traffic on an interface, the interface must have an IPv6 address, or IPv6 must be explicitly enabled. By default, an IPv6 address is not configured on an interface.

If you choose to configure a global or unique local IPv6 unicast address (ULA) for an interface, IPv6 is also enabled on the interface. Further, when you configure a global or unique local IPv6 unicast address, you must decide on one of the following in the low-order 64 bits:

- A manually configured interface ID.
- An automatically computed EUI-64 interface ID.
If you prefer to assign a link-local IPv6 address to the interface, you must explicitly enable IPv6, which causes a link-local address to be automatically computed for the interface. If preferred, you can override the automatically configured link-local address with an address that you manually configure.

This section provides the following information:

- Configuring a global or unique local IPv6 unicast address with a manually configured or automatically computed interface ID for an interface.
- Automatically or manually configuring a link-local address for an interface.
- Configuring IPv6 anycast addresses

NOTE

On XMR Series and MLX Series devices, the IPv6 packet received with the DA MAC as the router’s MAC is subjected to an IPv6 route lookup irrespective of IPv6 routing enabled on the interface.

Configuring a global or unique local IPv6 unicast address

Configuring a global or unique local IPv6 unicast address on an interface does the following:

- Automatically configures an interface ID (a link-local address), if specified.
- Enables IPv6 on that interface.

Additionally, the configured interface automatically joins the following required multicast groups for that link:

- Solicited-node multicast group FF02:0:0:0:0:1:FF00::/104 for each unicast address assigned to the interface.
- All-nodes link-local multicast group FF02::1
- All-routers link-local multicast group FF02::2

The neighbor discovery feature sends messages to these multicast groups. For more information, refer to [Configuring IPv6 neighbor discovery](#) on page 184.

Configuring a global or unique local IPv6 unicast address with a manually configured interface ID

To configure a global or unique local IPv6 unicast address, including a manually configured interface ID, for an interface, enter commands such as the following.

```sh
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 address 2001:DB8:12D:1300:240:D0FF:FE48:4672/64
```

These commands configure the global prefix 2001:DB8:12d:1300::/64 and the interface ID::240:D0FF:FE48:4672, and enable IPv6 on Ethernet interface 3/1.

Syntax: ipv6 address ipv6-prefix/prefix-length

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.
Configuring IPv6 on each interface

Configuring a global or unique local IPv6 unicast address with an automatically computed EUI-64 interface ID

To configure a global or unique local IPv6 unicast address with an automatically computed EUI-64 interface ID in the low-order 64-bits, enter commands such as the following.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 address 2001:DB8:12D:1300::/64 eui-64
```

These commands configure the global prefix 2001:DB8:12D:1300::/64 and an interface ID, and enable IPv6 on Ethernet interface 3/1.

Syntax: [no] ipv6 address ipv6-prefix/prefix-length eui-64

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `eui-64` keyword configures the global or unique local unicast address with an EUI-64 interface ID in the low-order 64 bits. The interface ID is automatically constructed in IEEE EUI-64 format using the interface's MAC address.

Configuring a link-local IPv6 address

To explicitly enable IPv6 on an interface without configuring a global or unique local unicast address for the interface, enter commands such as the following.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 enable
```

These commands enable IPv6 on Ethernet interface 3/1 and specify that the interface is assigned an automatically computed link-local address.

Syntax: [no] ipv6 enable

NOTE

When configuring VLANs that share a common tagged interface with a Virtual Ethernet (VE) interface, it is recommended that you override the automatically computed link-local address with a manually configured unique address for the interface. If the interface uses the automatically computed address, which in the case of VE interfaces is derived from a global MAC address, all VE interfaces will have the same MAC address.

To override a link-local address that is automatically computed for an interface with a manually configured address, enter commands such as the following.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 address FE80::240:D0FF:FE48:4672 link-local
```

These commands explicitly configure the link-local address FE80::240:D0FF:FE48:4672 for Ethernet interface 3/1.

Syntax: [no] ipv6 address ipv6-address link-local

You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `link-local` keyword indicates that the Extreme device interface should use the manually configured link-local address instead of the automatically computed link-local address.
Configuring IPv6 anycast addresses

In IPv6, an anycast address is an address for a set of interfaces that belong to different nodes. Sending a packet to an anycast address results in the delivery of the packet to the closest interface that has an anycast address.

An anycast address looks similar to a unicast address, because it is allocated from the unicast address space. If you assign an IPv6 unicast address to multiple interfaces, it is an anycast address. On the device, you configure an interface assigned an anycast address to recognize the address as an anycast address.

For example, the following commands configure an anycast address on interface 2/1.

```
device(config)# int e 2/1
device(config-if-e100-2/1)# ipv6 address 2001:db8::6/64 anycast
```

Syntax: `[no] ipv6 address ipv6-prefix [prefix-length [anycast]]`

IPv6 anycast addresses are described in detail in RFC 1884. See RFC 2461 for a description of how the IPv6 Neighbor Discovery mechanism handles anycast addresses.

IPv6 anycast filtering

By default all IPv6 packets with anycast address as destination will be processed. The following command provides options to selectively enable protocols or disable all protocols.

```
Extreme(config)# ipv6 anycast-no-response allow tcp
```

Syntax: `[no] ipv6 anycast-no-response [allow tcp|udp|icmp]`

The `allow tcp | udp | icmp` specifies the protocol to allow for processing.

NOTE

1. The `allow` options can also be used as standalone commands. If `ipv6 anycast-no-response` is already configured, it is modified based on the specified filters.

2. User can enable generation of TCP resets for incoming TCP packets with destination set as anycast address, by configuring `ip tcp enable-reset` command. However, if `ipv6 anycast-no-response` command is also enabled, this command becomes void since all anycast packets are blocked. If user requires reset to be sent for incoming anycast TCP packets, user has to configure `ipv6 anycast-no-response allow tcp` to unblock the incoming TCP packets.

Configuring IPv6 127 bit mask address

With 127 bit mask we will have 127 bits in the network part of the address, and 1 bit in the host part of the address. With 1 bit in the host part, we can have only two IPv6 addresses, one for each host. With 127 bit mask we consider 0 and 1 as host address and eliminates subnet-anycast for the configured network from that link.

NOTE

The 127 bit mask address supports only inter-router Point-to-Point links.

Benefits of using 127 bit mask:

- Eliminates the Ping-pong issue
- Reduces the impact of Denial of Service (DOS) attacks
- Saves IPv6 address space
For example, the following commands configure an 127 bit mask IPv6 address:

```
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# enable
device(config-if-e10000-1/1)# vrf forwarding green
device(config-if-e10000-1/1)# ipv6 address 10:1:1::1/127
device(config-if-e10000-1/1)# ipv6 enable
device(config-if-e10000-1/1)# ipv6 ospf area 0
device(config)# interface ethernet 1/2
device(config-if-e10000-1/2)# enable
device(config-if-e10000-1/2)# ip address 8.8.8.1/24
device(config-if-e10000-1/2)# ipv6 address 1:1:1:1::1/127
device(config-if-e10000-1/2)# ipv6 enable
```

Configuring the management port for an IPv6 automatic address configuration

You can configure the management port to automatically obtain an IPv6 address. The process is the same for all ports and is described in detail in the Configuring a global or unique local IPv6 unicast address with an automatically computed EUI-64 interface ID on page 150.

IPv6 host support

You can configure the device to be an IPv6 host. An IPv6 host has interfaces with IPv6 addresses, but does not have IPv6 routing enabled.

This section lists supported and unsupported IPv6 host features.

IPv6 host supported features

The following IPv6 host features are supported:

- Automatic address configuration

NOTE
Automatic IPv6 address configuration is supported, however, automatic configuration of an IPv6 global address is supported only if there is an IPv6 router present on the network. Manual IPv6 address configuration is not supported.

- HTTP/HTTPS over IPv6
- IPv6 ping
- Telnet using an IPv6 address
- TFTP using an IPv6 address
- Trace route using an IPv6 address
- Name to IPv6 address resolution using IPv6 DNS Server
- IPv6 access lists
- IPv6 debugging
- SSH version 1 over IPv6
- SNMP over IPv6
- Logging (Syslog) over IPv6
MLD version 1 and version 2

See IPv6 Addressing on page 145 for additional support information

Restricting SNMP access to an IPv6 node

You can restrict SNMP access (which includes Extreme Network Advisor access) to a specified IPv6 host. Enter a command such as the following.

```
device(config)# snmp-client ipv6 2001:DB8:efff:89::23
```

Syntax: `[no] snmp-client ipv6 ipv6-address`

The `ipv6-address` must be in hexadecimal format using 16-bit values between colons, as documented in RFC 2373.

NOTE
You cannot use the following IPv6 addresses with the `snmp-client ipv6 ipv6-address` command: `::` (unspecified address), `ff02::01` (all nodes address), and `ff02:02` (all routers address).

Specifying an IPv6 SNMP trap receiver

You can specify an IPv6 host to be a trap receiver so that all SNMP traps are sent to the same SNMP trap receiver or set of receivers, typically one or more host devices on the network. Enter a command such as the following.

```
device(config)# snmp-server host ipv6 2001:DB8:89::13
```

Syntax: `[no] snmp-server host ipv6 ipv6-address`

The `ipv6-address` must be in hexadecimal format using 16-bit values between colons, as documented in RFC 2373.

Restricting Telnet access by specifying an IPv6 ACL

You can specify an IPv6 ACL to restrict Telnet access to management functions on the device. Enter commands similar to the following.

```
(config)# ipv6 access-list acl1
(config-ipv6-access-list acl1)# deny ipv6 host 2000:2382::e0bb:2 any
(config-ipv6-access-list acl1)# deny ipv6 2001:DB8::ff89/128 any
(config-ipv6-access-list acl1)# permit ipv6 any any
(config-ipv6-access-list acl1)# exit
(config)# telnet access-group ipv6 acl1
```

This example configures and applies an IPv6 ACL named "acl1", which denies Telnet access to the device from the specified IPv6 addresses, but allows access from any other IPv6 address.

```
(config)# ipv6 access-list acl2
(config-ipv6-access-list acl2)# permit ipv6 host 2000:2382::e0bb:2 any
(config-ipv6-access-list acl2)# deny ipv6 any any
(config-ipv6-access-list acl2)# exit
```

This example configures and applies an IPv6 ACL named "acl2", which allows Telnet access to the device only from the specified IPv6 address, and denies access from any other IPv6 address.

Syntax: `telnet access-group ipv6 ipv6-acl-name`

The `ipv6-acl-name` is a valid IPv6 ACL.
Restricting SSH access by specifying an IPv6 ACL

You can configure an IPv6 ACL to restrict SSH access to management functions on the device. Enter commands such as the following.

```
(config)# ipv6 access-list acl1
(config-ipv6-access-list acl1)# deny ipv6 host 2000:2382::e0bb:2 any
(config-ipv6-access-list acl1)# deny ipv6 2001:DB8::ff89/128 any
(config-ipv6-access-list acl1)# permit ipv6 any any
(config-ipv6-access-list acl1)# exit
(config)# ssh access-group ipv6 acl1
```

This example configures and applies an IPv6 ACL named “acl1”, which denies SSH access to the device from the specified IPv6 addresses, but allows access from any other IPv6 address.

```
(config)# ipv6 access-list acl2
(config-ipv6-access-list acl2)# permit ipv6 host 2000:2382::e0bb:2 any
(config-ipv6-access-list acl2)# deny ipv6 any any
(config-ipv6-access-list acl2)# exit
(config)# ssh access-group ipv6 acl2
```

This example configures and applies an IPv6 ACL named “acl2”, which allows SSH access to the device only from the specified IPv6 address, and denies access from any other IPv6 address.

Syntax: `[no] ssh access-group ipv6 ipv6-acl-name

The `ipv6-acl-name` variable is a valid IPv6 ACL.

Restricting Web management access by specifying an IPv6 ACL

You can configure an IPv6 ACL to restrict Web management access to management functions on the device. Enter commands such as the following.

```
(config)# ipv6 access-list acl1
(config-ipv6-access-list acl1)# deny ipv6 host 2000:2382::e0bb:2 any
(config-ipv6-access-list acl1)# deny ipv6 2001:DB8::ff89/128 any
(config-ipv6-access-list acl1)# permit ipv6 any any
(config-ipv6-access-list acl1)# exit
(config)# web access-group ipv6 acl1
```

This example configures and applies an IPv6 ACL named “acl1”, which denies Web management access to the device from the specified IPv6 addresses, but allows access from any other IPv6 address.

```
(config)# ipv6 access-list acl2
(config-ipv6-access-list acl2)# permit ipv6 host 2000:2382::e0bb:2 any
(config-ipv6-access-list acl2)# deny ipv6 any any
(config-ipv6-access-list acl2)# exit
```

This example configures and applies an IPv6 ACL named “acl2”, which allows Web management access to the device only from the specified IPv6 address, and denies access from any other IPv6 address.

Syntax: `web access-group ipv6 ipv6-acl-name

The `ipv6-acl-name` variable is a valid IPv6 ACL.

Restricting SNMP access by specifying an IPv6 ACL

You can configure an IPv6 ACL to restrict Web management access to management functions on the device.
The syntax for configuring ACLs for SNMP access differs from the syntax for controlling Telnet, SSH, and Web management access using ACLs.

```
device(config)# ipv6 access-list aclro
device(config-ipv6-access-list aclro)# deny ipv6 host 2000:2382::e0bb:2 any
device(config-ipv6-access-list aclro)# deny ipv6 2001:DB8::ff89/128 any
device(config-ipv6-access-list aclro)# permit ipv6 any any
device(config-ipv6-access-list aclro)# exit
device(config-ipv6-access-list aclrw)# permit ipv6 host 2000:2382::e0bb:2 any
device(config-ipv6-access-list aclrw)# deny ipv6 any any
device(config-ipv6-access-list aclrw)# exit
device(config)# snmp-server community public ro ipv6 aclro
device(config)# snmp-server community private rw ipv6 aclrw
device(config)# write memory
```

These commands configure IPv6 ACLs aclro and aclrw, then apply these ACLs to community strings. ACL aclro controls read-only access using the "public" community string. ACL aclrw controls read-write access using the "private" community string.

Syntax: [no] snmp-server community string { ro | rw } ipv6 ipv6-acl-name

The `string` specifies the SNMP community string you must enter for SNMP access.

The `ro` parameter indicates that the community string is for read-only ("get") access. The `rw` parameter indicates the community string is for read-write ("set") access.

The `ipv6` parameter indicates that you are applying an IPv6 access list.

The `ipv6-acl-name` variable specifies the IPv6 access list name.

NOTE
When `snmp-server community` is configured, all incoming SNMP packets are validated first by their community strings and then by their bound ACLs. Packets are permitted if no filters are configured for an ACL.

Restricting Web management access to your device to a specific IPv6 host

You can restrict Web management access to your device to a specific IPv6 host only. Enter commands such as the following.

```
device(config)# web client ipv6 2001:db8:e0bb::2
```

Syntax: [no] web client ipv6 ipv6-address

The `ipv6-address` must be in hexadecimal format using 16-bit values between colons, as documented in RFC 2373.

Specifying an IPv6 Syslog server

To specify an IPv6 Syslog server, enter a command such as the following.

```
device(config)# log host ipv6 2001:db8:e0bb::4
```

Syntax: [no] log host ipv6 ipv6-address [udp-port-num]

The `ipv6-address` must be in hexadecimal using 16-bit values between colons, as documented in RFC 2373.

The `udp-port-num` optional parameter specifies the UDP application port used for the Syslog facility.
Viewing IPv6 SNMP server addresses

Many `show` commands display IPv6 addresses for IPv6 SNMP servers. This example shows output for the `show snmp server` command.

```
device# show snmp server

Contact:
Location:
Community(ro): ..... 

Traps
 Warm/Cold start: Enable
  Link up: Enable
  Link down: Enable
  Authentication: Enable
  Locked address violation: Enable
  Power supply failure: Enable
  Fan failure: Enable
  Temperature warning: Enable
  STP new root: Enable
  STP topology change: Enable
  vsrp: Enable

Total Trap-Receiver Entries: 4
Trap-Receiver IP-Address                Port-Number Community
1    10.147.201.100                      162     ..... 
2    2001:db8:4000::200                162     ..... 
3    10.147.202.100                      162     ..... 
4    2001:db8:3000::200                162     ..... 
```

Disabling router advertisement and solicitation messages

Router advertisement and solicitation messages enable a device to discover other devices on the same link. By default, router advertisement and solicitation message generation is enabled. To disable this feature, configure an IPv6 access list that denies them. Enter commands such as the following.

```
device(config)# ipv6 access-list rtradvert
device(config-ipv6-access-list rtradvert)# deny icmp any any router-advertisement
device(config-ipv6-access-list rtradvert)# deny icmp any any router-solicitation
device(config-ipv6-access-list rtradvert)# permit ipv6 any any
```

IPv6 Non stop routing and graceful restart

At times, routers may need to restart or may undergo failover. Traditionally during a restart or failover, sessions with the restarting devices are torn down and re-established. Traffic is disrupted due to route deletion and addition in the forwarding plane. Graceful Restart (GR) and Non Stop Routing (NSR) are two different mechanisms to prevent routing protocol re-convergence during a processor switchover.

When Graceful Restart is used, peer networking devices are informed, via protocol extensions that the router is undergoing a restart condition. Peer devices, known as “helper” devices, will continue to forward to the restarting router until a “grace period”, within which the adjacency is re-established.
When Non Stop Routing is used, peer networking devices have no knowledge of any event on the router that is switching over. All information needed to continue the routing protocol peering state is transferred to the standby processor so it can continue immediately upon a switchover. Since NSR does not require the help of neighboring routers during restart, NSR capable routers can be deployed independently in an existing network.

Limitations

- Configuration events that occur at the same time as the switchover may get lost due to the CLI synchronization.
- Neighbor, interface, or NSSA translation state changes 'close' to and during the switchover will not be handled.
 - Due to the core-reset of the LP, dead-timers below 40 seconds are not supported.
 - Number of neighbors supported may be limited depending on how many packets LP can send upon completion of the core-reset, due to competition with LP-sync-updates to get OSPF neighbor packets sent out.
- Traffic counters will not be synced. Neighbor and LSA DB counters will be recalculated on Standby during sync.
- There may be a slowdown of LSA acking due to the wait for the ack from Standby before acking the received LSAs.
- OSPF Database Overflow condition for External LSAs - depending on the sequence of redistribution or new LSAs (from neighbors), the LSAs accepted within the limits of the database may change upon switchover.
- The NSR hitless failover event may not be completely transparent to the network as after switchover additional flooding related protocol traffic will be generated to the directly connected neighbors.
- OSPF Startup Timers will not be applied upon NSR switchover.

Supported protocols

The following protocols support both failover and Hitless Operating system Switchover (HLOS) for each protocol.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3</td>
<td>Non-stop routing, Graceful restart helper</td>
</tr>
<tr>
<td>IS-IS IPv6</td>
<td>Non-stop routing</td>
</tr>
<tr>
<td>BGP IPv6</td>
<td>Graceful restart</td>
</tr>
</tbody>
</table>

Restart global timers

Restart contains two global timers, max-hold-timer and the protocols-converge-timer, that:

- Limit the amount of time used for re-syncing routes between the backup Management module and Interface modules (LPs) within the same chassis
- Allow a buffer time for protocols to converge and solve dependencies among each other

If the protocol-based restart features are configured when a Management module (MP) performs a switchover to its backup, routes are maintained on the LPs through the protocol-based restart processes for a specified period of time while the new MP learns the network routes. Once the MP learns all of its routes, the routes from the MP are synced with the routes on the LPs.

Graceful-restart IPv6 max-hold-timer

The graceful-restart ipv6 max-hold-timer command defines the time that a device waits before sync up forwarding information is sent to the LP.
Use the `graceful-restart ipv6 max-hold-timer` command to set the max-hold-timer value.

```device(config)# graceful-restart ipv6 max-hold-timer 300```

Syntax: `[no] graceful-restart ipv6 max-hold-timer hold-interval`

The `hold-time` variable is the maximum hold time in seconds before sync up forwarding information is sent to the LP. The acceptable range is 30 to 3600 seconds. The default is 300 seconds.

**Graceful-restart IPv6 protocols-converge-timer**

The `graceful-restart ipv6 protocols-converge-timer` command defines the time that a device waits for restarting protocols to converge at the final step in the restart process. In a heavily loaded system where BGP/OSPF/GRE/Static protocols can have a dependency on each other, their restart procedures may also depend on each other. This timer allows protocols to solve inter-dependencies after individual restart processes and before routing modules sync up new forwarding information to the interface module. The default value of 5 seconds will work in most cases, but if a system is heavily loaded and has protocols that depend on each other, it is recommended to increase this value.

Use the `graceful-restart ipv6 protocols-converge-timer` command to set the timer value.

```device(config)# graceful-restart ipv6 protocols-converge-timer 20```

Syntax: `[no] graceful-restart ipv6 protocols-converge-timer convergence-interval`

The `hold-time` variable is the maximum hold time in seconds before management routing modules sync up new forwarding information to interface modules during restart. The range of permissible values is 0 to 1200 seconds. The default value is 5 seconds.

Configuring NSR and graceful restart on OSPFv3

OSPFv3 supports nonstop routing and graceful-restart helper mode. Nonstop routing and graceful-restart helper mode can be configured both in legacy router mode or VRF mode. The following commands are used to configure NSR and graceful-restart helper mode.

```device(config)# nonstop-routing```

Syntax: `[no] nonstop-routing`

The `nonstop routing` command enables nonstop routing in OSPFv3.

NSR OSPFv3 is only supported on MLX Series and XMR Series devices. Graceful restart helper mode is supported on MLX Series and XMR Series devices and CER 2000 Series and CES 2000 Series devices.

Use the `graceful-restart helper` command to configure or disable helper mode.

```device(config)# graceful-restart helper```

Syntax: `[no] graceful-restart helper [disable | strict-lsa-checking]`

The `graceful-restart helper disable` command disables the graceful-restart helper capability. By default it is enabled.

The `strict-lsa-checking` command exits helper mode upon a change in topology during a graceful restart.

Show commands
Show running-configuration

This command shows the running configuration.

```
device#show running-config
...
ip router-id 10.1.1.1
!
ipv6 router ospf
  area 0
  nonstop-routing
  
  ...
!
ipv6 router ospf vrf red
  graceful-restart helper strict-lsa-checking
  
  ...
!
ipv6 router ospf vrf blue
  area 0
  graceful-restart helper disable
  
Syntax: show running-config
```

Show ipv6 ospf

This command shows the IPv6 OSPF configuration.

```
device#show ipv6 ospf
OSPFv3 Process number 0 with Router ID 0x10010101(10.1.1.1)
Running 0 days 3 hours 11 minutes 42 seconds
Number of AS scoped LSAs is 9
Sum of AS scoped LSAs Checksum is 00006cc6
External LSA Limit is 250000
Route calculation executed 1 times
Pending outgoing LSA count 0
Authentication key rollover interval 300 seconds
Number of areas in this router is 1
High Priority Message Queue Full count: 0
BFD is disabled
Graceful restart helper is enabled, strict lsa checking is disabled
Nonstop Routing is enabled

Syntax: show ipv6 ospf
```

Show ipv6 ospf vrf vrf name

This command shows the IPv6 OSPF configuration on a specific VRF.

```
device#show ipv6 ospf vrf red
OSPFv3 Process number 0 with Router ID 0x10020202(10.2.2.2)
Running 0 days 8 hours 32 minutes 14 seconds
Number of AS scoped LSAs is 4
Sum of AS scoped LSAs Checksum is 00007d93
External LSA Limit is 250000
Route calculation executed 1 times
Pending outgoing LSA count 0
Authentication key rollover interval 300 seconds
Number of areas in this router is 1
High Priority Message Queue Full count: 0
BFD is disabled
Graceful restart helper is enabled, strict lsa checking is enabled
Nonstop Routing is disabled
device#show ipv6 ospf vrf blue
OSPFv3 Process number 0 with Router ID 0x10020202(10.2.2.2)
Running 0 days 8 hours 32 minutes 14 seconds
```
Number of AS scoped LSAs is 4
Sum of AS scoped LSAs Checksum is 00007d93
External LSA Limit is 250000
Route calculation executed 1 times
Pending outgoing LSA count 0
Authentication key rollover interval 300 seconds
Number of areas in this router is 1
High Priority Message Queue Full count: 0
BFD is disabled
Graceful restart helper is disabled, strict lsa checking is disabled
Nonstop Routing is disabled

Syntax: show ipv6 ospf vrf vrfname

Show ipv6 ospf database

This command shows the IPv6 OSPF database configuration.

```
device#show ipv6 ospf database
LSA Key - Rtr:Router Net:Network Inap:InterPrefix Inar:InterRouter
Extn:ASExternal Grp:GroupMembership Typ7:Type7 Link:Link
Iap:IntraPrefix Grc:Grace
```

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Type</th>
<th>LSID</th>
<th>Adv Rtr</th>
<th>Seq(Hex)</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
<th>Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rtr</td>
<td>0</td>
<td>10.1.1.1</td>
<td>800004cb</td>
<td>264</td>
<td>e06e</td>
<td>40</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>Iap</td>
<td>0</td>
<td>10.1.1.1</td>
<td>800004dc</td>
<td>264</td>
<td>9de4</td>
<td>52</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>Grc</td>
<td>1</td>
<td>10.2.2.2</td>
<td>80000001</td>
<td>17</td>
<td>a8a6</td>
<td>32</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Syntax: show ipv6 ospf database

Show ipv6 ospf data summary

This command displays the IPv6 OSPF data summary.

```
device(config-ospf6-router)#show ipv6 ospf data summary
AS scope:
  Active  MaxAge
  ASEExternal  0  0
Area 0 scope:
  Active  MaxAge
  Router   1  0
  Network  0  0
  InterPrefix  0  0
  InterRouter  0  0
  Type7   0  0
  IntraPrefix  1  0
  Other  0  0
Total 0 0
Interface scope (over 1 interfaces):
  Active  MaxAge
  Link  0  0
  Grace  1  0
  Other  0  0
  Total  1  0
Total: 3 LSAs, 3 Active LSAs, 0 MaxAge LSAs
```

Syntax: show ipv6 ospf data summary

Show ipv6 ospf database grace

This command shows the IPv6 OSPF LSA timer grace period configuration.

```
device#show ipv6 ospf database grace
```

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Type</th>
<th>LSID</th>
<th>Adv Rtr</th>
<th>Seq(Hex)</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Grc</td>
<td>1</td>
<td>10.4.4.4</td>
<td>80000017</td>
<td>a8a6</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Restart duration: 150
Restart Reason: Software Reload
Syntax: show ipv6 ospf database grace

Configuring Non Stop Routing on IS-IS

NOTE
IPv6 IS-IS NSR is not supported on the CES 2000 Series and CER 2000 Series platforms.

IS-IS IPv6 supports nonstop routing. The following command is used to configure NSR. Further configuration details are available in Chapter 54.

```
device(config-isis-router)#nonstop-routing
```

Syntax: `[no] nonstop-routing

The `nonstop-routing` command enables nonstop routing in IS-IS IPv6.

Show commands

Show isis

This command shows the IS-IS configuration.

```
device#show isis
IS-IS Routing Protocol Operation State: Enabled
   IS-Type: Level-1-2
... Global Hello Padding For Point to Point Circuits: Enabled
Ptpt Three Way HandShake Mechanism: Enabled
BGP Ipv4 Converged: FALSE, Ipv6 Converged: FALSE
IS-IS Traffic Engineering Support: Disabled
No ISIS Shortcuts Configured
BFD: Disabled
NSR: Enabled
 NSR State: Normal
 Standby MP: Active
 Sync State: Enabled
Interfaces with IPv4 IS-IS configured:
   None
...```

### Configuring BGP graceful restart

BGP IPv6 supports graceful restart.

- BGP informs Graceful Restart capability to its peer.
- BGP peers retains BGP routing information and help Graceful Restart process.

The following command is used to configure graceful restart.

```
device(config-bgp-router)#graceful-restart
```

**Syntax:** `[no] graceful-restart [ purge-time ] [ restart-time ] [ stale-routes-time ]

The `graceful-restart` command enables graceful restart for the address-family. The `purge-time` command is used to configure the maximum time in seconds before stale routes are purged. The `purge-time` cannot be less than the time set for the `stale-routes-time`.

The `restart-time` command is used to configure the maximum restart time advertised to neighbors in seconds. The `stale-routes-time` command is used to configure the maximum wait time in seconds for BGP EOR marker.
Show commands

Show running-configuration

This command shows the running configuration.

device#show running-config
Current BGP configuration:
router bgp
local-as 200
neighbor 2001:DB8:22::6 remote-as 100

address-family ipv4 unicast
graceful-restart stale-routes-time 100
graceful-restart purge-time 100
graceful-restart
no neighbor 2001:DB8:22::6 activate
exit-address-family

address-family ipv4 multicast
exit-address-family

address-family ipv6 unicast
graceful-restart restart-time 160
graceful-restart stale-routes-time 120
graceful-restart purge-time 120
graceful-restart
neighbor 2001:DB8:22::6 activate
exit-address-family

address-family ipv6 multicast
exit-address-family

address-family l2vpn vpls
exit-address-family

end of BGP configuration

Show ipv6 bgp neighbors IP address

This command shows the running configuration.
device#show ipv6 bgp neighbors 2001:DB8:22::6
1    IP Address: 2001:DB8:22::6, AS: 100 (EBGP), RouterID: 10.6.6.6, VRF: default-vrf
    State: ESTABLISHED, Time: 2h24m36s, KeepAliveTime: 60, HoldTime: 180
    KeepAliveTimer Expire in 16 seconds, HoldTimer Expire in 142 seconds
    Minimal Route Advertisement Interval: 0 seconds
    RefreshCapability: Received
    GracefulRestartCapability: Sent
    Restart Time 160 sec, Restart bit 0
    afi/safi 2/1, Forwarding bit 0
    Messages:    Open    Update KeepAlive Notification Refresh-Req
    Sent : 1       1       164       0            0
    Received: 1      0       164       0            0
    Last Update Time: NLRI       Withdraw          NLRI       Withdraw
    Tx: ---        ---           Rx: ---        ---
    Last Connection Reset Reason:Unknown
    Notification Sent:     Unspecified
    Notification Received: Unspecified
    Neighbor NLRI Negotiation:
      Peer Negotiated IPV6 unicast capability
      Peer configured for IPV6 unicast Routes
    Neighbor ipv6 MPLS Label Capability Negotiation:
    Neighbor AS4 Capability Negotiation:
    Outbound Policy Group:
      ID: 2, Use Count: 1
    BFD:Disabled
    TCP Connection state: ESTABLISHED, flags:00000044 (0,0)
    Maximum segment size: 1440
Syntax: Show ipv6 bgp neighbors IPAddress

IPv6 Hitless OS upgrade

OSPFv3, IS-IS IPv6, and BGP IPv6 support both failover and Hitless Operating System Switchover (HLOS). HLOS provides a platform support mechanism to upgrade image without disrupting routing and forwarding service.

The process of syncing routes between a new MP and its LPs using the new timers are illustrated in Figure 14 and described in the following steps.

FIGURE 14 IPv6 HLOS operation

1. HLOS starts and the Standby MP is rebooted with a new image.
2. System switches over and the Standby MP takes role of the Active MP.
3. The old Active MP is rebooted with the new image and it takes the role of the Standby MP.
4. Once the Active and Standby MP are in sync, the LP backs up the necessary IPv6 route information.
5. The LP CPU core resets, once the core reset is complete the LP receives IPv6 route information from Active MP.
6. The LP restores the complete IPv6 routes using the information synced from the Active MP to the LP and the backed up information on the LP.
7. HLOS complete.

Configuring IPv4 and IPv6 protocol stacks

If a device is deployed as an endpoint for an IPv6 over IPv4 tunnel, you must configure the device to support IPv4 and IPv6 protocol stacks. Each interface that sends and receives IPv4 and IPv6 traffic must be configured with an IPv4 address and an IPv6 address. You can also explicitly enable IPv6 using the `ipv6 enable` command. Refer to Configuring a link-local IPv6 address on page 150.

To configure an interface to support both IPv4 and IPv6 protocol stacks, enter commands such as the following.

```
device(config)# ipv6 unicast-routing
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ip address 192.168.1.1 255.255.255.0
device(config-if-e100-3/1)# ipv6 address 2001:DB8:12d:1300::/64 eui-64
```

These commands globally enable IPv6 routing on the device, and configure an IPv4 address and an IPv6 address for Ethernet interface 3/1.

Syntax: `[no] ipv6 unicast-routing`

To disable IPv6 traffic globally on the Extreme device, enter the `no` form of this command.

Syntax: `[no] ip address ip-address sub-net-mask [ secondary ]`

You must specify the `ip-address` parameter using 8-bit values in dotted decimal notation.

You can specify the `sub-net-mask` parameter in either dotted decimal notation or as a decimal value preceded by a slash mark (/).

The `secondary` keyword specifies that the configured address is a secondary IPv4 address.

To remove the IPv4 address from the interface, enter the `no` form of this command.

Syntax: `[no] ipv6 address ipv6-prefix/prefix-length [ eui-64 ]`

This syntax specifies a global or unique local IPv6 unicast address. For information about configuring a link-local IPv6 address, refer to Configuring a link-local IPv6 address on page 150.

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `eui-64` keyword configures the global or unique local unicast address with an EUI-64 interface ID in the low-order 64 bits. The interface ID is automatically constructed in IEEE EUI-64 format using the MAC address of the interface. If you do not specify the `eui-64` keyword, you must manually configure the 64-bit interface ID as well as the 64-bit network prefix. For more information about manually configuring an interface ID, refer to Configuring a global or unique local IPv6 unicast address on page 149.

IPv6 Over IPv4 tunnels in hardware

To enable communication between the isolated IPv6 domains using the IPv4 infrastructure, you can configure IPv6 over IPv4 tunnels.

**NOTE**

The CES 2000 Series and CER 2000 Series currently do not support IPv6 over IPv4 tunneling.
NetIron OS devices support the following IPv6 over IPv4 tunneling in hardware mechanisms:

- Manually configured tunnels
- Automatic 6to4 tunnels

In general, a manually configured tunnel establishes a permanent link between routers in IPv6 domains, while the automatic tunnels establish a transient link that is created and taken down on an as-needed basis. (Although the feature name and description may imply otherwise, some configuration is necessary to set up an automatic tunnel.) Also, a manually configured tunnel has explicitly configured IPv4 addresses for the tunnel source and destination, while the automatic tunnels have an explicitly configured IPv4 address for the tunnel source and an automatically generated address for the tunnel destination.

These tunneling mechanisms require that the router at each end of the tunnel run both IPv4 and IPv6 protocol stacks. The routers running both protocol stacks, or dual-stack routers, can interoperate directly with both IPv4 and IPv6 end systems and routers.

The following features are not supported for IPv6 tunnel configuration at this time:

- Keep-alive
- Hitless upgrade
- Tunnels over MPLS or GRE

### Configuring a IPv6 IP tunnel

To configure a IPv6 IP Tunnel, configure the following parameters:

- CAM Restrictions
- Maximum Number of Tunnels (optional)
- Tunnel Interface
- Source Address or Source Interface for the Tunnel
- Destination address for the Tunnel
- IPv6 Encapsulation
- IP address for the Tunnel
- TTL Value (optional)
- TOS Value (optional)
- MTU Value (optional)

**NOTE**

Do not forward packets from one type of tunnel to another type of tunnel in XPP. Packets may not be routed properly.

### Configuring a manual IPv6 tunnel

You can use a manually configured tunnel to connect two isolated IPv6 domains. You should deploy this point-to-point tunnel mechanism if you need a permanent and stable connection.
Configuration notes on manual tunnels:

- The tunnel mode should be `ipv6ip` indicating that this is an IPv6 manual tunnel.
- Both source and destination addresses need to be configured on the tunnel.
- On the remote side you need to have exactly opposite source/destination pair.
- The tunnel destination should be reachable through the IPv4 backbone.
- The IPv6 address on the tunnel needs to be configured for the tunnel to come up.
- The tunnel source can be an IP address or interface name.
- Manual tunnels provide static point-point connectivity.
- Static routing on top of the tunnel is supported.
- IPv6 routing protocols including OSPFv3 and RIPing on top of the tunnel are supported.

**NOTE**
IPv6 IS-IS is not supported on top of the tunnel.

Configuring an automatic 6to4 tunnel

An automatic 6to4 tunnel establishes a transient link between IPv6 domains, which are connected by an IPv4 backbone. When needed, a device on which an automatic 6to4 tunnel is configured in one domain can establish a tunnel with another similarly configured device in another domain. When no longer needed, the devices take down the tunnel.

Instead of a manually configured tunnel destination, an automatic 6to4 tunnel constructs a globally unique 6to4 prefix, which determines the tunnel destination. The 6to4 prefix has the following format:

```
2002:ipv4-address ::/48
```

When two domains need to communicate, a device creates a tunnel using the 6to4 prefix. The software automatically generates the 6to4 prefix by concatenating a configured static IPv6 prefix of 2002 with the destination device’s globally unique IPv4 address. (Each device in an IPv6 domain that needs to communicate over an automatic 6to4 tunnel must have one globally unique IPv4 address, from which the globally unique 6to4 prefix is constructed.) After the communication ends, the tunnel is taken down.
Configuration notes on 6to4 tunnels:

- This tunnel treats the IPv4 infrastructure as a virtual non-broadcast link and supports multipoint connectivity.
- Tunnel mode must be configured as `ipv6ip 6to4`.
- Tunnel source must be configured.
- Tunnel destination is not configured on 6to4 tunnel explicitly, as the destination is specified as part of static nexthop or BGP nexthop.
- Static route with 2002::/16 MUST be configured.
- IPv6 address with 2002:A.B.C.D::/48 must be configured for the tunnel to come up (A.B.C.D is the tunnel source IP address).
- You can have 6to4 tunnel with multiple nexthops depending on the IPv6 nexthop used to forward the packets.
- With 6to4 tunnels, you can only use routing protocols (that is BGP+) that specify the nexthop in the configuration.
- OSPFv3, IPv6 IS-IS and RIPng are not supported on the 6to4 tunnels.
- Static routes can be used with 6to4 tunnels. If you use a static route to configure the nexthop, you MUST enable nexthop recursion in the system (ipv6 route next-hop-recursion).
- The 6to4 tunnel tries to resolve all the nexthops and programs the CAM and PRAM entries needed. The IPv4 address in the nexthop should be reachable through the IPv4 network.

In the below configuration:

- 10.10.10.1 is the tunnel source IP address
- 10.10.10.10 is the static nexthop
- 21.21.21.6 is I-BGP nexthop
- 22.22.22.6 is E-BGP nexthop
Static route Nexthop example:

- Create a static route pointing to the tunnel.

  ```
 device(config)# ipv6 route 2002::/16 tunnel 2 // Mandatory for 6to4 Configuration
 device(config)# ipv6 route next-hop-recursion // Mandatory with static nexthop
 device(config)# ipv6 route 3001::/64 2002:0a0a:0a0a::1 // Static Nexthop: 10.10.10.10
  ```

- Create a Source Interface - The remote node needs to have a similar route pointing to this node.

  ```
 device(config)# interface ethernet 1/1
 device(config-if-e10000-1/1)# ip address 10.10.10.1 255.255.255.0
  ```

- Create a 6to4 Tunnel configuration.

  ```
 device(config)# interface tunnel 2
 device(config-tnif-2)# tunnel mode ipv6ip 6to4
 device(config-tnif-1)# tunnel source 10.10.10.1
 device(config-tnif-1)# ipv6 address 2002:0a0a:0a01::1/64
  ```

: I-BGP Nexthop.

  ```
 device(config)# router bgp
 device(config-bgp)# local-as 100
 device(config-bgp)# neighbor 2002:1515:1506::1 remote-as 100 // BGP Nexthop: 21.21.21.6
 device(config-bgp)# address-family ipv4 unicast
 device(config-bgp)# no neighbor 2001:DB8:1506::1 activate
 device(config-bgp)# exit-address-family
 device(config-bgp)# address-family ipv4 multicast
 device(config-bgp)# exit-address-family
 device(config-bgp)# address-family ipv6 unicast
 device(config-bgp)# no neighbor 2002:1515:1506::1 activate
 device(config-bgp)# exit-address-family
  ```

: E-BGP Nexthop.

  ```
 device(config)# router bgp
 device(config-bgp)# local-as 100
 device(config-bgp)# neighbor 2002:1616:1606::1 remote-as 101 // BGP Nexthop: 22.22.22.6
 device(config-bgp)# neighbor 2002:1616:1606::1 ebgp-multihop
 device(config-bgp)# address-family ipv4 unicast
 device(config-bgp)# no neighbor 2002:1515:1506::1 activate
 device(config-bgp)# exit-address-family
 device(config-bgp)# address-family ipv4 multicast
 device(config-bgp)# exit-address-family
 device(config-bgp)# address-family ipv6 unicast
 device(config-bgp)# no neighbor 2002:1616:1606::1 activate
 device(config-bgp)# exit-address-family
  ```

Configuring the maximum number of tunnels supported

You can configure the device to support a specified number of tunnels using the following command.

  ```
 device(config)# system-max ip-tunnels 512
 device(config)# write memory
  ```

Syntax: [no] system-max ip-tunnels number

The number variable specifies the number of IPv6 tunnels that can be supported on the Extreme device. The permissible range is 1 - 512. The default value is 256.

NOTE

You must write this command to memory and perform a system reload for this command to take effect.
**Configuring a tunnel interface**

To configure a tunnel interface, use the following command.

```
device(config)# interface tunnel 1
device(config-tnif-1)
```

Syntax: `[no] interface tunnel tunnel id`

The `tunnel-id` variable is a numerical value that identifies the tunnel being configured. Possible range is from 1 to the maximum configured tunnels in the system.

**Configuring a source address or source interface for a tunnel interface**

To configure a source address for a specific tunnel interface, enter the following command.

```
device(config)# interface tunnel 1
device(config-tnif-1) tunnel source 10.0.8.108
```

To configure a source interface for a specific tunnel interface, enter the following command.

```
device(config)# interface tunnel 100
device(config-tnif-100) tunnel source ethernet 3/1
```

Syntax: `[no] tunnel source ip-address | port-no`

You can specify either of the following:

- The `ip-address` variable is the source IP address being configured for the specified tunnel.
- The `port-no` variable is the source slot/port of the interface being configured for the specified tunnel. When you configure a source interface, there must be at least one IP address configured on that interface. Otherwise, the interface will not be added to the tunnel configuration and an error message like the following will be displayed: “Error - Tunnel source interface 3/1 has no configured ip address.

   It can be a physical or virtual interface (ve).

**Configuring a destination address for a tunnel interface**

To configure a destination address for a specific tunnel interface, enter the following command.

```
device(config)# interface tunnel 1
device(config-tnif-1) tunnel destination 10.108.5.2
```

Syntax: `[no] tunnel destination ip-address`

The `ip-address` variable is destination IP address being configured for the specified tunnel.

**Configuring a tunnel interface for IPv6 encapsulation**

To configure a specified tunnel interface for IPv6 encapsulation, enter the following command.

```
device(config)# interface tunnel 1
device(config-tnif-1) tunnel mode ipv6ip
```

Syntax: `[no] tunnel mode ipv6ip 6to4 | auto-tunnel`

The `6to4` parameter specifies automatic tunneling using 6 to 4.

The `auto-tunnel` parameter specifies automatic tunnel using IPv4 compatible ipv6 address.
**Configuring an IP address for a tunnel interface**

To configure an IP address for a specified tunnel interface, enter the following command.

```bash
device(config)# interface tunnel 1
device(config-tnif-1)ipv6 address 2001:0a0a:0a01::1/64
```

**Syntax:** `[no] ipv6 address ipv6-address`

The `ipv6-address` variable is the IPv6 address being configured for the specified tunnel interface.

**Configuring a TTL value**

This is an optional parameter that allows you to set the Time-to-Live value for the outer IP header of the IPv6 tunnel packets.

To configure the TTL value, enter the following command.

```bash
device(config)# interface tunnel 1
device(config-tnif-1)tunnel ttl 100
```

**Syntax:** `[no] tunnel ttl ttl-value`

The `ttl-value` variable specifies a TTL value for the outer IP header. Possible values are 1 - 255. The default value is 255.

**Configuring a TOS value**

This is an optional parameter that allows you to set the TOS value for the outer IP header of the GRE tunnel packets.

To configure the TOS value, enter the following command.

```bash
device(config)# interface tunnel 1
device(config-tnif-1)tunnel tos 100
```

**Syntax:** `[no] tunnel ttl tos-value`

The `tos-value` variable specifies a TOS value for the outer IP header. Possible values are 1 - 255. The default value is 0.

**Configuring IPv6 session enforce check**

You can enable the IPv6 session enforce check by using the `ipv6-session-enforce-check` command. When an IPv6 packet arrives and this feature is enabled, the system tries to match the IPv6 packet source and destination address pair with the tunnel configured destination and source pair. If the pairs do not match, the packet is dropped in hardware.

To configure the IPv6 session enforce check, go to the IP tunnel policy context and enter the `ipv6-session-enforce-check` command.

```bash
device(config)#ip-tunnel-policy
device(config-ip-tunnel-policy)#ipv6-session-enforce-check
```

**Syntax:** `[no] ipv6-session-enforce-check`

To disable the IPv6 session enforce check, use the `no` form of this command. This command is disabled by default. You might have to write the configuration to memory and reload the system when the configuration of this command is changed because a one-time creation of a source-ingress CAM partition is necessary. The system prompts you if the memory write and reload are required.

The first-time execution of certain commands necessitates the creation of a source-ingress CAM partition, after which you write to memory and reload. These commands are `gre-session-enforce-check`, `ipv6-session-enforce-check`, and `accounting-enable`. After this CAM partition is created, it is not necessary to follow either of the other two commands with a memory write and reload.

**NOTE**

The `ipv6-sessions-enforce-check` is not supported for 6to4 automatic tunnels.
Configuring a maximum MTU value for a tunnel interface

This command allows you to set an MTU value for packets entering the tunnel. Packets that exceed either the default MTU value of 1480 bytes or the value that you set using this command are sent back to the source.

The following command allows you to change the MTU value for packets transiting “tunnel 1”:

```
device(config)# interface tunnel 1
device(config-tnif-1)tunnel mtu 1500
```

Syntax: [no] tunnel mtu packet-size

The `packet-size` variable specifies the maximum MTU size in bytes for the packets transiting the tunnel.

**NOTE**

To prevent packet loss after the 20 byte IP header is added, make sure that any physical interface that is carrying IPv6 tunnel traffic has an IP MTU setting at least 24 bytes greater than the tunnel MTU setting.

Bypassing ACLs in an IPv6-over-IPv4 tunnel

Use this procedure to disable IPv6 ACLs on the terminating node of an IPv6-over-IPv4 tunnel for internal traffic coming over the tunnel.

**NOTE**

Disabling ACL processing on an IPv6-over-IPv4 tunnel also disables support for the following features for internal traffic on that tunnel:

- All features employing IPv6 ACLs
- BFD over MPLS
- Multicast
- PBR
- OpenFlow

1. Access global configuration mode.

   ```
 device# configure terminal
   ```

2. Access ACL global policy configuration mode.

   ```
 device(config)# acl-policy
   ```

3. Enter the `disable-acl-for-6to4` command.

   ```
 device(config-acl-policy)# disable-acl-for-6to4
   ```

Displaying IPv6 tunneling information

You can display IPv6 Tunneling Information using the `show ip-tunnels`, `show ipv6 interface`, `show ipv6 route` and `show interface tunnel` commands as shown in the following:
Displaying tunnel information

For example, to tunnel information for tunnel 2, enter the following command at any level of the CLI.

```
device# show ip-tunnels 2
IPv6 tnnl 2 UP : src_ip 10.211.2.1, dst_ip 10.212.2.1
TTL 255, TOS 0, NHT 0, MTU 1480
```

Syntax: `show ip tunnels number`

The `number` parameter indicates the tunnel interface number for which you want to display information.

This display shows the following information.

**TABLE 23** Show IP tunnel display information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 tnnl UP/DOWN</td>
<td>The status of the tunnel interface can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• up - The tunnel interface is functioning properly.</td>
</tr>
<tr>
<td></td>
<td>• down - The tunnel interface is not functioning and is down.</td>
</tr>
<tr>
<td>src_ip</td>
<td>The tunnel source can an IPv4 address.</td>
</tr>
<tr>
<td>dst_ip</td>
<td>The tunnel destination can an IPv4 address.</td>
</tr>
<tr>
<td>TTL</td>
<td>The TTL value configured for the outer IP header. Possible values are 1 - 255.</td>
</tr>
<tr>
<td>TOS</td>
<td>The TOS value configured for the outer IP header. Possible values are 1 - 255.</td>
</tr>
<tr>
<td>NHT</td>
<td>The nextHop Table index value.</td>
</tr>
<tr>
<td>MTU</td>
<td>The setting of the IPv6 maximum transmission unit (MTU).</td>
</tr>
</tbody>
</table>

Displaying tunnel interface information

For example, to display status and configuration information for tunnel interface 1, enter the following command at any level of the CLI.

```
device# show interfaces tunnel 1
Tunnel1 is up, line protocol is up
Hardware is Tunnel
Tunnel source ethernet 3/5
Tunnel destination is not configured
Tunnel mode ipv6ip auto-tunnel
No port name
MTU 1500 bytes
```

Syntax: `show interfaces tunnel number`

The `number` parameter indicates the tunnel interface number for which you want to display information.

This display shows the following information.

**TABLE 24** IPv6 tunnel interface information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel interface status</td>
<td>The status of the tunnel interface can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• up - The tunnel interface is functioning properly.</td>
</tr>
<tr>
<td></td>
<td>• down - The tunnel interface is not functioning and is down.</td>
</tr>
<tr>
<td>Line protocol status</td>
<td>The status of the line protocol can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• up - The line protocol is functioning properly.</td>
</tr>
<tr>
<td></td>
<td>• down - The line protocol is not functioning and is down.</td>
</tr>
<tr>
<td>Hardware is tunnel</td>
<td>The interface is a tunnel interface.</td>
</tr>
</tbody>
</table>
**TABLE 24 IPv6 tunnel interface information (continued)**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel source</td>
<td>The tunnel source can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• An IPv4 address</td>
</tr>
<tr>
<td></td>
<td>• The IPv4 address associated with an interface or port.</td>
</tr>
<tr>
<td>Tunnel destination</td>
<td>The tunnel destination can an IPv4 address.</td>
</tr>
<tr>
<td>Tunnel mode</td>
<td>The tunnel mode can be one the following:</td>
</tr>
<tr>
<td></td>
<td>• ipv6ip auto-tunnel - Indicates an automatic IPv4-compatible tunnel.</td>
</tr>
<tr>
<td></td>
<td>• ipv6ip 6to4 - Indicates an automatic 6to4 tunnel.</td>
</tr>
<tr>
<td>Port name</td>
<td>The port name configured for the tunnel interface.</td>
</tr>
<tr>
<td>MTU</td>
<td>The setting of the IPv6 maximum transmission unit (MTU).</td>
</tr>
</tbody>
</table>

**Displaying interface level IPv6 settings**

To display Interface level IPv6 settings for tunnel interface 1, enter the following command at any level of the CLI.

```
device# show ipv6 inter tunnel 1
```

Interface Tunnel 1 is up, line protocol is up.
IPv6 is enabled, link-local address is fe80::3:4:2 [Preferred]
Global unicast address(es):
    1001::1 [Preferred], subnet is 1001::/64
    1011::1 [Preferred], subnet is 1011::/64
Joined group address(es):
    ff02::1:ff04:2
    ff02::5
    ff02::1:ff00:1
    ff02::2
    ff02::1
MTU is 1480 bytes
ICMP redirects are enabled
No Inbound Access List Set
No Outbound Access List Set
OSPF enabled

The display command above reflects the following configuration.

```
device# show running-config interface tunnel 1

! interface tunnel 1
 port-name ManualTunnel1
 tunnel mode ipv6ip
 tunnel source loopback 1
 tunnel destination 10.1.1.1
 ipv6 address fe80::3:4:2 link-local
 ipv6 address 1011::1/64
 ipv6 address 1011::1/64
 ipv6 ospf area 0
```

53-1004207-06
Extreme NetIron Routing Configuration Guide, 06.0.00a
IPv6 Over IPv4 tunnels in hardware
IPv6 over IPv4 GRE tunnel

IPv6 data packets can be transported across an IPv4 network that does not support IPv6 using GRE tunnels.

GRE provides a way to encapsulate packets inside of a transport protocol and transmit them from one tunnel endpoint to another. To allow communication between isolated IPv6 networks across an existing IPv4 network, a GRE tunnel can be configured between end devices that have dual stack (IPv4/IPv6) support. Incoming packets from an IPv6 network are encapsulated within a GRE header and are transported across an IPv4 network to a host in another IPv6 network. This feature allows remote IPv6 network traffic to be transported without upgrading the IPv4 network over which the traffic is encapsulated.

NOTE
The number of IPv6 GRE tunnels supported is 512.

The following diagram shows a GRE tunnel over an IPv4 network with remote IPv6 hosts and some packet heading fields to note that an IPv6 header is included before the data.

FIGURE 16 IPv6 over an IPv4 GRE tunnel network

The following IPv4 GRE tunnel configuration options are supported:

- Tunnel MTU
- Time-to-Live (TTL) value
- Type of Service (ToS)
- Keepalive
- VRF—The usual VRF limitations apply.
- GRE session enforce check—When the `gre-session-enforce-check` command is entered, and a GRE packet arrives at the device, the software tries to match the GRE packet source and destination address pair with the tunnel configured destination and source pair. If the pairs do not match, the packet is dropped.
- System max—Configures the devices to support a specified number of tunnels. Requires writing to memory and a system reload.
- Accounting—To start collecting the statistics for GRE and IPv6 tunnels use the `accounting-enable` command in IP tunnel policy configuration.

The following limitations apply to IPv6 over IPv4 GRE tunnels:

- IPv6 fragmentation is not supported before encapsulation.
- GRE header encapsulation is limited to 4 bytes.
- Multicast is not supported for IPv6 over IPv4 GRE tunnels.
NOTE
The IPv6 over IPv4 GRE Tunnels feature is only supported on MLXe and XMR devices. Not all interface cards on these devices are supported. See the Feature Support Matrix for more details.

Configuring a GRE tunnel for IPv6 traffic

To allow IPv6 traffic to be transported across an IPv4 network, a GRE tunnel can be employed. Use this task when there are isolated IPv6 networks that need to communicate across an IPv4-only network. The endpoints of the tunnel must support both IPv4 and IPv6. This tunnel source address on one device must be one of the device IPv4 addresses that is configured on a physical, loopback, or VE interface, through which the other end of the tunnel is reachable.

1. From privileged EXEC mode, enter global configuration mode.
   
   device# configure terminal

2. Create a tunnel interface.
   
   device(config)# interface tunnel 3

3. Assign a source IPv4 address for the tunnel.
   
   device(config-tnif-3)# tunnel source 10.1.1.1
   This source address will be entered as the destination address specified for the device on the other end of the tunnel.

4. Assign a destination IPv4 address for the tunnel.
   
   device(config-tnif-3)# tunnel destination 10.1.1.2
   This destination address should be the address of the IPv4 interface of the device on the other end of the tunnel.

5. Enable GRE encapsulation on the tunnel interface.
   
   device(config-tnif-3)# tunnel mode gre ip

6. Specify the IPv6 address of the tunnel interface.
   
   device(config-tnif-3)# ipv6 address 2005:a0a:a01::1/64

7. Change the MTU value for packets transiting the tunnel.
   
   device(config-tnif-3)# ip mtu 1400
   This step is optional.

8. Enable GRE link keepalive
   
   device(config-tnif-3)# keepalive 12 4
   In this example, the device waits for 4 consecutive lost keepalive packets before bringing the tunnel down. There will be a 12 second interval between each packet. This step is optional.

9. Exit to global configuration mode.
   
   device(config-tnif-3)# exit
10. If a route to the tunnel destination does not already exist, create a static route and specify that the route is through the tunnel interface.

```
device(config)# ipv6 route 2002:a0a:a01::1/64 2005:a0a:a01::1
```

In this example, an IPv6 static route is created on this device to specify that network 2002:a0a:a01::1/64 is reachable via tunnel address 2005:a0a:a01::1/64. There is an IPv4 network between the GRE tunnel endpoints.

On the device at one end of the tunnel, the following sample configures a GRE tunnel for IPv6 traffic.

```
device# configure terminal
device(config)# interface ethernet 4/1
device(config-int-e10000-4/1)# ip address 10.1.1.1/24
device(config-int-e10000-4/1)# exit

device(config)# interface tunnel 3
device(config-tnif-3)# tunnel source 10.1.1.1
device(config-tnif-3)# tunnel destination 10.1.1.2
device(config-tnif-3)# tunnel mode gre ip
device(config-tnif-3)# ipv6 address 2005:a0a:a01::1/64
device(config-tnif-3)# exit
device(config)# ipv6 route 2002:a0a:a01:1/64 2005:a0a:a01::2
device(config)# exit
device>
```

The following sample configures the device at the second end of the tunnel.

```
device# configure terminal
device(config)# interface ethernet 6/1
device(config-int-e10000-6/1)# ip address 10.1.1.2/24
device(config-int-e10000-6/1)# exit

device(config)# interface tunnel 3
device(config-tnif-3)# tunnel source 10.1.1.2
device(config-tnif-3)# tunnel destination 10.1.1.1
device(config-tnif-3)# tunnel mode gre ip
device(config-tnif-3)# ipv6 address 2005:a0a:a01::2/64
device(config-tnif-3)# exit
device(config)# ipv6 route 2001:a0a:a01:1/64 2005:a0a:a01::1
device(config)# exit
device>
```

**Verifying IPv6 over GRE Tunnel**

The configuration of IPv6 over an IPv4 GRE tunnel can be verified using various show commands.

The following commands can be entered in any order.
NOTE
When reviewing the keepalive packet statistics in the output of the `show interface tunnel` command for a GRE tunnel, note that the transmitted keepalive packets are hardware generated and are not counted in the “Xmit-to-tnnl” and “Rcv-from-tnnl” statistics.

1. To view IPv6 GRE tunnel information.

```
device(config)# show ipv6 interface tunnel 3
```

- Interface Gre_tnnl 3 is up, line protocol is up
- IPv6 is enabled, link-local address is fe80::224:38ff:fea4:1a00 [Preferred]
- Global unicast address(es):
  - 2005:a0a:a01::2 [Preferred], subnet is 2005:a0a:a01::/64
  - 2005:a0a:a01:: [Anycast], subnet is 2005:a0a:a01::/64
- Joined group address(es):
  - ff02::1:ff00:2
  - ff02:::ff00:0
  - ff02::1:ffad:1a00
  - ff02::1
- Local Proxy disabled
- Port belongs to VRF: default-vrf
- MTU is 1400 bytes
- ICMP redirects are disabled
- No Inbound Access List Set
- No Outbound Access List Set

2. To view IPv4 information about the configured GRE tunnel, use the following command.

```
device(config)# show interface tunnel 3
```

- Tunnel3 is up, line protocol is up
- Hardware is Tunnel
- Tunnel source 10.1.1.2
- Tunnel destination is 10.1.1.1
- Tunnel mode gre ip
- Configured BW is 0 kbps
- No port name
- Global unicast address(es):
  - 2005:a0a:a01::2, subnet is 2005:a0a:a01::/64
- Tunnel TOS 0, Tunnel TTL 255, Tunnel MTU 1400 bytes
- Keepalive is Enabled
- VRF Forwarding: default-vrf

3. To view details of the IPv6 route where the GRE tunnels are shown under the Interface field.

```
device(config)# show ipv6 route
```

<table>
<thead>
<tr>
<th>Type</th>
<th>IPv6 Prefix</th>
<th>Next Hop Router</th>
<th>Interface</th>
<th>Dis/Metric</th>
<th>Uptime</th>
<th>src-vrf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C</td>
<td>2001:a0a:a01::/64</td>
<td>2005:a0a:a01::1</td>
<td>gre_tnl 2</td>
<td>1/1</td>
<td>0m7s</td>
<td>-</td>
</tr>
<tr>
<td>2 C</td>
<td>2005:a0a:a01::/64</td>
<td>::</td>
<td>gre_tnl 2</td>
<td>0/0</td>
<td>2m59s</td>
<td>-</td>
</tr>
</tbody>
</table>
Configuring IPv6 Domain Name Server (DNS) resolver

The Domain Name Server (DNS) resolver feature lets you use a host name to perform Telnet, ping, and traceroute commands. You can also define a DNS domain on a device to recognize all hosts within that domain. After you define a domain name, the device automatically appends the appropriate domain to the host and forwards it to the domain name server.

For example, if the domain "example.com" is defined on a device, and you want to initiate a ping to host "EXC01" on that domain, you only need to reference the host name instead of the host name and the domain name. For example, enter either of the following commands to initiate the ping.

```
device# ping exc01
device# ping exc01.example.com
```

Defining a DNS entry

You can define up to four DNS servers for each DNS entry. The first entry serves as the primary default address. If a query to the primary address is not resolved after three attempts, the next gateway address is queried (up to three times). This process continues for each defined gateway address until the query is resolved. The order in which the default gateway addresses are polled is the same as the order in which you enter them.

To define the domain name example.com on a device and then define four possible default DNS gateway addresses, using IPv4 addressing, enter the following commands.

```
device(config)# ip dns domain-name example.com
device(config)# ip dns server-address 10.157.22.199 10.96.7.15 10.95.7.25 10.98.7.15
```

Syntax: `[no] ip dns server-address ip-addr [ip-addr] [ip-addr] [ip-addr]`

In this example, the first IP address in the command becomes the primary gateway address and all others are secondary addresses. Because IP address 10.98.7.15 is the last address listed, it is also the last address consulted to resolve a query.

Defining an IPv6 DNS entry

IPv6 defines new DNS record types to resolve queries for domain names to IPv6 addresses, as well as IPv6 addresses to domain names. Devices running IPv6 software support AAAA DNS records, which are defined in RFC 1886.

AAAA DNS records are analogous to the A DNS records used with IPv4. A complete IPv6 address is stored in each record. AAAA records have a type value of 28.

To establish an IPv6 DNS entry for the device, enter the following command.

```
device(config)# ipv6 dns domain-name example.com
```

Syntax: `[no] ipv6 dns domain-name domainname`

To define an IPv6 DNS server address, enter the following command.

```
device(config)# ipv6 dns server-address 2001:DB8::1
```

Syntax: `[no] ipv6 dns server-address ipv6-addr [ipv6-addr] [ipv6-addr] [ipv6-addr]`

For example, in a configuration where ftp6.example.com is a server with an IPv6 protocol stack, when a user pings ftp6.example.com, the device attempts to resolve the AAAA DNS record. In addition, if the DNS server does not have an IPv6 address, as long as it is able to resolve AAAA records, it can still respond to DNS queries.
DNS queries of IPv4 and IPv6 DNS servers
IPv4 and IPv6 DNS record queries search through IPv4 and IPv6 DNS servers are described here.

For IPv4 DNS record queries:
• Loop through all configured IPv4 DNS servers.
• If no IPv4 DNS servers are configured, then loop through all configured IPv6 DNS servers (if any).

For IPv6 DNS record queries:
• Loop through all configured IPv6 DNS servers.
• If no IPv6 DNS servers are configured, then loop through all configured IPv4 DNS servers (if any).

IPv6 Non-Stop Routing support
When IPv6 Non-Stop-Routing (NSR) is used, peer networking devices do not have knowledge of any event on the switching over router. All information needed to continue the routing protocol peering state is transferred to the standby processor so it can pick up immediately upon a switchover. As NSR does not need the help of neighboring routers during restart, the NSR-capable routers can be deployed independently in an existing network.

This section describes support for IPv6 Non-Stop-Routing (NSR) on MLX Series and XMR Series devices. The scope of this section is for IPv6 unicast routing only.

Limitations
• Configuration events that occur closer to switchover may get lost due to CLI synchronization issues.
• Neighbor, interface, or NSSA translation state changes that occur close to and during the switchover will not be handled.
• Counters - Traffic counters will not be synchronized. Neighbor and LSA DB counters will be recalculated on Standby during sync and thus not synchronized.
• OSPF Database Overflow condition for External LSAs - depending on the sequence of redistribution or new LSAs (from neighbors) the LSAs accepted within the limits of the database may change upon switchover.
• The NSR hitless failover event may not be completely transparent to the network as after switchover additional flooding related protocol traffic will be generated to the directly connected neighbors.
• OSPF Startup Timers - will not be applied upon NSR switchover.

Configuring IPv6 NSR support
Use the following commands to configure IPv6 Non-Stop Routing support.

The `graceful-restart ipv6 max-hold-timer` sets the hold interval.

```
device(config)#graceful-restart ipv6 max-hold-timer 100
```

Syntax: `[no] graceful-restart ipv6 max-hold-timer hold-interval`

The acceptable range for the maximum hold time before sync up forwarding information is 30 to 3600 seconds. The default is 300 seconds.

The `graceful-restart ipv6 protocols-converge-timer` sets the convergence interval. The default setting is 5 seconds.

```
device(config)#no graceful-restart ipv6 protocol-convergence-timer 50
```
Syntax: [no] graceful-restart ipv6 protocols-converge-timer convergence-interval

The acceptable range for the maximum time for protocols to converge after a graceful restart is 0 to 1200 seconds. The default protocol convergence time is 5 seconds.

ECMP load sharing for IPv6

IPv6 ECMP load sharing is hardware-managed. If there is more than one path to a given destination, a hash is calculated based on the source MAC address, destination MAC address, source IPv6 address, destination IPv6 address, and TCP/UDP source port and destination port (if the packet is also a TCP and UDP packet). This hash is used to select one of the paths.

Disabling or re-enabling ECMP load sharing for IPv6

ECMP load sharing for IPv6 is enabled by default. To disable the feature, enter the following command.

   device(config)# no ipv6 load-sharing

To re-enable the feature after disabling it, enter the following command.

   device(config)# ipv6 load-sharing 4

Syntax: [no] ipv6 load-sharing number

The number parameter specifies the number of ECMP load sharing paths. Enter a value between 2 and 32 for number to set the maximum number of paths. The default value is 4.

   NOTE
   The maximum number of paths supported by the BR-MLX-10Gx24-DM module is 16.

Changing the maximum number of load sharing paths for IPv6

By default, IPv6 ECMP load sharing balances traffic across up to four equal paths. You can change the maximum number of paths to a value between 2 and 32.

To change the number of ECMP load sharing paths for IPv6, enter the following command:

   device(config)# ipv6 load-sharing 8

Syntax: [no] ipv6 load-sharing number

The number parameter specifies the number of ECMP load sharing paths. Enter a value between 2 and 32 for number to set the maximum number of paths. The default value is 4.

   NOTE
   The maximum number of paths supported by the BR-MLX-10Gx24-DM module is 16.

Configuring IPv6 ICMP

ICMP for IPv6 provides error and informational messages. The stateless auto-configuration, neighbor discovery, and path MTU discovery features use ICMP messages.
This section explains how to configure the following IPv6 ICMP options:

- ICMP rate limiting
- ICMP redirects
- ICMP unreachable address or route messages
- ICMP error messages for source-routed IPv6 packets
- ICMP error messages for an unreachable address
- ICMP messages for an unreachable route
- ICMP error messages for IPv6 packets with hop-limit 0
- ICMP error messages for CES/CER devices

**Configuring ICMP rate limiting**

You can limit the rate at which IPv6 ICMP error messages are sent out on a network. For this rate-limiting implementation, IPv6 ICMP uses a token bucket algorithm.

The algorithm works using a *virtual bucket* that contains a number of tokens, where each token represents the ability to send one ICMP error message. Tokens are placed in the bucket at a specified interval until the maximum allowed number of tokens is reached. For each error message ICMP sends, a token is removed from the bucket. ICMP generates a series of error messages until the bucket is empty. When the bucket is empty, further error messages cannot be sent until a new token is placed in the bucket.

You can adjust the following elements related to the token bucket algorithm:

- The interval at which tokens are added to the bucket. The default is 100 milliseconds.
- The maximum number of tokens in the bucket. The default is 10 tokens.

For example, to adjust the interval to 1000 milliseconds and the number of tokens to 100 tokens, enter the following command.

```
device(config)# ipv6 icmp error-interval 1000 100
```

**Syntax:**

```
[no] ipv6 icmp error-interval interval [number-of-tokens]
```

The interval at which tokens are placed in the bucket has a range of 0 - 2147483647 milliseconds.

**NOTE**

If you keep the default interval (100 milliseconds), output from the `show run` command does not show the setting of the `ipv6 icmp error-interval` command. In addition, if you configure the interval value to a number that does not evenly divide into 100000 (100 milliseconds), the system rounds the value up to the next higher value that does divide evenly. For example, if you specify an interval value of 150, the system rounds it to 200.

ICMP rate limiting is enabled by default. To disable ICMP rate limiting, set the interval to 0.

**Enabling ICMP redirect messages**

To enable ICMP redirect messages, you need to configure `icmp redirect` at both global level and the interface level. You can enable or disable a device to transmit ICMP redirect messages from a global level and the interface level.

To enable the ICMP redirect messages from global level, enter the following commands.

**Syntax:**

```
[no] ipv6 icmp redirects
```

By default, IPv6 redirect is disabled and the device does not send an ICMP redirect message to a neighboring host to inform it of a better first-hop device on a path to a destination. (For more information about how ICMP redirect messages are implemented for IPv6, refer to Configuring IPv6 neighbor discovery on page 184.)
To enable the sending of ICMP redirect messages on interface 3/1, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 redirects
```

To disable the ICMP redirect messages from Ethernet interface 3/1, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# no ipv6 redirects
```

Syntax: [no] ipv6 redirects

Use the `show ipv6 interface interface port-number` command to verify that the sending of ICMP redirect messages is enabled on a particular interface.

**Disabling or re-enabling ICMP redirect messages**

You can disable or re-enable a device to transmit ICMP redirect messages from an interface. By default, a device sends an ICMP redirect message to a neighboring host to inform it of a better first-hop device on a path to a destination. No further configuration is required to enable the sending of ICMP redirect messages. (For more information about how ICMP redirect messages are implemented for IPv6, refer to Configuring IPv6 neighbor discovery on page 184.)

For example, to disable the ICMP redirect messages from Ethernet interface 3/1, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# no ipv6 redirects
```

Syntax: [no] ipv6 redirects

To re-enable the sending of ICMP redirect messages on Ethernet interface 3/1, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 redirects
```

Use the `show ipv6 interface interface port-number` command to verify that the sending of ICMP redirect messages is enabled on a particular interface.

**Disabling ICMP error messages for source-routed IPv6 packets**

By default, ICMP error messages are transmitted to announce discarded IPv6 source-routed packets that were addressed to one of the IPv6 addresses of a device. By default, these packets are discarded in software, as described in Software filtering of IPv6 source-routed packets on page 193.

You can disable or re-enable the sending of ICMP error messages for discarded, IPv6 source-routed packets by using the `ipv6 icmp source-route` command. Use the `no` form of this command to disable the transmission of these error messages. The following example illustrates the disabling operation.

```
device(config)# no ipv6 icmp source-route
```

Syntax: [no] ipv6 icmp source-route

**Enabling ICMP error messages for an unreachable address**

By default, the ICMPv6 destination unreachable messages with the code for an unreachable address are not sent for a discarded IPv6 packet. You can enable the sending of these messages by using the `ipv6 icmp unreachable address` command. This command applies globally.
For example, to enable ICMPv6 error messages for unreachable address on the current device, enter the following command.

```
device(config)# ipv6 icmp unreachable address
```

Syntax: [no] ipv6 icmp unreachable address

Use the `no` parameter in front of the `ipv6 icmp unreachable address` command to disable the sending of ICMPv6 destination unreachable messages with the code is address unreachable.

### Enabling ICMP messages for an unreachable route

By default, the ICMPv6 destination unreachable messages with the code for an unreachable route are not sent for a discarded IPv6 packet. You can enable the sending of these messages by using the `ipv6 icmp unreachable route` command.

For example, to enable ICMPv6 error messages for unreachable route on the current device, enter the following command.

```
device(config)# ipv6 icmp unreachable route
```

Syntax: [no] ipv6 icmp unreachable route

Use the `no` parameter in front of the `ipv6 icmp unreachable route` command to disable the sending of ICMPv6 destination unreachable messages with the code for destination unreachable.

### Enabling ICMP error messages for IPv6 packets with hop-limit 0

By default, an MLX Series and XMR Series series box does not respond to an IPv6 packet with hop-limit 0, and drops it at the hardware. You can enable or disable a device to respond to such packets with a proper ICMPv6 error message using the `ipv6 icmp hop-limit-zero` command from the global config mode.

**NOTE**

This command is available only on MLX Series and XMR Series routers.

For example, to enable ICMPv6 error messages for IPv6 routed packets with hop-limit 0, enter the following command:

```
device(config)#ipv6 icmp hop-limit-zero
```

Syntax: [no] ipv6 icmp hop-limit-zero

Use the `show running-configuration` command to see if this is enabled or disabled. Use the `no` parameter in front of the `ipv6 icmp hop-limit-zero` command to disable the sending of ICMP error messages for IPv6 Routed packet with hop-limit 0.

### Enabling ICMP error messages for multicast Too Big packets

By default, the device will not send an ICMPv6 Packet Too Big error message for the multicast packets. You can enable or disable (default behavior) a device to send the ICMPv6 Packet Too Big error messages for the IPv6 packets sent to multicast address destination using the `ipv6 icmp packet-too-big-for-multicast` command from the global config mode.

**NOTE**

This command is available on MLX Series, XMR Series, CES 2000 Series and CER 2000 Series devices.

For example, to enable a device to send the ICMPv6 Packet Too Big error messages for the IPv6 packets sent to multicast address destination, enter the following command:

```
device(config)#ipv6 icmp packet-too-big-for-multicast
```

Syntax: [no] ipv6 icmp packet-too-big-for-multicast
Use the `show running-configuration` command to see if this is enabled or disabled. Use the `no` parameter in front of the `ipv6 icmp packet-too-big-for-multicast` command to disable the sending of ICMPv6 Packet Too Big error message for the multicast packets.

### Enabling ICMP error messages for CES or CER 2000 Series devices

By default, the CES 2000 Series and CER 2000 Series devices do not generate error message for many of the ICMPv6 error cases. You can enable or disable a device to generate error message in all the error conditions using the `ipv6 icmp generate-error-message` command from the global config mode.

**NOTE**
Enabling this command enables all the IPv6 packets will be sent to the CPU. This command is available only on CES 2000 Series and CER 2000 Series devices.

For example, to enable a device to generate error message in all the error conditions, enter the following command:

```
device(config)#ipv6 icmp generate-error-message
```

**Syntax:** `[no] ipv6 icmp generate-error-message`

Use the `show running-configuration` command to see if this is enabled or disabled. Use the `no` parameter in front of the `ipv6 icmp generate-error-message` command to disable device to generate error message in all the error conditions.

### Configuring IPv6 neighbor discovery

The neighbor discovery feature for IPv6 uses IPv6 ICMP messages to do the following:

- Determine the link-layer address of a neighbor on the same link.
- Verify that a neighbor is reachable.
- Track neighbor devices.

An IPv6 host is required to listen for and recognize the following addresses, which identify this host:

- Link-local address.
- Assigned unicast address.
- Loopback address.
- All-nodes multicast address.
- Solicited-node multicast address.
- Multicast address to all other groups to which it belongs.

You can adjust the following IPv6 neighbor discovery features:

- Neighbor solicitation messages for duplicate address detection.
- Router advertisement messages:
  - Interval between router advertisement messages.
  - Value that indicates a device is advertised as a default device (for use by all nodes on a given link).
  - Prefixes advertised in router advertisement messages.
  - Flags for host stateful autoconfiguration.
- The time that an IPv6 node considers a remote node reachable (for use by all nodes on a given link).

The default maximum value for IPv6 neighbor discovery (ND) entries is 4096 for XMR Series and MLX Series devices.

The memory is allocated for IPv4 and IPv6 separately. The maximum IPv4 ARP and IPv6 ND entries can be supported together.
Neighbor solicitation and advertisement messages

Neighbor solicitation and advertisement messages enable a node to determine the link-layer address of another node (neighbor) on the same link. (This function is similar to the function provided by the Address Resolution Protocol [ARP] in IPv4.) For example, node 1 on a link wants to determine the link-layer address of node 2 on the same link. To do so, node 1, the source node, multicasts a neighbor solicitation message. The neighbor solicitation message, which has a value of 135 in the Type field of the ICMP packet header, contains the following information:

- **Source address**: IPv6 address of node 1 interface that sends the message.
- **Destination address**: solicited-node multicast address (FF02::0:0:0:1:FF00::/104) that corresponds the IPv6 address of node 2.
- Link-layer address of node 1.
- A query for the link-layer address of node 2.

After receiving the neighbor solicitation message from node 1, node 2 replies by sending a neighbor advertisement message, which has a value of 136 in the Type field of the ICMP packet header. The neighbor solicitation message contains the following information:

- **Source address**: IPv6 address of the node 2 interface that sends the message.
- **Destination address**: IPv6 address of node 1.
- Link-layer address of node 2.

After node 1 receives the neighbor advertisement message from node 2, nodes 1 and 2 can now exchange packets on the link.

After the link-layer address of node 2 is determined, node 1 can send neighbor solicitation messages to node 2 to verify that it is reachable. Also, nodes 1, 2, or any other node on the same link can send a neighbor advertisement message to the all-nodes multicast address (FF02::1) if there is a change in their link-layer address.

Router advertisement and solicitation messages

Router advertisement and solicitation messages enable a node on a link to discover the devices on the same link. Each configured interface on a link sends out a router advertisement message, which has a value of 134 in the Type field of the ICMP packet header, periodically to the all-nodes link-local multicast address (FF02::1).

A configured interface can also send a router advertisement message in response to a router solicitation message from a node on the same link. This message is sent to the unicast IPv6 address of the node that sent the router solicitation message.

At system startup, a host on a link sends a router solicitation message to the all-routers multicast address (FF01). Sending a router solicitation message, which has a value of 133 in the Type field of the ICMP packet header, enables the host to automatically configure its IPv6 address immediately instead of awaiting the next periodic router advertisement message.

Because a host at system startup typically does not have a unicast IPv6 address, the source address in the router solicitation message is usually the unspecified IPv6 address (0:0:0:0:0:0:0:0). If the host has a unicast IPv6 address, the source address is the unicast IPv6 address of the host interface sending the router solicitation message.

Entering the **ipv6 unicast-routing** command automatically enables the sending of router advertisement messages on all configured interfaces. You can configure several router advertisement message parameters. For information about disabling router advertisement messages and the router advertisement parameters you can configure, refer to Configuring reachable time for remote IPv6 nodes on page 190 and Setting IPv6 router advertisement parameters on page 186.
Neighbor redirect messages

After forwarding a packet, by default, a device can send a neighbor redirect message to a host to inform it of a better first-hop device. The host receiving the neighbor redirect message will then readdress the packet to the better device.

A device sends a neighbor redirect message only for unicast packets, only to the originating node, and to be processed by the node. A neighbor redirect message has a value of 137 in the Type field of the ICMP packet header.

Setting neighbor solicitation parameters for duplicate address detection

Although the stateless autoconfiguration feature assigns the 64-bit interface ID portion of an IPv6 address using the MAC address of the host’s NIC, duplicate MAC addresses can occur. Therefore, the duplicate address detection feature verifies that a unicast IPv6 address is unique before it is assigned to a host interface by the stateless autoconfiguration feature. Duplicate address detection verifies that a unicast IPv6 address is unique.

If duplicate address detection identifies a duplicate unicast IPv6 address, the address is not used. If the duplicate address is the link-local address of the host interface, the interface stops processing IPv6 packets.

You can configure the following neighbor solicitation message parameters that affect duplicate address detection while it verifies that a tentative unicast IPv6 address is unique:

- The number of consecutive neighbor solicitation messages that duplicate address detection sends on an interface. By default, duplicate address detection sends three neighbor solicitation messages without any follow-up messages.
- The interval in seconds at which duplicate address detection sends a neighbor solicitation message on an interface. By default, duplicate address detection sends a neighbor solicitation message every 1 second.

NOTE
For the interval at which duplicate address detection sends a neighbor solicitation message on an interface, the device uses seconds as the unit of measure instead of milliseconds.

For example, to change the number of neighbor solicitation messages sent on Ethernet interface 3/1 to two and the interval between the transmission of the two messages to 9 seconds, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 nd dad attempt 2
device(config-if-e100-3/1)# ipv6 nd ns-interval 9
```

Syntax: [no] ipv6 nd dad attempt number
Syntax: [no] ipv6 nd ns-interval number

For the number of neighbor solicitation messages, you can specify between 0-255 attempts. Configuring a value of 0 disables duplicate address detection processing on the specified interface. To restore the number of messages to the default value, use the no form of this command.

For the interval between neighbor solicitation messages, you can specify between 0 and 4294967 seconds. Not recommended for very short intervals in normal IPv6 operation. When a non-default value is configured, the configured time is both advertised and used by the device itself. To restore the default interval, use the no form of this command.

Setting IPv6 router advertisement parameters

You can adjust the following parameters for router advertisement messages:

- The interval (in seconds) at which an interface sends router advertisement messages. By default, an interface sends a router advertisement message every 200 seconds.
The “router lifetime” value, which is included in router advertisements sent from a particular interface. The value (in seconds) indicates if the device is advertised as a default device on this interface. If you set the value of this parameter to 0, the device is not advertised as a default device on an interface. If you set this parameter to a value that is not 0, the device is advertised as a default device on this interface. By default, the device lifetime value included in device advertisement messages sent from an interface is 1800 seconds.

When adjusting these parameter settings, it is recommended that the interval between device advertisement transmission be less than or equal to the device lifetime value if the device is advertised as a default device. For example, to adjust the interval of device advertisements to 300 seconds and the device lifetime value to 1900 seconds on Ethernet interface 3/1, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 nd ra-interval 300
device(config-if-e100-3/1)# ipv6 nd ra-lifetime 1800
```

Syntax: [no] ipv6 nd ra-interval number

Syntax: [no] ipv6 nd ra-lifetime number

The number parameter in both commands indicates any numerical value.

Possible range value for ipv6 nd ra-interval number is 3 to 1800 seconds.

Possible range value for ipv6 nd ra-lifetime number is 3 to 1800 seconds.

To restore the default interval or device lifetime value, use the no form of the respective command.

### Controlling prefixes advertised in IPv6 router advertisement messages

By default, router advertisement messages include prefixes configured as addresses on interfaces using the ipv6 address command. You can use the ipv6 nd prefix-advertisement command to control exactly which prefixes are included in router advertisement messages. Along with which prefixes the router advertisement messages contain, you can also specify the following parameters:

- **Valid lifetime** -- (Mandatory) The time interval (in seconds) in which the specified prefix is advertised as valid. The default is 2592000 seconds (30 days). When the timer expires, the prefix is no longer considered to be valid.
- **Preferred lifetime** -- (Mandatory) The time interval (in seconds) in which the specified prefix is advertised as preferred. The default is 604800 seconds (7 days). When the timer expires, the prefix is no longer considered to be preferred.
- **Onlink flag** -- (Optional) If this flag is set, the specified prefix is assigned to the link upon which it is advertised. Nodes sending traffic to addresses that contain the specified prefix consider the destination to be reachable on the local link.
- **Autoconfiguration flag** -- (Optional) If this flag is set, the stateless autoconfiguration feature can use the specified prefix in the automatic configuration of 128-bit IPv6 addresses for hosts on the local link.

For example, to advertise the prefix 2001:DB8:a487:7365::/64 in router advertisement messages sent out on Ethernet interface 3/1 with a valid lifetime of 1000 seconds, a preferred lifetime of 800 seconds, and the Onlink and Autoconfig flags set, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 nd prefix-advertisement 2001:DB8:a487:7365::/64 1000 800 onlink autoconfig
```

Syntax: [no] ipv6 nd prefix-advertisement ipv6-prefix/prefix-length valid-lifetime preferred-lifetime [ autoconfig ] [ onlink ]

You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.
The valid lifetime and preferred lifetime is a numerical value between 0 - 4294967295 seconds. The default valid lifetime is 2592000 seconds (30 days), while the default preferred lifetime is 604800 seconds (7 days).

To remove a prefix from the router advertisement messages sent from a particular interface, use the `no` form of this command.

### Configuring the Domain Name of DNS suffix

This section provides information about the IPv6 RA option that allows IPv6 routers to advertise domain names of DNS suffixes (the DNS name excluding the host) to IPv6 hosts in a local area network. This option to configure domain names is valid for any network that supports the use of ND6. The domain names that are advertised by routers are sent through RA messages to IPv6 hosts.

This option is supported only when IPv6 routing is active on the network. The newly configured domain name can be used as long as the RA router lifetime has not expired.

#### Configuration considerations

- A maximum of 4 domain names and their corresponding lifetime-multiplier values can be configured at the global configuration level.
- A maximum of 4 domain names and their corresponding lifetime-multiplier values can be configured per interface.
- The domain name that is configured on the interface overrides all other domain name configurations at the system level for this interface.

By default, the domain name of the DNS suffix and the lifetime multiplier information is not configured. The following examples are used to configure the domain names of a DNS suffix for a lifetime-multiplier value of 200.

```plaintext
device(config)# ipv6 nd ra-domain-name extreme.com lifetime-multiplier 200
device(config-if-e10000-1/10)# ipv6 nd ra-domain-name extreme.com lifetime-multiplier 200
```

**Syntax:** `[no] ipv6 nd ra-domain-name string [ lifetime-multiplier decimal ]`

The `string` parameter specifies the domain name of the DNS suffix.

The `lifetime-multiplier` is the percentage value of the maximum router advertisement interval. The maximum router advertisement interval is the maximum time that can be allowed between sending unsolicited RA messages for DNS name resolution for a DNS entry. The lifetime-multiplier value is calculated as twice the RA lifetime. The maximum router advertisement interval percentage range is 100 through 200%. The default value for maximum router advertisement interval is 200%.

To disable the advertisement of the specified domain name of DNS suffix in the RA message, use the `no` form of the respective command.

### Configuring the recursive DNS server addresses and lifetime multiplier

This section provides information about the IPv6 RA attribute that allows IPv6 routers to advertise recursive DNS server addresses and lifetime multiplier values to IPv6 hosts in a local area network. This option to configure recursive DNS server addresses is valid for any network that supports the use of neighbor discovery (ND6). The recursive server addresses that are advertised by routers are sent through RA messages and are used to translate domain names to IP addresses.

This option is supported only when IPv6 routing is active on the network. The newly configured recursive DNS server address can be used as long as the RA router lifetime has not expired.
Configuration considerations

- A maximum of 4 recursive DNS server addresses and their corresponding lifetime-multiplier values can be configured at the global configuration level.
- A maximum of 4 recursive DNS server addresses and their corresponding lifetime-multiplier values can be configured per interface.
- The recursive DNS server address that is configured on the interface overrides all other recursive DNS server configurations at the system level for this interface.

By default, the recursive DNS server address and the lifetime multiplier information is not configured. The following examples configure the recursive DNS address for a lifetime-multiplier value of 200.

```
device(config)# ipv6 nd ra-dns-server 2001:DC8:200::3 lifetime-multiplier 200
device(config-if-e100-3/1)# ipv6 nd ra-dns-server 2001:DC8:200::3 lifetime-multiplier 200
```

Syntax: `[no] ipv6 nd ra-dns-server ipv6-address [ lifetime-multiplier decimal ]`

The `ipv6-address` parameter specifies the global IPv6 address of the DNS server.

The `lifetime-multiplier` is the percentage value of the maximum router advertisement interval. The maximum router advertisement interval is the maximum time that can be allowed between sending unsolicited RA messages for DNS name resolution for a DNS entry. The lifetime-multiplier decimal value is calculated as twice the RA lifetime. The percentage range is 100 through 200%. The default value for the maximum router advertisement interval is 200%.

To disable the advertisement of the specified server address in the RA message, use the `no` form of the command.

Setting flags in IPv6 router advertisement messages

An IPv6 router advertisement message can include the following flags:

- **Managed Address Configuration** -- This flag indicates to hosts on a local link if they should use the stateful autoconfiguration feature to get IPv6 addresses for their interfaces. If the flag is set, the hosts use stateful autoconfiguration to get addresses as well as non-IPv6-address information. If the flag is not set, the hosts do not use stateful autoconfiguration to get addresses and if the hosts can get non-IPv6-address information from stateful autoconfiguration is determined by the setting of the Other Stateful Configuration flag.

- **Other Stateful Configuration** -- This flag indicates to hosts on a local link if they can get non-IPv6 address autoconfiguration information. If the flag is set, the hosts can use stateful autoconfiguration to get non-IPv6-address information.

**NOTE**

When determining if hosts can use stateful autoconfiguration to get non-IPv6-address information, a set Managed Address Configuration flag overrides an unset Other Stateful Configuration flag. In this situation, the hosts can obtain non address information. However, if the Managed Address Configuration flag is not set and the Other Stateful Configuration flag is set, then the setting of the Other Stateful Configuration flag is used.

By default, the Managed Address Configuration and Other Stateful Configuration flags are not set in router advertisement messages. For example, to set these flags in router advertisement messages sent from Ethernet interface 3/1, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 nd managed-config-flag
device(config-if-e100-3/1)# ipv6 nd other-config-flag
```

Syntax: `[no] ipv6 nd managed-config-flag`

Syntax: `[no] ipv6 nd other-config-flag`

To remove either flag from router advertisement messages sent on an interface, use the `no` form of the respective command.
Configuring reachable time for remote IPv6 nodes

You can configure the duration (in seconds) that a device considers a remote IPv6 node reachable. By default, an interface uses the value of 30 seconds.

The router advertisement messages sent by an interface include the amount of time specified by the `ipv6 nd reachable-time` command so that nodes on a link use the same reachable time duration. By default, the messages include a default value of 0.

**NOTE**
The device uses seconds, instead of milliseconds, for the interval at which it sends router advertisement messages.

It is not recommended to configure a short reachable time duration, because a short duration causes the IPv6 network devices to process the information at a greater frequency.

For example, to configure the reachable time of 40 seconds for Ethernet interface 3/1, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 nd reachable-time 40
```

**Syntax:** `[no] ipv6 nd reachable-time seconds`

For the `seconds` parameter, you can specify between 0–3600 seconds. To restore the default time, use the `no` form of this command.

IPv6 ND Prefix Suppress

Extreme devices support IPv6 ND Prefix Suppress, which is useful in a LAN where multiple hosts are connected to router(s). Prefix Suppress performs these functions:

- Advertisement of on-link prefix information is suppressed in router advertisement (RA) messages.
- Hosts are prevented from auto configuring based on the prefix in the RA message.
- DHCPv6 is used for security and accountability.
- Advertisement of identical prefixes by multiple routers is suppressed.
- Global Suppress option suppresses IPv6 addresses defined on an interface from getting advertised in the RA message.

**NOTE**
When the user configures the Global Suppress option, an RA is generated with all deprecated IPv6 address entries that are not advertised in subsequent RA messages.

- Prefix advertisement entry in the RA message is advertised if a duplicate entry exists in the prefix advertisement list and IPv6 address list

Configuring the suppress option to specific IPv6 addresses defined on an interface generates deprecated IPv6 address entries (i.e. with `preferred lifetime = 0 hours and valid lifetime = 2 hours`) in RA messages. When a host receives deprecated IPv6 address entries, the address is forbidden for new sessions although existing sessions can continue using the address.

Deprecated entries are advertised in the following scenarios:

- Suppress option is configured for IPv6 address entries.
- Prefix advertisement entries are un-configured.
- IPv6 address entries are un-configured.
Configuring IPv6 Prefix Suppress

Command syntax for configuring the suppress option for an IPv6 address entry:

```
(config-if-x)#[no] ipv6 nd address <ipv6-address> suppress
```

Command syntax for configuring the suppress option for all IPv6 address entries:

```
(config-if-x)#[no] ipv6 nd address suppress
```

Command syntax for Show IPv6 interface output is modified to display individual or globally suppressed entries:

```text
Router-A# show ipv6 interface ethernet 1/2
MTU is 1500 bytes
ICMP redirects are disabled
ND DAD is enabled, number of DAD attempts: 3
ND reachable time is 30000 Milliseconds
ND advertised reachable time is 0 seconds
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND next router advertisement will be sent in 2 seconds
ND router advertisements live for 1800 seconds
ND suppress-ra disabled
ND address-prefixes suppressed in router advertisement - all
ND address-prefixes suppressed in router advertisement - 300::1/64
Router-A#
```

Command syntax for debugging IPv6 Prefix Suppress:

```
Router-A# debug ipv6 ra
```

NOTE
No additional debug commands are added for this feature. Debug commands available for IPv6 ND can be used for this feature.

Configuration Considerations for IPv6 Prefix Suppress

The following considerations should be considered prior to configuring IPv6 Prefix Suppress:

- Suppress option is not configurable for a non-existent IPv6 address entry. As a result, the suppress option is not applicable to future references.
- Suppress option is not supported for suppressing prefix advertisement entries.

NOTE
The user may un-configure the prefix advertisement entry so it is not advertised in the RA message.

- Configuration of the suppress option is not allowed for a duplicate entry in any combination.
- When multiple IPv6 addresses of the same subnet are defined on an interface, apply the suppress option on individual entries.

IPv6 ND Router Advertisement Control

IPv6 ND Router Advertisement Control allows for disabling sending out router advertisements at the interface level. The `no ipv6 nd suppress-ra` command at the interface level allows the user to disable and enable the sending of the ND Router Advertisement on an interface. By default, the sending of ND Router Advertisement (RA) is enabled on all interfaces, except for the tunnel and loopback interfaces, providing that the IPv6 Unicast Routing is enabled and the interfaces are active for IPv6.
The IPv6 ND Router Advertisement Control gives the ability to quickly turn off the sending of IPv6 ND Router Advertisement message on an IPv6 enabled interfaces.

By default,

- The ND Router Advertisement is enabled.
- Interface is enabled to send ND Router Advertisements.
- The `ipv6 nd suppress-ra` and `ipv6 nd send-ra` interface commands, when configured, override the system and VRF global `ipv6 nd global-suppress-ra` command.

Users sometimes require the ability to quickly turn off the sending of IPv6 ND Router Advertisement message on an IPv6 enabled interfaces. This is achieved by providing the following additional configuration command at interface level:

```
device(config-if-e10000-1/1)#no ipv6 nd suppress-ra
```

The `ipv6 nd send-ra` command is a new interface level command added as part of this enhancement. This allows the user to configure the sending of RA messages on some selected interfaces when the `ipv6 nd global-suppress-ra` command is set to disable the sending of RA messages on all other interfaces.

**Syntax:** `[no]ipv6 nd suppress-ra`

### IPv6 source routing security enhancements

The IPv6 specification (RFC 2460) specifies support for IPv6 source-routed packets using a type 0 Routing extension header, requiring device and host to process the type 0 routing extension header. However, this requirement may leave a network open to a DoS attack.

A security enhancement disables sending IPv6 source-routed packets to IPv6 devices either completely or selectively as described in the following sections. (This enhancement conforms to RFC 5095.)

#### Complete filtering of IPv6 source-routed packets

Extreme devices are configured to drop all IPv6 source-routed packets in hardware and software as described:

- **Hardware** - IPv6 source-routed packets that contain a type 0 routing extension header immediately after the IPv6 header are dropped in hardware by default.
- **Software** - IPv6 source-routed packets addressed to any IPv6 address on a device (regardless of where the routing extension header is located) are dropped in software by default.

Details of hardware and software filtering of IPv6 source-routed packets is provided in the following.

#### Hardware filtering of IPv6 source-routed packets

All IPv6 source-routed packets that contain a type 0 routing extension header immediately after the IPv6 header are automatically dropped in hardware. This filtering is performed on both IPv6 packets that require forwarding and IPv6 packets addressed to one of the IPv6 addresses on the device without sending an ICMP error message. This filtering behavior is enabled by default. Consequently, if you want to process IPv6 source-routed packets that contain a type 0 routing extension header immediately after the IPv6 header you must direct it to perform this action through use of the `ipv6 forward-source-route` command, as shown in the following.

```
device(config)# ipv6 forward-source-route
```

**Syntax:** `[no] ipv6 forward-source-route`

The default condition is for source-routed packets to be dropped. If you enable forwarding using this command, you can return to the default state by using the `no` option in front of the command.
NOTE
Source routed, IPv6 packets where the type 0 routing extension header does not follow directly after the IPv6 header are not automatically dropped in hardware.

Software filtering of IPv6 source-routed packets
By default, all IPv6 source-routed packets addressed to any IPv6 address on a device are dropped by software (regardless of where the Routing Extension Header resides). You can enable the forwarding of these packets by using the `ipv6 source-route` command, as the following example shows.

```
device(config)# ipv6 source-route
```

Syntax: `[no] ipv6 source-route`

The default condition is to disallow the forwarding of source-routed packets to IPv6 addresses. If you enable forwarding by using this command, you can return to the default state by using the `no` option of the command.

The `ipv6 forward-source-route` command must be enabled for the `ipv6 source-route` command to operate.

By default, ICMP error messages are sent for packets dropped by software. You can use the `ipv6 icmp source-route` command to disable the generation of ICMPv6 parameter problem for software discarded IPv6 source-routed packets addressed to one of the IPv6 addresses of a device. This is described in Disabling ICMP error messages for source-routed IPv6 packets on page 182.

Selective filtering of IPv6 source-routed packets using ACLs
You can selectively filter IPv6 source-routed packets using ACLs. This is accomplished by creating an IPv6 ACL that specifies a type 0 routing extension header. This is done using the `routing-header-type` option when configuring an IPv6 ACL. An example of an IPv6 ACL that selectively drops IPv6 source-routed packets is shown in the following.

```
device(config)# ipv6 access-list deny-access1
device(config-ipv6-access-list deny-access1)#deny ipv6 any any routing-header-type 0
```

As with complete filtering, selective filtering can be done in both hardware and software as described:

- **Hardware** - Inbound and outbound IPv6 source-routed packets that contain a type 0 routing extension header immediately after the IPv6 header can be selectively dropped in hardware through use of an IPv6 ACL and bound to an interface using the `ipv6 traffic-filter` command.
- **Software** - Inbound IPv6 source-routed packets that contain a routing extension header anywhere in a packet can be selectively dropped in software using an IPv6 ACL and bound to interfaces using the `ipv6 access-class` command.

Details about how to configure selective hardware and software filtering of IPv6 source-routed packets are provided in the following.

Selective hardware filtering of IPv6 source-routed packets
Both inbound and outbound IPv6 source-routed packets that contain a type 0 routing extension header immediately after the IPv6 header can be selectively dropped in hardware using an IPv6 ACL. source-routed packets dropped in hardware are dropped without an ICMP error message being sent. To apply an IPv6 ACL with the `routing-header-type` option for hardware filtering, you must apply the IPv6 ACL to specific ports using the `ipv6 traffic-filter` command as shown in the following example.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 traffic-filter deny-access1 in
```

Additionally, you must also enable forwarding using the `ipv6 forward-source-route` command (as shown in the following) to allow any forwarding of IPv6 source-routed packets.

```
device(config)# ipv6 forward-source-route
```
Selective software filtering of IPv6 source-routed packets

Inbound IPv6 source-routed packets that contain a routing extension header anywhere in a packet can be selectively dropped in software using an IPv6 ACL. source-routed packets dropped in software generate ICMP Destination Unreachable error messages.

NOTE
This filtering only applies to packets addressed to one of the IPv6 addresses of the device.

To apply an IPv6 ACL with the routing-header-type option for software filtering, you must apply the IPv6 ACL system wide using the `ipv6 access-class` command.

```
device(config)# ipv6 access-class deny-access1 in
```

Additionally, you must also enable forwarding using the `ipv6 forward-source-route` and `ipv6 source-route` commands (as shown in the following) to allow any forwarding of IPv6 source-routed packets.

```
device(config)# ipv6 forward-source-route
device(config)# ipv6 source-route
```

Complete and selective filtering combination and order of application

If the complete filtering of IPv6 source-routed packets is enabled (the default state) then selective filtering cannot be performed. Consequently, you must use the `ipv6 forward-source-route` and `ipv6 source-route` commands to allow IPv6 source-routed packets when you are selectively allowing some IPv6 source-routed packets.

The following configuration of complete hardware and software filtering can be used with selective filtering if the commands are configured in the correct order:

- When the `ipv6 forward-source-route` command is configured, IPv6 source-routed packets that contain a type 0 routing extension header immediately after the IPv6 header are not dropped by hardware.
- All IPv6 source-routed packets addressed to any IPv6 address on a device (regardless of where the Routing Extension Header is located) are dropped by software. This is the default configuration.

When using the `ipv6 forward-source-route` and `ipv6 source-route` commands as described, the filtering is performed in the order described below.

1. Inbound filtering is performed on the receiving interface using an ACL applied using the `ipv6 traffic-filter` command. This filtering is performed using hardware.
2. Complete filtering for IPv6 source route. This filtering is performed by the CPU.
3. Selective filtering using an IPv6 ACL applied on a system-wide basis using the `ipv6 access-class` command.
4. Selective filtering by hardware using an IPv6 ACL bound to an interface for outbound traffic using the `ipv6 traffic-filter` command.

Configuration examples for complete and selective filtering of source routed packets

The following examples demonstrate how to use this feature for different purposes:

- Dropping all IPv6 Source Routed Packets on all Ports
- Dropping all IPv6 Source Routed Packets on a Specified Port
- Silently Dropping all IPv6 Source Routed Packets Addressed to IPv6 Addresses
- Dropping all IPv6 Source Routed Packets Addressed to IPv6 Addresses from a Specified Source
• Allowing IPv6 Source Routed Packets from a Specified Source on a Specified Interface

Each of these examples are described in detail in the following sections.

**Dropping all IPv6 source-routed packets on all ports**

By default, all IPv6 source-routed packets received on all device ports are dropped.

**Dropping all IPv6 source-routed packets on a specified port**

The following example shows a configuration that will drop all IPv6 source-routed packets received on port 1/1 of a device.

In this example, the IPv6 ACL is configured to drop any IPv6 packet with a type 0 routing header immediately after the IPv6 header.

```
device(config)# ipv6 access-list deny-access1
device(config-ipv6-access-list deny-access1)# deny any any ipv6 routing-header-type 0
device(config-ipv6-access-list deny-access1)# permit ipv6 any any
device(config-ipv6-access-list deny-access1)# exit
```

The default is for the device to drop all IPv6 source-routed packets in hardware and software. Forwarding of these packets must be explicitly enabled using the `ipv6 forward-source-route` and `ipv6 source-route` commands as shown.

```
device(config)# ipv6 forward-source-route
device(config)# ipv6 source-route
```

The IPv6 ACL must then be bound to the interface it is intended to filter as shown in the following example for the Ethernet 1/1 interface.

```
device(config)# interface ethernet 1/1
device(config-if-e100-1/1)# ipv6 traffic-filter deny-access1 in
```

**Silently dropping all IPv6 source-routed packets sent to IPv6 addresses**

The following configuration drops all IPv6 source-routed packets addressed to the IPv6 addresses on a device without sending an ICMP error message.

ICMPv6 parameter problem error messages are sent for dropped IPv6 source-routed packets addressed to the IPv6 addresses on the device. To disable these messages, use the `no` option with the `ipv6 icmp source-route` command.

```
device(config)# no ipv6 icmp source-route
```

By default, the device drops all IPv6 source-routed packets in hardware and software. Use the `ipv6 forward-source-route` command to enable the forwarding of IPv6 source-routed packets with a type 0 routing extension header immediately after the IPv6 header, as shown in this example.

```
device(config)# ipv6 forward-source-route
```

**Dropping all IPv6 source-routed packets to IPv6 addresses from a specified source**

This configuration demonstrates how to drop all IPv6 source-routed packets sent from a specified IPv6 address.

In this example, IPv6 ACL is configured to deny IPv6 source-routed packets with a destination address of 2001:DB8:1, and permit any other IPv6 packets.

```
device(config)# ipv6 access-list deny-access2
device(config-ipv6-access-list deny-access2)# deny host 2001:DB8:1 any routing-header-type 0
device(config-ipv6-access-list deny-access2)# permit ipv6 any any
device(config-ipv6-access-list deny-access2)# exit
```
The IPv6 ACL is then applied globally to the device for inbound traffic using the `ipv6 access-class` command as shown.

```
 device(config)#ipv6 access-class deny-access2 in
```

By default, the device drops all IPv6 source-routed packets in hardware and software. Use the `ipv6 forward-source-route` and `ipv6 source-route` commands to enable forwarding of IPv6 source-routed packets, as shown.

```
 device(config)# ipv6 forward-source-route
 device(config)# ipv6 source-route
```

## Changing the IPv6 MTU

The IPv6 MTU is the maximum length of an IPv6 packet that can be transmitted on a particular interface. If an IPv6 packet is longer than an MTU, the host that originated the packet breaks the packet into fragments and transmits the fragments in multiple packets that are shorter than the configured MTU. You can configure the MTU on individual interfaces. Per RFC 2460, the minimum IPv6 MTU for any interface is 1280 bytes.

**NOTE**
The maximum number of unique MTUs that can be configured on a CES 2000 Series or CER 2000 Series device is 12.

To configure the MTU on interface 3/1 to 1280 bytes, enter the following commands.

```
 device(config)# interface ethernet 3/1
 device(config-if-e100-3/1)# ipv6 mtu 1280
```

**Syntax:** `[no] ipv6 mtu bytes`

You can specify between 1284 - (default-max-frame-size minus 18). If a non-default value is configured for an interface, router advertisements include an MTU option. The minimum values you can configure are: 1298 (IP6_MIN_MTU + 18) for Ethernet ports.

You can configure IPv6 MTU for to be greater than 1500 bytes, although the default remains at 1500 bytes.

At the global CLI level, use the `ipv6 global-mtu` command. To define IPv6 MTU globally, enter.

```
 device(config)#ipv6 global-mtu 1300
```

**Syntax:** `[no] ipv6 global-mtu value`

**NOTE**
After the configuration of `ipv6 global-mtu`, the system needs to be rebooted to enable the management ethernet controller to reconfigure it.

To define IPv6 MTU on an interface, enter.

```
 device(config-if-e1000-2/1)#ipv6 mtu
```

**Syntax:** `ipv6 mtu value`

**NOTE**
If the size of a jumbo packet received on a port is equal to the maximum frame size of - 18 (Layer 2 MAC header + CRC) and if this value is greater than the IPv4/IPv6 MTU of the outgoing port, it will be forwarded to the CPU.
How to determine the actual IPv6 MTU value

An IPv6 port can obtain an MTU value from any of the following sources:

- Default IP MTU setting
- Global MTU Setting
- Interface MTU Setting

An interface determines the actual MTU value through these processes.

1. If an IPv6 interface MTU value is configured, that value is used.
2. If an IPv6 interface MTU value is not configured and an IPv6 global MTU value is configured, the configured global MTU value is used.
3. If neither an IPv6 interface MTU value or an IPv6 global MTU value are configured, the default IPv6 MTU value of 1500 is used.

Configuring static neighbor entries

In some cases, a neighbor cannot be reached using neighbor discovery. In this situation, you can add a static entry to the IPv6 neighbor discovery cache, which causes a neighbor to be reachable at all times without using neighbor discovery. (A static entry in the IPv6 neighbor discovery cache functions like a static ARP entry in IPv4.)

For example, to add a static entry for a neighbor with the IPv6 address 2001:DB8:2678::2 and link-layer address 0000.002b.8641 that is reachable through Ethernet interface 3/1, enter the following command.

```
device(config)# ipv6 neighbor 2001:DB8:2678::2 ethernet 3/1 0000.002b.8641
```

Syntax:
```
[no] ipv6 neighbor ipv6-address ethernet port | ve ve-number [ethernet port] link-layer-address
```

The `ipv6-address` parameter specifies the address of the neighbor.

The `ethernet | ve` parameter specifies the interface through which to reach a neighbor. If you specify an Ethernet interface, you must also specify the port number. The link-layer address is a 48-bit hardware address of the neighbor.

NOTE
If you specify a VE, you do not have to mandatorily specify the Ethernet port numbers associated with the VE.

If you attempt to add an entry that already exists in the neighbor discovery cache, the software changes the already existing entry to a static entry.

To remove a static IPv6 entry from the IPv6 neighbor discovery cache, use the `no` form of this command.

Limiting the number of hops an IPv6 packet can traverse

By default, the maximum number of hops an IPv6 packet can traverse is 64. You can change this value to between 1 - 255 hops. For example, to change the maximum number of hops to 70, enter the following command.

```
device(config)# ipv6 hop-limit 70
```

Syntax: `[no] ipv6 hop-limit number`

The number of hops can be from 1 - 255.
Information about IPv6 prefix list

An IPv6 prefix list comprises one or more conditional statements that pose an action (permit or deny) if a route matches a specified prefix. In prefix lists with multiple statements, you can specify a sequence number for each statement. The specified sequence number determines the order in which the statement appears in the prefix.

You can configure an IPv6 prefix list on a global basis and use it as input to other commands or processes, such as route aggregation, route redistribution, route distribution, route maps, and so on. When a device sends or receives an IPv6 route, it applies the statements within the IPv6 prefix list in their order of appearance to the packet. When a match occurs, the device takes the specified action (permit or deny the packet) and stops further comparison for that route.

You can use permit statements in the prefix list to specify the route that you want to send to the other feature. If you use deny statements, the route specified by the deny statements is not supplied to the other feature.

A device supports IPv6 prefix lists, which you can use for basic route filtering. You can configure up to 100 IPv6 prefix lists. You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 4291. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

Displaying prefix list information

To display the IPv6 prefix lists configured on a device, use the show ipv6 prefix-lists command.

```
device# show ipv6 prefix-lists
routesfor2001
 ipv6 prefix-list routesfor2001
 seq 5 permit 2001::/16
 seq 10 permit 2001:db8::/32
```

Managing a Device Over IPv6

You can perform system management tasks for the device using the copy, ncopy, ping, telnet, and traceroute commands and Secure Shell (SSH). These commands and SSH now function over IPv6.

This section describes the IPv6-related syntax added to the commands and SSH. It does not describe the already existing command syntax for IPv4.

Using the IPv6 copy command

The copy command for IPv6 allows you to do the following:

- Copy a file from a specified source to an IPv6 TFTP server.
- Copy a file from an IPv6 TFTP server to a specified destination.

Copying a file to an IPv6 TFTP server

You can copy a file from the following sources to an IPv6 TFTP server:

- Flash memory.
- Running configuration.
- Startup configuration.
Copying a file from flash memory

For example, to copy the primary or secondary boot image from the device's flash memory to an IPv6 TFTP server, enter a command such as the following.

```
device# copy flash tftp ipv6 2001:db8:e0ff:7837::3 test.img secondary
```

This command copies the secondary boot image named test.img from flash memory to a TFTP server with the IPv6 address of 2001:db8:e0ff:7837::3.

**Syntax:** `copy flash tftp ipv6 source-file-name primary | secondary`

The `ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file you want to copy to the IPv6 TFTP server.

The `primary` keyword specifies the primary boot image, while the `secondary` keyword specifies the secondary boot image.

Copying a file from the running or startup configuration

For example, to copy the running configuration to an IPv6 TFTP server, enter a command such as the following.

```
device# copy running-config tftp ipv6 2001:db8:e0ff:7837::3 newrun.cfg
```

This command copies the running configuration to a TFTP server with the IPv6 address of 2001:db8:e0ff:7837::3 and names the file on the TFTP server newrun.cfg.

**Syntax:** `copy running-config | startup-config tftp ipv6 destination-file-name`

Specify the `running-config` keyword to copy the running configuration file to the specified IPv6 TFTP server.

Specify the `startup-config` keyword to copy the startup configuration file to the specified IPv6 TFTP server.

The `tftp ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `destination-file-name` parameter specifies the name of the file that is copied to the IPv6 TFTP server.

Copying a file from an IPv6 TFTP server

You can copy a file from an IPv6 TFTP server to the following destinations:

- Flash memory.
- Running configuration.
- Startup configuration.

Copying a file to flash memory

For example, to copy a boot image from an IPv6 TFTP server to the primary or secondary storage location in the device's flash memory, enter a command such as the following.

```
device# copy tftp flash ipv6 2001:db8:e0ff:7837::3 test.img secondary
```

This command copies an application image named test.img from an IPv6 TFTP server with the IPv6 address of 2001:db8:e0ff:7837::3 to the secondary storage location in the device's flash memory.

**Syntax:** `copy tftp flash ipv6 source-file-name primary | secondary`
The `ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file you want to copy from the IPv6 TFTP server.

The `primary` keyword specifies the primary storage location in the device's flash memory, while the `secondary` keyword specifies the secondary storage location in the device's flash memory.

### Copying a file to the running or startup configuration

For example, to copy a configuration file from an IPv6 TFTP server to the router's running or startup configuration, enter a command such as the following.

```
device# copy tftp running-config ipv6 2001:db8:e0ff:7837::3 newrun.cfg overwrite
```

This command copies the newrun.cfg file from the IPv6 TFTP server and overwrites the router's running configuration file with the contents of newrun.cfg.

**NOTE**

To activate this configuration, you must reload (reset) the device.

**Syntax:** `copy tftp running-config | startup-config ipv6-address source-file-name [ overwrite ]`

Specify the `running-config` keyword to copy the running configuration from the specified IPv6 TFTP server.

Specify the `startup-config` keyword to copy the startup configuration from the specified IPv6 TFTP server.

The `ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file that is copied from the IPv6 TFTP server.

The `overwrite` keyword specifies that the device should overwrite the current configuration file with the copied file. If you do not specify this parameter, the device copies the file into the current running or startup configuration but does not overwrite the current configuration.

**NOTE**

You cannot use the overwrite option from non-console sessions, because it will disconnect the session.

### Using the IPv6 ncopy command

The `ncopy` command for IPv6 allows you to do the following:

- Copy a primary or secondary boot image from flash memory to an IPv6 TFTP server.
- Copy the running configuration to an IPv6 TFTP server.
- Copy the startup configuration to an IPv6 TFTP server.
- Upload various files from an IPv6 TFTP server.

**Copying a primary or secondary boot image from flash memory to an IPv6 TFTP server**

For example, to copy the primary or secondary boot image from the device's flash memory to an IPv6 TFTP server, enter a command such as the following.

```
device# ncopy flash primary tftp ipv6 2001:db8:e0ff:7837::3 primary.img
```
This command copies the primary boot image named primary.img from flash memory to a TFTP server with the IPv6 address of 2001:db8:e0ff:7837::3.

Syntax: `ncopy flash primary | secondary tftp ipv6 source-file-name`

The `primary` keyword specifies the primary boot image, while the `secondary` keyword specifies the secondary boot image.

The `tftpipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file you want to copy from flash memory.

**Copying the running or startup configuration to an IPv6 TFTP server**

For example, to copy a device's running or startup configuration to an IPv6 TFTP server, enter a command such as the following.

```
device# ncopy running-config tftp ipv6 2001:db8:e0ff:7837::3 bakrun.cfg
```

This command copies a device's running configuration to a TFTP server with the IPv6 address of 2001:db8:e0ff:7837::3 and names the destination file bakrun.cfg.

Syntax: `ncopy running-config | startup-config tftp ipv6 destination-file-name`

Specify the `running-config` keyword to copy the device's running configuration or the `startup-config` keyword to copy the device's startup configuration.

The `tftpipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `destination-file-name` parameter specifies the name of the running configuration that is copied to the IPv6 TFTP server.

**Uploading files from an IPv6 TFTP server**

You can upload the following files from an IPv6 TFTP server:

- Primary boot image.
- Secondary boot image.
- Running configuration.
- Startup configuration.

**Uploading a primary or secondary boot image from an IPv6 TFTP server**

For example, to upload a primary or secondary boot image from an IPv6 TFTP server to a device's flash memory, enter a command such as the following.

```
device# ncopy tftp ipv6 2001:db8:e0ff:7837::3 primary.img flash primary
```

This command uploads the primary boot image named primary.img from a TFTP server with the IPv6 address of 2001:db8:e0ff:7837::3 to the device's primary storage location in flash memory.

Syntax: `ncopy tftp ipv6 source-file-name flash primary | secondary`

The `tftpipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file you want to copy from the TFTP server.
The primary keyword specifies the primary location in flash memory, while the secondary keyword specifies the secondary location in flash memory.

**Uploading a running or startup configuration from an IPv6 TFTP server**

For example to upload a running or startup configuration from an IPv6 TFTP server to a device, enter a command such as the following.

```
device# ncopy tftp ipv6 2001:db8:e0ff:7837::3 newrun.cfg running-config
```

This command uploads a file named newrun.cfg from a TFTP server with the IPv6 address of 2001:db8:e0ff:7837::3 to the device.

**Syntax:** `ncopy tftp ipv6 source-file-name running-config | startup-config`

The `tftpipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file you want to copy from the TFTP server.

Specify the `running-config` keyword to upload the specified file from the IPv6 TFTP server to the device. The device copies the specified file into the current running configuration but does not overwrite the current configuration.

Specify the `startup-config` keyword to upload the specified file from the IPv6 TFTP server to the device. The device copies the specified file into the current startup configuration but does not overwrite the current configuration.

**Using the IPv6 ping command**

The ping command allows you to verify the connectivity from a device to an IPv6 device by performing an ICMP for IPv6 echo test.

For example, to ping a device with the IPv6 address of 2001:db8:847f:a385:34dd::45 from the device, enter the following command.

```
device# ping ipv6 2001:db8:847f:a385:34dd::45
```

**Syntax:** `ping ipv6 ipv6-address [ outgoing-interface [ port | ve number ] ] [ source ipv6-address ] [ count number ] [ timeout milliseconds ] [ ttl number ] [ size bytes ] [ quiet ] [ numeric ] [ no-fragment ] [ verify ] [ data 1-to-4 bytehex ] [ brief ]`

The `ipv6-address` parameter specifies the address of the router. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `outgoing-interface` keyword specifies a physical interface over which you can verify connectivity. If you specify a physical interface, such as an Ethernet interface, you must also specify the port number of the interface. If you specify a virtual interface, such as a VE, you must specify the number associated with the VE.

The `sourceipv6-address` parameter specifies an IPv6 address to be used as the origin of the ping packets.

The `countnumber` parameter specifies how many ping packets the router sends. You can specify from 1 - 4294967296. The default is 1.

The `timer` parameter specifies how many milliseconds the router waits for a reply from the pinged device. You can specify a timeout from 1 - 4294967296 milliseconds. The default is 5000 (5 seconds).

The `ttl number` parameter specifies the maximum number of hops. You can specify a TTL from 1 - 255. The default is 64.

The `size bytes` parameter specifies the size of the ICMP data portion of the packet. This is the payload and does not include the header. You can specify from 0 - 4000. The default is 16.

The `no-fragment` keyword turns on the "don’t fragment" bit in the IPv6 header of the ping packet. This option is disabled by default.

The `quiet` keyword hides informational messages such as a summary of the ping parameters sent to the device and instead only displays messages indicating the success or failure of the ping. This option is disabled by default.
The **verify** keyword verifies that the data in the echo packet (the reply packet) is the same as the data in the echo request (the ping). By default the device does not verify the data.

The **data** parameter lets you specify a specific data pattern for the payload instead of the default data pattern, "abcd", in the packet's data payload. The pattern repeats itself throughout the ICMP message (payload) portion of the packet.

**NOTE**
For parameters that require a numeric value, the CLI does not check that the value you enter is within the allowed range. Instead, if you do exceed the range for a numeric value, the software rounds the value to the nearest valid value.

The **brief** keyword causes ping test characters to be displayed. The following ping test characters are supported:

- ! Indicates that a reply was received.
- . Indicates that the network server timed out while waiting for a reply.
- U Indicates that a destination unreachable error PDU was received.
- I Indicates that the user interrupted ping.

### Using the traceroute command with IPv6 addresses

The **traceroute** command allows you to trace a path from the device to an IPv6 host.

The command output displays traceroute information for each hop as soon as the information is received. Traceroute requests display all responses to a minimum TTL of 1 second and a maximum Time To Live (TTL) of 30 seconds. In addition, if there are multiple equal-cost routes to the destination, the device displays up to three responses.

For example, to trace the path from the device to a host with an IPv6 address of 2001:db8:349e:a384::34, enter the following command:

```
device# traceroute ipv6 2001:db8:349e:a384::34
```

Using the **source-ip** option, you can specify a source IP address. If the source IP address is an IPv6 link-local address, the destination address must be no more than one hop away in the network. An IPv6 link-local address cannot be routed.

```
device# traceroute ipv6 2001:db8:349e:a384::34 source-ip fec0:60:69bc:92:205:33ff:fe9e:3f20
```

**Syntax:** `traceroute ipv6 [ipv6-address | ipv6-host-name] [maxttl value] [minttl value] [numeric] [source-ip address] [timeout seconds] [vrf vrf-name]`

The **ipv6-address** variable specifies the IPv6 address of a host. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

### Using Telnet

This section explains how to do the following:

- Use the **telnet** command to establish a Telnet session from the device to a remote IPv6 host.
- Establish a Telnet session from a remote IPv6 host to the device.

### Using the IPv6 Telnet command

The **telnet** command allows a Telnet connection from a device to a remote IPv6 host using the console. Up to five read-access and one write-access inbound Telnet session are supported on the router at one time. Up to five simultaneous outbound Telnet sessions can also be supported from the console session, from inbound Telnet sessions, from inbound SSH sessions or from a Web session.
To see the Telnet sessions currently open on the device, enter the `show telnet` command; to see both the open Telnet and open SSH sessions, enter the `show who` command as shown below.

```
device# show who
Console connections:
 established
3 days 17 hours 31 minutes 27 seconds in idle
Telnet server status: Enabled
Telnet connections (inbound):
 1 established, client ip address 10.53.1.86
 you are connecting to this session
 1 seconds in idle
 2 established, client ip address 10.53.1.86
 7 seconds in idle
 3 closed
 4 closed
 5 closed
Telnet connections (outbound):
 6 established, server ip address 10.47.2.200, from Telnet session 1
 4 seconds in idle
 7 closed
 8 closed
 9 closed
 10 closed
SSH server status: Enabled
SSH connections:
 1 closed
 2 closed
 3 closed
 4 closed
...```

Syntax: show who

To establish a Telnet connection to a remote host, use the `telnet` command. The following example will establish an outbound Telnet connection to a remote host with the IPv6 address of 2001:db8:3de2:c37::6.

```
device# telnet 2001:db8:3de2:c37::6
```

Syntax: telnet ipv6-address [port-number | outgoing-interface ethernet port | ve number]

The `ipv6-address` parameter specifies the address of a remote host. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `port-number` parameter specifies the port number on which the device establishes the Telnet connection. You can specify a value between 1 - 65535. If you do not specify a port number, the device establishes the Telnet connection on port 23.

If the IPv6 address you specify for the `telnet ipv6-address` command is a link-local address, you must specify the `outgoing-interface ethernet port | ve number` parameter. This parameter specifies the interface that must be used to reach the remote host. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE interface, also specify the VE number.

Establishing a Telnet session from an IPv6 host

To establish a Telnet session from an IPv6 host to the device, open your Telnet application and specify the IPv6 address of the router.

Using Secure Shell

Secure Shell (SSH) is a mechanism that allows secure remote access to management functions on the device. SSH provides a function similar to Telnet. You can log into and configure the device using a publicly or commercially available SSH client program, just as you can with Telnet. However, unlike Telnet, which provides no security, SSH provides a secure, encrypted connection to the device.
To open an SSH session from an IPv6 host running an SSH client program to the device, open your SSH client program and specify the IPv6 address of the router.

Clearing global IPv6 information

You can clear the following global IPv6 information:

- Entries from the IPv6 cache.
- Entries from the IPv6 neighbor table.
- IPv6 routes from the IPv6 route table.
- IPv6 traffic statistics.
- IPv6 session flows

Clearing the IPv6 cache

You can remove all entries from the IPv6 cache or specify an entry based on the following:

- IPv6 prefix.
- IPv6 address.
- Interface type.

For example, to remove entries for IPv6 address 2000:e0ff::1, enter the following command at any configuration level of the CLI.

```
device# clear ipv6 cache 2000:e0ff::1
```

Syntax: `clear ipv6 cache [ipv6-prefix/prefix-length | ipv6-address | ethernet port | tunnel number | ve number] [vrf vrf-name]`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `ethernet | tunnel | ve` parameter specifies the interfaces for which you can remove cache entries. If you specify an Ethernet interface, you must also specify the port number associated with the interface. If you specify a VE or tunnel interface, also specify the VE or tunnel number, respectively.

The `vrf-name` parameter specifies the VRF for which you want to clear the cache entry. If no `vrf` parameter is entered, the default VRF is used.

Clearing IPv6 neighbor information

You can remove all entries from the IPv6 neighbor table or specify an entry based on the following:

- IPv6 prefix.
- IPv6 address.
- Interface type.

For example, to remove entries for Ethernet interface 3/1, enter the following command at the Privileged EXEC level or any of the CONFIG levels of the CLI.

```
device# clear ipv6 neighbor ethernet 3/1
```
Syntax: clear ipv6 neighbor [ipv6-prefix/prefix-length | ipv6-address | ethernet port | ve number]

You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

You must specify the ipv6-address parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. The ethernet | ve parameter specifies the interfaces for which you can remove cache entries. If you specify an Ethernet interface, you must also specify the port number associated with the interface. If you specify a VE, you must also specify the VE number.

Clearing IPv6 routes from the IPv6 route table

You can clear all IPv6 routes or only those routes associated with a particular IPv6 prefix from the IPv6 route table and reset the routes. For example, to clear IPv6 routes associated with the prefix 2000:7838::/32, enter the following command at any configuration level of the CLI.

```
device# clear ipv6 route 2000:7838::/32
```

Syntax: clear ipv6 route [ipv6-prefix/prefix-length] | nexthop nexthop_ID

The ipv6-prefix/prefix-length parameter clears routes associated with a particular IPv6 prefix. You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

The nexthop option clears the nexthop information for all next hops in the routing table or for a specific entry. The nexthop_id parameter is a specific nexthop entry from the next hop table.

Clearing IPv6 traffic statistics

To clear all IPv6 traffic statistics (reset all fields to zero), enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

```
device(config)# clear ipv6 traffic
```

Syntax: clear ipv6 traffic

Clearing statistics for IPv6 subnet rate limiting

To clear the rate limit statistics for IPv6 subnet addresses, enter the clear rate-limit ipv6 subnet command at the configuration level.

Syntax: clear rate-limit ipv6 subnet

Displaying global IPv6 information

You can display output for the following global IPv6 parameters:

- IPv6 cache.
- IPv6 interfaces.
- IPv6 neighbors.
- IPv6 route table.
- Local IPv6 routers.
IPv6 TCP connections and the status of individual connections.
- IPv6 traffic statistics.
- IPv6 session flows

Displaying IPv6 cache information

The IPv6 cache contains an IPv6 host table with indices to the next hop gateway and the interface on which the route was learned.

To display IPv6 cache information, enter the following command at any CLI level.

```console
device# show ipv6 cache
```

Total number of IPv6 and IPv6 VPN cache entries: 3

<table>
<thead>
<tr>
<th>IPv6 Address</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000::</td>
<td>LOCAL</td>
<td>ve 60</td>
</tr>
<tr>
<td>6000::2</td>
<td>LOCAL</td>
<td>ve 60</td>
</tr>
<tr>
<td>fe80::768e:f8ff:fe2a:6200</td>
<td>LOCAL</td>
<td>ve 60</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 cache [index-number | ipv6-prefix/prefix-length | ipv6-address | ethernet port | ve number | tunnel number] [vrf vrf-name]`

The `index-number` parameter restricts the display to the entry for the specified index number and subsequent entries.

The `ipv6-prefix/prefix-length` parameter restricts the display to the entries for the specified IPv6 prefix. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `ethernet | ve | tunnel` parameter restricts the display to the entries for the specified interface. The `ipv6-address` parameter restricts the display to the entries for the specified IPv6 address. You must specify this parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `vrf vrf-name` parameter specifies the VRF for which you want to display the cache entry. If a `vrf` parameter is not entered, then the default VRF is used.

If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE interface, you must also specify the VE number. If you specify a tunnel interface, you must also specify the tunnel number.

This display shows the following information.

TABLE 25 IPv6 cache information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of cache entries</td>
<td>The number of entries in the cache table.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>The host IPv6 address.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next hop, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- Direct - The next hop is directly connected to the device.</td>
</tr>
<tr>
<td></td>
<td>- Local - The next hop is originated on this device.</td>
</tr>
<tr>
<td></td>
<td>- <code>ipv6 address</code> - The IPv6 address of the next hop.</td>
</tr>
<tr>
<td>Port</td>
<td>The port on which the entry was learned.</td>
</tr>
</tbody>
</table>

Displaying IPv6 interface information

To display IPv6 interface information, enter the following command at any CLI level.

```console
device# show ipv6 interface
```

```
Type Codes - I:ISIS O:OSPF R:RIP
```
Displaying global IPv6 information

<table>
<thead>
<tr>
<th>Interface</th>
<th>Stat/Prot IGPs</th>
<th>IPv6 Address</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth 2/4</td>
<td>down/down</td>
<td>2001:db8:2017::c017:101/64</td>
<td>default-vrf</td>
</tr>
<tr>
<td>ve 60</td>
<td>up/up</td>
<td>fe80::768e:f8ff:fe2a:6200 6000::2/64 6000::/64 [Anycast]</td>
<td>default-vrf</td>
</tr>
</tbody>
</table>

Syntax: show ipv6 interface [interface [port-number] number]

The interface parameter displays detailed information for a specified interface. For the interface, you can specify the Ethernet, loopback, tunnel, or VE keywords. If you specify an Ethernet interface, you must also specify the port number associated with the interface. If you specify a loopback, tunnel, or VE interface, you must also specify the number associated with the interface.

This display shows the following information.

TABLE 26 General IPv6 interface information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing protocols</td>
<td>A one-letter code that represents a routing protocol that can be enabled on an interface.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface type, and the port number or number of the interface.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the interface. The entry in the Status field will be either "up/up" or "down/down".</td>
</tr>
<tr>
<td>Routing</td>
<td>The routing protocols enabled on the interface.</td>
</tr>
<tr>
<td>Global Unicast Address</td>
<td>The global unicast address of the interface.</td>
</tr>
</tbody>
</table>

Displaying IPv6 interface information for a specified interface

To display detailed information for a specific interface, enter a command such as the following at any CLI level.

```
device# show ipv6 interface ethernet 3/1
Brocade# show ipv6 interface ethernet 2/2
```

Interface Ethernet 2/2 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::768e:f8ff:fe2a:6231 [Preferred]
Global unicast address(es):
 180::1 [Preferred], subnet is 180::/64
 180:: [Anycast], subnet is 180::/64
Joined group address(es):
 ff02::1:ff00:1
 ff02::1:ff00:0
 ff02::1:ff2a:6231
Port belongs to VRF: default-vrf
MTU is 1500 bytes
ICMP redirects are disabled
ND DAD is enabled, number of DAD attempts: 3
ND reachable time is 30000 Milliseconds
ND advertised reachable time is 0 seconds
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND next router advertisement will be sent in 270 seconds
ND router advertisements live for 1800 seconds
No Inbound Access List Set
No Outbound Access List Set
IPV6 RPF mode: None IPV6 RPF Log: Disabled
RxPkts: 5 TxPkts: 16
RxBytes: 730 TxBytes: 1936
IPv6 unicast RPF drop: 0
IPv6 unicast RPF suppressed drop: 0

This display shows the following information.
TABLE 27 Detailed IPv6 interface information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface/line protocol status</td>
<td>The status of interface and line protocol. If you have disabled the interface with the <code>disable</code> command, the status will be “administratively down”. Otherwise, the status is either “up” or “down”.</td>
</tr>
<tr>
<td>IPv6 status/link-local address</td>
<td>The status of IPv6. The status is either “enabled” or “disabled”. Displays the link-local address, if one is configured for the interface.</td>
</tr>
<tr>
<td>Global unicast address(es)</td>
<td>Displays the global unicast addresses, if one or more are configured for the interface.</td>
</tr>
<tr>
<td>Joined group address(es)</td>
<td>The multicast addresses that a device interface listens for and recognizes.</td>
</tr>
<tr>
<td>MTU</td>
<td>The setting of the maximum transmission unit (MTU) configured for the IPv6 interface. The MTU is the maximum length an IPv6 packet can have to be transmitted on the interface. If an IPv6 packet is longer than an MTU, the host that originated the packet fragments the packet and transmits its contents in multiple packets that are shorter than the configured MTU.</td>
</tr>
<tr>
<td>ICMP</td>
<td>The setting of the ICMP redirect parameter for the interface.</td>
</tr>
<tr>
<td>ND</td>
<td>The setting of the various neighbor discovery parameters for the interface.</td>
</tr>
<tr>
<td>Access List</td>
<td>The inbound and outbound access lists applied to the interface.</td>
</tr>
<tr>
<td>Routing protocols</td>
<td>The routing protocols enabled on the interface.</td>
</tr>
<tr>
<td>RxPkts</td>
<td>The number of packets received at the specified port. This field supports IPv4 and IPv6 packet and byte counters.</td>
</tr>
<tr>
<td>TxPkts</td>
<td>The number of packets transmitted from the specified port. This field supports IPv4 and IPv6 packet and byte counters.</td>
</tr>
<tr>
<td>RxBytes</td>
<td>The number of bytes received at the specified port. This field supports IPv4 and IPv6 packet and byte counters.</td>
</tr>
<tr>
<td>TxBytes</td>
<td>The number of bytes transmitted from the specified port. This field supports IPv4 and IPv6 packet and byte counters.</td>
</tr>
</tbody>
</table>

Displaying interface counters for all ports

Previous versions of the Netiron software support IPv4 and IPv6 packet and byte counters. The contents of these counters can be displayed for all ports on a device or per port. Output from the `show ipv6 interface ethernet` command includes packet and byte counter information on a per-port basis. Refer to **Displaying IPv6 interface information for a specified interface** on page 208.

The default byte counters include the 20-byte per-packet Ethernet overhead. You can configure a device to exclude the 20-byte per-packet Ethernet overhead from byte accounting using the `vlan-counter exclude-overhead` command.

IPv4 and IPv6 commands display the interface counters for all ports on a device. The following example displays packet and byte counter information for all ports.

```
device# show ipv6 interface counters
```

```
Interface  RxPkts  TxPkts  RxBytes  TxBytes
eth 3/3    200     200     850000   850000
eth 3/4    500     500     40000    40000
```

Syntax: `show ipv6 interface counters`

Table 28 describes the fields that display interface counter statistics.

TABLE 28 Interface counter display statistics

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface for which counter statistics are being displayed.</td>
</tr>
</tbody>
</table>
Displaying global IPv6 information

TABLE 28 Interface counter display statistics (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RxPkts</td>
<td>The number of packets received at the specified port.</td>
</tr>
<tr>
<td>TxPkts</td>
<td>The number of packets transmitted from the specified port.</td>
</tr>
<tr>
<td>RxBytes</td>
<td>The number of bytes received at the specified port.</td>
</tr>
<tr>
<td>TxBytes</td>
<td>The number of bytes transmitted from the specified port.</td>
</tr>
</tbody>
</table>

Clearing the interface counters

Use the following command to clear all interface counters on a device.

```
device# clear ipv6 interface counters
```

Syntax: clear ipv6 interface counters

Use the following command to clear the interface counters for a specified port.

```
device# clear ipv6 interface ethernet 3/2
```

Syntax: clear ipv6 interface ethernet `port-number`

The `port-number` variable specifies the slot and port number for which you want to clear the interface counters.

Displaying IPv6 neighbor information

You can display the IPv6 neighbor table, which contains an entry for each IPv6 neighbor with which the device exchanges IPv6 packets.

To display the IPv6 neighbor table, enter the following command at any CLI level.

```
device(config)# show ipv neighbor ethernet 3/11
Total number of Neighbor entries: 1
Type Codes - *:Static
Entries on interface eth 3/11 :
IPv6 Address VLAN LinkLayer-Addr State Age Port R
1 128:: 1 0024.3898.0f0a *REACH 422 3/11 0
```

After I Ping the neighbor

```
device(config)# ping ipv6 128::
Sending 1, 16-byte ICMPv6 Echo to 128::
timeout 5000 msec, Hop Limit 64
Type Control-c to abort
Reply from 128::: bytes=16 time=2ms Hop Limit=64
Success rate is 100 percent (1/1), round-trip min/avg/max=2/2/2 ms.
```

```
device(config)# show ipv neighbor ethernet 3/11
Total number of Neighbor entries: 2
Entries on interface eth 3/11 :
IPv6 Address VLAN LinkLayer-Addr State Age Port R
1 128:: 1 0024.3898.0f0a *REACH 429493/11 0
2 fe80::224:38ff:fe98:f0a 1 0024.3898.0f0a STALE 264 3/11 1
```

```
device(config)# show ipv neighbor ethernet 3/11
Total number of Neighbor entries: 2
Entries on interface eth 3/11 :
IPv6 Address VLAN LinkLayer-Addr State Age Port R
1 128:: 1 0024.3898.0f0a *REACH 429493/11 0
2 fe80::224:38ff:fe98:f0a 1 0024.3898.0f0a STALE 266 3/11 1
```

```
device(config)# show ipv neighbor ethernet 3/11
```
Total number of Neighbor entries: 2

Entries on interface eth 3/11 :

<table>
<thead>
<tr>
<th>IPv6 Address</th>
<th>VLAN</th>
<th>LinkLayer-Addr</th>
<th>State</th>
<th>Age</th>
<th>Port</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128::</td>
<td>1</td>
<td>REACH 35</td>
<td>3/11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>fe80::224:38ff:fe98:f0a</td>
<td>1</td>
<td>STALE 60</td>
<td>3/11</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ipv6 neighbor [ipv6-prefix/prefix-length | ipv6-address | interface [port | number]]

The ipv6-prefix/prefix-length parameters restrict the display to the entries for the specified IPv6 prefix. You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

The ipv6-address parameter restricts the display to the entries for the specified IPv6 address. You must specify this parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The interface parameter restricts the display to the entries for the specified Extreme device interface. For this parameter, you can specify the Ethernet or VE keywords. If you specify an Ethernet interface, you must also specify the port number associated with the interface. If you specify a VE interface, you must also specify the VE number.

This display shows the following information.

TABLE 29 IPv6 neighbor information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of neighbor entries</td>
<td>The total number of entries in the IPv6 neighbor table.</td>
</tr>
<tr>
<td>Type Codes</td>
<td>Shows the route type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• B - The route is learned from BGP4+.</td>
</tr>
<tr>
<td></td>
<td>• C - The destination is directly connected to the router.</td>
</tr>
<tr>
<td></td>
<td>• I - The route is learned from IPv6 IS-IS.</td>
</tr>
<tr>
<td></td>
<td>• L - The route is the host address of a loopback interface that is assigned an IPv6 address.</td>
</tr>
<tr>
<td></td>
<td>• O - The route is learned from OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>• R - The route is learned from RIPng.</td>
</tr>
<tr>
<td></td>
<td>• S - The route is a static route.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>The 128-bit IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>Link-Layer Address</td>
<td>The 48-bit interface ID of the neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The current state of the neighbor. Possible states are as follows:</td>
</tr>
<tr>
<td></td>
<td>• INCOMPLETE - Address resolution of the entry is being performed.</td>
</tr>
<tr>
<td></td>
<td>• REACH - The forward path to the neighbor is functioning properly.</td>
</tr>
<tr>
<td></td>
<td>• STAILE - This entry has remained unused for the maximum interval. While stale, no action takes place until a packet is sent.</td>
</tr>
<tr>
<td></td>
<td>• DELAY - This entry has remained unused for the maximum interval, and a packet was sent before another interval elapsed.</td>
</tr>
<tr>
<td></td>
<td>• PROBE - Neighbor solicitation are transmitted until a reachability confirmation is received.</td>
</tr>
<tr>
<td>Age</td>
<td>Specifies the time (in seconds) for which the IPv6 neighbor is active. When the global timer 7200 seconds expires, the IPv6 neighbor entry is cleared from the neighbor table.</td>
</tr>
<tr>
<td>Port</td>
<td>The port on which the entry was learned.</td>
</tr>
<tr>
<td></td>
<td>If the ND6 entry is configured without the need to include physical interface on a VE interface, then the PORT value is indicated as INV.</td>
</tr>
<tr>
<td>R</td>
<td>Determines if the neighbor is a device or host:</td>
</tr>
</tbody>
</table>
TABLE 29 IPv6 neighbor information fields (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Indicates that the neighbor is a host.</td>
<td>1 - Indicates that the neighbor is a device.</td>
</tr>
</tbody>
</table>

The following command example indicates specific static ND6 entries.

```text
device# show ipv6 neighbor
Total number of Neighbor entries: 4
Entries in default VRF:

<table>
<thead>
<tr>
<th>IPv6 Address</th>
<th>VLAN</th>
<th>LinkLayer-Addr</th>
<th>State</th>
<th>Age</th>
<th>Port</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fe80::204:80ff:fea0:4060</td>
<td>1</td>
<td>0004.80a0.4060</td>
<td>REACH</td>
<td>11</td>
<td>3/1</td>
<td>1</td>
</tr>
<tr>
<td>2 fe80::204:80ff:fea0:4061</td>
<td>1</td>
<td>0004.80a0.4061</td>
<td>STALE</td>
<td>4622</td>
<td>3/2</td>
<td>1</td>
</tr>
<tr>
<td>3 99::2</td>
<td>1</td>
<td>0004.80a0.4060</td>
<td>*INCOMP</td>
<td>0</td>
<td>Inv</td>
<td>1</td>
</tr>
<tr>
<td>4 199::2</td>
<td>1</td>
<td>0004.80a0.4061</td>
<td>*REACH</td>
<td>13</td>
<td>3/2</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Displaying the IPv6 route table

To display the IPv6 route table, enter the following command at any CLI level.

```text
device# show ipv6 route
IPv6 Routing Table - 2 entries:
Type Codes - B:BGP C:Connected I:ISIS L:Local O:OSPF R:RIP S:Static
BGP Codes - i:iBGP e:eBGP
ISIS Codes - L1:Level-1 L2:Level-2
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2
STATIC Codes - d:DHCPv6
Type IPv6 Prefix          Next Hop Router Interface   Dis/Metric Uptime  src-vrf
C    2001:db8::/64        ::              eth 1/7     0/0        45m18s  -
C    2001:db8:0:25::/64   ::              loopback 1  0/0        1h0m     -
L    2001:db8:0:25::1/128 ::              loopback 1  0/0        13m18s   -
C    2001:db8:2000::/64   ::              eth 1/13    0/0        1h0m     -
O    2001:db8:4000::1/128 fe80::202:17ff:fe6e:e11c  eth 1/13 110/1      2m42s   -
```

Syntax: `show ipv6 route [ipv6-address | ipv6-prefix/prefix-length] bgp | connect | ospf | rip | isis | static | summary | tags | nexthop nexthop_id | ref-routes`

The `ipv6-address` parameter restricts the display to the entries for the specified IPv6 address. You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `ipv6-prefix/prefix-length` parameters restrict the display to the entries for the specified IPv6 prefix. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `bgp` keyword restricts the display to entries for BGP4+ routes.

The `connect` keyword restricts the display to entries for directly connected interface IPv6 routes.

The `isis` keyword restricts the display to entries for IPv6 IS-IS routes.

The `ospf` keyword restricts the display to entries for OSPFv3 routes.

The `rip` keyword restricts the display to entries for RIPng routes.

The `static` keyword restricts the display to entries for static IPv6 routes.

The `summary` keyword displays a summary of the prefixes and different route types.

The `tags` keyword displays the label information for the IPv6 routes.

The `nexthop` option displays the next-hop information for all next hops in the routing table or for a specific entry. The `nexthop_id` parameter is a specific nexthop entry from the next hop table.
The `ref-routes` option allows you to display IPv6 routes in the forwarding table that refer to the specified next hop entry.

The following table lists the information displayed by the `show ipv6 route` command.

TABLE 30 IPv6 route table fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of entries</td>
<td>The number of entries in the IPv6 route table.</td>
</tr>
</tbody>
</table>
| Type | The route type, which can be one of the following:
• B - The route is learned from BGP4+.
• C - The destination is directly connected to the device.
• I - The route is learned from IPv6 IS-IS.
• L - The route is the host address of a loopback interface that is assigned an ipv6 address.
• O - The route is learned from OSPFv3.
• R - The route is learned from RIPng.
• S - The route is a static route. |
| OSPF Type |
• i - an internal route calculated by OSPF.
• 1 - An OSPF type 1 external route.
• 2 - An OSPF type 2 external route.
• e - an external route calculated by OSPF. |
| IPv6 Prefix | The destination network of the route. |
| Next-Hop Router | The next-hop device. |
| Interface | The interface through which this device sends packets to reach the route destination. |
| Dis/Metric | The administrative distance and metric value of the route. |

To display a summary of the IPv6 route table, enter the following command at any CLI level.

```
device# show ipv6 route summary
IPv6 Routing Table - 7 entries:  
4 connected, 2 static, 0 RIP, 1 OSPF, 0 BGP  
Number of prefixes:  
/16: 1 /32: 1 /64: 3 /128: 2
```

Table 31 lists the information displayed by the `show ipv6 route summary` command.

TABLE 31 IPv6 route table summary fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of entries</td>
<td>The number of entries in the IPv6 route table.</td>
</tr>
<tr>
<td>Number of route types</td>
<td>The number of entries for each route type.</td>
</tr>
<tr>
<td>Number of prefixes</td>
<td>A summary of prefixes in the IPv6 route table, sorted by prefix length.</td>
</tr>
</tbody>
</table>

To display the label information for the IPv6 route, enter the following command.

```
device# show ipv6 route tags
IPv6 Routing Table - 4 entries:  
Type Codes - B:BGP C:Connected I:ISIS L:Level-1 L2:Level-2  
BGP Codes - i:iBGP e:eBGP  
ISIS Codes - L1:Level-1 L2:Level-2  
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2  
Type IPv6 Prefix Next Hop Router Interface Dis/Metric Uptime  
S 2001:db8:1::/64 2001:db8:1111::2 eth 1/1 1/1 1h3m  
lable information: 794624(IN)  
Bi 2001:db8:2::/64 :: lsp toPE-4 200/1 30m20s
```
The label information for the IPv6 route is shown in bold text in the previous output. Table 32 describes the output parameters of the `show ipv6 route tags` command.

TABLE 32 Output parameters of the show ipv6 route tags command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of entries</td>
<td>Shows the number of entries in the IPv6 route table.</td>
</tr>
<tr>
<td>Type Codes</td>
<td>Shows the route type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• B - The route is learned from BGP4+.</td>
</tr>
<tr>
<td></td>
<td>• C - The destination is directly connected to the router.</td>
</tr>
<tr>
<td></td>
<td>• I - The route is learned from IPv6 IS-IS.</td>
</tr>
<tr>
<td></td>
<td>• L - The route is the host address of a loopback interface that is assigned an IPv6 address.</td>
</tr>
<tr>
<td>Type Codes (continued)</td>
<td>• O - The route is learned from OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>• R - The route is learned from RIPng.</td>
</tr>
<tr>
<td></td>
<td>• S - The route is a static route.</td>
</tr>
<tr>
<td>BGP Codes</td>
<td>Shows the BGP type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• i - An IBGP route.</td>
</tr>
<tr>
<td></td>
<td>• e - An EBGP route.</td>
</tr>
<tr>
<td>ISIS Codes</td>
<td>Shows the IS-IS type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• L1 - An IS-IS level 1 route.</td>
</tr>
<tr>
<td></td>
<td>• L2 - An IS-IS level 2 route.</td>
</tr>
<tr>
<td>OSPF Codes</td>
<td>Shows the OSPF type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• i - An internal route calculated by OSPF.</td>
</tr>
<tr>
<td></td>
<td>• 1 - An OSPF type 1 external route.</td>
</tr>
<tr>
<td></td>
<td>• 2 - An OSPF type 2 external route.</td>
</tr>
<tr>
<td></td>
<td>• e - An external route calculated by OSPF.</td>
</tr>
<tr>
<td>IPv6 Prefix</td>
<td>Shows the destination network of the route.</td>
</tr>
<tr>
<td>Next Hop Router</td>
<td>Shows the address of the next hop router.</td>
</tr>
<tr>
<td>Interface</td>
<td>Shows the interface through which this router sends the IPv6 packets to reach the destination.</td>
</tr>
<tr>
<td>Dis/Metric</td>
<td>Shows the administrative distance and metric value of the IPv6 route.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Shows the amount of time the interface has been running.</td>
</tr>
<tr>
<td>label information</td>
<td>Shows the label information for the IPv6 route.</td>
</tr>
</tbody>
</table>

Using the nexthop option

You can display nexthop information for all next hops in the routing table or for a specific entry. To display all the nexthop entries, use the `show ipv6 route nexthop` command, and then use the option to display the next hop for a specific table entry.
Syntax: show ipv6 route nexthop nexthop_id

The `nexthop_id` is under the column labeled ID in the output of the `show ip route nexthop` command. In the following example, the output of the `show ip route nexthop` command is displayed for a nexthop ID 65538.

```
device# show ipv6 route nexthop 65538
NextHopIp        Port          RefCount        ID      Age
1      192::1            eth 1/2      255950/255951   65538   1384
```

Displaying IPv6 routes with nexthop ID

By using the `nexthop` option with the `ref-routes` keyword, you can display IPv6 routes in the forwarding table that refer to a specified nexthop entry, as the following example illustrates (using nexthop ID 65538).

```
device#show ipv6 route nexthop 65538 ref-routes
Type Codes - B:BGP D:Connected I:ISIS O:OSPF R:RIP S:Static; Cost - Dist/Metric
ISIS Codes - L1:Level-1 L2:Level-2
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2 s:Sham Link
<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3::/64</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20</td>
<td>B</td>
<td>15m27s</td>
</tr>
<tr>
<td>2 4::/64</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20</td>
<td>B</td>
<td>18m17s</td>
</tr>
<tr>
<td>3 4:21:103::0/126</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20</td>
<td>B</td>
<td>15m48s</td>
</tr>
<tr>
<td>4 4:23:112::0/126</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20</td>
<td>B</td>
<td>19m12s</td>
</tr>
<tr>
<td>5 4:23:113::0/126</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20</td>
<td>B</td>
<td>19m12s</td>
</tr>
<tr>
<td>6 4:23:114::0/126</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20</td>
<td>B</td>
<td>19m12s</td>
</tr>
</tbody>
</table>
```

Syntax: show ipv6 route nexthop nexthop_id ref-routes

Description of command output fields

The following table lists the information in the `show ipv6 route` command output when you run the `show ipv6 route nexthop nexthop_id ref-routes` command.

This display shows the following information.

TABLE 33 show ipv6 route nexthop ref-routes information fields

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The destination network of the IPv6 route.</td>
</tr>
<tr>
<td>Gateway</td>
<td>The next-hop router.</td>
</tr>
<tr>
<td>Port</td>
<td>The port through which this device sends packets to reach the route's destination.</td>
</tr>
<tr>
<td>Cost</td>
<td>The route's cost.</td>
</tr>
</tbody>
</table>
| **Type** | The route type, which can be one of the following:
 • B - The route was learned from BGP.
 • D - The destination is directly connected to this device.
 • I - The route is an ISIS route.
 • O - The route is an OSPF route.
 • R - The route was learned from RIP.
 • S - The route is a static route.
 • * - The route is a candidate default route. |
| **Uptime** | The amount of time since the route was last modified. The format of this display parameter may change depending upon the age of the route to |
Displaying IPv6 information

TABLE 33 show ipv6 route nexthop ref-routes information fields (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>include the seconds (s), minutes (m), hours (h), and days (d), as described in the following:</td>
</tr>
<tr>
<td></td>
<td>• 400d - Only days (d) displayed</td>
</tr>
<tr>
<td></td>
<td>• 20d23h - days (d) and hours (h) displayed</td>
</tr>
<tr>
<td></td>
<td>• 14h33m - hours (h) and minutes (m) displayed</td>
</tr>
<tr>
<td></td>
<td>• 10m59s - minutes (m) and seconds (s) displayed</td>
</tr>
</tbody>
</table>

Displaying IPv6 routes using the detail option

By using the `detail` option with the `show ipv6 route` command, you can display the nexthop entry and the reference count. The following command output is displayed for a nexthop ID 65538.

```
device#show ipv6 route nexthop 65538 ref-routes
```

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3::/64</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20/0</td>
<td>B</td>
<td>15m27s</td>
</tr>
<tr>
<td>2 4::/64</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20/0</td>
<td>B</td>
<td>18m17s</td>
</tr>
<tr>
<td>3 4:21:103::0/126</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20/0</td>
<td>B</td>
<td>15m48s</td>
</tr>
<tr>
<td>4 4:23:112::0/126</td>
<td>300:300::2</td>
<td>eth 1/2</td>
<td>20/0</td>
<td>B</td>
<td>19m12s</td>
</tr>
</tbody>
</table>

Nexthop Entry ID:65538, Paths: 1, Ref_Count:256001/256002

Syntax: `show ipv6 route specific-route detail`

Displaying local IPv6 devices

The device can function as an IPv6 host, if you configure IPv6 addresses on the interfaces but do not enable IPv6 routing using the `ipv6 unicast-routing` command.

From the IPv6 host, you can display information about IPv6 devices to which the host is connected. The host learns about the devices through their router advertisement messages. To display information about the IPv6 devices connected to an IPv6 host, enter the following command at any CLI level.

```
device# show ipv6 router
```

```
Router fe80::2e0:80ff:fe46:3431 on Ethernet 50, last update 0 min
Hops 64, Lifetime 1800 sec
Reachable time 0 msec, Retransmit time 0 msec
```

Syntax: `show ipv6 router`

If you configure your device to function as an IPv6 device (configure IPv6 addresses on the interfaces and enable IPv6 routing using the `ipv6 unicast-routing` command) and then enter the `show ipv6 router command`, you will receive the following output.

No IPv6 router in table

Meaningful output for this command is generated for devices configured to function as IPv6 hosts only.

This display shows the following information.

TABLE 34 IPv6 local router information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ipv6 address on interface port</td>
<td>The IPv6 address for a particular interface.</td>
</tr>
<tr>
<td>Last update</td>
<td>The amount of elapsed time (in minutes) between the current and previous updates received from a device.</td>
</tr>
</tbody>
</table>

TABLE 34 IPv6 local router information fields (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hops</td>
<td>The default value that should be included in the Hop Count field of the IPv6 header for outgoing IPv6 packets. The hops value applies to the device for which you are displaying information and should be followed by IPv6 hosts attached to the device. A value of 0 indicates that the device leaves this field unspecified.</td>
</tr>
<tr>
<td>Lifetime</td>
<td>The amount of time (in seconds) that the device is useful as the default device.</td>
</tr>
<tr>
<td>Reachable time</td>
<td>The amount of time (in milliseconds) that a device assumes a neighbor is reachable after receiving a reachability confirmation. The reachable time value applies to the device for which you are displaying information and should be followed by IPv6 hosts attached to the device. A value of 0 indicates that the device leaves this field unspecified.</td>
</tr>
<tr>
<td>Retransmit time</td>
<td>The amount of time (in milliseconds) between retransmissions of neighbor solicitation messages. The retransmit time value applies to the device for which you are displaying information and should be followed by IPv6 hosts attached to the device. A value of 0 indicates that the device leaves this field unspecified.</td>
</tr>
</tbody>
</table>

Displaying IPv6 TCP information

You can display the following IPv6 TCP information:

- General information about each TCP connection on the device, including the percentage of free memory for each of the internal TCP buffers.
- Detailed information about a specified TCP connection.

To display general information about each TCP connection on the device, enter the following command at any CLI level.

```
device# show ipv6 tcp connections
```

Local IP address:port <-> Remote IP address:port TCP state
192.168.182.110:8159 <-> 192.168.2.102:179 SYN-SENT
Total 5 TCP connections
TCP MEMORY USAGE PERCENTAGE
FREE TCB = 98 percent
FREE TCP QUEUE BUFFER = 99 percent
FREE TCP SEND BUFFER = 97 percent
FREE TCP RECEIVE BUFFER = 100 percent
FREE TCP OUT OF SEQUENCE BUFFER = 100 percent

Syntax: show ipv6 tcp connections

This display shows the following information.

TABLE 35 General IPv6 TCP connection fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local IP address:port</td>
<td>The IPv4 or IPv6 address and port number of the local interface over which the TCP connection occurs.</td>
</tr>
<tr>
<td>Remote IP address:port</td>
<td>The IPv4 or IPv6 address and port number of the remote interface over which the TCP connection occurs.</td>
</tr>
<tr>
<td>TCP state</td>
<td>The state of the TCP connection. Possible states include the following:</td>
</tr>
</tbody>
</table>
TABLE 35 General IPv6 TCP connection fields (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SYN-SENT</td>
<td>- Waiting for a matching connection request after having sent a connection request.</td>
</tr>
<tr>
<td>• SYN-RECEIVED</td>
<td>- Waiting for a confirming connection request acknowledgment after having both received and sent a connection request.</td>
</tr>
<tr>
<td>• ESTABLISHED</td>
<td>- Data can be sent and received over the connection. This is the normal operational state.</td>
</tr>
<tr>
<td>• FIN-WAIT-1</td>
<td>- Waiting for a connection termination request from the remote TCP, or an acknowledgment of the connection termination request previously sent.</td>
</tr>
<tr>
<td>• FIN-WAIT-2</td>
<td>- Waiting for a connection termination request from the remote TCP.</td>
</tr>
<tr>
<td>• CLOSE-WAIT</td>
<td>- Waiting for a connection termination request from the local user.</td>
</tr>
<tr>
<td>• CLOSING</td>
<td>- Waiting for a connection termination request acknowledgment from the remote TCP.</td>
</tr>
<tr>
<td>• LAST-ACK</td>
<td>- Waiting for an acknowledgment of the connection termination request previously sent to the remote TCP (which includes an acknowledgment of its connection termination request).</td>
</tr>
<tr>
<td>• TIME-WAIT</td>
<td>- Waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request.</td>
</tr>
<tr>
<td>• CLOSED</td>
<td>- There is no connection state.</td>
</tr>
</tbody>
</table>

FREE TCB = percentage
- The percentage of free TCP control block (TCB) space.

FREE TCB QUEUE BUFFER = percentage
- The percentage of free TCB queue buffer space.

FREE TCB SEND BUFFER = percentage
- The percentage of free TCB send buffer space.

FREE TCB RECEIVE BUFFER = percentage
- The percentage of free TCB receive buffer space.

FREE TCB OUT OF SEQUENCE BUFFER = percentage
- The percentage of free TCB out of sequence buffer space.

To display detailed information about a specified TCP connection, enter a command such as the following at any CLI level.

```
device# show ipv6 tcp status 2001:db8::110 179 2001:db8::106 8222
TCP: TCB = 0x217fc300
  Send: initial sequence number = 242365900
  Send: first unacknowledged sequence number = 242434080
  Send: current send pointer = 242434080
  Send: next sequence number to send = 242434080
  Send: remote received window = 16384
  Send: total unacknowledged sequence number = 0
  Send: total used buffers 0
  Receive: initial incoming sequence number = 740437769
  Receive: expected incoming sequence number = 740507227
  Receive: received window = 16384
  Receive: bytes in receive queue = 0
  Receive: congestion window = 1459
```

Syntax: show ipv6 tcp status local-ip-address local-port-number remote-ip-address remote-port-number

The `local-ip-address` parameter can be the IPv4 or IPv6 address of the local interface over which the TCP connection is taking place.

The `local-port-number` parameter is the local port number over which a TCP connection is taking place.

The `remote-ip-address` parameter can be the IPv4 or IPv6 address of the remote interface over which the TCP connection is taking place.
The remote-port-number parameter is the local port number over which a TCP connection is taking place.

This display shows the following information.

TABLE 36 Specific IPv6 TCP connection fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCB = location</td>
<td>The location of the TCB.</td>
</tr>
</tbody>
</table>
| local-ip-address local-port-number remote-ip-address remote-port-number state port | This field provides a general summary of the following:
- The local IPv4 or IPv6 address and port number.
- The remote IPv4 or IPv6 address and port number.
- The state of the TCP connection. For information on possible states, refer to Table 35.
- The port numbers of the local interface. |
| Send: initial sequence number = number | The initial sequence number sent by the local device. |
| Send: first unacknowledged sequence number = number | The first unacknowledged sequence number sent by the local device. |
| Send: current send pointer = number | The current send pointer. |
| Send: next sequence number to send = number | The next sequence number sent by the local device. |
| Send: remote received window = number | The size of the remote received window. |
| Send: total unacknowledged sequence number = number | The total number of unacknowledged sequence numbers sent by the local device. |
| Send: total used buffers number | The total number of buffers used by the local device in setting up the TCP connection. |
| Receive: initial incoming sequence number = number | The initial incoming sequence number received by the local device. |
| Receive: expected incoming sequence number = number | The incoming sequence number expected by the local device. |
| Receive: received window = number | The size of the local device receive window. |
| Receive: bytes in receive queue = number | The number of bytes in the local device receive queue. |
| Receive: congestion window = number | The size of the local device receive congestion window. |

Displaying IPv6 traffic statistics

To display IPv6 traffic statistics, enter the following command at any CLI level.

```
device# show ipv6 traffic
IP6 Statistics
  36947 received, 66818 sent, 0 forwarded, 36867 delivered, 0 rawout
  0 bad vers, 23 bad scope, 0 bad options, 0 too many hdr
  0 no route, 0 can't forward, 0 redirect sent, 0 source routed
  0 frag recv, 0 frag dropped, 0 frag timeout, 0 frag overflow
  0 reassembled, 0 fragmented, 0 ofragments, 0 can't frag
  0 too short, 0 too small, 11 not member
  0 no buffer, 66819 allocated, 21769 freed
  0 forward cache hit, 46 forward cache miss
ICMP6 Statistics
Received:
  0 dest unreachable, 0 pkt too big, 0 time exceeded, 0 param prob
  2 echo req, 1 echo reply, 0 mem query, 0 mem report, 0 mem red
  0 router soli, 2393 router adv, 166 nei soli, 3700 nei adv, 0 redirect
  0 bad code, 0 too short, 0 bad checksum, 0 bad len
  0 reflect, 0 nd too many opt, 0 badhopcount
Sent:
  0 dest unreachable, 0 pkt too big, 0 time exceeded, 0 param prob
  0 echo req, 0 echo reply, 0 mem query, 0 mem report, 0 mem red
  0 router soli, 2423 router adv, 3754 nei soli, 102 nei adv, 0 redirect
  0 error, 0 can't send error, 0 too freq
Sent Errors:
  0 unreachable no route, 0 admin, 0 beyond scope, 0 address, 0 no port
```
0 source address policy, 0 reject route
0 pkt too big, 0 time exceed transit, 0 time exceed reassembly
0 param problem header, 0 nextheader, 0 option, 0 redirect, 0 unknown
UDP Statistics
470 received, 7851 sent, 6 no port, 0 input errors
TCP Statistics
57913 active opens, 0 passive opens, 57882 failed attempts
159 active resets, 0 passive resets, 0 input errors
565189 in segments, 618152 out segments, 171337 retransmission

Syntax: show ipv6 traffic

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 37 IPv6 traffic statistics fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>IPv6 statistics</td>
</tr>
<tr>
<td>received</td>
</tr>
<tr>
<td>sent</td>
</tr>
<tr>
<td>forwarded</td>
</tr>
<tr>
<td>delivered</td>
</tr>
<tr>
<td>rawout</td>
</tr>
<tr>
<td>bad vers</td>
</tr>
<tr>
<td>bad scope</td>
</tr>
<tr>
<td>bad options</td>
</tr>
<tr>
<td>too many hdr</td>
</tr>
<tr>
<td>no route</td>
</tr>
<tr>
<td>can not forward</td>
</tr>
<tr>
<td>redirect sent</td>
</tr>
<tr>
<td>source routed</td>
</tr>
<tr>
<td>frag recv</td>
</tr>
<tr>
<td>frag dropped</td>
</tr>
<tr>
<td>frag timeout</td>
</tr>
<tr>
<td>frag overflow</td>
</tr>
<tr>
<td>reassembled</td>
</tr>
<tr>
<td>fragmented</td>
</tr>
<tr>
<td>ofragments</td>
</tr>
<tr>
<td>can not frag</td>
</tr>
<tr>
<td>too short</td>
</tr>
<tr>
<td>too small</td>
</tr>
<tr>
<td>not member</td>
</tr>
</tbody>
</table>
TABLE 37 IPv6 traffic statistics fields (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>no buffer</td>
<td>The number of IPv6 packets dropped because there is no buffer available.</td>
</tr>
<tr>
<td>forward cache miss</td>
<td>The number of IPv6 packets received for which there is no corresponding cache entry.</td>
</tr>
</tbody>
</table>

ICMP6 statistics

Some ICMP statistics apply to both Received and Sent, some apply to Received only, some apply to Sent only, and some apply to Sent Errors only.

Applies to Received and Sent

dest unreach	The number of Destination Unreachable messages sent or received by the device.
pkt too big	The number of Packet Too Big messages sent or received by the device.
time exceeded	The number of Time Exceeded messages sent or received by the device.
param prob	The number of Parameter Problem messages sent or received by the device.
echo req	The number of Echo Request messages sent or received by the device.
echo reply	The number of EchoReply messages sent or received by the device.
mem query	The number of Group Membership Query messages sent or received by the device.
mem report	The number of Membership Report messages sent or received by the device.
mem red	The number of Membership Reduction messages sent or received by the device.
router soli	The number of Router Solicitation messages sent or received by the device.
router adv	The number of Router Advertisement messages sent or received by the device.
nei soli	The number of Neighbor Solicitation messages sent or received by the device.
nei adv	The number of Router Advertisement messages sent or received by the device.
redirect	The number of redirect messages sent or received by the device.

Applies to Received Only

bad code	The number of Bad Code messages received by the device.
too short	The number of Too Short messages received by the device.
bad checksum	The number of Bad Checksum messages received by the Extreme device.
bad len	The number of Bad Length messages received by the device.
nd too many opt	The number of Neighbor Discovery Too Many Options messages received by the device.
badhopcount	The number of Bad Hop Count messages received by the device.

Applies to Sent Only

error	The number of Error messages sent by the device.
can not send error	The number of times the device encountered errors in ICMP error messages.
too freq	The number of times the device has exceeded the frequency of sending error messages.

Applies to Sent Errors Only

<p>| unreach no route | The number of Unreachable No Route errors sent by the device. |</p>
<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>The number of Admin errors sent by the device.</td>
</tr>
<tr>
<td>beyond scope</td>
<td>The number of Beyond Scope errors sent by the device.</td>
</tr>
<tr>
<td>address</td>
<td>The number of Address errors sent by the device.</td>
</tr>
<tr>
<td>no port</td>
<td>The number of No Port errors sent by the device.</td>
</tr>
<tr>
<td>pkt too big</td>
<td>The number of Packet Too Big errors sent by the device.</td>
</tr>
<tr>
<td>source address policy</td>
<td>The number of ICMPv6 destination unreachable messages sent with code 5 because an IPv6 packet is dropped by an Access Control policy and the IPv6 source address of a packet matches the source address filtering policy.</td>
</tr>
<tr>
<td>reject route</td>
<td>The number of ICMPv6 destination unreachable messages sent code 6 because an IPv6 packet is dropped due to the destination address in the packet matching a route that has been configured to drop the packet.</td>
</tr>
<tr>
<td>time exceed transit</td>
<td>The number of Time Exceed Transit errors sent by the device.</td>
</tr>
<tr>
<td>time exceed reassembly</td>
<td>The number of Time Exceed Reassembly errors sent by the device.</td>
</tr>
<tr>
<td>param problem header</td>
<td>The number of Parameter Problem Header errors sent by the device.</td>
</tr>
<tr>
<td>nextheader</td>
<td>The number of Next Header errors sent by the device.</td>
</tr>
<tr>
<td>option</td>
<td>The number of Option errors sent by the device.</td>
</tr>
<tr>
<td>redirect</td>
<td>The number of Redirect errors sent by the device.</td>
</tr>
<tr>
<td>unknown</td>
<td>The number of Unknown errors sent by the device.</td>
</tr>
</tbody>
</table>

UDP statistics

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>received</td>
<td>The number of UDP packets received by the device.</td>
</tr>
<tr>
<td>sent</td>
<td>The number of UDP packets sent by the device.</td>
</tr>
<tr>
<td>no port</td>
<td>The number of UDP packets dropped because the packet did not contain a valid UDP port number.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Extreme Technical Support.</td>
</tr>
</tbody>
</table>

TCP statistics

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>active opens</td>
<td>The number of TCP connections opened by the device by sending a TCP SYN to another device.</td>
</tr>
<tr>
<td>passive opens</td>
<td>The number of TCP connections opened by the device in response to connection requests (TCP SYN)S received from other devices.</td>
</tr>
<tr>
<td>failed attempts</td>
<td>This information is used by Extreme Technical Support.</td>
</tr>
<tr>
<td>active resets</td>
<td>The number of TCP connections the device reset by sending a TCP RESET message to the device at the other end of the connection.</td>
</tr>
<tr>
<td>passive resets</td>
<td>The number of TCP connections the device reset because the device at the other end of the connection sent a TCP RESET message.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Extreme Technical Support.</td>
</tr>
<tr>
<td>in segments</td>
<td>The number of TCP segments received by the device.</td>
</tr>
<tr>
<td>out segments</td>
<td>The number of TCP segments sent by the device.</td>
</tr>
<tr>
<td>retransmission</td>
<td>The number of segments that the device retransmitted because the retransmission timer for the segment had expired before the device at the other end of the connection had acknowledged receipt of the segment.</td>
</tr>
</tbody>
</table>
Displaying statistics for IPv6 subnet rate limiting

Run the `show rate-limit ipv6 subnet` and `show rate-limit protocol` commands to display information about IPv6 rate limiting.

```
device# show rate-limit ipv6 subnet
Fwd:  252                 Drop:  155 bytes
Re-mark: 0                Total: 407 bytes
```

Syntax: `show rate-limit ipv6-subnet`

Table 38 describes the fields from the output of `show rate-limit ipv6 subnet` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fwd</td>
<td>IPv6 traffic that has been forwarded after the device was started or the</td>
</tr>
<tr>
<td></td>
<td>counter was reset due to the rate limit policy.</td>
</tr>
<tr>
<td>Drop</td>
<td>IPv6 traffic that has been dropped after the device was started or the</td>
</tr>
<tr>
<td></td>
<td>counter was reset due to the rate limit policy.</td>
</tr>
<tr>
<td>Re-mark</td>
<td>The number of IPv6 packets whose priority has been remarked as a result</td>
</tr>
<tr>
<td></td>
<td>of exceeding the bandwidth available in the CIR bucket for the specific</td>
</tr>
<tr>
<td></td>
<td>rate limit policy.</td>
</tr>
<tr>
<td>Total</td>
<td>IPv6 traffic that has been carried on the interface after the device was</td>
</tr>
<tr>
<td></td>
<td>started or the counter was reset due to the rate limit policy.</td>
</tr>
</tbody>
</table>

```
device# show rate-limit protocol
Index          0
In use         TRUE
Protocol       0 (arp)
Policy Map     abc
Index          2
In use         TRUE
Protocol       2 (ipv6 subnet)
Policy Map     abc
```

Syntax: `show rate-limit protocol`

Table 39 describes the fields from the output of `show rate-limit protocol` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Numeric index of the protocol supported by the device.</td>
</tr>
<tr>
<td>In use</td>
<td>Whether the protocol is in use or not (True: In use / False: Not in use)</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol name (0: arp / 2: IPv6 subnet)</td>
</tr>
<tr>
<td>Policy Map</td>
<td>The rate limit policy applied on this protocol.</td>
</tr>
</tbody>
</table>

Displaying IPv6 information for Router Advertisement Options

Run the `show ipv6` command to display IPv6 information about the newly configured DNS recursive server addresses, domain name suffixes, and the corresponding lifetime values on an IPv6 host network.

```
device# show ipv6
Global Settings
IPv6 Router-Id: 2.2.2.1  load-sharing path: 4
unicast-routing enabled, ipv6 allowed to run, hop-limit 64
reverse-path-check disabled
host drop cam limit disabled
urpf-exclude-default disabled
```

Displaying global IPv6 information
session-logging-age 5
No Inbound Access List Set
No Outbound Access List Set
source-route disabled, forward-source-route disabled, icmp-redirect disabled
OSPF (default VRF): enabled
BGP: enabled, 1 active neighbor(s) configured
ND6 RA DNS Attributes
ipv6 nd ra-dns-server abcd:abcd:abcd::3 lifetime 122
ipv6 nd ra-dns-server 1::1 lifetime 150
ipv6 nd ra-dns-server abcd:abcd:abcd::2 lifetime 196
ipv6 nd ra-dns-server abcd:abcd:abcd::1 lifetime 200
ipv6 nd ra-domain-name extreme.com.abc.123.abbbc lifetime 102
ipv6 nd ra-domain-name abc-011223.extreme.com lifetime 141
ipv6 nd ra-domain-name abc.com lifetime 155
ipv6 nd ra-domain-name abcd.com.abc.123 lifetime 200
device#

Syntax: show ipv6

Displaying IPv6 interface information for Router Advertisement Options

Run the show ipv6 interface command to display IPv6 interface information about the newly configured DNS recursive server addresses, domain name suffixes, and the corresponding lifetime values on an IPv6 host network.

device# show ipv6 interface ethernet 2/1
Interface Ethernet 2/1 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::224:38ff:fe90:e430 [Preferred]
Global unicast address(es):
 7::7:7::1 [Preferred], subnet is 7::7:7::/64
 7::7::1 [Anycast], subnet is 7::7::/64
Joined group address(es):
 ff02::1:ff00:1
 ff02::1:ff00:0
 ff02::1:ff90:e430
 ff02::1
Port belongs to VRF: default-vrf
MTU is 1500 bytes
ICMP redirects are disabled
ND DAD is enabled, number of DAD attempts: 3
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 seconds
ND retransmit interval is 1000 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND next router advertisement will be sent in 258 seconds
ND router advertisements live for 1800 seconds
No Inbound Access List Set
No Outbound Access List Set
IPv6 RPF mode: None IPv6 RPF Log: Disabled
RxPkts: 0 TxPkts: 63
RABytes: 0 TxBytes: 12010
IPv6 unicast RPF drop: 0
IPv6 unicast RPF suppressed drop: 0
ND6 RA DNS Attributes
ipv6 nd ra-dns-server 11::1176 lifetime 176
ipv6 nd ra-dns-server 11::11 lifetime 200
ipv6 nd ra-domain-name abc.com.abb lifetime 150
ipv6 nd ra-domain-name abc-aaa.com lifetime 199
ipv6 nd ra-domain-name abc.com.abc.123 lifetime 200
device#

Syntax: show ipv6 interface
IPv4 Static Routing

- Configuring static routes ... 225
- Static route configuration .. 235
- Naming a static IP route ... 239

Configuring static routes

The IP route table can receive routes from the following sources:

- **Directly-connected networks** - When you add an IP interface, the Extreme device automatically creates a route for the network the interface is in.
- **RIP** - If RIP is enabled, the Extreme device can learn about routes from the advertisements other RIP routers send to the Extreme device. If the route has a lower administrative distance than any other routes from different sources to the same destination, the Extreme device places the route in the IP route table.
- **OSPF** - Refer to RIP, but substitute “OSPF” for “RIP”.
- **BGP4** - Refer to RIP, but substitute “BGP4” for “RIP”.
- **Default network route** - A statically configured default route that the Extreme device uses if other default routes to the destination are not available. Refer to Configuring a default network route on page 236.
- **Statically configured route** - You can add routes directly to the route table. When you add a route to the IP route table, you are creating a static IP route. This section describes how to add static routes to the IP route table.

Static route types

You can configure the following types of static IP routes:

- **Standard** - the static route consists of the destination network address and network mask, and the IP address of the next-hop gateway. You can configure multiple standard static routes with the same metric for load sharing or with different metrics to provide a primary route and backup routes.
- **Interface-based** - the static route consists of the destination network address and network mask, and the Extreme device interface through which you want the Extreme device to send traffic for the route. Typically, this type of static route is for directly attached destination networks.
- **Null** - the static route consists of the destination network address and network mask, and the “null0” parameter. Typically, the null route is configured as a backup route for discarding traffic if the primary route is unavailable.

Static IP route parameters

When you configure a static IP route, you must specify the following parameters:

- The IP address and network mask for the route’s destination network.
- The route’s path, which can be one of the following:
 - The IP address of a next-hop gateway
 - An Ethernet port
 - A virtual interface (a routing interface used by VLANs for routing Layer 3 protocol traffic among one another)
 - A “null” interface. The Extreme device drops traffic forwarded to the null interface.
The following parameters are optional:

- **The route’s metric** - The value the Extreme device uses when comparing this route to other routes in the IP route table to the same destination. The metric applies only to routes that the Extreme device has already placed in the IP route table. The default metric for static IP routes is 1.

- **The route’s administrative distance** - The value that the Extreme device uses to compare this route with routes from other route sources to the same destination before placing a route in the IP route table. This parameter does not apply to routes that are already in the IP route table. The default administrative distance for static IP routes is 1.

The default metric and administrative distance values ensure that the Extreme device always prefers static IP routes over routes from other sources to the same destination.

Multiple static routes to the same destination provide load sharing and redundancy

You can add multiple static routes for the same destination network to provide one or more of the following benefits:

- **IP load balancing** - When you add multiple IP static routes for the same destination to different next-hop gateways, and the routes each have the same metric and administrative distance, the Extreme device can load balance traffic to the routes’ destination. For information about IP load balancing, refer to Configuring IP load sharing on page 110.

- **Path redundancy** - When you add multiple static IP routes for the same destination, but give the routes different metrics or administrative distances, the Extreme device uses the route with the lowest administrative distance by default, but uses another route to the same destination of the first route becomes unavailable.

Refer to the following sections for examples and configuration information:

- Configuring load balancing and redundancy using multiple static routes to the same destination on page 232
- Configuring standard static IP routes and interface or null static routes to the same destination on page 232

Static route states follow port states

IP static routes remain in the IP route table only so long as the port or virtual interface used by the route is available. If the port or virtual routing interface becomes unavailable, the software removes the static route from the IP route table. If the port or virtual routing interface becomes available again later, the software adds the route back to the route table.

This feature allows the Extreme device to adjust to changes in network topology. The Extreme device does not continue trying to use routes on unavailable paths but instead uses routes only when their paths are available.

Figure 17 shows a network containing a static route. The static route is configured on Router A, as shown in the CLI following the figure.

FIGURE 17 Example of a static route

The following command configures a static route to 207.95.7.0, using 207.95.6.157 as the next-hop gateway.

```
device(config)# ip route 207.95.7.0/24 207.95.6.157
```
When you configure a static IP route, you specify the destination address for the route and the next-hop gateway or Extreme device interface through which the Extreme device can reach the route. The Extreme device adds the route to the IP route table. In this case, Router A knows that 207.95.6.157 is reachable through port 1/2, and also assumes that local interfaces within that subnet are on the same port. Router A deduces that IP interface 207.95.7.188 is also on port 1/2.

The software automatically removes a static IP route from the IP route table if the port used by that route becomes unavailable. When the port becomes available again, the software automatically re-adds the route to the IP route table.

Configuring a static IP route

To configure an IP static route with a destination address of 10.0.0.0 255.0.0.0 and a next-hop router IP address of 10.1.1.1, enter the following.

```
device(config)# ip route 10.0.0.0 255.0.0.0 195.1.1.1
```

To configure a default route, enter the following.

```
device(config)# ip route 0.0.0.0  0.0.0.0
```

To configure a static IP route with an Ethernet port instead of a next-hop address, enter a command such as the following.

```
device(config)# ip route 10.128.2.69 255.255.255.0 ethernet 4/1
```

The command configures a static IP route for destination network 10.128.2.69/24. Since an Ethernet port is specified instead of a gateway IP address as the next hop, the device always forwards traffic for the 10.128.2.69/24 network to port 4/1.

To configure an IP static route that uses virtual interface 3 as its next hop, enter a command such as the following.

```
device(config)# ip route 10.128.2.71 255.255.255.0 ve 3
```

Syntax: `[no] ip route dest-ip-addr dest-mask | dest-ip-addr/mask-bitsnext-hop-ip-addr | ethernet slot/port | ve num [metric] [tag num] [distance num] [name string]`

NOTE
Using the no command will only remove the name if configured. Run the no command again without the name parameter to remove the actual Static Route.

The `dest-ip-addr` is the route's destination. The `dest-mask` is the network mask for the route's destination IP address. Alternatively, you can specify the network mask information by entering / followed by the number of bits in the network mask. For example, you can enter 10.0.0.0 255.255.255.0 as 10.0.0.0/24.

The `next-hop-ip-addr` is the IP address of the next-hop router (gateway) for the route.

For a default route, enter 0.0.0.0 0.0.0.0 xxxxxx.xxxx.xxxx (use 0 for the mask-bits if you specify the address in CIDR format).

If you do not want to specify a next-hop IP address, you can instead specify a port or interface number on the device. The `num` parameter is a virtual interface number. The `slot/port` is the port's number of the device. If you specify an Ethernet port, the device forwards packets destined for the static route's destination network to the specified interface. Conceptually, this feature makes the destination network like a directly connected network, associated with a device interface.

NOTE
The port or virtual interface you use for the static route’s next hop must have at least one IP address configured on it. The address does not need to be in the same subnet as the destination network.

The `metric` parameter specifies the cost of the route and can be a number from 1 - 16. The default is 1.
NOTE
If you specify 16, RIP considers the metric to be infinite and thus also considers the route to be unreachable.

The tag num parameter specifies the tag value of the route. Possible values: 0 - 4294967295. Default: 0.

The distance num parameter specifies the administrative distance of the route. When comparing otherwise equal routes to a destination, the device prefers lower administrative distances over higher ones, so make sure you use a low value for your default route. Possible values: 1 - 255. Default: 1.

NOTE
The device will replace the static route if it receives a route with a lower administrative distance.

The name string parameter specifies the name assigned to a route. The static route name is descriptive and an optional feature. It does not affect the selection of static routes.

NOTE
Using the no ip route command will only remove the name if configured. Run the no command again without the name parameter to remove the actual Static Route.

Configuring a static IP route between VRFs

You can configure a static route next hop to be in a different VRF. This can be done for the following:

- From the default VRF to a non-default VRF
- From a non-default VRF to a non-default VRF
- From a non-default VRF to the default VRF
- From one VRF to an IP interface in a different VRF.

NOTE
RPF is not supported with the Static Route between VRFs feature.

NOTE
For information on disabling gratuitous ARP requests on a VRF IP interface, refer to "Disabling gratuitous ARP requests for local proxy ARP."

Configuring a static route from the default VRF to a non-default VRF

To configure an IP static route with a destination address of 10.0.0.0/24 and a next-hop router with an IP address of 10.1.1.1 in the non-default VRF named "blue", enter the following at the general configuration prompt.

```
device(config)# vrf red
device(config-vrf-red)# ip route 10.128.2.69/24 next-hop-vrf blue 10.1.1.1
```


The dest-ip-addr is the route's destination. The dest-mask is the network mask for the route's destination IP address. Alternatively, you can specify the network mask information by entering / followed by the number of bits in the network mask. For example, you can enter 10.0.0.0/255.255.255.0 as 192.0.0.0/24.

The next-hop-vrf-name is the name of the VRF that contains the next-hop router (gateway) for the route.

The next-hop-ip-addr is the IP address of the next-hop router (gateway) for the route.
NOTE
The **next-hop-vrf** needs to be a valid VRF to be used in this command.

Configuring a static route from a non-default VRF to a non-default VRF

To configure an IP static route within the VRF named "red" with a destination address of 10.2.2.0/24 and a next-hop router with an IP address of 10.2.2.1 in the non-default VRF named "blue", enter the following commands from within the VRF "red" configuration context.

For the VRF configuration you need to configure a Route Descriptor (RD) and address-family IPv4 before you can enter the `ip route` command.

```plaintext
device(config)# vrf red
device(config-vrf-red)# rd 3:1
device(config-vrf-red)# address-family ipv4
device(config-vrf-red)# ip route 10.128.2.69/24 next-hop-vrf blue 10.1.1.1
```

Syntax: `[no] ip route dest-ip-addr dest-mask | dest-ip-addr/mask-bits next-hop-vrf next-hop-vrf-name next-hop-ip-addr`

The *dest-ip-addr* is the route’s destination. The *dest-mask* is the network mask for the route’s destination IP address. Alternatively, you can specify the network mask information by entering `/` followed by the number of bits in the network mask. For example, you can enter 10.0.0.0 255.255.255.0 as 10.0.0.0/24.

The *next-hop-vrf-name* is the name of the VRF that contains the next-hop router (gateway) for the route.

The *next-hop-ip-addr* is the IP address of the next-hop router (gateway) for the route.

NOTE
The **next-hop-vrf** needs to be a valid VRF to be used in this command.

Configuring a static route from a non-default VRF to the default VRF

To configure an IP static route within the VRF named "red" with a destination address of 10.0.0.0/24 and a next-hop router in the default VRF and an IP address of 10.1.1.1, enter the following from within the VRF "red" configuration context.

For the VRF configuration you need to configure a Route Descriptor (RD) and address-family IPv4 before you can enter the `ip route` command.

```plaintext
device(config)# vrf red
device(config-vrf-red)# rd 3:1
device(config-vrf-red)# address-family ipv4
device(config-vrf-red)# ip route 10.128.2.69/24 next-hop-vrf default-vrf 10.1.1.1
```

Syntax: `[no] ip route dest-ip-addr dest-mask | dest-ip-addr/mask-bits next-hop-vrf next-hop-vrf-name next-hop-ip-addr`

The *dest-ip-addr* is the route’s destination. The *dest-mask* is the network mask for the route’s destination IP address. Alternatively, you can specify the network mask information by entering `/` followed by the number of bits in the network mask. For example, you can enter 10.0.0.0 255.255.255.0 as 10.0.0.0/24.

The *default-vrf* option specifies that the next-hop router (gateway) for the route is in the default VRF.

The *next-hop-ip-addr* is the IP address of the next-hop router (gateway) for the route.

NOTE
The **next-hop-vrf** needs to be a valid VRF to be used in this command.
Configuring an IP static interface route across VRFs

You can configure an IP Static interface route from one VRF to an IP interface in a different VRF. This allows you to connect from one VRF to a host that is directly connected to a port in a different VRF. You can do this by configuring a static route to point to the interface that is directly connected to the device with the IP address you want to reach. The following example defines two VRFs as follows:

VRF A:
- Route Distinguisher = 1:1
- Interface: ethernet port 1/1
- IP address: 10.0.0.1/24

VRF B:
- Route Distinguisher = 2:2
- Interface: ethernet port 1/2
- IP address: 10.0.0.1/24

```
device(config)# vrf A
device(config-vrf-A)# rd 1:1
device(config-vrf-A)# exit
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# vrf forwarding A
device(config-if-e10000-1/1)# ip address 10.0.0.1/24
device(config-if-e10000-1/1)# exit
device(config)# vrf B
device(config-vrf-B)# rd 2:2
device(config-vrf-B)# exit
device(config)# interface ethernet 1/2
device(config-if-e10000-1/2)# vrf forwarding B
device(config-if-e10000-1/2)# ip address 10.0.0.1/24
```

The following example configure an IP Static interface route from VRF A to a network with IP address 10.0.0.0/24, which is directly connected to ethernet port 1/2 in VRF B.

For the VRF configuration you need to configure a Route Descriptor (RD) and address-family IPv4 before you can enter the `ip route` command.

```
device(config)# vrf a
device(config-vrf-A)# rd 1:1
device(config-vrf-A)# address-family ipv4
device(config-vrf-A)# ip route 10.0.0.0/24 ethernet 1/2
```

Syntax: `[no] ip route dest-ip-addr/mask-bits [ethernet slot/port | ve num]`

The `dest-ip-addr` is the route’s destination. The `dest-mask` is the network mask for the route’s destination IP address. Alternatively, you can specify the network mask information by entering a forward slash followed by the number of bits in the network mask. For example, you can enter 10.0.0.0 255.255.255.0 as 10.0.0.0/24. To configure a default route, enter 0.0.0.0 for `dest-ip-addr` and 0.0.0.0 for `dest-mask` (or 0 for the mask-bits if you specify the address in CIDR format). Specify the IP address of the default gateway using the `next-hop-ipaddr` parameter.

The `slot/port` or `num` is an interface in a different VRF that is directly connected to the device that you want to reach.

Configuring a null route

You can configure the device to drop IP packets to a specific network or host address by configuring a “null” (sometimes called “null0”) static route for the address. When the device receives a packet destined for the address, the device drops the packet instead of forwarding it.
To configure a null static route to drop packets destined for network 10.157.22.x, enter the following commands.

```
device(config)# ip route 10.157.22.0 255.255.255.0 null0
device(config)# write memory
```

Syntax: `[no] ip route ip-addr ip-mask | dest-ip-addr/mask-bits null0 [metric] [tag num] [distance num]`

To display the maximum value for your device, enter the `show default values` command. The maximum number of static IP routes the system can hold is listed in the `ip-static-route` row in the System Parameters section of the display. To change the maximum value, use the `system-max ip-static-route` command at the global CONFIG level.

The `ip-addr` parameter specifies the network or host address. The device drops packets that contain this address in the destination field instead of forwarding them.

The `ip-mask` parameter specifies the network mask. One's are significant bits and zero's allow any value. For example, the mask 255.255.255.0 matches on all hosts within the Class C subnet address specified by `ip-addr`. You can instead specify the number of bits in the network mask. For example, you can enter 10.157.22.0/24 instead of 10.157.22.0 255.255.255.0.

The `null0` parameter indicates that this is a null route.

The `metric` parameter adds a cost to the route. You can specify a value of from 1 through 16. The default is 1.

The `tag num` parameter specifies the tag value of the route. Possible values are 0 through 4294967295. Default: 0.

The `distance num` parameter configures the administrative distance for the route. You can specify a value from 1 through 255. The default is 1. The value 255 makes the route unusable.

NOTE

If you configure the administrative distance to be 255, the null route is not used, and traffic might be forwarded instead of dropped.

Dropping traffic sent to the null0 interface In hardware

Traffic sent to the null0 interface is done in hardware; that is, by programming the CAM to discard traffic sent to the null0 interface. This improves forwarding efficiency and reduces the burden on the Extreme device’s CPU.

Hardware dropping for IP traffic sent to the null0 interface is supported.

You can optionally configure the Extreme device to drop traffic sent to the default IP route address in hardware. To do this, enter the following commands.

```
device(config)# ip route 0.0.0.0 0.0.0.0 null0
device(config)# ip hw-drop-on-def-route
```

Syntax: `[no] ip hw-drop-on-def-route`

CAM default route aggregation

Configuring the Extreme device to drop traffic sent to the default IP route address in hardware causes the device to program 32-bit host CAM entries for each destination address using the default route, which could consume the CAM space. To prevent this from happening, you can enable the CAM Default Route Aggregation feature. To do this, enter the following command.

```
device(config)# ip dr-aggregate
```

Syntax: `[no] ip dr-aggregate`
Configuring load balancing and redundancy using multiple static routes to the same destination

You can configure multiple static IP routes to the same destination, for the following benefits:

- **IP load sharing** - If you configure more than one static route to the same destination, and the routes have different next-hop gateways but have the same metrics, the Extreme device load balances among the routes using basic round-robin. For example, if you configure two static routes with the same metrics but to different gateways, the Extreme device alternates between the two routes. For information about IP load balancing, refer to Configuring IP load sharing on page 110.

- **Backup Routes** - If you configure multiple static IP routes to the same destination, but give the routes different next-hop gateways and different metrics, the Extreme device will always use the route with the lowest metric. If this route becomes unavailable, the Extreme device will fail over to the static route with the next-lowest metric, and so on.

NOTE
You also can bias the Extreme device to select one of the routes by configuring them with different administrative distances. However, make sure you do not give a static route a higher administrative distance than other types of routes, unless you want those other types to be preferred over the static route.

The steps for configuring the static routes are the same as described in the previous section. The following sections provide examples.

To configure multiple static IP routes, enter commands such as the following.

```
   device(config)# ip route 10.128.2.69 255.255.255.0 10.157.22.1
   device(config)# ip route 10.128.2.69 255.255.255.0 10.111.10.1
```

The commands in the example above configure two static IP routes. The routes go to different next-hop gateways but have the same metrics. These commands use the default metric value (1), so the metric is not specified. These static routes are used for load sharing among the next-hop gateways.

The following commands configure static IP routes to the same destination, but with different metrics. The route with the lowest metric is used by default. The other routes are backups in case the first route becomes unavailable. The Extreme device uses the route with the lowest metric if the route is available.

```
   device(config)# ip route 10.128.2.69 255.255.255.0 10.157.22.1
   device(config)# ip route 10.128.2.69 255.255.255.0 10.111.10.1 2
   device(config)# ip route 10.128.2.69 255.255.255.0 10.1.1.1 3
```

In this example, each static route has a different metric. The metric is not specified for the first route, so the default (1) is used. A metric is specified for the second and third static IP routes. The second route has a metric of two and the third route has a metric of 3. Thus, the second route is used only if the first route (which has a metric of 1) becomes unavailable. Likewise, the third route is used only if the first and second routes (which have lower metrics) are both unavailable.

For complete syntax information, refer to Configuring a static IP route on page 227.

Configuring standard static IP routes and interface or null static routes to the same destination

You can configure a null0 or interface-based static route to a destination and also configure a normal static route to the same destination, so long as the route metrics are different.

When the Extreme device has multiple routes to the same destination, the Extreme device always prefers the route with the lowest metric. Generally, when you configure a static route to a destination network, you assign the route a low metric so that the Extreme device prefers the static route over other routes to the destination.
This feature is especially useful for the following configurations. These are not the only allowed configurations but they are typical uses of this enhancement:

- When you want to ensure that if a given destination network is unavailable, the Extreme device drops (forwards to the null interface) traffic for that network instead of using alternate paths to route the traffic. In this case, assign the normal static route to the destination network a lower metric than the null route.
- When you want to use a specific interface by default to route traffic to a given destination network, but want to allow the Extreme device to use other interfaces to reach the destination network if the path that uses the default interface becomes unavailable. In this case, give the interface route a lower metric than the normal static route.

NOTE

You cannot add a null or interface-based static route to a network if there is already a static route of any type with the same metric you specify for the null or interface-based route.

Figure 18 shows an example of two static routes configured for the same destination network. One of the routes is a standard static route and has a metric of 1. The other static route is a null route and has a higher metric than the standard static route. The Extreme device always prefers the static route with the lower metric. In this example, the Extreme device always uses the standard static route for traffic to destination network 192.168.7.0/24, unless that route becomes unavailable, in which case the Extreme device sends traffic to the null route instead.

FIGURE 18 Standard and null static routes to the same destination network
Figure 19 shows another example of two static routes. A standard static route and an interface-based static route are configured for destination network 192.168.6.0/24. The interface-based static route has a lower metric than the standard static route. As a result, the Extreme device always prefers the interface-based route when the route is available. However, if the interface-based route becomes unavailable, the Extreme device still forwards the traffic toward the destination using an alternate route through gateway 192.168.8.11/24.

FIGURE 19 Standard and interface routes to the same destination network

To configure a standard static IP route and a null route to the same network as shown in Figure 18, enter commands such as the following.

```
device(config)# ip route 192.168.7.0/24 192.168.6.157/24 1
device(config)# ip route 192.168.7.0/24 null0 3
```

The first command configures a standard static route, which includes specification of the next-hop gateway. The command also gives the standard static route a metric of 1, which causes the Extreme device to always prefer this route when the route is available.

The second command configures another static route for the same destination network, but the second route is a null route. The metric for the null route is 3, which is higher than the metric for the standard static route. If the standard static route is unavailable, the software uses the null route.

For complete syntax information, refer to Configuring a static IP route on page 227.

To configure a standard static route and an interface-based route to the same destination, enter commands such as the following.

```
device(config)# ip route 192.168.6.0/24 ethernet 1/1 1
device(config)# ip route 192.168.6.0/24 192.168.8.11/24 3
```
The first command configured an interface-based static route through Ethernet port 1/1. The command assigns a metric of 1 to this route, causing the Extreme device to always prefer this route when it is available. If the route becomes unavailable, the Extreme device uses an alternate route through the next-hop gateway 192.168.8.11/24.

Static route configuration

The following enhancements to static route configuration have been added:

- Static route tagging on page 235
- Static route next hop resolution on page 235
- Static route recursive lookup on page 237
- Static route resolve by default route on page 237

Static route tagging

Static routes can be configured with a tag value, which can be used to color routes and filter routes during a redistribution process. When tagged static routes are redistributed to OSPF or to a protocol that can carry tag information, they are redistributed with their tag values.

To add a tag value to a static route, enter commands such as the following.

```
device(config)# ip route 10.122.12.1 255.255.255.0 10.122.1.1 tag 20
```

Syntax: `[no] ip route dest-ip-addr dest-mask | dest-ip-addr/dest-mask next-hop-ip-address tag value`

The `dest-ip-addr` is the route’s destination. The `dest-mask` is the network mask for the route’s destination IP address. Alternatively, you can specify the network mask information by entering a forward slash followed by the number of bits in the network mask. For example, you can enter 10.0.0.0 255.255.255.0 as 10.0.0.0/24. You can enter multiple static routes for the same destination for load balancing or redundancy.

The `next-hop-ip-address` is the IP address of the next-hop router (gateway) for the route. In addition, the `next-hop-ip-address` can also be a virtual routing interface (for example, ve 100), or a physical port (for example, ethernet 1/1) that is connected to the next-hop router.

Enter 0 - 4294967295 for `tagvalue`. The default is 0, meaning no tag.

Static route next hop resolution

This feature enables the Extreme device to use routes from a specified protocol to resolve a configured static route. By default this is disabled.

To configure static route next hop resolution with OSPF routes, use the following command.

```
device(config)# ip route next-hop ospf
```

Syntax: `[no] ip route next-hop [bgp | isis | ospf | rip]`

NOTE

This command can be independently applied on a per-VRF basis.

This command causes the resolution of static route next hop using routes learned from one of the following protocols:
- bgp - both iBGP and eBGP routes are used to resolve static routes.
- isis
- ospf
• rip

NOTE
Connected routes are always used to resolve static routes.

Configuring a default network route

The Extreme device enables you to specify a candidate default route without the need to specify the next hop gateway. If the IP route table does not contain an explicit default route (for example, 0.0.0.0/0) or propagate an explicit default route through routing protocols, the software can use the default network route as a default route instead.

When the software uses the default network route, it also uses the default network route’s next hop gateway as the gateway of last resort.

This feature is especially useful in environments where network topology changes can make the next hop gateway unreachable. This feature allows the Extreme device to perform default routing even if the default network route’s default gateway changes.

The feature thus differs from standard default routes. When you configure a standard default route, you also specify the next hop gateway. If a topology change makes the gateway unreachable, the default route becomes unusable.

For example, if you configure 10.10.10.0/24 as a candidate default network route, if the IP route table does not contain an explicit default route (0.0.0.0/0), the software uses the default network route and automatically uses that route’s next hop gateway as the default gateway. If a topology change occurs and as a result the default network route’s next hop gateway changes, the software can still use the default network route.

If you configure more than one default network route, the Extreme device uses the following algorithm to select one of the routes.

1. Use the route with the lowest administrative distance.
2. If the administrative distances are equal:
 - Are the routes from different routing protocols (RIP, OSPF, or BGP4)? If so, use the route with the lowest IP address.
 - If the routes are from the same routing protocol, use the route with the best metric. The meaning of “best” metric depends on the routing protocol:
 - RIP - The metric is the number of hops (additional routers) to the destination. The best route is the route with the fewest hops.
 - OSPF - The metric is the path cost associated with the route. The path cost does not indicate the number of hops but is instead a numeric value associated with each route. The best route is the route with the lowest path cost.
 - BGP4 - The metric is the Multi-exit Discriminator (MED) associated with the route. The MED applies to routes that have multiple paths through the same AS. The best route is the route with the lowest MED.

NOTE
Currently the Extreme device will *not* propagate a candidate default route, specified by the ip default-network command, into the routing protocols in spite of the default-information-originate command being configured under the routing protocols.

Configuring a default network route

NOTE
The ip default-network command is not supported on the CES 2000 Series and CER 2000 Series devices.

You can configure up to four default network routes. To configure a default network route, enter commands such as the following.

device(config)# ip default-network 10.157.22.0
device(config)# write memory
Syntax: [no] ip default-network ip-addr

The ip-addr parameter specifies the network address.

To verify that the route is in the route table, enter the following command at any level of the CLI.

```
(device(config)# show ip route
Total number of IP routes: 2
Start index: 1  B:BGP D:Connected  R:RIP  S:Static  O:OSPF *:Candidate default
   Destination       Gateway           Port   Cost   Type
  1     10.157.20.0      0.0.0.0           lb1    1      D
  2     10.157.22.0      0.0.0.0           4/11   1      *D
```

This example shows two routes. Both of the routes are directly attached, as indicated in the Type column. However, one of the routes is shown as type "*D", with an asterisk (*). The asterisk indicates that this route is a candidate default network route.

Static route recursive lookup

This feature enables the Extreme device to use static routes to resolve another static route. The recursive static route next hop lookup level can be configured. By default, this feature is disabled.

To configure static route next hop recursive lookup by other static routes, use the following command.

```
(device(config)# ip route next-hop-recursion 5
```

Syntax: [no] ip route next-hop-recursion level

The level available specifies the numbers of level of recursion allowed. Acceptable values are 1-10. This feature is disabled by default. When enabled, the default value is 3.

NOTE
This command can be independently applied on a per-VRF basis.

Static route resolve by default route

This feature enables the Extreme device to use the default route (0.0.0.0/0) to resolve a static route. By default, this feature is disabled.

Use the following command to configure static route resolve by default route.

```
(device(config)# ip route next-hop-enable-default
```

Syntax: [no] ip route next-hop-enable-default

NOTE
This command can be independently applied on a per-VRF basis.

NOTE
This command works independently with the ip route next-hop-recursion and ip route next-hop commands. If the default route is a protocol route, that protocol needs to be enabled to resolve static routes using the ip route next-hop command with protocol-name parameter in order for static routes to resolve by this default route. If the default route itself is a static route, you must configure the ip route next-hop-recursion command to resolve other static routes by this default route.

Static route to an LSP tunnel interface

This feature allows you to set the next hop for a static route to the egress router of an LSP tunnel if the destination route is contained in the MPLS routing table. In this configuration, the static route is updated with the LSP routes and reverts to its original next hop outgoing interface when this feature is disabled or when the LSP goes down. This route can be used for the default route.
To enable the static route to an LSP tunnel interface feature, use the following command.

```
device(config)# ip route next-hop-enable-mpls
```

Syntax: `[no] ip route next-hop-enable-mpls`

The static route can then be directed to the IP address of the egress router of the LSP. In the following example, a static route is configured to network 10.10.10.0/24 through 10.11.11.1, which is the IP address of the egress router of an LSP tunnel.

```
device(config)# ip route 10.10.10.0/24 10.11.11.1
```

As previously stated, this feature works only if a route to the destination network is contained in the MPLS routing table. To verify that it is, you can use the `show ip route` command, as shown in the following example.

```
device# show ip route
Total number of IP routes: 6
Type Codes - B:BGP D:Connected I:ISIS S:Static R:RIP O:OSPF; Cost - Dist/Metric
<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10.47.6.0/24</td>
<td>DIRECT</td>
<td>mgmt 1</td>
<td>0/0</td>
<td>D</td>
</tr>
<tr>
<td>2 10.11.11.11/32</td>
<td>loopback 1</td>
<td>0/0</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>3 10.12.12.12/32</td>
<td>10.1.0.1</td>
<td>eth 5/1</td>
<td>110/3</td>
<td>O</td>
</tr>
<tr>
<td>5 10.13.13.13/32</td>
<td>10.1.0.1</td>
<td>eth 5/1</td>
<td>110/2</td>
<td>O</td>
</tr>
<tr>
<td>6 10.1.0.0/24</td>
<td>10.1.0.1</td>
<td>eth 5/1</td>
<td>110/2</td>
<td>O</td>
</tr>
</tbody>
</table>
```

As shown in the example, route 2 has a destination network of 10.10.10.0/24 through the gateway at IP address 10.11.11.1 which is on LSP 12.

NOTE
The show commands are enhanced to include the full LSP name. Previously, the LSP name was truncated because it exceeded the character length. Now, the LSP name is text wrapped to display the full name. For example, see show ip route above.

To verify that an LSP is up and that MPLS has a route to it, you can use the `show mpls lsp` and `show mpls route` commands as shown in the following examples.

```
device# show mpls lsp
Note: LSPs marked with * are taking a Secondary Path
<table>
<thead>
<tr>
<th>Name</th>
<th>To</th>
<th>State</th>
<th>State Inf</th>
<th>Times</th>
<th>No.</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>t6</td>
<td>10.12.12.13</td>
<td>UP</td>
<td>DOWN</td>
<td>--</td>
<td>0</td>
<td>292</td>
</tr>
<tr>
<td>t5</td>
<td>10.12.12.12</td>
<td>UP</td>
<td>UP</td>
<td>tnl3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t2</td>
<td>10.12.12.12</td>
<td>UP</td>
<td>UP</td>
<td>tnl1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t7</td>
<td>10.12.12.12</td>
<td>UP</td>
<td>UP</td>
<td>tnl5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>extremelonglsp</td>
<td>10.12.12.12</td>
<td>UP</td>
<td>UP</td>
<td>tnl9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>spverylonglsp</td>
<td>10.12.12.12</td>
<td>UP</td>
<td>UP</td>
<td>tnl12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pveryverylonglsp</td>
<td>10.12.12.12</td>
<td>UP</td>
<td>UP</td>
<td>tnl12</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

device(config-mpls-if-e100-1/3)#show mpls route
Total number of MPLS tunnel routes: 3
<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Tnnl</th>
<th>Port</th>
<th>Label</th>
<th>Sig</th>
<th>Cost</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10.2.2.2/32</td>
<td>10.2.2.2</td>
<td>tnl8</td>
<td>1/2</td>
<td>3</td>
<td>L</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 10.3.3.3/32</td>
<td>10.2.2.2</td>
<td>tnl9</td>
<td>1/1</td>
<td>1025</td>
<td>L</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 10.3.3.3/32</td>
<td>10.3.3.3</td>
<td>tnl11</td>
<td>1/2</td>
<td>1027</td>
<td>R</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
NOTE
The show commands have been enhanced to include the full MPLS tunnel name. Previously, the MPLS tunnel name was truncated because it exceeded the character length. Now, the MPLS tunnel name is text-wrapped to display the full name. For an illustration, see the output of the `show mpls lsp` and `show mpls route` commands in the preceding examples.

Naming a static IP route

You can assign a name to a static IP route. A static IP route name serves as a description of the route. The name can be used to more readily reference or identify the associated static route.

NOTE
The static route name is an optional feature. It does not affect the selection of static routes.

The Extreme device does not check for the uniqueness of names assigned to static routes. Static routes that have the same or different next hop(s) can have the same or different name(s). Due to this, the same name can be assigned to multiple static routes to group them. The name is then used to reference or identify a group of static routes.

NOTE
This feature is supported on standard static IP routes and static IP routes between VRFs (both default and non-default).

The option to assign a name to a static route is displayed after you select either an outgoing interface type or configure the next hop address.

To assign a name to a static route, enter commands such as the following.

```
device(config)# ip route 10.22.22.22 255.255.255.255 eth 1/1 name abc
```

OR

```
device(config)# ip route 10.22.22.22 255.255.255.255 10.1.1.1 name abc
```

Syntax: `[no] ip route dest-ip-addr[dest-mask] | dest-ip-addr/mask-bitsnext-hop-ip-addr | ethernet slot/port | ve num | metric | [tag num] | [distance num] | [name string]`

Enter the static route name for `name string`. The maximum length of the name is 128 bytes.

The output of the `show` commands displays the name of a static IP route if there is one assigned.

The `show run` command displays the entire name of the static IP route. The `show ip static route` command displays an asterisk (*) after the first twelve characters if the assigned name is thirteen characters or more. The `show ipv6 static route` command displays an asterisk after the first two characters if the assigned name is three characters or more.

When displayed in `show run`, a static route name with a space in the name will appear within quotation marks (for example, "brcd route").

Changing the name of a static IP route

To change the name of a static IP route, enter the static route as configured. Proceed to enter the new name instead of the previous name. See the example below.

Static IP route with the original name "abc":

```
device(config)# ip route 10.22.22.22 255.255.255.255 10.1.1.1 name abc
```
Change the name of "abc" to "xyz":

```
device(config)# ip route 10.22.22.22 255.255.255.255 10.1.1.1 name xyz
```

In this example, "xyz" is set as the new name of the static IP route.

Deleting the name of a static IP route

To delete the name of a static IP route, use the `no` command. See the example below.

Static IP route with the name "xyz":

```
device(config)# ip route 10.22.22.22 255.255.255.255 10.1.1.1 name xyz
```

To remove the name "xyz" from the static IP route, specify both "name" and the string, in this case "xyz".

```
device(config)# no ip route 10.22.22.22 255.255.255.255 10.1.1.1 name xyz
```

The static route no longer has a name assigned to it.
Static IPv6 Routes

This chapter describes how to configure a static IPv6 route. A static IPv6 route is a manually configured route, which creates a path between two IPv6 devices. A static IPv6 route is similar to a static IPv4 route. Static IPv6 routes have their advantages and disadvantages; for example, a static IPv6 route does not generate updates, which reduces processing time for an IPv6 router. Conversely, if a static IPv6 route fails or if you want to change your network topology, you might need to manually reconfigure the static IPv6 route.

Configuring a static IPv6 route

You can configure a static IPv6 route to be redistributed into a routing protocol, but you cannot redistribute routes learned by a routing protocol into the static IPv6 routing table.

Before configuring a static IPv6 route, you must enable the forwarding of IPv6 traffic on the Extreme device using the `ipv6 unicast-routing` command and enable IPv6 on at least one interface by configuring an IPv6 address or explicitly enabling IPv6 on that interface.

To configure a static IPv6 route for a destination network with the prefix 2001:db8::0/32, a next-hop gateway with the global address 2001:db8:0:ee44::1, and an administrative distance of 110, enter the following command.

```
device(config)# ipv6 route 2001:db8::0/32 2001:db8:0:ee44::1 distance 110
```

Syntax: `[no] ipv6 route dest-ipv6-prefix/prefix-length next-hop-ipv6-address [metric] [distance number]`

To configure a static IPv6 route for a destination network with the prefix 2001:db8::0/32 and a next-hop gateway with the link-local address fe80::1 that the Extreme device can access through Ethernet interface 3/1, enter the following command.

```
device(config)# ipv6 route 2001:db8::0/32 ethernet 1 fe80::1
```

Syntax: `[no] ipv6 route dest-ipv6-prefix/prefix-length next-hop-ipv6-address [metric] [distance number]` [ethernet slot/port | ve num | null0]

To configure a static IPv6 route for a destination network with the prefix 2001:db8::0/32 and a next-hop gateway that the Extreme device can access through tunnel 1, enter the following command.

```
device(config)# ipv6 route 2001:db8::0/32 tunnel 1
```

Syntax: `[no] ipv6 route dest-ipv6-prefix/prefix-length interface port [metric] [distance number]`

Table 40 describes the parameters associated with this command and indicates the status of each parameter.

<table>
<thead>
<tr>
<th>TABLE 40</th>
<th>Static IPv6 route parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Configuration details</td>
</tr>
<tr>
<td>The IPv6 prefix and prefix length of the route’s destination network.</td>
<td>You must specify the <code>dest-ipv6-prefix</code> parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.</td>
</tr>
</tbody>
</table>
TABLE 40 Static IPv6 route parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configuration details</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>You must specify the <code>prefix-length</code> parameter as a decimal value. A slash mark (/) must follow the <code>ipv6-prefix</code> parameter and precede the <code>prefix-length</code> parameter.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| The route’s next-hop gateway, which can be one of the following:
 • The IPv6 address of a next-hop gateway.
 • A tunnel interface. | You can specify the next-hop gateway as one of the following types of IPv6 addresses:
 • A global address.
 • A link-local address.

 If you specify a global address, you do not need to specify any additional parameters for the next-hop gateway.

 If you specify a link-local address, you must also specify the interface through which to access the address. You can specify one of the following interfaces:
 • An Ethernet interface.
 • A tunnel interface.
 • A virtual interface (VE).

 If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE or tunnel interface, also specify the VE or tunnel number.

 You can also specify the next-hop gateway as a tunnel interface. If you specify a tunnel interface, also specify the tunnel number. | Mandatory for all static IPv6 routes. |
| The route’s metric. | You can specify a value from 1 - 16. | Optional for all static IPv6 routes. (The default metric is 1.) |
| Tag number | This parameter specifies the tag value of the route. | The possible values are 0 - 4294967295.
 The default is 0. |
| The route’s administrative distance. | You must specify the `distance` keyword and any numerical value. | Optional for all static IPv6 routes. (The default administrative distance is 1.) |

A metric is a value that the Extreme device uses when comparing this route to other static routes in the IPv6 static route table that have the same destination. The metric applies only to routes that the device has already placed in the IPv6 static route table.

The administrative distance is a value that the Extreme device uses to compare this route with routes from other route sources that have the same destination. (The device performs this comparison before placing a route in the IPv6 route table.) This parameter does not apply to routes that are already in the IPv6 route table. In general, a low administrative distance indicates a preferred route. By default, static routes take precedence over routes learned by routing protocols. If you want a dynamic route to be chosen over a static route, you can configure the static route with a higher administrative distance than the dynamic route.

Configuring a IPv6 static multicast route

IPv6 multicast routes allow you to control the network path used by multicast traffic. Static multicast routes are especially useful when the unicast and multicast topologies of a network are different. You can avoid the need to make the topologies similar by instead configuring static multicast routes.
You can configure more than one static IPv6 multicast route. The Extreme device by default uses the most specific route that matches a multicast source address. You can also specify route preference using the `route-preference` command as described in the *Extreme NetIron IP Multicast Configuration Guide*. Thus, if you want to configure a multicast static route for a specific multicast source and also configure another multicast static route for all other sources, you can configure two static routes.

To configure a IPv6 mroute for a destination network with the prefix `2001:db8::0/32`, a next-hop gateway with the global address `2001:db8:0:ee44::1`, and an administrative distance of `110`, enter the following command.

```bash
device(config)# ipv6 mroute 2001:db8::0/32 2001:db8:0:ee44::1 distance 110
```

Syntax:

- `[no] ipv6 mroute dest-ipv6-prefix/prefix-length next-hop-ipv6-address next-hop-enable-default next-hop-recursion [metric] [distance number] [tag number]
- `[no] ipv6 mroute ipv6-addr interface ethernet slot/portnum | ve num | tunnel num [distance num] [tag number]

The `ipv6-addr` command specifies the next-hop IP address.

NOTE

In IPv6 multicasting, a route is handled in terms of its source, rather than its destination.

You can use the `ethernetslot/portnum` parameter to specify a physical port or the `venum` parameter to specify a virtual interface.

NOTE

The `ethernetslot/portnum` parameter does not apply to PIM SM.

The `next-hop-enable-default` parameter sets the default route to resolve the static route nexthop.

The `next-hop-recursion` parameter sets the static route to resolve the static route nexthop.

The `distance num` parameter sets the administrative distance for the route. When comparing multiple paths for a route, the Extreme device prefers the path with the lower administrative distance.

NOTE

Regardless of the administrative distances, the Extreme device always prefers directly connected routes over other routes.
GPRS Tunneling Protocol Overview

Use GPRS Tunneling Protocol (GTP) to selectively filter and load-balance on GTP fields for GTP packets on GTP enabled ports.

The GPRS core network provides mobility management, session management and transport for Internet Protocol packet services in GSM and WCDMA networks. GPRS is similar to a GSM network except for two new nodes (SGSN and GGSN) and a piece of hardware (PCU).

- The Packet Control Unit (PCU) differentiates data destined for the standard GSM network or Circuit Switched Data and data destined for the GPRS network or Packet Switched Data.
- The Serving GPRS Support Node (SGSN) takes care of some important tasks, including routing, handover and IP address assignment.
- The Gateway GPRS Support Node (GGSN) is the last node in the GPRS network before a connection between an ISP or corporate network’s router occurs.

The connection between these two GPRS Support Nodes is made with a protocol called GPRS Tunneling Protocol (GTP).

NOTE
The GTP is only supported on Gen2+ cards.

GPRS Tunneling Protocol Filtering and Load-balancing

The GPRS Tunneling Protocol (GTP) Filtering and Load-balancing feature allows you to selectively filter and load-balance on GTP fields for GTP packets on GTP enabled ports.

This feature supports GTP packets and incorporates the Tunnel Endpoint Identifier (TEID) in the Trunk/ECMP hashing logic.

About GTP load-balance configuration

The GTP profile configuration feature allows you to specify the desired interfaces that are required to process GTP packets, and what options are needed to allow the NetIron device to look deeper into the packet.

NOTE
This feature is supported only on Gen2+ cards, except 24x10G cards.

You can specify the ports using the `ports` command under the GTP profile as shown below.

Syntax:
```
ports all-ethernet | ethernet slot/port ethernet | to slot/port
```

The GTP profile allows you to configure additional information into the load-balancing hash algorithm through the following commands.
Use the `load-balance port-gtpc-teid-hash-ena` command to enable the GTPc packets to add the TEID field into the hash mechanism along with the L4 header information such as TCP/UDP source port, destination port, L3 header information such as source IP address, destination IP address, and protocol ID, and L2 header information such as source MAC-address, destination MAC address, and VLAN ID for the ports of the profile.

```
device(config-gtp-gtp2)# load-balance port-gtpc-teid-hash-ena
```

Use the `load-balance port-gtpu-innerl3-hash-ena` command to enable the tunneled L3 and L4 information such as TCP/UDP source and destination port, source and destination IP address and protocol ID along with the TEID field and L2 information such as source MAC-address, destination MAC-address, and VLAN ID from GTPu packets to be added into the hash mechanism for the ports of the profile.

```
device(config-gtp-gtp2)# load-balance port-gtpu-innerl3-hash-ena
```

Use the `load-balance port-gtpu-teid-hash-ena` command to enable the TEID field from GTPu packets to be added into the hash mechanism for the ports of the profile.

```
device(config-gtp-gtp2)# load-balance port-gtpu-teid-hash-ena
```

Use the `ingress-inner-filter` command to change the behavior of ACLs and policy-based routing (PBR) on the GTP profile ports. This enables the ACL or PBR to match on the inner Layer 3 and Layer 4 header information of GTPu packets.

```
device(config-gtp-gtp2)# ingress-inner-filter
```

NOTE
The inner ingress filter does not work when the outer IPv6 header contains other headers (such as the fragment header) between the IPv6 and UDP headers.

NOTE
You can configure up to 16 profiles on the system. A profile names can be up to 64 characters long. Valid profile IDs are 1 through 16.

Example GTP Configuration

Following is an example of creating a GTP configuration. The following examples show GTP configuration and related show output.

```
device(config)# gtp gtp2 12
device(config-gtp-gtp2)# ports ethernet 10/1 to 10/4
device(config-gtp-gtp2)# load-balance port-gtpc-teid-hash-ena
device(config-gtp-gtp2)# load-balance port-gtpu-teid-hash-ena
device(config-gtp-gtp2)# load-balance port-gtpu-innerl3-hash-ena
device(config-gtp-gtp2)# ingress-inner-filter
```

Example of GTP Configuration

The following is an example of the GTP profile.

```
device# show gtp
Total no. of GTP profiles :: 1

-----------GTP gtp2 (12)-----------
GTP configuration
Port count :: 4
  Ports :: eth 10/1 to 10/4

Loadbalance hashing options
  GTPC TEID Hash enabled :: Yes
  GTPU Inner L3 Hash enabled :: Yes
  GTPU TEID Hash enabled :: Yes
  Ingress Inner L4 filter enabled :: Yes
```
Enable masking of the TEID (Tunnel endpoint identifier) field for GTP packets

To mask information that has been added to the LAG hash algorithm for GTP profile ports, the following commands are available. Each masks the indicated field inside the tunneled L3 and L4 headers, or the GTP header.

By default, the TEID field will not be masked and will be used in hashing calculations only for GTP packets on GTP enabled ports. For non-GTP enabled interfaces, it will not be used, even if GTP packets are received on them. This does not affect the non-GTP packets.

The masking options are available to mask certain fields while calculating the hash for load-balancing. For example, the following command will mask the src-ip address for GTP Ipv4 packets.

```
device(config)#load-balance mask gtp ipv4 src-ip
```

Basic command format is `load-balance mask gtp ipv4|ipv6|teid field option slot|all`

The following are the `load-balance mask gtp` options available.

- `ipv4` Mask IPv4 header fields
- `ipv6` Mask IPv6 header fields
- `teid` Mask TEID information in Trunk/ECMP hash

The following are the `load-balance mask gtp ipv4` options available.

- `dst-ip` Mask Destination IP address
- `dst-l4-port` Mask Destination L4 port
- `protocol` Mask IP protocol id
- `src-ip` Mask Source IP address
- `src-l4-port` Mask Source L4 port

The following are the `load-balance mask gtp ipv6` options available.

- `dst-ip` Mask Destination IP address
- `dst-l4-port` Mask Destination L4 port
- `next-hdrl` Mask next header id
- `src-ip` Mask Source IP address
- `src-l4-port` Mask Source L4 port

The following are the `load-balance mask gtp ipv4 dst-ip` options available.

- `DECIMAL` Slot Number
- `all` All slots

MPLS unknown label handling

This task shows how to use MPLS unknown label handling.

If the MPLS unknown label handling is turned on, all unknown MPLS packets entering the specified ingress interface will be stripped of their MPLS labels, and sent to specified egress interface.

NOTE
This command can only be applied to Gen2+ cards, except 24x10G cards.

Enter the `mpls-unknown-label-forward` command to direct all unknown MPLS packets to the specified interface.
The command format is `mpls-unknown-label-forward ingress ingress port egress egress port`

```
device(config)#mpls-unknown-label-forward ingress 10/8 egress 8/1
Reload required. Please write memory and then reload the system.
Failure to reload could cause system instability on failover.
Newly configured mpls catch-all value will not take effect during hitless-reload.
device(config)#
```

Enabling internal loopback

The internal loopback feature allows the configured interface to redirect packets that would normally egress the interface and be physically loop backed via a short fiber, or specialized hardware device, to the ingress of the interface without a physical device.

This behavior is supported on the following modules:

- BR-MLX-40Gx4-M
- BR-MLX-10Gx20
- BR-MLX-100Gx2-CFP2

NOTE

Usage of an optic in interfaces that are configured as internal loopback is not supported.

The following example shows the command to enable this:

```
device(config)#int e 1/1
device(config-if-e10000-1/1)#loopback system
```

GTP Profile configuration commands

Use the following commands to maintain GTP hashing and filtering configurations in unique GTP profiles. A maximum of 16 profiles are supported.
Naming a GTP profile

Maintain GTP hashing and filtering configurations in unique GTP profiles. A maximum of sixteen profiles are supported.

Syntax

gtp_profile { ASCII string | Decimal }

Parameters

ASCII string Name of the GTP profile
Decimal ID of the GTP profile.

Modes

This command operates under the configuration mode (config).

Usage Guidelines

Use this command to maintain and create GTP hashing and filtering configurations in unique GTP profiles. A maximum of sixteen profiles are supported.

Examples

device(config)#gtp_profile gtpl

History

<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.00</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Adding port list to enable GTP with this profile

The following section describes how to add a port list to enable GTP in a profile.

Syntax

```
ports { slot/port | all }
```

Parameters

- **slot/port** The port to add to the enable GTP list.
- **All** Enable all ports.

Modes

This command operates under the GTP configuration mode (config-gtp).

Usage Guidelines

If the port is LAG, you will need to specify the primary port of the LAG. For LAG, this profile will be applied to all ports of the LAG. When new ports are added to LAG, they will inherit the same profile. If a secondary port specified, it will be rejected.

Examples

```
device(config-gtp-gtp1)# ports 1/1
```

History

<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.00</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Show GTP

Displays GTP profile information.

Syntax

```
show gtp { Id | Name | Interface}
```

Parameters

- **ID** Shows GTP by ID.
- **Name** Shows GTP by name.
- **Interface** Show GTP interfaces.

Usage Guidelines

Examples

Example of the **Show GTP ID** command output.

```
device#show gtp id 12
Total no. of GTP profiles :: 1
==========GTP gtp2 (12)===========
GTP configuration
Port count :: 4
  Ports :: eth 10/1 to 10/4
Loadbalance hashing options
  GTPC TEID Hash enabled :: Yes
  GTPU Inner L3 Hash enabled :: Yes
  GTPU TEID Hash enabled :: Yes
  Ingress Inner L4 filter enabled :: Yes
```

Example of the **Show GTP name** command output.

```
device#show gtp name gtp2
Total no. of GTP profiles :: 1
==========GTP gtp2 (12)===========
GTP configuration
Port count :: 4
  Ports :: eth 10/1 to 10/4
Loadbalance hashing options
  GTPC TEID Hash enabled :: Yes
  GTPU Inner L3 Hash enabled :: Yes
  GTPU TEID Hash enabled :: Yes
  Ingress Inner L4 filter enabled :: Yes
```

Example of the **Show GTP interface** command output.

```
device#show gtp interfaces
Slot/Interface          GTP Profile Name
10/1               gtp2
10/2               gtp2
10/3               gtp2
10/4               gtp2
```
History

<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.00</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Show loadbalance mask-options command

Use this command to display the load balance masking information.

Syntax

Show loadbalance mask-options (gtp)

Usage Guidelines

Examples

The following is an example of the show loadbalance mask-options gtp command output.

device# show load-balance mask-options gtp

Mask GTP options -

 Mask GTP TEID is enabled on -
 No Slots

 Mask GTP IPv4 Source IP address is enabled on -
 Slot 1

 Mask GTP IPv4 Destination IP address is enabled on -
 All Slots

 Mask GTP IPv4 Destination L4 port is enabled on -
 No Slots

 Mask GTP IPv4 Source L4 port is enabled on -
 No Slots

 Mask GTP IPv6 Source IP address is enabled on -
 No Slots

 Mask GTP IPv6 Destination IP address is enabled on -
 No Slots

 Mask GTP IPv6 Source L4 port is enabled on -
 No Slots

 Mask GTP IPv6 Destination L4 port is enabled on -
 No Slots

 Mask GTP IPv6 Next Header information is enabled on -
 No Slots

History

<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.00</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
BiDirectional Forwarding Detection (BFD)

- Number of BFD sessions supported...256
- Configuring BFD parameters...256
- Displaying BFD information...257
- Configuring BFD for the specified protocol..261
- BFD for static routes..272
- BFD for RSVP-TE LSP...275
- Configuring BFD for RSVP-TE LSPs..277
- Configuring time delay for setup of BFD single-hop session...281
- Configuring time delay for setup of BFD multihop session...281
- Displaying MPLS BFD information..281

BFD provides a rapid forwarding path failure detection service to a Routing Protocol.

BFD provides rapid detection of the failure of a forwarding path by checking that the next-hop device is alive. Without BFD enabled it can take from 3 to 30 seconds to detect that a neighboring device is not operational, causing packet loss due to incorrect routing information at a level unacceptable for real-time applications such as VOIP and video over IP.

Using BFD, you can detect a forwarding path failure in 300 milliseconds or less, depending on your configuration.

A BFD session is automatically established when a neighbor is discovered for a protocol provided that BFD is enabled on the interface on which the neighbor is discovered and BFD is also enabled for the protocol (by interface or globally). Once a session is set-up, each device transmits control messages at a high rate of speed that is negotiated by the devices during the session setup. To provide a detection time of 150 milliseconds, it is necessary to process 20 messages per second of about 70 to 100 bytes each per session. A similar number of messages also need to be transmitted out per session. Once a session is set-up, that same message is continuously transmitted at the negotiated rate and a check is made that the expected control message is received at the agreed frequency from the neighbor. If the agreed upon messages are not received from the neighbor within a short period of time, the neighbor is considered to be down.

For the NetIron CES and NetIron CER device, there are 20 Bidirectional Sessions per LP and 40 Bidirectional sessions system-wide.

NOTE
BFD session establishment on an interface does not start until 180 seconds after the interface comes up. The reason for this delay is to ensure that the link is not effected by unstable link conditions which could cause BFD to flap. This delay time is not user configurable.

The BFD Control Message is an UDP message with destination port 3784.

NOTE
BFD version 0 is not supported in this implementation and BFD version 1 is not compatible with BFD version 0.

NOTE
BFD supports multi-slot LAGs in cases where all BFD packet are transmitted only on a single path which does not change unless the LAG active membership changes. BFD is not be supported on multi-slot LAGs where per-packet switching is used such that the path taken by the BFD packets will vary per packet.

NOTE
When BFD is configured with stringent values of 100/300 msec, BFD may flap when learning a large number of routes.
NOTE
BFD sessions configured with lower timer values may exhibit flaps when configured alongside MACSec on same line card. This issue is a known limitation. However, the BFD sessions are stable with 500ms*3 timer value or more in such scenarios.

Number of BFD sessions supported

The devices have a set limit of 250 BFD sessions per system with a maximum number of 40 sessions per Interface Module. This number is inclusive of the fact that IS-IS and OSPF sessions on an Interface Module will include both Tx and Rx sessions. Consequently, the 40 sessions per Interface Module actually corresponds to 80 sessions where each OSPF and IS-IS session consumes 2 sessions (1 Tx and 1 Rx).

Unlike IS-IS and OSPF however, the Tx and Rx sessions for MPLS BFD can reside on different interface modules. This means that when counting MPLS BFD sessions against the Interface Module maximum, the Tx and Rx sessions must be counted separately. In practice this means that the maximum number of sessions per-Interface Module is 80; where each Tx and Rx session for MPLS BFD is counted as 1 and IS-IS and OSPF BFD sessions are counted as 2 towards a per-Interface Module maximum number of sessions of 80.

NOTE
This BFD session support is applicable to XMR and MLX Series devices only.

Configuring BFD parameters

When you configure BFD you must set timing and interval parameters. These are configured on each interface. When two adjacent interfaces with BFD are configured, they negotiate the conditions for determining if the connection between them is still active. The following command is used to set the BFD parameters:

```
device(config-if-e1000-3/1)# bfd interval 100 min-rx 100 multiplier 3
```

Syntax: [no] bfd interval transmit-time min-rx receive-time multiplier number

The `transmit-time` variable is the interval in milliseconds between which this device will send a BFD message to its peer informing it that it is still operational. This value is specified in milliseconds. Acceptable values are: 50 - 30000.

The `receive-time` variable is the interval in milliseconds that this device waits to receive a BFD message from its peer. The device waits for this interval for the number of times specified in the `number` variable before determining that the connection to its peer in not operational. Acceptable values are: 50 - 30000.

NOTE
The `transmit-time` and `receive-time` variables are the intervals desired by the local device. The actual values in use will be the negotiated values.

The `number` variable specifies the number of times in a single sequence that this device will wait to receive a BFD message from its peer before determining that the connection to that peer is not operational. Acceptable values are: 3 - 50.

When CER 2000 Series or CES 2000 Series devices are heavily loaded or under stress, BFD sessions may flap if the configured BFD interval is less than 500 milliseconds with a multiplier value of 3.
Disabling BFD Syslog messages

Syslog messages are generated for BFD operations. Logging of these messages is enabled by default. To disable logging of BFD messages use the following command:

```
device(config)# no logging enable bfd
```

Syntax: [no] logging enable bfd

BFD logging is enabled by default. If you disable BFD logging as shown, you can re-enable it by using the `logging enable bfd` command.

Displaying BFD information

You can display BFD information for the device you are logged-in to and for BFD-configured neighbors as described in the following sections.

Displaying BFD information

The following example illustrates the output from the `show bfd` command:

```
device# show bfd
 BFD State: ENABLED Version: 1 Use PBIF Assist: Y
Current Registered Protocols: ospf/0 ospf6/0
All Sessions: Current: 4 Maximum Allowed: 100 Maximum Exceeded Count: 0
LP Sessions: Maximum Allowed on LP: 40 Maximum Exceeded Count for LPs: 0
LP Tx/Rx Sessions LP Tx/Rx Sessions LP Tx/Rx Sessions LP Tx/Rx Sessions
 1 4/4 2 2/2 3 0/0 4 0/0
 5 0/0 6 0/0 7 0/0 8 0/0
 9 0/0 10 0/0 11 0/0 12 0/0
13 0/0 14 0/0 15 0/0 16 0/0
BFD Enabled ports count: 2
Port MinTx MinRx Mult Sessions
eth 2/1 100 100 3 2
eth 3/1 100 100 3 2
```

Syntax: show bfd

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 41</th>
<th>Display of BFD information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>BFD State</td>
<td>Specifies if BFD is Enabled or Disabled on the device.</td>
</tr>
<tr>
<td>Version</td>
<td>Specifies the version of the BFD protocol operating on the device.</td>
</tr>
<tr>
<td>Use PBIF Assist</td>
<td>Specifies the status of PCI Bus Interface (PBIF) Assist.</td>
</tr>
<tr>
<td>Current Registered Protocols</td>
<td>Specifies which protocols are registered to use BFD on the device. Possible values are mpls/0, ospf/0, ospf6/0, or isis_task/0</td>
</tr>
<tr>
<td>All Sessions</td>
<td>The number of BFD sessions currently operating on the device.</td>
</tr>
<tr>
<td>Current</td>
<td>The maximum number of BFD sessions that are allowed on the device. The maximum number of sessions supported on a device is 250 for Ni-XMR and Ni-MLX and 40 for Ni-CES.</td>
</tr>
<tr>
<td>Maximum Exceeded Count</td>
<td>The number of times the request to set up a BFD session was declined because it would have resulted in exceeding the maximum number of BFD sessions allowed on the device.</td>
</tr>
</tbody>
</table>
Displaying BFD neighbor information

The following example illustrates the output from the `show bfd neighbor` command.

```
device# show bfd neighbor
Total number of Neighbor entries: 2

NeighborAddress                  State Interface  Holddown  Interval R/H
10.14.1.1                          UP    eth 3/1   300000    100000    Y/S
10.2.1.1                           UP    eth 2/1   300000    100000    Y/S
```

Syntax: `show bfd neighbor [interface ethernet slot/port | interface ve port-no]`

The `interface ethernet` option displays BFD neighbor information for the specified ethernet interface only.

The `interface ve` option displays BFD neighbor information for the specified virtual interface only.

This display shows the following information.

TABLE 41 Display of BFD information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP Sessions:</td>
<td>The maximum number of BFD sessions that are allowed on an interface module. The maximum number of sessions supported on an interface module is 40 for Ni-XMR and Ni-MLX and 20 for Ni-CES.</td>
</tr>
<tr>
<td>Maximum Allowed on LP</td>
<td>The maximum number of sessions that are allowed on an interface module. The maximum number of sessions supported on an interface module is 40 for Ni-XMR and Ni-MLX and 20 for Ni-CES.</td>
</tr>
<tr>
<td>Maximum Exceeded Count for LPs</td>
<td>The number of times the request to set up a BFD session was declined because it would have resulted in exceeding the maximum number of BFD sessions allowed on an interface module.</td>
</tr>
<tr>
<td>LP</td>
<td>The number of the interface module that the Current Session Count is displayed for.</td>
</tr>
<tr>
<td>Sessions</td>
<td>The number of Transmit (Tx) and Receive (Rx) BFD sessions currently operating on the specified interface module.</td>
</tr>
<tr>
<td>BFD Enabled ports count</td>
<td>The number of ports on the device that have been enabled for BFD.</td>
</tr>
<tr>
<td>Port</td>
<td>The port that BFD is enabled on.</td>
</tr>
<tr>
<td>MinTx</td>
<td>The interval in milliseconds between which the device desires to send a BFD message from this port to its peer.</td>
</tr>
<tr>
<td>MinRx</td>
<td>The interval in milliseconds that this device desires to receive a BFD message from its peer on this port.</td>
</tr>
<tr>
<td>Mult</td>
<td>The number of times that the device will wait for the MinRx time on this port before it determines that its peer device is non-operational.</td>
</tr>
<tr>
<td>Sessions</td>
<td>The number of BFD sessions originating on this port.</td>
</tr>
</tbody>
</table>

NOTE

On a non POS module, BFD makes use of PBIF transmit assist to send out the packets with the maximum transmit interval of 6.4 seconds.

Displaying BFD information

The following example illustrates the output from the `show bfd neighbor` command.
TABLE 42 Display of BFD information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.DOWN</td>
<td>The administrative down state.</td>
</tr>
<tr>
<td>INIT</td>
<td>The Init state.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The current state is unknown.</td>
</tr>
<tr>
<td>Interface</td>
<td>The logical port (physical or virtual port) on which the peer is known.</td>
</tr>
<tr>
<td>Holddown</td>
<td>The interval in microseconds after which the session will transition to the down state if no message is received.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in microseconds at which the local device sends BFD messages to the remote peer.</td>
</tr>
<tr>
<td>R/H</td>
<td>R - Heard from Remote. H - singlehop (S) or Multihop (M).</td>
</tr>
</tbody>
</table>

To display BFD Neighbor information in the detailed format use the following command.

```bash
device# show bfd neighbor detail
Total number of Neighbor entries: 1
Registered Protocols(Protocol/VRFID): ospf/0
Local: Disc: 1, Diag: 0, Demand: 0 Poll: 0
MinTxInterval: 100000, MinRxInterval: 100000, Multiplier: 3
Remote: Disc: 22, Diag: 7, Demand: 0 Poll: 0
MinTxInterval: 100000, MinRxInterval: 100000, Multiplier: 3
Stats: RX: 72089 TX: 72101 SessionUpCount: 1 at SysUpTime: 0:1:30:54.775
Session Uptime: 0:1:30:6.375, LastSessionDownTimestamp: 0:0:0:0.0
Physical Port: eth 4/1, Vlan Id: 50, Session: Active
Using PBIF Assist: Y
```

Syntax: `show bfd neighbor details [ip-address | ipv6-address]`

This display shows the following information.

TABLE 43 Display of BFD neighbor detail information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of Neighbor entries</td>
<td>Total number of BFD sessions.</td>
</tr>
<tr>
<td>NeighborAddress</td>
<td>IPv4 or IPv6 address of the remote peer.</td>
</tr>
<tr>
<td>State</td>
<td>The current state of the BFD session:</td>
</tr>
<tr>
<td></td>
<td>Up</td>
</tr>
<tr>
<td></td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td>A.DOWN - The administrative down state.</td>
</tr>
<tr>
<td></td>
<td>INIT - The Init state.</td>
</tr>
<tr>
<td></td>
<td>UNKNOWN - The current state is unknown.</td>
</tr>
<tr>
<td>Interface</td>
<td>The logical port on which the peer is known.</td>
</tr>
<tr>
<td>Holddown</td>
<td>The interval in microseconds after which the session will transition to the down state if no message is received.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in microseconds at which the local device sends BFD messages to the remote peer.</td>
</tr>
<tr>
<td>R/H</td>
<td>R - Heard from Remote. H - singlehop (S) or Multihop (M).</td>
</tr>
<tr>
<td>Registered Protocols</td>
<td>Specifies which protocols are registered to use BFD on this port.</td>
</tr>
<tr>
<td>Local:</td>
<td></td>
</tr>
</tbody>
</table>

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06
259
TABLE 43 Display of BFD neighbor detail information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc</td>
<td>Value of the "local discriminator" field in the BFD Control Message as used by the local device in the last message sent.</td>
</tr>
<tr>
<td>Diag</td>
<td>Value of the "diagnostic" field in the BFD Control Message as used by the local device in the last message sent.</td>
</tr>
<tr>
<td>Demand</td>
<td>Value of the "demand" bit in the BFD Control Message as used by the local device in the last message sent.</td>
</tr>
<tr>
<td>Poll</td>
<td>Value of the "poll" bit in the BFD Control Message as used by the local device in the last message sent.</td>
</tr>
<tr>
<td>MinTxInterval</td>
<td>The interval in microseconds between which the device will send a BFD message from this local neighbor port to its peer.</td>
</tr>
<tr>
<td>MinRxInterval</td>
<td>The interval in microseconds that the neighbor device waits to receive a BFD message from its peer on this local port.</td>
</tr>
<tr>
<td>Multiplier</td>
<td>The number of times that the neighbor device will wait for the MinRxInterval time on this port before it determines that its peer device is non-operational.</td>
</tr>
<tr>
<td>Remote Disc</td>
<td>Value of the "local discriminator" field in the BFD Control Message as received in the last message sent by the remote peer.</td>
</tr>
<tr>
<td>Remote Diag</td>
<td>Value of the "diagnostic" field in the BFD Control Message as received in the last message sent by the remote peer.</td>
</tr>
<tr>
<td>Remote Demand</td>
<td>Value of the "demand" bit in the BFD Control Message as received in the last message sent by the remote peer.</td>
</tr>
<tr>
<td>Remote Poll</td>
<td>Value of the "poll" bit in the BFD Control Message as received in the last message sent by the remote peer.</td>
</tr>
<tr>
<td>Remote MinTxInterval</td>
<td>The interval in milliseconds between which the device will send a BFD message from the remote neighbor port to its peer.</td>
</tr>
<tr>
<td>Remote MinRxInterval</td>
<td>The interval in milliseconds that the neighbor device waits to receive a BFD message from its peer on this remote port.</td>
</tr>
<tr>
<td>Remote Multiplier</td>
<td>The number of times that the remote neighbor device will wait for the MinRxInterval time on this port before it determines that its peer device is non-operational.</td>
</tr>
<tr>
<td>Stats: Rx</td>
<td>Total number of BFD control messages received from the remote peer.</td>
</tr>
<tr>
<td>Stats: Tx</td>
<td>Total number of BFD control messages sent to the remote peer.</td>
</tr>
<tr>
<td>Stats: SessionUpCount</td>
<td>The number of times the session has transitioned to the UP state.</td>
</tr>
<tr>
<td>Stats: SysUpTime</td>
<td>The amount of time that the system has been up.</td>
</tr>
<tr>
<td>Session Uptime</td>
<td>The amount of time the session has been in the UP state.</td>
</tr>
<tr>
<td>LastSessionDownTimestamp</td>
<td>The system time at which the session last transitioned from the UP state to some other state.</td>
</tr>
<tr>
<td>Physical Port</td>
<td>The physical port on which the peer is known.</td>
</tr>
<tr>
<td>Vlan Id</td>
<td>The VLAN ID of the VLAN that the physical port is resident on.</td>
</tr>
<tr>
<td>Session</td>
<td>Using PBIF Assist</td>
</tr>
<tr>
<td></td>
<td>Y - PBIF Assist is used for this BFD session</td>
</tr>
<tr>
<td></td>
<td>N - PBIF is not used for this BFD session</td>
</tr>
</tbody>
</table>
Clearing BFD neighbor sessions

You can clear all BFD neighbor sessions or a specified BFD neighbor session using the following command.

```
device# clear bfd neighbor
```

Syntax: `clear bfd neighbor [ip-address | ipv6-address]`

The `ip-address` variable specifies the IPv4 address of a particular neighbor whose session you want to clear BFD.
The `ipv6-address` variable specifies the IPv6 address of a particular neighbor whose session you want to clear BFD.
Executing this command without specifying an IP or IPv6 address clears the sessions of all BFD neighbors.

Configuring BFD for the specified protocol

BFD can be configured for use with the following protocols:

- OSPFv2
- OSPFv3
- IS-IS
- BGP4
- BGP4+

NOTE
BFD is not supported for OSPF v2 or v3 virtual links.

NOTE
BFD brings IS-IS and OSPF down with it when RSTP path-cost changes are made to the switch Alt Discarding port.

Configuring BFD for OSPFv2

You can configure your device for BFD on the OSPFv2 protocol for all OSPFv2 enabled interfaces or for specific interfaces as shown in the following sections.

Enabling BFD for OSPFv2 for all interfaces

You can configure BFD for OSPFv2 on all of a device's OSPFv2 enabled interfaces using the command shown in the following:

```
device# router ospf
device(config-ospf-router)# bfd all-interfaces
```

Syntax: `[no] bfd all-interfaces`

Although this command configures BFD for OSPFv2 on all of the OSPFv2 enabled interfaces for a device, it is not required if you use the `ip ospf bfd` command to configure specific interfaces. It can be used independently or together with the `ip ospf bfd` command.

Enabling or disabling BFD for OSPFv2 for a specific interface

You can selectively enable or disable BFD on any OSPFv2 interface as shown.

```
device(config-if-e1000-3/1)# ip ospf bfd disable
```

Syntax: `ip ospf bfd [disable]`
The **disable** option disables BFD for OSPF on the interface.

Holdover interval

The BFD holdover interval is supported for single hop sessions. It sets the time by which the BFD session DOWN notification to OSPF is delayed. If within that holdover time, the BFD session is UP then OSPF is not notified of the BFD session flap.

The holdover interval can be configured globally.

If the **bfd holdover-interval** is set to 20 seconds, when a notification is received from BFD that the BFD session has moved to DOWN state, the system waits for 20 seconds before sending the BFD session down notification to OSPFv2 state machine. If the BFD session returns to UP state before the 20 seconds expires, the OSPFv2 state machine is not notified that the BFD session flapped. Otherwise, after 20 seconds the BFD session down notification is passed to the OSPFv2 state machine. If BFD for OSPFv2 is disabled, the request to not use BFD for OSPFv2 is passed to BFD by OSPFv2, BFD acknowledges this request, and the BFD session is removed. If BFD is disabled, OSPFv2 is notified and asks BFD to remove the single hop BFD session on the interface.

NOTE

The benefit of this feature is that OSPF adjacency will not go down if a BFD session is reestablished within the holdover interval preventing disruption to the OSPF routing table.

To configure the BFD down notification delay, enter a command such as the following.

```
device(config-ospf-router)# bfd holdover-interval 10
```

Syntax: `[no] bfd holdover-interval time-seconds`

The `time-seconds` variable is a number between 0 and 20 seconds. The default is 0 seconds.

The `no` option removes the BFD holdover interval from the configuration.

Configuring BFD for OSPFv3

You can configure your device for BFD on the OSPFv3 protocol for all OSPFv3 enabled interfaces or for specific interfaces as shown in the following sections.

Enabling BFD for OSPFv3 for all interfaces

You can configure BFD for OSPFv3 on all OSPFv3 enabled interfaces using the command shown in the following.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# bfd all-interfaces
```

Syntax: `[no] bfd all-interfaces`

Although this command configures BFD for OSPFv3 on all of the OSPFv3 enabled interfaces on a device, it is not required if you use the `ipv6 ospf bfd` command to configure specific interfaces. It can be used independently or together with the `ipv6 ospf bfd` command.

Enabling or disabling BFD for OSPFv3 for a specific interface

You can selectively enable or disable BFD on any OSPFv3 interface as shown in the following.

```
device(config-if-e1000-3/1)# ipv6 ospf bfd enable
```

Syntax: `ipv6 ospf bfd [disable | enable]`

The **disable** option disables BFD for OSPFv3 on the interface. The **enable** option enables BFD for OSPFv2 on the interface.
Holdover interval

The BFD holdover interval is supported for single hop sessions. It sets the time by which the BFD session DOWN notification to OSPFv3 is delayed. If within that holdover time, the BFD session is UP then OSPFv3 is not notified of the BFD session flap.

The holdover interval can be configured globally.

If the `bfd holdover-interval` is set to 20 seconds, when a notification is received from BFD that the BFD session has moved to DOWN state, the system waits for 20 seconds before sending the BFD session down notification to OSPFv3 state machine. If the BFD session returns to UP state before the 20 seconds expires, the OSPFv3 state machine is not notified that the BFD session flapped. Otherwise, after 20 seconds the BFD session down notification is passed to the OSPFv3 state machine. If BFD for OSPFv3 is disabled, the request to not use BFD for OSPFv3 is passed to BFD by OSPFv3, BFD acknowledges this request, and the BFD session is removed. If BFD is disabled, OSPFv3 is notified and asks BFD to remove the single hop BFD session on the interface.

To configure the BFD down notification delay, enter a command such as the following.

```bash
device(config-ospf6-router)# bfd holdover-interval 10
```

Syntax: `[no] bfd holdover-interval time-seconds`

The `time-seconds` variable is a number between 0 and 20 seconds. The default is 0 seconds.

The `no` option removes the BFD holdover interval from the configuration.

Configuring BFD for IS-IS

You can configure your device for BFD (for both IPv4 and IPv6 IS-IS neighbors) for the IS-IS protocol for all IS-IS enabled interfaces, or for specific interfaces as shown in the following sections.

NOTE

You will not be able to configure a BFD for IS-IS session when one side of the IS-IS adjacency is using IPv4 only and other side is using IPv6 Only.

Enabling BFD for IS-IS for all interfaces

You can configure IS-IS for IS-IS on all S-IS enabled interfaces for a device using this command.

```bash
device# router isis
device(config-isis-router)# bfd all-interfaces
```

Syntax: `[no] bfd all-interfaces`

Although this command configures BFD for IS-IS on all IS-IS enabled interfaces on the device, it is not required if you use the `isis bfd` command to configure specific interfaces. It can be used independently or together with the `isis bfd` command.

Enabling or disabling BFD for IS-IS for a specific interface

You can selectively enable or disable BFD on any IS-IS interface as shown in the following.

```bash
device(config-if-e1000-3/1)# isis bfd
```

Syntax: `[no] isis bfd [disable]`

The `disable` option disables BFD for IS-IS on the interface.
Holdover interval

The BFD holdover interval is supported for single hop sessions. It sets the time by which the BFD session DOWN notification to ISIS is delayed. If within that holdover time, the BFD session is UP then ISIS is not notified of the BFD session flap.

The holdover interval can be configured globally.

If the bfd holdover-interval is set to 20 seconds, when a notification is received from BFD that the BFD session has moved to DOWN state, the system waits for 20 seconds before sending the BFD session down notification to ISIS state machine. If the BFD session returns to UP state before the 20 seconds expires, the ISIS state machine is not notified that the BFD session flapped. Otherwise, after 20 seconds the BFD session down notification is passed to the ISIS state machine. If BFD for ISIS is disabled, the request to not use BFD for ISIS is passed to BFD by ISIS, BFD acknowledges this request, and the BFD session is removed. If BFD is disabled, ISIS is notified and asks BFD to remove the single hop BFD session on the interface.

To configure the BFD down notification delay, enter a command such as the following.

```
device(config-isis-router)# bfd holdover-interval 10
```

Syntax: `[no] bfd holdover-interval time-seconds`

The `time-seconds` variable is a number between 0 and 20 seconds. The default is 0 seconds.

The `no` option removes the BFD holdover interval from the configuration.

Configuring BFD for BGP4

You can configure your device for BFD for BGP4. BGP4 supports IPv4 and IPv6 IBGP and EBGP peers. These peers can be directly connected or multihop. BFD for BGP4 supports single hop and multihop BFD on Ethernet, POS and Virtual Interfaces. BFD for BGP4 is not supported on loopback, tunnel (including IGP shortcut) and management interfaces.

BFD for BGP4 global configuration - Using this configuration, you can enable and disable BFD BGP4 on a global level. In addition, you can use the global command to set revised default values for the transmit interval, receive interval, and for the detection time multiplier for all BFD multihop BGP4 sessions.

BFD for BGP4 at global, peer, and peer group configuration - Using this configuration, you can enable and disable BFD for individual peers or peer groups. You can also change the values for the transmit interval, receive interval, and for the detection time multiplier. If these values are not specified at this level, they are obtained from the values configured at the global level.

BFD for BGP4, which is disabled by default, can be enabled or disabled at the global BGP router level or for each individual peer or peer group. The hierarchy for BFD for BGP4 is as follows:

- Peer and peer group parameters can be configured but will not take effect until BFD for BGP4 has been enabled.
- Peer configurations will override global and peer group configurations.
- Peer group configurations will override global configurations
- The `bfd-enable` command under `router bgp` overrides all other BGP4 BFD configurations

Enabling BFD for BGP4 globally

By default, BFD for BGP4 is disabled and can be first enabled globally and then on each peer. To enable BFD for BGP4 globally, enter commands such as the following.

```
device# router bgp
device(config-bgp)# bfd-enable
```
To disable BFD for BGP globally and terminate all BFD sessions used by BGP4, enter commands such as the following:

```
device# router bgp
device(config-bgp)# no bfd-enable
```

Syntax: `[no] bfd-enable`

NOTE
If BFD for BGP4 is globally disabled and then enabled, the original BFD sessions for BGP4 may not be available, depending on whether or not the maximum BFD sessions limit has been reached. When a BFD session for BGP4 is disabled, the session will be removed but BGP4 peering will not go down. The remote BFD peer will be informed that BFD use is disabled.

Setting the transmit, receive, and detection time multiplier at the global level

When using BFD for BGP4, you must configure BFD globally at the `router BGP` level. You can also use this configuration to set new default values for the transmit interval, receive interval, and for the detection time multiplier.

For a single hop EBGP session, the BFD parameters configured under interface will be used because the BFD session for single hop is also shared with other applications. To create a BFD session for a single hop BGP4 session, you must have BFD enabled and the timers configured for the interface on which single hop BGP4 peering is established.

NOTE
For multihop BFD sessions, BFD does not have to be enabled for any of the interfaces, and the BFD timers need not be configured, since the default values can be used.

The timers parameters `min-tx`, `min-rx` and `multiplier` can also be configured for each peer and peer group and will override the global configuration.

To configure a multi hop EBGP or IBGP session, enter a command such as the following:

```
device(config)# router bgp
device(config-bgp)# bfd-enable
device(config-bgp)# bfd min-tx 500 min-rx 500 multiplier 5
```

Syntax: `[no] bfd min-tx transmit-time min-rx receive-time multiplier number`

The `transmit-time` variable is the interval in milliseconds between which this device will send a BFD message to its peer informing it that it is still operational. Acceptable values are: 50 - 30000. Default value: 1000 (unless changed at the global level)

The `receive-time` variable is the interval in milliseconds that this device waits to receive a BFD message from its peer. The device will wait for this interval for the number of times specified in the `number` variable before determining that the connection to its peer is not operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level)

The `multiplier` option allows you to specify a value for the number of times in a single sequence that this device will wait to receive a BFD message from its peer before determining that the connection to that peer is not operational. This value is set at the `number` variable. Acceptable values are 3 - 50. The default value is 3.

When CER 2000 Series or CES 2000 Series devices are heavily loaded or under stress, BFD sessions may flap if the configured BFD interval is less than 500 milliseconds with a multiplier value of 3.

The `no` option globally removes the BFD for BGP4 configuration from the device.

Holdover interval

The BFD holdover interval is supported for both single hop and multihop sessions. It sets the time by which the BFD session DOWN notification to BGP4 is delayed. If within that holdover time, the BFD session is UP then BGP4 is not notified of the BFD session flap.

The holdover interval can be configured globally, on each peer, or peer-group.
If the bfd holdover-interval is set to 20 seconds, when a notification is received from BFD that the BFD session has moved to DOWN state, the system waits for 20 seconds before sending the BFD session down notification to BGP4 state machine. If the BFD session returns to UP state before the 20 seconds expires, the BGP4 state machine is not notified that the BFD session flapped. Otherwise, after 20 seconds the BFD session down notification is passed to the BGP4 state machine. If BFD for BGP4 is disabled, the request to not use BFD for BGP4 is passed to BFD by BGP4. BFD acknowledges this request, and the BFD session is removed. If BFD is disabled, BGP4 is notified and asks BFD to remove the single hop BFD session on the interface.

To configure the BFD down notification delay, enter a command such as the following.

```
device(config-bgp)# bfd holdover-interval 20
```

Syntax: `[no] bfd holdover-interval time-seconds`

The `time-seconds` variable is a number between 0 and 30 seconds. The default is 0 seconds.

The `no` option removes the BFD for BGP4 holdover interval from the configuration.

Enabling BFD for a BGP4 peer group

To enable BFD and create a peer group for BGP4, you must first create the peer group, then enable BFD for the peer group by entering commands such as the following.

```
device(config-bgp)# neighbor pg1 peer-group
device(config-bgp)# neighbor pg1 fail-over bfd-enable
```

Syntax: `[no] neighbor name peer group`

Syntax: `[no] neighbor name fail-over bfd-enable`

The `name` variable specifies peer-group name of a particular neighbor.

The `no` option removes the BFD for BGP4 peer group from the configuration.

Enabling BFD timers for a BGP4 peer group

To enable BFD timers for a BGP4 peer group, you must first create the peer group, then enable BFD timers for the peer group by entering commands such as the following.

```
device(config-bgp)# neighbor pg1 peer-group
device(config-bgp)# neighbor pg1 bfd min-tx 500 min-rx 500 multiplier 5
```

Syntax: `[no] neighbor name peer group`

Syntax: `[no] neighbor name bfd min-tx transmit-time min-rx receive-time multiplier number`

The `name` variable specifies peer-group name of a particular neighbor.

The `transmit-time` variable is the interval in milliseconds during which this device will send a BFD message to its peer informing it that it is still operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level).

The `receive-time` variable is the interval in milliseconds that this device waits to receive a BFD message from its peer. The device waits for this interval for the number of times specified in the `number` variable before determining that the connection to its peer in not operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level).

The `multiplier` option allows you to specify a value for the number of times in a single sequence that the device waits to receive a BFD message from its peer before determining that the connection to that peer is not operational. This value is set at the `number` variable. Acceptable values are 3 - 50. The default value is 3.

When CER 2000 Series or CES 2000 Series devices are heavily loaded or under stress, BFD sessions may flap if the configured BFD interval is less than 500 milliseconds with a multiplier value of 3.
The **no** option removes the BFD timers for the peer group from the configuration.

Enabling BFD for a specific BGP4 peer

To enable BFD for BGP4 for a specific neighbor or peer, enter a command such as the following.

```plaintext
device(config-bgp)# neighbor 10.14.1.1 fail-over bfd-enable
```

Syntax: `[no] neighbor ipv4-address | ipv6-address fail-over bfd-enable`

The `ipv4-address` and `ipv6-address` variables specify the IPv4 or IPv6 address of a particular neighbor or peer. The **no** option removes the BFD for BGP4 peer from the configuration.

Disabling BFD for a specific BGP4 peer

To disable BFD for BGP4 for a specific peer, enter a command such as the following.

```plaintext
device(config-bgp)# neighbor 10.14.1.1 fail-over bfd-disable
```

Syntax: `[no] neighbor ipv4-address | ipv6-address fail-over bfd-disable`

The `ipv4-address` and `ipv6-address` variables specify the IPv4 or IPv6 address of a particular neighbor or peer. The **no** option removes the BFD specific peer from the configuration.

Enabling BFD timers for a specific BGP4 peer

To enable BFD timers for a specific neighbor or peer for BGP4, you must first configure the bfd timers, and set the holdover interval by entering commands such as the following.

```plaintext
device(config-bgp)# neighbor 10.14.1.1 bfd min-tx 500 min-rx 500 multiplier 5
device(config-bgp)# bfd holdover-interval 20
```

Syntax: `[no] neighbor ipv4-address | ipv6-address bfd min-tx transmit-time min-rx receive-time multiplier`

Syntax: `[no] bfd holdover-interval time-seconds`

The `ipv4-address` and `ipv6-address` variables specify the IPv4 or IPv6 address of a particular neighbor or peer. The `time-seconds` variable is a number between 0 and 30 seconds. The default is 0 seconds.

The `transmit-time` variable is the interval in milliseconds between which this device will send a BFD message to its peer informing it that it is still operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level).

The `receive-time` variable is the interval in milliseconds that this device waits to receive a BFD message from its peer. The device will wait for this interval for the number of times specified in the `number` variable before determining that the connection to its peer is not operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level).

The `multiplier` option allows you to specify a value for the number of times in a single sequence that this device will wait to receive a BFD message from its peer before determining that the connection to that peer is not operational. This value is set at the `number` variable. Acceptable values are 3 - 50. The default value is 3.

When CER 2000 Series or CES 2000 Series devices are heavily loaded or under stress, BFD sessions may flap if the configured BFD interval is less than 500 milliseconds with a multiplier value of 3.

The **no** option removes the BFD for BGP configuration for the peer.
Displaying BFD for BGP4

You can display BFD for BGP4 information for the device you are logged in to and for BFD configured neighbors as described in the following sections.

Displaying BFD information

The following example illustrates the output from the `show bfd` command:

```
device# show bfd
BFD State: ENABLED Version: 1 Use PBIF Assist: Y
Current Registered Protocols: bgp/1 ospf6/0 ospf/0 bgp/0
All Sessions: Current: 0 Maximum Allowed: 100 Maximum Exceeded Count: 0
LP Sessions: Maximum Allowed on LP: 20 Maximum Exceeded Count for LPs: 0
LP Tx/Rx Sessions LP Tx/Rx Sessions LP Tx/Rx Sessions LP Tx/Rx Sessions
  1 0/0 2 0/0 3 0/0 4 0/0
  5 0/0 6 0/0 7 0/0 8 0/0
  9 0/0 10 0/0 11 0/0 12 0/0
 13 0/0 14 0/0 15 0/0 16 0/0
BFD Enabled ports count: 0
```

Syntax: show bfd

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 44 Display of BFD information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>BFD State</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Using PBIF Assist</td>
</tr>
<tr>
<td>Current Registered Protocols</td>
</tr>
<tr>
<td>All Sessions</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>Maximum Exceeded Count</td>
</tr>
<tr>
<td>LP Sessions:</td>
</tr>
<tr>
<td>Maximum Exceeded Count for LPs</td>
</tr>
</tbody>
</table>
TABLE 44 Display of BFD information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>The number of the interface modules for which the Current Session Count is displayed.</td>
</tr>
<tr>
<td>Sessions</td>
<td>The number of Transmit (Tx) and Receive (Rx) BFD sessions currently operating on the specified interface module.</td>
</tr>
<tr>
<td>BFD Enabled ports count</td>
<td>The number of ports that have been enabled for BFD.</td>
</tr>
<tr>
<td>Port</td>
<td>The port on which BFD is enabled.</td>
</tr>
<tr>
<td>MinTx</td>
<td>The interval in milliseconds during which the device sends a BFD message from this port to its peer.</td>
</tr>
<tr>
<td>MinRx</td>
<td>The interval in milliseconds during which this device can receive a BFD message from its peer on this port.</td>
</tr>
<tr>
<td>Mult</td>
<td>The number of times the device will wait for the MinRx time on this port before it determines that the peer device is non-operational.</td>
</tr>
<tr>
<td>Sessions</td>
<td>The number of BFD sessions originating on this port.</td>
</tr>
</tbody>
</table>

Displaying BFD applications

The following example illustrates the output from the `show bfd applications` command.

```plaintext
device# show bfd applications

Registered Protocols Count: 3
Protocol VRFID Parameter HoldoverInterval
isis 0 0 2
ospf6 0 1 10
ospf 0 0 5
```

TABLE 45 Display of BFD applications information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Which protocols are registered to use BFD on the device.</td>
</tr>
<tr>
<td>VRFID</td>
<td>The VRFID of the protocol.</td>
</tr>
<tr>
<td>Parameter</td>
<td>The parameter value passed by the protocol during registration with BFD.</td>
</tr>
<tr>
<td>Holdover Interval</td>
<td>The time by which the BFD session DOWN notification is delayed. If within that holdover time, the BFD session is UP then it is not notified of the BFD session flap.</td>
</tr>
</tbody>
</table>

Displaying BFD for BGP neighbor information

The following example illustrates the output from the `show bfd neighbor bgp detail` command for the MLX series and XMR series devices.

```plaintext
device# show bfd neighbor bgp detail

Total Entries:4 R:RxRemote(Y:Yes/N:No) H:Hop(S:Single/M:Multi)
NeighborAddress State Interface Holdown Interval R/H
10.101.101.100 UP ve 3 3000000 1000000 Y/M
Registered Protocols(Protocol/VRFID): bgp/0
Local: Disc: 26, Diag: 0, Demand: 0 Poll: 0
    MinTxInterval: 1000000, MinRxInterval: 1000000, Multiplier: 3
Remote: Disc: 7, Diag: 0, Demand: 0 Poll: 0
    MinTxInterval: 1000000, MinRxInterval: 1000000, Multiplier: 3
```
The following example illustrates the output from the `show bfd neighbor bfd detail` command for the CES series and CER series devices.

```
device#show bfd neighbor detail
Total Entries:1 R:RXRemote(Y:Yes/N:No)H:Hop(S:Single/M:Multi)
NeighborAddress  State Interface Holddown Interval R/H
fe80::224:38ff:fe79:9310    UP  eth 1/17 1500000 500000 Y/S
Registered Protocols(Protocol/VRFID): bgp/0
Local: Disc: 8, Diag: 0, Demand: 0 Poll: 0
MinTxInterval: 1000000, MinRxInterval: 1000000, Multiplier: 3
Remote: Disc: 10, Diag: 0, Demand: 0 Poll: 0
MinTxInterval: 1000000, MinRxInterval: 1000000, Multiplier: 3
Stats: RX: 160394 TX: 142648 SessionUpCount: 1 at SysUpTime: 5:17:49:42.100,
LastSessionDownTimestamp: 0:0:0:0.0
Using PBIF Assist: Y
```

Syntax: `show bfd neighbor bgp [ipv4-address | ipv6-address | detail]`

The `ipv4-address` and `ipv6-address` options display BFD neighbor information for the BGP specified IPv4 or IPv6 neighbor only.

The `detail` option displays BFD neighbor information for all BGP neighbors.

This display contains the following information.

TABLE 46 Display of BFD neighbor detail information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of Neighbor entries</td>
<td>Total number of BFD sessions.</td>
</tr>
<tr>
<td>NeighborAddress</td>
<td>IPv4 or IPv6 address of the remote peer.</td>
</tr>
<tr>
<td>State</td>
<td>The current state of the BFD session:</td>
</tr>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>A.DOWN</td>
<td>The administrative down state.</td>
</tr>
<tr>
<td>INIT</td>
<td>The Init state.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The current state is unknown.</td>
</tr>
<tr>
<td>Interface</td>
<td>The logical port on which the peer is known.</td>
</tr>
<tr>
<td>Holdown</td>
<td>The interval in microseconds after which the session will transition to the down state if no message is received.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in microseconds at which the local device sends BFD messages to the remote peer.</td>
</tr>
<tr>
<td>R/H</td>
<td>Heard from remote, values: Y or N where Y stand for Yes and N stand for No; H- Single hop/Multihop Values are S and M where S stand for Single Hop and M stand for MultiHop.</td>
</tr>
<tr>
<td>Registered Protocols</td>
<td>Specifies which protocols are registered to use BFD on this port.</td>
</tr>
<tr>
<td>Local:</td>
<td></td>
</tr>
<tr>
<td>Disc</td>
<td>Value of the local discriminator field in the BFD Control Message as used by the local device in the last message sent.</td>
</tr>
<tr>
<td>Diag</td>
<td>Value of the diagnostic field in the BFD Control Message as used by the local device in the last message sent.</td>
</tr>
<tr>
<td>Demand</td>
<td>Value of the demand bit in the BFD Control Message as used by the local device in the last message sent.</td>
</tr>
<tr>
<td>Poll</td>
<td>Value of the poll bit in the BFD Control Message as used by the local device in the last message sent.</td>
</tr>
<tr>
<td>MinTxInterval</td>
<td>The interval in microseconds during which the device will send a BFD message from this local neighbor port to the peer.</td>
</tr>
<tr>
<td>MinRxInterval</td>
<td>The interval in microseconds that the neighbor device waits to receive a BFD message from the peer on this local port.</td>
</tr>
<tr>
<td>Multiplier</td>
<td>The number of times the neighbor device will wait for the MinRxInterval time on this port before it determines the peer device is non-operational.</td>
</tr>
<tr>
<td>Remote:</td>
<td></td>
</tr>
<tr>
<td>Disc</td>
<td>Value of the local discriminator field in the BFD Control Message as received in the last message sent by the remote peer.</td>
</tr>
<tr>
<td>Diag</td>
<td>Value of the diagnostic field in the BFD Control Message as received in the last message sent by the remote peer.</td>
</tr>
<tr>
<td>Demand</td>
<td>Value of the demand bit in the BFD Control Message as received in the last message sent by the remote peer.</td>
</tr>
<tr>
<td>Poll</td>
<td>Value of the poll bit in the BFD Control Message as received in the last message sent by the remote peer.</td>
</tr>
<tr>
<td>MinTxInterval</td>
<td>The interval in milliseconds during which the device will send a BFD message from the remote neighbor port to the peer.</td>
</tr>
<tr>
<td>MinRxInterval</td>
<td>The interval in milliseconds that the neighbor device waits to receive a BFD message from the peer on this remote port.</td>
</tr>
<tr>
<td>Multiplier</td>
<td>The number of times that the remote neighbor device will wait for the MinRxInterval time on this port before it determines that the peer device is non-operational.</td>
</tr>
<tr>
<td>Stats: Rx</td>
<td>Total number of BFD control messages received from the remote peer.</td>
</tr>
</tbody>
</table>
TABLE 46 Display of BFD neighbor detail information (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stats: Tx</td>
<td>Total number of BFD control messages sent to the remote peer.</td>
</tr>
<tr>
<td>Stats: SessionUpCount</td>
<td>The number of times the session has transitioned to the UP state.</td>
</tr>
<tr>
<td>Stats: SysUpTime</td>
<td>The amount of time that the system has been up.</td>
</tr>
<tr>
<td>Session Uptime</td>
<td>The amount of time the session has been in the UP state.</td>
</tr>
<tr>
<td>LastSessionDownTimestamp</td>
<td>The system time at which the session last transitioned from the UP state</td>
</tr>
<tr>
<td></td>
<td>to some other state.</td>
</tr>
<tr>
<td>Physical Port</td>
<td>The physical port on which the peer is known.</td>
</tr>
<tr>
<td>Vlan Id</td>
<td>The VLAN ID of the VLAN on which the physical port is resident.</td>
</tr>
</tbody>
</table>

Displaying summary neighbor information

Support for BFD for BGP neighbors is highlighted in the bold text in the following output for the `show ip bgp neighbors` command.

Neighbor AS4 Capability Negotiation:
As-path attribute count: 2
Outbound Policy Group:
ID: 1, Use Count: 3
BFD:Enabled,BFDSessionState:UP,Multihop:Yes
LastBGP-BFDEvent:RX:Up,BGP-BFDError:No Error
NegotiatedTime(msec):Tx:1000000,Rx:1000000,BFDHoldTime:3000000
HoldOverTime(sec) Configured:22,Current:0,DownCount:0
TCP Connection state: ESTABLISHED, flags:00000044 (0,0)
Maximum segment size: 1460

BFD for static routes

Unlike dynamic routing protocols, such as OSPF and BGP, static routing has no method of peer discovery and fault detection. BFD for IPv4 and IPv6 static routes provides rapid detection of failure in the bidirectional forwarding path between BFD peers.

BFD for Static Routes allows you to detect failures that impact the forwarding path of a static route. This feature supports both singlehop and multihop BFD Static Routes for both IPv4 and IPv6. Unless the BFD session is up, the gateway for the static route is considered unreachable, and the affected routes are not installed in the routing table. BFD can remove the associated static route from the routing table if the next-hop becomes unreachable indicating that the BFD session has gone down.

Static routes and BFD neighbors are configured separately. A static route is automatically associated with a static BFD neighbor if the static route’s next-hop exactly matches the neighbor address of the static BFD neighbor and BFD monitoring is enabled for the static route.

When a static BFD neighbor is configured, BFD asks the routing table manager (RTM) if there is a route to the neighbor. If a route exists, and if the route is directly connected, then BFD initiates a single hop session. If the route is not directly connected, BFD establishes a multi-hop session. Once the session comes up, BFD adds the corresponding static routes to RTM. If no route exists, then BFD will not add the corresponding static routes to RTM.
When a BFD session goes down because the BFD neighbor is no longer reachable, static routes monitored by BFD are removed from the routing table manager. The removed routes can be added back if the BFD neighbor becomes reachable again. Singlehop BFD sessions use the BFD timeout values configured on the outgoing interface. Timeout values for multihop BFD sessions are specified along with each BFD neighbor. Multiple static routes going to the same BFD neighbor use the same BFD session and timeout values.

Configuration considerations

- In a multi-hop session, the protocol must be stated in the `ip route next-hop` command.
- BFD multi-hop is supported for a nexthop resolved through OSPF, BGP, ISIS, RIP, and MPLS.
- BFD multi-hop is not supported for a nexthop resolved through Default Route.
- BFD for static routes is not supported for static routes with an LSP name as nexthop.
- BFD session establishment on an interface does not start until 180 seconds after the interface comes up. The reason for this delay is to ensure that the link is not affected by unstable link conditions which could cause BFD to flap. This delay time is not user configurable.
- BFD for static routes will not support interface-based static routes for both IPv4 and IPv6.
- When CER 2000 Series or CES 2000 Series devices are heavily loaded or under stress, BFD sessions may flap if the configured BFD interval is less than 500 milliseconds with a multiplier value of 3.

Configuring BFD for static routes

The following example assumes the configured interface Ethernet 1/1 is as follows:

```plaintext
interface ethernet 1/1
  bfd interval 100 min-rx 100 multiplier 5
  ip address 10.0.0.1/24
```

Single hop configuration

To configure BFD for static routes, configure BFD neighbors using the following commands. BFD neighbors can be configured in unassociated mode using this command.

The following example uses interface ethernet 1/1 as the outgoing interface and uses the BFD intervals on ethernet 1/1. The next hop address 10.0.0.5 is the BFD neighbor and the configured address 10.0.0.1 on Ethernet 1/1 is the local address.

```plaintext
device(config)#ip route static-bfd 10.0.0.5 10.0.0.1
```

Syntax to configure BFD Static neighbor for IPv4:

Syntax: `[no] ip route [vrf vrf-name] static-bfd neighbor-ip-address local-ip-address interval tx-rate min-nrx rx-rate multiplier value`

Syntax to configure BFD Static neighbor for IPv6:

Syntax: `[no] ipv6 route [vrf vrf-name] static-bfd neighbor-ipv6-address local-ipv6-address interval tx-rate min-nrx rx-rate multiplier value`

The `no` version of the command removes the BFD monitoring by removing the BFD static neighbor 10.0.0.5 and eliminating the BFD session, while keeping the static route in the RTM, and retaining the existing traffic to IP route 20.0.0.0. You only need to specify the BFD neighbor address and the local address when removing a BFD neighbor.
To enable BFD for static routes use the following command. The bfd parameter allows you to enable BFD monitoring for the static route.

```
device(config)#ip route 20.0.0.0/24 10.0.0.5 bfd
```

Syntax to enable BFD monitoring for IPv4:

Syntax: `[no] ip route Destination IPAddress Next hop Router IPAddress ... bfd`

Syntax to enable BFD monitoring for IPv6:

Syntax: `[no] ipv6 route Destination IPv6Address Next hop Router IPv6Address ... bfd`

The `no` version of the command removes BFD monitoring from the static route.

Multi-hop configuration

The following example shows a multi-hop configuration using the commands explained in the single hop section.

```
device(config)#ip route static-bfd 30.0.0.5 10.0.0.1 interval 90 min-rx 90 multiplier 3
device(config)#ip route 20.0.0.0/24 30.0.0.5 bfd
```

The multi-hop BFD session to the next hop (BFD neighbor) 30.0.0.5 uses the TX and RX intervals of 90ms.

When configuring multi-hop static route and multi-hop bfd neighbor, the protocol by which the nexthop is to be resolved must be stated using the IP route next-hop command.

Show commands

The `show ip static route` and `show ipv6 static route` command output indicates that BFD monitoring is enabled by the `b` next to the static route.

```
device# show ip static route
IP Static Routing Table - 3 entries:
STATIC Codes - b:BFD monitoring
   IP Prefix     Next Hop     Interface Dis/Metric/Tag Name
  * 0.0.0.0/0     10.37.73.129 -          1/1/0
   0.0.0.0/0     10.37.73.1     -          1/1/0
  b 100.0.0.0/8   10.0.0.2     -          1/1/0
b 150.0.0.0/8   20.0.0.3     -          1/1/0
device#
device# show ipv6 static route
IPv6 Static Routing Table - 2 entries:
STATIC Codes - b:BFD monitoring
   IPv6 Prefix Interface Next Hop Router Met/Dis/Tag Name
  b 100::/64 eth 1/5 10::2     1/1/0
b 150::/64 eth 1/5 20::3     1/1/0
device#
```

The `show bfd applications` output indicates that BFD monitoring is enabled by the `static` and `static6`.
BFD for RSVP-TE LSP

BFD provides a mechanism to detect data plane failure for MPLS LSP in the order of sub-second. Unlike MPLS LSP ping where MPLS control plane can be verified against the data plane, BFD is used only to detect data plane failure. There are a couple advantages in using BFD instead of LSP ping for MPLS data plane failure detection. BFD provides a faster failure detection mechanism because it does not require control plane verification. BFD can also be used to detect faults for a large number of LSPs without manual trigger for each LSP the way LSP ping does.

BFD session for RSVP LSP is very similar to the BFD session set up for ISIS and OSPF with the following differences:

- MPLS BFD session is bootstrapped using LSP ping.
- The IP TTL for transmitted MPLS BFD control packets from ingress LSR to egress LSR must be set to 1 instead of 255.
- After MPLS BFD session is up, the local discriminator and the source IP address are not allowed to change without bringing down the MPLS BFD session.
- The transmit and receive portion of the session can be on different LPs because the LSP is unidirectional and the returned path from egress to ingress LSR depends on IP routing.

MPLS BFD is set up between the ingress and egress LSR. The MPLS BFD session uses an asynchronous operating mode without echo function. BFD demands an operating mode and echo function that are not currently defined for MPLS BFD. Authentication is not supported (it is currently not supported for OSPF or ISIS either).

BFD configuration on the MLX/XMR products are provided at the global MPLS configuration level and at the LSP level as follows:

- The global configuration provides you a convenient way to enable and disable BFD for all LSPs that have BFD enabled (this is similar to how it is provided for ISIS and OSPF). In addition, the you can change the default settings for transmit and receive intervals and detection time multiplier to be used for all BFD sessions. On egress LSR, this global setting is used to decide whether a BFD session starts upon receiving MPLS echo request with BFD Discriminator TLV and the time intervals to be included in the BFD control packet are to be sent back to the ingress LSR.
- Under the LSP configuration, you are able to enable or disable BFD and change the default settings for minimum transmit and receive intervals as well as detection time multiple. If those parameters are not specified, the values from the global configuration are used.

BFD can be enabled or disabled without program exit at the global MPLS level or for each individual LSP without affecting the LSP operational status. In addition, the BFD parameters can also be changed without program exit This does not change the state of the BFD session.
One BFD session is created for each non-redundant LSP. BFD session is associated with the active path which can be normal or protected, or detour path. For redundant LSP, a separate BFD session is created for the currently active secondary path.

BFD session creation

On ingress, one BFD session is created for each LSP. A BFD session is created after the LSP comes UP. The BFD session status is displayed as part of the show LSP output. When the BFD session is not UP, a failure reason is displayed as part of the show LSP detail output. Possible failure reasons include exceeding the maximum number of BFD sessions the system can support or the global BFD configuration is disabled. In the case where BFD session is not brought up because BFD packet from the egress LSR is not received, the MPLS Echo Request with the BFD Discriminator TLV is resent until the session is UP. The retry timer is exponentially backed off.

On egress, a BFD session is created after an MPLS Echo Request is received with the BFD Discriminator TLV and the MPLS BFD enabled globally and the maximum number of BFD sessions has not been reached yet. The BFD session created on egress LSR also is counted towards the maximum number of BFD sessions. When the number of BFD sessions has reached a maximum, neither the MPLS Echo Reply nor the BFD control packet are sent. The ingress LSR will retry.

Because the source IP address cannot be changed for MPLS BFD session after the session has comes up, the LSR-ID is used as the source IP address for all MPLS BFD packets. This guarantees that the session does not go down when the LSP path switch occurs.

FRR LSP

Only one BFD session is created for a FRR LSP. When a switchover from protected to detour path occurs, and when the detour is on a different LP, the BFD session is moved to the LP where the detour path resides. The BFD session can go down when the LP already has a maximum number of BFD sessions running. When the detour is on the same LP, the outgoing interface and label stack is updated on the existing LP.

A BFD session is not created for detour path originating on a transit LSR.

Redundant LSP

One BFD session is created for a primary path of a redundant LSP. When the secondary path is hot-standby, a separate BFD session is created for it if and only if BFD is enabled for a secondary path. The two sessions operate independently.

Adaptive LSP

When a new instance of an adaptive LSP comes UP, a BFD session automatically moves to a new LP when the new instance is created on a different LP. Otherwise, the local outgoing interface and label stack updates on the existing LP. When the BFD session needs to be moved to a different LP, it is possible that the BFD session may be down when the LP already has maximum number of BFD sessions running.

BFD session deletion

A BFD session is deleted when any of the following events happen:

- LSP goes down
- BFD is disabled for the LSP
- BFD is disabled for all LSP (example: through global MPLS configuration)
BFD session modification

You can change the BFD parameters globally or for an individual LSP without program shutdown without affecting the operational status of the LSP and the BFD session. When you change the global configuration, the change is applied to all egress MPLS BFD sessions and only to those ingress BFD sessions whose parameters are derived from the global configuration.

BFD session down handling

When a BFD session for a LSP goes down on ingress LSR because BFD detection time has expired, it may trigger path switchover if possible (protected to detour or primary to secondary path switchover). In the case where there is no alternative path, the LSP is brought down and the BFD session is deleted. The LSP goes through the normal retry mechanism in order to come back UP.

On egress LSR, BFD session down does not have any impact on the RSVP session.

Configuring BFD for RSVP-TE LSPs

BFD can be configured for use with RSVP-LSPs to detect data plane failures for MPLS LSPs. Although the LSP ping facility can also be used for this purpose, BFD provides the following advantages:

- BFD provides faster failure detection because it does not require control plane verification, which is required by LSP ping.
- BFD can be used to detect faults on a large number of LSPs without requiring manual interaction, which is required by LSP ping.

BFD configuration for RSVP-TE LSPs is performed at the global and LSP levels, as described:

- **BFD for RSVP-TE LSPs global configuration** - allows you to enable and disable BFD on all of the RSVP-TE LSPs that have been configured for BFD at the LSP level. In addition, use the global command to set revised default values for the transmit interval, receive interval, and for the detection time multiplier for all BFD sessions on RSVP-TEs. This configuration command can also be used as a convenient method to turn BFD for MPLS on or off.

- **BFD for RSVP-TE LSPs configuration at the LSP level** - allows you to enable and disable BFD for individual RSVP-TE LSPs. You can also change the values for the transmit interval, receive interval, and for the detection time multiplier from the default values. If these values are not specified at this level, they are obtained from the values configured at the global level.

BFD, which is disabled by default, can be enabled or disabled at the global MPLS level, or for each individual LSP without affecting the LSP operational status. BFD parameters can also be changed without changing the state of the BFD session.

BFD for RSVP-TE LSPs operates with Fast ReRoute (FRR), Redundant, and Adaptive LSPs as described:

- **FRR LSPs** - Only one BFD session is created for an FRR LSP. A separate BFD session is not created for the detour path. When a switchover from a protected to a detour path occurs, the detour path resides on another interface module, and the BFD session is moved to that interface module. The BFD session can go down if the interface module has already reached the maximum number of BFD sessions. If the detour path is on the same interface module, the outgoing interface and label stack are updated on that interface module. A BFD session is not created for a detour path originated on a transit LSR.

- **Redundant LSPs** - One BFD session is created for the primary path of a redundant LSP. If the secondary path is in the hot-standby condition, a separate BFD session is created for it, but only if BFD is enabled on the secondary path. The two sessions operate independently.

- **Adaptive LSPs** - If a new instance of an adaptive LSP comes up on a different interface module, its BFD session is automatically created on that module. Otherwise, the local outgoing interface and label stack are updated on the existing interface module. When a BFD session is moved to a different interface module, the BFD session may be brought down if the interface module has already reached the maximum number of BFD sessions allowed on it.
BFD session support per-router and per-interface module

There is a limit to the number of BFD sessions available on a per-router and per-interface module basis as described:

• **per-router** - A maximum number of 250 BFD sessions are permitted per device
• **per-interface module** - A maximum number of 80 BFD sessions (Tx or Rx) are permitted per-interface module

These limitations are inclusive of any BFD sessions created for OSPFv2 or v3 and IS-IS. If creating a BFD session will exceed these limits, the session will be denied. For a detailed description of how to calculate the number of BFD sessions supported, refer to Number of BFD sessions supported on page 256.

BFD session creation

On ingress, one BFD session is created for each LSP after the LSP comes up. The BFD session status is then displayed in the output of the `show lsp` command. If the BFD session is not up, a failure reason is displayed in the output of the `show lsp` command. Possible reasons why a BFD session may fail to come up include exceeding the maximum supported number of BFD sessions, or if the global BFD configuration is disabled. If a BFD session does not come up because a BFD packet from the egress LSR is not received, an MPLS Echo Request with a BFD Discriminator TLV is resent until the session does come up. The retry timer is exponentially backed off.

On egress, a BFD session is created after the following sequence of events.

1. An MPLS Echo Request is received with a BFD Discriminator TLV
2. MPLS BFD is enabled globally
3. The maximum number of BFD sessions available on the device has not been reached.

NOTE

A BFD session created on an egress LSR is counted toward the maximum supported number of BFD sessions.

If the number of BFD sessions has reached the supported maximum for the device, no MPLS Echo Reply or BFD control packet is sent. The ingress LSR will retry.

Because the source IP address cannot be changed for an MPLS BFD session after the session has come up, the LSR-ID is used as the source IP address for all MPLS BFD packets. This ensures that the session will not go down when an LSP path switch occurs.

BFD session down behavior

When a BFD session for an LSP goes down on an ingress LSR because the BFD detection time has expired, one of the following path switchovers will be triggered; from the protected path to the detour path, or from the primary path to the secondary path. In configurations with no alternative path, the LSP is brought down and the BFD session is deleted. The LSP then follows the normal retry procedures to come back up. On an egress LSR, a down BFD session does not have any impact on the RSVP session.

AdminDown State

The AdminDown mechanism in BFD is intended to signal that the BFD session is being taken down for administrative purposes, and the session state is not indicative of the activity of the data path. Therefore, a system should not indicate a connectivity failure to a client if either the local session state or the remote session state (if known) transitions to AdminDown when that client has an independent means of activity detection (typically, control protocols).

If a client does not have any independent means of activity detection, a system should indicate a connectivity failure to a client, and assume the semantics of Down state, if either the local or remote session state transitions to AdminDown. Otherwise, the client will not be able to determine whether the path is viable, if not unfortunate results may occur.
Reaction to BFD Session State Changes

If a BFD session transitions from Up state to AdminDown, or the session transitions from Up to Down because the remote system is indicating that the session is in state AdminDown, clients should not take any control protocol action.

BFD session deletion

A BFD session is deleted when any of the following events occur:

- An LSP goes down
- BFD is disabled for the LSP
- BFD is disabled for all LSPs (using the global configuration)

These events are described in the following sections.

Enabling BFD for RSVP-TE LSPs at the global level

When using BFD for RSVP-TE LSPs, you must configure BFD globally at the router mpls level. You can also use this configuration to set new default values for the transmit interval, receive interval, and for the detection time multiplier, as shown.

```
device(config)# router mpls
device(config-mpls)# bfd
device(config-mpls)# min-tx 500 min-rx 500 multiplier 5
```

Syntax: `[no] min-tx transmit-time min-rx receive-time multiplier number`

The `transmit-time` variable is the interval in milliseconds during which this device sends a BFD message to the peer informing it that it is still operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level).

The `receive-time` variable is the interval in milliseconds the device waits to receive a BFD message from the peer. The device waits for the number of times specified in the `number` variable before determining that the connection to the peer in not operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level).

The `multiplier` option allows you to specify a value for the number of times in a single sequence that this device will wait to receive a BFD message from the peer before determining that the connection to that peer is not operational. This value is set at the `number` variable. Acceptable values are 3 - 50. The default value is 3.

When CER 2000 Series or CES 2000 Series devices are heavily loaded or under stress, BFD sessions may flap if the configured BFD interval is less than 500 milliseconds with a multiplier value of 3.

The `no` option globally removes the BFD for RSVP-TE LSPs configuration from the device.

NOTE

BFD parameters configured globally can be changed dynamically without affecting the operational status of the LSP and the BFD session. When you make changes to the global configuration, the changes are applied to all egress MPLS BFD sessions and only to the ingress BFD sessions with parameters that are derived from the global configuration.

Enabling BFD for a specific RSVP-TE LSP

When you configure BFD globally, you must also configure it locally for the individual LSPs on which you want it to operate. You can also set separate values for the transmit interval, receive interval, and for the detection time multiplier for the specified LSP. The following example enables BFD for the LSP named blue and sets new parameter values.

```
device(config)# router mpls
device(config-mpls)# lsp blue
device(config-mpls-lsp-blue)# bfd
device(config-mpls-lsp-blue-bfd)# min-tx 500 min-rx 500 multiplier 5
```
Syntax: [no] min-tx transmit-time min-rx receive-time multiplier number

The transmit-time variable is the interval in milliseconds during which this device sends a BFD message to the peer announcing that it is still operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level).

The receive-time variable is the interval in milliseconds this device waits to receive a BFD message from the peer. The device waits for the number of times specified in the number variable before determining that the connection to the peer is not operational. Acceptable values are 50 - 30000. The default value is 1000 (unless changed at the global level).

The multiplier option allows you to specify a value for the number of times in a single sequence that this device waits to receive a BFD message from the peer before determining that the connection to that peer is not operational. This value is set at the number variable. Acceptable values are 3 - 50. The default value is 3.

When CER 2000 Series or CES 2000 Series devices are heavily loaded or under stress, BFD sessions may flap if the configured BFD interval is less than 500 milliseconds with a multiplier value of 3.

The no option globally removes the BFD for RSVP-TE LSPs configuration from the device.

NOTE
BFD parameters configured for a specific LSP can be changed dynamically without affecting the operational status of the LSP and the BFD session.

Using this command you can also configure BFD for the secondary path of an LSP as shown in the following example.

device(config)# router mpls
device(config-mpls)# lsp blue
device(config-mpls-lsp-blue)# secondary-path alt_sf_to_sj
device(config-mpls-lsp-blue-sec-path)# bfd

Enabling the IP router alert option

NOTE
The set-router-alert-option command is supported only for NetIron XMR and NetIron MLX devices.

The set-router-alert-option command sets the IP router alert option for MPLS BFD packets sent from the ingress device to the egress device. NetIron devices support the IP router alert option as defined in RFC 2113. To enable router alert option, enter the following command under the LSP BFD configuration.

device(config)# router mpls
device(config-mpls)# lsp blue
device(config-mpls-lsp-blue)# bfd
device(config-mpls-lsp-blue-bfd)#set-router-alert-option

Syntax: [no] set-router-alert-option

By default, the router alert option is disabled.

The router alert option configuration is only displayed when BFD is enabled for LSP. This example shows the router option enabled for LSP blue.

device(config-mpls-lsp-blue-bfd)#show mpls lsp name blue
LSP blue, to 0.0.0.0
 From: (n/a), admin: DOWN, status: DOWN
 Times primary LSP goes up since enabled: 0
 Metric: 0, number of installed aliases: 0
 Maximum retries: 0, no. of retries: 0
 Pri. path: NONE, up: no, active: no
 Setup priority: 7, hold priority: 0
 Max rate: 0 kbps, mean rate: 0 kbps, max burst: 0 bytes
 Constraint-based routing enabled: yes
 Tie breaking: random, hop limit: 0
Configuring time delay for setup of BFD single-hop session

You can define a time delay for establishing the BFD single hop session after the port is enabled.

Using the command you can delay the setup of BFD single hop session.

```
device(config)#bfd sh-session-setup-delay 40
```

Syntax: `[no] bfd sh-session-setup-delay seconds`

By default, the time delay to establish the single hop session is set to 180 seconds. The `no` form of the command removes the time delay for the session.

The `seconds` value is the time delay in seconds. You can specify a value between 0 and 600 seconds. The default value is 90 seconds.

Configuring time delay for setup of BFD multihop session

You can define a time delay for establishing the BFD multihop session after the system initializes.

Using the command you can delay the setup of BFD multihop session.

```
device(config)#bfd mh-session-setup-delay 90
```

Syntax: `[no] bfd mh-session-setup-delay seconds`

By default, the time delay to establish the multihop session is set to 0 seconds. The `no` form of the command removes the time delay for the multihop session.

The `seconds` value is the time delay in seconds. You can specify a value between 0 and 600 seconds. The default value is 0 seconds.

Displaying MPLS BFD information

You can display the following information about an LSP BFD configuration:

- BFD Application Information
- BFD MPLS Information
- Detailed BFD MPLS Information
- MPLS BFD Global Configuration Information

You can also obtain MPLS BFD information using the `show bfd` command, as described in Displaying BFD information on page 257, and the `show mpls lsp` command, as described in “Displaying signalled LSP status information”.

Active Path attributes:
BFD session status: DOWN (LSP down)
Config params: global, min-tx: 50, min-rx: 50, multiplier: 5
Set router alert option: yes
Displaying BFD application information

The following example illustrates the output from the `show bfd application` command.

```
device# show bfd application
Registered Protocols Count: 3
<table>
<thead>
<tr>
<th>Protocol</th>
<th>VRID</th>
<th>Parameter</th>
<th>HoldoverInterval</th>
</tr>
</thead>
<tbody>
<tr>
<td>isis</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ospf6</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>ospf</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
```

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 47 Display of BFD application information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>Protocol</td>
</tr>
<tr>
<td>VRID</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>HoldoverInterval</td>
</tr>
</tbody>
</table>

Displaying BFD MPLS information

The following example shows output from the `show bfd mpls` command.

```
device# show bfd mpls
Total number of MPLS BFD sessions: 2
<table>
<thead>
<tr>
<th>Session name</th>
<th>State</th>
<th>Interface</th>
<th>Holdown</th>
<th>Interval</th>
<th>RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsp1</td>
<td>UP</td>
<td>eth 1/2</td>
<td>3000000</td>
<td>1000000</td>
<td>Y</td>
</tr>
<tr>
<td>10.11.11.1/1/10.22.22.2</td>
<td>UP</td>
<td>eth 1/2</td>
<td>3000000</td>
<td>1000000</td>
<td>Y</td>
</tr>
</tbody>
</table>
```

Syntax: `show bfd mpls`

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 48 Display of BFD MPLS information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>Total number of MPLS BFD Sessions</td>
</tr>
<tr>
<td>Session name</td>
</tr>
<tr>
<td>State</td>
</tr>
<tr>
<td>Interface</td>
</tr>
</tbody>
</table>
Displaying BFD MPLS detailed information

The following example shows a display of BFD MPLS detailed information as a result of the `show bfd mpls detail` command. To view BFD MPLS information for a single LSP or RSVP session, use the `show bfd mpls lsp` command.

NOTE
The `show bfd mpls lsp` command displays the same information as the `show bfd mpls rsvp-session` command.

```plaintext
device# show bfd mpls lsp lsp2
Session name                          State   Interface Holddown  Interval  RH
lsp2                                   UP      eth 1/2   3000000   1000000   Y
Local: Disc: 3, Diag: 0, Demand: 0 Poll: 0
MinTxInterval: 500000, MinRxInterval: 500000, Multiplier: 3
Remote: Disc: 3, Diag: 3, Demand: 1 Poll: 0
MinTxInterval: 1000000, MinRxInterval: 1000000, Multiplier: 3
Stats: RX: 305 TX: 305 SessionUpCount: 1 at SysUpTime: 0:0:4:46.200
Session Uptime: 0:0:3:46.650, LastSessionDownTimestamp: 0:0:0:0.0
Tx Port: eth 1/2, Rx Port: eth 1/2
```

Syntax: `show bfd mpls [detail | lsp name | rsvp-session src-addr dest-addr tnnl-id]`

This information shown in this display that is not defined in Displaying BFD MPLS information on page 282 is described in either Displaying BFD neighbor information on page 258 or Table 49.

Displaying MPLS BFD global configuration information

You can use the `show mpls bfd` command to display the global configuration information for a device, as shown in the following.

```plaintext
device# show mpls bfd
MPLS BFD admin          = Enabled
Minimum TX interval     = 1000 msec
Minimum RX interval     = 1000 msec
Detection time multiplier = 3
```

Syntax: `show mpls bfd`
<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS BFD admin</td>
<td>The global configuration state of MPLS BFD on the device: can be either Enabled or Disabled</td>
</tr>
<tr>
<td>Minimum TX interval</td>
<td>Desired Min Tx Interval - the minimum interval, in microseconds, the local system will use when transmitting BFD Control packets. The value zero is reserved.</td>
</tr>
<tr>
<td>Minimum RX interval</td>
<td>Required Min Rx Interval - the minimum interval, in microseconds, between received BFD Control packets that this system is capable of supporting. If this value is zero, the transmitting system does not want the remote system to send any periodic BFD Control packets.</td>
</tr>
<tr>
<td>Detection time multiplier</td>
<td>The number of times in a single sequence this device waits to receive a BFD message from the peer before determining that the connection to that peer is not operational.</td>
</tr>
</tbody>
</table>
Configuring BGP4 (IPv4)

BGP4 overview

Border Gateway Protocol version 4 (BGP4) is an exterior gateway protocol that performs inter-autonomous system (AS) or inter-domain routing. It peers to other BGP-speaking systems over TCP to exchange network reachability and routing information. BGP primarily performs two types of routing: inter-AS routing, and intra-AS routing. BGP peers belonging to different autonomous systems use the inter-AS routing, referred as Exterior BGP (eBGP). On the other hand, within an AS BGP can be used to maintain a consistent view of network topology, to provide optimal routing, or to scale the network.

BGP is a path vector protocol and implements this scheme on large scales by treating each AS as a single point on the path to any given destination. For each route (destination), BGP maintains the AS path and uses this to detect and prevent loops between autonomous systems.

Devices within an AS can use different Interior Gateway Protocols (IGPs) such as RIP, IS-IS, and OSPF to communicate with one another. However, for devices in different autonomous systems to communicate, they need to use an EGP. BGP4 is the standard EGP used by Internet devices and therefore is the EGP implemented on Netiron devices.
This is a simple example of two BGP4 ASs. Each AS contains three BGP4 devices. All of the BGP4 devices within an AS communicate using iBGP. BGP4 devices communicate with other autonomous systems using eBGP. Notice that each of the devices also is running an Interior Gateway Protocol (IGP). The devices in AS1 are running OSPF and the devices in AS2 are running RIP. The device can be configured to redistribute routes among BGP4, IS-IS, RIP, and OSPF. They also can redistribute static routes.

FIGURE 20 BGP4 autonomous systems

Relationship between the BGP4 route table and the IP route table

The device BGP4 route table can have multiple routes or paths to the same destination, which are learned from different BGP4 neighbors. A BGP4 neighbor is another device that also is running BGP4. BGP4 neighbors communicate using Transmission Control Protocol (TCP) port 179 for BGP4 communication. When you configure the device for BGP4, one of the configuration tasks you perform is to identify the device’s BGP4 neighbors.

Although a device’s BGP4 route table can have multiple routes to the same destination, the BGP4 protocol evaluates the routes and chooses only one to send to the IP route table. The route that BGP4 chooses and sends to the IP route table is the preferred route. This route is what the device advertises to other BGP4 neighbors. If the preferred route goes down, BGP4 updates the route information in the IP route table with a new BGP4 preferred route.

NOTE
If IP load sharing is enabled and you enable multiple equal-cost paths for BGP4, BGP4 can select more than one equal-cost path to a destination.

A BGP4 route consists of the following information:

- Network number (prefix) - A value made up of the network mask bits and an IP address; for example, 10.215.129.0/18 indicates a network mask of 18 bits applied to the IP address 10.215.129.0. When a BGP4 device advertises a route to one of its neighbors, it uses this format.
- AS-path - A list of the other autonomous systems through which a route passes. BGP4 devices can use the AS-path to detect and eliminate routing loops. For example, if a route received by a BGP4 device contains the AS that the device is in, the device does not add the route to its own BGP4 table. (The BGP4 RFCs refer to the AS-path as “AS_PATH”, and RFC 4893 uses “AS4_PATH” in relation to AS4s.)
- Additional path attributes - A list of additional parameters that describe the route. The route MED and next hop are examples of these additional path attributes.

NOTE
The device re-advertises a learned best BGP4 route to the device’s neighbors even when the software does not select that route for installation in the IP route table. This can happen if a route from another protocol, for example, OSPF, is preferred. The best BGP4 route is the route that BGP4 selects based on comparison of the BGP4 route path’s attributes.
After a device successfully negotiates a BGP4 session with a neighbor (a BGP4 peer), the device exchanges complete BGP4 route tables with the neighbor. After this initial exchange, the device and all other RFC 1771-compliant BGP4 devices send UPDATE messages to inform neighbors of new, changed, or no longer feasible routes. BGP4 devices do not send regular updates. However, if configured to do so, a BGP4 device does regularly send KEEPALIVE messages to its peers to maintain BGP4 sessions with them if the device does not have any route information to send in an UPDATE message.

How BGP4 selects a path for a route (BGP best path selection algorithm)

When multiple paths for the same route prefix are known to a BGP4 device, the device uses the following algorithm to weigh the paths and determine the optimal path for the route. The optimal path depends on various parameters, which can be modified.

1. Is the next hop accessible through an Interior Gateway Protocol (IGP) route? If not, ignore the route.

 NOTE
 The device does not use the default route to resolve BGP4 next hop.

2. Use the path with the largest weight.

3. If the weights are the same, prefer the path with the largest local preference.

4. Prefer the route that was originated locally (by this BGP4 device).

5. If the local preferences are the same, prefer the path with the shortest AS-path. An AS-SET counts as 1. A confederation path length, if present, is not counted as part of the path length.

 NOTE
 This step can be skipped if BGP4-as-path-ignore is configured.

6. If the AS-path lengths are the same, prefer the path with the lowest origin type. From low to high, route origin types are valued as follows:
 - IGP is lowest.
 - EGP is higher than IGP but lower than INCOMPLETE.
 - INCOMPLETE is highest.

7. If the paths have the same origin type, prefer the path with the lowest MED.

 If the routes were learned from the same neighboring AS, BGP4 compares the MEDs of two otherwise equivalent paths. This behavior is called deterministic MED. Deterministic MED is always enabled and cannot be disabled. You can also enable the device to always compare the MEDs, regardless of the AS information in the paths. To enable this comparison, enter the always-compare-med command at the BGP4 configuration level of the CLI. This option is disabled by default.

 NOTE
 By default, value 0 (most favorable) is used in MED comparison when the MED attribute is not present. The default MED comparison results in the device favoring the route paths that are missing their MEDs. You can use the med-missing-as-worst command to make the device regard a BGP4 route with a missing MED attribute as the least favorable path, when comparing the MEDs of the route paths.

 NOTE
 MED comparison is not performed for internal routes originated within the local AS or confederation unless the compare-med-empty-aspath command is configured.
8. Prefer routes in the following order:
 • Routes received through EBGP from a BGP4 neighbor outside of the confederation
 • Routes received through EBGP from a BGP4 device within the confederation OR Routes received through IBGP.
9. If all the comparisons above are equal, prefer the route with the lowest IGP metric to the BGP4 next hop. This is the closest internal path inside the AS to reach the destination.
10. If the internal paths also are the same and BGP4 load sharing is enabled, load share among the paths. Otherwise prefer the route that comes from the BGP4 device with the lowest device ID.

 NOTE
 NetIron OS devices support BGP4 load sharing among multiple equal-cost paths. BGP4 load sharing enables the device to balance traffic across the multiple paths instead of choosing just one path based on device ID. For EBGP routes, load sharing applies only when the paths are from neighbors within the same remote AS. EBGP paths from neighbors in different autonomous systems are not compared, unless multipath **multi-as** is enabled.

11. If the **compare-router ID** is enabled, prefer the path that comes from the BGP4 device with the lowest device ID. If a path contains originator ID attributes, then originator ID is substituted for the ROUTER ID in the decision.
12. Prefer the path with the minimum cluster list length.
13. Prefer the route that comes from the lowest BGP4 neighbor address.

 NOTE
 When equal cost multipath (ECMP) is configured, the first established route will be the best path.

BGP4 message types

BGP4 devices communicate with neighbors (other BGP4 devices) using the following types of messages:

- OPEN
- UPDATE
- KEEPALIVE
- NOTIFICATION
- ROUTE REFRESH

OPEN message

After a BGP4 device establishes a TCP connection with a neighboring BGP4 device, the devices exchange OPEN messages. An open message indicates the following:

- **BGP4 version** - Indicates the version of the protocol that is in use on the device. BGP4 version 4 supports Classless Interdomain Routing (CIDR) and is the version most widely used in the Internet. Version 4 also is the only version supported on devices.
- **AS number** - An autonomous system number (ASN) identifies the AS to which the BGP4 device belongs. The number can be up to four bytes.
- **Hold Time** - The number of seconds a BGP4 device will wait for an UPDATE or KEEPALIVE message (described below) from a BGP4 neighbor before assuming that the neighbor is not operational. BGP4 devices exchange UPDATE and KEEPALIVE messages to update route information and maintain communication. If BGP4 neighbors are using different Hold Times, the
lowest Hold Time is used by the neighbors. If the Hold Time expires, the BGP4 device closes the TCP connection to the neighbor and clears any information it has learned and cached from the neighbor.

You can configure the Hold Time to be 0, in which case a BGP4 device will consider neighbors to always be up. For directly-attached neighbors, you can configure the device to immediately close the TCP connection to the neighbor and clear entries learned from an EBGP neighbor if the interface to that neighbor goes down. This capability is provided by the fast external fail over feature, which is disabled by default.

- **BGP4 Identifier** - The device ID. The BGP4 Identifier (device ID) identifies the BGP4 device to other BGP4 devices. The device uses the same device ID for OSPF and BGP4. If you do not set a device ID, the software uses the IP address on the lowest numbered loopback interface configured on the device. If the device does not have a loopback interface, the default device ID is the lowest numbered IP address configured on the device.
- **Parameter list** - An optional list of additional parameters used in peer negotiation with BGP4 neighbors.

UPDATE message

After BGP4 neighbors establish a BGP4 connection over TCP and exchange their BGP4 routing tables, they do not send periodic routing updates. Instead, a BGP4 neighbor sends an update to a neighbor when it has a new route to advertise or routes have changed or become unfeasible. An UPDATE message can contain the following information:

- **Network Layer Reachability Information (NLRI)** - The mechanism by which BGP4 supports Classless Interdomain Routing (CIDR). An NLRI entry consists of an IP prefix that indicates a network being advertised by the UPDATE message. The prefix consists of an IP network number and the length of the network portion of the number. For example, an UPDATE message with the NLRI entry 10.215.129.0/18 indicates a route to IP network 10.215.129.0 with network mask 255.255.192.0. The binary equivalent of this mask is 18 consecutive one bits, thus “18” in the NLRI entry.
- **Path attributes** - Parameters that indicate route-specific information such as Autonomous System path information, route preference, next hop values, and aggregation information. BGP4 uses path attributes to make filtering and routing decisions.
- **Unreachable routes** - A list of routes that have been in the sending device BGP4 table but are no longer feasible. The UPDATE message lists unreachable routes in the same format as new routes: `IP address and CIDR prefix`.

KEEPALIVE message

BGP4 devices do not regularly exchange UPDATE messages to maintain BGP4 sessions. For example, if a device configured to perform BGP4 routing has already sent the latest route information to peers in UPDATE messages, the device does not send more UPDATE messages. Instead, BGP4 devices send KEEPALIVE messages to maintain BGP4 sessions. KEEPALIVE messages are 19 bytes long and consist only of a message header. They do not contain routing data.

BGP4 devices send KEEPALIVE messages at a regular interval, called the Keep Alive Time. The default Keep Alive Time is 60 seconds.

A parameter related to the Keep Alive Time is the Hold Time. The Hold Time for a BGP4 device determines how many seconds the device waits for a KEEPALIVE or UPDATE message from a BGP4 neighbor before deciding that the neighbor is not operational. The Hold Time is negotiated when BGP4 devices exchange OPEN messages, the lower Hold Time is then used by both neighbors. For example, if BGP4 device A sends a Hold Time of 5 seconds and BGP4 device B sends a Hold Time of 4 seconds, both devices use 4 seconds as the Hold Time for their BGP4 session. The default Hold Time is 180 seconds. Generally, the Hold Time is configured to three times the value of the Keep Alive Time.

If the Hold Time is 0, a BGP4 device assumes that a neighbor is alive regardless of how many seconds pass between receipt of UPDATE or KEEPALIVE messages.
NOTIFICATION message

When you close the BGP4 session with a neighbor, the device detects an error in a message received from the neighbor, or an error occurs on the device, the device sends a NOTIFICATION message to the neighbor. No further communication takes place between the BGP4 device that sent the NOTIFICATION and the neighbors that received the NOTIFICATION.

REFRESH message

BGP4 sends a REFRESH message to a neighbor to request that the neighbor resend route updates. This type of message can be useful if an inbound route filtering policy has been changed.

Grouping of RIB-out peers

To improve efficiency in the calculation of outbound route filters, the device groups BGP4 peers together based on their outbound policies. To reduce RIB-out memory usage, the device then groups the peers within an outbound policy group according to their RIB-out routes. All peers sharing a single RIB-out route (up to 32 peers per group) also share a single physical RIB-out entry, resulting in as much as a 30-fold memory usage reduction.

NOTE

RIB-out peer grouping is not shared between different VRFs or address families, and is not supported for VPNV4 or L2VPN peers.

Implementation of BGP4

BGP4 is described in RFC 1771 and the latest BGP4 drafts. The Extreme BGP4 implementation fully complies with RFC 1771. Extreme BGP4 implementation also supports the following RFCs:

- RFC 1745 (OSPF Interactions)
- RFC 1997 (BGP Communities Attributes)
- RFC 2385 (TCP MD5 Signature Option)
- RFC 2439 (Route Flap Dampening)
- RFC 2796 (Route Reflection)
- RFC 2842 (Capability Advertisement)
- RFC 3065 (BGP4 Confederations)
- RFC 2858 (Multiprotocol Extensions)
- RFC 2918 (Route Refresh Capability)
- RFC 3392 (BGP4 Capability Advertisement)
- Draft-ietf-idr-restart-10.txt (restart mechanism for BGP4)

BGP4 restart

BGP4 restart is a high-availability routing feature that minimizes disruption in traffic forwarding, diminishes route flapping, and provides continuous service during a system restart, switchover, failover, or hitless OS upgrade. During such events, routes remain available between devices. BGP4 restart operates between a device and its peers, and must be configured on each participating device.
Under normal operation, when a BGP4 device is restarted, the network is automatically reconfigured. Routes available through the restarting device are deleted when the device goes down, and are then rediscovered and added back to the routing tables when the device is back up and running. In a network with devices that regularly restart, performance can degrade significantly and limit the availability of network resources. BGP4 restart dampens the network response and limits route flapping by allowing routes to remain available between devices during a restart. BGP4 restart operates between a device and peers, and must be configured on each participating device.

A BGP4 restart-enabled device advertises the capability to establish peering relationships with other devices. When a restart begins, neighbor devices mark all of the routes from the restarting device as stale, but continue to use the routes for the length of time specified by the restart timer. After the device is restarted, it begins to receive routing updates from the peers. When it receives the end-of-RIB marker that indicates it has received all of the BGP4 route updates, it recomputes the new routes and replaces the stale routes in the route map with the newly computed routes. If the device does not come back up within the time configured for the purge timer, the stale routes are removed.

The implementation of BGP4 Restart supports the following Internet Draft:

- Draft-ietf-idr-restart-10.txt: restart mechanism for BGP4

BGP4 Peer notification during a management module switchover

The BGP4 Peer notification process restores BGP4 adjacency quickly and allows packet forwarding between the newly active management module and the BGP4 peers. The handling of TCP packets with an MD5 digest prevents the silent dropping of TCP packets without triggering a RESET packet.

The BGP4 peer notification process operates effectively when implemented for the following processes that involve the intentional switching of the active status from one management module to another:

- **System Reload** - When a device undergoes the reload process, both management modules and all interface modules are rebooted. All BGP4 sessions are terminated BEFORE the system triggers the hardware reset.
- **Switchover Requested by User** - Switching over to a standby management module can be triggered by the `switchover`, `reset`, `reload`, and `hitless-reload` commands. When these commands are executed, the active management module resets the BGP4/TCP sessions with BGP4 neighbors before transferring control to the standby management module.

NOTE

Restart-enabled BGP4 sessions are not reset. The BGP4 restart protocol allows a BGP4 session to reconnect gracefully without going through the normal process.

This example describes the procedure used between the management modules in a device and a BGP4 neighbor device.
If the active management module fails due to a fault, the management module does not have the opportunity to reset BGP4 sessions with neighbors as described for intentional failovers. In this situation the management module will reboot, or the standby management module becomes the new active management module. Since the new active management module does not have the TCP/BGP4 information needed to reset the previous sessions, a remote BGP4 peer session is only reset when it sends a BGP4/TCP keep-alive packet to this device, or when the BGP4 hold-time expires.

To help reduce the reconnection time after a management module failover or system reload, if an incoming TCP packet contains an MD5 digest, and no matching TCP session is found, the device attempts to find a matching BGP4 peer based on the IP address. If a BGP4 peer configuration can be found, the device looks up the MD5 password configured for the peer, and uses it to send a RESET packet.

BGP4 neighbor local AS

This feature allows you to configure a device so that it adds a peer to an AS that is different from the AS to which it actually belongs. This feature is useful when an ISP is acquired by another ISP. In this situation, customers of the acquired ISP might not want to (or might not be able to) adjust their configuration to connect to the AS of the acquiring provider.

In this example, Customer C is connected to ISP-A which is in AS 100 and ISP-B which is in AS 200.
In the next example, ISP-A has purchased ISP-B. The AS associated with ISP-B changes to AS 100. If Customer C cannot or does not want to change their configuration or peering relationship with ISP-B, a peer with Local-AS configured with the value 200 can be established on ISP-B.

A Local AS is configured using the BGP4 `neighbor` command. To confirm that a Local AS has been configured, use the `show ip bgp neighbors` command.
Basic configuration and activation for BGP4

BGP4 is disabled by default. Follow the steps below to enable BGP4.

1. Enable the BGP4 protocol.
2. Set the local AS number.

 NOTE
 You must specify the local AS number for BGP4 to become functional.

3. Add each BGP4 neighbor (peer BGP4 device) and identify the AS the neighbor is in.
4. Save the BGP4 configuration information to the system configuration file.

 For example, enter commands such as the following.
   ```
   device> enable
device# configure terminal
device(config)# router bgp
   BGP4: Please configure 'local-as' parameter in order to enable BGP4.
device(config-bgp)# local-as 10
device(config-bgp)# write memory
   ```

Syntax: `router bgp`

The `router bgp` command enables the BGP4 protocol.

NOTE
By default, the device ID is the IP address configured on the lowest numbered loopback interface. If the device does not have a loopback interface, the default device ID is the lowest numbered IP interface address configured on the device. If you change the device ID, all current BGP4 sessions, OSPF adjacencies, and OSPFv3 adjacencies are cleared.

NOTE
When BGP4 is enabled on a device, you do not need to reset the system. The protocol is activated as soon as you enable it. The device begins a BGP4 session with a BGP4 neighbor when you add the neighbor.

Disabling BGP4

If you disable BGP4, the device removes all the running configuration information for the disabled protocol from the running configuration. To restore the BGP4 configuration, you must reload the software to load the BGP4 configuration from the startup configuration. When you save the startup configuration file after disabling the protocol, all of the BGP4 configuration information for the disabled protocol is removed from the startup configuration file.

The CLI displays a warning message such as the following.
```
device(config)# no router bgp
router bgp mode now disabled and runtime configuration is erased. All bgp config data will be lost when writing to flash!
```

The Web Management Interface does not display a warning message.

If you are testing a BGP4 configuration and need to disable and re-enable the protocol, you should make a backup copy of the startup configuration file containing the BGP4 configuration information. If you remove the configuration information by saving the configuration after disabling the protocol, you can restore the BGP4 configuration by copying the backup copy of the startup configuration file onto the flash memory.
NOTE
To disable BGP4 without losing the BGP4 configuration information, remove the local AS (for example, by entering the no local-as command). When you remove the local AS, BGP4 retains the other configuration information but will not become operational until you reset the local AS.

BGP4 parameters

You can modify or set the following BGP4 parameters:

• Optional – Define the router ID. (The same router ID also is used by OSPF.)
• Required – Specify the local AS number.
• Optional – Add a loopback interface for use with neighbors.
• Required – Identify BGP4 neighbors.
• Optional – Change the Keep Alive Time and Hold Time.
• Optional – Change the update timer for route changes.
• Optional – Enable fast external failover.
• Optional – Specify a list of individual networks in the local AS to be advertised to remote autonomous systems using BGP4.
• Optional – Change the default local preference for routes.
• Optional – Enable the default route (default-information-originate).
• Optional – Enable use of a default route to resolve a BGP4 next-hop route.
• Optional – Change the default MED (metric).
• Optional – Enable next-hop recursion.
• Optional – Change the default administrative distances for EBGP, IBGP, and locally originated routes.
• Optional – Require the first AS in an Update from an EBGP neighbor to be the neighbor AS.
• Optional – Change MED comparison parameters.
• Optional – Disable comparison of the AS-Path length.
• Optional – Enable comparison of the device ID.
• Optional – Enable auto summary to summarize routes at an IP class boundary (A, B, or C).
• Optional – Aggregate routes in the BGP4 route table into CIDR blocks.
• Optional – Configure the device as a BGP4 route reflector.
• Optional – Configure the device as a member of a BGP4 confederation.
• Optional – Change the default metric for routes that BGP4 redistributes into RIP or OSPF.
• Optional – Change the parameters for RIP, OSPF, or static routes redistributed into BGP4.
• Optional – Change the number of paths for BGP4 load sharing.
• Optional – Change other load-sharing parameters
• Optional – Define BGP4 address filters.
• Optional – Define BGP4 AS-path filters.
• Optional – Define BGP4 community filters.
• Optional – Define IP prefix lists.
• Optional – Define neighbor distribute lists.
• Optional – Define BGP4 route maps for filtering routes redistributed into RIP and OSPF.
BGP4 parameters

- Optional - Define route flap dampening parameters.

NOTE
When using the CLI, you set global level parameters at the BGP CONFIG level of the CLI. You can reach the BGP CONFIG level by entering the `router bgp` command at the global CONFIG level.

Some parameter changes take effect immediately while others do not take full effect until the device sessions with its neighbors are reset. Some parameters do not take effect until the device is rebooted.

Parameter changes that take effect immediately

The following parameter changes take effect immediately:

- Enable or disable BGP4.
- Set or change the local AS.
- Add neighbors.
- Change the update timer for route changes.
- Disable or enable fast external failover.
- Specify individual networks that can be advertised.
- Change the default local preference, default information originate setting, or administrative distance.
- Enable or disable use of a default route to resolve a BGP4 next-hop route.
- Enable or disable MED (metric) comparison.
- Require the first AS in an update from an EBGP neighbor to be the neighbor AS.
- Change MED comparison parameters.
- Disable comparison of the AS-Path length.
- Enable comparison of the device ID.
- Enable next-hop recursion.
- Change the default metric.
- Disable or re-enable route reflection.
- Configure confederation parameters.
- Disable or re-enable load sharing.
- Change the maximum number of load sharing paths.
- Change other load-sharing parameters.
- Define route flap dampening parameters.
- Add, change, or negate redistribution parameters (except changing the default MED as described in Changing the default MED (Metric) used for route redistribution on page 316).
- Add, change, or negate route maps (when used by the `network` command or a redistribution command).
- Aggregate routes.
- Apply maximum AS path limit settings for UPDATE messages.
Parameter changes that take effect after resetting neighbor sessions

The following parameter changes take effect only after the BGP4 sessions on the device are cleared, or reset using the "soft" clear option:

- Change the Hold Time or Keep Alive Time.
- Aggregate routes
- Add, change, or negate filter tables that affect inbound and outbound route policies.
- Apply maximum AS path limit settings to the RIB.

Parameter changes that take effect after disabling and re-enabling redistribution

The following parameter change takes effect only after you disable and then re-enable redistribution:

- Change the default MED (metric).

Memory considerations

BGP4 can handle a very large number of routes and therefore requires a lot of memory. For example, in a typical configuration with a single BGP4 neighbor, receiving a full internet route table, a BGP4 device may need to hold up to millions of route updates. Many configurations, especially those involving more than one neighbor, can require the device to hold even more routes. NetIron OS devices provide dynamic memory allocation for BGP4 data. BGP4 devices automatically allocate memory when needed to support BGP4 neighbors, routes and route attribute entries. Dynamic memory allocation is performed automatically by the software and does not require a reload.

As a guideline, a device with a 2 GB Management module can accommodate 150 – 200 neighbors, with the assumption that the device receives about one million routes total from all neighbors and sends about eight million routes total to neighbors. For each additional one million incoming routes, the capacity for outgoing routes decreases by about two million.

Basic configuration tasks required for BGP4

The following sections describe how to perform the configuration tasks that are required to use BGP4 on the NetIron OS device.

Enabling BGP4 on the device

When you enable BGP4 on the device, BGP4 is automatically activated. To enable BGP4 on the device, enter the following commands.

```
device# configure terminal
device(config)# router bgp
BGP4: Please configure 'local-as' parameter in order to enable BGP4.
device(config-bgp-router)# local-as 10
device(config-bgp-router)# neighbor 10.157.23.99 remote-as 100
device(config-bgp-router)# write memory
```

Changing the device ID

The OSPF and BGP4 protocols use device IDs to identify devices that are running the protocols. A device ID is a valid, unique IP address and sometimes is an IP address configured on the device. The device ID cannot be an IP address in use by another device.
By default, the device ID on a device is one of the following:

- If the device has loopback interfaces, the default device ID is the IP address on the lowest numbered loopback interface configured on the device. For example, if you configure loopback interfaces 1, 2, and 3 as follows, the default device ID is 10.9.9.9/24:
 - Loopback interface 1, 10.9.9.9/24
 - Loopback interface 2, 10.4.4.4/24
 - Loopback interface 3, 10.1.1.1/24
- If the device does not have any loopback interfaces, the default device ID is the lowest numbered IP interface address configured on the device.

NOTE

NetIron OS devices use the same device ID for both OSPF and BGP4. If the device is already configured for OSPF, you may want to use the device ID already assigned to the device rather than set a new one. To display the current device ID, enter the `show ip` command at any CLI level.

To change the device ID, enter a command such as the following.

```
device(config)# ip router-id 10.157.22.26
```

Syntax: `[no] ip router-id ip-addr`

The `ip-addr` can be any valid, unique IP address.

NOTE

You can specify an IP address used for an interface on the Extreme device, but do not specify an IP address that is being used by another device.

Setting the local AS number

The local autonomous system number (ASN) identifies the AS in which the Extreme BGP4 device resides.

To set the local AS number, enter commands such as the following.

```
device(config)# router bgp
BGP4: Please configure 'local-as' parameter in order to enable BGP4.
device(config-bgp)# local-as 10
device(config-bgp)# write memory
```

Syntax: `[no] local-as num`

The `num` parameter specifies a local AS number in the range 1 through 4294967295. It has no default. AS numbers 64512 - 65535 are the well-known private BGP4 AS numbers and are not advertised to the Internet community.

Setting the local AS number for VRF instances

The local autonomous system (AS) number identifies the AS in which the BGP4 device resides.

In releases prior to NetIron R05.3.00, you can assign only a single BGP AS number for the entire system, including instances of BGP VRF. In NetIron R05.3.00, you can assign different BGP AS numbers for each VRF instance. If you do not assign an AS number, the BGP VRF instances use the default BGP AS number, as in previous releases.

The `local-as` command is available under the “global BGP” CLI level and “address- family ipv4 unicast vrf” CLI level.
To set the local as number for a VRF, enter commands such as the following.

```plaintext
device(config-bgp)# address-family ipv4 unicast vrf vrf-name
device(config-bgp)# local-as num
```

Syntax: `[no] local-as num`

The `num` parameter specifies a local AS number in the range 1 - 4294967295. It has no default. AS numbers 64512 - 65535 are the well-known private BGP4 AS numbers and are not advertised to the Internet community.

The configuration takes effect immediately and the BGP VRF instance is reset. All BGP peering within the VRF is reset, and take the new AS number.

The local AS number for the VRF instance, if configured, is displayed in the `show running-config` and `show ip bgp config` command output.

Enter the `show ip bgp config` command:

```plaintext
device# show ip bgp config
Current BGP configuration:
  router bgp
  local-as 100
  neighbor 10.10.10.10 remote-as 200
  address-family ipv4 unicast
  exit-address-family
  address-family ipv4 multicast
  exit-address-family
  address-family ipv6 unicast
  exit-address-family
  address-family ipv6 multicast
  exit-address-family
  address-family vpnv4 unicast
  exit-address-family
  address-family l2vpn vpls
  exit-address-family
  address-family ipv4 unicast vrf vrf_a
  local-as 300
  neighbor 10.111.111.111 remote-as 400
  exit-address-family
```

Adding a loopback interface

You can configure the device to use a loopback interface instead of a specific port or virtual routing interface to communicate with a BGP4 neighbor. A loopback interface adds stability to the network by working around route flap problems that can occur due to unstable links between the device and neighbors.

Loopback interfaces are always up, regardless of the states of physical interfaces. Loopback interfaces are especially useful for IBGP neighbors (neighbors in the same AS) that are multiple hops away from the device. When you configure a BGP4 neighbor on the device, you can specify whether the device uses the loopback interface to communicate with the neighbor. As long as a path exists between the device and the neighbor, BGP4 information can be exchanged. The BGP4 session is not associated with a specific link, but is instead associated with the virtual interfaces.

NOTE

If you configure the Extreme device to use a loopback interface to communicate with a BGP4 neighbor, the peer IP address on the remote device pointing to your loopback address must be configured.
To add a loopback interface, enter commands such as the following.

```device(config-bgp)# exit
device(config)# int loopback 1
device(config-lbif-1)# ip address 10.0.0.1/24```

Syntax: `[no] interface loopback num`

The `num` value can be from 1 through 64.

### Adding BGP4 neighbors

Because BGP4 does not contain a peer discovery process, for each BGP4 neighbor (peer), you must indicate the IP address and the AS number of each neighbor. Neighbors that are in different autonomous systems communicate using EBGP. Neighbors within the same AS communicate using IBGP.

**NOTE**
If the device has multiple neighbors with similar attributes, you can simplify configuration by configuring a peer group, then adding individual neighbors to it. The configuration steps are similar, except you specify a peer group name instead of a neighbor IP address when configuring the neighbor parameters, then add individual neighbors to the peer group.

**NOTE**
The device attempts to establish a BGP4 session with a neighbor as soon as you enter a command specifying the IP address of the neighbor. If you want to completely configure the neighbor parameters before the device establishes a session with the neighbor, you can administratively shut down the neighbor.

To add a BGP4 neighbor with an IP address 10.157.22.26, enter the following command.

```device(config-bgp-router)# neighbor 10.157.22.26 remote-as 100```

The neighbor `ip-addr` must be a valid IP address.

The `neighbor` command has additional parameters, as shown in the following syntax:

Syntax:
```no neighbor [ip-addr | peer-group-name] [activate] [advertisement-interval seconds] [allows-in num] [bfd holdover-interval num] [bfd min-tx num min-rx num multiplier num] [capability as4 [enable | disable]] [capability orf prefixlist [send | receive]] [default- originate [route-map map-name]] [description string] [distribute-list in | out num,num,... | ACL-num localin | out] [ebgp-btsh] [ebgp-multihop [num]] [enforce-first-as] [local-as as-num [no-prepend]] [maxas-limit in [num | disable]] [maximum-prefix num [threshold] [teardown] [next-hop-self] [password string] [peer-group group-name] [prefix-list string in | out] [remote-as as-number] [remove-private-as] [route-map in | out map-name] [route-reflector-client] [send-community] [shutdown [generate-rib-out]] [soft-reconfiguration inbound] [static-network-edge] [timers keep-alive num hold-time num] [unsuppress-map map-name] [update-source ip-addr | ethernet slot / portnum | loopback num | ve num] [weight num] [send-label]```

The `ip-addr` and `peer-group-name` parameters indicate whether you are configuring an individual neighbor or a peer group. If you specify a neighbor IP address, you are configuring that individual neighbor. If you specify a peer group name, you are configuring a peer group.

`activate` allows exchange of routes in the current family mode.

`advertisement-interval seconds` configures an interval in seconds over which the specified neighbor or peer group will hold all route updates before sending them. At the expiration of the timer, the routes are sent as a batch. The default value for this parameter is zero. Acceptable values are 0 to 600 seconds.
NOTE
The device applies the advertisement interval only under certain conditions. The device does not apply the advertisement interval when sending initial updates to a BGP4 neighbor. As a result, the device sends the updates one immediately after another, without waiting for the advertisement interval.

allowas-in num disables the AS_PATH check function for routes learned from a specified location. BGP4 usually rejects routes that contain an AS number within an AS_PATH attribute to prevent routing loops. In an MPLS or VPN hub and spoke topology this can prevent legitimate routes from being accepted. The allowas-in option stops this blockage. num specifies the number of occurrences of the AS number.

capability as4 [enable | disable] enables the capability of processing AS4s. The optional keywords enable and disable specify whether the feature should be changed from its current state. For example, if this neighbor belongs to a peer group that is enabled for AS4s but you want to disable it on the current interface, use the command and include the disable keyword.

capability orf prefixlist [send | receive] configures cooperative device filtering. The send and receive parameters specify the support you are enabling:
• send - The device sends the IP prefix lists as Outbound Route Filters (ORFs) to the neighbor.
• receive - The device accepts filters as Outbound Route Filters (ORFs) from the neighbor.
If you do not specify either send or receive, both capabilities are enabled. The prefixlist parameter specifies the type of filter you want to send to the neighbor.

NOTE
The current release supports cooperative filtering only for filters configured using IP prefix lists.

default-originate [route-map map-name] configures the device to send the default route 0.0.0.0 to the neighbor. If you use the route-map map-name parameter, the route map injects the default route conditionally, based on the following supported match conditions in the route map.
• BGP match IP
• BGP match IP address prefix list
• BGP match IP address access list
• BGP match IPv6 address prefix list
description string specifies a name for the neighbor. You can enter an alphanumeric text string up to 80 characters long.
distribute-list in | out num,num,... specifies a distribute list to be applied to updates to or from the specified neighbor. The in and out keywords specify whether the list is applied on updates received from the neighbor, or sent to the neighbor. The num,num,... parameter specifies the list of address-list filters. The device applies the filters in the order in which you list them and stops applying the filters in the distribute list when a match is found.
To use an IP ACL instead of a distribute list, you can specify distribute-list ACL-num in | out. In this case, ACL-num is an IP ACL.

NOTE
By default, if a route does not match any of the filters, the device denies the route. To change the default behavior, configure the last filter as permit any any.

NOTE
The address filter must already be configured.

ebgp-btsh enables GTSM protection for the specified neighbor.
**ebgp-multihop** `[num]` specifies that the neighbor is more than one hop away and that the session type with the neighbor is EBGP-multihop. This option is disabled by default. The `num` parameter specifies the TTL you are adding for the neighbor. You can specify a number from 0 through 255. The default is 0. If you leave the EBGP TTL value set to 0, the software uses the IP TTL value.

**enforce-first-as** ensures, for this neighbor, that the first AS listed in the AS_SEQUENCE field of an AS path update message from EBGP neighbors is the AS of the neighbor that sent the update. The device accepts the update only if the AS numbers match. If the AS numbers do not match, the device sends a notification message to the neighbor and closes the session. For details, refer to Requiring the first AS to be the neighbor AS on page 320.

**weight** `num` specifies a weight that the device applies to routes received from the neighbor. You can specify a number from 0 through 65535.

**NOTE**
By default, if an AS-path does not match any of the filters or ACLs, the device denies the route. To change the default behavior, configure the last filter or ACL as *permit any any*.

**NOTE**
The AS-path filter or ACL must already be configured.

**local-as** `as-num` assigns a local AS number with the value specified by the `as-num` variable to the neighbor being configured. The `as-num` has no default value. Its range is 1 - 4294967295.

**NOTE**
When the **local-as** option is used, the device automatically prepends the local AS number to the routes that are received from the EBGP peer; to disable this behavior, include the **no-prepend** keyword.

**maxas-limit in num |disable** specifies that the device discard routes that exceed a maximum AS path length received in UPDATE messages. You can specify a value from 0 - 300. The default value is 300. The **disable** keyword is used to stop a neighbor from inheriting the configuration from the peer-group or global and to the use system default value.

**maximum-prefix num** specifies the maximum number of IP network prefixes (routes) that can be learned from the specified neighbor or, if configured at peer group level, per neighbor in the peer group. You can specify a value from 0 through 4294967295. The default is 0 (unlimited).

- The **num** parameter specifies the maximum number. The range is 0 through 4294967295. The default is 0 (unlimited).
- The **threshold** parameter specifies the percentage of the value you specified for the **maximum-prefix num** , at which you want the software to generate a Syslog message. You can specify a value from 1 (one percent) to 100 (100 percent). The default is 100.
- The **teardown** parameter tears down the neighbor session if the maximum-prefix limit is exceeded. The session remains shutdown until you clear the prefixes using the **clear ip bgp neighbor all** or **clear ip bgp neighbor** command, or change the maximum prefix configuration for the neighbor. The software also generates a Syslog message.

**next-hop-self** specifies that the device should list itself as the next hop in updates sent to the specified neighbor. This option is disabled by default.

**password** `string` specifies an MD5 password for securing sessions between the device and the neighbor. You can enter a string up to 80 characters long. The string can contain any alphanumeric characters and spaces if the words in the password are placed inside quotes.
NOTE

If you want the software to assume that the value you enter is the clear-text form, and to encrypt display of that form, do not enter 0 or 1. Instead, omit the encryption option and allow the software to use the default behavior. If you specify encryption option 1, the software assumes that you are entering the encrypted form of the password or authentication string. In this case, the software decrypts the password or string you enter before using the value for authentication. If you accidentally enter option 1 followed by the clear-text version of the password or string, authentication will fail because the value used by the software will not match the value you intended to use.

The system creates an MD5 hash of the password and uses it for securing sessions between the device and its neighbors. To display the configuration, the system uses a 2-way encoding scheme to be able to retrieve the original password that was entered.

By default, the password is encrypted. If you want the password to appear in clear text, insert a 0 between the password and the string.

```
device(config-bgp)# neighbor 10.157.22.26 password 0 marmalade
```

The system adds an encryption code followed by the encrypted text of the original password. For example, the following portion of the code has the encrypted code "2".

```
password 2 $IUA2PWc9LW9VIW9zVQ==
```

One of the following may be displayed:

- 0 = the password is not encrypted and is in clear text
- 1 = the password uses proprietary simple cryptographic 2-way algorithm (only for CES 2000 Series devices)
- 2 = the password uses proprietary base64 cryptographic 2-way algorithm (only for XMR and MLX Series devices)

**peer-group group-name** assigns the neighbor to the specified peer group.

**prefix-list string in|out** specifies an IP prefix list. You can use IP prefix lists to control routes to and from the neighbor. IP prefix lists are an alternative method to AS-path filters. The **in** and **out** keywords specify whether the list is applied on updates received from the neighbor or sent to the neighbor. The filters can use the same prefix list or different prefix lists.

You must specify a prefix-list that matches an existing prefix-list entry. An implicit deny is applied to traffic that does not match any prefix-list entry. Use the **show ip prefix-list** command to view information about configured prefix-lists.

**remote-as as-number** specifies the AS in which the remote neighbor resides. The **as-number** has no default value. The range is 1 - 4294967295.

**remove-private-as** configures the device to remove private AS numbers from update messages the device sends to this neighbor. The device will remove AS numbers 64512 through 65535 (the well-known BGP4 private AS numbers) from the AS-path attribute in update messages the device sends to the neighbor. This option is disabled by default.

**route-map in|out** map-name specifies a route map the device will apply to updates sent to or received from the specified neighbor. The **in** and **out** keywords specify whether the list is applied on updates received from the neighbor or sent to the neighbor.

NOTE

The route map must already be configured.

**route-reflector-client** specifies that this neighbor is a route-reflector client of the device. Use the parameter only if this device is going to be a route reflector. This option is disabled by default.

**send-community** enables sending the community attribute in updates to the specified neighbor. By default, the device does not send the community attribute.
shutdown administratively shuts down the session with this neighbor. Shutting down the session lets you configure the neighbor and save the configuration without actually establishing a session with the neighbor.

When a peer is put into the shutdown state, ribout routes are not produced for that peer. You can elect to produce ribout routes using the generate-rib-out option. This option is disabled by default.

soft-reconfiguration inbound enables the soft reconfiguration feature, which stores all the route updates received from the neighbor. If you request a soft reset of inbound routes, the software performs the reset by comparing the policies against the stored route updates, instead of requesting the neighbor BGP4 route table or resetting the session with the neighbor.

static-network-edge controls the advertisement of a static BGP4 network to BGP4 neighbors that are configured as Service Edge Devices.

timers keep-alive num hold-time num overrides the global settings for the Keep Alive Time and Hold Time. For the Keep Alive Time, you can specify 0 - 65535 seconds. For the Hold Time, you can specify 0 or a number in the range 3 through 65535 (1 and 2 are not allowed). If you set the Hold Time to 0, the device waits indefinitely for messages from a neighbor without concluding that the neighbor is non-operational. The defaults for these parameters are the currently configured global Keep Alive Time and Hold Time.

unsuppress-map map-name removes route suppression from neighbor routes when those routes have been dampened due to aggregation.

update-source ip-addr | ethernetslot/portnum | loopbacknum | venum configures the device to communicate with the neighbor through the specified interface. There is no default.

weight num specifies a weight a device will add to routes received from the specified neighbor. BGP4 prefers larger weights over smaller weights. The default weight is 0.

The send-label keyword enables IPv6 label capability for the IPv4 peers.

Removing route dampening from suppressed routes

You can selectively un-suppress specific routes that have been suppressed due to aggregation, and allow these routes to be advertised to a specific neighbor or peer group.

device(config-bgp)# aggregate-address 10.1.0.0 255.255.0.0 summary-only
device(config-bgp)# show ip bgp route 10.1.0.0/16 longer
Number of BGP Routes matching display condition : 2
Prefix Next Hop Metric LocPrf Weight Status
1 10.1.0.0/16 0.0.0.0 101 32768 BAL
AS_PATH: 2 10.1.44.0/24 10.2.0.1 1 101 32768 BLS
AS_PATH:

In this example, the aggregate-address command configures an aggregate address of 10.1.0.0 255.255.0.0, and the summary-only parameter prevents the device from advertising more specific routes contained within the aggregate route.

Entering a show ip bgp route command for the aggregate address 10.1.0.0/16 shows that the more specific routes aggregated into 10.1.0.0/16 have been suppressed. In this case, the route to 10.1.44.0/24 has been suppressed. If you enter this command, the display shows that the route is not being advertised to the BGP4 neighbors.

device(config-bgp)# show ip bgp route 10.1.44.0/24
Number of BGP Routes matching display condition : 1
Prefix Next Hop Metric LocPrf Weight Status
1 10.1.44.0/24 10.2.0.1 1 101 32768 BLS
AS_PATH:
Route is not advertised to any peers
To override the summary-only parameter and allow a specific route to be advertised to a neighbor, enter commands such as the following:

```bash
device(config)# ip prefix-list Unsuppress1 permit 10.1.44.0/24
device(config)# route-map RouteMap1 permit 1
device(config-route-map RouteMap1)# exit
device(config)# router bgp
device(config-bgp)# neighbor 10.1.0.2 unsuppress-map RouteMap1
device(config-bgp)# clear ip bgp neighbor 10.1.0.2 soft-out
```

The `ip prefix-list` command configures an IP prefix list for network 10.1.44.0/24, which is the route you want to unsuppress. The next two commands configure a route map that uses the prefix list as input. The `neighbor` command enables the device to advertise the routes specified in the route map to neighbor 10.1.0.2. The `clear` command performs a soft reset of the session with the neighbor so that the device can advertise the unsuppressed route.

**Syntax:** `[no] neighbor {ip-addr | peer-group-name} unsuppress-map map-name`

The `show ip bgp route` command verifies that the route has been unsuppressed.

```bash
device(config-bgp)# show ip bgp route 10.1.44.0/24
Number of BGP Routes matching display condition : 1
Status: A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
Prefix Next Hop MED LocPrf Weight Status
10.1.44.0/24 10.2.0.1 1 101 32768 BLS
AS_PATH: Route is advertised to 1 peers: 10.1.0.2(4)
```

**Encrypting BGP4 MD5 authentication keys**

When you configure a BGP4 neighbor or neighbor peer group, you can specify an MD5 authentication string to authenticate packets exchanged with the neighbor or peer group of neighbors.

For added security, by default, the software encrypts the display of the authentication string. The software also provides an optional parameter to disable encryption of the authentication string, on an individual neighbor or peer group basis. By default, MD5 authentication strings are displayed in encrypted format in the output of the following commands:

- `show running-config` (or `write terminal`)
- `show configuration`
- `show ip bgp config`

When encryption of the authentication string is enabled, the string is encrypted in the CLI regardless of the access level you are using.

When you save the configuration to the startup configuration file, the file contains the new BGP4 command syntax and encrypted passwords or strings.

**NOTE**

Extreme recommends that you save a copy of the startup configuration file for each device you plan to upgrade.

**Encryption example**

The following commands configure a BGP4 neighbor and a peer group, and specify MD5 authentication strings (passwords) to authenticate packets exchanged with the neighbor or peer group.

```bash
device(config-bgp)# local-as 2
device(config-bgp)# neighbor xyz peer-group
device(config-bgp)# neighbor xyz password abc
```
device(config-bgp)# neighbor 10.10.200.102 peer-group xyz
device(config-bgp)# neighbor 10.10.200.102 password test

The BGP4 configuration commands appear in the following format as a result of the show ip bgp configuration command.

device# show ip bgp configuration
Current BGP configuration:
router bgp
  local-as 2
  neighbor xyz peer-group
  neighbor xyz password $b24tbw==
  neighbor 10.10.200.102 peer-group xyz
  neighbor 10.10.200.102 remote-as 1
  neighbor 10.10.200.102 password $on-o

In this output, the software has converted the commands that specify an authentication string into the new syntax (described below), and has encrypted display of the authentication strings.

Since the default behavior does not affect the BGP4 configuration itself but does encrypt display of the authentication string, the CLI does not list the encryption options.

Syntax: [no] neighbor {ip-addr | peer-group-name } password string

The ip-addr | peer-group-name parameter indicates whether you are configuring an individual neighbor or a peer group. If you specify the IP address of a neighbor, you are configuring that individual neighbor. If you specify a peer group name, you are configuring a peer group.

If you want the software to assume that the value you enter is the clear-text form and to encrypt the display of that form, do not enter 0 or 1. Instead, omit the encryption option and allow the software to use the default behavior. If you specify encryption option 1, the software assumes that you are entering the encrypted form of the password or authentication string. In this case, the software decrypts the password or string you enter before using the value for authentication. If you accidentally enter option 1 followed by the clear-text version of the password or string, authentication will fail because the value used by the software will not match the value you intended to use.

The password string parameter specifies an MD5 authentication string to secure sessions between the device and the neighbor. You can enter a string of up to 80 characters. The string can contain any alphanumeric characters, but must be placed inside quotes if it contains a space.

The system creates an MD5 hash of the password and uses it to secure sessions between the device and the neighbors. To display the configuration, the system uses a 2-way encoding scheme to retrieve the original password.

By default, password is encrypted. If you want the password to be in clear text, insert a 0 between password and string.

    device(config-bgp)# neighbor 10.157.22.26 password 0 admin

The system adds an encryption code followed by the encrypted text of the original password. For example, the following portion of the code has the encrypted code “2”.

    password 2 $IUA2Fm9LW9VlW9zVQ==

    device(config-bgp)# neighbor 10.157.22.26 password 0 marmalade

Displaying the authentication string

To display the authentication string, enter the following commands.

    device(config)# enable password-display
    device(config)# show ip bgp neighbors
The `enable password-display` command enables display of the authentication string, but only in the output of the `show ip bgp neighbors` command. String display is still encrypted in the startup configuration file and running configuration. Enter the command at the global CONFIG level of the CLI.

**NOTE**
The command also displays SNMP community strings in clear text, in the output of the `show snmp server` command.

### Advertising IPv4 routes between IPv6 BGP peers

This feature transports IPv6 routes over an IPv4 BGP session. If you have an existing IPv4 BGP mesh, you can use it to transport IPv6 routes instead of creating a new IPv6 BGP mesh.

First, configure peering using the IPv4 addresses under IPv6 address family, i.e enabling the IPv6 address family for the IPv4 neighbor. Since the advertised next hop is usually unreachable, set the next hop with a static route or with an inbound or outbound route-map.

For example, IPv6 Router 1 (IP address 192.168.1.1) and IPv6 Router 2 (IP address 192.168.1.2) are connected through an IPv4 network. To configure the IPv4 peers to advertise the IPv6 routes, enter the following commands.

**On Device 1,** enter the following:

```plaintext
device(config-bgp)# show ip bgp config
router bgp
local-as 1
neighbor 192.168.1.2 remote-as 2

device(config-bgp)# address-family ipv6 unicast
device(config-bgp)# neighbor 192.168.1.2 activate
device(config-bgp)# neighbor 192.168.1.2 route-map in t5
exit-address-family

address-family vpnv4 unicast
exit-address-family

device(config-bgp)# show route-map
route-map t5 permit 1
set ipv6 next-hop 2001:db8::2
```

**On Device 2,** enter the following:

```plaintext
device# show ip bgp config
router bgp
local-as 1
neighbor 192.168.1.1 remote-as 1

address-family ipv6 unicast
redistribute static
neighbor 192.168.1.1 activate
exit-address-family
```

### Displaying neighbor information

To display IPv6 unicast route summary information, enter the `show ip bgp ipv6 summary` command:

```plaintext
device(config-bgp)# show ip bgp ipv6 summary
BGP4 Summary
Router ID: 10.1.1.1 Local AS Number: 1
Confederation Identifier: not configured
Confederation Peers:
Maximun Number of IP ECMP Paths Supported for Load Sharing: 1
Number of Neighbors Configured: 1, UP: 1
Number of Routes Installed: 1, Uses 86 bytes
Number of Routes Advertising to All Neighbors: 0 (0 entries)
Number of Attribute Entries Installed: 1, Uses 90 bytes
```
Neighbor Address AS# State Time Rt:Accepted Filtered Sent ToSend
192.168.1.2 2 ESTAB 0h 1m51s 1 0 0 0

Syntax: show ip bgp ipv6 summary
To display IPv6 unicast device information with respect to the IPv4 neighbor, enter the show ip bgp ipv6 neighbors command:

device(config-bgp)# show ip bgp ipv6 neighbors
Total number of BGP Neighbors: 1
1 IP Address: 192.168.1.2, AS: 2 (EBGP), RouterID: 10.1.1.2, VRF: default-vrf
State: ESTABLISHED, Time: 0h8m33s, KeepAliveTime: 60, HoldTime: 180
KeepAliveTimer Expire in 17 seconds, HoldTimer Expire in 135 seconds
UpdateSource: Loopback 1
RefreshCapability: Received
........
Neighbor NLRI Negotiation:
Peer Negotiated IPV6 unicast capability
Peer configured for IPV6 unicast Routes
Neighbor ipv6 MPLS Label Capability Negotiation:
Neighbor AS4 Capability Negotiation:
TCP Connection state: ESTABLISHED, flags:00000033 (0,0)

Syntax: show ip bgp ipv6 neighbors [last-packet-with-error] [routes-summary] [ip-address]
The neighbors parameter provides details on TCP and BGP neighbor connections. The last-packet-with-error parameter displays the last packet received with error. The routes-summary parameter displays the routes summary.

The ip-address parameter is the neighbor IP address. The following sub-parameters are available for the ip-address parameter:

[advertised routes] [flap-statistics] [last-packet-with-error] [received] [received-routes] [rib-out-routes] [routes][routes-summary]

The advertised-routes parameter displays routes advertised to a neighbor. The flap-statistics parameter displays flap statistics for a neighbor. The last-packet-with-error parameter displays the last packet received with error. The received parameter displays the received ORF from neighbor. The received-routes parameter displays the received routes from neighbor. The rib-out-routes parameter displays RIB-out routes for a neighbor. The routes parameter displays routes learned from neighbor. The routes-summary parameter displays routes summary for a neighbor.

To display IPv6 multicast route information with respect to IPv4 neighbors, enter the show ip mbgp ipv6 neighbors command.

Syntax: show ip mbgp ipv6 neighbors [summary] [last-packet-with-error] [routes-summary] [ip-address]
The summary parameter displays a summary of BGP neighbor status. The last-packet-with-error parameter displays the last packet received with error. The routes-summary parameter displays the routes summary for a neighbor.

The ip-address parameter is the neighbor IP address. Use the following sub-parameters to display details on TCP and BGP neighbor connections.

The advertised-routes parameter displays routes advertised to a neighbor. The flap-statistics parameter displays flap statistics for a neighbor. The last-packet-with-error parameter displays the last packet received with error. The received parameter displays the received ORF from neighbor. The received-routes parameter displays the received routes from neighbor. The rib-out-routes parameter displays RIB-out routes for a neighbor. The routes parameter displays routes learned from neighbor. The routes-summary parameter displays routes summary for a neighbor.

Clearing IPv6 route information
To clear IPv6 unicast route information with respect to IPv4 neighbors, enter the clear ip bgp ipv6 neighbor command.

Syntax: clear ip bgp ipv6 [6pe] [dampening] [flap-statistics] [l2vpn] [local] [routes] [traffic] [ipv6] [vpnv4] [vrf] [neighbor] [as-number | ipaddress | peer-group-name | all]
The 6pe parameter clears information for 6pe address family.
The dampening parameter clears route flap dampening information. The flap-statistics parameter clears route flap statistics.
The l2vpn parameter clears information for l2vpn address family.

The local parameter clears local information. The routes parameter clears BGP routes. The traffic parameter clears BGP traffic counters. The ipv6 parameter clears information for ipv6 address family. The vpv4 parameter clears information for VVPN4 address family. The vrf parameter clears information for a VRF instance.

The neighbor parameter has the following sub-parameters:

- **as-number** identifies neighbors with the specified AS number, 1-4294967295.
- **ipaddress** identifies the neighbor IP address.
- **peer-group-name** clears the peer group name identified using ASCII string.
- **all** clears all BGP neighbors.

To clear IPv6 multicast route information with respect to IPv4 neighbor, enter the `clear ip mbgp ipv6 neighbor` command.

**Syntax:**
```
clear ip mbgp ipv6 [neighbor] [as-number | ipaddress | peer-group-name | all]
```

- as-number identifies neighbors with the specified AS number, 1-4294967295.
- ipaddress identifies the neighbor IP address.
- peer-group-name clears the peer group name identified using ASCII string.
- all clears all BGP neighbors.

### Adding a BGP4 peer group

A peer group is a set of BGP4 neighbors that share common parameters. The benefits of peer groups are:

- Simplified neighbor configuration - You can configure a set of neighbor parameters and then apply them to multiple neighbors. You do not need to configure the common parameters individually on each neighbor.
- Flash memory conservation - Using peer groups instead of individually configuring all the parameters for each neighbor requires fewer configuration commands in the startup configuration file.

You can perform the following tasks on a peer-group basis:

- Reset neighbor sessions
- Perform soft-outbound resets (the device updates outgoing route information to neighbors but does not entirely reset the sessions with those neighbors)
- Clear BGP4 message statistics
- Clear error buffers

### Peer group parameters

You can set all neighbor parameters in a peer group. When you add a neighbor to the peer group, the neighbor receives all the parameter settings you set in the group, except parameter values you have explicitly configured for the neighbor. If you do not set a neighbor parameter in the peer group and the parameter also is not set for the individual neighbor, the neighbor uses the default value.

### Peer group configuration rules

The following rules apply to peer group configuration:

- You must configure a peer group before you can add neighbors to the peer group.
- If you remove a parameter from a peer group, the value for that parameter is reset to the default for all the neighbors within the peer group, unless you have explicitly set that parameter on individual neighbors. In this case, the value you set on the individual neighbors applies to those neighbors, while the default value applies to neighbors for which you have not explicitly set the value.

**NOTE**

If you enter a command to remove the remote AS parameter from a peer group, the software makes sure that the peer group does not contain any neighbors. If the peer group contains neighbors, the software does not allow you to remove the remote AS so that the neighbors in the peer group that are using the remote AS do not lose connectivity to the device.
You can override neighbor parameters that do not affect outbound policy on an individual neighbor basis:

- If you do not specify a parameter for an individual neighbor, the neighbor uses the value in the peer group.
- If you set the parameter for the individual neighbor, that value overrides the value you set in the peer group.
- If you add a parameter to a peer group that already contains neighbors, the parameter value is applied to neighbors that do not already have the parameter explicitly set. If a neighbor has the parameter explicitly set, the explicitly set value overrides the value you set for the peer group.
- If you remove the setting for a parameter from a peer group, the value for that parameter changes to the default value for all the neighbors in the peer group that do not have that parameter individually set.

### Configuring a peer group

To configure a peer group, enter commands such as the following at the BGP4 configuration level.

```
device(config-bgp)# neighbor PeerGroup1 peer-group
device(config-bgp)# neighbor PeerGroup1 description "EastCoast Neighbors"
device(config-bgp)# neighbor PeerGroup1 remote-as 100
device(config-bgp)# neighbor PeerGroup1 distribute-list out 1
device(config-bgp)# neighbor PeerGroup1 capability as4 enable|disable
```

The commands in this example configure a peer group called “PeerGroup1” and set the following parameters for the peer group:

- A description, “EastCoast Neighbors”
- A remote AS number, 100
- A distribute list for outbound traffic
- The capability of PeerGroup1 to utilize a four-byte AS number

The software applies these parameters to each neighbor you add to the peer group. You can override the description parameter for individual neighbors. If you set the description parameter for an individual neighbor, the description overrides the description configured for the peer group.

**Syntax:** `neighbor peer-group-name peer-group`

The `peer-group-name` parameter specifies the name of the group and can be up to 80 characters long. The name can contain special characters and internal blanks. If you use internal blanks, you must use quotation marks around the name. For example, the command `neighbor "My Three Peers" peer-group` is valid, but the command `neighbor My Three Peers peer-group` is not valid.

**Syntax:** `[no] neighbor ip-addr | peer-group-name [ advertisement-interval num ] [ default-originate [ route-map map-name ] [ description string ] [ distribute-list { in | out } num,num... | ACL-num in | out ] [ ebgp-multihop [ num ] [ filter-list in | out num,num,... | acl-num ] out | weight ] [ maxas-limit in [ num | disable ] [ maximum-prefix num [ threshold ] [ teardown ] [ next-hop-self ] [ password string ] [ prefix-list string in | out ] remote-as as-number ] [ remove-private-as ] [ route-map-in | out map-name ] [ route-reflector-client ] [ send-community ] [ soft-reconfiguration inbound ] [ shutdown ] [ timers keep-alive num hold-time num ] [ update-source loopback num ethernet slot/portnum | loopback num | ve num | weight num ] [ local-as as-num ]`

The `ip-addr` and `peer-group-name` parameters indicate whether you are configuring a peer group or an individual neighbor. You can specify a peer group name or IP address with the `neighbor` command. If you specify a peer group name, you are configuring a peer group. If you specify a neighbor IP address, you are configuring that individual neighbor. Use the `ip-addr` parameter if you are configuring an individual neighbor instead of a peer group.

The remaining parameters are the same ones supported for individual neighbors.

### Applying a peer group to a neighbor

After you configure a peer group, you can add neighbors to the group. When you add a neighbor to a peer group, you are applying all the neighbor attributes specified in the peer group to the neighbor.
To add neighbors to a peer group, enter commands such as the following.

```bash
device(config-bgp-router)# neighbor 192.168.1.12 peer-group PeerGroup1
device(config-bgp-router)# neighbor 192.168.2.45 peer-group PeerGroup1
device(config-bgp-router)# neighbor 192.168.3.69 peer-group PeerGroup1
```

The commands in this example add three neighbors to the peer group "PeerGroup1". As members of the peer group, the neighbors automatically receive the neighbor parameter values configured for the peer group. You can also override the parameters on an individual neighbor basis. For neighbor parameters not specified for the peer group, the neighbors use the default values.

**Syntax:** `[no] neighbor ip-addr peer-group peer-group-name`

The `ip-addr` parameter specifies the IP address of the neighbor.

The `peer-group-name` parameter specifies the peer group name.

**NOTE**
You must add the peer group before you can add neighbors to it.

---

**Administratively shutting down a session with a BGP4 neighbor**

You can prevent the device from starting a BGP4 session with a neighbor by administratively shutting down the neighbor. This option is very useful for situations in which you want to configure parameters for a neighbor, but are not ready to use the neighbor. You can shut the neighbor down as soon as you have added it to the device, configure the neighbor parameters, then allow the device to reestablish a session with the neighbor by removing the shutdown option from the neighbor.

When you apply the option to shut down a neighbor, the option takes place immediately and remains in effect until you remove it. If you save the configuration to the startup configuration file, the shutdown option remains in effect even after a software reload.

The software also contains an option to end the session with a BGP4 neighbor and clear the routes learned from the neighbor. Unlike this clear option, the option for shutting down the neighbor can be saved in the startup configuration file and can prevent the device from establishing a BGP4 session with the neighbor even after reloading the software.

**NOTE**
If you notice that a particular BGP4 neighbor never establishes a session with the device, check the running configuration and startup configuration files for that device to see whether the configuration contains a command that is shutting down the neighbor. The neighbor may have been shut down previously by an administrator.

To shut down a BGP4 neighbor, enter commands such as the following.

```bash
device(config)# router bgp
device(config-bgp-router)# neighbor 10.157.22.26 shutdown
device(config-bgp-router)# write memory
```

**Syntax:** `[no] neighbor ip-addr shutdown [ generate-rib-out ]`

The `ip-addr` parameter specifies the IP address of the neighbor.

---

**Optional BGP4 configuration tasks**

The following sections describe how to perform optional BGP4 configuration tasks.
Changing the Keep Alive Time and Hold Time

The Keep Alive Time specifies how frequently the device will send KEEPALIVE messages to its BGP4 neighbors. The Hold Time specifies how long the device will wait for a KEEPALIVE or UPDATE message from a neighbor before concluding that the neighbor is dead. When the device concludes that a BGP4 neighbor is dead, the device ends the BGP4 session and closes the TCP connection to the neighbor.

The default Keep Alive time is 60 seconds. The default Hold Time is 180 seconds.

**NOTE**
Generally, you should set the Hold Time to three times the value of the Keep Alive Time.

**NOTE**
You can override the global Keep Alive Time and Hold Time on individual neighbors.

To change the Keep Alive Time to 30 and Hold Time to 90, enter the following command.

```
device(config-bgp-router)# timers keep-alive 30 hold-time 90
```

**Syntax:**
```
[no] timers keep-alive num hold-time num
```

For each keyword, `num` indicates the number of seconds. The Keep Alive Time can be 0 - 65535. The Hold Time can be 0 or 3 - 65535 (1 and 2 are not allowed). If you set the Hold Time to 0, the device waits indefinitely for messages from a neighbor without concluding that the neighbor is dead.

Changing the BGP4 next-hop update timer

By default, the device updates the BGP4 next-hop tables and affected BGP4 routes five seconds after IGP route changes. You can change the update timer to a value from 1 through 30 seconds.

To change the BGP4 update timer value to 15 seconds, for example, enter the `update-time` command at the BGP configuration level of the CLI.

```
device(config-bgp-router)# update-time 15
```

**Syntax:**
```
[no] update-time secs
```

The `secs` parameter specifies the number of seconds and can be from 0 through 30. The default is 5. The value of 0 permits fast BGP4 convergence for situations such as link-failure or IGP route changes. Setting the value to 0 starts the BGP4 route calculation in sub-second time. All other values from 1 through 30 are still calculated in seconds.

Enabling fast external fallover

BGP4 devices rely on KEEPALIVE and UPDATE messages from neighbors to signify that the neighbors are alive. For BGP4 neighbors that are two or more hops away, such messages are the only indication that the BGP4 protocol has concerning the alive state of the neighbors. As a result, if a neighbor becomes non-operational, the device waits until the Hold Time expires or the TCP connection fails before concluding that the neighbor is not operational and closing its BGP4 session and TCP connection with the neighbor.

The device waits for the Hold Time to expire before ending the connection to a directly-attached BGP4 neighbor that becomes non-operational.

For directly-attached neighbors, the device immediately senses loss of a connection to the neighbor from a change of state of the port or interface that connects the device to the neighbor. For directly-attached EBGP neighbors, the device uses this information to immediately close the BGP4 session and TCP connection to locally attached neighbors that become non-operational.
NOTE
The fast external failover feature applies only to directly attached EBGP neighbors. The feature does not apply to IBGP neighbors.

To enable fast external failover, enter the following command.

```
device(config-bgp-router)# fast-external-fallover
```

To disable fast external failover again, enter the following command.

```
device(config-bgp-router)# no fast-external-fallover
```

Syntax: [no] fast-external-fallover

Changing the maximum number of paths for BGP4 Multipath load sharing

Multipath load sharing enables the device to balance traffic to a route across multiple equal-cost paths of the same route type (EBGP or IBGP).

To configure the device to perform BGP4 Multipath load sharing:

- Enable IP load sharing if it is disabled.
- Set the maximum number of BGP4 load sharing paths. The default maximum number is 1, which means no BGP4 load sharing takes place by default.

NOTE
The maximum number of BGP4 load sharing paths cannot be greater than the maximum number of IP load sharing paths.

How Multipath load sharing affects route selection

During evaluation of multiple paths to select the best path to a given destination (for installment in the IP route table), the device performs a final comparison of the internal paths. The following events occur when load sharing is enabled or disabled:

- When load sharing is disabled, the device prefers the path with the lower device ID if the `compare-routerid` command is enabled.
- When load sharing and BGP4 Multipath load sharing are enabled, the device balances the traffic across multiple paths instead of choosing just one path based on device ID.

Refer to How BGP4 selects a path for a route (BGP best path selection algorithm) on page 287 for a description of the BGP4 algorithm.

When you enable IP load sharing, the device can load-balance BGP4 or OSPF routes across up to four equal paths by default. You can change the number load sharing paths to a value from 2 through 32.

Changing the maximum number of shared BGP4 paths

To change the maximum number of BGP4 shared paths, enter commands such as the following.

```
device(config)# router bgp
device(config-bgp-router)# maximum-paths 4
device(config-bgp-router)# write memory
```

Syntax: [no] maximum-paths `num` | use-load-sharing

The `number` parameter specifies the maximum number of paths across which the device can balance traffic to a given BGP4 destination. The `number` value range is 2 through 32 and the default is 1.
NOTE
The maximum number of paths supported by the BR-MLX-10Gx24-DM module is 16.

When the use-load-sharing option is used in place of the number variable, the maximum IP ECMP path value is determined solely by the value configured using the ip load-sharing command.

**Customizing BGP4 Multipath load sharing**

By default, when BGP4 Multipath load sharing is enabled, both IBGP and EBGP paths are eligible for load sharing, while paths from different neighboring autonomous systems are not eligible. You can change load sharing to apply only to IBGP or EBGP paths, or to support load sharing among paths from different neighboring autonomous systems.

To enable load sharing of IBGP paths only, enter the following command at the BGP4 configuration level of the CLI.

```
device(config-bgp-router)# multipath ibgp
```

To enable load sharing of EBGP paths only, enter the following command at the BGP4 configuration level of the CLI.

```
device(config-bgp-router)# multipath ebgp
```

To enable load sharing of paths from different neighboring autonomous systems, enter the following command at the BGP4 configuration level of the CLI.

```
device(config-bgp)# multipath multi-as
```

**Syntax:** `[no] multipath ebgp | ibgp | multi-as`

The `ebgp`, `bgp`, and `multi-as` parameters specify the change you are making to load sharing:

- `ebgp` - Multipath load sharing applies only to EBGP paths. Multipath load sharing is disabled for IBGP paths.
- `ibgp` - Multipath load sharing applies only to IBGP paths. Multipath load sharing is disabled for EBGP paths.
- `multi-as` - Multipath load sharing is enabled for paths from different autonomous systems.

By default, load sharing applies to EBGP and IBGP paths, and does not apply to paths from different neighboring autonomous systems.

**Enhancements to BGP4 Multipath load sharing**

Enhancements to BGP4 Multipath load sharing allows support for load sharing of BGP4 routes in IP ECMP even if the BGP4 Multipath load sharing feature is not enabled through the use-load-sharing option to the maximum-paths command. Using the following commands, you can also set separate values for IBGP and EBGP multipath load sharing.

To set the number of equal-cost multipath IBGP routes or paths that will be selected, enter commands such as the following.

```
device(config)# router bgp
device(config-bgp)# maximum-paths ibgp
```

**Syntax:** `[no] maximum-paths ibgp number`

The `number` variable specifies the number of equal-cost multipath IBGP routes that will be selected. The range is 2 to 32. If the value is set to 1, BGP4 level equal-cost multipath is disabled for IBGP routes.

To set the number of equal-cost multipath EBGP routes or paths that will be selected, enter commands such as the following.

```
device(config)# router bgp
device(config-bgp)# maximum-paths ebgp
```

**Syntax:** `[no] maximum-paths ebgp num`
The number variable specifies the number of equal-cost multipath EBGP routes that will be selected. The range is 2 to 32. If the value is set to 1, BGP4 level equal-cost multipath is disabled for EBGP routes.

**Specifying a list of networks to advertise**

By default, the device sends BGP4 routes only for the networks you either identify with the `network` command or are redistributed into BGP4 from OSPF, IS-IS, RIP, or connected routes.

**NOTE**  
The exact route must exist in the IP route table before the device can create a local BGP4 route.

To configure the device to advertise network 10.157.22.0/24, enter the following command.

```plaintext
device(config-bgp-router)# network 10.157.22.0 255.255.255.0
```

Syntax: `[no] network ip-addr ip-mask [route-map map-name] [weight num] [backdoor]`

The `ip-addr` is the network number and the `ip-mask` specifies the network mask.

The `route-map map-name` parameter specifies the name of the route map you want to use to set or change BGP4 attributes for the network you are advertising. The route map must already be configured. If it is not, the default action is to deny redistribution.

The `weight num` parameter specifies a weight to be added to routes to this network.

The `backdoor` parameter changes the administrative distance of the route to this network from the EBGP administrative distance (20 by default) to the Local BGP4 weight (200 by default), tagging the route as a backdoor route. Use this parameter when you want the device to prefer IGP routes such as RIP or OSPF routes over the EBGP route for the network.

**Specifying a route map when configuring BGP4 network advertising**

You can specify a route map when you configure a BGP4 network to be advertised. The device uses the route map to set or change BGP4 attributes when creating a local BGP4 route.

**NOTE**  
You must configure the route map before you can specify the route map name in a BGP4 network configuration; otherwise, the route is not imported into BGP4.

To configure a route map, and use it to set or change route attributes for a network you define for BGP4 to advertise, enter commands such as the following.

```plaintext
device(config)# route-map set_net permit 1
device(config-routeemap set_net)# set community no-export
device(config-routeemap set_net)# exit
device(config)# router bgp
device(config-bgp)# network 10.100.1.0/24 route-map set_net
```

The first two commands in this example create a route map named "set_net" that sets the community attribute for routes that use the route map to "NO_EXPORT". The next two commands change the CLI to the BGP4 configuration level. The last command configures a network for advertising from BGP4, and associates the "set_net" route map with the network. When BGP4 originates the 10.100.1.0/24 network, BGP4 also sets the community attribute for the network to "NO_EXPORT".
Changing the default local preference

When the device uses the BGP4 algorithm to select a route to send to the IP route table, one of the parameters the algorithm uses is the local preference. Local preference indicates a degree of preference for a route relative to other routes. BGP4 neighbors can send the local preference value as an attribute of a route in an UPDATE message.

Local preference applies only to routes within the local AS. BGP4 devices can exchange local preference information with neighbors who also are in the local AS, but BGP4 devices do not exchange local preference information with neighbors in remote autonomous systems.

The default local preference is 100. For routes learned from EBGP neighbors, the default local preference is assigned to learned routes. For routes learned from IBGP neighbors, the local preference value is not changed for the route.

When the BGP4 algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen.

NOTE
To set the local preference for individual routes, use route maps.

To change the default local preference to 200, enter the following command.

```
device(config-bgp)# default-local-preference 200
```

Syntax: [no] default-local-preference num

The num parameter indicates the preference and can be a value from 0 - 4294967295.

ATTENTION
When this command is configured globally, the aggregate routes advertised through the BGP VPN do not update the local preference accordingly, even after the BGP neighbor configuration is updated by means of the clear ip bgp neighbor all command. You must do one of the following to resolve this:

- Execute the clear ip bgp vrf vrf-name neighbor all command for all associated VRFs, or
- Remove and re-add the value for local-as under the router bgp command. This stops and restarts the BGP process.

Using the IP default route as a valid next-hop for a BGP4 route

By default, the device does not use a default route to resolve a BGP4 next-hop route. If the IP route lookup for the BGP4 next-hop does not result in a valid IGP route (including static or direct routes), the BGP4 next-hop is considered to be unreachable and the BGP4 route is not used.

In some cases, such as when the device is acting as an edge device, you can allow the device to use the default route as a valid next-hop. To do so, enter the following command at the BGP4 configuration level of the CLI.

```
device(config-bgp)# next-hop-enable-default
```

Syntax: [no] next-hop-enable-default

Changing the default MED (Metric) used for route redistribution

The Extreme device can redistribute directly connected routes, static IP routes, RIP routes, IS-IS routes, and OSPF routes into BGP4. By default, BGP4 uses zero (0) for direct connected routes and the metric (MED) value of IGP routes in the IP route table. The MED is a global parameter that specifies the cost that will be applied to all routes, if assigned, when they are redistributed into BGP4. When routes are selected, lower metric values are preferred over higher metric values. The default, the BGP4 MED value is not assigned.

Optional BGP4 configuration tasks

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06
NOTE
RIP, IS-IS, and OSPF also have default metric parameters. The parameters are set independently for each protocol and have different ranges.

To change the default metric to 40, enter the following command.

```
device(config-bgp-router)# default-metric 40
```

Syntax: **default-metric** *num*

The *num* indicates the metric and can be a value from 0 through 4294967295.

### Enabling next-hop recursion

For each BGP4 route learned, the device performs a route lookup to obtain the IP address of the next-hop for the route. A BGP4 route is eligible for addition in the IP route table only if the following conditions are true:

- The lookup succeeds in obtaining a valid next-hop IP address for the route.
- The path to the next-hop IP address is an IGP path or a static route path.

By default, the software performs only one lookup for the next-hop IP address for the BGP4 route. If the next-hop lookup does not result in a valid next-hop IP address, or the path to the next-hop IP address is a BGP4 path, the software considers the BGP4 route destination to be unreachable. The route is not eligible to be added to the IP route table.

The BGP4 route table can contain a route with a next-hop IP address that is not reachable through an IGP route, even though the device can reach a hop farther away through an IGP route. This can occur when the IGPs do not learn a complete set of IGP routes, so the device learns about an internal route through IBGP instead of through an IGP. In this case, the IP route table will not contain a route that can be used to reach the BGP4 route destination.

To enable the device to find the IGP route to the next-hop gateway for a BGP4 route, enable recursive next-hop lookups. With this feature enabled, if the first lookup for a BGP4 route results in an IBGP path that originated within the same AS, rather than an IGP path or static route path, the device performs a lookup on the next-hop IP address for the next-hop gateway. If this second lookup results in an IGP path, the software considers the BGP4 route to be valid and adds it to the IP route table. Otherwise, the device performs another lookup on the next-hop IP address of the next-hop for the next-hop gateway, and so on, until one of the lookups results in an IGP route.

**NOTE**
You must configure a static route or use an IGP to learn the route to the EBGP multihop peer.

### Enabling recursive next-hop lookups

The recursive next-hop lookups feature is disabled by default. To enable recursive next-hop lookups, enter the following command at the BGP4 configuration level of the CLI.

```
device(config-bgp-router)# next-hop-recursion
```

Syntax: `[no] next-hop-recursion`

### Example when recursive route lookups are disabled

The output here shows the results of an unsuccessful next-hop lookup for a BGP4 route. In this case, next-hop recursive lookups are disabled. This example is for the BGP4 route to network 10.0.0.0/24.

```
device# show ip bgp route
Total number of BGP Routes: 5
```
In this example, the device cannot reach 10.0.0.0/24, because the next-hop IP address for the route is an IBGP route instead of an IGP route, and is considered unreachable by the device. The IP route table entry for the next-hop gateway for the BGP4 route’s next-hop gateway (10.0.0.1/24) is shown here.

device# show ip route 10.0.0.1
Total number of IP routes: 37
Network Address  Gateway  Port  Cost  Type
10.0.0.0         10.0.0.1   1/1   1     B

Since the route to the next-hop gateway is a BGP4 route, and not an IGP route, it cannot be used to reach 10.0.0.0/24. In this case, the device tries to use the default route, if present, to reach the subnet that contains the BGP4 route next-hop gateway.

device# show ip route 10.0.0.0/24
Total number of IP routes: 37
Network Address  Gateway      Port  Cost  Type
0.0.0.0          10.0.0.202   1/1   1     S

Example when recursive route lookups are enabled

When recursive next-hop lookups are enabled, the device continues to look up the next-hop gateways along the route until the device finds an IGP route to the BGP4 route destination.

device# show ip bgp route
Total number of BGP Routes: 5
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
Prefix         Next Hop        MED      LocPrf    Weight Status
1 0.0.0.0/0       10.1.0.2       0        100       0      BI
   AS_PATH: 65001 4355 701 80
2 10.10.0.0/24    10.0.0.1       1        100       0      BI
   AS_PATH: 65001 4355 1
3 10.40.0.0/24    10.1.0.2       0        100       0      BI
   AS_PATH: 65001 4355 701 1 189
4 10.0.0.0/24     10.0.0.1       1        100       0      I
   AS_PATH: 65001 4355 3356 7170 1455
5 10.25.0.0/24    10.157.24.1    1        100       0      I
   AS_PATH: 65001 4355 701

The first lookup results in an IBGP route, to network 10.0.0.0/24.

device# show ip route 10.0.0.0/24
Total number of IP routes: 38
Network Address  Gateway      Port  Cost  Type
10.0.0.0          10.0.0.1   1/1   1     B
   AS_PATH: 65001 4355

Since the route to 10.0.0.1/24 is not an IGP route, the device cannot reach the next hop through IP, and so cannot use the BGP4 route. In this case, since recursive next-hop lookups are enabled, the device next performs a lookup for the next-hop gateway to 10.0.0.1’s next-hop gateway, 10.0.0.1.

device# show ip bgp route 10.0.0.0
Number of BGP Routes matching display condition : 1
The next-hop IP address for 10.0.0.1 is not an IGP route, which means the BGP4 route destination still cannot be reached through IP. The recursive next-hop lookup feature performs a lookup on the next-hop gateway for 10.0.0.1.

```
device# show ip route 10.0.0.1
Total number of IP routes: 38
Network Address Gateway Port Cost Type
10.0.0.0 0.0.0.0 1/1 1 D
 AS_PATH: 65001 4355 1
```

This lookup results in an IGP route that is a directly-connected route. As a result, the BGP4 route destination is now reachable through IGP, which means the BGP4 route can be added to the IP route table. The IP route table with the BGP4 route is shown here.

```
device# show ip route 10.0.0.0/24
Total number of IP routes: 38
Network Address Gateway Port Cost Type
10.0.0.0/24 10.0.0.1 1/1 1 B
 AS_PATH: 65001 4355 1
```

The device can use this route because it has an IP route to the next-hop gateway. Without recursive next-hop lookups, this route would not be in the IP route table.

### Changing administrative distances

BGP4 devices can learn about networks from various protocols, including the EBGP portion of BGP4, and IGPs such as OSPF, IS-IS, and RIP, the routes to a network may differ depending on the protocol from which the routes were learned.

To select one route over another based on the source of the route information, the device can use the administrative distances assigned to the sources. The administrative distance is a protocol-independent metric that IP devices use to compare routes from different sources.

The device re-advertises a learned best BGP4 route to neighbors even when the route table manager does not also select that route for installation in the IP route table. The best BGP4 route is the BGP4 path that BGP4 selects based on comparison of the paths’ BGP4 route parameters.

When selecting a route from among different sources (BGP4, OSPF, RIP, IS-IS, static routes, and so on), the software compares the routes on the basis of the administrative distance for each route. If the administrative distance of the paths is lower than the administrative distance of paths from other sources (such as static IP routes, RIP, or OSPF), the BGP4 paths are installed in the IP route table.

The default administrative distances on the device are:

- Directly connected - 0 (this value is not configurable)
- Static - 1 is the default and applies to all static routes, including default routes. This can be assigned a different value.
- EBGP - 20
- OSPF - 110
- IS-IS - 115
- RIP - 120
- IBGP - 200
- Local BGP4 - 200
- Unknown - 255 (the device will not use this route)
Lower administrative distances are preferred over higher distances. For example, if the device receives routes for the same network from OSPF and from RIP, the device will prefer the OSPF route by default. The administrative distances are configured in different places in the software. The device re-advertises a learned best BGP4 route to neighbors by default, regardless of whether the administrative distance for the route is lower than the administrative distances of other routes from different route sources to the same destination:

- To change the EBGP, IBGP, and Local BGP4 default administrative distances, refer to the instructions in this section.
- To change the default administrative distance for OSPF, RIP, IS-IS, refer to Configuring a static BGP4 network on page 380.

To change the default administrative distances for EBGP, IBGP, and Local BGP4, enter a command such as the following.

```
device(config-bgp-router)# distance 200 200 200
```

**Syntax:**

```
[no] distance external-distance internal-distance local-distance
```

The `external-distance` sets the EBGP distance and can be a value from 1 through 255.
The `internal-distance` sets the IBGP distance and can be a value from 1 through 255.
The `local-distance` sets the Local BGP4 distance and can be a value from 1 through 255.

## Requiring the first AS to be the neighbor AS

By default, the Extreme device does not require the first AS listed in the AS_SEQUENCE field of an AS path update message from EBGP neighbors to be the AS of the neighbor that sent the update. However, you can enable the Extreme device to have this requirement. You can enable this requirement globally for the device, or for a specific neighbor or peer group. This section describes how to enable this requirement.

When you configure the device to require that the AS an EBGP neighbor is in be the same as the first AS in the AS_SEQUENCE field of an update from the neighbor, the device accepts the update only if the AS numbers match. If the AS numbers do not match, the Extreme device sends a notification message to the neighbor and closes the session. The requirement applies to all updates received from EBGP neighbors.

The hierarchy for enforcement of this feature is: a neighbor will try to use the enforce-first-as value if one is configured; if none is configured, the neighbor will try to use the configured value for a peer group. If neither configuration exists, enforcement is simply that of the global configuration (which is disabled by default).

To enable this feature globally, enter the `enforce-first-as` command at the BGP4 configuration level of the CLI.

```
device(config-bgp)# enforce-first-as
```

**Syntax:**

```
[no] enforce-first-as
```

To enable this feature for a specific neighbor, enter the following command at the BGP4 configuration level.

```
device(config-bgp)# neighbor 10.1.1.1 enforce-first-as enable
```

**Syntax:**

```
[no] neighbor ip-address enforce-first-as [enable | disable]
```

The ip-address value is the IP address of the neighbor.

When the first-as requirement is enabled, its status appears in the output of the `show running configuration` command. The optional last keyword choice of `enable` or `disable` lets you specify whether the output of the `show running configuration` command includes the configuration of the first-as requirement. This option allows the `show running configuration` command output to show what is actually configured.

To enable this feature for a peer group, enter the following command at the BGP4 configuration level.

```
device(config-bgp)# neighbor Peergroup1 enforce-first-as enable
```

**Syntax:**

```
[no] neighbor peer-group-name enforce-first-as [enable | disable]
```
The **peer-group-name** value is the name of the peer group.

When the first-as requirement is enabled, its status appears in the output of the show running configuration command. The optional last keyword choice, that of **enable** or **disable**, lets you specify whether the output of the show running configuration command includes the configuration of the first-as requirement: this option helps the show running command output to show what you have actually configured.

The following example shows a running configuration with the first-as enforcement items (for global, peer group, and neighbor) in bold.

```
device(config)# router bgp
BGP4: Please configure 'local-as' parameter in order to enable BGP4.
device(config-bgp)# local-as 1

device(config-bgp)# enforce-first-as
device(config-bgp)# neighbor abc peer-group
device(config-bgp)# neighbor abc remote-as 2

device(config-bgp)# neighbor abc enforce-first-as disable
device(config-bgp)# neighbor 192.168.1.2 peer-group abc
device(config-bgp)# neighbor 192.168.1.2 enforce-first-as enable
```

### Disabling or re-enabling comparison of the AS-Path length

AS-Path comparison is Step 5 in the algorithm that BGP4 uses to select the next path for a route. Comparison of the AS-Path length is enabled by default. To disable it, enter the following command at the BGP4 configuration level of the CLI.

```
device(config-bgp)# as-path-ignore
```

**Syntax:** `[no] as-path-ignore`  
This command disables comparison of the AS-Path lengths of otherwise equal paths. When you disable AS-Path length comparison, the BGP4 algorithm shown in *How BGP4 selects a path for a route (BGP best path selection algorithm)* on page 287 skips from Step 4 to Step 6.

### Enabling or disabling comparison of device IDs

Device ID comparison is Step 11 in the algorithm BGP4 uses to select the next path for a route.

**NOTE**  
Comparison of device IDs is applicable only when BGP4 load sharing is disabled.

When device ID comparison is enabled, the path comparison algorithm compares the device IDs of the neighbors that sent the otherwise equal paths:

- If BGP4 load sharing is disabled (maximum-paths 1), the instructions in this section selects the path that came from the neighbor with the lower device ID.
- If BGP4 load sharing is enabled, the device load shares among the remaining paths. In this case, the device ID is not used to select a path.

**NOTE**  
Device ID comparison is disabled by default.

To enable device ID comparison, enter the **compare-routerid** command at the BGP4 configuration level of the CLI.

```
device(config-bgp-router)# compare-routerid
```

**Syntax:** `[no] compare-routerid`
Configuring the device to always compare Multi-Exit Discriminators

A Multi-Exit Discriminator (MED) is a value that the BGP4 algorithm uses when it compares multiple paths received from different BGP4 neighbors in the same AS for the same route. In BGP4, a MED for a route is equivalent to its metric.

BGP4 compares the MEDs of two otherwise equivalent paths if and only if the routes were learned from the same neighboring AS. This behavior is called deterministic MED. Deterministic MED is always enabled and cannot be disabled.

You can enable the device to always compare the MEDs, regardless of the AS information in the paths. For example, if the device receives UPDATES for the same route from neighbors in three autonomous systems, the device can compare the MEDs of all the paths together instead of comparing the MEDs for the paths in each autonomous system individually.

To enable this comparison, enter the `always-compare-med` command at the BGP4 configuration level of the CLI. This option is disabled by default.

NOTE
By default, value 0 (most favorable) is used in MED comparison when the MED attribute is not present. The default MED comparison results in the device favoring route paths that do not have their MEDs. Use the `med-missing-as-worst` command to force the device to regard a BGP4 route with a missing MED attribute as the least favorable route, when comparing the MEDs of the routes.

NOTE
MED comparison is not performed for internal routes originated within the local AS or confederation unless the `compare-med-empty-aspath` command is configured.

To configure the device to always compare MEDs, enter the following command.

```
device(config-bgp-router)# always-compare-med
```

Syntax: `[no] always-compare-med`

The following BGP4 command directs BGP4 to take the MED value into consideration even if the route has an empty as-path path attribute.

```
device(config)# router bgp
device(config-bgp-router)# compare-med-empty-aspath
```

Syntax: `[no] compare-med-empty-aspath`

Treating missing MEDs as the worst MEDs

By default, the device favors a lower MED over a higher MED during MED comparison. Since the device assigns the value 0 to a route path MED if the MED value is missing, the default MED comparison results in the device favoring the route paths that are missing their MEDs.

To change this behavior so that the device favors a route that has a MED over a route that is missing its MED, enter the following command at the BGP4 configuration level of the CLI.

```
device(config-bgp-router)# med-missing-as-worst
```

Syntax: `[no] med-missing-as-worst`

NOTE
This command affects route selection only when route paths are selected based on MED comparison. It is still possible for a route path that is missing its MED to be selected based on other criteria. For example, a route path with no MED can be selected if its weight is larger than the weights of the other route paths.
**Configuring route reflection parameters**

Normally, all the BGP4 devices within an AS are fully meshed. Since each device has an IBGP session with each of the other BGP4 devices in the AS, each IBGP device has a route for each IBGP neighbor. For large autonomous systems containing many IBGP devices, the IBGP route information in each fully-meshed IBGP device may introduce too much administrative overhead.

To avoid this overhead, you can organize your IGP devices into clusters:

- A cluster is a group of IGP devices organized into route reflectors and route reflector clients. You configure the cluster by assigning a cluster ID on the route reflector and identifying the IGP neighbors that are members of that cluster. All configuration for route reflection takes place on the route reflectors. Clients are unaware that they are members of a route reflection cluster. All members of the cluster must be in the same AS. The cluster ID can be any number from 1 - 4294967295, or an IP address. The default is the device ID expressed as a 32-bit number.

  **NOTE**
  If the cluster contains more than one route reflector, you need to configure the same cluster ID on all the route reflectors in the cluster. The cluster ID helps route reflectors avoid loops within the cluster.

- A route reflector is an IGP device configured to send BGP4 route information to all the clients (other BGP4 devices) within the cluster. Route reflection is enabled on all BGP4 devices by default but does not take effect unless you add route reflector clients to the device.

- A route reflector client is an IGP device identified as a member of a cluster. You identify a device as a route reflector client on the device that is the route reflector, not on the client. The client itself requires no additional configuration. In fact, the client does not know that it is a route reflector client. The client just knows that it receives updates from its neighbors and does not know whether one or more of those neighbors are route reflectors.

  **NOTE**
  Route reflection applies only among IBGP devices within the same AS. You cannot configure a cluster that spans multiple autonomous systems.

This is an example of a route reflector configuration. In this example, two devices are configured as route reflectors for the same cluster, which provides redundancy in case one of the reflectors becomes unavailable. Without redundancy, if a route reflector becomes unavailable, the clients for that device are cut off from BGP4 updates.

AS1 contains a cluster with two route reflectors and two clients. The route reflectors are fully meshed with other BGP4 devices, but the clients are not fully meshed and rely on the route reflectors to propagate BGP4 route updates.
Support for RFC 4456

Route reflection on Extreme devices is based on RFC 4456. This updated RFC helps eliminate routing loops that are possible in some implementations of the older specification, RFC 1966. These instances include:

- The device adds the route reflection attributes only if it is a route reflector, and only when advertising IBGP route information to other IBGP neighbors. The attributes are not used when communicating with EBGP neighbors.
- A device configured as a route reflector sets the ORIGINATOR_ID attribute to the device ID of the device that originated the route. The route reflector sets this attribute only if this is the first time the route is being reflected (sent by a route reflector).
- If a device receives a route with an ORIGINATOR_ID attribute value that is the same as the ID of the device, the device discards the route and does not advertise it. By discarding the route, the device prevents a routing loop.
- The first time a route is reflected by a device configured as a route reflector, the route reflector adds the CLUSTER_LIST attribute to the route. Other route reflectors that receive the route from an IBGP neighbor add their cluster IDs to the front of the routes CLUSTER_LIST. If the route reflector does not have a cluster ID configured, the device adds its device ID to the front of the CLUSTER_LIST.
- If a device configured as a route reflector receives a route with a CLUSTER_LIST that contains the cluster ID of the route reflector, the route reflector discards the route.

Configuration procedures for BGP4 route reflector

To configure a Netiron device to be a BGP4 route reflector, use either of the following methods.
NOTE
All configuration for route reflection takes place on the route reflectors, not on the clients.

Enter the following commands to configure a device as route reflector 1. To configure route reflector 2, enter the same commands on the device that will be route reflector 2. The clients require no configuration for route reflection.

```
device(config-bgp)# cluster-id 1
```

Syntax: `[no] cluster-id num | ip-addr`

The `num` and `ip-addr` parameters specify the cluster ID and can be a number from 1 - 4294967295, or an IP address. The default is the device ID. You can configure one cluster ID on the device. All route-reflector clients for the device are members of the cluster.

NOTE
If the cluster contains more than one route reflector, you need to configure the same cluster ID on all the route reflectors in the cluster. The cluster ID helps route reflectors avoid loops within the cluster.

To add an IBGP neighbor to the cluster, enter the following command:

```
device(config-bgp)# neighbor 10.0.1.0 route-reflector-client
```

Syntax: `[no] neighbor ip-addr route-reflector-client`

Disabling or re-enabling client-to-client route reflection
By default, the clients of a route reflector are not required to be fully meshed. Routes from a client are reflected to other clients. However, if the clients are fully meshed, route reflection is not required between clients.

If you need to disable route reflection between clients, enter the `no client-to-client-reflection` command. When this feature is disabled, route reflection does not occur between clients does still occur between clients and non-clients.

```
device(config-bgp)# no client-to-client-reflection
```

Enter the following command to re-enable the feature.

```
device(config-bgp)# client-to-client-reflection
```

Syntax: `[no] client-to-client-reflection`

Configuring confederations
A **confederation** is a BGP4 Autonomous System (AS) that has been subdivided into multiple, smaller autonomous systems. Subdividing an AS into smaller autonomous systems simplifies administration and reduces BGP4-related traffic, which in turn reduces the complexity of the Interior Border Gateway Protocol (IBGP) mesh among the BGP4 devices in the AS.

The Extreme implementation of this feature is based on RFC 3065.

Normally, all BGP4 devices within an AS must be fully meshed, so that each BGP4 device has BGP4 sessions to all the other BGP4 devices within the AS. This is feasible in smaller autonomous systems, but becomes unmanageable in autonomous systems containing many BGP4 devices.

When you configure BGP4 devices into a confederation, all the devices within a sub-AS (a subdivision of the AS) use IBGP and must be fully meshed. However, devices use EBGP to communicate between different sub-autonomous systems.
NOTE
Another way to reduce the complexity of an IBGP mesh is to use route reflection. However, if you want to run different Interior Gateway Protocols (IGPs) within an AS, you must configure a confederation. You can run a separate IGP within each sub-AS.

To configure a confederation, configure groups of BGP4 devices into sub-autonomous systems. A sub-AS is simply an AS. The term “sub-AS” distinguishes autonomous systems within a confederation from autonomous systems that are not in a confederation. For the viewpoint of remote autonomous systems, the confederation ID is the AS ID. Remote autonomous systems do not know that the AS represents multiple sub-autonomous systems with unique AS IDs.

NOTE
You can use any valid AS numbers for the sub-autonomous systems. If your AS is connected to the Internet, Extreme recommends that you use numbers from within the private AS range (64512 through 65535). These are private autonomous system numbers and BGP4 devices do not propagate these AS numbers to the Internet.

FIGURE 25 Example BGP4 confederation

In this example, four devices are configured into two sub-autonomous systems, each containing two of the devices. The sub-autonomous systems are members of confederation 10. Devices within a sub-AS must be fully meshed and communicate using IBGP. In this example, devices A and B use IBGP to communicate. devices C and D also use IBGP. However, the sub-autonomous systems communicate with one another using EBGP. For example, device A communicates with device C using EBGP. The devices in the confederation communicate with other autonomous systems using EBGP.

Devices in other autonomous systems are unaware that devices A through D are configured in a confederation. In fact, when devices in confederation 10 send traffic to devices in other autonomous systems, the confederation ID is the same as the AS number for the
devices in the confederation. Thus, devices in other autonomous systems see traffic as coming from AS 10 and are unaware that the devices in AS 10 are subdivided into sub-autonomous systems within a confederation.

**Configuring a BGP4 confederation**

To configure a BGP4 configuration, perform these configuration tasks on each BGP4 device within the confederation:

- Configure the local AS number. The local AS number indicates membership in a sub-AS. All BGP4 devices with the same local AS number are members of the same sub-AS. BGP4 devices use the local AS number when communicating with other BGP4 devices in the confederation.

- Configure the confederation ID. The confederation ID is the AS number by which BGP4 devices outside the confederation recognize the confederation. A BGP4 device outside the confederation is not aware of, and does not care that BGP4 devices are in multiple sub-autonomous systems. A BGP4 device uses the confederation ID to communicate with devices outside the confederation. The confederation ID must differ from the sub-AS numbers.

- Configure the list of the sub-AS numbers that are members of the confederation. All devices within the same sub-AS use IBGP to exchange device information. Devices in different sub-autonomous systems within the confederation use EBGP to exchange device information.

To configure four devices to be members of confederation 10 (consisting of sub-autonomous systems 64512 and 64513), enter commands such as the following.

### Commands for device A

```
deviceA(config)# router bgp
deviceA(config-bgp)# local-as 64512
deviceA(config-bgp)# confederation identifier 10
deviceA(config-bgp)# confederation peers 64512 64513
deviceA(config-bgp)# write memory
```

**Syntax:** `[no] local-as num`

The `num` parameter with the `local-as` command indicates the AS number for the BGP4 devices within the sub-AS. You can specify a number in the range 1 - 4294967295. Extreme recommends that you use a number within the range of well-known private autonomous systems, 64512 through 65535.

**Syntax:** `[no] confederation identifier num`

The `num` parameter with the `confederation identifier` command indicates the confederation number. The confederation ID is the AS number by which BGP4 devices outside the confederation recognize the confederation. A BGP4 device outside the confederation is not aware of, and does not care that your BGP4 devices are in multiple sub-autonomous systems. BGP4 devices use the confederation ID when communicating with devices outside the confederation. The confederation ID must be different from the sub-AS numbers. For the `num` parameter, you can specify a number in the range 1 - 4294967295.

**Syntax:** `[no] confederation peers num [num ...]`

The `num` parameter with the `confederation peers` command indicates the sub-AS numbers for the sub-autonomous systems in the confederation. You can list all sub-autonomous systems in the confederation. You must specify all the sub-autonomous systems with which this device has peer sessions in the confederation. All the devices within the same sub-AS use IBGP to exchange device information. Devices in different sub-autonomous systems within the confederation use EBGP to exchange device information. The `num` is a number in the range 1 - 4294967295.

### Commands for device B

```
deviceB(config)# router bgp
deviceB(config-bgp)# local-as 64512
```

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06 327
deviceB(config-bgp)# confederation identifier 10
deviceB(config-bgp)# confederation peers 64512 64513
deviceB(config-bgp)# write memory

Commands for device C

deviceC(config)# router bgp
deviceC(config-bgp)# local-as 64513
deviceC(config-bgp)# confederation identifier 10
deviceC(config-bgp)# confederation peers 64512 64513
deviceC(config-bgp)# write memory

Commands for device D

deviceD(config)# router bgp
deviceD(config-bgp)# local-as 64513
deviceD(config-bgp)# confederation identifier 10
deviceD(config-bgp)# confederation peers 64512 64513
deviceD(config-bgp)# write memory

Aggregating routes advertised to BGP4 neighbors

By default, the device advertises individual routes for all networks. The aggregation feature allows you to configure the device to aggregate routes from a range of networks into a single network prefix. For example, without aggregation, the device will individually advertise routes for networks 10.95.1.0/24, 10.95.2.0/24, and 10.95.3.0/24. You can configure the device to end a single, aggregate route for the networks instead. The aggregate route can be advertised as 10.95.0.0/16.

To aggregate routes for 10.157.22.0/24, 10.157.23.0/24, and 10.157.24.0/24, enter the following command.

device(config-bgp)# aggregate-address 10.157.0.0 255.255.0.0

Syntax: [no] aggregate-address ip-addr ip-mask [as-set] [summary-only] [suppress-map map-name] [advertise-map map-name] [attribute-map map-name]

The ip-addr and ip-mask parameters specify the aggregate value for the networks. Specify 0 for the host portion and for the network portion that differs among the networks in the aggregate. For example, to aggregate 10.0.1.0/24, 10.0.2.0/24, and 10.0.3.0/24, enter the IP address 10.0.0.0 and the network mask 255.255.0.0.

The as-set parameter causes the device to aggregate AS-path information for all the routes in the aggregate address into a single AS-path.

The summary-only parameter prevents the device from advertising more specific routes contained within the aggregate route.

The suppress-map map-name parameter prevents the more specific routes contained in the specified route map from being advertised.

The advertise-map map-name parameter configures the device to advertise the more specific routes in the specified route map.

The attribute-map map-name parameter configures the device to set attributes for the aggregate routes based on the specified route map.

NOTE
For the suppress-map, advertise-map, and attribute-map parameters, the route map must already be defined.
Configuring BGP4 restart

BGP4 restart can be configured for a global routing instance or for a specified Virtual Routing and Forwarding (VRF) instance. The following sections describe how to enable the BGP4 restart feature.

Configuring BGP4 Restart for the global routing instance

Use the following command to enable the BGP4 Restart feature globally on a device.

```
device(config)# router bgp
device(config-bgp-router)# graceful-restart
```

Syntax: `[no] graceful-restart`

Configuring BGP4 Restart for a VRF

Use the following command to enable the BGP4 Restart feature for a specified VRF.

```
device(config)# router bgp
device(config-bgp-router)# address-family ipv4 unicast vrf blue
device(config-bgp-ipv4u-vrf)# graceful-restart
```

Syntax: `[no] graceful-restart`

Configuring timers for BGP4 Restart (optional)

You can optionally configure the following timers to change their values from the default values:

- Restart Timer
- Stale Routes Timer
- Purge Timer

The `seconds` variable sets the maximum restart wait time advertised to neighbors. Possible values are 1-3600 seconds. The default value is 120 seconds.

Configuring the restart timer for BGP4 Restart

Use the following command to specify the maximum amount of time a device will maintain routes from and forward traffic to a restarting device.

```
device(config-bgp)# graceful-restart restart-time 150
```

Syntax: `[no] graceful-restart restart-time seconds`

The `seconds` variable sets the maximum restart wait time advertised to neighbors. Possible values are 1 through 3600 seconds. The default value is 120 seconds.

Configuring BGP4 Restart stale routes timer

Use the following command to specify the maximum amount of time a helper device will wait for an end-of-RIB message from a peer before deleting routes from that peer.

```
device(config-bgp)# graceful-restart stale-routes-time 120
```
Syntax: [no] graceful-restart stale-routes-time seconds

The seconds variable sets the maximum time before a helper device cleans up stale routes. Possible values are 1 through 3600 seconds. The default value is 360 seconds.

Configuring BGP4 Restart purge timer

Use the following command to specify the maximum amount of time a device will maintain stale routes in its routing table before purging them.

    device(config-bgp)# graceful-restart purge-time 900

Syntax: [no] graceful-restart purge-time seconds

The seconds variable sets the maximum time before a restarting device cleans up stale routes. Possible values are 1 - 3600 seconds. The default value is 600 seconds.

BGP4 null0 routing

BGP4 considers the null0 route in the routing table (for example, static route) as a valid route, and can use the null0 route to resolve the next hop. If the next hop for BGP4 resolves into a null0 route, the BGP4 route is also installed as a null0 route in the routing table.

The null0 routing feature allows network administrators to block certain network prefixes using null0 routes and route-maps, directing a remote device to drop all traffic for a network prefix by redistributing a null0 route into BGP4.

This example shows a topology for a null0 routing application example.
Configuring BGP4 null0 routing

The following example configures a null0 routing application to stop denial of service attacks from remote hosts on the Internet.

1. Select a device, for example, device 6, to distribute null0 routes throughout the BGP4 network.
2. To configure a route-map perform the following step.
   • Configure a route-map to match a particular tag (50) and set the next-hop address to an unused network address (192.168.0.1).
3. Set the local-preference to a value higher than any possible internal or external local-preference (50).
4. Complete the route map by setting origin to IGP.
5. On device 6, redistribute the static routes into BGP4, using route-map route-map-name (redistribute static route-map block user).
6. To configure a route-map perform the following step.
   • On device 1, (the device facing the Internet), configure a null0 route matching the next-hop address in the route-map (ip route 192.168.0.1/32 null0).
7. Repeat step 3 for all devices interfacing with the Internet (edge corporate devices). In this case, device 2 has the same null0 route as device 1.

8. On device 6, configure the network prefixes associated with the traffic you want to drop. The static route IP address references a destination address. You must point the static route to the egress port, (for example, Ethernet 3/7), and specify the tag 50, matching the route-map configuration.

**Configuration examples**

**Device 6**

The following configuration defines specific prefixes to filter:

```
device(config)# ip route 10.0.0.40/29 ethernet 3/7 tag 50
device(config)# ip route 10.0.0.192/27 ethernet 3/7 tag 50
device(config)# ip route 10.014.0/23 ethernet 3/7 tag 50
```

The following configuration redistributes routes into BGP4.

```
device(config)# router bgp
device(config-bgp-router)# local-as 100
device(config-bgp-router)# neighbor router1_int_ip address remote-as 100
device(config-bgp-router)# neighbor router2_int_ip address remote-as 100
device(config-bgp-router)# neighbor router3_int_ip address remote-as 100
device(config-bgp-router)# neighbor router4_int_ip address remote-as 100
device(config-bgp-router)# neighbor router5_int_ip address remote-as 100
device(config-bgp-router)# neighbor router7_int_ip address remote-as 100
device(config-bgp-router)# redistribute static route-map blockuser
device(config-bgp-router)# exit
```

The following configuration defines the specific next hop address and sets the local preference to preferred.

```
device(config)# route-map blockuser permit 10
device(config-routemap blockuser)# match tag 50
device(config-routemap blockuser)# set ip next-hop 192.168.0.1
device(config-routemap blockuser)# set local-preference 1000000
device(config-routemap blockuser)# set origin igp
device(config-routemap blockuser)# exit
```

**NOTE**

A match tag can take up to 16 tags. During the execution of a route-map, a match on any tag value in the list is considered a successful match.

**Device 1**

The following configuration defines the null0 route to the specific next hop address. The next hop address 192.168.0.1 points to 10.178.1.101, which gets blocked.

```
device(config)# ip route 192.168.0.1/32 null0
device(config)# router bgp
device(config-bgp-router)# local-as 100
device(config-bgp-router)# neighbor router2_int_ip address remote-as 100
device(config-bgp-router)# neighbor router3_int_ip address remote-as 100
device(config-bgp-router)# neighbor router4_int_ip address remote-as 100
device(config-bgp-router)# neighbor router5_int_ip address remote-as 100
device(config-bgp-router)# neighbor router6_int_ip address remote-as 100
device(config-bgp-router)# neighbor router7_int_ip address remote-as 100
```

**Device 2**
The following configuration defines a null0 route to the specific next hop address. The next hop address 192.168.0.1 points to 10.178.1.101, which gets blocked.

```
device(config)# ip route 192.168.0.1/32 null0
device(config)# router bgp
device(config-bgp-router)# local-as 100
device(config-bgp-router)# neighbor router1_int_ip address remote-as 100
device(config-bgp-router)# neighbor router3_int_ip address remote-as 100
device(config-bgp-router)# neighbor router4_int_ip address remote-as 100
device(config-bgp-router)# neighbor router5_int_ip address remote-as 100
device(config-bgp-router)# neighbor router6_int_ip address remote-as 100
device(config-bgp-router)# neighbor router7_int_ip address remote-as 100
```

**Show commands for BGP4 null 0 routing**

After configuring the null0 application, you can display the output using `show` commands.

**Device 6**

Show ip route static output for device 6.

```
device# show ip route static
```

**Device 1 and 2**

Show ip route static output for device 1 and device 2.

```
device# show ip route static
```

**Device 6**

The following is the `show ip bgp route` output for Device-6

```
device# show ip bgp route
Total number of BGP Routes: 126
Prefix Next Hop MED LocPrf Weight Status
1 10.0.1.0/24 10.4.1.3 0 100 0 BI
 AS_PATH: 85
2 10.0.16/30 10.9.1.3 100 0 I
 AS_PATH: 85
3 10.0.40/29 192.168.0.1 1 1000000 32768 BL
 AS_PATH: 10000000
4 10.0.80/28 10.9.1.3 100 0 I
 AS_PATH: 85
5 10.0.96/28 10.3.1.3 100 0 I
 AS_PATH: 50
6 10.0.192/27 192.168.0.1 10000000 32768 BL
 AS_PATH: 10000000
7 10.0.7.0/24 10.7.1.3 100 0 I
 AS_PATH: 10
8 10.0.14.0/23 192.168.0.1/ 100000000 32768 BL
 AS_PATH: 100000000
```

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06
Device 1 and 2

The show ip route output for device 1 and device 2 shows "drop" under the Port column for the network prefixes you configured with null0 routing.

```
device#show ip route
Total number of IP routes: 133

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10.9.1.24/32</td>
<td>DIRECT</td>
<td>loopback 1</td>
<td>0/0</td>
<td>D</td>
</tr>
<tr>
<td>2 10.90.1.0/24</td>
<td>DIRECT</td>
<td>eth 2/7</td>
<td>0/0</td>
<td>D</td>
</tr>
<tr>
<td>3 10.40.1.0/24</td>
<td>DIRECT</td>
<td>eth 2/1</td>
<td>0/0</td>
<td>D</td>
</tr>
<tr>
<td>13 10.110.0.6/31</td>
<td>10.90.1.3</td>
<td>eth 2/2</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>14 10.110.0.16/30</td>
<td>10.90.1.3</td>
<td>eth 2/2</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>15 10.110.0.40/29</td>
<td>DIRECT</td>
<td>drop</td>
<td>200/0</td>
<td>B</td>
</tr>
<tr>
<td>42 10.115.0.192/27</td>
<td>drop</td>
<td>200/0</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>43 10.115.1.128/26</td>
<td>10.70.1.3</td>
<td>eth 2/7</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>69 10.120.7.0/24</td>
<td>10.70.1.3</td>
<td>eth 2/10</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>70 10.120.14.0/23</td>
<td>DIRECT</td>
<td>drop</td>
<td>200/0</td>
<td>B</td>
</tr>
<tr>
<td>131 10.144.0.0/12</td>
<td>10.80.1.3</td>
<td>eth 3/4</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>132 12.168.0.1/32</td>
<td>DIRECT</td>
<td>drop</td>
<td>1/1</td>
<td>S</td>
</tr>
</tbody>
</table>
```

Modifying redistribution parameters

By default, the route information between BGP4 and the IP IGPs (RIP, IS-IS, and OSPF) is not redistributed. You can configure the device to redistribute OSPF, IS-IS, or RIP routes, directly connected routes, or static routes into BGP4.

To enable redistribution of all OSPF routes and directly attached routes into BGP4, enter the following commands.

```
device(config)# router bgp
device(config-bgp)# redistribute ospf
device(config-bgp)# redistribute connected
device(config-bgp)# write memory
```

Syntax: [no] redistribute connected | ospf | rip | isis | static

The connected parameter indicates that you are redistributing routes to directly attached devices into BGP4.

The ospf parameter indicates that you are redistributing OSPF routes into BGP4.

```
NOTE
Entering redistribute ospf simply redistributes internal OSPF routes. To redistribute external OSPF routes also, use the redistribute ospf match external command.
```

The rip parameter indicates that you are redistributing RIP routes into BGP4.

The isis parameter indicates that you are redistributing IS-IS routes into BGP4.

The static parameter indicates that you are redistributing static routes into BGP4.

Redistributing connected routes

To configure BGP4 to redistribute directly connected routes, enter the following command.

```
device(config-bgp)# redistribute connected
```

Syntax: [no] redistribute connected [metric num] [route-map map-name]
The `connected` parameter indicates that you are redistributing routes to directly attached devices into BGP4. The `metric num` parameter changes the metric. You can specify a value from 0 through 4294967295. The default is not assigned. The `route-map map-name` parameter specifies a route map to be consulted before adding the RIP route to the BGP4 route table.

**NOTE**
The route map you specify must already be configured on the device.

### Redistributing RIP routes

To configure BGP4 to redistribute RIP routes and add a metric of 10 to the redistributed routes, enter the following command.

```
device(config-bgp)# redistribute rip metric 10
```

**Syntax:** `[no] redistribute rip [metric num] [route-map map-name]`

The `rip` parameter indicates that you are redistributing RIP routes into BGP4. The `metric num` parameter changes the metric. You can specify a value from 0 - 4294967295. The default is not assigned. The `route-map map-name` parameter specifies a route map to be consulted before adding the RIP route to the BGP4 route table.

**NOTE**
The route map you specify must already be configured on the device.

### Redistributing OSPF external routes

To configure the device to redistribute OSPF external type 1 routes, enter the following command.

```
device(config-bgp)# redistribute ospf match external1
```

**Syntax:** `[no] redistribute ospf [match internal | external1 | external2] [metric num] [route-map map-name]`

The `ospf` parameter indicates that you are redistributing OSPF routes into BGP4. The `match internal, external1, and external2` parameters apply only to OSPF. These parameters specify the types of OSPF routes to be redistributed into BGP4. The default is internal.

**NOTE**
If you do not enter a value for the `match` parameter, (for example, you enter `redistribute ospf` only) then only internal OSPF routes will be redistributed.

The `metric num` parameter changes the metric. You can specify a value from 0 through 4294967295. The default is not assigned. The `route-map map-name` parameter specifies a route map to be consulted before adding the OSPF route to the BGP4 route table.

**NOTE**
The route map you specify must already be configured on the device.

**NOTE**
If you use both the `redistribute ospf route-map` command and the `redistribute ospf match internal` command, the software uses only the route map for filtering.
Redistributing static routes

To configure the device to redistribute static routes, enter the following command.

```
device(config-bgp)# redistribute static
```

Syntax: [no] redistribute static [ metric num ] [ route-map map-name ]

The `static` parameter indicates that you are redistributing static routes into BGP4.

The `metric num` parameter changes the metric. You can specify a value from 0 - 4294967295. The default is 0.

The `route-map map-name` parameter specifies a route map to be consulted before adding the static route to the BGP4 route table.

**NOTE**
The route map you specify must already be configured on the device.

Redistributing IBGP routes

By default, the device does not allow redistribute IBGP routes from BGP4 into RIP, OSPF, or IS-IS. This behavior helps eliminate routing loops. In non-default VRF instances, by default, the device does allow redistribution IBGP routes from BGP4 into RIP, OSPF.

To enable the device to redistribute BGP4 routes into OSPF, RIP, or IS-IS enter the following command.

```
device(config-bgp)# bgp-redistribute-internal
```

Syntax: [no] bgp-redistribute-internal

To disable redistribution of IBGP routes into RIP, IS-IS, and OSPF, enter the `bgp-redistribute-internal` command.

Filtering

This section describes the following:
- AS-path filtering
- Route-map continue clauses for BGP4 routes
- Defining and applying IP prefix lists
- Defining neighbor distribute lists
- Defining route maps
- Router-map continue clauses for BGP4 routes
- Configuring cooperative BGP4 route filtering

AS-path filtering

You can filter updates received from BGP4 neighbors based on the contents of the AS-path list accompanying the updates. For example, to deny routes that have the AS 10.3.2.1 in the AS-path from entering the BGP4 route table, you can define a filter.

The device provides the following methods for filtering on AS-path information:
- AS-path filters
- AS-path ACLs
NOTE
The device cannot support AS-path filters and AS-path ACLs at the same time. Use one method or the other, but do not mix methods.

NOTE
Once you define a filter or ACL, the default action for updates that do not match a filter is deny. To change the default action to permit, configure the last filter or ACL as permit any any.

AS-path filters or AS-path ACLs can be referred to by the filter list number of a BGP4 neighbor as well as by match clauses in a route map.

Defining an AS-path ACL
To configure an AS-path list that uses "acl 1", enter a command such as the following.

```
device(config)# ip as-path access-list acl1 permit 100
device(config)# router bgp
device(config-bgp)# neighbor 10.10.10.1 filter-list acl1 in
```

Syntax: [no] ip as-path access-list string [ seq s eq-value ] deny | permit regular-expression

The `ip as-path` command configures an AS-path ACL that permits routes containing AS number 100 in their AS paths. The `neighbor` command then applies the AS-path ACL to advertisements and updates received from neighbor 10.10.10.1. In this example, the only routes the device permits from neighbor 10.10.10.1 are those whose AS-paths contain AS-path number 100.

The `string` parameter specifies the ACL name. (If you enter a number, the CLI interprets the number as a text string.)

The `seq seq-value` parameter is optional and specifies the sequence number for the AS-path list. If you do not specify a sequence number, the software numbers in increments of 5, beginning with number 5. The software interprets the entries in an AS-path list in numerical order, beginning with the lowest sequence number.

The `deny` and `permit` parameters specify the action the software takes if the AS-path list for a route matches a match clause in this ACL. To configure the AS-path match clauses in a route map, use the match as-path command.

The `regular-expression` parameter specifies the AS path information you want to permit or deny to routes that match any of the match clauses within the ACL. You can enter a specific AS number or use a regular expression.

The `neighbor` command uses the `filter-list` parameter to apply the AS-path ACL to the neighbor.

Using regular expressions
Use a regular expression for the `as-path` parameter to specify a single character or multiple characters as a filter pattern. If the AS-path matches the pattern specified in the regular expression, the filter evaluation is true; otherwise, the evaluation is false.

You can also include special characters that influence the way the software matches the AS-path against the filter value.

To filter on a specific single-character value, enter the character for the `as-path` parameter. For example, to filter on AS-paths that contain the letter "z", enter the following command:

```
device(config-bgp)# ip as-path access-list acl1 permit z
```

To filter on a string of multiple characters, enter the characters in brackets. For example, to filter on AS-paths that contain "x", "y", or "z", enter the following command:

```
device(config-bgp)# ip as-path access-list acl1 permit [xyz]
BGP4 Special characters

When you enter a single-character expression or a list of characters, you also can use the special characters listed in "Using regular expressions." The description for each character includes an example. Some special characters must be placed in front of the characters they control and others must be placed after the characters they control. The examples show where to place the special character.

TABLE 51 BGP4 special characters for regular expressions

<table>
<thead>
<tr>
<th>Character</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>The period matches on any single character, including a blank space. For example, the following regular expression matches for "aa", "ab", "ac", and so on, but not just "a".</td>
</tr>
<tr>
<td>*</td>
<td>The asterisk matches on zero or more sequences of a pattern. For example, the following regular expression matches on an AS-path that contains the string "1111" followed by any value:</td>
</tr>
<tr>
<td>+</td>
<td>The plus sign matches on one or more sequences of a pattern. For example, the following regular expression matches on an AS-path that contains a sequence of "g"s, such as "deg", "degg", "deggg", and so on:</td>
</tr>
<tr>
<td>?</td>
<td>The question mark matches on zero occurrences or one occurrence of a pattern. For example, the following regular expression matches on an AS-path that contains "dg" or "deg":</td>
</tr>
<tr>
<td>^</td>
<td>A caret (when not used within brackets) matches on the beginning of an input string. For example, the following regular expression matches on an AS-path that begins with "3":</td>
</tr>
<tr>
<td>$</td>
<td>A dollar sign matches on the end of an input string. For example, the following regular expression matches on an AS-path that ends with "deg":</td>
</tr>
<tr>
<td>_</td>
<td>An underscore matches on one or more of the following:</td>
</tr>
<tr>
<td>[</td>
<td>Square brackets enclose a range of single-character patterns. For example, the following regular expression matches on an AS-path that contains "1", "2", "3", "4", or "5":</td>
</tr>
</tbody>
</table>
When using regular expressions within BGP4, you can use the following symbols:

- `^` - The caret matches any characters except the ones in the brackets. For example, the following regular expression matches on an AS-path that does not contain "1", "2", "3", "4", or "5":
 \[^1-5\]

- `-` - The hyphen separates the beginning and ending of a range of characters. A match occurs if any of the characters within the range is present. Refer to the example above.

A vertical bar (sometimes called a pipe or a “logical or”) separates two alternative values or sets of values. The AS-path can match one or the other value. For example, the following regular expression matches on an AS-path that contains either "abc" or "defg":

```
(abc)|(defg)
```

NOTE
The parentheses group multiple characters to be treated as one value. Refer to the following row for more information about parentheses.

- `()` - Parentheses allow you to create complex expressions. For example, the following complex expression matches on "abc", "abcabc", or "abcabcabcdefg", but not on "abcdefgdefg":

```
((abc)+)|((defg)?)
```

To filter a special character instead of using the special character as described in “Using regular expressions,” enter a backslash (\) in front of the character. For example, to filter on AS-path strings containing an asterisk, enter the asterisk portion of the regular expression as `*`.

```
device(config-bgp-router)# ip as-path access-list acl2 deny \*
```

To use the backslash as a string character, enter two slashes. For example, to filter on AS-path strings containing a backslash, enter the backslash portion of the regular expression as `\\`.

```
device(config-bgp-router)# ip as-path access-list acl2 deny \\
```

BGP4 filtering communities

You can filter routes received from BGP4 neighbors based on community names.

A community is an optional attribute that identifies the route as a member of a user-defined class of routes. Community names are arbitrary values made of two five-digit integers joined by a colon. You determine what the name means when you create the community name as a route attribute. Each string in the community name can be a number from 0 through 65535.

This format allows you to easily classify community names. For example, a common convention used in community naming is to configure the first string as the local AS and the second string as the unique community within that AS. Using this convention, communities 1:10, 1:20, and 1:30 can be easily identified as member communities of AS 1.

The device provides the following methods for filtering on community information:

- Community filters
- Community list ACLs
NOTE
The device cannot actively support community filters and community list ACLs at the same time. Use one method or the other but do not mix methods.

NOTE
Once you define a filter or ACL, the default action for communities that do not match a filter or ACL is deny. To change the default action to permit, configure the last filter or ACL entry as permit any any.

Community filters or ACLs can be referred to by match clauses in a route map.

Defining a community ACL

To configure community ACL 1, enter a command such as the following. This command configures a community ACL that permits routes that contain community 123:2.

```
device(config)# ip community-list 1 permit 123:2
```

Syntax: no ip community-list standard string [seq seq-value] deny | permit community-num

Syntax: no ip community-list standard string [seq seq-value] deny | permit community-num | regular-expression

The string parameter specifies the ACL name. (If you enter a number, the CLI interprets the number as a text string.)

The standard or extended parameter specifies whether you are configuring a standard or extended community ACL. The difference between standard and extended communities is that a standard community ACL does not support regular expressions and an extended one does.

The seq seq-value parameter is optional and specifies the sequence number for the community list. You can configure up to 199 entries in a community list. If you do not specify a sequence number, the software numbers the entries in increments of 5, beginning with number 5. The software interprets the entries in a community list in numerical order, beginning with the lowest sequence number.

The deny and permit parameters specify the action the software takes if a route community list matches a match clause in this ACL. To configure the community-list match clauses in a route map, use the match community command.

The community-num parameter specifies the community type or community number. This parameter can have the following values:

- num:num - A specific community number
- internet - The Internet community
- no-export - The community of sub-autonomous systems within a confederation. Routes with this community can be exported to other sub-autonomous systems within the same confederation but cannot be exported outside the confederation to other autonomous systems or otherwise sent to EBGP neighbors.
- local-as - The local sub-AS within the confederation. Routes with this community can be advertised only within the local subAS.
- no-advertise - Routes with this community cannot be advertised to any other BGP4 devices at all.

The regular-expression parameter specifies a regular expression for matching on community names.

To use a community-list filter, use route maps with the match community parameter.

Defining and applying IP prefix lists

An IP prefix list specifies a list of networks. When you apply an IP prefix list to a neighbor, the device sends or receives only a route whose destination is in the IP prefix list. The software interprets the prefix lists in order, beginning with the lowest sequence number.
To configure an IP prefix list and apply it to a neighbor, enter commands such as the following.

```
device(config)# ip prefix-list Routesfor20 permit 10.20.0.0/24
device(config)# router bgp
device(config-bgp)# neighbor 10.10.10.1 prefix-list Routesfor20 out
```

These commands configure an IP prefix list named Routesfor20, which permits routes to network 10.20.0.0/24. The `neighbor` command configures the device to use IP prefix list Routesfor20 to determine which routes to send to neighbor 10.10.10.1. The device sends routes that go to 10.20.x.x to neighbor 10.10.10.1 because the IP prefix list explicitly permits these routes to be sent to the neighbor.

Syntax:

```
[no] ip prefix-list name [ seq seq-value ] [ description string ] deny | permit network-addr / mask-bits [ ge ge-value ] [ le le-value ]
```

The `name` parameter specifies the prefix list name. Use this name when applying the prefix list to a neighbor.

The `description string` parameter is a text string describing the prefix list.

The `seq seq-value` parameter is optional and specifies the sequence number of the IP prefix list. If you do not specify a sequence number, the software numbers the entries in increments of 5, beginning with prefix list entry 5. The software interprets the prefix list entries in numerical order, beginning with the lowest sequence number.

The `deny` and `permit` parameters specify the action the software takes if a neighbor route is in this prefix list.

The `network-addr` and `mask-bits` parameters specify the network number and the number of bits in the network mask.

You can specify a range of prefix length for prefixes that are more specific than `network-addr` and `mask-bits`.

The prefix-list matches only on this network unless you use the `ge ge-value` or `le le-value` parameters.

- If you specify only `ge ge-value`, the mask-length range is from `ge-value` to 32.
- If you specify only `le le-value`, the mask-length range is from length to `le-value`.

The `ge-value` or `le-value` you specify must meet the following condition:

```
length < ge-value <= le-value <= 32
```

If you do not specify `ge ge-value` or `le le-value`, the prefix list matches only on the exact network prefix you specified with the `network-addr` and `mask-bits` parameters.

In the following example, only default routes are allowed:

```
device(config)# ip prefix-list match-default-routes permit 0.0.0.0/0
```

In the following example, only default routes are denied:

```
device(config)# ip prefix-list match-default-routes deny 0.0.0.0/0
```

In the following example, all routes are allowed, including all subnet masks and all prefixes:

```
device(config)# ip prefix-list match-all-routes permit 0.0.0.0/0 le 32
```

NOTE

Be careful to determine exactly which routes you want to allow using a prefix list.

Defining neighbor distribute lists

A neighbor distribute list is a list of BGP4 address filters or ACLs that filter the traffic to or from a neighbor.
To configure a distribute list that uses ACL 1, enter a command such as the following.

```
device(config-bgp)# neighbor 10.10.10.1 distribute-list 1 in
```

This command configures the device to use ACL 1 to select the routes that the device will accept from neighbor 10.10.10.1.

Syntax: `[no] neighbor ip-addr distribute-list name-or-num in | out`

The **ip-addr** parameter specifies the neighbor.

The **name-or-num** parameter specifies the name or number of a standard or named ACL.

The **in** and **out** parameters specify whether the distribute list applies to inbound or outbound routes:

- **in** - controls the routes the device will accept from the neighbor.
- **out** - controls the routes sent to the neighbor.

Defining route maps

A route map is a named set of match conditions and parameter settings that the device can use to modify route attributes and to control redistribution of the routes into other protocols. A route map consists of a sequence of instances. If you think of a route map as a table, an instance is a row in that table. The device evaluates a route according to route map instances in ascending numerical order. The route is first compared against instance 1, then against instance 2, and so on. When a match is found, the device stops evaluating the route.

Route maps can contain match clauses and **set** statements. Each route map contains a **permit** or **deny** action for routes that match the match clauses:

- If the route map contains a **permit** action, a route that matches a match statement is permitted; otherwise, the route is denied.
- If the route map contains a **deny** action, a route that matches a match statement is denied.
- If a route does not match any match statements in the route map, the route is denied. This is the default action. To change the default action, configure the last match statement in the last instance of the route map to **permit any any**.
- If there is no match statement, the software considers the route to be a match.
- For route maps that contain address filters, AS-path filters, or community filters, if the action specified by a filter conflicts with the action specified by the route map, the route map action takes precedence over the filter action.

If the route map contains set clauses, routes that are permitted by the route map match statements are modified according to the set clauses.

Match statements compare the route against one or more of the following:

- The route BGP4 MED (metric)
- A sequence of AS-path filters
- A sequence of community filters
- A sequence of address filters
- The IP address of the next hop device
- The route tag
- For OSPF routes only, the route type (internal, external type-1, or external type-2)
- An AS-path ACL
- A community ACL
- An IP prefix list
- An IP ACL
For routes that match all of the match statements, the route map set clauses can perform one or more of the following modifications to the route attributes:

- Prepend AS numbers to the front of the route AS-path. By adding AS numbers to the AS-path, you can cause the route to be less preferred when compared to other routes based on the length of the AS-path.
- Add a user-defined tag an automatically calculated tag to the route.
- Set the community attributes.
- Set the local preference.
- Set the MED (metric).
- Set the IP address of the next-hop device.
- Set the origin to IGP or INCOMPLETE.
- Set the weight.
- Set a BGP4 static network route.

When you configure parameters for redistributing routes into BGP4, one of the optional parameters is a route map. If you specify a route map as one of the redistribution parameters, the device matches the route against the match statements in the route map. If a match is found and if the route map contains set clauses, the device sets the attributes in the route according to the set clauses.

To create a route map, you define instances of the map by a sequence number.

To define a route map, use the procedures in the following sections.

Entering the route map into the software

To add instance 1 of a route map named “GET_ONE” with a permit action, enter the following command.

```
device(config)# route-map GET_ONE permit 1
device(config-routemap GET_ONE)#
```

Syntax: `[no] route-map map-name permit | deny num`

As shown in this example, the command prompt changes to the route map level. You can enter the match and set clauses at this level.

The `map-name` is a string of characters that names the map. Map names can be up to 80 characters in length.

The `permit` and `deny` parameters specify the action the device will take if a route matches a match statement:

- If you specify `deny`, the device does not advertise or learn the route.
- If you specify `permit`, the device applies the match and set clauses associated with this route map instance.

The `num` parameter specifies the instance of the route map you are defining.

To delete a route map, enter a command such as the following. When you delete a route map, all the permit and deny entries in the route map are deleted.

```
device(config)# no route-map Map1
```

This command deletes a route map named Map1. All entries in the route map are deleted.

To delete a specific instance of a route map without deleting the rest of the route map, enter a command such as the following.

```
device(config)# no route-map Map1 permit 10
```

This command deletes the specified instance from the route map but leaves the other instances of the route map intact.
Specifying the match conditions

Use the following command to define the match conditions for instance 1 of the route map GET_ONE. This instance compares the route updates against BGP4 address filter 11.

```
device(config-routemap GET_ONE)# match address-filters 11
```

Syntax:

```
[no] match [ as-path name ] [ community acl exact-match ] [ extcommunity acl ] [ ip address acl | prefix-list string ] [ ip route-source acl | prefix name | metric num ] [ next-hop address-filter-list ] [ route-type internal | external-type1 | external-type2 ] [ level-1 | level-2 | level-1-2 ] [ tag tag-value ] | interface interface interface interface .. protocol bgp static-networkprotocol bgp externalprotocol bgp internal
```

The `as-path` parameter specifies an AS-path ACL. You can specify up to five AS-path ACLs. To configure an AS-path ACL, use the `ip as-path access-list` command.

The `community` parameter specifies a community ACL.

NOTE

The ACL must already be configured.

The `community acl exact-match` parameter matches a route if (and only if) the route community attributes field contains the same community numbers specified in the match statement.

The `extcommunity acl` parameter identifies a set of sites and VRFs that may receive routes that are tagged with the configured route target and site of origin.

The `ip address, next-hop acl-num, prefix-list, and string` parameters specify an ACL or IP prefix list. Use this parameter to match based on the destination network or next-hop gateway. To configure an IP ACL for use with this command, use the `ip access-list` command. To configure an IP prefix list, use the `ip prefix-list` command.

The `ip route-source acl and prefix name` parameters match based on the source of a route (the IP address of the neighbor from which the device learned the route).

The `metric num` parameter compares the route MED (metric) to the specified value.

The `next-hop address-filter-list` parameter compares the IP address of the route next-hop to the specified IP address filters. The filters must already be configured.

The `route-type internal, external-type1, and external-type2` parameters apply only to OSPF routes. These parameters compare the route type to the specified value.

The `level-1` parameter compares IS-IS routes only with routes within the same area. The `level-2` parameter compares IS-IS routes only with routes in different areas, but within a domain. The `level-1-2` parameter compares IS-IS routes with routes in the same area and in different areas, but within a domain.

The `tag tag-value` parameter compares the route tag to the specified tag value.

The `protocol bgp static-network` parameter matches on BGP4 static network routes.

The `protocol bgp external` parameter matches on eBGP (external) routes.

The `protocol bgp internal` parameter matches on iBGP (internal) routes.

Match examples using ACLs

The following sections contain examples of how to configure route maps that include match statements that match on ACLs.

Filtering

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06
Matching based on AS-path ACL
To construct a route map that matches based on AS-path ACL 1, enter the following commands.

```
device(config)# route-map PathMap permit 1
device(config-routemap PathMap)# match as-path 1
```

Syntax: [no] match as-path string
The string parameter specifies an AS-path ACL and can be a number from 1 through 199. You can specify up to five AS-path ACLs.

Matching based on community ACL
To construct a route map that matches based on community ACL 1, enter the following commands.

```
device(config)# ip community-list 1 permit 123:2
device(config)# route-map CommMap permit 1
device(config-routemap CommMap)# match community 1
```

Syntax: [no] match community string
The string parameter specifies a community list ACL. To configure a community list ACL, use the ip community-list command.

Matching based on extcommunity ACL
To construct a route map that matches based on BGP Extended Community attributes in the incoming BGP routes, enter the following commands.

```
device(config)# ip extcommunity-list 1 permit rt 1:3 soo 1:1
device(config)# route-map ExtCommMap permit 20
device(config-routemap ExtCommMap)# match community 1
```

Syntax: [no] match extcommunity string
The string parameter specifies a community list ACL. To configure a community list ACL, use the ip community-list command.

Matching based on destination network
You can use the results of an IP ACL or an IP prefix list as the match condition.

To construct a route map that matches based on destination network, enter commands such as the following.

```
device(config)# route-map NetMap permit 1
device(config-routemap NetMap)# match ip address 1
```

Syntax: [no] match ip address ACL-name-or-num
Syntax: [no] match ip address prefix-list name
The ACL-name-or-num parameter with the first command specifies an IP ACL and can be a number from 1 through 199 or the ACL name if it is a named ACL. Multiple ACLs may be added when separated by spaces. To configure an IP ACL, use the ip access-list or access-list command.

The name parameter with the second command specifies an IP prefix list name.

Matching based on next-hop device
You can use the results of an IP ACL or an IP prefix list as the match condition.
To construct a route map that matches based on the next-hop device, enter commands such as the following.

```plaintext
device(config)# route-map HopMap permit 1
device(config-routemap HopMap)# match ip next-hop 2
```

Syntax: `[no] match ip next-hop string`
Syntax: `[no] match ip next-hop prefix-list name`

The `string` parameter with the first command specifies an IP ACL and can be a number from 1 through 199 or the ACL name if it is a named ACL. To configure an IP ACL, use the `ip access-list` or `access-list` command.

The `name` parameter with the second command specifies an IP prefix list name.

Matching based on the route source

To match a BGP4 route based on its source, use the `match ip route-source` command.

```plaintext
device(config)# access-list 10 permit 192.168.6.0 0.0.0.255
device(config)# route-map bgp1 permit 1
device(config-routemap bgp1)# match ip route-source 10
```

The first command configures an IP ACL that matches on routes received from 192.168.6.0/24. The remaining commands configure a route map that matches on all BGP4 routes advertised by the BGP4 neighbors whose addresses match addresses in the IP prefix list. You can add a set clause to change a route attribute in the routes that match. You also can use the route map as input for other commands, such as the `neighbor` and `network` commands and some show commands.

Syntax: `[no] match ip route-source ACL | prefix-list name`

The `ACL` and `prefix-list name` parameters specify the name or ID of an IP ACL, or an IP prefix list.

Matching on routes containing a specific set of communities

The device can match routes based on the presence of a community name or number in a route. To match based on a set of communities, configure a community ACL that lists the communities, then compare routes against the ACL.

```plaintext
device(config)# ip community-list standard std_1 permit 12:34 no-export
device(config)# route-map bgp2 permit 1
device(config-routemap bgp2)# match community std_1 exact-match
```

The first command configures a community ACL that contains community number 12:34 and community name no-export. The remaining commands configure a route map that matches the community attributes field in BGP4 routes against the set of communities in the ACL. A route matches the route map only if the route contains all the communities in the ACL and no other communities.

Syntax: `[no] match community ACL exact-match`

The `ACL` parameter specifies the name of a community list ACL. You can specify up to five ACLs. Separate the ACL names or IDs with spaces.

Here is another example.

```plaintext
device(config)# ip community-list standard std_2 permit 23:45 56:78
device(config)# route-map bgp3 permit 1
device(config-routemap bgp3)# match community std_1 std_2 exact-match
```

These commands configure an additional community ACL, `std_2`, that contains community numbers 23:45 and 57:68. Route map bgp3 compares each BGP4 route against the sets of communities in ACLs `std_1` and `std_2`. A BGP4 route that contains either but not both sets of communities matches the route map. For example, a route containing communities 23:45 and 57:68 matches. However, a route containing communities 23:45, 57:68 and 12:34, or communities 23:45, 57:68, 12:34, and no-export does not match. To
match, the route communities must be the same as those in exactly one of the community ACLs used by the match community statement.

Matching based on BGP4 static network

The match option has been added to the route-map command that allows you to match on a BGP4 static network. In the following example, the route-map is configured to match on the BGP4 static network. The device is then configured to advertise to the core BGP4 peer (IP address 192.168.6.0) only the BGP4 static routes and nothing else.

```
device(config)# route-map policygroup3 permit 10
device(config-router-map policygroup3)# match protocol bgp static-network
device(config-router-map policygroup3)# set local-preference 150
device(config-router-map policygroup3)# set community no-export
device(config-router-map policygroup3)# exit
device(config)# router bgp
device(config-bgp)# neighbor 192.168.6.0 route-map out policymap3
```

Syntax: [no] match protocol bgp [external | internal | static-network]

The match protocol bgp external option will match the eBGP routes.

The match protocol bgp internal option will match the iBGP routes.

The match protocol bgp static-network option will match the static-network BGP4 route, applicable at BGP4 outbound policy only.

Matching based on interface

The match option has been added to the route-map command that distributes any routes that have their next hop out one of the interfaces specified. This feature operates with the following conditions:

- The match interface option can only use the interface name (for example ethernet 1/1/2) and not the IP address as an argument.
- The match interface option is only effective during redistribution and does not apply for other route map usage such as: bgp outbound route update policy.
- The match interface option can be applied to other types of redistribution such as redistributing OSPF routes to BGP4, or filtering out all OSPF routes that point to a specific interface.

To configure the match-interface option, use the following command.

```
device(config)# route-map test-route permit 99
device(config-router-map test-route)# match interface ethernet 1/1 ethernet 3/2
device(config-router-map test-route)# exit
```

Syntax: [no] match interface interface interface ...

The interface variable specifies the interface that you want to use with the match interface command. Up to 5 interfaces of the following types can be specified:

- ethernet slot/port
- loopback loopback-number
- null0
- tunnel tunnel-ID
- ve ve-ID
Setting parameters in the routes

Use the following command to define a set clause that prepends an AS number to the AS path on each route that matches the corresponding match statement.

```
device(config-routemap GET_ONE)# set as-path prepend 65535
```

Syntax:
```
[no] set [ as-path [ prepend as-num,as-num,... ] ] | [ automatic-tag ] | [ comm-list acl delete ] | [ community num : num | num | additive | local-as | no-advertise | no-export ] | [ dampening [ half-life reuse suppress max-suppress-time ] ] | [ ip next hop ip-addr ] | [ ip next-hop peer-address ] | [ local-preference num ] | [ metric [ + | - ] num | none ] | [ metric-type type-1 | type-2 ] | [ external [ metric-type internal ] ] | [ next-hop ip-addr ] | [ origin igp | incomplete ] | [ tag ] | [ weight num ]
```

The `as-path prepend num,num,...` parameter adds the specified AS numbers to the front of the AS-path list for the route. The range of `num` values is 1 - 65535 for two-byte ASNs and 1 - 4294967295 if AS4s have been enabled.

The `automatic-tag` parameter calculates and sets an automatic tag value for the route.

NOTE
This parameter applies only to routes redistributed into OSPF.

The `comm-list` parameter deletes a community from the community attributes field for a BGP4 route.

The `community` parameter sets the community attribute for the route to the number or well-known type you specify.

The `dampening` parameter sets route dampening parameters for the route. The `half-life` parameter specifies the number of minutes after which the route penalty becomes half its value. The `reuse` parameter specifies how low a route penalty must become before the route becomes eligible for use again after being suppressed. The `suppress` parameter specifies how high a route penalty can become before the device suppresses the route. The `max-suppress-time` parameter specifies the maximum number of minutes that a route can be suppressed regardless of how unstable it is.

The `ip next hop ip-addr` parameter sets the next-hop IP address for route that matches a match statement in the route map.

The `ip next-hop peer-address` parameter sets the BGP4 next hop for a route to the neighbor address.

The `local-preference num` parameter sets the local preference for the route. You can set the preference to a value from 0 through 4294967295.

The `metric [+ | -] num | none` parameter sets the MED (metric) value for the route. The default MED value is 0. You can set the preference to a value from 0 through 4294967295.

- `set metric num` - Sets the metric for the route to the number you specify.
- `set metric + num` - Increases route metric by the number you specify.
- `set metric - num` - Decreases route metric by the number you specify.
- `set metric none` - Removes the metric from the route (removes the MED attribute from the BGP4 route).

The `metric-type type-1` and `type-2` parameters change the metric type of a route redistributed into OSPF.

The `metric-type internal` parameter sets the route MED to the same value as the IGP metric of the BGP4 next-hop route. The parameter does this when advertising a BGP4 route to an EBGP neighbor.

The `next-hop ip-addr` parameter sets the IP address of the route next-hop device.

The `origin igp | incomplete` parameter sets the route origin to IGP or INCOMPLETE.

The `tag tag-value` parameter sets the route tag. You can specify a tag value from 0 through 4294967295.

NOTE
This parameter applies only to routes redistributed into OSPF.
NOTE
You also can set the tag value using a table map. The table map changes the value only when the device places the route in the IP route table instead of changing the value in the BGP4 route table.

The weight num parameter sets the weight for the route. The range for the weight value is 0 through 4294967295.

Setting a BGP4 route MED to equal the next-hop route IGP metric
To set a route’s MED to the same value as the IGP metric of the BGP4 next-hop route, when advertising the route to a neighbor, enter commands such as the following.

```device(config)# access-list 1 permit 192.168.9.0 0.0.0.255
device(config)# route-map bgp4 permit 1
device(config-routemap bgp4)# match ip address 1
device(config-routemap bgp4)# set metric-type internal```

The first command configures an ACL that matches on routes with destination network 192.168.9.0. The remaining commands configure a route map that matches on the destination network in ACL 1, then sets the metric type for those routes to the same value as the IGP metric of the BGP4 next-hop route.

Syntax: no set metric-type internal

Setting the next-hop of a BGP4 route
To set the next-hop address of a BGP4 route to a neighbor address, enter commands such as the following.

```device(config)# route-map bgp5 permit 1
device(config-routemap bgp5)# match ip address 1
device(config-routemap bgp5)# set ip next-hop peer-address```

These commands configure a route map that matches on routes whose destination network is specified in ACL 1, and sets the next hop in the routes to the neighbor address (inbound filtering) or the local IP address of the BGP4 session (outbound filtering).

Syntax: [no] set ip next-hop peer-address

The value that the software substitutes for peer-address depends on whether the route map is used for inbound filtering or outbound filtering:

- When you use the set ip next-hop peer-address command in an inbound route map filter, peer-address substitutes for the neighbor IP address.
- When you use the set ip next-hop peer-address command in an outbound route map filter, peer-address substitutes for the local IP address of the BGP4 session.

NOTE
You can use this command for a peer group configuration.

Deleting a community from a BGP4 route
To delete a community from a BGP4 route’s community attributes field, enter commands such as the following.

```device(config)# ip community-list standard std_3 permit 12:99 12:86
device(config)# route-map bgp6 permit 1
device(config-routemap bgp6)# match ip address 1
device(config-routemap bgp6)# set comm-list std_3 delete```

The first command configures a community ACL containing community numbers 12:99 and 12:86. The remaining commands configure a route map that matches on routes whose destination network is specified in ACL 1, and deletes communities 12:99 and 12:86.
12:86 from those routes. The route does not need to contain all the specified communities in order for them to be deleted. For example, if a route contains communities 12:86, 33:44, and 66:77, community 12:86 is deleted.

**Syntax:** [no] set comm-list **ACL** delete

The ACL parameter specifies the name of a community list ACL.

**Using a table map to set the tag value**

Route maps that contain set statements change values in routes when the routes are accepted by the route map. For inbound route maps (route maps that filter routes received from neighbors), the routes are changed before they enter the BGP4 route table.

For tag values, if you do not want the value to change until a route enters the IP route table, you can use a table map to change the value. A table map is a route map that you have associated with the IP routing table. The device applies the set statements for tag values in the table map to routes before adding them to the route table.

To configure a table map, you first configure the route map, then identify it as a table map. The table map does not require separate configuration. You can have one table map.

**NOTE**

Use table maps only for setting the tag value. Do not use table maps to set other attributes. To set other route attributes, use route maps or filters.

To create a route map and identify it as a table map, enter commands such as following. These commands create a route map that uses an address filter. For routes that match the IP prefix list filter, the route map changes the tag value to 100 and is then considered as a table map. This route map is applied only to routes that the device places in the IP route table. The route map is not applied to all routes. This example assumes that IP prefix list p11 has already been configured.

```bash
device(config)# route-map TAG_IP permit 1
device(config-routemap TAG_IP)# match ip address prefix-list p11
device(config-routemap TAG_IP)# set tag 100
device(config-routemap TAG_IP)# router bgp
device(config-bgp)# table-map TAG_IP
```

**Configuring cooperative BGP4 route filtering**

By default, the device performs all filtering of incoming routes locally, on the device itself. You can use cooperative BGP4 route filtering to cause the filtering to be performed by a neighbor before it sends the routes to the device. Cooperative filtering conserves resources by eliminating unnecessary route updates and filter processing. For example, the device can send a deny filter to a neighbor, which the neighbor uses to filter out updates before sending them to the device. The neighbor saves the resources it would otherwise use to generate the route updates, and the device saves the resources it would use to filter out the routes.

When you enable cooperative filtering, the device advertises this capability in its Open message to the neighbor when initiating the neighbor session. The Open message also indicates whether the device is configured to send filters, receive filters, or both, and the types of filters it can send or receive. The device sends the filters as Outbound Route Filters (ORFs) in route refresh messages.

To configure cooperative filtering, perform the following tasks on the device and on the BGP4 neighbor:

- Configure the filter.
NOTE
Cooperative filtering is currently supported only for filters configured using IP prefix lists.

• Apply the filter as an inbound filter to the neighbor.
• Enable the cooperative route filtering feature on the device. You can enable the device to send ORFs to the neighbor, to receive ORFs from the neighbor, or both. The neighbor uses the ORFs you send as outbound filters when it sends routes to the device. Likewise, the device uses the ORFs it receives from the neighbor as outbound filters when sending routes to the neighbor.
• Reset the BGP4 neighbor session to send and receive ORFs.
• Perform these steps on the other device.

NOTE
If the device has inbound filters, the filters are still processed even if equivalent filters have been sent as ORFs to the neighbor.

Enabling cooperative filtering
To configure cooperative filtering, enter commands such as the following.

```
device(config)# ip prefix-list Routesfrom10234 deny 10.20.0.0/24
device(config)# ip prefix-list Routesfrom10234 permit 0.0.0.0/0 le 32
device(config)# router bgp
device(config-bgp)# neighbor 10.2.3.4 prefix-list Routesfrom1234 in
device(config-bgp)# neighbor 10.2.3.4 capability orf prefixlist send
```

The first two commands configure statements for the IP prefix list Routesfrom1234. The first command configures a statement that denies routes to 10.20.0.0/24. The second command configures a statement that permits all other routes. Once you configure an IP prefix list statement, all routes not explicitly permitted by statements in the prefix list are denied.

The next two commands change the CLI to the BGP4 configuration level, then apply the IP prefix list to neighbor 10.2.3.4. The last command enables the device to send the IP prefix list as an ORF to neighbor 10.2.3.4. When the device sends the IP prefix list to the neighbor, the neighbor filters out the 10.20.0.x routes from its updates to the device. This assumes that the neighbor is also configured for cooperative filtering.

Syntax: `[no] neighbor ip-addr | peer-group-name capability orf prefixlist [ send | receive ]`

The `ip-addr` | `peer-group-name` parameters specify the IP address of a neighbor or the name of a peer group of neighbors.

The `send` | `receive` parameters specify the support you are enabling:

• `send` - The device sends the IP prefix lists to the neighbor.
• `receive` - The device accepts filters from the neighbor.

If you do not specify the capability, both capabilities are enabled.

The `prefixlist` parameter specifies the type of filter you want to send to the neighbor.

NOTE
The current release supports cooperative filtering only for filters configured using IP prefix lists.

Sending and receiving ORFs
Cooperative filtering affects neighbor sessions that start after the filtering is enabled, but do not affect sessions that are already established.
To activate cooperative filtering, reset the session with the neighbor. This is required because the cooperative filtering information is exchanged in Open messages during the start of a session.

To place a prefix-list change into effect after activating cooperative filtering, perform a soft reset of the neighbor session. A soft reset does not end the current session, but sends the prefix list to the neighbor in the next route refresh message.

**NOTE**
Make sure cooperative filtering is enabled on the device and on the neighbor before you send the filters.

To reset a neighbor session and send ORFs to the neighbor, enter a command such as the following.

```
device# clear ip bgp neighbor 10.2.3.4
```

This command resets the BGP4 session with neighbor 10.2.3.4 and sends the ORFs to the neighbor. If the neighbor sends ORFs to the device, the device accepts them if the send capability is enabled.

To perform a soft reset of a neighbor session and send ORFs to the neighbor, enter a command such as the following.

```
device# clear ip bgp neighbor 10.2.3.4 soft in prefix-list
```

**Syntax:** clear ip bgp neighbor ip-addr [ soft in prefix-filter | soft in prefix-list ]

If you use the soft in prefix-filter parameter, the device sends the updated IP prefix list to the neighbor as part of its route refresh message to the neighbor.

**NOTE**
If the device or the neighbor is not configured for cooperative filtering, the command sends a normal route refresh message.

### Displaying cooperative filtering information

You can display the following cooperative filtering information:

- The cooperative filtering configuration on the device.
- The ORFs received from neighbors.

To display the cooperative filtering configuration on the device, enter a command such as the following.

```
device# show ip bgp neighbor 10.10.10.1
```

```
1 IP Address: 10.10.10.1, AS: 65200 (IBGP), RouterID: 10.10.10.1
 State: ESTABLISHED, Time: 0h0m7s, KeepAliveTime: 60, HoldTime: 180
 RefreshCapability: Received
 CooperativeFilteringCapability: Received
 Messages: Open Update KeepAlive Notification Refresh-Req
 Sent : 1 0 1 0 1
 Received: 1 0 1 0 1
 Last Update Time: NLRI Withdraw NLRI Withdraw
 Tx: --- --- Rx: --- ---
 Last Connection Reset Reason:Unknown
 Notification Sent: Unspecified
 Notification Received: Unspecified
 TCP Connection state: ESTABLISHED
 Byte Sent: 110, Received: 110
 Local host: 10.10.10.2, Local Port: 8138
 Remote host: 10.10.10.1, Remote Port: 179
 ISentSeq: 460 SendNext: 571 TotUnAck: 0
 TotSent: 111 Retrans: 0 UnAckSeq: 571
 IRcvSeq: 7349 RcvNext: 7460 SendWnd: 16384
 TotalRcv: 111 DupliRcv: 0 RcvWnd: 16384
 SendQue: 0 RcvQue: 0 CngstWnd: 5325
```

**Syntax:** show ip bgp neighbor ip-addr
To display the ORFs received from a neighbor, enter a command such as the following:

```
device# show ip bgp neighbor 10.10.10.1 received prefix-filter
ip prefix-list 10.10.10.1: 4 entries
 seq 5 permit 10.10.0.0/16 ge 18 le 28
 seq 10 permit 10.20.10.0/24
 seq 15 permit 10.0.0.0/8 le 32
 seq 20 permit 10.10.0.0/16 ge 18
```

Syntax: `show ip bgp neighbor ip-addr received prefix-filter`

Four-byte Autonomous System Numbers (AS4)

This section describes the reasons for enabling four-byte autonomous system numbers (AS4s). AS4s are supported by default. You can specify and view AS4s by default and using the enable facility described in this section. However, not all devices in a network are always capable of utilizing AS4s. The act of enabling them on the local device initiates a facility for announcing the capability and negotiating its use with neighbors. If you do not enable AS4s on a device, other devices do not know that this device is sending them.

The system uses a hierarchy to prioritize the utilization of the AS4 capability. The prioritization depends on the CLI configuration commands. AS4s can be enabled and configured at the level of a neighbor, a peer group, or globally for the entire device, according to the following bottom-up hierarchy:

- If a neighbor has no configuration for AS4s but it belongs to a peer group, the neighbor uses the configuration from the peer group. For example, if you configure a neighbor but do not include a specification for AS4s, one of the following applies:
  - The neighbor uses the AS4 configuration for a peer group if it belongs to a peer group.
  - The neighbor uses the device configuration if it does not belong to a peer group or the peer group has no AS4 configuration.

- If a peer group has no configuration for AS4s, it can use the global configuration of the device. If the device has no configuration for AS4s, then a neighbor or peer group without a configuration for AS4s use the device default--no announcement or negotiation of AS4s.

- If a neighbor belongs to peer group with an AS4 configuration but you want that neighbor to be disabled or have a different AS4 configuration, the neighbor AS4 configuration overrides the peer group configuration. For example, you can ensure that neighbor has no AS4 announcement and negotiation activity even though the peer group is enabled for AS4 capability.

**NOTE**
The configuration for AS4 can be enabled, disabled, or can have no explicit configuration.

CLI commands allow you to disable AS4s on an entity whose larger context has AS4s enabled. For example, you can use a CLI command to disable AS4s on a neighbor that is a member of a peer group that is enabled for AS4s.

Normally, AS4s are sent only to a device, peer group, or neighbor that is similarly configured for AS4s. If a AS4 is configured for a local-autonomous systemS, the system signals this configuration by sending AS_TRANS in the My Autonomous System field of the OPEN message. However, if the AS4 capability for a neighbor is disabled, the local device does not send the four-byte Autonomous System number capability to the neighbor.

Enabling AS4 numbers

This section describes how to enable the announcement and negotiation of AS4s and describes the different types of notation that you can use to represent a AS4.
You can enable AS4s on a device, a peer group, and a neighbor. For global configuration, the `capability` command in the BGP4 configuration context enables or disables AS4 support. For a peer group or a neighbor, `capability` is a keyword for the `neighbor` command. In addition to enabling AS4s for a neighbor or a peer group, you can also use the combination of the `capability` keyword and the optional `enable` or `disable` keyword to disable this feature in a specific case where the AS4s are enabled for a larger context. The Neighbor configuration of AS4s section illustrates this capability.

**Global AS4 configuration**

To enable AS4s globally, use the `capability` command in the BGP4 configuration context as shown.

```
device(config-bgp)# capability as4 enable
```

Syntax: `[no] capability as4 enable | disable`

The `no` form of the `capability` command deletes the announcement and negotiation configuration of AS4s (if it has been enabled) at the global level. Using the regular form of the command with the `disable` keyword has the same effect on the global configuration. Disabling or using the `no` form of the command does not affect the configuration at the level of a peer or neighbor.

The consequences of choosing between the `enable` or `disable` keyword are reflected in the output of the `show running configuration` command.

**Peer group configuration of AS4s**

To enable AS4s for a peer group, use the `capability` keyword with the `neighbor` command in the BGP4 configuration context, as the following example for the Peergroup_1 peer group illustrates.

```
device(config-bgp)# neighbor Peergroup_1 capability as4 enable
```

Syntax: `[no] neighbor peer-group-name capability as4 enable | disable`

The `no` form of the `neighbor` command along with the `capability` and `as4` keywords disables the announcement and negotiation of AS4s in the named peer group. Using the regular form of the command with the `disable` keyword has the same effect on the neighbor configuration.

The consequences using the `enable` or `disable` keywords are reflected in the output of the `show running configuration` command. However, if the peer group configuration omits an explicit AS4 argument, the `show running configuration` output will not contain AS4 information.

**Neighbor configuration of AS4s**

To enable AS4s for a neighbor, use the `capability` and `as4` keywords with the `neighbor` command in the BGP4 configuration context, as the following example for IP address 1.1.1.1 illustrates.

```
device(config-bgp)# neighbor 1.1.1.1 capability as4 enable
```

Syntax: `[no] neighbor IPaddress capability as4 enable | disable`

The `no` form of the `neighbor` command with the `capability` and `as4` keywords deletes the neighbor-enable for AS4s.

The consequences of using the `enable` or `disable` keywords are reflected in the output of the `show running configuration` command. However, if the neighbor configuration omits an explicit AS4 argument, the `show running configuration` output will not contain AS4 information.

To disable AS4s on a particular neighbor within a peer group that is enabled for AS4s, enter a command similar to the following.

```
device(config-bgp)# neighbor 1.1.1.1 capability as4 disable
```
Specifying the local AS number

The local autonomous system number (ASN) identifies the autonomous system where the BGP4 device resides.

Normally, AS4s are sent only to a device, peer group, or neighbor that is similarly configured for AS4s. Typically, if you try to set up a connection from an AS4-enabled device to a device that processes only two-byte ASNs, the connection fails to come up unless you specify the reserved ASN 23456 as the local ASN to send to the far-end device.

To set the local autonomous system number, enter commands such as the following.

```
 device(config)# router bgp
 BGP4: Please configure 'local-as' parameter in order to enable BGP4.
 device(config-bgp)# local-as 100000
 device(config-bgp)# write memory
```

Syntax: [no] local-as num

The `num` parameter specifies a local ASN in the range 1 - 4294967295. No default exists for `num`. ASNs 64512 - 65535 are the well-known private BGP4 autonomous system numbers and are not advertised to the Internet community.

Route-map set commands and AS4s

You can prepend an AS4 number to an autonomous system path or make the autonomous system number a tag attribute for a route map as shown here.

```
 device(config-routemap test)# set as-path prepend 7701000
```

Syntax: [no] set as-path prepend num,num,... | tag

Use the no form of this command to remove the configuration.

**NOTE**
If the autonomous system path for a route map has prepended ASNs and you want to use the no form of the command to delete the configuration, you must include the prepended ASNs in the no set as-path entry. For example, if 70000 and 70001 have been prepended to a route map, enter no set as-path prepend 70000 70001. As a shortcut, in the configuration context of a particular route map, you can also copy and paste ASNs from the output of show commands, such as show route-map or show ip bgp route.

Use the prepend keyword to prepend one or more ASNs. The maximum number of ASNs that you can prepend is 16. The range for each ASN is 1 - 4294967295.

Entering the tag keyword sets the tag as an AS-path attribute.

You can specify a route target (rt) or a site of origin (soo) for an extended community, as shown in the following example.

```
 device(config-routemap test)# set extcommunity rt 7701000:10
```

Syntax: [no] set extcommunity rt asn:nn | ip-address:nn | soo asn:nn | ip-address:nn

The rt keyword specifies a route target in the form of a route ID. The route ID can be an ASN or IP address. The second part of the route ID is a user-specific numeric variable `nn`. The ASN can be a maximum of 4 bytes (in the range 1 - 4294967295). If you specify an AS4 or IP address, the `nn` variable is limited to a maximum length of 2 bytes. If the feature for announcing and negotiating AS4 is disabled, `nn` can be 4 bytes.

The soo keyword specifies a site or origin in the form of a route ID. The route ID can be an ASN4 or IP address. The second part of the route ID is a user-specific numeric variable `nn`. The AS4 can be a maximum of 4 bytes (in the range 1 - 4294967295). If you specify an AS4 or IP address, the `nn` variable is limited to a maximum length of 2 bytes. If the feature for announcing and negotiating AS4 is disabled, `nn` can be 4 bytes.
Clearing BGP4 routes to neighbors
You can clear BGP4 connections using the AS4 as an argument with the `clear ip bgp neighbor` command in the configuration context level of the CLI, as shown.

```
device(config)# clear ip bgp neighbor 80000
```

Syntax: `clear ip bgp neighbor all | ip-addr | peer-group-name | as-num | last-packet-with-error | notification-errors | [ soft [ in | out ] | soft-outbound ]`

The neighbor specification is either all, `ip-addr`, `peer-group-name`, or `as-num`. The `all` parameter specifies all neighbors. The `ip-addr` parameter specifies a neighbor by its IP interface with the device. The `peer-group-name` specifies all neighbors in a specific peer group. The `as-num` parameter specifies all neighbors within the specified AS. After choosing one mandatory parameter, you can choose an optional parameter.

The `soft in` and `soft out` parameters determine whether to refresh the routes received from the neighbor or the routes sent to the neighbor. If you do not specify `in` or `out`, the device performs a soft refresh in both options:

- **soft in** performs one of the following actions on inbound routes, according to other configuration settings:
  - If you enabled soft reconfiguration for the neighbor or peer group, `soft in` updates the routes by comparing the route policies against the route updates that the device has stored. Soft reconfiguration does not request additional updates from the neighbor or otherwise affect the session with the neighbor.
  - If you did not enable soft reconfiguration, `soft in` requests the entire BGP4 route table on the neighbor (Adj-RIB-Out), then applies the filters to add, change, or exclude routes.
  - If a neighbor does not support dynamic refresh, `soft in` resets the neighbor session.

- **soft out** updates all outbound routes and then sends the entire BGP4 route table for the device (Adj-RIB-Out) to the neighbor after the device changes or excludes the routes affected by the filters.

- The `soft-outbound` parameter updates all outbound routes by applying the new or changed filters, but sends only the existing routes affected by the new or changed filters to the neighbor.

**NOTE**
Use `soft-outbound` only if the outbound policy is changed. The `soft-outbound` parameter updates all outbound routes by applying the new or changed filters. However, the device sends to the neighbor only the existing routes that are affected by the new or changed filters. The `soft out` parameter updates all outbound routes and then sends the entire BGP4 route table on the device to the neighbor after the device changes or excludes the routes affected by the filters.

AS4 notation
A AS4 can appear in either a plain or a dot notation format in the output of `show` commands. To select one of these formats, specify the format before entering the `show` command. This section defines these formats and describes how to select a format. The following notations are currently supported:

- With the default `asplain`, the ASN is a decimal integer in the range 1 - 4294967295.
- With `asdot+`, all ASNs are two integer values joined by a period character in the following format:

  `<high order 16-bit value in decimal>.<low order 16-bit value in decimal>`

Using the `asdot+` notation, an autonomous system number of value 65526 is represented as the string "0.65526," and an autonomous system number of value 65546 is represented as the string "1.10."

- With `asdot`, an ASN less than 65536 uses the asplain notation (and represents autonomous system number values equal to or greater than 65536 using the asdot+ notation). Using the asdot notation, ASN 65526 is represented as the string "65526," and ASN 65546 is represented as the string "1.10."
NOTE
You can enter autonomous system numbers in any format. However, if you want the `asdot` or the `asdot+` format to appear in the output of a `show` command, you must specify these in the CLI.

NOTE
Remember that autonomous system path matching that uses regular expression is based on the configured autonomous system format.

The following command sequences show how to enable the different notations for AS4s and how these notations appear in the output display.

To see ASNs in `asplain`, use the `show ip bgp` command.

```
device(config)# show ip bgp
Total number of BGP Routes: 1
Status codes: suppressed, d damped, h history, * valid, > best, i internal, S stale
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 47.1.1.0/24 192.168.1.5 1 100 0 90000 100 200 65535 65536 65537 65538 65539 75000 ?
```

To specify `asdot` notation before displaying IP BGP4 information, use the `as-format` command.

```
device(config)# as-format asdot
device(config)# show ip bgp
Status codes: s suppressed, d damped, h history, * valid, > best, i internal, S stale
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 10.1.1.0/24 192.168.1.5 1 100 0 1.24464 100 200 65535 1.0 1.1 1.2 1.3 1.9464 ?
```

Syntax: `[no] as-format asplain | asdot | asdot+`

The default is `asplain` and can be restored using the `no` version of the command, if the CLI is currently using `asdot` or `asdot+`.

To activate `asdot+` notation, enter `as-format asdot+` in the CLI.

```
device(config)# as-format asdot+
device(config)# show ip bgp
Status codes: s suppressed, d damped, h history, * valid, > best, i internal, S stale
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 10.1.1.0/24 192.168.1.5 1 100 0 1.24464 100 200 65535 1.0 1.1 1.2 1.3 1.9464 ?
```

BGP4 AS4 attribute errors

This section describes the handling of the confederation path segments in the AS4_PATH attribute, and also specifies the error handling for the new attributes.

To support AS4, the following attributes: AS4_PATH and AS4_Aggregator were specified in RFC 4893. Confederation path segments in an AS4_PATH are discarded and if there are any other errors such as: `attribute length`, `flag`, confederation segments after AS_SEQ/AS_SET, Invalid segment types and More than one AS4_PATH in these new attributes, the attribute is discarded and the error is logged.

Error logs

The device generates a log when it encounters attribute errors in AS4_PATH and AS4_AGGREGATOR.
NOTE
Logging of errors is rate-limited to not more than one message for every two minutes. Some errors may be lost due to this rate-limiting.

Sample log messages for various attribute errors are shown here.

**Attribute length error (ignore the AS4_PATH)**

```
SYSLOG: Sep 9 19:02:03:<11>mu2, BGP: From Peer 192.168.1.1 received invalid AS4_PATH attribute length (3) - entire AS4_PATH ignored
```

**Attribute flag error (ignore the AS4_PATH)**

```
SYSLOG: Sep 9 19:02:03:<11>mu2, BGP: From Peer 192.168.1.1 received invalid AS4_PATH attribute flag (0x40) - entire AS4_PATH ignored
```

**Confederation segments after AS_SEQ/AS_SET (ignore the AS4_PATH)**

```
SYSLOG: Sep 9 19:02:03:<11>mu2, BGP: From Peer 192.168.1.1 received invalid Confed info in AS4_PATH (@byte 43) - entire AS4_PATH not ignored
```

**Invalid segment types (ignore the AS4_PATH)**

```
SYSLOG: Sep 9 19:02:03:<11>mu2, BGP: From Peer 192.168.1.1 received incorrect Seq type/len in AS4_PATH (@byte 41) - entire AS4_PATH ignored
```

**More than one AS4_PATH (Use the first one and ignore the others)**

```
SYSLOG: Sep 9 19:02:03:<11>mu2, BGP: From Peer 192.168.1.1 received multiple AS4_PATH attributes - used first AS4_PATH attribute only
```

### Configuring route flap dampening

A route flap is a change in the state of a route, from up to down or down to up. A route state change causes changes in the route tables of the devices that support the route. Frequent route state changes can cause Internet instability and add processing overhead to the devices that support the route.

Route flap dampening helps reduce the impact of route flap by changing the way a BGP4 device responds to route state changes. When route flap dampening is configured, the device suppresses unstable routes until the number of route state changes drops enough to meet an acceptable degree of stability. The Extreme implementation of route flap dampening is based on RFC 2439.

Route flap dampening is disabled by default. You can enable the feature globally or on an individual route basis using route maps.

NOTE
The device applies route flap dampening only to routes learned from EBGP neighbors.

The route flap dampening mechanism is based on penalties. When a route exceeds a configured penalty value, the device stops using that route and stops advertising it to other devices. The mechanism also allows route penalties to reduce over time if route stability improves.
The route flap dampening mechanism uses the following parameters:

- **Suppression threshold** - Specifies the penalty value at which the device stops using the route. Each time a route becomes unreachable or is withdrawn by a BGP4 UPDATE from a neighbor, the route receives a penalty of 1000. By default, when a route penalty is greater than 2000, the device stops using the route. By default, if a route goes down more than twice, the device stops using the route. You can set the suppression threshold to a value from 1 through 20000. The default is 2000.

- **Half-life** - Once a route has been assigned a penalty, the penalty decreases exponentially and decreases by half after the half-life period. The default half-life period is 15 minutes. The software reduces route penalties every five seconds. For example, if a route has a penalty of 2000 and does not receive any more penalties during the half-life, the penalty is reduced to 1000 after the half-life expires. You can configure the half-life to be from 1 - 45 minutes. The default is 15 minutes.

- **Reuse threshold** - Specifies the minimum penalty a route can have and still be suppressed by the device. If the route penalty falls below this value, the device un-suppresses the route and can use it again. The software evaluates the dampened routes every ten seconds and un-suppresses the routes that have penalties below the reuse threshold. You can set the reuse threshold to a value from 1 through 20000. The default is 750.

- **Maximum suppression time** - Specifies the maximum number of minutes a route can be suppressed regardless of how unstable the route has been before this time. You can set the parameter to a value from 1 through 255 minutes. The default is 40 minutes.

You can configure route flap dampening globally or for individual routes using route maps. If you configure route flap dampening parameters globally and also use route maps, the settings in the route maps override the global values.

### Globally configuring route flap dampening

Route flap dampening reduces the amount of route state changes propagated by BGP4 due to unstable routes. This in turn reduces processing requirements.

To enable route flap dampening using the default values, enter the following command.

```
device(config-bgp)# dampening
```

**Syntax:** `[no] dampening [half-life reuse suppress max-suppress-time ]`

The **half-life** parameter specifies the number of minutes after which the penalty for a route becomes half its value. The route penalty allows routes that have remained stable for a period despite earlier instability to eventually become eligible for use again. The decay rate of the penalty is proportional to the value of the penalty. After the half-life expires, the penalty decays to half its value. A dampened route that is no longer unstable can eventually again become eligible for use. You can configure the half-life to be from 1 through 45 minutes. The default is 15 minutes.

The **reuse** parameter specifies how low a penalty for a route must be before the route becomes eligible for use again, after being suppressed. You can set the reuse threshold to a value from 1 through 20000. The default is 750 (0.75, or three-fourths, of the penalty assessed for a one flap).

The **suppress** parameter specifies how high the penalty for a route can be before the device suppresses the route. You can set the suppression threshold to a value from 1 through 20000. The default is 2000 (more than two flaps).

The **max-suppress-time** parameter specifies the maximum number of minutes that a route can be suppressed regardless of how unstable it is. You can set the maximum suppression time to a value from 1 through 255 minutes. The default is 40 minutes.

This example shows how to change the dampening parameters.

```
device(config-bgp)# dampening 20 200 2500 40
```

This command changes the half-life to 20 minutes, the reuse threshold to 200, the suppression threshold to 2500, and the maximum number of minutes a route can be dampened to 40.
NOTE
To change any of the parameters, you must specify all the parameters with the command. To want to leave any parameters unchanged, enter their default values.

Using a route map to configure route flap dampening for specific routes

Route maps enable you to fine tune route flap dampening parameters for individual routes. To configure route flap dampening parameters using route maps, configure BGP4 address filters for each route you want to set the dampening parameters for, then configure route entries that set the dampening parameters for those routes.

Using a route map to configure route flap dampening for a specific neighbor

You can use a route map to configure route flap dampening for a specific neighbor by performing the following tasks:

- Configure an empty route map with no match or set clauses. This route map does not specify particular routes for dampening but does allow you to enable dampening globally when you refer to this route map from within the BGP4 configuration level.
- Configure another route map that explicitly enables dampening. Use a set clause within the route map to enable dampening. When you associate this route map with a specific neighbor, the route map enables dampening for all routes associated with the neighbor. You also can use match clauses within the route map to selectively perform dampening on some routes from the neighbor.

NOTE
You still need to configure the first route map to enable dampening globally. The second route map does not enable dampening by itself; it just applies dampening to a neighbor.

- Apply the route map to the neighbor.

To enable route flap dampening for a specific BGP4 neighbor, enter commands such as the following.

```
device(config)# route-map DAMPENING_MAP_ENABLE permit 1
device(config-route-map DAMPENING_MAP_ENABLE)# exit
device(config)# route-map DAMPENING_MAP_NEIGHBOR_A permit 1
device(config-route-map DAMPENING_MAP_NEIGHBOR_A)# set dampening
device(config-route-map DAMPENING_MAP_NEIGHBOR_A)# exit
device(config)# router bgp
device(config-bgp)# dampening route-map DAMPENING_MAP_ENABLE
device(config-bgp)# neighbor 10.10.10.1 route-map in DAMPENING_MAP_NEIGHBOR_A
```

In this example, the first command globally enables route flap dampening. This route map does not contain any match or set clauses. At the BGP4 configuration level, the **dampening route-map** command refers to the DAMPENING_MAP_ENABLE route map created by the first command, thus enabling dampening globally.

The third and fourth commands configure a second route map that explicitly enables dampening. Notice that the route map does not contain a match clause. The route map implicitly applies to all routes. Since the route map will be applied to a neighbor at the BGP4 configuration level, the route map will apply to all routes associated with the neighbor.

Although the second route map enables dampening, the first route map is still required. The second route map enables dampening for the neighbors to which the route map is applied. However, unless dampening is already enabled globally by the first route map, the second route map has no effect.

The last two commands apply the route maps. The **dampening route-map** command applies the first route map, which enables dampening globally. The **neighbor** command applies the second route map to neighbor 10.10.10.1. Since the second route map does not contain match clauses for specific routes, the route map enables dampening for all routes received from the neighbor.
Removing route dampening from a route

You can un-suppress routes by removing route flap dampening from the routes. The device allows you to un-suppress all routes at once or un-suppress individual routes.

To un-suppress all the suppressed routes, enter the following command at the Privileged EXEC level of the CLI.

device# clear ip bgp dampening

Syntax: clear ip bgp dampening [ ip-addr ip-mask ]

The ip-addr parameter specifies a particular network.

The ip-mask parameter specifies the network mask.

To un-suppress a specific route, enter a command such as the following.

device# clear ip bgp dampening 10.157.22.0 255.255.255.0

This command un-suppresses only the routes for network 10.157.22.0/24.

Displaying and clearing route flap dampening statistics

The software provides many options for displaying and clearing route flap dampening statistics.

Displaying route flap dampening statistics

To display route dampening statistics or all the dampened routes, enter the following command at any CLI level.

device# show ip bgp flap-statistics

Total number of flapping routes: 414

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Network</th>
<th>Flaps Since</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>h&gt;</td>
<td>10.50.206.0/23</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h&gt;</td>
<td>10.50.208.0/23</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h&gt;</td>
<td>10.255.192.0/20</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h&gt;</td>
<td>10.252.165.0/24</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h&gt;</td>
<td>10.33.0.0/16</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*&gt;</td>
<td>10.17.220.0/24</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Syntax: show ip bgp flap-statistics [ regular-expression regular-expression | address mask [ longer-prefixes ] | neighbor ip-addr ] as-path-filter num

The regular-expression regular-expression parameter is a regular expression. Regular expressions are the same ones supported for BGP4 AS-path filters.

The address mask parameters specify a particular route. If you also use the optional longer-prefixes parameter, all statistics for routes that match the specified route or have a longer prefix than the specified route are displayed. For example, if you specify 10.157.0.0 longer, all routes with the prefix 10.157. or longer (such as 10.157.22.) are displayed.

The neighbor ip-addr parameter displays route flap dampening statistics only for routes learned from the specified neighbor. You also can display route flap statistics for routes learned from a neighbor by entering the following command: show ip bgp neighbor flap-statistics.

The as-path-filter num parameter specifies one or more filters. Only the routes that have been dampened and that match the specified filter or filters are displayed.
TABLE 52 show ip bgp flap-statistics output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of flapping routes</td>
<td>The total number of routes in the BGP4 route table that have changed state and have been marked as flapping routes.</td>
</tr>
<tr>
<td>Status code</td>
<td>Indicates the dampening status of the route, which can be one of the following:&lt;br&gt;• &gt; - This is the best route among those in the BGP4 route table to the route destination.&lt;br&gt;• d - This route is currently dampened, and unusable.&lt;br&gt;• h - The route has a history of flapping and is unreachable now.&lt;br&gt;• * - The route has a history of flapping but is currently usable.</td>
</tr>
<tr>
<td>Network</td>
<td>The destination network of the route.</td>
</tr>
<tr>
<td>From</td>
<td>The neighbor that sent the route to the device.</td>
</tr>
<tr>
<td>Flaps</td>
<td>The number of flaps the route has experienced.</td>
</tr>
<tr>
<td>Since</td>
<td>The amount of time since the first flap of this route.</td>
</tr>
<tr>
<td>Reuse</td>
<td>The amount of time remaining until this route will be un-suppressed and can be used again.</td>
</tr>
<tr>
<td>Path</td>
<td>Shows the AS-path information for the route.</td>
</tr>
</tbody>
</table>

You also can display all dampered routes by entering the `show ip bgp dampened-paths` command.

### Clearing route flap dampening statistics

Clearing the dampening statistics for a route does not change the dampening status of the route. To clear all the route dampening statistics, enter the following command at any level of the CLI.

```
device# clear ip bgp flap-statistics
```

**Syntax:** `clear ip bgp flap-statistics [ regular-expression regular-expression | address mask | neighbor ip-addr ]`

The parameters are the same as those for the `show ip bgp flap-statistics` command (except the `longer-prefixes` option is not supported).

**NOTE**

The `clear ip bgp dampening` command not only clears statistics but also un-suppresses the routes.

### Generating traps for BGP4

You can enable and disable SNMP traps for BGP4. BGP4 traps are enabled by default.

To enable BGP4 traps after they have been disabled, enter the following command.

```
device(config)# snmp-server enable traps bgp
```

**Syntax:** `[no] snmp-server enable traps bgp`

Use the `no` form of the command to disable BGP4 traps.
Configuring BGP4

Once you activate BGP4, you can configure the BGP4 options. There are two configuration levels: global and address family.

At the global level, all BGP4 configurations apply to IPv4 and IPv6. Enter this layer using the device BGP4 command.

Under the global level, you specify an address family. Address families separate IPv4 and IPv6 BGP4 configurations. Go to this level by entering the address-family command at the device BGP4 level. The command requires you to specify the IPv4 or IPv6 network protocol.

The address-family command also requires you to select a sub-address family, which is the type of routes for the configuration. Specify unicast routes.

**TABLE 53 IPv4 BGP4 commands for different configuration levels**

<table>
<thead>
<tr>
<th>Command</th>
<th>Global (IPv4 and IPv6)</th>
<th>IPv4 address family unicast</th>
<th>IPv4 address family multicast</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>aggregate-address</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>always-compare-med</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>always-propagate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as-path-ignore</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfd-enable</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bgp-redistribute-internal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>client-to-client-reflection</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>cluster-id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compare-med-empty-aspath</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compare-routerid</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>confederation</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dampening</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>default-information-originate</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>default-local-preference</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>default-metric</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>distance</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enforce-first-as</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit-address-family</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>fast-external-fallover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>graceful-restart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>install-igp-cost</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local-as</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log-dampening-debug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxas-limit</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximum-paths</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>med-missing-as-worst</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>multipath</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neighbor</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>network</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
### Entering and exiting the address family configuration level

The BGP4 address family contains a unicast or multicast sub-level.

To go to the IPv4 BGP4 unicast address family configuration level, enter the following command.

```bash
device(config-bgp)# address-family ipv4 unicast
device(config-bgp-ipv4u)#
```

**NOTE**

The CLI prompt for the global BGP4 level and the BGP4 address-family IPv4 unicast level is the same.

To go to the IPv4 BGP4 multicast address family configuration level, enter the following command.

```bash
device(config-bgp)# address-family ipv4 multicast
device(config-bgp-ipv4m)#
```

**Syntax:** `[no] address-family ipv4 unicast [ vrf vrf-name ] | ipv4 multicast`

The default is the IPv4 unicast address family level.

The `vrf` option allows you to configure a unicast instance for the VRF specified by the `vrf-name` variable.

To exit an address family configuration level, enter the following command.

```bash
device(config-bgp)# exit-address-family
device(config-bgp)#
```

**Syntax:** `[no] exit-address-family`

### BGP route reflector

A BGP device selects a preferred BGP4 route for a specific prefix learned from multiple peers by using the BGP best path selection algorithm, and installs the BGP4 route in the Routing Table Manager (RTM). The BGP device marks the preferred BGP4 route as the best route, and advertises the route to other BGP4 neighbors. Generally, the RTM route table size is larger than the number of unique BGP4 routes in the BGP4 route table. All preferred BGP4 routes are installed in RTM and are marked as the best BGP4 routes.
However, in certain configurations it is possible that the total number of preferred BGP4 routes may exceed the RTM route table size limit. Therefore, some preferred BGP4 routes may not be installed in the RTM, and the BGP device is not able to forward traffic correctly for those BGP4 routes. Those BGP4 routes are not considered as the best BGP4 routes, and are not advertised to other BGP4 neighbors because traffic miss-forwarding or packet drop can occur.

When a BGP device is configured as only a route reflector server, and is not placed directly in the forwarding path, it is possible to mark all preferred BGP4 routes as the best routes to be advertised to other BGP4 neighbors even if the routes are not installed in the RTM. To support the behavior of a BGP device as a route reflector server in such a scenario, use the `always-propagate` command and the `rib-route-limit` command.

**NOTE**
The `always-propagate` command and the `rib-route-limit` command are supported on MLX, XMR, CER, and CES Series devices.

### Configuring BGP route reflector

The `always-propagate` command enables a device to mark a preferred BGP4 route not installed in the RTM as the best route, and advertise the route to other BGP4 neighbors. The same process for outbound route policy continues to apply to all best BGP4 routes. The `rib-route-limit` command limits the number of BGP4 Routing Information Base (RIB) routes that can be installed in the RTM. The RTM must be able to reserve enough entries for Interior Gateway Protocol (IGP) routes because the IGP routes are required by BGP4 to resolve BGP4 next-hop entries. If the RTM is not able to reserve enough entries for IGP routes, BGP4 RIB routes can fill the entire RTM with only BGP4 route entries. The `rib-route-limit` command enables IGP and BGP4 route entries to be installed in the RTM.

**NOTE**
The `always-propagate` command and the `rib-route-limit` command are configurable in any order under the BGP4 address family configuration level.

Perform the following steps to advertise a preferred BGP4 route not installed in the RTM.

1. **Configure a BGP4 unicast route.** Enter a command such as the following.
   
   ```
 device(config-bgp)# address-family ipv4 unicast
 Syntax: address-family ipv4 unicast [vrf vrf-name] | ipv4 multicast | ipv6 unicast | ipv6 multicast
 NOTE
 To configure a BGP4 unicast route for a specified VRF instance, use the `vrf vrf-name` parameter. The `vrf vrf-name` parameter allows you to create a VPN routing or forwarding instance specified by the `vrf-name` variable. The `vrf-name` variable specifies the name of the VRF instance you want to create.
   ```

   2. **Enter the `always-propagate` command.** Enter a command to enable a preferred BGP4 route (not installed in the RTM) to be advertised to other BGP4 neighbors.
   
   ```
 device(config-bgp)# always-propagate
 Syntax: always-propagate
   ```
3. Enter the `rib-route-limit` command to set the maximum number of BGP4 rib routes that can be installed in the RTM.

   ```
 device(config-bgp)# rib-route-limit 500
   ```

**Syntax: rib-route-limit decimal**

The `decimal` variable specifies the maximum number of BGP4 rib routes that can be installed in the RTM. The user may enter any number for the `decimal` variable for the `rib-route-limit` command. By default, there is no limit. If the `rib-route-limit` command is set to 0, no BGP4 routes are installed in the RTM. If a BGP4 route is not installed in the RTM because of the configuration set by the `rib-route-limit` command, the `always-propagate` command must be enabled for preferred BGP4 routes to be advertised to the BGP4 neighbors.

If the `rib-route-limit` command is configured to a value that is below the number of BGP4 routes already installed in the RTM, the following warning message is displayed on the console.

```
device(config-bgp)# rib-route-limit 250
The new limit is below the current bgp rib route count. Please use Clear ip bgp routes command to remove bgp rib routes.
```

You can only use one of the following commands to clear all BGP4 routes in the RTM, and reset the routes for preferred BGP4 routes to be reinstalled in the RTM. Depending on the type of route the `rib-route-limit` command is used for, select from one of the following commands:

- `clear ip bgp routes` command. This command is used to clear IPv4 BGP unicast routes.
- `clear ipv6 bgp routes` command. This command is used to clear IPv6 BGP unicast routes.
- `clear ip mbgp routes` command. This command is used to clear IPv4 MBGP multicast routes.
- `clear ipv6 mbgp routes` command. This command is used to clear IPv6 MBGP multicast routes.

**NOTE**

It is not guaranteed that the same number of preferred BGP4 routes will be reinstalled in the RTM.

4. Perform the following step to:

   - the BGP4 unicast or multicast address family configuration.

   ```
 device(config-bgp-ipv4u)# exit-address-family
   ```

**Syntax: exit-address-family**

When you enter the `exit-address-family` command at the address family configuration level, you return to the BGP4 unicast address family configuration level (the default BGP4 level).

---

**Displaying configuration for BGP route reflector**

To display the configuration for preferred BGP4 routes not installed in the RTM, use the `show ip bgp route` command as shown in the following example.

```
device(config-bgp)# show ip bgp route
Total number of BGP Routes: 333422
Status A:AGGREGATE B: Best b: NOT- INSTALLED-BEST C: CONFED_EBGP D: DAMPED
S: SUPPORTED P: FILTERED s: STALE
Prefix Next Hop MED LocPrf Weight Status
...5 10.12.0.0/24 10.100.100.4 100 0 E
AS_PATH: 48 1994 65148 21948 6461 1239 4837 4808 17431 18245...
```

**Syntax: show ip bgp route**
In the previous output, BGP4 receives 333,422 routes and the `rib-route-limit` command is configured to 300,000 routes. The `always-propagate` command has not been enabled. However, because the `rib-route-limit` command is configured to allow for 300,000 routes in the RTM, BGP4 installs only 300,000 routes of the 333,422 routes received in the RTM. When the `always-propagate` command is enabled, a preferred BGP4 route not installed in the RTM is now considered as the best BGP4 route to be advertised to other peers. The route is identified by the letter "b" (for NOT-INSTALLED-BEST) in the Status field. However, when the `always-propagate` command is not enabled, the status field displays only the default letter "E", as displayed for BGP4 route 10.12.0.0/24. The letter "B" or "b" is missing from the Status field.

**NOTE**
The description of the status "b: NOT-INSTALLED-BEST" has changed. The status description for "b: NOT-INSTALLED-BEST" is now: The routes received from the neighbor are the best BGP4 routes to their destinations, but were nonetheless not installed in the IP route table due to the `rib-route-limit` option (or RTM route table size limit), and the `always-propagate` option to allow the propagating of those best BGP routes.

**NOTE**
Traffic loss on a BGP4 route occurs when a device is advertising preferred BGP4 routes not installed in the RTM as part of the forwarding path.

Because the BGP4 route 10.12.0.0/24 is not considered as the best BGP4 route, the route is not advertised to other BGP4 neighbors.

```device(config-bgp)# show ip bgp route 10.12.0.0/24
Number of BGP Routes matching display condition : 1
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
S:SUPPRESSED F:FILTERED s:STALE
Prefix Next Hop MED LocPrf Weight Status
1 10.12.0.0/24 10.100.100.4 100 0 E
AS_PATH: 48 1994 65148 21948 6461 1239 4837 4808 17431 18245
Last update to IP routing table: 0h16m2s
No path is selected as BEST route```

Syntax: `show ip bgp route ip-address/prefix`

After enabling the `always-propagate` command, the BGP4 route is now considered the best BGP4 route, even though the route is not installed in the RTM. Because the `rib-route-limit` command was configured to allow for only 300,000 routes in the RTM some preferred BGP4 routes are not installed in the RTM, and are not advertised to other BGP4 neighbors. By enabling the `always-propagate` command, the device is now able to advertise those preferred BGP4 routes to other BGP4 neighbors. In the following example, the Status field displays "bE" indicating that the route is now considered the best BGP4 route for forwarding and will be advertised to other BGP4 neighbors.

```device(config-bgp)# show ip bgp route 10.12.0.0/24
Number of BGP Routes matching display condition : 1
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
S:SUPPRESSED F:FILTERED s:STALE
Prefix Next Hop MED LocPrf Weight Status
1 10.12.0.0/24 10.100.100.4 100 0 bE
AS_PATH: 48 1994 65148 21948 6461 1239 4837 4808 17431 18245
Last update to IP routing table: 0h12m53s
Route is to be sent to 1 peers:
10.0.0.14(6)`

For an explanation of the fields displayed in the output of the `show ip bgp route` command, refer to Displaying information for a specific route on page 405.
BGP additional-paths overview

BGP additional-paths provides the ability for multiple paths for the same prefix to be advertised without the new paths implicitly replacing the previous paths. Path diversity is achieved rather than path hiding.

BGP devices generally advertise only their best path to neighboring devices, even when multiple paths exist. The advertisement of the same prefix from the same neighbor replaces the previous announcement of that prefix. This is known as an implicit withdraw, behavior that achieves better scaling but at the cost of path diversity.

Path hiding can affect the efficient use of BGP multipath and path diversity, and prevent hitless planned maintenance. Upon next hop failures, path hiding also inhibits fast and local recovery because the network must wait for BGP control plane convergence to restore traffic. BGP additional-paths enables BGP to advertise even the secondary best routes so that multiple paths for the same prefix can be advertised without the new paths implicitly replacing previous paths. BGP additional-paths provides a generic way of offering path diversity.

In the following figure, path hiding occurs in two ways:

- Prefix P has paths P1 and P2 advertised from BR1 and BR2 to RR1. RR1 selects P1 as the best path and advertises only P1 to PE.
- Prefix X has path X1 advertised from BR3 to BR4 with local preference 100. BR4 also has path X2. However, only the best path, X1, is selected. BR3 advertises X1 to the RRs and X2 is suppressed.

![BGP path hiding](image)

Advantages of BGP additional-paths

- Fast convergence and fault tolerance: When BGP additional-paths is enabled, more than one path to a destination is advertised. If one of the paths goes down, connectivity is easily restored due to the availability of backup paths. If the next hop for the prefix becomes unreachable, the device can switch to the backup route immediately without having to wait for BGP control plane messages.
- Enhanced load balancing capabilities: Traditionally with RRs in an iBGP domain, only the best path is given to the clients, even if ECMP paths exist. This affects load balancing. With additional paths advertised by RRs, the clients have more effective load balancing.

Considerations and limitations for BGP additional-paths RIB-in

- When BGP additional-paths is not configured, only one NLRI per prefix per peer is supported. Any additional NLRI update for the same prefix from the same peer replaces the existing one.
- When BGP additional-paths is configured, a device can receive multiple NLRI advertisements for the same prefix from the same peer that are uniquely identified by NLRI path identifiers.
- For MLX Series and XMR Series devices, the maximum number of additional paths per peer per prefix is 128.
- For CER 2000 Series and CES 2000 Series devices, the maximum number of additional paths per peer per prefix is 64.
- Changes in the capability of sending or receiving additional paths are reflected only after the BGP session is restarted.

Considerations and limitations for BGP additional-paths RIB-out

- Changes in the capability of sending or receiving additional paths are reflected only after the BGP session is restarted.
- The maximum number of paths that can be advertised per prefix is 16. If there are more than 16 paths for a prefix in the RIB-in, only 16 can be advertised.
- You should maintain the number of RIB-in paths for any prefix in the range of 16 for smooth RIB-out processing. Otherwise the RIB-out processing time increases exponentially in the scaled scenarios.

Upgrade and downgrade considerations

If BGP additional-paths is enabled and the configuration saved, an error message occurs if the software is downgraded to an earlier version. BGP additional-paths should be unconfigured before a downgrade take place.

BGP additional-paths functionality

BGP additional-paths is implemented by including an additional four-octet value known as a path identifier (ID) for each path in the NLRI. Path IDs are unique to a peering session and are generated for each network. A generated Path ID is unique per peer per prefix. A BGP device can receive the same path ID for the same prefix from two different peers, or it can receive the same path ID from the same peer for two different prefixes.

A path ID can apply to the IPv4 or IPv6 unicast or multicast address family.

Therefore, when the same prefix is received with the same path ID from the same peer, it is considered as a replacement route or a duplicate route. When the same prefix is received with a different path ID from the same peer, it is considered as an additional path to the prefix.

To send or receive additional paths, the additional-paths capability must be negotiated. If it is not negotiated, only the best path can be sent. BGP updates carry the path ID once the additional-paths capability is negotiated. In order to carry the path ID in an update message, the existing NLRI encodings are extended by prepending the path ID field, which consists of four octets.

The assignment of the path ID for a path by a BGP device occurs in such a way that the BGP device is able to use the prefix and path ID to uniquely identify a path advertised to a neighbor so as to continue to send further updates for that path. The receiving BGP neighbor that re-advertises a route regenerates its own path ID to be associated with the re-advertised route.

The set of additional paths advertised to each neighbor can be different, and advertisement filters are provided on a per-neighbor basis.
NOTE
BGP additional-paths is supported for the BGP IPv4 and IPv6 unicast address families and the BGP IPv4 and IPv6 multicast address families.

NOTE
BGP additional-paths is not supported for the BGP L2VPN VPLS, BGP VPNv4 unicast, and BGP VPNv6 address families.

There are three basic steps involved in configuring BGP additional-path:

- **Capability Negotiation**: Specify whether the device can send, receive, or send and receive additional paths. This is done at the address family level or peer-group level or the neighbor level. Refer to the sections and the NetIron Command Reference for more information.

- **Select Candidate paths**: Select a set or sets of candidate paths for advertisement by specifying selection criteria. This is done at the address family level.

- **Advertise additional paths from the candidate set**: Advertise to a neighbor a set or sets of additional paths from the candidate paths marked. This is done at the neighbor level or peer-group level.

### Configuring BGP4 additional-paths and additional-path selection for the default VRF

You can enable BGP additional-paths send and receive capability under the configured IPv4 address family and select a set or sets of candidate paths for advertisement by specifying the selection criteria. This task specifies that all BGP paths are eligible to be selected as additional paths under the IPv4 unicast address family for the default VRF and enables BGP additional-paths.

1. Enter the `configure terminal` command to access global configuration mode.
   ```bash
 device# configure terminal
   ```

2. Enter the `router bgp` command to enable BGP routing.
   ```bash
 device(config)# router bgp
   ```

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.
   ```bash
 device(config-bgp)# local-as 65520
   ```

4. Enter the `address-family ipv4 unicast` command to enter BGP address-family IPv4 unicast configuration mode.
   ```bash
 device(config-bgp)# address-family ipv4 unicast
   ```

5. Enter the `additional-paths` command, using the `receive` parameter, to enable additional-paths receive capability under the IPv4 unicast address family.
   ```bash
 device(config-bgp)# additional-paths receive
   ```

6. Enter the `additional-paths` command, using the `send` parameter, to enable additional-paths send capability under the IPv4 unicast address family.
   ```bash
 device(config-bgp)# additional-paths send
   ```

7. Enter the `additional-paths select` command, using the `all` parameter, to specify that all BGP paths are eligible to be selected as additional paths under the IPv4 unicast address family.
   ```bash
 device(config-bgp)# additional-paths select all
   ```
8. Enter the `neighbor additional-paths advertise` command, specifying an IP address and using the `all` parameter, to configure BGP to advertise all BGP additional paths to a neighbor.

   `device(config-bgp)# neighbor 10.11.12.13 additional-paths advertise all`

The following example enables BGP additional-paths send and receive capability and specifies that all BGP paths are eligible to be selected as additional paths under the IPv4 unicast address family. The additional-paths feature is enabled and all paths can be advertised to a BGP neighbor.

   `device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv4 unicast
device(config-bgp)# additional-paths receive
device(config-bgp)# additional-paths send
device(config-bgp)# additional-paths select all
device(config-bgp)# neighbor 10.11.12.13 additional-paths advertise all`

Configuring BGP4 additional-paths and additional-path selection for a non-default VRF instance

You can enable BGP additional-paths send and receive capability under the configured IPv4 address family for a non-default VRF instance and select a set or sets of candidate paths for advertisement by specifying the selection criteria. This task specifies that all BGP paths are eligible to be selected as additional paths under the IPv4 unicast address family for VRF green and enables BGP additional-paths.

1. Enter the `configure terminal` command to access global configuration mode.
   
   `device# configure terminal`

2. Enter the `router bgp` command to enable BGP routing.
   
   `device(config)# router bgp`

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.
   
   `device(config-bgp)# local-as 65520`

4. Enter the `address-family unicast ipv4` command, using the `vrf` parameter, and specifying a VRF, to enter BGP address-family IPv4 unicast VRF configuration mode.
   
   `device(config-bgp)# address-family ipv4 unicast vrf green`

5. Enter the `additional-paths` command, using the `receive` parameter, to enable additional-paths receive capability under the configured IPv4 address family for VRF instance green.
   
   `device(config-bgp)# additional-paths receive`

6. Enter the `additional-paths` command, using the `send` parameter, to enable additional-paths send capability under the configured IPv4 address family for VRF instance green.
   
   `device(config-bgp)# additional-paths send`

7. Enter the `additional-paths select` command, using the `all` parameter, to specify that all BGP paths are eligible to be selected as additional paths under the IPv4 unicast address family for VRF instance green.
   
   `device(config-bgp-ipv4u-vrf)# additional-paths select all`
8. Enter the neighbor additional-paths advertise command, specifying an IP address and using the all parameter, to configure BGP to advertise all BGP additional paths to a neighbor for VRF instance green.

   device(config-bgp)# neighbor 10.11.12.13 additional-paths advertise all

The following example enables BGP additional-paths send and receive capability and specifies that all BGP paths are eligible to be selected as additional paths under the IPv4 unicast address family for VRF instance green. The additional-paths feature is enabled and all paths can be advertised to a BGP neighbor.

   device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv4 unicast vrf green
device(config-bgp-ipv4u-vrf)# additional-paths receive
device(config-bgp-ipv4u-vrf)# additional-paths send
device(config-bgp-ipv4u-vrf)# additional-paths select all
device(config-bgp-ipv4u-vrf)# neighbor 10.11.12.13 additional-paths advertise all

**Configuring BGP4 additional-paths for a specified neighbor**

You can apply filters for the advertisement of additional paths for specified BGP neighbors.

1. Enter the configure terminal command to access global configuration mode.

   device# configure terminal

2. Enter the router bgp command to enable BGP routing.

   device(config)# router bgp

3. Enter the local-as command to configure the autonomous system number (ASN) in which your device resides.

   device(config-bgp)# local-as 65520

4. Enter the address-family ipv4 unicast command to enter BGP address-family IPv4 multicast configuration mode.

   device(config-bgp)# address-family ipv4 multicast

5. Enter the neighbor additional-paths command, specifying an IP address and using the receive parameter, to enable additional-paths receive capability from a specified BGP neighbor.

   device(config-bgp-ipv4m)# neighbor 10.11.12.13 additional-paths receive

6. Enter the neighbor additional-paths command, specifying an IP address and using the send parameter, to enable additional-paths send capability to a specified BGP neighbor.

   device(config-bgp-ipv4m)# neighbor 10.11.12.13 additional-paths send

7. Enter the additional-paths select command, using the all parameter, to specify that all BGP paths are eligible to be selected as additional paths under the configured IPv4 address family.

   device(config-bgp-ipv4m)# additional-paths select all

8. Enter the neighbor additional-paths advertise command, specifying an IP address and using the all parameter, to configure BGP to advertise all BGP additional paths.

   device(config-bgp-ipv4m)# neighbor 10.11.12.13 additional-paths advertise all
The following example specifies that all BGP paths are eligible to be selected as additional paths under the IPv4 multicast address family and enables the capability to send and receive additional paths for a specified neighbor. The additional-paths feature is enabled and all paths can be advertised to the BGP neighbor.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv4 multicast
device(config-bgp-ipv4m)# neighbor 10.11.12.13 additional-paths receive
device(config-bgp-ipv4m)# neighbor 10.11.12.13 additional-paths send
device(config-bgp-ipv4m)# additional-paths select all
device(config-bgp-ipv4m)# neighbor 10.11.12.13 additional-paths advertise all
```

### Configuring BGP additional-paths for a specified BGP4 neighbor for a non-default VRF instance

You can enable the advertisement of additional paths for specified BGP4 neighbors and apply filters for the advertisement of additional paths for BGP neighbors for a non-default VRF instance.

1. Enter the `configure terminal` command to access global configuration mode.

   ```
 device# configure terminal
   ```

2. Enter the `router bgp` command to enable BGP routing.

   ```
 device(config)# router bgp
   ```

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.

   ```
 device(config-bgp)# local-as 65520
   ```

4. Enter the `address-family unicast ipv4` command, using the `vrf` parameter and specifying a VRF, to enter BGP address-family IPv4 unicast VRF configuration mode.

   ```
 device(config-bgp)# address-family ipv4 unicast vrf green
   ```

5. Enter the `neighbor additional-paths` command, specifying an IP address and using the `receive` parameter, to enable additional-paths receive capability from a specified BGP neighbor for VRF green.

   ```
 device(config-bgp-ipv4u-vrf)# neighbor 10.11.12.13 additional-paths receive
   ```

6. Enter the `neighbor additional-paths` command, specifying an IP address and using the `send` parameter, to enable additional-paths send capability to a specified BGP neighbor for VRF green.

   ```
 device(config-bgp-ipv4u-vrf)# neighbor 10.11.12.13 additional-paths send
   ```

7. Enter the `additional-paths select` command, using the `all` parameter, to specify that all BGP paths are eligible to be selected as additional paths under the IPv4 address unicast family for VRF green.

   ```
 device(config-bgp-ipv4u-vrf)# additional-paths select all
   ```

8. Enter the `neighbor additional-paths advertise` command, specifying an IP address and using the `all` parameter, to configure BGP to advertise all BGP additional paths for VRF green.

   ```
 device(config-bgp-ipv4u-vrf)# neighbor 10.11.12.13 additional-paths advertise all
   ```
The following example specifies that all BGP paths are eligible to be selected as additional paths under the IPv4 unicast address family for VRF green, and enables BGP additional-paths send and receive capability for a specified neighbor. The additional-paths feature is enabled and all paths can be advertised to the BGP neighbor.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv4 unicast vrf green
device(config-bgp-ipv4u-vrf)# neighbor 10.11.12.13 additional-paths receive
device(config-bgp-ipv4u-vrf)# neighbor 10.11.12.13 additional-paths send
device(config-bgp-ipv4u-vrf)# additional-paths select all
device(config-bgp-ipv4u-vrf)# neighbor 10.11.12.13 additional-paths advertise all
```

Disabling BGP additional-paths for a specified BGP4 neighbor

By default the BGP additional-paths capability is disabled for BGP neighbors. You can disable BGP additional-paths capability for a specified BGP neighbor if BGP additional-paths is enabled at the peer-group or address-family level.

1. Enter the `configure terminal` command to access global configuration mode.
   ```
device# configure terminal
```
2. Enter the `router bgp` command to enable BGP routing.
   ```
device(config)# router bgp
```
3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.
   ```
device(config-bgp)# local-as 65520
```
4. Enter the `address-family ipv4 unicast` command to enter BGP address-family IPv4 unicast configuration mode.
   ```
device(config-bgp)# address-family ipv4 unicast
```
5. Enter the `neighbor additional-paths disable` command, specifying an IP address, to disable the sending of additional paths by BGP4 to the specified BGP neighbor.
   ```
device(config-bgp)# neighbor 10.11.12.13 additional-paths disable
```

The following example disables the sending of additional paths by BGP4 to the specified neighbor in address-family IPv4 unicast configuration mode.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv4 unicast
device(config-bgp)# neighbor 10.11.12.13 additional-paths disable
```

Configuring BGP additional-paths for a BGP peer group

You can enable the advertisement of additional paths for specified BGP peer groups and apply filters for the advertisement of additional paths for BGP peer groups.

1. Enter the `configure terminal` command to access global configuration mode.
   ```
device# configure terminal
```
2. Enter the `router bgp` command to enable BGP routing.
   ```
 device(config)# router bgp
   ```

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.
   ```
 device(config-bgp)# local-as 65520
   ```

4. Enter the `neighbor peer-group-name peer-group` command to create a peer group.
   ```
 device(config-bgp)# neighbor mypeergroup1 peer-group
   ```

5. Enter the `neighbor peer-group-name remote-as` command to specify the ASN of the peer group.
   ```
 device(config-bgp)# neighbor mypeergroup1 remote-as 11
   ```

6. Enter the `neighbor ip-address peer-group` command to associate a neighbor with the peer group.
   ```
 device(config-bgp)# neighbor 10.11.12.13 peer-group mypeergroup1
   ```

7. Enter the `neighbor ip-address peer-group` command to associate a neighbor with the peer group.
   ```
 device(config-bgp)# neighbor 10.11.13.15 peer-group mypeergroup1
   ```

8. Enter the `address-family ipv4 unicast` command to enter BGP address-family IPv4 unicast configuration mode.
   ```
 device(config-bgp)# address-family ipv4 unicast
   ```

9. Enter the `neighbor additional-paths` command, specifying a peer group name and using the `receive` parameter, to enable additional-paths receive capability from a specified BGP peer group.
   ```
 device(config-bgp)# neighbor mypeergroup1 additional-paths receive
   ```

10. Enter the `neighbor additional-paths` command, specifying a peer group name and using the `send` parameter, to enable additional-paths send capability to a specified BGP peer group.
    ```
 device(config-bgp)# neighbor mypeergroup1 additional-paths send
    ```

11. Enter the `additional-paths select` command, using the `all` parameter, to specify that all BGP paths are eligible to be selected as additional paths.
    ```
 device(config-bgp)# additional-paths select all
    ```

12. Enter the `neighbor additional-paths advertise` command, specifying a peer group name and using the `all` parameter, to configure BGP to advertise all BGP additional paths.
    ```
 device(config-bgp)# neighbor mypeergroup1 additional-paths advertise all
    ```
The following example creates a peer group, enables BGP4 additional-paths send and receive capability for the specified BGP peer group, and specifies that all BGP paths are eligible to be selected as additional paths. The additional-paths feature is enabled and all paths can be advertised.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# neighbor mypeergroup1 peer-group
device(config-bgp)# neighbor mypeergroup1 remote-as 11
device(config-bgp)# neighbor 10.11.12.13 peer-group mypeergroup1
device(config-bgp)# neighbor 10.11.13.15 peer-group mypeergroup1
device(config-bgp)# address-family ipv4 unicast
device(config-bgp)# neighbor mypeergroup1 additional-paths receive
device(config-bgp)# neighbor mypeergroup1 additional-paths send
device(config-bgp)# additional-paths select all
device(config-bgp)# neighbor mypeergroup1 additional-paths advertise all
```

**BGP best external overview**

BGP best external enables a device to advertise the most preferred route among those received from external neighbors as a backup route.

In active-backup topologies, service providers use routing policies that cause a border router to choose a path received over an Interior Border Gateway Protocol (iBGP) session as the best path for a prefix. This path is chosen even if an Exterior Border Gateway Protocol (eBGP) learned path exists. BGP best external is beneficial in such a topology. In such a topology, one exit or egress point for the prefix in the autonomous system is defined, and the other points are used as backups if the primary link or eBGP peering is unavailable. The border router does not advertise any path for such prefixes, and the paths learned over its eBGP sessions from the autonomous system (AS) are hidden. To cope with this situation, a device can advertise the best external path.

In the following figure, PE1 is the primary path to network N, and PE2 is the backup path. If BGP best external is not configured, PE2 does not advertise prefix N to its iBGP peers because PE2 prefers the iBGP route from PE1 as the best route compared to its best eBGP route. However, if BGP best external is configured, PE2 propagates its best external path to its iBGP peers so that PE3 has two paths for prefix N.

**FIGURE 28** BGP best external

![BGP best external diagram](image)

**NOTE**
BGP best external is supported for the BGP IPv4 and IPv6 unicast address families and the BGP IPv4 and IPv6 multicast address families.
NOTE
BGP best external is not supported for the BGP L2VPN VPLS, BGP VPNv4 unicast, and BGP VPNv6 address families.

Limitations of BGP best external

- BGP best external advertises the best external path to iBGP peers only.
- When BGP best external is configured on a route reflector (RR), the best external path is not advertised.

Upgrade and downgrade considerations

If BGP best external is enabled and the configuration saved, an error message occurs if the software is downgraded to an earlier version. BGP best external should be unconfigured before a downgrade takes place.

Configuring BGP4 best external

You can enable BGP4 to calculate the best external path and to advertise this path to its neighbors.

1. Enter the `configure terminal` command to access global configuration mode.

   device# configure terminal

2. Enter the `router bgp` command to enable BGP routing.

   device(config)# router bgp

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.

   device(config-bgp)# local-as 65520

4. Enter the `address-family ipv4 unicast` command to enter BGP address-family IPv4 unicast configuration mode.

   device(config-bgp)# address-family ipv4 unicast

5. Enter the `advertise-best-external` command to configure BGP4 to calculate the best external path and to advertise this path to its neighbors.

   device(config-bgp-ipv4u)# advertise-best-external

The following example configures BGP4 to calculate the best external path and to advertise this path to its neighbors under the IPv4 unicast address family.

   device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv4 unicast
device(config-bgp-ipv4u)# advertise-best-external

Specifying a maximum AS path length

You can use the `maxas-limit` command to configure a device running BGP4 to discard routes that exceed a specified AS path limit. This limit can be configured globally, for peer groups, and for BGP neighbors.
When you configure maxas-limit in, the behavior of the device changes to first check the length of the AS paths in the UPDATE messages and then to apply the inbound policy. If the AS path exceeds the configured length, then the device performs the following actions:

- Does not store the route in the RIB and does not forward the NLRIs and attributes contained in the UPDATE message for that route
- Logs an error
- Processes the withdrawn NLRIs in the same update message

If a route from a peer exceeds the configured Maximum AS path limit, the device also removes the same route from that peer, if it exists, from its own RIB.

After a maximum AS path length is configured, the maximum AS path limit applies to all new inbound routes. To update previously stored routes, you must perform an inbound soft reset for all of the address families activated for that particular BGP neighbor session.

**NOTE**
If the neighbor soft-reconfiguration feature is enabled, you must perform a hard reset on the device to impose the maximum length limit.

**NOTE**
maxas-limit in is checked against the received AS_PATH and AS4_PATH attributes.

BGP devices check for and, if configured, apply maxas-limit in in the following order:

1. Neighbor value
2. Peer group value
3. Global value

In a case where a neighbor has no maximum AS limit, a peer group has a value of 3 configured, and the system has a value of 9 configured, all of the devices in the peer group will only use the peer group value; the global value will never be used.

### Setting a global maximum AS path limit

The syntax for the global maximum AS path limit command is:

**Syntax:** `[no] maxas-limit in num

The `maxas-limit` keyword specifies the limit on the AS numbers in the as-path attribute. The `in` keyword allows the as-path attribute from any neighbor imposing a limit on AS numbers received. The default maximum length for the global system is 300. The range is 0 - 300. The `no` keyword removes the configuration at the global level.

**NOTE**
The device applies the BGP4 maximum AS path limit on a per virtual device basis.

To configure the global Maximum AS path limit to 15, enter the following command:

```
device(config-bgp)# maxas-limit in 15
```

### Setting a maximum AS path limit for a peer group or neighbor

To set maximum AS path limit for a peer group or a neighbor, the syntax is:

**Syntax:** `neighbor { ip-addr | peer-group-name } maxas-limit in [ num | disable ]`
By default, neighbors or peer groups have no configured maximum values. The range is 0 - 300. The disable keyword is used to stop a neighbor from inheriting the configuration from the peer-group or global and to the use system default value.

To configure a peer group named “PeerGroup1” and set a maximum AS path value of 7, enter the following commands:

```
device(config-bgp)# neighbor PeerGroup1 peer-group
device(config-bgp)# neighbor PeerGroup1 maxas-limit in 7
```

### BGP4 max-as error messages

This section lists error log messages that you might see when the device receives routes that exceed the configured AS segment limit or the internal memory limit. The log messages can contain a maximum of 30 ASNs. If a message contains more than 30 ASNs, the message is truncated and an ellipsis appears.

#### Maximum AS path limit error

```
SYSLOG: <11>Jan 1 00:00:00 mul, BGP: From Peer 192.168.1.2 received Long AS_PATH H= AS_CONFED_SET(4) 1 2 3 AS_CONFED_SEQUENCE(3) 4 AS_SET(1) 5 6 7 AS_SEQ(2) 8 9 attribute length (9) More than configured MAXAS-LIMIT 7
```

#### Memory limit error

```
SYSLOG: <11>Jan 1 00:00:00 mul, BGP: From Peer 192.168.1.2 received Long AS_PATH H= AS_CONFED_SET(4) 1 2 3 AS_CONFED_SEQUENCE(3) 4 AS_SET(1) 5 6 7 AS_SEQ(2) 8 9 attribute length (9) Exceeded internal memory limit
```

**NOTE**
The device generates a log message one time every two minutes. Because of this rate limit, it is possible that some errors might not appear in the log. In this case, you can use the `debug ip bgp events` command to view errors pertaining to the `maxas-limit` value and the actual AS path attributes received.

### Originating the default route

By default, the device does not originate and advertise a default route using BGP4. A BGP4 default route is the IP address 0.0.0.0 and the route prefix 0 or network mask 0.0.0.0. For example, 0.0.0.0/0 is a default route.

**NOTE**
The device checks for the existence of an IGP route for 0.0.0.0/0 in the IP route table before creating a local BGP4 route for 0.0.0.0/0.

To configure the device to originate and advertise a default BGP4 route, enter this command.

```
device(config-bgp)# default-information-originate
```

**Syntax:** `[no] default-information-originate`
NOTE
It is recommended that you change the default to IGP cost only in mixed-vendor environments, and that you change it on all Extreme devices in the environment.

To change the route cost default from BGP MED to IGP cost, enter a command such as the following:

```
device(config-bgp)# install-igp-cost
```

Syntax: [no] install-igp-cost

Use the no form of the command to revert to the default of BGP MED.

## Configuring a static BGP4 network

This feature allows you to configure a static network in BGP4, creating a stable BGP4 network in the core. While a route configured with this feature will never flap unless it is manually deleted, a "static" BGP4 network will not interrupt the normal BGP4 decision process on other learned routes being installed into the RTM (Routing Table Manager). Consequently, when there is a route that can be resolved, it will be installed into the RTM.

To configure a static BGP4 network, enter commands such as the following.

```
device(config)# router bgp
device(config-bgp)# static-network 10.157.22.26/16
```

Syntax: [no] static-network ipAddressPrefix/mask

The ipAddress and mask variables are the IPv4 address prefix and mask of the static BGP4 network you are creating.

Using the no option uninstalls a route (that was previously installed) from BGP4 RIB-IN and removes the corresponding drop route from the RTM. If there is a new best route, it is advertised to peers if necessary. Otherwise, a withdraw message is sent.

NOTE
The BGP4 network route and the BGP4 static network route are mutually exclusive. They cannot be configured with the same prefix/mask.

When you configure a route using the static-network command, BGP4 automatically generates a local route in BGP4 RIB-IN, and installs a NULL0 route in the RTM if there is no other valid route with the same prefix/mask learned from any peer. Otherwise, the learned BGP4 route will be installed in the RTM. In either situation, the new locally generated route will be the best route in RIB-IN and will be advertised to peers if passes the per-peer outbound policies.

## Setting an administrative distance for a static BGP4 network

When a static BGP4 network route is configured, its type is local BGP4 route and has a default administrative distance value of 200. To change the administrative distance value, change the value of all local BGP4 routes using the distance command at the router bgp level of the CLI, and set a new value for local routes. You can also assign a specific administrative distance value for each static network using the distance option as shown.

```
device(config)# router bgp
device(config-bgp)# static-network 10.157.22.26/16 distance 100
```

Syntax: [no] static-network ipAddressPrefix/mask distance distance-value

The ipAddress and mask variables are the IPv4 address prefix and mask of the static BGP4 network for which you are setting an administrative distance.

The distance-value sets the administrative distance of the static BGP4 network route. The range for this value is 1 - 255.
Limiting advertisement of a static BGP4 network to selected neighbors

You can control the advertisement of a static BGP4 network to BGP4 neighbors that are configured as Service Edge Devices. When this feature is configured for a BGP4 neighbor, static BGP4 network routes that are installed in the routing table as DROP routes are not advertised to that neighbor. When this feature is configured, the route is only advertised to identified Service Edge devices if it is installed as a forward route, such as the routes described in these steps.

1. There is a learned route from a customer BGP4 peering.
2. There is a valid learned route from another Services Edge device as a result of a customer route present on that device.

To configure a BGP4 neighbor to limit the advertisement of Static BGP4 Network routes, enter the static-network-edge command as shown.

```
device(config)# router bgp
device(config-bgp)# neighbor 10.2.3.4 static-network-edge
```

Syntax: [no] neighbor ip-address | peer-group-name static-network-edge

The ip-addr and peer-group-name variables indicate whether you are configuring an individual neighbor or a peer group. If you specify a neighbor IP address, you are configuring that individual neighbor. If you specify a peer group name, you are configuring a peer group.

Route-map continue clauses for BGP4 routes

A continuation clause in a route-map directs program flow to skip over route-map instances to another, user-specified instance. If a matched instance contains a continue clause, the system looks for the instance that is identified in the continue clause.

The continue clause in a matching instance initiates another traversal at the instance that you specify in the continue clause. The system records all of the matched instances and, if no deny statements are encountered, proceeds to execute the set clauses of the matched instances.

If the system scans all route map instances but finds no matches, or if a deny condition is encountered, then it does not update the routes. Whenever a matched instance contains a deny parameter, the current traversal terminates, and none of the updates specified in the set clauses of the matched instances in both current and previous traversals are applied to the routes.

This feature supports a more programmable route map configuration and route filtering scheme for BGP4 peering. It can also execute additional instances in a route map after an instance is executed with successful match clauses. You can configure and organize more modular policy definitions to reduce the number of instances that are repeated within the same route map.

This feature currently applies to BGP4 routes only. For protocols other than BGP4, continue statements are ignored.

Specifying route-map continuation clauses

This section describes the configuration of route-map continuation clauses. The following sequence of steps (with referenced items in the screen output in bold) is described:

- The configuration context for a route-map named test is entered.
- Two route-map continue statements are added to route-map test.
- The show route-map output displays the modified route-map test.
- Subsequent neighbor commands identify the route map test in the inbound and outbound directions for the neighbor at 10.8.8.3.
The `show ip bgp config` output shows inbound and outbound route-map `test` for the neighbor at 10.8.8.3.

```
device(config-bgp)# route-map test permit 1
device(config-route-map test)# match metric 10
device(config-route-map test)# set weight 10
device(config-route-map test)# continue 2
device(config-route-map test)# route-map test permit 2
device(config-route-map test)# match tag 10
device(config-route-map test)# set weight 20
device(config-route-map test)# continue 3
device(config-route-map test)# router bgp
device(config-bgp)# show route-map test
route-map test permit 1
 match metric 10
 set weight 10
 continue 2
route-map test permit 2
 match tag 10
 set weight 20
 continue 3
device(config-bgp)# neighbor 10.8.8.3 route-map in test
device(config-bgp)# neighbor 10.8.8.3 route-map out test
device(config-bgp)# show ip bgp config
Current BGP configuration:
router bgp
 local-as 100
 neighbor 10.8.8.3 remote-as 200
 address-family ipv4 unicast
 neighbor 10.8.8.3 route-map in test
 neighbor 10.8.8.3 route-map out test
 exit-address-family
 address-family ipv4 multicast
 address-family ipv6 unicast
 exit-address-family
 address-family ipv6 multicast
 address-family vpnv4 unicast
 exit-address-family
end of BGP configuration
```

**Syntax:** `[no] route-map map-name permit | deny num`

The `no` form of the command deletes the route map. The `map-name` is a string of up to 80 characters that specifies the map.

The `permit` option means the device applies match and set clauses associated with this route map instance.

The `deny` option means that any match causes the device to ignore the route map.

The `num` parameter specifies the instance of the route map defined in the route-map context that the CLI enters. Routes are compared to the instances in ascending numerical order. For example, a route is compared to instance 1, then instance 2, and so on.

**Syntax:** `[no] continue [instance-number]`

The `continue` command is entered in the context of a route-map instance. The `no` form of the command deletes the continue clause specified by `instance-number`. The instance number range is 0 - 4294967295, and the occurrences of `instance-number` must be in ascending numeric order. If you specify a continue clause without an instance number, it means "continue to the next route-map instance."

**Syntax:** `[no] neighbor ip-addr | peer-group-name [route-map in | out map-name]`

This syntax shows only the `neighbor` parameters that apply to this example. The `ip-addr` or `peer-group-name` identifies the neighbor, and the `route-map in` and `out map-name` options let you specify a route map and direction to apply to the neighbor.
Dynamic route filter update

Routing protocols use various route filters to control the distribution of routes. Route filters are used to filter routes received from and advertised to other devices. Protocols also use route-map policies to control route redistribution from other routing protocols. In addition, route filter policies are used to select routes to be installed in the routing tables, and used by forwarding engine to forward traffic.

There are currently 5 different types of route filters defined for use in a device:

- Access List (ACL)
- Prefix-List
- BGP4 as-path Access-list
- BGP4 community-list
- BGP4 extended community-list
- Route-map

Not every protocol uses all of these route filters. A protocol will usually use two or three filter types.

TABLE 54 Route filters used by each protocol

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Route map</th>
<th>Prefix list</th>
<th>Community- list</th>
<th>Extended community-list</th>
<th>As-path access-list</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP4</td>
<td>X</td>
<td>X</td>
<td>BGP4 does not use Community-List filters directly. It does use them indirectly through route-map filters that contain Community-List filters.</td>
<td>BGP4 does not directly use Extended Community-List filters, but indirectly uses them through route-map filters that contain Extended Community-List filters.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OSPF</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RIP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IS-IS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RIPng</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSPFv3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MSDP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MCast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When a route filter is changed (created, modified or deleted) by a user, the filter change notification will be sent to all relevant protocols, so that protocols can take appropriate actions. For example if BGP4 is using a route-map (say MapX) to control the routes advertised to a particular peer, the change of route-map (MapX) will cause BGP4 to re-evaluate the advertised routes, and make the appropriate advertisements or withdrawals according to the new route-map policy.

A route filter change action can happen in three ways.

1. A new filter is defined (created).
   - This filter name may be already referenced by an application. The application needs to be notified of the addition of the new filter, and will bind to and use the new filter. In general, if a filter name is referenced by an application, but is not actually defined, the application assumes the default deny action for the filter.
2. An existing filter is undefined (removed).
   If the deleted filter is already used and referenced by an application, the application will unbind itself from the deleted filter.
3. An existing filter is modified (updated).
   If the filter is already used and referenced by an application, the application will be notified.
   Protocols are automatically notified when a route filter is created, deleted or modified. In addition, when a protocol is notified of a filter change, appropriate steps are taken to apply the new or updated filter to existing routes.

Commands for dynamic route filter updating

In order to allow multiple filter updates to be processed together by applications, the device waits 10 seconds by default before notifying applications of the filter change. You can force an immediate update notification or modify the time delay from when a change is made to a route filter to when the protocols are notified.

Route filter update delay settings can be configured using the commands shown here.

Setting a time delay for route filter update notification

Set the amount of time that the device waits before sending filter addition, deletion and modification notification to protocols using the following command.

```
device(config)# filter-change-update-delay 100
```

Syntax: `[no] filter-change-update-delay delay-time`

The `delay-time` variable specifies the amount of time in seconds that the device waits before sending filter addition, deletion and modification notification to protocols. The valid range is 0 to 600 seconds. If you set the value to 0, filter change notifications will not be automatically sent to protocols. The default value is 10 seconds.

**NOTE**

The `filter-change-update-delay` command also affects a route map that is being used in a PBR policy.

Performing an immediate route filter update

To force an immediate filter update to the relevant protocols, use the following command.

```
device(config)# clear filter-change-update
```

Syntax: `clear filter-change-update`

This command forces an immediate filter update regardless of the filter-change-update-delay setting. It can also be used to simultaneously submit multiple change notifications when the filter-change-update-delay is set to 0. When changes are complete, run the `clear filter-change-update` command to update protocols.

**NOTE**

There may be delays in sending route filter change notifications to applications, and delays in applying the new or updated filter to all existing routes retroactively. However any new routes or changes to existing routes will be subject to the new filters.
Filter update delay and BGP
The `filter-changes-update-delay` command applies (remove only) to changes of filters that are already used or referenced by applications. If the content of a filter is changed, the new filter action takes effect after `filter-changes-update-delay` for existing routes. The notification delay also applies to situations where the usage or reference of a filter is changed in BGP.

For example, the following BGP neighbor command sets or changes the route-map filter on a neighbor:

```
device(config-bgp)# neighbor x.x.x.x route-map map_abc out
```

In this case, the device applies the route-map "map_abc" to the peer, and updates the neighbor out-bound routes after a delay. If the delay-time is 0, BGP does not start peer out-bound policy updates immediately.

Use the `clear filter-change-update` or `clear ip bgp neighbor soft-out` commands to trigger BGP policy updates.

Similarly, the `filter-changes-update-delay` command also applies to the neighbor in-bound policy change.

**NOTE**
The auto-update action for a BGP peer filter is newly introduced in release 5.2. In previous releases, a user needs to manually issue the `clear ip bgp neighbor soft out` command to cause the device to apply the new route-map retroactively to existing routes.

The general guideline is to define a policy *first*, then apply it to a BGP peer.

BGP4 policy processing order
The order of application of policies when processing inbound and outbound route advertisements on the device is:

1. Ip prefix-list
2. Outbound Ip prefix-list ORF, if negotiated
3. Outbound extended-community ORF, if negotiated
4. Filter-list (using As-path access-list)
5. Distribute list (using IP ACL - IPv4 unicast only)
6. Route-map

Generalized TTL Security Mechanism support
The device supports the Generalized TTL Security Mechanism (GTSM) as defined in RFC 3682. GTSM protects the device from attacks of invalid BGP4 control traffic that is sent to overload the CPU or hijack the BGP4 session. GTSM protection applies to EBGP neighbors only.

When GTSM protection is enabled, BGP4 control packets sent by the device to a neighbor have a Time To Live (TTL) value of 255. In addition, the device expects the BGP4 control packets received from the neighbor to have a TTL value of either 254 or 255. For multihop peers (where the `ebgp-multihop` option is configured for the neighbor), the device expects the TTL for BGP4 control packets received from the neighbor to be greater than or equal to 255, minus the configured number of hops to the neighbor. If the BGP4 control packets received from the neighbor do not have the anticipated value, the device drops them.

For more information on GTSM protection, refer to RFC 3682.

To enable GTSM protection for neighbor 192.168.9.210 (for example), enter the following command.

```
device(config-bgp-router)# neighbor 192.168.9.210 ebgp-btsh
```

**Syntax:** `[no] neighbor ip-addr | peer-group-name ebgp-btsh`
NOTE
For GTSM protection to work properly, it must be enabled on both the device and the neighbor.
show metro mp-vlp-queue

Displays priority information about management processor virtual line card (MP-VLP) queues on CER 2000 Series devices.

Syntax

show metro mp-vlp-queue

Modes

Privileged EXEC mode

Usage Guidelines

Use this command to view statistics about messages from the MP that are queued in the VLP to dequeue.

NOTE

If the Dequeue Time is less than 1 millisecond, it is not recorded in the show metro mp-vlp-queue statistics. The corresponding timestamp is also not recorded. The initial timestamp is shown as “0000.00.00-00:00:00:00.000”.

Command Output

The show metro mp-vlp-queue command displays the following information:

<table>
<thead>
<tr>
<th>Output field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP =&gt; VLP Queue</td>
<td>The queue priority: high, medium, or low.</td>
</tr>
<tr>
<td>Queue Size</td>
<td>The maximum amount of packet counts that the queue can handle at a given time.</td>
</tr>
<tr>
<td>Total Pkt Count</td>
<td>The total count of messages queued in each queue.</td>
</tr>
<tr>
<td>Current Pkt Count</td>
<td>The count of messages queued at a specific moment in each queue.</td>
</tr>
<tr>
<td>Pkt High WM</td>
<td>The maximum messages reached in the queue at any point of time.</td>
</tr>
<tr>
<td>Pkt drop Count</td>
<td>The amount of messages that were dropped because the queue was full.</td>
</tr>
<tr>
<td>Dequeue High WM(msec)</td>
<td>The longest period of time, in milliseconds, that a message remained in that queue.</td>
</tr>
<tr>
<td>Timestamp Pkt High WM(High)</td>
<td>The timestamp for the time when the high water mark for the number of messages in the high priority queue is reached.</td>
</tr>
<tr>
<td>Timestamp Pkt High WM(Medium)</td>
<td>The timestamp for the time when the high water mark for the number of messages in the medium priority queue is reached.</td>
</tr>
<tr>
<td>Timestamp Pkt High WM(Low)</td>
<td>The timestamp for the time when the high water mark for the number of messages in the low priority queue is reached.</td>
</tr>
<tr>
<td>Timestamp Dequeue Time HWM(High)</td>
<td>The timestamp for the time when the most delay is observed in the high priority queue.</td>
</tr>
<tr>
<td>Timestamp Dequeue Time HWM(Medium)</td>
<td>The timestamp for the time when the most delay is observed in the medium priority queue.</td>
</tr>
<tr>
<td>Timestamp Dequeue Time HWM(Low)</td>
<td>The timestamp for the time when the most delay is observed in the low priority queue.</td>
</tr>
</tbody>
</table>
Examples

This example shows sample output from the `show metro mp-vlp-queue` command. Three MP-VLP queues are shown with priority High, Medium and Low. The messages from the MP are queued in these queues for the VLP to dequeue.

```
LP-1# show metro mp-vlp-queue
MP -> VLP Queue : High Medium Low
Total Pkt Count : 2160279 0 61210672
Current Pkt Count : 0 0 0
Pkt High WM : 13 0 1992
Pkt drop count : 0 0 0
Dequeue Time HWM(msec): 12000 0 12675
Timestamp Pkt High WM(High) : [13]: 2015.02.25-08:07:16.533
Timestamp Pkt High WM(Medium) : [0]: 0000.00.00-00:00:00.000
Timestamp Pkt High WM(Low) : [1992]: 2015.02.25-08:07:17.223
Timestamp Dequeue Time HWM(High) : [12000]: 2015.02.25-08:07:17.230
Timestamp Dequeue Time HWM(Medium): [0]: 0000.00.00-00:00:00.000
Timestamp Dequeue Time HWM(Low) : [12675]: 2015.02.25-08:07:17.800
```

This example shows sample output from the `show metro mp-vlp-queue` command after statistics have been cleared using the `clear metro mp-vlp-queue` command.

```
LP-1# show metro mp-vlp-queue
MP -> VLP Queue : High Medium Low
Total Pkt Count : 0 0 0
Current Pkt Count : 0 0 0
Pkt High WM : 0 0 0
Pkt drop count : 0 0 0
Dequeue Time HWM(msec): 0 0 0
Timestamp Pkt High WM(High) : [0]: 0000.00.00-00:00:00.000
Timestamp Pkt High WM(Medium) : [0]: 0000.00.00-00:00:00.000
Timestamp Pkt High WM(Low) : [0]: 0000.00.00-00:00:00.000
Timestamp Dequeue Time HWM(High) : [0]: 0000.00.00-00:00:00.000
Timestamp Dequeue Time HWM(Medium): [0]: 0000.00.00-00:00:00.000
Timestamp Dequeue Time HWM(Low) : [0]: 0000.00.00-00:00:00.000
```

History

```
<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.00a</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```
clear metro mp-vlp-queue

Resets the management processor virtual line card (MP-VLP) queue statistics on CER 2000 Series devices.

Syntax

clear metro mp-vlp-queue

Modes

Privileged EXEC mode.

Usage Guidelines

this command operates in all modes.

show metro mp-vlp-queue

Examples

This example clears all the counters in the MP-VLP queue statistics.

device# clear metro mp-vlp-queue

History

<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.00a</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Displaying BGP4 information

You can display the following configuration information and statistics for BGP4 protocol:

- Summary BGP4 configuration information for the device
- Active BGP4 configuration information (the BGP4 information in the running configuration)
- Neighbor information
- Peer-group information
- Information about the paths from which BGP4 selects routes
- Summary BGP4 route information
- Virtual Routing and Forwarding (VRF) instance information
- The device's BGP4 route table
- Route flap dampening statistics
- Active route maps (the route map configuration information in the running configuration)
- BGP4 graceful restart neighbor Information
- AS4 support and asdot notation
Displaying summary BGP4 information

You can display the local AS number, the maximum number of routes and neighbors supported, and some BGP4 statistics. You can also display BGP4 memory usage for:

- BGP4 routes installed
- Routes advertising to all neighbors (aggregated into peer groups)
- Attribute entries installed

The `show ip bgp summary` command output has the following limitations:

- If a BGP4 peer is not configured for an address-family, the peer information is not displayed.
- If a BGP4 peer is configured for an address-family but not negotiated for an address-family after the BGP4 peer is in the established state, the `show ip bgp summary` command output shows (NoNeg) at the end of the line for this peer.
- If a BGP4 peer is configured and negotiated for that address-family, its display is the same as in previous releases.

To view summary BGP4 information for the device, enter the following command at any CLI prompt

```
device# show ip bgp summary
```

**BGP4 Summary**

- Router ID: 10.7.7.7  Local AS Number: 100
- Confederation Identifier: not configured
- Confederation Peers:
- Maximum Number of IP ECMP Paths Supported for Load Sharing: 1
- Number of Neighbors Configured: 1, UP: 1
- Number of Routes Installed: 0
- Number of Routes Advertising to All Neighbors: 0 (0 entries)
- Number of Attribute Entries Installed: 0

Data in InQueue '>', Data in OutQueue '->': Clearing
- '*'**: Update Policy 'c': Group change 'p': Group change Pending
- 'r': Restarting 's': Stale '^': Up before Restart '<': EOR waiting

<table>
<thead>
<tr>
<th>Neighbor Address</th>
<th>AS#</th>
<th>State</th>
<th>Time</th>
<th>Rt:Accepted</th>
<th>Filtered</th>
<th>Sent</th>
<th>ToSend</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.8</td>
<td>100</td>
<td>ESTAB</td>
<td>0h 9m16s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Syntax:** `show ip bgp summary`

**TABLE 55** show ip bgp summary output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The device ID.</td>
</tr>
<tr>
<td>Local AS Number</td>
<td>The BGP4 AS number for the device.</td>
</tr>
<tr>
<td>Confederation Identifier</td>
<td>The AS number of the confederation in which the device resides.</td>
</tr>
<tr>
<td>Confederation Peers</td>
<td>The numbers of the local autonomous systems contained in the confederation. This list matches the confederation peer list you configure on the device.</td>
</tr>
<tr>
<td>Maximum Number of Paths Supported for Load Sharing</td>
<td>The maximum number of route paths across which the device can balance traffic to the same destination. The feature is enabled by default but the default number of paths is 1. You can increase the number from 2 through 8 paths.</td>
</tr>
<tr>
<td>Number of Neighbors Configured</td>
<td>The number of BGP4 neighbors configured on this device, and currently in established state.</td>
</tr>
<tr>
<td>Number of Routes Installed</td>
<td>The number of BGP4 routes in the device BGP4 route table and the route or path memory usage.</td>
</tr>
<tr>
<td>Number of Routes Advertising to All Neighbors</td>
<td>The total of the RtSent and RtToSend columns for all neighbors, the total number of unique ribout group entries, and the amount of memory used by these groups.</td>
</tr>
<tr>
<td>Number of Attribute Entries Installed</td>
<td>The number of BGP4 route-attribute entries in the device route-attributes table and the amount of memory used by these entries.</td>
</tr>
<tr>
<td>This field</td>
<td>Displays</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Neighbor Address</td>
<td>The IP addresses of the BGP4 neighbors for this device.</td>
</tr>
<tr>
<td>AS#</td>
<td>The AS number.</td>
</tr>
<tr>
<td>State</td>
<td>The state of device sessions with each neighbor. The states are from this</td>
</tr>
<tr>
<td></td>
<td>perspective of the device, not the neighbor. State values are based on</td>
</tr>
<tr>
<td></td>
<td>the BGP4 state machine values described in RFC 1771 and can be one of</td>
</tr>
<tr>
<td></td>
<td>the following for each device:</td>
</tr>
<tr>
<td></td>
<td>• IDLE - The BGP4 process is waiting to be started. Usually, enabling</td>
</tr>
<tr>
<td></td>
<td>BGP4 or establishing a neighbor session starts the BGP4 process. A minus</td>
</tr>
<tr>
<td></td>
<td>sign (−) indicates that the session has gone down and the software is</td>
</tr>
<tr>
<td></td>
<td>clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• ADMND - The neighbor has been administratively shut down.</td>
</tr>
<tr>
<td></td>
<td>• CONNECT - BGP4 is waiting for the connection process for the TCP</td>
</tr>
<tr>
<td></td>
<td>neighbor session to be completed.</td>
</tr>
<tr>
<td></td>
<td>• ACTIVE - BGP4 is waiting for a TCP connection from the neighbor. Note</td>
</tr>
<tr>
<td></td>
<td>: If the state frequently changes between CONNECT and ACTIVE, there may</td>
</tr>
<tr>
<td></td>
<td>be a problem with the TCP connection.</td>
</tr>
<tr>
<td></td>
<td>• OPEN SENT - BGP4 is waiting for an Open message from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• OPEN CONFIRM - BGP4 has received an Open message from the neighbor</td>
</tr>
<tr>
<td></td>
<td>and is now waiting for either a KEEPALIVE or NOTIFICATION message. If</td>
</tr>
<tr>
<td></td>
<td>the device receives a KEEPALIVE message from the neighbor, the state</td>
</tr>
<tr>
<td></td>
<td>changes to Established. If the message is a NOTIFICATION, the state</td>
</tr>
<tr>
<td></td>
<td>changes to Idle.</td>
</tr>
<tr>
<td></td>
<td>• ESTABLISHED - BGP4 is ready to exchange UPDATE packets with the</td>
</tr>
<tr>
<td></td>
<td>neighbor.</td>
</tr>
<tr>
<td>Operational States:</td>
<td>Additional information regarding the operational states of the BGP4</td>
</tr>
<tr>
<td></td>
<td>states described above may be added as described in the following:</td>
</tr>
<tr>
<td></td>
<td>• (+) - is displayed if there is more BGP4 data in the TCP receiver</td>
</tr>
<tr>
<td></td>
<td>queue. Note: If you display information for the neighbor using the show</td>
</tr>
<tr>
<td></td>
<td>ip bgp neighbor ip-addr command, the TCP receiver queue value will be</td>
</tr>
<tr>
<td></td>
<td>greater than 0.</td>
</tr>
<tr>
<td></td>
<td>• (−) - indicates that the session has gone down and the software is</td>
</tr>
<tr>
<td></td>
<td>clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• (*) - indicates that the inbound or outbound policy is being updated</td>
</tr>
<tr>
<td></td>
<td>for the peer.</td>
</tr>
<tr>
<td></td>
<td>• (s) - indicates that the peer has negotiated restart, and the session</td>
</tr>
<tr>
<td></td>
<td>is in a stale state.</td>
</tr>
<tr>
<td></td>
<td>• (r) - indicates that the peer is restarting the BGP4 connection,</td>
</tr>
<tr>
<td></td>
<td>through restart.</td>
</tr>
<tr>
<td></td>
<td>• (*0) - on the standby MP indicates that the peer is in the ESTABLISHED</td>
</tr>
<tr>
<td></td>
<td>state and has received restart capability (in the primary MP).</td>
</tr>
<tr>
<td></td>
<td>• (c) - indicates that the device is waiting to receive the &quot;End of</td>
</tr>
<tr>
<td></td>
<td>RIB&quot; message the peer.</td>
</tr>
<tr>
<td></td>
<td>• (p) - indicates that the neighbor ribout group membership change is</td>
</tr>
<tr>
<td></td>
<td>pending or in progress</td>
</tr>
<tr>
<td>Time</td>
<td>The time that has passed since the state last changed.</td>
</tr>
<tr>
<td>Accepted</td>
<td>The number of routes received from the neighbor that this device installed</td>
</tr>
<tr>
<td></td>
<td>in the BGP4 route table. Usually, this number is lower than the</td>
</tr>
</tbody>
</table>
TABLE 55 show ip bgp summary output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays</td>
<td>RoutesRcvd number. The difference indicates that this device filtered out some of the routes received in the UPDATE messages.</td>
</tr>
<tr>
<td>Filtered</td>
<td>The routes or prefixes that have been filtered out:</td>
</tr>
<tr>
<td></td>
<td>• If soft reconfiguration is enabled, this field shows how many routes were filtered out (not placed in the BGP4 route table) but retained in memory.</td>
</tr>
<tr>
<td></td>
<td>• If soft reconfiguration is not enabled, this field shows the number of BGP4 routes that have been filtered out.</td>
</tr>
<tr>
<td>Sent</td>
<td>The number of BGP4 routes the device has sent to the neighbor.</td>
</tr>
<tr>
<td>ToSend</td>
<td>The number of routes the device has queued to advertise and withdraw to a neighbor.</td>
</tr>
</tbody>
</table>

Displaying the active BGP4 configuration

To view the active BGP4 configuration information contained in the running configuration without displaying the entire running configuration, enter the following command at any level of the CLI.

```
device# show ip bgp config
router bgp
 local-as 200
neighbor 10.102.1.1 remote-as 200
neighbor 10.102.1.1 ebgp-multihop
neighbor 10.102.1.1 update-source loopback 1
neighbor 192.168.2.1 remote-as 100
neighbor 10.200.2.2 remote-as 400
neighbor 2001:db8::1:1 remote-as 200
neighbor 2001:db8::1:2 remote-as 400
neighbor 2001:db8::1 remote-as 300

 address-family ipv4 unicast
 no neighbor 2001:db8::1:1 activate
 no neighbor 2001:db8::1:2 activate
 no neighbor 2001:db8::1 activate
 exit-address-family

 address-family ipv4 multicast
 exit-address-family

 address-family ipv6 unicast
 redistribute static
 neighbor 2001:db8::1:1 activate
 neighbor 2001:db8::1:2 activate
 neighbor 2001:db8::1 activate
 exit-address-family
 end of BGP configuration
```

Syntax: show ip bgp config

Displaying summary neighbor information

The show ip bgp neighbor command output has the following limitations.

1. If BGP4 peer is not configured for an address-family, the peer information will NOT be displayed.
2. If BGP4 peer is configured for an address-family, it will display the same as in previous releases.

To display summary neighbor information, enter a command such as the following at any level of the CLI.

```
device# show ip bgp neighbor 192.168.4.211 routes-summary
1 IP Address: 192.168.4.211
Routes Accepted/Installed:11, Filtered/Kept:11, Filtered:11
Routes Selected as BEST Routes:1
 BEST Routes not Installed in IP Forwarding Table:0
Unreachable Routes (no IGP Route for NEXTHOP):0
History Routes:0

NLRIs Received in Update Message:24, Withdraws:0 (0), Replacements:1
 NLRIs Discarded due to
 Maximum Prefix Limit:0, AS Loop:0
 Invalid Nexthop:0, Invalid Nexthop Address:0.0.0.0
 Duplicated Originator_ID:0, Cluster_ID:0

Routes Advertised:0, To be Sent:0, To be Withdrawn:0
NLRIs Sent in Update Message:0, Withdraws:0, Replacements:0

Peer Out of Memory Count for:
 Receiving Update Messages:0, Accepting Routes (NLRI):0
 Attributes:0, Outbound Routes (RIB-out):0
```

Syntax: `show ip bgp neighbors [ ip-addr ] [ route-summary ]`

### TABLE 56 show ip bgp neighbors route-summary output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the neighbor.</td>
</tr>
<tr>
<td>Routes Received</td>
<td>How many routes the device has received from the neighbor during the current BGP4 session:</td>
</tr>
<tr>
<td></td>
<td>• Accepted or Installed - Number of received routes the device accepted and installed in the BGP4 route table.</td>
</tr>
<tr>
<td></td>
<td>• Filtered or Kept - Number of routes that were filtered out, but were retained in memory for use by the soft reconfiguration feature.</td>
</tr>
<tr>
<td></td>
<td>• Filtered - Number of received routes filtered out.</td>
</tr>
<tr>
<td>Routes Selected as BEST Routes</td>
<td>The number of routes that the device selected as the best routes to their destinations.</td>
</tr>
<tr>
<td>BEST Routes not Installed in IP Forwarding Table</td>
<td>The number of routes received from the neighbor that are the best BGP4 routes to their destinations, but were not installed in the IP route table because the device received better routes from other sources (such as OSPF, RIP, or static IP routes).</td>
</tr>
<tr>
<td>Unreachable Routes</td>
<td>The number of routes received from the neighbor that are unreachable because the device does not have a valid RIP, OSPF, or static route to the next-hop.</td>
</tr>
<tr>
<td>History Routes</td>
<td>The number of routes that are down but are being retained for route flap dampening purposes.</td>
</tr>
<tr>
<td>NLRIs Received in Update Message</td>
<td>The number of routes received in Network Layer Reachability (NRLI) format in UPDATE messages:</td>
</tr>
<tr>
<td></td>
<td>• Withdraws - Number of withdrawn routes the device has received.</td>
</tr>
<tr>
<td></td>
<td>• Replacements - Number of replacement routes the device has received.</td>
</tr>
<tr>
<td>NLRIs Discarded due to</td>
<td>Indicates the number of times the device discarded an NLRI for the neighbor due to the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• Maximum Prefix Limit - The configured maximum prefix amount had been reached.</td>
</tr>
</tbody>
</table>
### TABLE 56 show ip bgp neighbors route-summary output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• AS Loop - An AS loop occurred. An AS loop occurs when the BGP4 AS-path attribute contains the local AS number.</td>
</tr>
<tr>
<td></td>
<td>• maxas-limit aspath - The number of route entries discarded because the AS path exceeded the configured maximum length or exceeded the internal memory limits.</td>
</tr>
<tr>
<td></td>
<td>• Invalid Nexthop - The next-hop value was not acceptable.</td>
</tr>
<tr>
<td></td>
<td>• Duplicated Originator_ID - The originator ID was the same as the local device ID.</td>
</tr>
<tr>
<td></td>
<td>• Cluster_ID - The cluster list contained the local cluster ID, or the local device ID if the cluster ID is not configured.</td>
</tr>
</tbody>
</table>

### Routes Advertised

The number of routes the device has advertised to this neighbor:

- To be Sent - The number of routes queued to send to this neighbor.
- To be Withdrawn - The number of NLRIs for withdrawing routes the device has queued to send to this neighbor in UPDATE messages.

### NLRIs Sent in Update Message

The number of NLRIs for new routes the device has sent to this neighbor in UPDATE messages:

- Withdraws - Number of routes the device has sent to the neighbor to withdraw.
- Replacements - Number of routes the device has sent to the neighbor to replace routes the neighbor already has.

### Peer Out of Memory Count for

Statistics for the times the device has run out of BGP4 memory for the neighbor during the current BGP4 session:

- Receiving Update Messages - The number of times UPDATE messages were discarded because there was no memory for attribute entries.
- Accepting Routes (NLRI) - The number of NLRIs discarded because there was no memory for NLRI entries. This count is not included in the Receiving Update Messages count.
- Attributes - The number of times there was no memory for BGP4 attribute entries.
- Outbound Routes (RIB-out) - The number of times there was no memory to place a “best” route into the neighbor route information base (Adj-RIB-Out) for routes to be advertised.

### Displaying BGP4 neighbor information

You can display configuration information and statistics for BGP4 neighbors of the device.

To view BGP4 neighbor information, including the values for all the configured parameters, enter the following command.

**NOTE**

The display shows all the configured parameters for the neighbor. Only the parameters that have values different from their defaults are shown.

```
device(config-bgp)# show ip bgp neighbors 10.4.0.2
Total number of BGP neighbors:
1 IP Address: 10.4.0.2, AS: 5 (EBGP), RouterID: 10.0.0.1
 Description: neighbor 10.4.0.2
 Local AS: 101
 State: ESTABLISHED, Time: 0h1m0s, KeepAliveTime: 0, HoldTime: 0
 PeerGroup: pg1
 Multihop-EBGP: yes, ttl: 1
```
RouteReflectorClient: yes
SendCommunity: yes
NextHopSelf: yes
DefaultOrigin: yes (default sent)
MaximumPrefixLimit: 90000
RemovePrivateAs: yes
RefreshCapability: Received
Route Filter Policies:
  Distribute-list: (out) 20
  Filter-list: (in) 30
  Prefix-list: (in) pf1
  Route-map: (in) setnp1 (out) setnp2
Messages: Open Update KeepAlive Notification Refresh-Req
  Sent: 1 1 1 0 0
  Received: 1 8 1 0 0
Last Update Time: NLRI Withdraw NLRI Withdraw
  Tx: 0h0m59s --- Rx: 0h0m59s ---
Last Connection Reset Reason: Unknown
  Notification Sent: Unspecified
  Notification Received: Unspecified
TCP Connection state: ESTABLISHED
  Local host: 10.4.0.1, Local Port: 179
  Remote host: 10.4.0.2, Remote Port: 8053
  ISentSeq: 52837276 SendNext: 52837392 TotUnAck: 0
  IRecvSeq: 2155052043 RcvNext: 2155052536 SendWnd: 16384
  TotalRcv: 493 DupliRcv: 0 RcvWnd: 16384
  SendQue: 0 RcvQue: 0 CngstWnd: 1460
This example shows how to display information for a specific neighbor, by specifying the neighbor's IP address with the command. Since none of the other display options are used, all of the information is displayed for the neighbor. The number in the far left column indicates the neighbor for which information is displayed. When you list information for multiple neighbors, this number makes the display easier to read.

The TCP statistics at the end of the display show status for the TCP session with the neighbor. Most of the fields show information stored in the Transmission Control Block (TCB) for the TCP session between the device and the neighbor. These fields are described in detail in section 3.2 of RFC 793, “Transmission Control Protocol Functional Specification”.

Syntax: show ip bgp neighbors [ip-addr] [advertised-routes [detail [ip-addr [mask-bits]]]] [attribute-entries [detail]] [flap-statistics] [last-packet-with-error] [received prefix-filter] [received-routes] [routes [best] [detail [best]] [not-installed-best] [unreachable]] [rib-out-routes [ip-addr[mask-bits] [ip-addr net-mask] [detail]]] [routes-summary]

The ip-addr option lets you narrow the scope of the command to a specific neighbor.

The advertised-routes option displays only the routes that the device has advertised to the neighbor during the current BGP4 session.

The attribute-entries option shows the attribute-entries associated with routes received from the neighbor.

The flap-statistics option shows the route flap statistics for routes received from or sent to the neighbor.

The last-packet-with-error option displays the last packet from the neighbor that contained an error. The packet contents are displayed in decoded (human-readable) format.

The received prefix-filter option shows the Outbound Route Filters (ORFs) received from the neighbor. This option applies to cooperative route filtering.

The received-routes option lists all the route information received in route updates from the neighbor since the soft reconfiguration feature was enabled.

The routes option lists the routes received in UPDATE messages from the neighbor. You can specify the following additional options:

  • best - Displays the routes received from the neighbor that the device selected as the best routes to their destinations.
• **not-installed-best** - Displays the routes received from the neighbor that are the best BGP4 routes to their destinations, but were not installed in the IP route table because the device received better routes from other sources (such as OSPF, RIP, or static IP routes).

• **unreachable** - Displays the routes that are unreachable because the device does not have a valid RIP, OSPF, or static route to the next hop.

• **detail** - Displays detailed information for the specified routes. You can refine your information request by also specifying one of the options (`best`, `not-installed-best`, or `unreachable`).

The **rib-out-routes** option lists the route information base (RIB) for outbound routes. You can display all routes or specify a network address.

The **routes-summary** option displays a summary of the following information:

- Number of routes received from the neighbor
- Number of routes accepted by this device from the neighbor
- Number of routes this device filtered out of the UPDATES received from the neighbor and did not accept
- Number of routes advertised to the neighbor
- Number of attribute entries associated with routes received from or advertised to the neighbor.

### TABLE 57 show ip bgp neighbor output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Information displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of BGP4 Neighbors</td>
<td>The number of BGP4 neighbors configured.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the neighbor.</td>
</tr>
<tr>
<td>AS</td>
<td>The AS the neighbor is in.</td>
</tr>
<tr>
<td>EBGP or IBGP</td>
<td>Whether the neighbor session is an IBGP session, an EBGP session, or a confederation EBGP session:</td>
</tr>
<tr>
<td></td>
<td>• EBGP - The neighbor is in another AS.</td>
</tr>
<tr>
<td></td>
<td>• EBGP_Conf - The neighbor is a member of another sub-AS in the same confederation.</td>
</tr>
<tr>
<td></td>
<td>• IBGP - The neighbor is in the same AS.</td>
</tr>
<tr>
<td>RouterID</td>
<td>The neighbor device ID.</td>
</tr>
<tr>
<td>Description</td>
<td>The description you gave the neighbor when you configured it on the device.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The value (if any) of the Local AS configured.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the session with the neighbor. The states are from the device perspective, not the neighbor perspective. The state values are based on the BGP4 state machine values described in RFC 1771 and can be one of the following for each device:</td>
</tr>
<tr>
<td></td>
<td>• IDLE - The BGP4 process is waiting to be started. Usually, enabling BGP4 or establishing a neighbor session starts the BGP4 process. A minus sign (−) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• ADMND - The neighbor has been administratively shut down. Refer to Administratively shutting down a session with a BGP4 neighbor on page 311. A minus sign (−) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• CONNECT - BGP4 is waiting for the connection process for the TCP neighbor session to be completed.</td>
</tr>
<tr>
<td></td>
<td>• ACTIVE - BGP4 is waiting for a TCP connection from the neighbor.</td>
</tr>
</tbody>
</table>
### TABLE 57 show ip bgp neighbor output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Information displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NOTE</strong></td>
<td>If the state frequently changes between CONNECT and ACTIVE, there may be a problem with the TCP connection.</td>
</tr>
<tr>
<td></td>
<td>• OPEN SENT - BGP4 is waiting for an Open message from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• OPEN CONFIRM - BGP4 has received an OPEN message from the neighbor and is now waiting for either a KEEPALIVE or NOTIFICATION message. If the device receives a KEEPALIVE message from the neighbor, the state changes to Established. If the message is a NOTIFICATION, the state changes to Idle.</td>
</tr>
<tr>
<td></td>
<td>• ESTABLISHED - BGP4 is ready to exchange UPDATE messages with the neighbor.</td>
</tr>
<tr>
<td></td>
<td>If there is more BGP4 data in the TCP receiver queue, a plus sign (+) is also displayed.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong></td>
</tr>
<tr>
<td></td>
<td>If you display information for the neighbor using the <code>show ip bgp neighbor ip-addr</code> command, the TCP receiver queue value will be greater than 0.</td>
</tr>
</tbody>
</table>

Time	The amount of time this session has been in the current state.
KeepAliveTime	The keep alive time, which specifies how often this device sends keepalive messages to the neighbor.
HoldTime	The hold time, which specifies how many seconds the device will wait for a keepalive or update message from a BGP4 neighbor before deciding that the neighbor is not operational.
PeerGroup	The name of the peer group the neighbor is in, if applicable.
Multihop-EBGP	Whether this option is enabled for the neighbor.
RouteReflectorClient	Whether this option is enabled for the neighbor.
SendCommunity	Whether this option is enabled for the neighbor.
NextHopSelf	Whether this option is enabled for the neighbor.
DefaultOriginiate	Whether this option is enabled for the neighbor.
MaximumPrefixLimit	Maximum number of prefixes the device will accept from this neighbor.
RemovePrivateAs	Whether this option is enabled for the neighbor.
RefreshCapability	Whether this device has received confirmation from the neighbor that the neighbor supports the dynamic refresh capability.
CooperativeFilteringCapability	Whether the neighbor is enabled for cooperative route filtering.
Distribute-list	Lists the distribute list parameters, if configured.
Filter-list	Lists the filter list parameters, if configured.
Prefix-list	Lists the prefix list parameters, if configured.
Route-map	Lists the route map parameters, if configured.
Messages Sent	The number of messages this device has sent to the neighbor. The display shows statistics for the following message types:
	• Open
	• Update
	• KeepAlive
	• Notification
	• Refresh-Req
### TABLE 57 show ip bgp neighbor output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Information displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Messages Received</strong></td>
<td>The number of messages this device has received from the neighbor. The message types are the same as for the Message Sent field.</td>
</tr>
<tr>
<td><strong>Last Update Time</strong></td>
<td>Lists the last time updates were sent and received for the following:</td>
</tr>
<tr>
<td></td>
<td>• NLRIs</td>
</tr>
<tr>
<td></td>
<td>• Withdraws</td>
</tr>
<tr>
<td><strong>Last Connection Reset Reason</strong></td>
<td>The reason the previous session with this neighbor ended. The reason can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>Reasons described in the BGP4 specifications:</td>
</tr>
<tr>
<td></td>
<td>• Message Header Error</td>
</tr>
<tr>
<td></td>
<td>• Connection Not Synchronized</td>
</tr>
<tr>
<td></td>
<td>• Bad Message Length</td>
</tr>
<tr>
<td></td>
<td>• Bad Message Type</td>
</tr>
<tr>
<td></td>
<td>• OPEN Message Error</td>
</tr>
<tr>
<td></td>
<td>• Unsupported Version Number</td>
</tr>
<tr>
<td></td>
<td>• Bad Peer AS Number</td>
</tr>
<tr>
<td></td>
<td>• Bad BGP4 Identifier</td>
</tr>
<tr>
<td></td>
<td>• Unsupported Optional Parameter</td>
</tr>
<tr>
<td></td>
<td>• Authentication Failure</td>
</tr>
<tr>
<td></td>
<td>• Unacceptable Hold Time</td>
</tr>
<tr>
<td></td>
<td>• Unsupported Capability</td>
</tr>
<tr>
<td></td>
<td>• UPDATE Message Error</td>
</tr>
<tr>
<td></td>
<td>• Malformed Attribute List</td>
</tr>
<tr>
<td></td>
<td>• Unrecognized Well-known Attribute</td>
</tr>
<tr>
<td></td>
<td>• Missing Well-known Attribute</td>
</tr>
<tr>
<td></td>
<td>• Attribute Flags Error</td>
</tr>
<tr>
<td></td>
<td>• Attribute Length Error</td>
</tr>
<tr>
<td></td>
<td>• Invalid ORIGIN Attribute</td>
</tr>
<tr>
<td></td>
<td>• Invalid NEXT_HOP Attribute</td>
</tr>
<tr>
<td></td>
<td>• Optional Attribute Error</td>
</tr>
<tr>
<td></td>
<td>• Invalid Network Field</td>
</tr>
<tr>
<td></td>
<td>• Malformed AS_PATH</td>
</tr>
<tr>
<td></td>
<td>• Hold Timer Expired</td>
</tr>
<tr>
<td></td>
<td>• Finite State Machine Error</td>
</tr>
<tr>
<td></td>
<td>• Rcv Notification</td>
</tr>
<tr>
<td><strong>Last Connection Reset Reason (cont.)</strong></td>
<td>Reasons specific to the Extreme implementation:</td>
</tr>
<tr>
<td></td>
<td>• Reset All Peer Sessions</td>
</tr>
<tr>
<td></td>
<td>• User Reset Peer Session</td>
</tr>
<tr>
<td></td>
<td>• Port State Down</td>
</tr>
<tr>
<td></td>
<td>• Peer Removed</td>
</tr>
<tr>
<td></td>
<td>• Peer Shutdown</td>
</tr>
<tr>
<td></td>
<td>• Peer AS Number Change</td>
</tr>
<tr>
<td></td>
<td>• Peer AS Confederation Change</td>
</tr>
<tr>
<td></td>
<td>• TCP Connection KeepAlive Timeout</td>
</tr>
<tr>
<td></td>
<td>• TCP Connection Closed by Remote</td>
</tr>
<tr>
<td></td>
<td>• TCP Data Stream Error Detected</td>
</tr>
</tbody>
</table>
### TABLE 57 show ip bgp neighbor output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Information displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification Sent</td>
<td>If the device receives a NOTIFICATION message from the neighbor, the message contains an error code corresponding to one of the following errors. Some errors have subcodes that clarify the reason for the error. Where applicable, the subcode messages are listed underneath the error code messages.</td>
</tr>
<tr>
<td></td>
<td>• Message Header Error:</td>
</tr>
<tr>
<td></td>
<td>• Connection Not Synchronized</td>
</tr>
<tr>
<td></td>
<td>• Bad Message Length</td>
</tr>
<tr>
<td></td>
<td>• Bad Message Type</td>
</tr>
<tr>
<td></td>
<td>• Unspecified</td>
</tr>
<tr>
<td></td>
<td>• Open Message Error:</td>
</tr>
<tr>
<td></td>
<td>• Unsupported Version</td>
</tr>
<tr>
<td></td>
<td>• Bad Peer As</td>
</tr>
<tr>
<td></td>
<td>• Bad BGP4 Identifier</td>
</tr>
<tr>
<td></td>
<td>• Unsupported Optional Parameter</td>
</tr>
<tr>
<td></td>
<td>• Authentication Failure</td>
</tr>
<tr>
<td></td>
<td>• Unacceptable Hold Time</td>
</tr>
<tr>
<td></td>
<td>• Unspecified</td>
</tr>
<tr>
<td></td>
<td>• Update Message Error:</td>
</tr>
<tr>
<td></td>
<td>• Malformed Attribute List</td>
</tr>
<tr>
<td></td>
<td>• Unrecognized Attribute</td>
</tr>
<tr>
<td></td>
<td>• Missing Attribute</td>
</tr>
<tr>
<td></td>
<td>• Attribute Flag Error</td>
</tr>
<tr>
<td></td>
<td>• Attribute Length Error</td>
</tr>
<tr>
<td></td>
<td>• Invalid Origin Attribute</td>
</tr>
<tr>
<td></td>
<td>• Invalid NextHop Attribute</td>
</tr>
<tr>
<td></td>
<td>• Optional Attribute Error</td>
</tr>
<tr>
<td></td>
<td>• Invalid Network Field</td>
</tr>
<tr>
<td></td>
<td>• Malformed AS Path</td>
</tr>
<tr>
<td></td>
<td>• Unspecified</td>
</tr>
<tr>
<td></td>
<td>• Hold Timer Expired</td>
</tr>
<tr>
<td></td>
<td>• Finite State Machine Error</td>
</tr>
<tr>
<td></td>
<td>• Cease</td>
</tr>
<tr>
<td></td>
<td>• Unspecified</td>
</tr>
<tr>
<td>Notification Received</td>
<td>Refer to details for the field Notification Sent.</td>
</tr>
<tr>
<td>TCP Connection state</td>
<td>The state of the connection with the neighbor. The connection can have one of the following states:</td>
</tr>
</tbody>
</table>
### Displaying route information for a neighbor

You can display routes based on the following criteria:

- A summary of the routes for a specific neighbor.
- Routes received from the neighbor that the device selected as the best routes to their destinations.
- Routes received from the neighbor that are the best BGP4 routes to their destinations, but were not installed in the IP route table because the device received better routes from other sources (such as OSPF, RIP, or static IP routes).
- Routes that are unreachable because the device does not have a valid RIP, OSPF, or static route to the next hop.
- Routes for a specific network advertised by the device to the neighbor.

<table>
<thead>
<tr>
<th>Field</th>
<th>Information displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte Sent</td>
<td>The number of bytes sent.</td>
</tr>
<tr>
<td>Byte Received</td>
<td>The number of bytes received.</td>
</tr>
<tr>
<td>Local host</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>Local port</td>
<td>The TCP port the device is using for the BGP4 TCP session with the neighbor.</td>
</tr>
<tr>
<td>Remote host</td>
<td>The IP address of the neighbor.</td>
</tr>
<tr>
<td>Remote port</td>
<td>The TCP port the neighbor is using for the BGP4 TCP session with the device.</td>
</tr>
<tr>
<td>IsentSeq</td>
<td>The initial send sequence number for the session.</td>
</tr>
<tr>
<td>SendNext</td>
<td>The next sequence number to be sent.</td>
</tr>
<tr>
<td>TotUnAck</td>
<td>The number of sequence numbers sent by the device that have not been acknowledged by the neighbor.</td>
</tr>
<tr>
<td>TotSent</td>
<td>The number of sequence numbers sent to the neighbor.</td>
</tr>
<tr>
<td>Retrans</td>
<td>The number of sequence numbers that the device retransmitted because they were not acknowledged.</td>
</tr>
<tr>
<td>UnAckSeq</td>
<td>The current acknowledged sequence number.</td>
</tr>
<tr>
<td>IrcvSeq</td>
<td>The initial receive sequence number for the session.</td>
</tr>
<tr>
<td>RcvNext</td>
<td>The next sequence number expected from the neighbor.</td>
</tr>
<tr>
<td>SendWnd</td>
<td>The size of the send window.</td>
</tr>
<tr>
<td>TotalRcv</td>
<td>The number of sequence numbers received from the neighbor.</td>
</tr>
<tr>
<td>DupliRcv</td>
<td>The number of duplicate sequence numbers received from the neighbor.</td>
</tr>
<tr>
<td>RcvWnd</td>
<td>The size of the receive window.</td>
</tr>
<tr>
<td>SendQue</td>
<td>The number of sequence numbers in the send queue.</td>
</tr>
<tr>
<td>RcvQue</td>
<td>The number of sequence numbers in the receive queue.</td>
</tr>
<tr>
<td>CngstWnd</td>
<td>The number of times the window has changed.</td>
</tr>
</tbody>
</table>
• The Routing Information Base (RIB) for a specific network advertised to the neighbor. You can display the RIB regardless of whether the device has already sent it to the neighbor.

Displaying advertised routes

To display the routes the device has advertised to a specific neighbor for a specific network, enter a command such as the following at any level of the CLI.

```
device# show ip bgp neighbors 192.168.4.211 advertised-routes
There are 2 routes advertised to neighbor 192.168.4.211
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST I:IBGP L:LOCAL
Network Next Hop Metric LocPrf Weight Status
1 10.102.0.0/24 192.168.2.102 12 32768 BL
2 10.200.1.0/24 192.168.2.102 0 32768 BL
```

You also can enter a specific route.

```
device# show ip bgp neighbors 192.168.4.211 advertised 10.1.1.0/24
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST I:IBGP L:LOCAL
Network Next Hop Metric LocPrf Weight Status
1 10.200.1.0/24 192.168.2.102 0 32768 BL
```

Syntax: `show ip bgp neighbor ip-addr advertised-routes [ip-addr/prefix]`

For information about the fields in this display, refer to Displaying summary route information on page 402. The fields in this display also appear in the `show ip bgp` display.

Displaying the best routes

To display the routes received from a specific neighbor that are the “best” routes to their destinations, enter a command such as the following at any level of the CLI.

```
device#show ip bgp neighbors 192.168.4.211 routes best
```

Syntax: `show ip bgp neighbors ip-addr routes best`

For information about the fields in this display, refer to Displaying information for a specific route on page 405. The fields in this display also appear in the `show ip bgp` display.

Displaying the routes with destinations that are unreachable

To display BGP4 routes with destinations that are unreachable using any of the BGP4 paths in the BGP4 route table, enter a command such as the following at any level of the CLI:

```
device(config-bgp)# show ip bgp neighbor 192.168.4.211 routes unreachable
```

Syntax: `show ip bgp neighbor ip-addr routes unreachable`

For information about the fields in this display, refer to Displaying summary route information on page 402. The fields in this display also appear in the `show ip bgp` display.

Displaying the Adj-RIB-Out for a neighbor

To display the current BGP4 Routing Information Base (Adj-RIB-Out) for a specific neighbor and a specific destination network, enter a command such as the following at any level of the CLI.

```
device# show ip bgp neighbor 192.168.4.211 rib-out-routes 192.168.1.0/24
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST I:IBGP L:LOCAL
```
The Adj-RIB-Out contains the routes that the device either has most recently sent to the neighbor or is about to send to the neighbor. Syntax: `show ip bgp neighbor ip-addr rib-out-routes [ ip-addr/prefix ]`

For information about the fields in this display, refer to Displaying summary route information on page 402. The fields in this display also appear in the `show ip bgp` display.

### Displaying peer group information

To display peer-group information, enter a command such as the following at the Privileged EXEC level of the CLI.

```
device# show ip bgp peer-group pg1
```

Only the parameters that have values different from their defaults are listed.

### Displaying summary route information

To display summary statistics for all the routes in the device’s BGP4 route table, enter a command such as the following at any level of the CLI.

```
device# show ip bgp routes summary
```

<table>
<thead>
<tr>
<th>TABLE 58 show ip bgp routes output descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>This field</strong></td>
</tr>
<tr>
<td>Total number of BGP4 routes (NLRIs) Installed</td>
</tr>
<tr>
<td>Distinct BGP4 destination networks</td>
</tr>
<tr>
<td>Filtered BGP4 routes for soft reconfig</td>
</tr>
<tr>
<td>Routes originated by this device</td>
</tr>
<tr>
<td>Routes selected as BEST routes</td>
</tr>
<tr>
<td>BEST routes not installed in IP forwarding table</td>
</tr>
</tbody>
</table>
### Displaying the BGP4 route table

BGP4 uses filters that you define as well as the algorithm described in How BGP4 selects a path for a route (BGP best path selection algorithm) on page 287 to determine the preferred route to a destination. BGP4 sends only the preferred route to the IP table. To view all the learned BGP4 routes, you can display the BGP4 table.

To view the BGP4 route table, enter the following command.

```
device# show ip bgp routes
```

#### Syntax:

```
show ip bgp routes [[network] ip-addr] [num] [[age secs]] [[as-path-access-list num]] [[best]] [[cidr-only]] [[community num]] [no-export] [no-advertise] [internet] [local-as] [[community-access-list num]] [[community-list num]] [[detail option]] [[filter-list num,num...]] [[next-hop ip-addr]] [[no-best]] [[not-installed-best]] [[prefix-list string]] [[regular-expression regular-expression]] [[route-map map-name]] [[summary]] [[unreachable]]
```

The `ip-addr` option displays routes for a specific network. The `network` keyword is optional. You can enter the network address without entering `network` in front of it.

The `num` option specifies the table entry with which you want the display to start. For example, if you want to list entries beginning with table entry 100, specify 100.

The `age secs` parameter displays only the routes that have been received or updated more recently than the number of seconds you specify.

The `as-path-access-list num` parameter filters the display using the specified AS-path ACL.

The `best` parameter displays the routes received from the neighbor that the device selected as the best routes to their destinations.

The `cidr-only` option lists only the routes whose network masks do not match their class network length.

The `community num` option lets you display routes for a specific community. You can specify `local-as`, `no-export`, `no-advertise`, `internet`, or a private community number. You can specify the community number as either two five-digit integer values of up to 1 through 65535, separated by a colon (for example, 12345:6789) or a single long integer value.

The `community-access-list num` parameter filters the display using the specified community ACL.

The `community-list` option lets you display routes that match a specific community filter.
The **detail** option lets you display more details about the routes. You can refine your request by also specifying one of the other display options after the detail keyword.

The **filter-list** option displays routes that match a specific address filter list.

The **next-hop ip-addr** option displays the routes for a given next-hop IP address.

The **no-best** option displays the routes for which none of the routes to a given prefix were selected as the best route. The IP route table does not contain a BGP4 route for any of the routes listed by the command.

The **not-installed-best** option displays the routes received from the neighbor that are the best BGP4 routes to their destinations, but were not installed in the IP route table because the device received better routes from other sources (such as OSPF, RIP, or static IP routes).

The **prefix-list string** parameter filters the display using the specified IP prefix list.

The **regular-expression regular-expression** option filters the display based on a regular expression. Refer to Using regular expressions on page 337.

The **route-map map-name** parameter filters the display by using the specified route map. The software displays only the routes that match the match clauses in the route map. Software disregards the route map’s set clauses.

The **summary** option displays summary information for the routes.

The **unreachable** option displays the routes that are unreachable because the device does not have a valid RIP, OSPF, or static route to the next-hop.

### Displaying the best BGP4 routes

To display all the BGP4 routes in the device’s BGP4 route table that are the best routes to their destinations, enter a command such as the following at any level of the CLI:

```
device# show ip bgp routes best
```

Syntax: **show ip bgp routes best**

### Displaying BGP4 routes whose destinations are unreachable

To display BGP4 routes whose destinations are unreachable using any of the BGP4 paths in the BGP4 route table, enter a command such as the following at any level of the CLI:

```
device# show ip bgp routes unreachable
```

Syntax: **show ip bgp routes unreachable**
Syntax: show ip bgp routes unreachable

Displaying information for a specific route

To display BGP4 network information by specifying an IP address within the network, enter a command such as the following at any level of the CLI.

```
device# show ip bgp 10.3.4.0
Number of BGP Routes matching display condition : 1
Status codes: s suppressed, d damped, h history, * valid, > best, i internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 10.3.4.0/24 192.168.4.106 100 0 65001 4355 1 1221 ?
Last update to IP routing table: 0h11m38s, 1 path(s) installed:
 Gateway Port
 192.168.2.1 2/1
Route is advertised to 1 peers:
 10.20.20.2(65300)
```


If you use the route option, the display for the information is different, as shown in the following example.

```
device# show ip bgp route 10.3.4.0
Number of BGP Routes matching display condition : 1
Status codes: s suppressed, d damped, h history, * valid, > best, i internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 10.3.4.0/24 192.168.4.106 100 0 65001 4355 1 1221 ?
Last update to IP routing table: 0h11m38s, 1 path(s) installed:
 Gateway Port
 192.168.2.1 2/1
Route is advertised to 1 peers:
 10.20.20.2(65300)
```

**TABLE 59 show ip bgp route output descriptions**

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP4 Routes matching display condition</td>
<td>The number of routes that matched the display parameters you entered. This is the number of routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route’s status. The status code appears in the left column of the display, to the left of each route. The status codes are described in the command’s output.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong></td>
</tr>
<tr>
<td></td>
<td>This field appears only if you do not enter the route option.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The network address and prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next-hop device for reaching the network.</td>
</tr>
<tr>
<td>Metric</td>
<td>The value of the route’s MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for this route relative to other routes in the local AS. When the BGP4 algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 - 4294967295.</td>
</tr>
<tr>
<td>Weight</td>
<td>The value that this device associates with routes from a specific neighbor. For example, if the device receives routes to the same destination from two BGP4 neighbors, the device prefers the route from the neighbor with the larger weight.</td>
</tr>
<tr>
<td>Path</td>
<td>The route AS path.</td>
</tr>
</tbody>
</table>
### TABLE 59  show ip bgp route output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Origin code</strong></td>
<td>A character that indicates the route origin. The origin code appears to the right of the AS path (Path field). The origin codes are described in the command output.</td>
</tr>
<tr>
<td><strong>Status</strong></td>
<td>The route status, which can be one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• A - AGGREGATE. The route is an aggregate route for multiple networks.</td>
</tr>
<tr>
<td></td>
<td>• B - BEST. BGP4 has determined that this is the optimal route to the destination.</td>
</tr>
<tr>
<td></td>
<td>• b - NOT-INSTALLED-BEST. The routes received from the neighbor are the best BGP4 routes to their destinations, but were not installed in the IP route table because the device received better routes from other sources (such as OSPF, RIP, or static IP routes).</td>
</tr>
<tr>
<td></td>
<td>• C - CONFED_EBGP. The route was learned from a neighbor in the same confederation and AS, but in a different sub-AS within the confederation.</td>
</tr>
<tr>
<td></td>
<td>• D - DAMPED. This route has been dampened (by the route dampening feature), and is currently unusable.</td>
</tr>
<tr>
<td></td>
<td>• H - HISTORY. Route dampening is configured for this route, and the route has a history of flapping and is unreachable now.</td>
</tr>
<tr>
<td></td>
<td>• I - INTERNAL. The route was learned through BGP4.</td>
</tr>
<tr>
<td></td>
<td>• L - LOCAL. The route originated on this device.</td>
</tr>
<tr>
<td></td>
<td>• M - MULTIPATH. BGP4 load sharing is enabled and this route was selected as one of the best ones to the destination. The best route among the multiple paths also is marked with &quot;B&quot;.</td>
</tr>
<tr>
<td></td>
<td>• S - SUPPRESSED. This route was suppressed during aggregation and thus is not advertised to neighbors.</td>
</tr>
</tbody>
</table>

**NOTE**

This field appears only if you do not enter the `route` option.
Displaying route details

This example shows the information displayed when you use the detail option. In this example, the information for one route is shown.

```
device# show ip bgp routes detail
Total number of BGP Routes: 2
Status A:AGGREGATE B: BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
1 Prefix: 10.5.0.0/24, Status: BME, Age: 0h28m28s
 NEXT_HOP: 10.1.1.2, Learned from Peer: 10.1.0.2 (5)
 LOCAL_PREF: 101, MED: 0, ORIGIN: igp, Weight: 10
 AS_PATH: 5
 Adj_RIB_out count: 4, Admin distance 20
```

Syntax: show ip bgp routes detail

<table>
<thead>
<tr>
<th>TABLE 60 show ip bgp routes detail output descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>This field</strong></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Total number of BGP4 Routes</td>
</tr>
<tr>
<td>Status codes</td>
</tr>
<tr>
<td>Prefix</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>The last time an update occurred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next_Hop</td>
<td>The next-hop device for reaching the network.</td>
</tr>
</tbody>
</table>
### TABLE 60 show ip bgp routes detail output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learned from Peer</td>
<td>The IP address of the neighbor that sent this route.</td>
</tr>
<tr>
<td>Local_Pref</td>
<td>The degree of preference for this route relative to other routes in the local AS. When the BGP4 algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 through 4294967295.</td>
</tr>
<tr>
<td>MED</td>
<td>The route metric. If the route does not have a metric, this field is blank.</td>
</tr>
</tbody>
</table>
| Origin           | The source of the route information. The origin can be one of the following:  
|                  | - EGP - The routes with these attributes came to BGP4 through EGP.  
|                  | - IGP - The routes with these attributes came to BGP4 through IGP.  
|                  | - INCOMPLETE - The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPF or RIP.  
|                  | When BGP4 compares multiple routes to select the best route, IGP is preferred over EGP and both are preferred over INCOMPLETE. |
| Weight           | The value this device associates with routes from a specific neighbor. For example, if the device receives routes to the same destination from two BGP4 neighbors, the device prefers the route from the neighbor with the larger weight. |
| Atomic           | Whether network information in this route has been aggregated and this aggregation has resulted in information loss.  
|                  | **NOTE**  
|                  | Information loss under these circumstances is a normal part of BGP4 and does not indicate an error. |
| Aggregation ID   | The device that originated this aggregation.                             |
| Aggregation AS   | The AS in which the network information was aggregated. This value applies only to aggregated routes and is otherwise 0. |
| Originator       | The originator of the route in a route reflector environment.            |
| Cluster List     | The route-reflector clusters through which this route has passed.        |
| Learned From     | The IP address of the neighbor from which the device learned the route.  |
| Admin Distance   | The administrative distance of the route.                               |
| Adj_RIB_out      | The number of neighbors to which the route has been or will be advertised. This is the number of times the route has been selected as the best route and placed in the Adj-RIB-Out (outbound queue) for a BGP4 neighbor. |
| Communities      | The communities the route is in.                                        |

### Displaying BGP4 route-attribute entries

The route-attribute entries table lists the sets of BGP4 attributes stored in device memory. Each set of attributes is unique and can be associated with one or more routes. In fact, the device typically has fewer route attribute entries than routes.

To display the IP route table, enter the following command.

```
device# show ip bgp attribute-entries
```

**Syntax: show ip bgp attribute-entries**
This example shows the information displayed by this command. A zero value indicates that the attribute is not set.

```
device# show ip bgp attribute-entries
Total number of BGP Attribute Entries: 7753

1
 Next Hop: 192.168.11.1 MED: 0 Origin: IGP
 Originator: 0.0.0.0 Cluster List: None
 Aggregator: AS Number: 0 Router-ID: 0.0.0.0 Atomic: FALSE
 Local Pref: 100 Communities: Internet
 AS Path: (65002) 65001 4355 2548 2548

2
 Next Hop: 192.168.11.1 Metric: 0 Origin: IGP
 Originator: 0.0.0.0 Cluster List: None
 Aggregator: AS Number: 0 Router-ID: 0.0.0.0 Atomic: FALSE
 Local Pref: 100 Communities: Internet
 AS Path: (65002) 65001 4355 2548
```

**TABLE 61 show ip bgp attribute-entries output descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP4 Attribute Entries</td>
<td>The number of routes contained in this BGP4 route table.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The IP address of the next-hop device for routes that have this set of attributes.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of the routes that have this set of attributes.</td>
</tr>
</tbody>
</table>
| Origin               | The source of the route information. The origin can be one of the following:  
                       |   • EGP - The routes with these attributes came to BGP4 through EGP.  
                       |   • IGP - The routes with these attributes came to BGP4 through IGP.  
                       |   • INCOMPLETE - The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPF or RIP.  
                       |   When BGP4 compares multiple routes to a destination to select the best  
                       |   route, IGP is preferred over EGP and both are preferred over INCOMPLETE. |
| Originator           | The originator of the route in a route reflector environment. |
| Cluster List         | The route-reflector clusters through which this set of attributes has passed. |
| Aggregator           | Aggregator information:  
                       |   • AS Number shows the AS in which the network information in the attribute set was aggregated. This value applies only to aggregated routes and is otherwise 0.  
                       |   • Router-ID shows the device that originated this aggregator. |
| Atomic               | Whether the network information in this set of attributes has been aggregated and this aggregation has resulted in information loss.  
                       |   • TRUE - Indicates information loss has occurred  
                       |   • FALSE - Indicates no information loss has occurred  
                       |   **NOTE**  
                       |   Information loss under these circumstances is a normal part of BGP4 and does not indicate an error. |
| Local Pref           | The degree of preference for routes that use these attributes relative to other routes in the local AS. |
| Communities          | The communities to which routes with these attributes belong. |
| AS Path              | The autonomous systems through which routes with these attributes have passed. The local AS is shown in parentheses. |
### Displaying the routes BGP4 has placed in the IP route table

The IP route table indicates the routes it has received from BGP4 by listing “BGP” as the route type.

To display the IP route table, enter the following command.

```
device# show ip route
```

**Syntax:** show ip route [ ip-addr | num | bgp | ospf | rip | isis ]

This example shows the information displayed by this command. Notice that most of the routes in this example have type “B”, indicating that their source is BGP4.

```
device# show ip route
Type Codes - B:BGP D:Connected I:ISIS S:Static R:RIP O:OSPF; Cost - Dist/Metric
Destination Gateway Port Cost Type
1 10.130.130.0/24 10.11.11.1 ve 1 200/0 B
2 10.130.131.0/24 10.11.11.1 ve 1 200/0 B
```

### Displaying route flap dampening statistics

To display route dampening statistics or all the dampened routes, enter the following command at any level of the CLI.

```
device# show ip bgp flap-statistics
```

```
Total number of flapping routes: 414
Status Code >:best d:damped h:history *:valid
Network From Flaps Since Reuse Path
h> 10.50.206.0/23 10.90.213.77 1 0 :0 :13 0 :0 :0 65001 4355 1 701
h> 10.255.192.0/20 10.90.213.77 1 0 :0 :13 0 :0 :0 65001 4355 1 7018
h> 10.252.165.0/24 10.90.213.77 1 0 :0 :13 0 :0 :0 65001 4355 1 7018
h> 10.50.208.0/23 10.90.213.77 1 0 :0 :13 0 :0 :0 65001 4355 1 701
h> 10.33.0.0/16 10.90.213.77 1 0 :0 :13 0 :0 :0 65001 4355 1 701
*: 10.17.220.0/24 10.90.213.77 1 0 :1 :4 0 :0 :0 65001 4355 701 62
```

**Syntax:** show ip bgp flap-statistics [ regular-expression regular-expression | address mask [ longer-prefixes ] | neighbor ip-addr | filter-list num ... ]

The `regular-expression regular-expression` parameter is a regular expression. The regular expressions are the same ones supported for BGP4 AS-path filters.

The `address mask` parameters specify a particular route. If you also use the optional `longer-prefixes` parameter, all statistics for routes that match the specified route or have a longer prefix than the specified route are displayed. For example, if you specify `10.157.0.0 longer`, all routes with the prefix 10.157 or that have a longer prefix (such as 10.157.22) are displayed.

The `neighbor ip-addr` parameter displays route flap dampening statistics only for routes learned from the specified neighbor. You can also display route flap statistics for routes learned from a neighbor by entering the `show ip bgp neighbor flap-statistics` command.

The `filter-list num` parameter specifies one or more filters. Only routes that have been dampened and that match the specified filters are displayed.

### TABLE 62 show ip bgp flap-statistics output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of flapping routes</td>
<td>The total number of routes in the BGP4 route table that have changed state and have been marked as flapping routes.</td>
</tr>
<tr>
<td>Status code</td>
<td>The dampening status of the route, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>•  =&gt; This is the best route among those in the BGP4 route table to the route destination.</td>
</tr>
<tr>
<td></td>
<td>•  d: This route is currently dampened, and thus unusable.</td>
</tr>
<tr>
<td></td>
<td>•  h: The route has a history of flapping and is unreachable now.</td>
</tr>
</tbody>
</table>
### TABLE 62 show ip bgp flap-statistics output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>The destination network of the route.</td>
</tr>
<tr>
<td>From</td>
<td>The neighbor that sent the route to this device.</td>
</tr>
<tr>
<td>Flaps</td>
<td>The number of flaps (state changes) the route has experienced.</td>
</tr>
<tr>
<td>Since</td>
<td>The amount of time since the first flap of this route.</td>
</tr>
<tr>
<td>Reuse</td>
<td>The amount of time remaining until this route will be un-suppressed and thus be usable again.</td>
</tr>
<tr>
<td>Path</td>
<td>The AS-path information for the route.</td>
</tr>
</tbody>
</table>

You can display all dampened routes by entering the `show ip bgp dampened-paths` command.

### Displaying the active route map configuration

You can view the active route map configuration (contained in the running configuration) without displaying the entire running configuration by entering the following command at any level of the CLI:

```
device# show route-map
route-map permitnet4 permit 10
 match ip address prefix-list plist1
route-map permitnet1 permit 1
 match ip address prefix-list plist2
route-map setcomm permit 1
 set community 1234:2345 no-export
route-map test111 permit 111
 match address-filters 11
 set community 11:12 no-export
route-map permit1122 permit 12
 match ip address 11
route-map permit1122 permit 13
 match ip address std_22
```

This example shows that the running configuration contains six route maps. Notice that the match and set statements within each route map are listed beneath the command for the route map itself. In this simplified example, each route map contains only one match or set statement.

To display the active configuration for a specific route map, enter a command such as the following, which specifies a route map name.

```
device# show route-map setcomm
route-map setcomm permit 1
 set community 1234:2345 no-export
```

This example shows the active configuration for a route map named "setcomm".

**Syntax:** `show route-map [map-name]`

### Displaying BGP4 graceful restart neighbor information

To display BGP4 restart information for BGP4 neighbors, enter the `show ip bgp neighbors` command.

```
device# show ip bgp neighbors
 Total number of BGP Neighbors: 6
 IP Address: 10.50.50.10, AS: 20 (EBGP), RouterID: 10.10.10.20, VRF: default
 State: ESTABLISHED, Time: 0h0m18s, KeepAliveTime: 60, HoldTime: 180
 KeepAliveTimer Expire in 34 seconds, HoldTimer Expire in 163 seconds
 Minimum Route Advertisement Interval: 0 seconds
 RefreshCapability: Received
```
Displaying AS4 details

This section describes the use of the following show commands, which produce output that includes information about AS4s.

- `show ip bgp neighbor` shows whether the AS4 capability is enabled.
- `show ip bgp attribute-entries` shows AS4 path values.
- `show ip bgp` shows the route entries with two and AS4 path information.
- `show ip extcommunity-list` shows the members of the extended community.
- `show route-map` shows the presence of any AS4 configuration data.
- `show ip as-path-access-lists` shows the presence of any AS4 configuration data.
- `show ip bgp config` shows the presence of any AS4 configuration data.

Route entries with four-byte path information

The `show ip bgp` command without of any optional parameters display AS4 path information.

```
device# show ip bgp
Total number of BGP Routes: 1
Origin codes: i - IGP, e - EGP, ? - incomplete
Status codes: s suppressed, d damped, h history, * valid, > best, i internal, S stale
Network Next Hop Metric LocPrf Weight Path
*> 10.1.1.0/24 192.168.1.5 1 100 0 90000 100 200 65535
65536 65537 65538 65539 75000
```

Syntax: `show ip bgp`

Current AS numbers

To display current AS numbers, use the `show ip bgp neighbors` command at any level of the CLI.

```
device# show ip bgp neighbors
Total number of BGP Neighbors: 1
'+': Data in InQueue '?': Data in OutQueue '=': Clearing
'*': Update Policy 'c': Group change 'p': Group change Pending
'r': Restarting 's': Stale ' ': Up before Restart '<': EOR waiting
1 IP Address: 70.1.1.8, AS: 100 (IBGP), RouterID: 10.8.8.8, VRF: default-vrf
State: ESTABLISHED, Time: 0h9m23s, KeepAliveTime: 60, HoldTime: 180
 KeepAliveTimer Expire in 8 seconds, HoldTimer Expire in 139 seconds
Minimal Route Advertisement Interval: 0 seconds
 RefreshCapability: Received
 Messages: Open Update KeepAlive Notification Refresh-Req
 Sent : 1 0 11 0 0
 Received: 1 0 11 0 0
 Last Update Time: NLRI Withdraw NLRI Withdraw
 Tx: --- --- Rx: --- ---
```
Last Connection Reset Reason: Unknown
Notification Sent: Unspecified
Notification Received: Unspecified
Neighbor NLRI Negotiation:
  Peer Negotiated IPV4 unicast capability
  Peer configured for IPV4 unicast Routes
Neighbor ipv6 MPLS Label Capability Negotiation:
Neighbor AS4 Capability Negotiation:
Outbound Policy Group:
  ID: 2, Use Count: 2
BFD: Disabled
TCP Connection state: ESTABLISHED, flags: 00000033 (0,0)
Maximum segment size: 1460
TTL check: 0, value: 0, rcdv: 64
Byte Sent: 254, Received: 254
Local host: 78.1.1.7, Local Port: 8080
Remote host: 78.1.1.8, Remote Port: 179
ISentSeq: 413066676 SendNext: 413066931 TotUnAck: 0
TotSent: 255 Retrans: 0 UnAckSeq: 413066931
IRcvSeq: 3375969591 RcvNext: 3375969846 SendWnd: 65000
TotalRcv: 255 DupliRcv: 0 RcvWnd: 65000
SendQue: 0 RcvQue: 0 CngstWnd: 1460

Syntax: show ip bgp neighbors

TABLE 63 show ip bgp neighbors output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP Neighbors</td>
<td>Shows the total number of BGP neighbors.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Shows the IPv4 address of the neighbor.</td>
</tr>
<tr>
<td>AS</td>
<td>Shows the Autonomous System (AS) in which the neighbor resides.</td>
</tr>
<tr>
<td>EBG or IBGP</td>
<td>Shows whether the neighbor session is an IBGP session, an EBG session, or a confederation EBG session:</td>
</tr>
<tr>
<td></td>
<td>• EBG - The neighbor is in another AS.</td>
</tr>
<tr>
<td></td>
<td>• EBG_Conf - The neighbor is a member of another sub-AS in the same confederation.</td>
</tr>
<tr>
<td></td>
<td>• IBGP - The neighbor is in the same AS.</td>
</tr>
<tr>
<td>RouterID</td>
<td>Shows the device ID of the neighbor.</td>
</tr>
<tr>
<td>VRF</td>
<td>Shows the status of the VRF instance.</td>
</tr>
<tr>
<td>State</td>
<td>Shows the state of the device session with the neighbor. The states are from the device’s perspective of the session, not the neighbor’s perspective. The state can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• IDLE - The BGP4 process is waiting to be started. Usually, enabling BGP4 or establishing a neighbor session starts the BGP4 process. A minus sign (-) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• ADMND - The neighbor has been administratively shut down. A minus sign (-) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• CONNECT - BGP4 is waiting for the connection process for the TCP neighbor session to be completed.</td>
</tr>
<tr>
<td></td>
<td>• ACTIVE - BGP4 is waiting for a TCP connection from the neighbor.</td>
</tr>
</tbody>
</table>

**NOTE**
If the state frequently changes between CONNECT and ACTIVE, there may be a problem with the TCP connection.

• OPEN SENT - BGP4 is waiting for an Open message from the neighbor.
### TABLE 63 show ip bgp neighbors output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN CONFIRM</td>
<td>BGP4 has received an Open message from the neighbor and is now waiting for either a KeepAlive or Notification message. If the device receives a KeepAlive message from the neighbor, the state changes to ESTABLISHED. If the message is a Notification, the state changes to IDLE.</td>
</tr>
<tr>
<td>ESTABLISHED</td>
<td>BGP4 is ready to exchange Update messages with the neighbor. If there is more BGP data in the TCP receiver queue, a plus sign (+) is also displayed.</td>
</tr>
<tr>
<td>Time</td>
<td>Shows the amount of time this session has been in its current state.</td>
</tr>
<tr>
<td>KeepAliveTime</td>
<td>Shows the keepalive time, which specifies how often this device sends KeepAlive messages to the neighbor.</td>
</tr>
<tr>
<td>HoldTime</td>
<td>Shows the hold time, which specifies how many seconds the device will wait for a KeepAlive or Update message from a BGP4 neighbor before deciding that the neighbor is dead.</td>
</tr>
<tr>
<td>KeepAliveTimer Expire</td>
<td>Shows the time when the keepalive timer is set to expire.</td>
</tr>
<tr>
<td>HoldTimer Expire</td>
<td>Shows the time when the hold timer is set to expire.</td>
</tr>
<tr>
<td>Minimal Route Advertisement Interval</td>
<td>Shows the minimum time elapsed between the route advertisements to the same neighbor.</td>
</tr>
<tr>
<td>RefreshCapability</td>
<td>Shows whether the device has received confirmation from the neighbor that the neighbor supports the dynamic refresh capability.</td>
</tr>
<tr>
<td>Messages Sent and Received</td>
<td>Shows the number of messages this device has sent to and received from the neighbor. The display shows statistics for the following message types:</td>
</tr>
<tr>
<td></td>
<td>• Open</td>
</tr>
<tr>
<td></td>
<td>• Update</td>
</tr>
<tr>
<td></td>
<td>• KeepAlive</td>
</tr>
<tr>
<td></td>
<td>• Notification</td>
</tr>
<tr>
<td></td>
<td>• Refresh-Req</td>
</tr>
<tr>
<td>Last Update Time</td>
<td>Shows the list of last time updates were sent and received for the following:</td>
</tr>
<tr>
<td></td>
<td>• NLRIs</td>
</tr>
<tr>
<td></td>
<td>• Withdraws</td>
</tr>
<tr>
<td>Last Connection Reset Reason</td>
<td>Shows the reason for ending the previous session with this neighbor. The reason can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• No abnormal error has occurred.</td>
</tr>
<tr>
<td></td>
<td>• Reasons described in the BGP specifications:</td>
</tr>
<tr>
<td></td>
<td>‐ Message Header Error</td>
</tr>
<tr>
<td></td>
<td>‐ Connection Not Synchronized</td>
</tr>
<tr>
<td></td>
<td>‐ Bad Message Length</td>
</tr>
<tr>
<td></td>
<td>‐ Bad Message Type</td>
</tr>
<tr>
<td></td>
<td>‐ OPEN Message Error</td>
</tr>
<tr>
<td></td>
<td>‐ Unsupported Version Number</td>
</tr>
<tr>
<td></td>
<td>‐ Bad Peer AS Number</td>
</tr>
<tr>
<td></td>
<td>‐ Bad BGP Identifier</td>
</tr>
<tr>
<td></td>
<td>‐ Unsupported Optional Parameter</td>
</tr>
<tr>
<td></td>
<td>‐ Authentication Failure</td>
</tr>
<tr>
<td></td>
<td>‐ Unacceptable Hold Time</td>
</tr>
<tr>
<td></td>
<td>‐ Unsupported Capability</td>
</tr>
<tr>
<td></td>
<td>‐ UPDATE Message Error</td>
</tr>
<tr>
<td></td>
<td>‐ Malformed Attribute List</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>– Unrecognized Well-known Attribute</td>
</tr>
<tr>
<td></td>
<td>– Missing Well-known Attribute</td>
</tr>
<tr>
<td></td>
<td>– Attribute Flags Error</td>
</tr>
<tr>
<td></td>
<td>– Attribute Length Error</td>
</tr>
<tr>
<td></td>
<td>– Invalid ORIGIN Attribute</td>
</tr>
<tr>
<td></td>
<td>– Invalid NEXT_HOP Attribute</td>
</tr>
</tbody>
</table>

**Last Connection Reset Reason**
(continued)

- Reasons described in the BGP specifications (continued):
  - Optional Attribute Error
  - Invalid Network Field
  - Malformed AS_PATH
  - Hold Timer Expired
  - Finite State Machine Error
  - Rcv Notification
  - Reset All Peer Sessions
  - User Reset Peer Session
  - Port State Down
  - Peer Removed
  - Peer Shutdown
  - Peer AS Number Change
  - Peer AS Confederation Change
  - TCP Connection KeepAlive Timeout
  - TCP Connection Closed by Remote

**TCP Data Stream Error Detected**

**Notification Sent**

Shows an error code corresponding to one of the following errors if the device sends a Notification message from the neighbor. Some errors have subcodes that clarify the reason for the error. The subcode messages are listed underneath the error code messages, wherever applicable:

- **Message Header Error**
  - Connection Not Synchronized
  - Bad Message Length
  - Bad Message Type
  - Unspecified

- **Open Message Error**
  - Unsupported Version
  - Bad Peer AS
  - Bad BGP Identifier
  - Unsupported Optional Parameter
  - Authentication Failure
  - Unacceptable Hold Time
  - Unspecified

- **Update Message Error**
  - Malformed Attribute List
  - Unrecognized Attribute
  - Missing Attribute
  - Attribute Flag Error
  - Attribute Length Error
  - Invalid Origin Attribute
  - Invalid NextHop Attribute
  - Optional Attribute Error
  - Invalid Network Field
  - Malformed AS Path
  - Unspecified

- **Hold Timer Expired**
- **Finite State Machine Error**
- **Cease**
### TABLE 63 show ip bgp neighbors output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification Received</td>
<td>Shows an error code corresponding to one of the listed errors in the Notification Sent field if the device receives a Notification message from the neighbor.</td>
</tr>
<tr>
<td>Neighbor NLRI Negotiation</td>
<td>Shows the state of the device’s NLRI negotiation with the neighbor. The states can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Peer negotiated IPV4 unicast capability</td>
</tr>
<tr>
<td></td>
<td>• Peer negotiated IPV6 unicast capability</td>
</tr>
<tr>
<td></td>
<td>• Peer configured for IPV4 unicast routes</td>
</tr>
<tr>
<td></td>
<td>• Peer configured for IPV6 unicast routes</td>
</tr>
<tr>
<td>Neighbor IPv6 MPLS Label Capability Negotiation</td>
<td>Shows the state of the device’s IPv6 MPLS label capability negotiation with the neighbor. The states can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Peer negotiated IPv6 MPLS Label capability</td>
</tr>
<tr>
<td></td>
<td>• Peer configured for IPv6 MPLS Label capability</td>
</tr>
<tr>
<td>Neighbor AS4 Capability Negotiation</td>
<td>Shows the state of the device’s AS4 capability negotiation with the neighbor. The states can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Peer negotiated AS4 capability</td>
</tr>
<tr>
<td></td>
<td>• Peer configured for AS4 capability</td>
</tr>
<tr>
<td>As-path attribute count</td>
<td>Shows the count of the AS-path attribute.</td>
</tr>
<tr>
<td>Outbound Policy Group</td>
<td>Shows the ID and the count used in the outbound policy group.</td>
</tr>
<tr>
<td>TCP Connection state</td>
<td>Shows the state of the connection with the neighbor. The connection can have one of the following states:</td>
</tr>
<tr>
<td></td>
<td>• LISTEN - Waiting for a connection request.</td>
</tr>
<tr>
<td></td>
<td>• SYN-SENT - Waiting for a matching connection request after having sent a connection request.</td>
</tr>
<tr>
<td></td>
<td>• SYN-RECEIVED - Waiting for a confirming connection request acknowledgment after having both received and sent a connection request.</td>
</tr>
<tr>
<td></td>
<td>• ESTABLISHED - Data can be sent and received over the connection. This is the normal operational state of the connection.</td>
</tr>
<tr>
<td></td>
<td>• FIN-WAIT-1 - Waiting for a connection termination request from the remote TCP, or an acknowledgment of the connection termination request previously sent.</td>
</tr>
<tr>
<td></td>
<td>• FIN-WAIT-2 - Waiting for a connection termination request from the remote TCP.</td>
</tr>
<tr>
<td></td>
<td>• CLOSE-WAIT - Waiting for a connection termination request from the local user.</td>
</tr>
<tr>
<td></td>
<td>• CLOSING - Waiting for a connection termination request acknowledgment from the remote TCP.</td>
</tr>
<tr>
<td></td>
<td>• LAST-ACK - Waiting for an acknowledgment of the connection termination request previously sent to the remote TCP (which includes an acknowledgment of its connection termination request).</td>
</tr>
<tr>
<td></td>
<td>• TIME-WAIT - Waiting for the specific time to ensure that the remote TCP received the acknowledgment of its connection termination request.</td>
</tr>
<tr>
<td></td>
<td>• CLOSED - There is no connection state.</td>
</tr>
<tr>
<td>Maximum segment size</td>
<td>Shows the TCP maximum segment size.</td>
</tr>
<tr>
<td>TTL check</td>
<td>Shows the TCP TTL check.</td>
</tr>
</tbody>
</table>
### TABLE 63 show ip bgp neighbors output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte Sent</td>
<td>Shows the number of bytes sent.</td>
</tr>
<tr>
<td>Byte Received</td>
<td>Shows the number of bytes received.</td>
</tr>
<tr>
<td>Local host</td>
<td>Shows the IPv4 address of the device.</td>
</tr>
<tr>
<td>Local port</td>
<td>Shows the TCP port that the device is using for the BGP4 TCP session with the neighbor.</td>
</tr>
<tr>
<td>Remote host</td>
<td>Shows the IPv4 address of the neighbor.</td>
</tr>
<tr>
<td>Remote port</td>
<td>Shows the TCP port the neighbor is using for the BGP4 TCP session with the device.</td>
</tr>
<tr>
<td>iSendSeq</td>
<td>Shows the initial send sequence number for the session.</td>
</tr>
<tr>
<td>SendNext</td>
<td>Shows the next sequence number to be sent.</td>
</tr>
<tr>
<td>TotUnAck</td>
<td>Shows the count of sequence numbers sent by the device that have not been acknowledged by the neighbor.</td>
</tr>
<tr>
<td>TotSent</td>
<td>Shows the count of the sequence numbers sent to the neighbor.</td>
</tr>
<tr>
<td>ReTrans</td>
<td>Shows the count of the sequence numbers that the device retransmitted because they were not acknowledged.</td>
</tr>
<tr>
<td>UnAckSeq</td>
<td>Shows the current acknowledged sequence number.</td>
</tr>
<tr>
<td>IRcvSeq</td>
<td>Shows the initial receive sequence number for the session.</td>
</tr>
<tr>
<td>RcvNext</td>
<td>Shows the next sequence number expected from the neighbor.</td>
</tr>
<tr>
<td>SendWnd</td>
<td>Shows the size of the send window.</td>
</tr>
<tr>
<td>TotalRcv</td>
<td>Shows the count of the sequence numbers received from the neighbor.</td>
</tr>
<tr>
<td>DupliRcv</td>
<td>Shows the count of the duplicate sequence numbers received from the neighbor.</td>
</tr>
<tr>
<td>RcvWnd</td>
<td>Shows the size of the receive window.</td>
</tr>
<tr>
<td>SendQue</td>
<td>Shows the count of the sequence numbers in the send queue.</td>
</tr>
<tr>
<td>RcvQue</td>
<td>Shows the count of the sequence numbers in the receive queue.</td>
</tr>
<tr>
<td>CngstWnd</td>
<td>Shows the number of times the window has changed.</td>
</tr>
</tbody>
</table>

### Attribute entries

Use the **show ip bgp attribute-entries** command to see AS4 path values, as the following example illustrates.

```
device# show ip bgp attribute-entries
Total number of BGP Attribute Entries: 18 (0)
1 Next Hop :192.168.1.6 MED :1 Origin:INCOMP
 Originator:0.0.0.0 Cluster List:None
 Aggregator:AS Number :0 Router-ID:0.0.0.0 Atomic:None
 Local Pref:100
 Communities:Internet
 Extended Community: SOO 300000:3
 AS Path :90000 8000 (length 11)
 Address: 0x10e4e0c4 Hash:489 (0x03028536), PeerIdx 0
 Links: 0x00000000, 0x00000000, nlri: 0x10f4804a
 Reference Counts: 1:0:1, Magic: 51
2 Next Hop :192.168.1.5 Metric :1 Origin:INCOMP
 Originator:0.0.0.0 Cluster List:None
 Aggregator:AS Number :0 Router-ID:0.0.0.0 Atomic:None
 Local Pref:100
 Communities:Internet
 Extended Community: RT 200000:2
 AS Path :90000 75000 (length 11)
 Address: 0x10e4e062 Hash:545 (0x0303028536), PeerIdx 0
 Links: 0x00000000, 0x00000000, nlri: 0x10f47ff0
 Reference Counts: 1:0:1, Magic: 49
```
Displaying BGP4 information

Syntax: show ip bgp attribute-entries

Running configuration

AS4s appear in the display of a running configuration, as shown.

    device# show ip bgp config
    Current BGP configuration:
    router bgp
    local-as 7701000
    confederation identifier 120000
    confederation peers 80000
    neighbor 192.168.1.2 remote-as 80000

Access lists that contain AS4s

AS4s that exist in access lists are displayed by the command, as shown.

    device# show ip as-path-access-lists
    ip as-path access list abc: 1 entries
      seq 10 permit _75000_
    ip as-path access list def: 1 entries
      seq 5 permit _80000_

Formats of AS4s in show command output

To display the asdot and asdot+ notation for AS4s, enter the as-format asdot or as-format asdot+ commands before you enter the show ip bgp command.

    device# as-format asdot
    device-mu2(config)# show ip bgp
    Total number of BGP Routes: 1
    Status codes: s suppressed, d damped, h history, * valid, > best, i internal, S stale
    Origin codes: i - IGP, e - EGP, ? - incomplete
    Network       Next Hop      Metric LocPrf Weight Path
    *> 10.1.1.0/24    192.168.1.5   1      100    0      1.24464 100 200 655
      5 1.0 1.1 1.2 1.3 1.9464 ?

Syntax: as-format asdot

    device# as-format asdot+
    device# show ip bgp
    Total number of BGP Routes: 1
    Status codes: s suppressed, d damped, h history, * valid, > best, i internal, S stale
    Origin codes: i - IGP, e - EGP, ? - incomplete
    Network       Next Hop      Metric LocPrf Weight Path
    *> 10.1.1.0/24    192.168.1.5   1       100   0.1      1.24464 0.100 0.200 0.65535
      1.0 1.1 1.2 1.3 1.9464?

Syntax: as-format asdot+

Displaying route-map continue clauses

This section contains examples of route-map continuation clauses. Both the route map and the routes to which it applies are described.

This example is a simple illustration of route-map continue clauses. If the match clause of either route map instance 5 or 10 matches, the route map traversal continues at instance 100.

    route-map test permit 5
    match community my.community
    set comm-list delete my.community
    continue 100
route-map test permit 10
match community my_community2
set comm-list delete my_community2
continue 100
route-map test permit 100
match as-path my_aspath
set community 1234:5678 additive

The following example shows the route map "test." The `show ip bgp route` output shows the consequences of the action in instance 1 (set weight = 10); instance 2 (metric becomes 20); and instance 5 (prepend as-path 300).

```plaintext
device# show route-map test
route-map test permit 1
 set weight 10
route-map test permit 2
 set metric 20
 continue 3
route-map test permit 3
 set community 10:20
 continue 4
route-map test permit 4
 set community 30:40
 continue 5
route-map test permit 5
 set as-path prepend 300
 continue 6

device(config-routemap test)# show ip bgp route
Total number of BGP Routes: 1
Prefix Next Hop Metric LocPrf Weight Status
1 10.8.8.0/24 10.8.8.3 20 100 0 BE
AS_PATH: 300 200
```

**Syntax:** `show route-map map-name`

The `map-name` is the name of the route map.

**Syntax:** `show ip bgp route`

In the following example, the continue clause of instance 1 has been changed so that program flow jumps to instance 5. The resulting BGP4 route only has the weight updated and as-path prepended. These changes show route-map `route name`

**Syntax:** `route-map`

**Syntax:** `[no] continue instance number`

**Syntax:** `show ip bgp route`

In this example, a match clause has been added to instance 8. Because the match clause of instance 8 does not get fired, the search for the next instance continues to the end of the route-map. The set statements set the weight to 10, prepend 300, prepend 100 to the as-path, set the community to none, and set the local preference to 70. The results of this route-map traversal appear in the output of the `show ip bgp route` command.

```plaintext
device# show route-map test
route-map test permit 1
 set weight 10
 continue 5
route-map test permit 2
 set metric 20
 continue 3
route-map test permit 3
 set community 10:20
 continue 4
route-map test permit 4
 set community 30:40
 continue 5
```
route-map test permit 5
    set as-path prepend 300
    continue 6
route-map test permit 6
    set as-path prepend 100
    continue 7
route-map test permit 7
    set community none
    set local-preference 70
    continue 8
route-map test deny 8
    match metric 60
    set metric 40
    continue 9
device(config-route-map test)# show ip bgp route
Total number of BGP Routes: 1
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
S:SUPPRESSED F:FILTERED s:STALE
Prefix     Next Hop       Metric     LocPrf     Weight Status
1 10.8.8.0/24 10.8.8.3     0         70         10     BE
    AS_PATH: 100 300 200

Syntax: show route-map
Syntax: show ip bgp route

For this example, an existing route map is displayed by the show route-map command, then the addition of instance 8 adds a deny parameter but no match clause. As a result, no incoming routes are accepted (refer to the last line of the show output).

device# show route-map test
route-map test permit 1
    set weight 10
    continue 5
route-map test permit 2
    set metric 20
    continue 3
route-map test permit 3
    set community 10:20
    continue 4
route-map test permit 4
    set community 30:40
    continue 5
route-map test permit 5
    set as-path prepend 300
    continue 6
route-map test permit 6
    set as-path prepend 100
    continue 7
route-map test permit 7
    set community none
    set local-preference 70
    continue 8
device(config-route-map test)#route-map test deny 8
device(config-route-map test)#set metric 40
device(config-route-map test)#continue 9
device(config-route-map test)#show ip bgp route
BGP Routing Table is empty

Syntax: show route-map map-name

Updating route information and resetting a neighbor session

The following sections describe how to update route information with a neighbor, reset a session with a neighbor, and close a session with a neighbor.
Any change to a policy (ACL, route map, and so on) is automatically applied to outbound routes that are learned from a BGP4 neighbor or peer group after the policy change occurs. However, you must reset the neighbor to update existing outbound routes.

Any change to a policy is automatically applied to inbound routes that are learned after the policy change occurs. However, to apply the changes to existing inbound routes (those inbound routes that were learned before the policy change), you must reset the neighbors to update the routes using one of the following methods:

- Request the complete BGP4 route table from the neighbor or peer group. You can use this method if the neighbor supports the refresh capability (RFCs 2842 and 2858). Most devices today support this capability.
- Clear (reset) the session with the neighbor or peer group. This is the only method you can use if soft reconfiguration is enabled for the neighbor.

You also can clear and reset the BGP4 routes that have been installed in the IP route table.

**Using soft reconfiguration**

The soft reconfiguration feature applies policy changes without resetting the BGP4 session. Soft reconfiguration does not request the neighbor or group to send the entire BGP4 table, nor does the feature reset the session with the neighbor or group. Instead, soft reconfiguration stores all the route updates received from the neighbor or group. When you request a soft reset of inbound routes, the software performs route selection by comparing the policies against the stored route updates, instead of requesting the neighbor BGP4 route table or resetting the session with the neighbor.

When you enable the soft reconfiguration feature, it sends a refresh message to the neighbor or group if the neighbor or group supports dynamic refresh. Otherwise, the feature resets the neighbor session. This step is required to ensure that the soft reconfiguration feature has a complete set of updates to use, and occurs only once, when you enable the feature. The feature accumulates all the route updates from the neighbor, eliminating the need for additional refreshes or resets when you change policies in the future.

To use soft reconfiguration:

- Enable the feature.
- Make the policy changes.
- Apply the changes by requesting a soft reset of the inbound updates from the neighbor or group.

**Enabling soft reconfiguration**

To configure a neighbor for soft reconfiguration, enter a command such as the following.

```
device(config-bgp)# neighbor 10.10.200.102 soft-reconfiguration inbound
```

This command enables soft reconfiguration for updates received from 10.10.200.102. The software dynamically resets the session with the neighbor, then retains all route updates from the neighbor following the reset.

**Syntax:** [no] neighbor ip-addr | peer-group-name soft-reconfiguration inbound

**NOTE**

The syntax related to soft reconfiguration is shown.

**Placing a policy change into effect**

To place policy changes into effect, enter a command such as the following.

```
device(config-bgp)# clear ip bgp neighbor 10.10.200.102 soft in
```
This command updates the routes by comparing the route policies against the route updates that the device has stored. The command does not request additional updates from the neighbor or otherwise affect the session with the neighbor.

**Syntax:** clear ip bgp neighbor ip-addr | peer-group-name soft in

**NOTE**
If you do not specify `in`, the command applies to both inbound and outbound updates.

**NOTE**
The syntax related to soft reconfiguration is shown.

### Displaying the filtered routes received from the neighbor or peer group

When you enable soft reconfiguration, the device saves all updates received from the specified neighbor or peer group, including updates that contain routes that are filtered out by the BGP4 route policies in effect on the device. To display the routes that have been filtered out, enter the following command at any level of the CLI.

```
device# show ip bgp filtered-routes
```

The routes displayed are the routes that were filtered out by the BGP4 policies on the device. The device did not place the routes in the BGP4 route table, but did keep the updates. If a policy change causes these routes to be permitted, the device does not need to request the route information from the neighbor, but instead uses the information in the updates.

**Syntax:** show ip bgp filtered-routes [ip-addr] | [as-path-access-list num] | [detail] | [prefix-list string] [longer-prefixes]

The `ip-addr` parameter specifies the IP address of the destination network.

The `as-path-access-list num` parameter specifies an AS-path ACL. Only the routes permitted by the AS-path ACL are displayed.

The `detail` parameter displays detailed information for the routes. (The example shows summary information.) You can specify any of the other options after `detail` to further refine the display request.

The `prefix-list string` parameter specifies an IP prefix list. Only routes permitted by the prefix list are displayed.

If you also use the optional `longer-prefixes` parameter, then all statistics for routes that match the specified route or have a longer prefix than the specified route are displayed. For example, if you specify 10.157.0.0 longer, then all routes with the prefix 10.157 or that have a longer prefix (such as 10.157.22) are displayed.

### Displaying all the routes received from the neighbor

To display all the route information received in route updates from a neighbor since you enabled soft reconfiguration, enter a command such as the following at any level of the CLI.

```
device# show ip bgp neighbor 192.168.4.106 routes
```

The routes displayed are the routes that were filtered out by the BGP4 policies on the device. The device did not place the routes in the BGP4 route table, but did keep the updates. If a policy change causes these routes to be permitted, the device does not need to request the route information from the neighbor, but instead uses the information in the updates.

**Syntax:** show ip bgp neighbor [ip-addr] [as-path-access-list num] [detail] [prefix-list string] [longer-prefixes]

The `ip-addr` parameter specifies the IP address of the destination network.

The `as-path-access-list num` parameter specifies an AS-path ACL. Only the routes permitted by the AS-path ACL are displayed.

The `detail` parameter displays detailed information for the routes. (The example shows summary information.) You can specify any of the other options after `detail` to further refine the display request.

The `prefix-list string` parameter specifies an IP prefix list. Only routes permitted by the prefix list are displayed.

If you also use the optional `longer-prefixes` parameter, then all statistics for routes that match the specified route or have a longer prefix than the specified route are displayed. For example, if you specify 10.157.0.0 longer, then all routes with the prefix 10.157 or that have a longer prefix (such as 10.157.22) are displayed.
show ip bgp neighbors ip-addr received-routes [ detail ]

The detail parameter displays detailed information for the routes. This example shows summary information.

NOTE
The syntax for displaying received routes is shown. For complete command syntax, refer to Displaying BGP4 neighbor information on page 394.

Dynamically requesting a route refresh from a BGP4 neighbor

You can easily apply changes to filters that control BGP4 routes received from or advertised to a neighbor, without resetting the BGP4 session between the device and the neighbor. For example, if you add, change, or remove a BGP4 IP prefix list that denies specific routes received from a neighbor, you can apply the filter change by requesting a route refresh from the neighbor. If the neighbor also supports dynamic route refreshes, the neighbor resends its Adj-RIB-Out, its table of BGP4 routes. Using the route refresh feature, you do not need to reset the session with the neighbor.

The route refresh feature is based on the following specifications:

• RFC 2842. This RFC specifies the Capability Advertisement, which a BGP4 device uses to dynamically negotiate a capability with a neighbor.
• RFC 2858 for Multi-protocol Extension.
• RFC 2918, which describes the dynamic route refresh capability

The dynamic route refresh capability is enabled by default and cannot be disabled. When the device sends a BGP4 OPEN message to a neighbor, the device includes a Capability Advertisement to inform the neighbor that the device supports dynamic route refresh.

NOTE
The option for dynamically refreshing routes received from a neighbor requires the neighbor to support dynamic route refresh. If the neighbor does not support this feature, the option does not take effect and the software displays an error message. The option for dynamically re-advertising routes to a neighbor does not require the neighbor to support dynamic route refresh.

Dynamically refreshing routes

The following sections describe how to refresh BGP4 routes dynamically to put new or changed filters into effect.

To request a dynamic refresh of all routes from a neighbor, enter a command such as the following.

```
device(config-bgp-router)# clear ip bgp neighbor 192.168.1.170 soft in
```

This command asks the neighbor to send its BGP4 table (Adj-RIB-Out) again. The device applies its filters to the incoming routes and adds, modifies, or removes BGP4 routes as necessary.

Syntax: clear ip bgp neighbor all | ip-addr | peer-group-name | as-num [ soft-outbound | soft [ in | out ] ]

The all, ip-addr, peer-group-name, and as-num parameters specify the neighbor. The ip-addr parameter specifies a neighbor by its IP interface with the device. The peer-group-name specifies all neighbors in a specific peer group. The as-num parameter specifies all neighbors within the specified AS. The all parameter specifies all neighbors.
The soft-outbound parameter updates all outbound routes by applying the new or changed filters, but sends only the existing routes affected by the new or changed filters to the neighbor.

The soft in and soft out parameters specify whether you want to refresh the routes received from the neighbor or sent to the neighbor:

- **soft in** does one of the following:
  - If you enabled soft reconfiguration for the neighbor or peer group, **soft in** updates the routes by comparing the route policies against the route updates that the device has stored. Soft reconfiguration does not request additional updates from the neighbor or otherwise affect the session with the neighbor.
  - If you did not enable soft reconfiguration, **soft in** requests the entire BGP4 route table for the neighbor (Adj-RIB-Out), then applies the filters to add, change, or exclude routes.
  - If a neighbor does not support dynamic refresh, **soft in** resets the neighbor session.

- **soft out** updates all outbound routes, then sends the entire BGP4 router table for the device (Adj-RIB-Out) to the neighbor, after changing or excluding the routes affected by the filters.

If you do not specify in or out, the device performs both options.

**NOTE**

The soft-outbound parameter updates all outbound routes by applying the new or changed filters, but sends only the existing routes affected by the new or changed filters to the neighbor. The soft out parameter updates all outbound routes, then sends the entire BGP4 route table for the device (Adj-RIB-Out) to the neighbor, after changing or excluding the routes affected by the filters. Use soft-outbound if only the outbound policy is changed.

To dynamically resend all the device BGP4 routes to a neighbor, enter a command such as the following.

```
device(config-bgp)# clear ip bgp neighbor 192.168.1.170 soft out
```

This command applies filters for outgoing routes to the device BGP4 route table (Adj-RIB-Out), changes or excludes routes accordingly, then sends the resulting Adj-RIB-Out to the neighbor.

**NOTE**

The Extreme device does not automatically update outbound routes using a new or changed outbound policy or filter when a session with the neighbor goes up or down. Instead, the device applies a new or changed policy or filter when a route is placed in the outbound queue (Adj-RIB-Out). To place a new or changed outbound policy or filter into effect, you must enter a clear ip bgp neighbor command regardless of whether the neighbor session is up or down. You can enter the command without optional parameters or with the soft out or soft-outbound option. Either way, you must specify a parameter for the neighbor (ip-addr, as-num , peer-group-name, or all).

**Displaying dynamic refresh information**

You can use the `show ip bgp neighbors` command to display information for dynamic refresh requests. For each neighbor, the display lists the number of dynamic refresh requests the device has sent to or received from the neighbor and indicates whether the device received confirmation from the neighbor that the neighbor supports dynamic route refresh.

The RefreshCapability field indicates whether this device has received confirmation from the neighbor that the neighbor supports the dynamic refresh capability. The statistics in the Message Sent and Message Received rows under Refresh-Req indicate how many dynamic refreshes have been sent to and received from the neighbor. The statistic is cumulative across sessions.
Closing or resetting a neighbor session

You can close a neighbor session or resend route updates to a neighbor.

If you make changes to filters or route maps and the neighbor does not support dynamic route refresh, use the following methods to ensure that neighbors contain only the routes you want them to contain:

- If you close a neighbor session, the device and the neighbor clear all the routes they learned from each other. When the device and neighbor establish a new BGP4 session, they exchange route tables again. Use this method if you want the device to relearn routes from the neighbor and resend its own route table to the neighbor.

- If you use the soft-outbound option, the device compiles a list of all the routes it would normally send to the neighbor at the beginning of a session. However, before sending the updates, the device also applies the filters and route maps you have configured to the list of routes. If the filters or route maps result in changes to the list of routes, the device sends updates to advertise, change, or even withdraw routes on the neighbor as needed. This ensures that the neighbor receives only the routes you want it to contain. Even if the neighbor already contains a route learned from the device that you later decided to filter out, using the soft-outbound option removes that route from the neighbor.

You can specify a single neighbor or a peer group.

To close a neighbor session and thus flush all the routes exchanged by the device and the neighbor, enter the following command.

device# clear ip bgp neighbor all

Syntax: clear ip bgp neighbor all | ip-addr | peer-group-name | as-num [ soft-outbound | soft [ in | out ] ]

The all, ip-addr, peer-group-name, and as-num parameters specify the neighbor. The ip-addr parameter specifies a neighbor by its IP interface with the device. The peer-group-name specifies all neighbors in a specific peer group. The as-num parameter specifies all neighbors within an AS and has a range of 1 through 4294967295. The all keyword specifies all neighbors.

To resend routes to a neighbor without closing the neighbor session, enter a command such as the following.

device# clear ip bgp neighbor 10.0.0.1 soft out
Clearing and resetting BGP4 routes in the IP route table

To clear BGP4 routes from the IP route table and reset the routes, enter a command such as the following.

   device# clear ip bgp routes

Syntax: clear ip bgp routes [ ip-addr/prefix-length ]

Clearing traffic counters

You can clear the counters (reset them to 0) for BGP4 messages.

To clear the BGP4 message counter for all neighbors, enter the following command.

   device# clear ip bgp traffic

Syntax: clear ip bgp traffic

To clear the BGP4 message counter for a specific neighbor, enter a command such as the following.

   device# clear ip bgp neighbor 10.0.0.1 traffic

To clear the BGP4 message counter for all neighbors within a peer group, enter a command such as the following.

   device# clear ip bgp neighbor PeerGroup1 traffic

Syntax: clear ip bgp neighbor all | ip-addr | peer-group-name | as-num traffic

The all, ip-addr, peer-group-name, and as-num parameters specify the neighbor. The ip-addr parameter specifies a neighbor by its IP interface with the device. The peer-group-name specifies all neighbors in a specific peer group. The as-num parameter specifies all neighbors within the specified AS. The all parameter specifies all neighbors.
Configuring BGP4+

- BGP4+ overview.................................................................................................................................427
- Address family configuration level......................................................................................................427
- BGP additional-paths overview..........................................................................................................428
- BGP best external overview..................................................................................................................431
- Configuring BGP4+...............................................................................................................................432
- Clearing BGP4+ information..................................................................................................................446
- Displaying BGP4+ information...............................................................................................................450
- Configuring BGP4+ graceful restart.....................................................................................................485

BGP4+ overview

The implementation of IPv6 supports multi protocol BGP (MBGP) extensions, which allow IPv6 BGP (known as BGP4+) to distribute routing information for protocols such as IPv4 BGP. The supported protocols are identified by address families. The extensions allow a set of BGP4+ peers to exchange routing information for multiple address families and sub-address families.

IPv6 MBGP functions similarly to IPv4 MBGP except for the following enhancements:

- An IPv6 unicast address family and network layer reachability information (NLRI).
- An IPv6 multicast address family
- Next hop attributes that use IPv6 addresses.

The implementation of BGP4+ supports the advertising of routes among different address families. BGP4+ multicast and unicast routes are supported.

Address family configuration level

The implementation of BGP4+ includes a new configuration level: address family. For IPv6, Extreme devices currently support the BGP4+ multicast and unicast address family configuration levels. The device enters the BGP4+ unicast address family configuration level when you enter the following command while at the global BGP configuration level:

```
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6u)#
```

The `(config-bgp-ipv6u)#` prompt indicates that you are at the BGP4+ unicast address family configuration level.

While at the BGP4+ unicast address family configuration level, you can access several commands that allow you to configure BGP4+ unicast routes. The commands that you enter at this level apply only to IPv6 unicast address family only. You can generate a configuration for BGP4+ unicast routes that is separate and distinct from configurations for IPv4 unicast routes and IPv4 BGP multicast routes.

**NOTE**

The commands that you can access while at the IPv6 unicast address family configuration level are also available at the IPv4 unicast and multicast address family configuration levels. Where relevant, this section discusses and provides IPv6-unicast-specific examples. You must first configure IPv6 unicast-routing in order for any IPv6 routing protocol to be active.
NOTE
Each address family configuration level allows you to access commands that apply to that particular address family only. To enable a feature in a particular address family, you must specify any associated commands for that feature in that particular address family. You cannot expect the feature, which you may have configured in the BGP4 unicast address family, to work in the BGP4+ unicast address family unless it is explicitly configured in the BGP4+ unicast address family.

To exit from the IPv6 unicast address family configuration level, enter the following command:

```
device(config-bgp-ipv6u)# exit-address-family
device(config-bgp)#
```

Entering this command returns you to the global BGP configuration level.

**BGP additional-paths overview**

BGP additional-paths provides the ability for multiple paths for the same prefix to be advertised without the new paths implicitly replacing the previous paths. Path diversity is achieved rather than path hiding.

BGP devices generally advertise only their best path to neighboring devices, even when multiple paths exist. The advertisement of the same prefix from the same neighbor replaces the previous announcement of that prefix. This is known as an implicit withdraw, behavior that achieves better scaling but at the cost of path diversity.

Path hiding can affect the efficient use of BGP multipath and path diversity, and prevent hitless planned maintenance. Upon next hop failures, path hiding also inhibits fast and local recovery because the network must wait for BGP control plane convergence to restore traffic. BGP additional-paths enables BGP to advertise even the secondary best routes so that multiple paths for the same prefix can be advertised without the new paths implicitly replacing previous paths. BGP additional-paths provides a generic way of offering path diversity.

In the following figure, path hiding occurs in two ways:

- Prefix P has paths P1 and P2 advertised from BR1 and BR2 to RR1. RR1 selects P1 as the best path and advertises only P1 to PE.
- Prefix X has path X1 advertised from BR3 to BR4 with local preference 100. BR4 also has path X2. However, only the best path, X1, is selected. BR3 advertises X1 to the RRs and X2 is suppressed.
Advantages of BGP additional-paths

- Fast convergence and fault tolerance: When BGP additional-paths is enabled, more than one path to a destination is advertised. If one of the paths goes down, connectivity is easily restored due to the availability of backup paths. If the next hop for the prefix becomes unreachable, the device can switch to the backup route immediately without having to wait for BGP control plane messages.
- Enhanced load balancing capabilities: Traditionally with RRs in an iBGP domain, only the best path is given to the clients, even if ECMP paths exist. This affects load balancing. With additional paths advertised by RRs, the clients have more effective load balancing.

Considerations and limitations for BGP additional-paths RIB-in

- When BGP additional-paths is not configured, only one NLRI per prefix per peer is supported. Any additional NLRI update for the same prefix from the same peer replaces the existing one.
- When BGP additional-paths is configured, a device can receive multiple NLRI advertisements for the same prefix from the same peer that are uniquely identified by NLRI path identifiers.
- For MLX Series and XMR Series devices, the maximum number of additional paths per peer per prefix is 128.
- For CER 2000 Series and CES 2000 Series devices, the maximum number of additional paths per peer per prefix is 64.
- Changes in the capability of sending or receiving additional paths are reflected only after the BGP session is restarted.

Considerations and limitations for BGP additional-paths RIB-out

- Changes in the capability of sending or receiving additional paths are reflected only after the BGP session is restarted.
• The maximum number of paths that can be advertised per prefix is 16. If there are more than 16 paths for a prefix in the RIB-in, only 16 can be advertised.

• You should maintain the number of RIB-in paths for any prefix in the range of 16 for smooth RIB-out processing. Otherwise the RIB-out processing time increases exponentially in the scaled scenarios.

Upgrade and downgrade considerations

If BGP additional-paths is enabled and the configuration saved, an error message occurs if the software is downgraded to an earlier version. BGP additional-paths should be unconfigured before a downgrade take place.

BGP additional-paths functionality

BGP additional-paths is implemented by including an additional four-octet value known as a path identifier (ID) for each path in the NLRI. Path IDs are unique to a peering session and are generated for each network. A generated Path ID is unique per peer per prefix. A BGP device can receive the same path ID for the same prefix from two different peers, or it can receive the same path ID from the same peer for two different prefixes.

A path ID can apply to the IPv4 or IPv6 unicast or multicast address family.

Therefore, when the same prefix is received with the same path ID from the same peer, it is considered as a replacement route or a duplicate route. When the same prefix is received with a different path ID from the same peer, it is considered as an additional path to the prefix.

To send or receive additional paths, the additional-paths capability must be negotiated. If it is not negotiated, only the best path can be sent. BGP updates carry the path ID once the additional-paths capability is negotiated. In order to carry the path ID in an update message, the existing NLRI encodings are extended by prepending the path ID field, which consists of four octets.

The assignment of the path ID for a path by a BGP device occurs in such a way that the BGP device is able to use the prefix and path ID to uniquely identify a path advertised to a neighbor so as to continue to send further updates for that path. The receiving BGP neighbor that re-advertises a route regenerates its own path ID to be associated with the re-advertised route.

The set of additional paths advertised to each neighbor can be different, and advertisement filters are provided on a per-neighbor basis.

NOTE

BGP additional-paths is supported for the BGP IPv4 and IPv6 unicast address families and the BGP IPv4 and IPv6 multicast address families.

NOTE

BGP additional-paths is not supported for the BGP L2VPN VPLS, BGP VPNv4 unicast, and BGP VPNv6 address families.

There are three basic steps involved in configuring BGP additional-path:

• **Capability Negotiation**: Specify whether the device can send, receive, or send and receive additional paths. This is done at the address family level or peer-group level or the neighbor level. Refer to the sections and the NetIron Command Reference for more information.

• **Select Candidate paths**: Select a set or sets of candidate paths for advertisement by specifying selection criteria. This is done at the address family level.

• **Advertise additional paths from the candidate set**: Advertise to a neighbor a set or sets of additional paths from the candidate paths marked. This is done at the neighbor level or peer-group level.
BGP best external overview

BGP best external enables a device to advertise the most preferred route among those received from external neighbors as a backup route.

In active-backup topologies, service providers use routing policies that cause a border router to choose a path received over an Interior Border Gateway Protocol (iBGP) session as the best path for a prefix. This path is chosen even if an Exterior Border Gateway Protocol (eBGP) learned path exists. BGP best external is beneficial in such a topology. In such a topology, one exit or egress point for the prefix in the autonomous system is defined, and the other points are used as backups if the primary link or eBGP peering is unavailable. The border router does not advertise any path for such prefixes, and the paths learned over its eBGP sessions from the autonomous system (AS) are hidden. To cope with this situation, a device can advertise the best external path.

In the following figure, PE1 is the primary path to network N, and PE2 is the backup path. If BGP best external is not configured, PE2 does not advertise prefix N to its iBGP peers because PE2 prefers the iBGP route from PE1 as the best route compared to its best eBGP route. However, if BGP best external is configured, PE2 propagates its best external path to its iBGP peers so that PE3 has two paths for prefix N.

FIGURE 30 BGP best external

NOTE
BGP best external is supported for the BGP IPv4 and IPv6 unicast address families and the BGP IPv4 and IPv6 multicast address families.

NOTE
BGP best external is not supported for the BGP L2VPN VPLS, BGP VPNv4 unicast, and BGP VPNv6 address families.

Limitations of BGP best external

- BGP best external advertises the best external path to iBGP peers only.
- When BGP best external is configured on a route reflector (RR), the best external path is not advertised.

Upgrade and downgrade considerations

If BGP best external is enabled and the configuration saved, an error message occurs if the software is downgraded to an earlier version. BGP best external should be unconfigured before a downgrade takes place.
Configuring BGP4+

Before enabling BGP4+ on a device, you must enable the forwarding of IPv6 traffic on the device using the `ipv6 unicast-routing` command and enable IPv6 on at least one interface by configuring an IPv6 address or explicitly enabling IPv6 on that interface.

To configure BGP4+, you must do the following:

- Enable BGP4+.
- Configure BGP4+ neighbors using one of the following methods:
  - Add one neighbor at a time (neighbor uses global or unique local IPv6 address).
  - Add one neighbor at a time (neighbor uses a link-local IPv6 address).
  - Create a peer group and add neighbors individually.

The following configuration tasks are optional:

- Advertise the default route.
- Import specified routes into BGP4+.
- Redistribute prefixes into BGP4+.
- Aggregate routes advertised to BGP4 neighbors.
- Use route maps.

Enabling BGP4+

To enable BGP4+, enter commands such as the following:

```
device(config)# router bgp
BGP: Please configure 'local-as' parameter in order to run BGP4.
device(config-bgp)# local-as 1000
```

These commands enable BGP4+ and configure the autonomous system (1000) in which your device resides.

Syntax: `[no]` router bgp

To disable BGP, enter the `no` form of this command.

Syntax: `local-as number`

Specify the AS number in which the device you are configuring resides.

After enabling BGP4+, you can add neighbors to a BGP4+ device by entering commands such as the following:

```
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6u)# neighbor 2001:db8:e0ff:783a::4 remote-as 1001
device(config-bgp-ipv6u)# neighbor 2001:db8:e0ff:783a::5 remote-as 1001
```

These commands add two neighbors with global IPv6 addresses 2001:db8:e0ff:783a::4 and 2001:db8:e0ff:783a::5 in AS 1001.

**NOTE**

The example above adds IPv6 neighbors at the BGP4+ unicast address family configuration level. These neighbors, by default, are enabled to exchange BGP4+ unicast prefixes. However, if you add IPv6 neighbors while at the global BGP configuration or IPv4 BGP unicast address family configuration level, the neighbors will not exchange BGP4+ unicast prefixes until you explicitly enable them to do so by entering the `neighbor activate` command at the BGP4+ unicast address family configuration level.

This section provides minimal information about adding BGP4+ neighbors, because its focus is to provide information about configuring BGP4+. 
Configuring BGP4+ neighbors using global or unique link local IPv6 addresses

To configure BGP4+ neighbors using global or unique link local IPv6 addresses, you must add the IPv6 address of a neighbor in a remote autonomous system to the BGP4+ neighbor table of the local device. You must repeat this procedure for each neighbor that you want to add to a local device.

For example, to add the IPv6 address 2001:db8:93e8:cc00::1 of a neighbor in remote AS 4500 to the BGP4+ neighbor table of a device, enter commands such as the following:

```
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6u)# neighbor 2001:db8:93e8:cc00::1 remote-as 4500
```

**Syntax:** neighbor ipv6-address remote-as as-number

**NOTE**
The example above adds an IPv6 neighbor at the BGP4+ unicast address family configuration level. This neighbor, by default, is enabled to exchange BGP4+ unicast prefixes. However, if you add an IPv6 neighbor while at the global BGP configuration or IPv4 BGP unicast address family configuration level, the neighbor will not exchange BGP4+ unicast prefixes until you explicitly enable it to do so by entering the `neighbor activate` command at the BGP4+ unicast address family configuration level.

The `ipv6-address` parameter specifies the IPv6 address of the neighbor. You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `as-number` parameter indicates the number of the AS in which the neighbor resides.

To delete the neighbor from the BGP4+ neighbor table, enter the `no` form of this command.

Adding BGP4+ neighbors using link-local addresses

To configure BGP4+ neighbors that use link-local addresses, you must do the following:

- Add the IPv6 address of a neighbor in a remote autonomous system to the BGP4+ neighbor table of the local device.
- Identify the neighbor interface over which the neighbor and local device will exchange prefixes.
- Configure a route map to set up a global next hop for packets destined for the neighbor.

**Adding BGP4+ neighbor**

To add the IPv6 link-local address fe80:4398:ab30:45de::1 of a neighbor in remote autonomous system 1000 to the BGP4+ neighbor table of a device, enter the following commands:

```
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6u)# neighbor fe80:4398:ab30:45de::1 remote-as 1000
```

**Syntax:** neighbor ipv6-address remote-as as-number

**NOTE**
The example above adds an IPv6 neighbor at the BGP4+ unicast address family configuration level. This neighbor, by default, is enabled to exchange BGP4+ unicast prefixes. However, if you add an IPv6 neighbor while at the global BGP configuration or IPv4 BGP unicast address family configuration level, the neighbor will not exchange BGP4+ unicast prefixes until you explicitly enable it to do so by entering the `neighbor activate` command at the BGP4+ unicast address family configuration level.

The `ipv6-address` parameter specifies the IPv6 link-local address of the neighbor. A link-local address has a fixed prefix of FE80::/10. You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.
The as-number parameter indicates the number of the AS in which the neighbor resides.

To delete the neighbor from the BGP4+ neighbor table, enter the no form of this command.

**Identifying a neighbor interface**

To specify Ethernet interface 3/1 as the neighbor interface over which the neighbor and local device will exchange prefixes, enter the following command:

```
device(config-bgp)# neighbor fe80:4398:ab30:45de::1 update-source ethernet 3/1
```

**Syntax:**
```
neighbor ipv6-address update-source ipv6-address | ethernet slot | port | loopback number | ve number
```

The ipv6-address parameter specifies the IPv6 link-local address of the neighbor. A link-local address has a fixed prefix of fe80::/10. You must specify the ipv6-address parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The ethernet, loopback, and ve parameters specify the neighbor interface over which the neighbor and local device will exchange prefixes. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a loopback or VE interface, also specify the loopback or VE number.

**NOTE**

If the link-local address is not specified in the neighbor statement and if multiple ipv6 addresses are configured on an interface with the subnet of this command, the device selects the first available address on the subnet as the source address while establishing a BGP connection with the neighbor. If the first IPv6 subnet address is not used for BGP peering, the neighbor update-source command must be used.

**Configuring a route map**

To configure a route map that filters routes advertised to a neighbor or sets up a global next hop for packets destined for the neighbor with the IPv6 link-local address fe80:4398:ab30:45de::1, enter commands such as the following (start at the BGP4+ unicast address family configuration level):

```
device(config-bgp-ipv6u)# neighbor fe80:4398:ab30:45de::1 route-map out next-hop
device(config-bgp-ipv6u)# exit
device(config)# route-map next-hop permit 10
device(config-route-map)# match ipv6 address prefix-list next-hop-ipv6
device(config-route-map)# set ipv6 next-hop 2001:db8:3764::34
```

This route map applies to the BGP4+ unicast address family under which the neighbor ipv6-address route-map command is entered. This route map applies to the outgoing routes on the neighbor with the IPv6 link-local address fe80:4398:ab30:45de::1. If an outgoing route on the neighbor matches the route map, the route is distributed through the next hop router with the global IPv6 address 2001:db8:3764::34.

**Syntax:**
```
neighbor ipv6-address route-map [in | out] name
```

The ipv6-address parameter specifies the IPv6 link-local address of the neighbor. A link-local address has a fixed prefix of fe80::/10. You must specify the ipv6-address parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The in keyword applies the route map to incoming routes. The out keyword applies the route map to outgoing routes.

The name parameter specifies a route map name.

**Syntax:**
```
route-map name deny | permit sequence-number
```

The name parameter specifies a route map name.

The deny keyword denies the distribution of routes that match the route map. The permit keyword permits the distribution of routes that match the route map.
The **sequence-number** parameter specifies a sequence number for the route map statement.

**Syntax:** `match ipv6 address prefix-list name`

The `match ipv6 address prefix-list` command distributes any routes that have a destination IPv6 address permitted by a prefix list. The `name` parameter specifies an IPv6 prefix list name.

**Syntax:** `set ipv6 next-hop ipv6-address`

The `ipv6-address` parameter specifies the IPv6 global address of the next-hop router. You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

## Configuring a BGP4+ peer group

If a peer group has multiple neighbors with similar attributes, you can configure a peer group, then add neighbors to the group instead of configuring neighbors individually for all parameters.

**NOTE**

You can add IPv6 neighbors only to an IPv6 peer group. NetIron OS devices do not support adding an IPv4 neighbor to an IPv6 peer group and vice versa. IPv4 and IPv6 peer groups must remain separate.

To configure a BGP4+ peer group, you must perform the tasks listed below.

1. Create a peer group.
2. Add a neighbor to the local device.
3. Assign the IPv6 neighbor to the peer group.
4. Activate the IPv6 neighbor and peer group.

### Creating a BGP4+ peer group

To create a peer group named "peer_group1," enter commands such as the following:

```bash
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6u)# neighbor peer_group1 peer-group
```

**Syntax:** `neighbor peer-group-name peer-group`

Specify a name for the peer group.

To delete the peer group, enter the **no** form of this command.

### Adding a neighbor to a local device

To add the IPv6 address 2001:db8:89::23 of a neighbor in remote AS 1001 to the BGP4+ neighbor table of a device, enter the following command:

```bash
device(config-bgp-ipv6u)# neighbor 2001:db8:89::23 remote-as 1001
```

**NOTE**

The example above adds an IPv6 neighbor at the BGP4+ unicast address family configuration level. This neighbor, by default, is enabled to exchange BGP4+ unicast prefixes. However, if you add an IPv6 neighbor while at the global BGP configuration or IPv4 BGP unicast address family configuration level, the neighbor will not exchange BGP4+ unicast prefixes until you explicitly enable it to do so by entering the `neighbor activate` command at the BGP4+ unicast address family configuration level.

**Syntax:** `neighbor ipv6-address remote-as as-number`
The `ipv6-address` parameter specifies the IPv6 address of the neighbor. You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `as-number` parameter indicates the number of the autonomous system in which the neighbor resides.

To delete the neighbor from the BGP4+ neighbor table, enter the `no` form of this command.

**Assigning IPv6 neighbor to peer group**

To assign an already configured neighbor (2001:db8:89::23) to the peer group peer_group1, enter the following command at the BGP4+ unicast address family configuration level:

```
device(config-bgp-ipv6u)# neighbor 2001:db8:89::23 peer-group peer_group1
```

**Syntax:** `neighbor ipv6-address peer-group peer-group-name`

The `ipv6-address` parameter specifies the IPv6 address of the neighbor. You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `peer-group peer-group-name` parameter indicates the name of the already created peer group.

To delete the mapping of the neighbor IPv6 address to the peer group, enter the `no` form of this command.

**Activating the IPv6 neighbor /peer group**

By default, a peer group is activated only in "address-family ipv4 unicast" mode. To activate the neighbor/peer group in "address-family ipv6-unicast" mode, use the `activate` command:

```
device(config-bgp-ipv6u)# neighbor 2001:db8:89::23 activate
device(config-bgp-ipv6u)# neighbor peer_group1 activate
```

**Syntax:** `neighbor ipv6-address | peer-group-name activate`

The `peer-group-name` parameter indicates the name of the already created peer group.

The following peer-group attributes/route policies are inherited by a group member when the peer-group is active in an ipv6 address-family:

- activate (address family)
- prefix-list
- route-map
- distribute-list
- filter-list
- unsuppress-map
- originate-default
- route-reflect-client
- weight
- max-prefix
- send-community
- send-extended-community

To deactivate the neighbor/peer group, enter the `no` form of this command.
Advertising the default BGP4+ route

By default, the BGP4+ device does not originate and advertise a default BGP4+ route. A default route is the IPv6 address :: and the route prefix 0; that is, ::/0.

You can enable the BGP4+ device to advertise the default BGP4+ route by specifying the `default-information-originate` command at the BGP4+ unicast address family configuration level. Before entering this command, the default route ::/0 must be present in the IPv6 route table.

To enable the BGP4+ device to advertise the default route, enter the following command:

```
device(config-bgp-ipv6u)# default-information-originate
```

Syntax: `[no] default-information-originate`

You can also enable the BGP4+ device to send the default route to a particular neighbor by specifying the `neighbor default-originate` command at the BGP4+ unicast address family configuration level. This command does not require the presence of the default route ::/0 in the IPv6 route table.

For example, to enable the BGP4+ device to send the default route to a neighbor with the IPv6 address of 2001:db8:89::23, enter a command such as the following:

```
device(config-bgp-ipv6u)# neighbor 2001:db8:89::23 default-originate
```

Syntax: `[no] neighbor ipv6-address default-originate [ route-map name ]`

The `ipv6-address` parameter specifies a neighbor by its IPv6 address. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

Specifying the optional `route-map name` parameter injects the default route conditionally, based on the match conditions in the route map.

Importing routes into BGP4+

By default, the device does not import routes into BGP4+. This section explains how to use the `network` command to enable the importing of specified routes into BGP4+.

```
NOTE
The routes imported into BGP4+ must first exist in the IPv6 unicast route table.
```

For example, to import the IPv6 prefix 2001:db8::/32 into the BGP4+ database, enter the following command at the BGP4+ unicast address family configuration level:

```
device(config-bgp-ipv6u)# network 2001:db8::/32
```

Syntax: `network ipv6-prefix/prefix-length [ route-map name ]`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

You can specify the optional `route-map name` parameter if you want to change attributes of a route when importing it into BGP4+.

To disable the importing of a specified route, enter the `no` form of this command without the `route-map` parameter.
Redistributing prefixes into BGP4+

You can configure the device to redistribute routes from the following sources into BGP4+:

- Static IPv6 routes
- Directly connected IPv6 networks
- OSPFv3
- RIPng
- IS-IS

You can redistribute routes in the following ways:

- By route types, for example, the device redistributes all IPv6 static and RIPng routes.
- By using a route map to filter which routes to redistribute, for example, the device redistributes specified IPv6 static and RIPng routes only.

For example, to configure the redistribution of all RIPng routes into the BGP4+ unicast database, enter the following commands at the BGP4+ address family configuration level:

```
device(config-bgp-ipv6u)# redistribute rip
```

Syntax:
```
redistribute protocol [level-1 | level-1-2 | level-2] [match external1 | external2 | internal] [metric metric-value] [route-map name]
```

The `protocol` parameter can be `connected`, `ospf`, `rip`, `static`, or `ISIS`.

If you specify `ospf` as the protocol, you can optionally specify the redistribution of external 1, external 2, or internal routes. (The default is `internal`.)

The `metric metric-value` parameter specifies the metric used for the redistributed route. If a value is not specified for this option, and no value is specified using the default-metric command at the BGP4+ unicast address family configuration level, the metric value for the IPv6 static, RIPng, or IPv6 OSPF route is used. Use a value consistent with the destination protocol.

The `name` parameter specifies a route map name.

Aggregating routes advertised to BGP4 neighbors

By default, a device advertises individual BGP4+ routes for all the networks. The aggregation feature allows you to configure a device to aggregate routes in a range of networks into a single IPv6 prefix. For example, without aggregation, a will individually advertise routes for networks 2001:db8:0001:0000::/64, 2001:db8:0002:0000::/64, 2001:db8:0003:0000::/64, and so on. You can configure the device to instead send a single, aggregate route for the networks. The aggregate route would be advertised as 2001:db8::/24 to BGP4 neighbors.

To aggregate BGP4+ routes for 2001:db8:0001:0000::/64, 2001:db8:0002:0000::/64, 2001:db8:0003:0000::/64, enter the following command.

```
device(config-bgp-ipv6u)# aggregate-address 2001:db8::/24 summary-only
```

Syntax:
```
aggregate-address ipv6-prefix/prefix-length [as-set] [summary-only] [suppress-map map-name] [advertise-map map-name] [attribute-map map-name]
```

The `ipv6-prefix` and `prefix-length` parameters specify the aggregate value for the networks. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (`/`) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `as-set` keyword causes the device to aggregate AS-path information for all the routes in the aggregate address into a single AS-path.
The summary-only keyword prevents the device from advertising more specific routes contained within the aggregate route. The suppress-map map-name parameter prevents the more specific routes contained in the specified route map from being advertised. The advertise-map map-name parameter configures the device to advertise the more specific routes in the specified route map. The attribute-map map-name parameter configures the device to set attributes for the aggregate routes based on the specified route map.

NOTE
For the suppress-map, advertise-map, and attribute-map parameters, the route map must already be defined.

To remove an aggregate route from a BGP4 neighbor advertisement, use the no form of this command without any parameters.

Using route maps
You can use a route map to filter and change values in BGP4+ routes. Currently, you can apply a route map to IPv6 unicast routes that are independent of IPv4 routes.

To configure a route map to match on IPv6 unicast routes, enter commands such as the following.

```
device(config)# router bgp
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6u)# neighbor 2001:db8:df78::67 remote-as 1001
device(config-bgp-ipv6u)# neighbor 2001:db8:df78::67 route-map in map1
device(config-bgp-ipv6u)# exit
device(config)# ipv6 prefix-list ipv6_uni seq 10 permit 2001:db8::/32
device(config)# route-map map1 permit 10
device(config-route-map-map1)# match ipv6 address prefix-list ipv6_uni
```

This example configures a route map named “map1” that permits incoming IPv6 unicast routes that match the prefix list named “ipv6_uni” (2001:db8::/32). Note that you apply the route map while at the BGP4+ unicast address family configuration level.

Enabling next-hop recursion
For each BGP4+ route learned, the device performs a route lookup to obtain the IPv6 address of the next-hop for the route. A BGP4+ route is eligible for addition in the IPv6 route table only if the following conditions are true:

- The lookup succeeds in obtaining a valid next-hop IPv6 address for the route.
- The path to the next-hop IPv6 address is an IGP path or a static route path.

By default, the software performs only one lookup for the next-hop IPv6 address for the BGP4+ route. If the next-hop lookup does not result in a valid next-hop IPv6 address, or the path to the next-hop IPv6 address is a BGP4+ path, the software considers the BGP4+ route destination to be unreachable. The route is not eligible to be added to the IPv6 route table.

The BGP4+ route table can contain a route with a next-hop IPv6 address that is not reachable through an IGP route, even though the device can reach a hop farther away through an IGP route. This can occur when the IGPs do not learn a complete set of IGP routes, so the device learns about an internal route through IBGP instead of through an IGP. In this case, the IPv6 route table will not contain a route that can be used to reach the BGP4+ route destination.

To enable the device to find the IGP route to the next-hop gateway for a BGP4+ route, enable recursive next-hop lookups. With this feature enabled, if the first lookup for a BGP4+ route results in an IBGP path that originated within the same AS, rather than an IGP path or static route path, the device performs a lookup on the next-hop IPv6 address for the next-hop gateway. If this second lookup results in an IGP path, the software considers the BGP4+ route to be valid and adds it to the IPv6 route table. Otherwise, the device performs another lookup on the next-hop IPv6 address of the next-hop for the next-hop gateway, and so on, until one of the lookups results in an IGP route.
You must configure a static route or use an IGP to learn the route to the EBGP multihop peer.

**Enabling recursive next-hop lookups**

The recursive next-hop lookups feature is disabled by default.

To enable recursive next-hop lookups, enter the following command at the BGP4+ address family configuration level of the CLI.

```
device(config-bgp-ipv6u)# next-hop-recursion
```

**Syntax:** [no] next-hop-recursion

**Example when recursive route lookups are disabled**

The output here shows the results of an unsuccessful next-hop lookup for a BGP4+ route. In this case, next-hop recursive lookups are disabled. This example is for the BGP4+ route to network 10.240.0.0/24.

In this example, the device cannot reach 10.240.0.0/24, because the next-hop IP address for the route is an IBGP route instead of an IGP route, and is considered unreachable by the device. The IP route table entry for the next-hop gateway for the BGP4+ route’s next-hop gateway (10.102.0.1/24) is shown here.

Since the route to the next-hop gateway is a BGP4+ route, and not an IGP route, it cannot be used to reach 10.240.0.0/24. In this case, the device tries to use the default route, if present, to reach the subnet that contains the BGP4+ route next-hop gateway.

The output here shows the results of an unsuccessful next-hop lookup for a BGP4+ route. In this case, next-hop recursive lookups are disabled. This example is for the BGP4+ route to network 2001:db8::/64.

```
device# show ipv6 bgp route
Total number of BGP Routes: 4
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
S:SUPPRESSED P:FILTERED a:STALE
Prefix Next Hop MED LocPrf Weight Status AS_PATH
1 2001:ab::1/128 2116:21:16::2 1 100 0 BI
AS PATH: 115:1000
2 2001:db8::/64 2001:ab::1 100 0 I
AS PATH: 65000 65001
3 2007:7002:17::/64 2071:34::1 0 100 0 BE
AS PATH: 60750
4 2007:7002:17::/64 2071:33::1 0 100 0 I
AS PATH: 60750
```

In this example, the device cannot reach 2001:db8::/64, because the next-hop IPv6 address for the route is an IBGP route instead of an IGP route, and is considered unreachable by the device. The IPv6 route table entry for the BGP4+ route’s next-hop gateway (2001:ab::1) is shown here.

```
device# show ipv6 route 2001:ab::1
Type Codes - B:BGP C:Connected I:ISIS L:Local O:OSPF R:RIP S:Static
BGP Codes - i:iBGP e:EBGP
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2
Type IPv6 Prefix Next Hop Router Interface Dis/Metric Uptime
Bi 2001:ab::1/128 fe80::768e:f8ff:fe97:d800 ve 40 200/1 29m27s
```

Since the route to the next-hop gateway is a BGP4+ route, and not an IGP route, it cannot be used to reach 2001:db8::/64. In this case, the device tries to use the default route, if present, to reach the subnet that contains the BGP4+ route next-hop gateway.
**Example when recursive route lookups are enabled**

When recursive next-hop lookups are enabled, the device continues to look up the next-hop gateways along the route until the device finds an IGP route to the BGP4+ route destination.

The first lookup results in an IBGP route, to network 10.102.0.0/24

Since the route to 10.102.0.1/24 is not an IGP route, the device cannot reach the next hop through IP, and so cannot use the BGP4+ route. In this case, since recursive next-hop lookups are enabled, the device next performs a lookup for the 10.102.0.0.1's next-hop gateway, 10.0.0.1.

The next-hop IP address for 10.102.0.1 is not an IGP route, which means the BGP4+ route destination still cannot be reached through IP. The recursive next-hop lookup feature performs a lookup on the next-hop gateway for 10.0.0.1.

This lookup results in an IGP route that is a directly-connected route. As a result, the BGP4+ route destination is now reachable through IGP, which means the BGP4+ route can be added to the IP route table. The IP route table with the BGP4+ route is shown here.

The device can use this route because it has an IPv6 route to the next-hop gateway. Without recursive next-hop lookups, this route would not be in the IPv6 route table.

**Configuring BGP4+ additional-paths and additional-path selection for the default VRF**

You can enable BGP4+ additional-paths send and receive capability under the configured IPv6 address family. You can also select a set or sets of candidate paths for advertisement by specifying the selection criteria. This task specifies that the best eight BGP4+ paths are eligible to be selected as additional paths under the IPv6 multicast address family for the default VRF and enables BGP additional-paths.

1. Enter the `configure terminal` command to access global configuration mode.

   ```
 device# configure terminal
   ```

2. Enter the `router bgp` command to enable BGP routing.

   ```
 device(config)# router bgp
   ```

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.

   ```
 device(config-bgp)# local-as 65520
   ```

4. Enter the `address-family ipv6 multicast` command to enter BGP address-family IPv6 multicast configuration mode.

   ```
 device(config-bgp)# address-family ipv6 multicast
   ```

5. Enter the `additional-paths` command, using the `receive` parameter, to enable additional-paths receive capability under the IPv6 multicast address family.

   ```
 device(config-bgp-ipv6m)# additional-paths receive
   ```

6. Enter the `additional-paths` command, using the `send` parameter, to enable additional-paths send capability under the IPv6 multicast address family.

   ```
 device(config-bgp-ipv6m)# additional-paths send
   ```

7. Enter the `additional-paths select` command, using the `best number` parameter and entering a value of 8, to specify that the eight best BGP paths are eligible to be selected as additional paths under the IPv6 multicast address family.

   ```
 device(config-bgp-ipv6m)# additional-paths select best 8
   ```
8. Enter the `neighbor additional-paths advertise` command, specifying an IPv6 address and using the `best` value parameter, to configure BGP to advertise the specified number of BGP best additional paths to a neighbor.

```
device(config-bgp-ipv6m)# neighbor 2001:2018:8192::124 additional-paths advertise best 8
```

The following example enables BGP4+ additional-paths send and receive capability and specifies that the best eight BGP paths are eligible to be selected as additional paths under the IPv6 multicast address family. The additional-paths feature is enabled and the best eight additional paths can be advertised to a BGP neighbor.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6m)# additional-paths receive
device(config-bgp-ipv6m)# additional-paths send
device(config-bgp-ipv6m)# additional-paths select best 8
device(config-bgp-ipv6m)# neighbor 2001:2018:8192::124 additional-paths advertise best 8
```

### Configuring BGP4+ additional-paths and additional-path selection for a non-default VRF instance

You can enable the advertisement of additional paths for all BGP neighbors under the configured IPv6 address family for a non-default VRF instance. You can also select a set or sets of candidate paths for advertisement by specifying the selection criteria. This task specifies that all BGP paths are eligible to be selected as additional paths under the configured IPv6 address family for VRF green.

1. Enter the `configure terminal` command to access global configuration mode.

```
device# configure terminal
```

2. Enter the `router bgp` command to enable BGP routing.

```
device(config)# router bgp
```

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.

```
device(config-bgp)# local-as 65520
```

4. Enter the `address-family unicast ipv6` command, using the `vrf` parameter and specifying a VRF, to enter BGP address-family IPv6 unicast VRF configuration mode.

```
device(config-bgp)# address-family ipv6 unicast vrf green
```

5. Enter the `additional-paths` command, using the `receive` parameter, to enable additional-paths receive capability under the configured IPv6 address family for VRF instance green.

```
device(config-bgp-ipv6u-vrf)# additional-paths receive
```

6. Enter the `additional-paths` command, using the `send` parameter, to enable additional-paths send capability under the configured IPv6 address family for VRF instance green.

```
device(config-bgp-ipv6u-vrf)# additional-paths send
```

7. Enter the `additional-paths select` command, using the `all` parameter, to specify that all BGP paths are eligible to be selected as additional paths under the IPv6 unicast address family for VRF instance green.

```
device(config-bgp-ipv6u-vrf)# additional-paths select all
```
8. Enter the `neighbor additional-paths advertise` command, specifying an IP address and using the `all` parameter, to configure BGP to advertise all BGP additional paths to a neighbor for VRF instance green.

```
device(config-bgp-ipv6u-vrf)# neighbor 2001:2018:8192::126 additional-paths advertise all
```

The following example enables BGP4+ additional-paths send and receive capability and specifies that all BGP paths are eligible to be selected as additional paths under the IPv6 unicast address family for VRF instance green. The add paths feature is enabled and all paths can be advertised to a BGP neighbor.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv6 unicast vrf green
device(config-bgp-ipv6u-vrf)# additional-paths receive
device(config-bgp-ipv6u-vrf)# additional-paths send
device(config-bgp-ipv6u-vrf)# additional-paths select all
device(config-bgp-ipv6u-vrf)# neighbor 2001:2018:8192::126 additional-paths advertise all
```

### Configuring BGP4+ additional-paths for a specified neighbor

You can apply filters for the advertisement of additional paths for specified BGP neighbors.

1. Enter the `configure terminal` command to access global configuration mode.

   ```
 device# configure terminal
   ```

2. Enter the `router bgp` command to enable BGP routing.

   ```
 device(config)# router bgp
   ```

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.

   ```
 device(config-bgp)# local-as 65520
   ```

4. Enter the `address-family ipv6 unicast` command to enter BGP address-family IPv6 unicast configuration mode.

   ```
 device(config-bgp)# address-family ipv6 unicast
   ```

5. Enter the `neighbor additional-paths` command, specifying an IPv6 address and using the `receive` parameter, to enable additional-paths receive capability from a specified BGP neighbor.

   ```
 device(config-bgp-ipv6u)# neighbor 2001:2018:8192::125 additional-paths receive
   ```

6. Enter the `neighbor additional-paths` command, specifying an IPv6 address and using the `send` parameter, to enable additional-paths send capability to a specified BGP neighbor.

   ```
 device(config-bgp-ipv6u)# neighbor 2001:2018:8192::125 additional-paths send
   ```

7. Enter the `additional-paths select` command, using the `best` parameter and entering a value, to specify the number of best BGP paths that are eligible to be selected as additional paths under the configured IPv6 address family.

   ```
 device(config-bgp-ipv6u)# additional-paths select best 7
   ```

8. Enter the `neighbor additional-paths advertise` command, specifying an IPv6 address and using the `best` parameter. Then enter a value of seven to specify that the seven best BGP paths are eligible to be selected as additional paths.

   ```
 device(config-bgp-ipv6u)# neighbor 2001:2018:8192::125 additional-paths advertise best 7
   ```
The following example enables the capability to send and receive additional paths for BGP4+ and specifies that the seven best BGP paths are eligible to be selected as additional paths. The BGP additional-paths feature is enabled and the seven best paths can be advertised to the neighbor.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6u)# neighbor 2001:2018:8192::125 additional-paths receive
device(config-bgp-ipv6u)# neighbor 2001:2018:8192::125 additional-paths send
device(config-bgp-ipv6u)# additional-paths select best 7
device(config-bgp-ipv6u)# neighbor 2001:2018:8192::125 additional-paths advertise best 7
```

Configuring BGP additional-paths for a specified BGP4+ neighbor for a non-default VRF instance

You can enable the advertisement of additional paths for specified BGP4+ neighbors and apply filters for the advertisement of additional paths for BGP neighbors for a non-default VRF instance.

1. Enter the `configure terminal` command to access global configuration mode.
   ```
device# configure terminal
```
2. Enter the `router bgp` command to enable BGP routing.
   ```
device(config)# router bgp
```
3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.
   ```
device(config-bgp)# local-as 65520
```
4. Enter the `address-family unicast ipv6` command, using the `vrf` parameter and specifying a VRF, to enter BGP address-family IPv6 unicast VRF configuration mode.
   ```
device(config-bgp)# address-family ipv6 unicast vrf green
```
5. Enter the `neighbor additional-paths` command, specifying an IP address and using the `receive` parameter, to enable additional-paths receive capability from a specified BGP neighbor for VRF green.
   ```
device(config-bgp-ipv6u-vrf)# neighbor 2001:2018:8192::125 additional-paths receive
```
6. Enter the `neighbor additional-paths` command, specifying an IP address and using the `send` parameter, to enable additional-paths send capability to a specified BGP neighbor for VRF green.
   ```
device(config-bgp-ipv6u-vrf)# neighbor 2001:2018:8192::125 additional-paths send
```
7. Enter the `additional-paths select` command, using the `all` parameter, to specify that all BGP paths are eligible to be selected as additional paths under the IPv6 address unicast family for VRF green.
   ```
device(config-bgp-ipv6u-vrf)# additional-paths select all
```
8. Enter the `neighbor additional-paths advertise` command, specifying an IP address and using the `all` parameter, to configure BGP to advertise all BGP additional paths for VRF green.
   ```
device(config-bgp-ipv6u-vrf)# neighbor 2001:2018:8192::125 additional-paths advertise all
```
The following example enables BGP4+ additional-paths send and receive capability and specifies that all BGP paths are eligible to be selected as additional paths under the IPv6 unicast address family for VRF instance green. The additional-paths feature is enabled and all paths can be advertised to a BGP neighbor.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv6 unicast vrf green
device(config-bgp-ipv6u-vrf)# neighbor 2001:2018:8192::121 additional-paths receive
device(config-bgp-ipv6u-vrf)# neighbor 2001:2018:8192::121 additional-paths send
device(config-bgp-ipv6u-vrf)# additional-paths select all
device(config-bgp-ipv6u-vrf)# neighbor 2001:2018:8192::121 additional-paths advertise all
```

Disabling BGP additional-paths for a specified BGP4+ neighbor

By default the BGP additional-paths capability is disabled for BGP neighbors. You can disable BGP additional-paths capability for a specified BGP4+ neighbor if BGP additional-paths is enabled at the peer-group or address family level.

1. Enter the `configure terminal` command to access global configuration mode.

   device# configure terminal

2. Enter the `router bgp` command to enable BGP routing.

   device(config)# router bgp

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.

   device(config-bgp)# local-as 65520

4. Enter the `address-family ipv6 unicast` command to enter BGP address-family IPv6 unicast configuration mode.

   device(config-bgp)# address-family ipv6 unicast

5. Enter the `neighbor additional-paths disable` command, specifying an IPv6 address, to disable the sending of additional paths by BGP4+ to the specified BGP neighbor.

   device(config-bgp-ipv6u)# neighbor 2001:2018:8192::125 additional-paths disable

The following example disables the sending of additional paths by BGP4+ to the specified neighbor in address-family IPv6 unicast configuration mode.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv6 unicast
device(config-bgp-ipv6u)# neighbor 2001:2018:8192::125 additional-paths disable
```

Configuring BGP4+ best external

You can enable BGP4+ to calculate the best external path and to advertise this path to its neighbors.

1. Enter the `configure terminal` command to access global configuration mode.

   device# configure terminal

2. Enter the `router bgp` command to enable BGP routing.

   device(config)# router bgp
3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.

   device(config-bgp)# local-as 65520

4. Enter the `address-family ipv6 multicast` command to enter BGP address-family IPv6 multicast configuration mode.

   device(config-bgp)# address-family ipv6 multicast

5. Enter the `advertise-best-external` command to configure BGP4+ to calculate the best external path and to advertise this path to its neighbors.

   device(config-bgp-ipv6m)# advertise-best-external

The following example configures BGP4+ to calculate the best external path and to advertise this path to its neighbors under the IPv6 multicast address family.

   device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family ipv6 multicast
device(config-bgp-ipv6m)# advertise-best-external

### Clearing BGP4+ information

This section contains information about clearing the following for BGP4+:

- Route flap dampening.
- Route flap dampening statistics.
- Neighbor information.
- BGP4+ routes in the IPv6 route table.
- Neighbor traffic counters.

**NOTE**

The `clear` commands implemented for BGP4+ correspond to the `clear` commands implemented for IPv4 BGP. For example, you can specify the `clear ipv6 bgp flap-statistics` command for IPv6 and the `clear ip bgp flap-statistics` for IPv4.

### Removing route flap dampening

You can un-suppress routes by removing route flap dampening from the routes. The device allows you to un-suppress all routes at once or un-suppress individual routes.

To un-suppress all the suppressed routes, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

   device# clear ipv6 bgp dampening

**Syntax:** `clear ipv6 bgp dampening [ipv6-prefix/prefix-length]`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

To un-suppress a specific route, enter a command such as the following:

   device# clear ipv6 bgp dampening 2001:db8::/32
This command un-suppresses only the routes for network 2001:db8::/32.

Clearing route flap dampening statistics

The device allows you to clear all route flap dampening statistics or statistics for a specified IPv6 prefix or a regular expression.

NOTE
Clearing the dampening statistics for a route does not change the dampening status of the route.

To clear all the route dampening statistics, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

    device# clear ipv6 bgp flap-statistics

Syntax: clear ipv6 bgp flap-statistics [ ipv6-prefix/prefix-length | neighbor ipv6-address | regular-expression regular-expression ]

The ipv6-prefix and prefix-length parameters clear route flap dampening statistics for a specified IPv6 prefix. You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

The neighbor ipv6-address parameter clears route flap dampening statistics only for routes learned from the neighbor with the specified IPv6 address.

The regular-expression regular-expression parameter is a regular expression.

Clearing BGP4+ local route information

You can clear locally imported or routes redistributed into BGP4+.

To clear all local route information, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

    device# clear ipv6 bgp local routes

Syntax: clear ipv6 bgp local routes

Clearing BGP4+ neighbor information

You can perform the following tasks related to BGP4+ neighbor information:

- Clear diagnostic buffers.
- Reset a session to send and receive Outbound Route Filters (ORFs).
- Close a session, or reset a session and resend or receive an update.
- Clear traffic counters.
- Clear route flap dampening statistics.

Clearing BGP4+ neighbor diagnostic buffers

You can clear the following BGP4+ neighbor diagnostic information in buffers:

- The first 400 bytes of the last packet that contained an error.
- The last NOTIFICATION message either sent or received by the neighbor.

To display these buffers, use the last-packet-with-error keyword with the show ipv6 bgp neighbors command.

You can clear the buffers for all neighbors, for an individual neighbor, or for all the neighbors within a specific peer group or AS.
To clear these buffers for neighbor 2000:db8::1, enter the following commands at the Privileged EXEC level or any of the Config levels of the CLI.

```
device# clear ipv6 bgp neighbor 2001:db8:37::1 last-packet-with-error
device# clear ipv6 bgp neighbor 2001:db8:37::1 notification-errors
```

**Syntax:** `clear ipv6 bgp neighbor all | ipv6-address | peer-group-name | as-number last-packet-with-error | notification-errors`

The `all`, `ipv6-address`, `peer-group-name`, and `as-number` parameters specify the neighbor. The `ipv6-address` parameter specifies a neighbor by its IPv6 address. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373. The `peer-group-name` specifies all neighbors in a specific peer group. The `as-number` parameter specifies all neighbors within the specified AS. The `all` keyword specifies all neighbors.

The `last-packet-with-error` keyword clears the buffer containing the first 400 bytes of the last packet that contained errors.

The `notification-errors` keyword clears the notification error code for the last NOTIFICATION message sent or received.

**Resetting a BGP4+ neighbor session to send and receive ORFs**

You can perform a hard or soft reset of a BGP4+ neighbor session to send or receive ORFs.

To perform a hard reset of a neighbor session and send ORFs to the neighbor, enter a command such as the following.

```
device# clear ipv6 bgp neighbor 2001:db8:38::1
```

This command resets the BGP4+ session with neighbor 2001:db8:38::1 and sends the ORFs to the neighbor when the neighbor comes up again. If the neighbor sends ORFs to the device, the accepts them if the send capability is enabled.

To perform a soft reset of a neighbor session and send ORFs to the neighbor, enter a command such as the following.

```
device(config)# clear ipv6 bgp neighbor peer_group1 soft in prefix-list
```

**Syntax:** `clear ipv6 bgp neighbor ipv6-address | peer-group-name [ soft in prefix-filter ]`

The `ipv6-address` parameter specifies a neighbor by its IPv6 address. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `peer-group-name` specifies all neighbors in a specific peer group.

If you use the `soft in prefix-filter` keyword, the device sends an updated IPv6 prefix list to the neighbor as part of its route refresh message to the neighbor.

**Closing or resetting a BGP4+ neighbor session**

You can close a neighbor session or resend route updates to a neighbor. You can specify all neighbors, a single neighbor, or all neighbors within a specific peer group or autonomous system.

If you close a neighbor session, the device and the neighbor clear all the routes they learned from each other. When the and neighbor establish a new BGP4+ session, they exchange route tables again. Use this method if you want the device to relearn routes from the neighbor and resend its own route table to the neighbor.

If you use the `soft-outbound` keyword, the device compiles a list of all the routes it would normally send to the neighbor at the beginning of a session. However, before sending the updates, the also applies the filters and route maps you have configured to the list of routes. If the filters or route maps result in changes to the list of routes, the sends updates to advertise, change, or even withdraw routes on the neighbor as needed. This ensures that the neighbor receives only the routes you want it to contain. Even if the neighbor already contains a route learned from the that you later decided to filter out, using the `soft-outbound` option removes that route from the neighbor. If no change is detected from the previously sent routes, an update is not sent.
For example, to close all neighbor sessions and thus flush all the routes exchanged by the device and all neighbors, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

device# clear ipv6 bgp neighbor all

**Syntax:** clear ipv6 bgp neighbor all | ipv6-address | peer-group-name | as-number [ soft-outbound | soft [ in | out ] ]

The `all`, `ipv6-address`, `peer-group-name`, and `as-number` specify the neighbor. The `ipv6-address` parameter specifies a neighbor by its IPv6 address. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373. The `peer-group-name` specifies all neighbors in a specific peer group. The `as-number` parameter specifies all neighbors within the specified AS. The `all` keyword specifies all neighbors.

Use the `soft-outbound` keyword to perform a soft reset of a neighbor session and resend only route update changes to a neighbor.

Use the `soft in` parameter to perform a soft reset of a neighbor session and requests a route update from a neighbor.

Use the `soft out` parameter to perform a soft reset of a neighbor session and resend all routes to a neighbor.

**Clearing BGP4+ neighbor traffic counters**

You can clear the BGP4+ message counter (reset them to 0) for all neighbors, a single neighbor, or all neighbors within a specific peer group or autonomous system.

For example, to clear the BGP4+ message counter for all neighbors within an autonomous system 1001, enter a command such as the following at the Privileged EXEC level or any of the Config levels of the CLI.

device# clear ipv6 bgp neighbor 1001 traffic

**Syntax:** clear ipv6 bgp neighbor all | ipv6-address | peer-group-name | as-number traffic

The `all`, `ipv6-address`, `peer-group-name`, and `as-number` specify the neighbor. The `ipv6-address` parameter specifies a neighbor by its IPv6 address. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373. The `peer-group-name` specifies all neighbors in a specific peer group. The `as-number` parameter specifies all neighbors within the specified autonomous system. The `all` keyword specifies all neighbors.

Specify the `traffic` keyword to clear the BGP4+ message counter.

**Clearing BGP4+ neighbor route flap dampening statistics**

The device allows you to clear all route flap dampening statistics for a specified BGP4+ neighbor.

**NOTE**

Clearing the dampening statistics for a neighbor does not change the dampening status of a route.

To clear all of the route flap dampening statistics for a neighbor, enter a command such as the following at the Privileged EXEC level or any of the Config levels of the CLI.

device# clear ipv6 bgp neighbor 2001:db8:47::1 flap-statistics

**Syntax:** clear ipv6 bgp neighbor ipv6-address flap-statistics

The `ipv6-address` parameter specifies a neighbor by its IPv6 address. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

Specify the `flap-statistics` keyword to clear route flap dampening statistics for the specified neighbor.
Clearing and resetting BGP4+ routes in the IPv6 route table

You can clear all BGP4+ routes or only those routes associated with a particular IPv6 prefix from the IPv6 route table and reset the routes. When cleared, the BGP4+ routes are removed from the IPv6 main route table and then restored again.

For example, to clear all BGP4+ routes and reset them, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

```
device# clear ipv6 bgp routes
```

**Syntax:** clear ip bgp routes [ ipv6-prefix/prefix-length ]

The `ipv6-prefix` and `prefix-length` parameters clear routes associated with a particular IPv6 prefix. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

Clearing traffic counters for all BGP4+ neighbors

To clear the message counters (reset them to 0) for all BGP4+ neighbors, enter the following command.

```
device# clear ipv6 bgp traffic
```

**Syntax:** clear ipv6 bgp traffic

Displaying BGP4+ information

You can display the following BGP4+ information:

- BGP4+ route table.
- BGP4+ route information.
- BGP4+ route-attribute entries.
- BGP4+ configuration information.
- Dampened BGP4+ paths.
- Filtered-out BGP4+ routes.
- BGP4+ route flap dampening statistics.
- BGP4+ neighbor information.
- BGP4+ peer group configuration information.
- BGP4+ summary information.

**NOTE**

The `show` commands implemented for BGP4+ correspond to the `show` commands implemented for IPv4 BGP. For example, you can specify the `show ipv6 bgp` command for IPv6 and the `show ip bgp` command for IPv4. Also, the displays for the IPv4 and IPv6 versions of the `show` commands are similar except where relevant, IPv6 neighbor addresses replace IPv4 neighbor addresses, IPv6 prefixes replace IPv4 prefixes, and IPv6 next-hop addresses replace IPv4 next-hop addresses.

Displaying the BGP4+ route table

BGP4+ uses filters you define, as well as an algorithm to determine the preferred route to a destination. BGP4+ sends only the preferred route to the device's IPv6 table. However, if you want to view all the routes BGP4+ knows about, you can display the BGP4+ table.
To display the BGP4+ route table, enter the following command at any level of the CLI.

device# show ipv6 bgp routes
Total number of BGP Routes: 4
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
S:SUPPRESSED F:FILTERED s:STALE

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>MED</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2001:db8:1::/64 2001:db8:1111::2</td>
<td>1 100 32768</td>
<td>BL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS_PATH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2001:db8:2::/64 2001:db8:30.30.30.1</td>
<td>1 100 0</td>
<td>BI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS_PATH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2001:db8:1111::/64 ::</td>
<td>0 100 32768</td>
<td>BL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS_PATH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 2001:db8:2222::/64 2001:db8:30.30.30.1</td>
<td>0 100 0</td>
<td>BI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS_PATH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 64 show ipv6 bgp routes output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP4+ Routes</td>
<td>The number of routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route's status. The status code appears in the Status column of the display. The status codes are described in the command's output.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The route's prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>For normal IPv6 routes, next hop is the next hop IPv6 router to reach the destination. For the 6PE routes, next hop is the IPv4-mapped IPv6 address of the peer 6PE router.</td>
</tr>
<tr>
<td>Metric</td>
<td>The value of the route's MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for the advertised route relative to other routes in the local AS. When the BGP4+ algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 - 4294967295.</td>
</tr>
<tr>
<td>Weight</td>
<td>The value that this device associates with routes from a specific neighbor. For example, if the receives routes to the same destination from two BGP4+ neighbors, the prefers the route from the neighbor with the larger weight.</td>
</tr>
<tr>
<td>Status</td>
<td>The route's status, which can be one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• A - AGGREGATE. The route is an aggregate route for multiple networks.</td>
</tr>
<tr>
<td></td>
<td>• B - BEST. BGP4+ has determined that this is the optimal route to the destination.</td>
</tr>
<tr>
<td></td>
<td>• b - NOT-INSTALLED-BEST - BGP4+ has determined that this is the optimal route to the destination but did not install it in the IPv6 route table because the device received better routes from other sources (such as OSPFv3, RIPng, or static IPv6 routes).</td>
</tr>
<tr>
<td></td>
<td>• C - CONFED_EBGP. The route was learned from a neighbor in the same confederation and AS, but in a different sub-AS within the confederation.</td>
</tr>
<tr>
<td></td>
<td>• D - DAMPED. This route has been dampened (by the route dampening feature), and is currently unusable.</td>
</tr>
<tr>
<td></td>
<td>• E - EBGP. The route was learned through a in another AS.</td>
</tr>
<tr>
<td></td>
<td>• H - HISTORY. Route dampening is configured for this route, and the route has a history of flapping and is unreachable now.</td>
</tr>
</tbody>
</table>
### TABLE 64 show ipv6 bgp routes output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field(s)</td>
<td>Description</td>
</tr>
<tr>
<td>• I</td>
<td>IBGP. The route was learned through a in the same AS.</td>
</tr>
<tr>
<td>• L</td>
<td>LOCAL. The route originated on this.</td>
</tr>
<tr>
<td>• M</td>
<td>MULTIPATH. BGP4+ load sharing is enabled and this route was selected as one of the best ones to the destination. The best route among the multiple paths also is marked with &quot;B&quot;.</td>
</tr>
<tr>
<td>NOTE</td>
<td>If the &quot;m&quot; is shown in lowercase, the software was not able to install the route in the IPv6 route table.</td>
</tr>
<tr>
<td>• S</td>
<td>SUPPRESSED. This route was suppressed during aggregation and thus is not advertised to neighbors.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>show ipv6 bgp routes [ipv6-prefix/prefix-length</td>
</tr>
</tbody>
</table>

You can use the following options with the `show ipv6 bgp routes` command to determine the content of the display:

The `ipv6-prefix` and `prefix-length` parameters display routes for a specific network. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `table-entry-number` parameter specifies the table entry with which you want the display to start. For example, if you specify 100, the display shows entry 100 and all entries subsequent to entry 100.

The `age seconds` parameter displays only the routes that have been received or updated more recently than the number of seconds you specify.

The `as-path-access-list name` parameter filters the display using the specified AS-path ACL.

The `as-path-filter number` parameter filters the display using the specified AS-path filter.

The `best` keyword displays the routes received from neighbors that the device selected as the best routes to their destinations.

The `cidr-only` keyword lists only the routes whose network masks do not match their class network length.

The `community number` parameter lets you display routes for a specific community. You can specify `local-as`, `no-export`, `no-advertise`, `internet`, or a private community number. You can specify the community number as either two five-digit integer values of up to 1-65535, separated by a colon (for example, 12345:6789) or a single long integer value.

The `community-access-list name` parameter filters the display using the specified community ACL.

The `community-filter number` parameter lets you display routes that match a specific community filter.

The `detail option` parameter lets you display more details about the routes. You can refine your request by also specifying one of the other parameters after the `detail` keyword.

The `local` keyword displays routes that are local to the device.

The `neighbor ipv6-address` parameter displays routes learned from a specified BGP4+ neighbor.

The `nexthop ipv6-address` parameter displays the routes for a specified next-hop IPv6 address. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
The **no-best** keyword displays the routes for which none of the routes to a given prefix were selected as the best route. The IPv6 route table does not contain a BGP4+ route for any of the routes listed using this option.

The **prefix-list** name parameter filters the display using the specified IPv6 prefix list.

The **regular-expression** regular-expression parameter filters the display based on a regular expression.

The **route-map** name parameter filters the display using the specified route map. The software displays only the routes that match the match statements in the route map. The software disregards the route map’s set statements.

The **summary** keyword displays summary information for the routes.

The **unreachable** keyword displays the routes that are unreachable because the device does not have a valid RIPng, OSPFv3, or static IPv6 route to the next hop.

To display details about BGP4+ routes, enter the following command at any level of the CLI.

```
device# show ipv6 bgp route detail
```

| Total number of BGP Routes: 4 |

---

**TABLE 65** show ipv6 bgp route detail output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP4+ Routes advertised to specified neighbor (appears only in display for all routes)</td>
<td>For information about this field, refer to Displaying BGP4+ information on page 455.</td>
</tr>
<tr>
<td>Status codes</td>
<td>For information about this field, refer to Displaying BGP4+ information on page 455.</td>
</tr>
<tr>
<td>Prefix</td>
<td>For information about this field, refer to Displaying BGP4+ information on page 455.</td>
</tr>
<tr>
<td>Status</td>
<td>For information about this field, refer to Displaying BGP4+ information on page 455.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the advertised route, in seconds.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>For information about this field, refer to Displaying BGP4+ information on page 455.</td>
</tr>
<tr>
<td>Learned from Peer</td>
<td>The IPv6 address of the neighbor from which this route is learned. “Local Router” indicates that the device itself learned the route.</td>
</tr>
<tr>
<td>In-Label</td>
<td>The MPLS inner label in the 6PE packet received from the MPLS network.</td>
</tr>
</tbody>
</table>
### TABLE 65 show ipv6 bgp route detail output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-Label</td>
<td>The MPLS inner label in the 6PE packet sent to the MPLS network.</td>
</tr>
<tr>
<td>LOCAL_PREF</td>
<td>For information about this field, refer to Displaying BGP4+ route information on page 455.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the advertised route's MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>Origin</td>
<td>The source of the route information. The origin can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• A - AGGREGATE. The route is an aggregate route for multiple networks.</td>
</tr>
<tr>
<td></td>
<td>• B - BEST. BGP4+ has determined that this is the optimal route to the destination.</td>
</tr>
<tr>
<td></td>
<td>• b - NOT-INSTALLED-BEST - BGP4+ has determined that this is the optimal route to the destination but did not install it in the IPv6 route table because the device received better routes from other sources (such as OSPFv3, RIPng, or static IPv6 routes).</td>
</tr>
<tr>
<td></td>
<td>• C - CONFED_EBGP. The route was learned from a neighbor in the same confederation and AS, but in a different sub-AS within the confederation.</td>
</tr>
<tr>
<td></td>
<td>• D - DAMPED. This route has been dampened (by the route dampening feature), and is currently unusable.</td>
</tr>
<tr>
<td></td>
<td>• EGP - The routes with this set of attributes came to BGP4+ through EGP.</td>
</tr>
<tr>
<td></td>
<td>• H - HISTORY. Route dampening is configured for this route, and the route has a history of flapping and is unreachable now.</td>
</tr>
<tr>
<td></td>
<td>• IGP - The routes with this set of attributes came to BGP4+ through IGP.</td>
</tr>
<tr>
<td></td>
<td>• L - LOCAL. The route originated on this device.</td>
</tr>
<tr>
<td></td>
<td>• M - MULTIPATH. BGP4+ load sharing is enabled and this route was selected as one of the best ones to the destination. The best route among the multiple paths also is marked with “B”.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong> If the “m” is shown in lowercase, the software was not able to install the route in the IPv6 route table.</td>
</tr>
<tr>
<td></td>
<td>• S - SUPPRESSED. This route was suppressed during aggregation and thus is not advertised to neighbors.</td>
</tr>
<tr>
<td>Weight</td>
<td>For information about this field, refer to Displaying BGP4+ route information on page 455.</td>
</tr>
<tr>
<td>AS-PATH</td>
<td>For information about this field, refer to Displaying BGP4+ route information on page 455.</td>
</tr>
<tr>
<td>Adj_RIB_out_count</td>
<td>The number of neighbors to which the route has been or will be advertised. This is the number of times the route has been selected as the best route and placed in the Adj-RIB-Out (outbound queue) for a BGP4+ neighbor.</td>
</tr>
<tr>
<td>Admin Distance</td>
<td>The administrative distance of the route.</td>
</tr>
</tbody>
</table>

**Syntax:** `show ipv6 bgp routes detail [ ipv6-prefix(prefix-length) | table-entry-number | age seconds | as-path-access-list name | as-path-filter number | best | cidr-only | [ community number | no-export | no-advertise | internet | local-as ] | community-access-list name | community-filter number | local | neighbor ipv6-address | nexthop ipv6-address | no-best | prefix-list name | regular-expression regular-expression | route-map name | summary | unreachable ]`
You can use the following options with the `show ipv6 bgp routes detail` command to determine the content of the display.

The `ipv6-prefix` and `prefix-length` options display details about routes for a specific network. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `table-entry-number` parameter specifies the table entry with which you want the display to start. For example, if you specify 100, the display shows entry 100 and all entries subsequent to entry 100.

The `ageseconds` parameter displays only the routes that have been received or updated more recently than the number of seconds you specify.

The `as-path-access-list name` parameter filters the display using the specified AS-path ACL.

The `as-path-filter number` parameter filters the display using the specified AS-path filter.

The `best` keyword displays the routes received from neighbors that the device selected as the best routes to their destinations.

The `cidr-only` keyword lists only the routes whose network masks do not match their class network length.

The `community number` parameter lets you display routes for a specific community. You can specify `local-as`, `no-export`, `no-advertise`, `internet`, or a private community number. You can specify the community number as either two five-digit integer values of up to 1-65535, separated by a colon (for example, 12345:6789) or a single long integer value.

The `community-access-list name` parameter filters the display using the specified community ACL.

The `community-filter number` parameter lets you display routes that match a specific community filter.

The `detail` keyword lets you display more details about the routes. You can refine your request by also specifying one of the other parameters after the `detail` keyword.

The `local` keyword displays routes that are local to the device.

The `neighbor ipv6-address` parameter displays routes learned from a specified BGP4+ neighbor.

The `nexthop ipv6-address` option displays the routes for a specified next-hop IPv6 address. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `no-best` keyword displays the routes for which none of the routes to a given prefix were selected as the best route. The IPv6 route table does not contain a BGP4+ route for any of the routes listed using this option.

The `prefix-list name` parameter filters the display using the specified IPv6 prefix list.

The `regular-expression regular-expression` parameter filters the display based on a regular expression.

The `route-map name` parameter filters the display using the specified route map. The software displays only the routes that match the match statements in the route map. The software disregards the route map’s set statements.

The `summary` keyword displays summary information for the routes.

The `unreachable` keyword displays the routes that are unreachable because the device does not have a valid RIPng, OSPFv3 or static IPv6 route to the next hop.

**Displaying BGP4+ route information**

You can display all BGP4+ routes known by a device, only those routes that match a specified prefix, or routes that match a specified or longer prefix.

To display all BGP4+ routes known by the device, enter the following command at any level of the CLI.

```
device# show ipv6 bgp
Total number of BGP Routes: 2
```
**Syntax:** `show ipv6 bgp ipv6-prefix/prefix-length [ longer-prefixes ]`

The `ipv6-prefix` and `prefix-length` parameters allow you to display routes that match a specified BGP prefix only. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `longer-prefixes` keyword allows you to display routes that match a specified or longer BGP prefix. For example, if you specify `2001:db8::/32 longer-prefixes`, then all routes with the prefix `2001:db8::/32` or that have a longer prefix (such as `2001:db8:e016::/48`) are displayed.

To display only those routes that match prefix `2001:db8::/32`, enter the following command at any level of the CLI.

```
device# show ipv6 bgp 2001:db8::/32
```

```
Number of BGP Routes matching display condition : 1
Status codes: s suppressed, d damped, h history, * valid, > best, i internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 2001:db8::/32 :: 1 100 32768 ?
Route is advertised to 1 peers:
2001:db8::110(65002)
```

For example, to display routes that match prefix `2001:db8::/32` or longer, enter the following command at any level of the CLI.

```
device# show ipv6 bgp 2001:db8::/32 longer-prefixes
```

```
Number of BGP Routes matching display condition : 3
Status codes: s suppressed, d damped, h history, * valid, > best, i internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop MED LocPrf Weight Path
*> 2001:db8::/32 :: 1 100 32768 ?
*> 2001:db8:1234::/48 :: 1 100 32768 ?
*> 2001:db8:e0ff::/48 :: 1 100 32768 ?
Route is advertised to 1 peers:
2001:db8::110(65002)
```

**TABLE 66 show ipv6 bgp output descriptions**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP Routes (appears in display of all BGP routes only)</td>
<td>The number of routes known by the device.</td>
</tr>
<tr>
<td>Number of BGP Routes matching display condition (appears in display that matches specified and longer prefixes)</td>
<td>The number of routes that matched the display parameters you entered. This is the number of routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route's status. The status code appears in the left column of the display, to the left of each route. The status codes are described in the command’s output.</td>
</tr>
<tr>
<td>Origin codes</td>
<td>A character the display uses to indicate the route’s origin. The origin code appears to the right of the AS path (Path field). The origin codes are described in the command’s output.</td>
</tr>
<tr>
<td>Network</td>
<td>The network prefix and prefix length.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next-hop router for reaching the network from the device.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the route’s MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for this route relative to other routes in the local AS. When the BGP4+ algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 - 4294967295.</td>
</tr>
</tbody>
</table>
TABLE 66 show ipv6 bgp output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>The value that this device associates with routes from a specific neighbor. For example, if the receives routes to the same destination from two BGP4+ neighbors, the prefers the route from the neighbor with the larger weight.</td>
</tr>
<tr>
<td>Path</td>
<td>The route's AS path.</td>
</tr>
</tbody>
</table>

Displaying BGP4+ route-attribute entries

The route-attribute entries table lists sets of BGP4+ attributes stored in the device’s memory. Each set of attributes is unique and can be associated with one or more routes. In fact, the typically has fewer route attribute entries than routes.

To display the IPv6 route-attribute entries table, enter the following command.

```
device# show ipv6 bgp attribute-entries
```

Total number of BGP Attribute Entries: 378

```
1 Next Hop ::: MED :1 Origin:INCOMP
Originator:0.0.0.0 Cluster List:None
Aggregator:AS Number :0 Router-ID:0.0.0.0 Atomic:None
Local Pref:100 Communities:Internet
AS Path :(65002) 65001 4355 2548 3561 5400 6669 5548
Address: 0x27a4cdb0 Hash:877 (0x03000000) Reference Counts: 2:0:2
```

... 

NOTE

Portions of this display are truncated for brevity. The purpose of this display is to show all possible fields that might display rather than to show complete output.

Syntax: show ipv6 bgp attribute-entries

TABLE 67 show ipv6 bgp attribute-entries output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP Attribute Entries</td>
<td>The number of entries contained in the device's BGP4+ route-attribute entries table.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The IPv6 address of the next hop router for routes that have this set of attributes.</td>
</tr>
<tr>
<td>MED</td>
<td>The cost of the routes that have this set of attributes.</td>
</tr>
</tbody>
</table>
| Origin | The source of the route information. The origin can be one of the following:
  - EGP - The routes with this set of attributes came to BGP4+ through EGP.
  - IGP - The routes with this set of attributes came to BGP4+ through IGP.
  - INCOMPLETE - The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPFv3 or RIPng.
When BGP4+ compares multiple routes to a destination to select the best route, IGP is preferred over EGP, and both are preferred over INCOMPLETE. |
| Originator | The originator of the route in a route-reflector environment. |
| Cluster List | The route-reflector clusters through which this set of attributes has passed. |
TABLE 67 show ipv6 bgp attribute-entries output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregator</td>
<td>Aggregator information:</td>
</tr>
<tr>
<td></td>
<td>• AS Number shows the AS in which the network information in the attribute set was aggregated. This value applies only to aggregated routes and is otherwise 0.</td>
</tr>
<tr>
<td></td>
<td>• Router-ID shows the router that originated this aggregator.</td>
</tr>
<tr>
<td>Atomic</td>
<td>Whether the network information in this set of attributes has been aggregated and this aggregation has resulted in information loss:</td>
</tr>
<tr>
<td></td>
<td>• TRUE - Indicates information loss has occurred</td>
</tr>
<tr>
<td></td>
<td>• FALSE - Indicates no information loss has occurred</td>
</tr>
<tr>
<td></td>
<td>• None - Indicates this attribute is not present.</td>
</tr>
<tr>
<td></td>
<td>NOTE Information loss under these circumstances is a normal part of BGP4+ and does not indicate an error.</td>
</tr>
<tr>
<td>Local Pref</td>
<td>The degree of preference for routes that use this set of attributes relative to other routes in the local AS.</td>
</tr>
<tr>
<td>Communities</td>
<td>The communities that routes with this set of attributes are in.</td>
</tr>
<tr>
<td>AS Path</td>
<td>The ASs through which routes with this set of attributes have passed. The local AS is shown in parentheses.</td>
</tr>
<tr>
<td>Address</td>
<td>For debugging purposes only.</td>
</tr>
<tr>
<td>Hash</td>
<td>For debugging purposes only.</td>
</tr>
<tr>
<td>Reference Counts</td>
<td>For debugging purposes only.</td>
</tr>
</tbody>
</table>

Displaying the BGP4+ running configuration

To view the active BGP4+ configuration information contained in the running configuration without displaying the entire running configuration, enter the following command at any level of the CLI.

```
device# show ipv6 bgp config
Current BGP configuration:
router bgp
 local-as 1000
 neighbor peer_group1 peer-group
 neighbor 2001:db8:e0ff:783a::3 remote-as 1001
 neighbor 2001:db8:edd3:8389::1 remote-as 1002
 neighbor 2001:db8:80::23 peer-group peer_group1
 neighbor 2001:db8:80::23 remote-as 1003
 address-family ipv6 unicast
 no neighbor 2001:db8:e0ff:783a::3 activate
 no neighbor 2001:db8:edd3:8389::1 activate
 no neighbor 2001:db8:80::23 activate
 exit-address-family
 address-family vpnv4
 exit-address-family
 address-family 12vpn
 network 2001:db8::/32
 neighbor peer_group1 activate
 neighbor 2001:db8:edd3:8389::1 activate
 exit-address-family
 exit-address-family
end
```

Syntax: show ipv6 bgp config
Displaying dampened BGP4+ paths

To display BGP4+ paths that have been dampened (suppressed) by route flap dampening, enter the following command at any level of the CLI.

```
device# show ipv6 bgp dampened-paths
```

Status Code >:best d:damped h:history *:valid

<table>
<thead>
<tr>
<th>Network</th>
<th>From</th>
<th>Flaps</th>
<th>Since</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*d 2001:db8:8::/45</td>
<td>2001:db8:1::1</td>
<td>1</td>
<td>0:1:14</td>
<td>0:2:20</td>
<td>100 1002 1000</td>
</tr>
<tr>
<td>*d 2001:db8:1::/48</td>
<td>2001:db8:1::1</td>
<td>1</td>
<td>0:1:14</td>
<td>0:2:20</td>
<td>100 1002 1000</td>
</tr>
<tr>
<td>*d 2001:db8:4::/46</td>
<td>2001:db8:3::1</td>
<td>1</td>
<td>0:1:14</td>
<td>0:2:20</td>
<td>100 1002 1000</td>
</tr>
<tr>
<td>*d 2001:db8:2::/47</td>
<td>2001:db8:3::1</td>
<td>1</td>
<td>0:1:14</td>
<td>0:2:20</td>
<td>100 1002 1000</td>
</tr>
<tr>
<td>*d 2001:db8:0:8000::/49</td>
<td>2001:db8:1::1</td>
<td>1</td>
<td>0:1:14</td>
<td>0:2:20</td>
<td>100 1002 1000</td>
</tr>
<tr>
<td>*d 2001:db8:17::/64</td>
<td>2001:db8:1::1</td>
<td>1</td>
<td>0:1:18</td>
<td>0:2:20</td>
<td>100 1002 1000</td>
</tr>
</tbody>
</table>

Syntax: show ipv6 bgp dampened-paths

**TABLE 68 show ipv6 bgp dampened-paths output descriptions**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the path’s status. The status code appears in the left column of the display, to the left of each route. The status codes are described in the command’s output. The status column displays a “d” for each dampened route.</td>
</tr>
<tr>
<td>Network</td>
<td>The destination network of the route.</td>
</tr>
<tr>
<td>From</td>
<td>The IPv6 address of the advertising peer.</td>
</tr>
<tr>
<td>Flaps</td>
<td>The number of times the path has flapped.</td>
</tr>
<tr>
<td>Since</td>
<td>The amount of time (in hh:mm:ss) since the first flap of this route.</td>
</tr>
<tr>
<td>Reuse</td>
<td>The amount of time (in hh:mm:ss) after which the path is available again.</td>
</tr>
<tr>
<td>Path</td>
<td>The AS path of the route.</td>
</tr>
</tbody>
</table>

Displaying filtered-out BGP4+ routes

When you enable the soft reconfiguration feature, the device saves all updates received from the specified neighbor or peer group. The saved updates include those that contain routes that are filtered out by the BGP4+ route policies.

You can display a summary or more detailed information about routes that have been filtered out by BGP4+ route policies.

To display a summary of the routes that have been filtered out by BGP4+ route policies, enter the following command at any level of the CLI.

```
device# show ipv6 bgp filtered-routes
```

Searching for matching routes, use ^C to quit...


<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>MED</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2001:db8:3000::/48 2001:db8:1::10</td>
<td>100</td>
<td>0</td>
<td>EF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2001:db8:4000::/48 2001:db8:1::10</td>
<td>100</td>
<td>0</td>
<td>EF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2001:db8:5000::/48 2001:db8:1::10</td>
<td>100</td>
<td>0</td>
<td>EF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The routes displayed by the command are the routes that the device’s BGP policies filtered out. The did not place the routes in the BGP4+ route table, but did keep the updates. If a policy change causes these routes to be permitted, the user does not need to request the route information from the neighbor, but instead uses the information in the updates.

Syntax: show ipv6 bgp filtered-routes [ ipv6-prefix/prefix-length | longer-prefixes ] | [ as-path-access-list name ] | [ prefix-list name ]
The `ipv6-prefix` and `prefix-length` parameters display the specified IPv6 prefix of the destination network only. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `longer-prefixes` keyword allows you to display routes that match a specified or longer IPv6 prefix. For example, if you specify `2001:db8::/32 longer-prefixes`, then all routes with the prefix `2001:db8::/32` or that have a longer prefix (such as `2001:db8:e016::/48`) are displayed.

The `as-path-access-list name` parameter specifies an AS-path ACL. Specify an ACL name. Only the routes permitted by the AS-path ACL are displayed.

The `prefix-list name` parameter specifies an IPv6 prefix list. Only the routes permitted by the prefix list are displayed.

### TABLE 69 show ipv6 bgp filtered-routes output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP4+ Routes matching display condition</td>
<td>The number of routes that matched the display parameters you entered. This is the number of routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route’s status. The status code appears in the left column of the display, to the left of each route. The status codes are described in the command’s output. The status column displays an “IF” for each filtered route.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The network address and prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next-hop router for reaching the network from the device.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the route’s MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for this route relative to other routes in the local AS. When the BGP4+ algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 - 4294967295.</td>
</tr>
<tr>
<td>Weight</td>
<td>The value that this device associates with routes from a specific neighbor. For example, if the receives routes to the same destination from two BGP4+ neighbors, the prefers the route from the neighbor with the larger weight.</td>
</tr>
<tr>
<td>Status</td>
<td>The route’s status, which can be one or more of the following:</td>
</tr>
<tr>
<td>• A - AGGREGATE - The route is an aggregate route for multiple networks.</td>
<td></td>
</tr>
<tr>
<td>• B - BEST - BGP4+ has determined that this is the optimal route to the destination.</td>
<td></td>
</tr>
<tr>
<td>• b - NOT-INSTALLED-BEST - BGP4+ has determined that this is the optimal route to the destination but did not install it in the IPv6 route table because the device received better routes from other sources (such as OSPFv3, RIPng, or static IPv6 routes).</td>
<td></td>
</tr>
<tr>
<td>• C - CONFED_EBGP - The route was learned from a neighbor in the same confederation and AS, but in a different sub-AS within the confederation.</td>
<td></td>
</tr>
<tr>
<td>• D - DAMPED - This route has been dampened (by the route dampening feature), and is currently unusable.</td>
<td></td>
</tr>
<tr>
<td>• E - EBGP - The route was learned through a in another AS.</td>
<td></td>
</tr>
<tr>
<td>• H - HISTORY - Route dampening is configured for this route, and the route has a history of flapping and is unreachable now.</td>
<td></td>
</tr>
<tr>
<td>• I - IBGP - The route was learned through a in the same AS.</td>
<td></td>
</tr>
<tr>
<td>• L - LOCAL - The route originated on this device.</td>
<td></td>
</tr>
<tr>
<td>• M - MULTIPATH - BGP4+ load sharing is enabled and this route was selected as one of the best ones to the destination.</td>
<td></td>
</tr>
</tbody>
</table>
### TABLE 69 show ipv6 bgp filtered-routes output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The best route among the multiple paths also is marked with “B”.</td>
<td></td>
</tr>
<tr>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td>If the “m” is shown in lowercase, the software was not able to install the route in the IPv6 route table.</td>
<td></td>
</tr>
<tr>
<td>• S - SUPPRESSED - This route was suppressed during aggregation and thus is not advertised to neighbors.</td>
<td></td>
</tr>
<tr>
<td>• F - FILTERED - This route was filtered out by BGP4+ route policies on the device, but the device saved updates containing the filtered routes.</td>
<td></td>
</tr>
</tbody>
</table>

To display detailed information about the routes that have been filtered out by BGP4+ route policies, enter the following command at any level of the CLI.

```plaintext
device# show ipv6 bgp filtered-routes detail
```


1  Prefix: 2001:db8:1::/64, Status: EF, Age: 0h0m10s
   NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
   LOCAL_PREF: 100, MED: 0, ORIGIN: incomplete, Weight: 0
   AS_PATH: 100

2  Prefix: 2001:db8:18::/64, Status: EF, Age: 0h0m10s
   NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
   LOCAL_PREF: 100, MED: 0, ORIGIN: incomplete, Weight: 0
   AS_PATH: 100

3  Prefix: 2001:db8:1::/64, Status: EF, Age: 0h0m10s
   NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
   LOCAL_PREF: 100, MED: 0, ORIGIN: incomplete, Weight: 0
   AS_PATH: 100

4  Prefix: 2001:db8:1::/64, Status: EF, Age: 0h0m10s
   NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
   LOCAL_PREF: 100, MED: 0, ORIGIN: incomplete, Weight: 0
   AS_PATH: 100

5  Prefix: 2001:db8:11::/128, Status: EF, Age: 0h0m10s
   NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
   LOCAL_PREF: 100, MED: 0, ORIGIN: igp, Weight: 0
   AS_PATH: 100

6  Prefix: 2001:db8:17::/64, Status: EF, Age: 0h0m10s
   NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
   LOCAL_PREF: 100, MED: 0, ORIGIN: incomplete, Weight: 0
   AS_PATH: 100

**Syntax:** show ipv6 bgp filtered-routes detail [ipv6-prefix/prefix-length] [longer-prefixes] [as-path-access-list name] [prefix-list name]

The `ipv6-prefix` and `prefix-length` parameters display the specified IPv6 prefix of the destination network only. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `longer-prefixes` keyword allows you to display routes that match a specified or longer IPv6 prefix. For example, if you specify `2001:db8::/32` longer-prefixes, then all routes with the prefix `2001:db8::/32` or that have a longer prefix (such as `2001:db8:e016::/48`) are displayed.

The `as-path-access-list name` parameter specifies an AS-path ACL. Only the routes permitted by the AS-path ACL are displayed.

The `prefix-list name` parameter specifies an IPv6 prefix list. Only the routes permitted by the prefix list are displayed.

This display shows the following information.
### TABLE 70 show ipv6 bgp filtered-routes detail output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route’s status. The Status field display an “F” for each filtered route.</td>
</tr>
<tr>
<td>Prefix</td>
<td>For information about this field, refer to Displaying filtered-out BGP4+ routes.</td>
</tr>
<tr>
<td>Status</td>
<td>For information about this field, refer to Displaying filtered-out BGP4+ routes.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the route, in seconds.</td>
</tr>
<tr>
<td>Next hop</td>
<td>For information about this field, refer to Displaying filtered-out BGP4+ routes.</td>
</tr>
<tr>
<td>Learned from peer</td>
<td>The IPv6 address of the neighbor from which this route is learned. “Local Router” indicates that the device itself learned the route.</td>
</tr>
<tr>
<td>Local pref</td>
<td>For information about this field, refer to Displaying filtered-out BGP4+ routes.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the advertised route's MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
</tbody>
</table>
| Origin        | The source of the route information. The origin can be one of the following:  
- A - AGGREGATE - The route is an aggregate route for multiple networks.  
- B - BEST - BGP4+ has determined that this is the optimal route to the destination.  
- b - NOT-INSTALLED-BEST - BGP4+ has determined that this is the optimal route to the destination but did not install it in the IPv6 route table because the device received better routes from other sources (such as OSPFv3, RIPng, or static IPv6 routes).  
- C - CONFED_EBGP - The route was learned from a neighbor in the same confederation and AS, but in a different sub-AS within the confederation.  
- D - DAMPED - This route has been dampened (by the route dampening feature), and is currently unusable.  
- E - EBGP - The route was learned through a in another AS.  
- H - HISTORY - Route dampening is configured for this route, and the route has a history of flapping and is unreachable now.  
- I - IBGP - The route was learned through a in the same AS.  
- L - LOCAL - The route originated on this device.  
- M - MULTIPATH - BGP4+ load sharing is enabled and this route was selected as one of the best ones to the destination. The best route among the multiple paths also is marked with “B”.  
- NOTE  
If the “m” is shown in lowercase, the software was not able to install the route in the IPv6 route table.  
- S - SUPPRESSED - This route was suppressed during aggregation and thus is not advertised to neighbors.  
- F - FILTERED - This route was filtered out by BGP4+ route policies on the device, but the saved updates containing the filtered routes.  
| Weight        | For information about this field, refer to Displaying filtered-out BGP4+ routes. |
TABLE 70  show ipv6 bgp filtered-routes detail output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS path</td>
<td>The ASs through which routes with this set of attributes have passed. The local AS is shown in parentheses.</td>
</tr>
</tbody>
</table>

Displaying route flap dampening statistics

To display route dampening statistics for all dampened routes, enter the following command at any level of the CLI.

```
device# show ipv6 bgp flap-statistics
```

Total number of flapping routes: 14

<table>
<thead>
<tr>
<th>Status Code</th>
<th>From</th>
<th>Flaps</th>
<th>Since</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>h&gt;</td>
<td>2001:db8::2::/48</td>
<td>2001:db8:23:47</td>
<td>1</td>
<td>0 :13 0 :0</td>
<td>65001 4355 1 701</td>
</tr>
<tr>
<td>*&gt;</td>
<td>2001:db8:34::/48</td>
<td>2001:db8:23:47</td>
<td>1</td>
<td>0 :1 :4 0 :0</td>
<td>65001 4355 701 62</td>
</tr>
</tbody>
</table>

Syntax: show ipv6 bgp flap-statistics [ ipv6-prefix/prefix-length | longer-prefixes | as-path-filter number | neighbor ipv6-address | regular-expression regular-expression ]

The `ipv6-prefix` and `prefix-length` parameters display statistics for the specified IPv6 prefix only. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `longer-prefixes` keyword allows you to display statistics for routes that match a specified or longer IPv6 prefix. For example, if you specify `2001:db8::/32 longer-prefixes`, then all routes with the prefix `2001:db8::/32` or that have a longer prefix (such as `2001:db8::e016::/48`) are displayed.

The `as-path-filter number` parameter specifies an AS path filter to display. Specify a filter number.

The `neighbor ipv6-address` parameter displays statistics for routes learned from the specified neighbor only. You also can display route flap statistics for routes learned from a neighbor by entering the following command: `show ipv6 bgp neighbor flap-statistics`.

The `regular-expression regular-expression` parameter is a regular expression. The regular expressions are the same ones supported for BGP4 AS-path filters.

You can also display route flap dampening statistics for a specified IPv6 neighbor. For more information, refer to Displaying route flap dampening statistics for a BGP4+ neighbor on page 472.

TABLE 71  show ipv6 bgp flap-statistics output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of flapping routes</td>
<td>The total number of routes in the device’s BGP4+ route table that have changed state and thus have been marked as flapping routes.</td>
</tr>
<tr>
<td>Status code</td>
<td>Indicates the dampening status of the route, which can be one of the following:</td>
</tr>
<tr>
<td>Network</td>
<td>The destination network of the route.</td>
</tr>
<tr>
<td>Flaps</td>
<td>The number of flaps (state changes) the route has experienced.</td>
</tr>
<tr>
<td>Since</td>
<td>The amount of time (in hh:mm:ss) since the first flap of this route.</td>
</tr>
<tr>
<td>Reuse</td>
<td>The amount of time (in hh:mm:ss) after which the path is again available.</td>
</tr>
</tbody>
</table>
TABLE 71 show ipv6 bgp flap-statistics output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>The AS path of the route.</td>
</tr>
</tbody>
</table>

You also can display all the dampened routes by using the `show ipv6 bgp dampened-paths` command. For more information, refer to Displaying dampened BGP4+ paths on page 459.

**Displaying BGP4+ neighbor information**

You can display the following information about a device's BGP4+ neighbors:

Configuration information and statistics:

- Router advertisements.
- Route-attribute entries.
- Route flap dampening statistics.
- The last packet containing an error.
- Received Outbound Route Filters (ORFs).
- Routes received from a neighbor.
- BGP4+ Routing Information Base (RIB).
- Received best, not installed best, and unreachable routes.
- Route summary.

**Displaying IPv6 neighbor configuration information and statistics**

To display BGP4+ neighbor configuration information and statistics, enter the following command at any level of the CLI.

```
device# show ipv6 bgp neighbor 2001:db8::110
1 IP Address: 2001:db8::110, AS: 65002 (EBGP), RouterID: 10.1.1.1
 State: ESTABLISHED, Time: 5d20h38m54s, KeepAliveTime: 60, HoldTime: 180
 RefreshCapability: Received
 Messages: Open Update KeepAlive Notification Refresh-Req
 Sent : 1 2 8012 0 0
 Received: 1 0 7880 0 0
 Last Update Time: NLRI Withdraw NLRI Withdraw
 Tx: --- --- Rx: --- ---
 Last Connection Reset Reason: Unknown
 Notification Sent: Unspecified
 Notification Received: Unspecified
 Neighbor NLRI Negotiation:
 Peer Negotiated IPV6 unicast capability
 Peer configured for IPV6 unicast Routes
 TCP Connection state: ESTABLISHED
 Byte Sent: 152411, Received: 149765
 Local host: 2001:db8::106, Local Port: 8222
 Remote host: 2001:db8::110, Remote Port: 179
 ISentSeq: 740590181 SendNext: 740590181 TotUnAck: 0
 TotSent: 152412 Retrans: 0 UnAckSeq: 740590181
 IRcvSeq: 242365900 RcvNext: 242515666 SendWnd: 16384
 TotalRcv: 149766 DupliRcv: 0 RcvWnd: 16384
 SendQue: 0 RcvQue: 0 CngstWnd: 1440
```

**NOTE**

Portions of this display are truncated for brevity. The purpose of this display is to show all possible fields that might display rather than to show complete output.
The display shows all the configured parameters for the neighbor. Only the parameters that have values different from their defaults are shown.

In this example, the number in the far left column indicates the neighbor for which information is displayed. When you list information for multiple neighbors, this number makes the display easier to read.

The TCP statistics at the end of the display show status for the TCP session with the neighbor. Most of the fields show information stored in the device’s Transmission Control Block (TCB) for the TCP session between the device and its neighbor. These fields are described in detail in section 3.2 of RFC 793, “Transmission Control Protocol Functional Specification”.

Syntax: `show ipv6 bgp neighbor [ipv6-address]`

The `ipv6-address` parameter allows you to display information for a specified neighbor only. You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

**TABLE 72** show ipv6 bgp neighbor output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>AS</td>
<td>The AS in which the neighbor resides.</td>
</tr>
<tr>
<td>EBGP or IBGP</td>
<td>Whether the neighbor session is an IBGP session, an EBGP session, or a confederation EBGP session:</td>
</tr>
<tr>
<td></td>
<td>• EBGP - The neighbor is in another AS.</td>
</tr>
<tr>
<td></td>
<td>• EBGP_Conf - The neighbor is a member of another sub-AS in the same confederation.</td>
</tr>
<tr>
<td></td>
<td>• IBGP - The neighbor is in the same AS.</td>
</tr>
<tr>
<td>RouterID</td>
<td>The neighbor’s router ID.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the device’s session with the neighbor. The states are from the perspective of the session, not the neighbor’s perspective. The state values can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• IDLE - The BGP4+ process is waiting to be started. Usually, enabling BGP4 or establishing a neighbor session starts the BGP4+ process.</td>
</tr>
<tr>
<td></td>
<td>– A minus sign (-) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• ADMND - The neighbor has been administratively shut down.</td>
</tr>
<tr>
<td></td>
<td>– A minus sign (-) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• CONNECT - BGP4+ is waiting for the connection process for the TCP neighbor session to be completed.</td>
</tr>
<tr>
<td></td>
<td>• ACTIVE - BGP4+ is waiting for a TCP connection from the neighbor.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong> If the state frequently changes between CONNECT and ACTIVE, there may be a problem with the TCP connection.</td>
</tr>
<tr>
<td></td>
<td>• OPEN SENT - BGP4+ is waiting for an Open message from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• OPEN CONFIRM - BGP4+ has received an OPEN message from the neighbor and is now waiting for either a KEEPALIVE or NOTIFICATION message. If the device receives a KEEPALIVE message from the neighbor, the state changes to Established. If the message is a NOTIFICATION, the state changes to Idle.</td>
</tr>
</tbody>
</table>
### TABLE 72 show ipv6 bgp neighbor output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• ESTABLISHED - BGP4+ is ready to exchange UPDATE messages with the neighbor.</td>
</tr>
<tr>
<td></td>
<td>– If there is more BGP data in the TCP receiver queue, a plus sign (+) is also displayed.</td>
</tr>
</tbody>
</table>

**NOTE**
If you display information for the neighbor using the `show ipv6 bgp neighbor <ipv6-address>` command, the TCP receiver queue value will be greater than 0.

<table>
<thead>
<tr>
<th>Time</th>
<th>The amount of time this session has been in its current state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeepAliveTime</td>
<td>The keep alive time, which specifies how often this device sends keep alive messages to the neighbor.</td>
</tr>
<tr>
<td>HoldTime</td>
<td>The hold time, which specifies how many seconds the device will wait for a KEEPALIVE or UPDATE message from a BGP4+ neighbor before deciding that the neighbor is dead.</td>
</tr>
<tr>
<td>RefreshCapability</td>
<td>Whether the device has received confirmation from the neighbor that the neighbor supports the dynamic refresh capability.</td>
</tr>
<tr>
<td>Messages Sent and Received</td>
<td>The number of messages this device has sent to and received from the neighbor. The display shows statistics for the following message types:</td>
</tr>
<tr>
<td></td>
<td>• Open</td>
</tr>
<tr>
<td></td>
<td>• Update</td>
</tr>
<tr>
<td></td>
<td>• KeepAlive</td>
</tr>
<tr>
<td></td>
<td>• Notification</td>
</tr>
<tr>
<td></td>
<td>• Refresh-Req</td>
</tr>
<tr>
<td>Last Update Time</td>
<td>Lists the last time updates were sent and received for the following:</td>
</tr>
<tr>
<td></td>
<td>• NLRIs</td>
</tr>
<tr>
<td></td>
<td>• Withdraws</td>
</tr>
<tr>
<td>Last Connection Reset Reason</td>
<td>The reason the previous session with this neighbor ended. The reason can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• No abnormal error has occurred.</td>
</tr>
<tr>
<td></td>
<td>• Reasons described in the BGP specifications:</td>
</tr>
<tr>
<td></td>
<td>– Message Header Error</td>
</tr>
<tr>
<td></td>
<td>– Connection Not Synchronized</td>
</tr>
<tr>
<td></td>
<td>– Bad Message Length</td>
</tr>
<tr>
<td></td>
<td>– Bad Message Type</td>
</tr>
<tr>
<td></td>
<td>– OPEN Message Error</td>
</tr>
<tr>
<td></td>
<td>– Unsupported Version Number</td>
</tr>
<tr>
<td></td>
<td>– Bad Peer AS Number</td>
</tr>
<tr>
<td></td>
<td>– Bad BGP Identifier</td>
</tr>
<tr>
<td></td>
<td>– Unsupported Optional Parameter</td>
</tr>
<tr>
<td></td>
<td>– Authentication Failure</td>
</tr>
<tr>
<td></td>
<td>– Unacceptable Hold Time</td>
</tr>
<tr>
<td></td>
<td>– Unsupported Capability</td>
</tr>
<tr>
<td></td>
<td>– UPDATE Message Error</td>
</tr>
<tr>
<td></td>
<td>– Malformed Attribute List</td>
</tr>
<tr>
<td></td>
<td>– Unrecognized Well-known Attribute</td>
</tr>
<tr>
<td></td>
<td>– Missing Well-known Attribute</td>
</tr>
<tr>
<td></td>
<td>– Attribute Flags Error</td>
</tr>
<tr>
<td></td>
<td>– Attribute Length Error</td>
</tr>
<tr>
<td></td>
<td>– Invalid ORIGIN Attribute</td>
</tr>
<tr>
<td></td>
<td>– Invalid NEXT_HOP Attribute</td>
</tr>
<tr>
<td></td>
<td>– Optional Attribute Error</td>
</tr>
<tr>
<td></td>
<td>– Invalid Network Field</td>
</tr>
</tbody>
</table>
### TABLE 72 show ipv6 bgp neighbor output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
</table>
|               | - Malformed AS_PATH  
|               | - Hold Timer Expired  
|               | - Finite State Machine Error  
|               | - Rcv Notification |

**Last Connection Reset Reason (cont.)**

- Reasons specific to the implementation:
  - Reset All Peer Sessions
  - User Reset Peer Session
  - Port State Down
  - Peer Removed
  - Peer Shutdown
  - Peer AS Number Change
  - Peer AS Confederation Change
  - TCP Connection KeepAlive Timeout
  - TCP Connection Closed by Remote
  - TCP Data Stream Error Detected

**Notification Sent**

If the device receives a NOTIFICATION message from the neighbor, the message contains an error code corresponding to one of the following errors. Some errors have subcodes that clarify the reason for the error. Where applicable, the subcode messages are listed underneath the error code messages.

- **Message Header Error**
  - Connection Not Synchronized
  - Bad Message Length
  - Bad Message Type
  - Unspecified
- **Open Message Error**
  - Unsupported Version
  - Bad Peer As
  - Bad BGP Identifier
  - Unsupported Optional Parameter
  - Authentication Failure
  - Unacceptable Hold Time
  - Unspecified
- **Update Message Error**
  - Malformed Attribute List
  - Unrecognized Attribute
  - Missing Attribute
  - Attribute Flag Error
  - Attribute Length Error
  - Invalid Origin Attribute
  - Invalid NextHop Attribute
  - Optional Attribute Error
  - Invalid Network Field
  - Malformed AS Path
  - Unspecified
  - Hold Timer Expired
  - Finite State Machine Error
  - Cease
  - Unspecified

**Notification Received**

See above.

**Neighbor NLRI Negotiation**

The state of the device’s NLRI negotiation with the neighbor. The states can include the following:

- Peer negotiated IPv6 unicast capability.
- Peer configured for IPv6 unicast routes.
<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Connection state</td>
<td>The state of the connection with the neighbor. The connection can have one of the following states:</td>
</tr>
<tr>
<td></td>
<td>• LISTEN - Waiting for a connection request.</td>
</tr>
<tr>
<td></td>
<td>• SYN-SENT - Waiting for a matching connection request after having sent a connection request.</td>
</tr>
<tr>
<td></td>
<td>• SYN-RECEIVED - Waiting for a confirming connection request acknowledgment after having both received and sent a connection request.</td>
</tr>
<tr>
<td></td>
<td>• ESTABLISHED - Data can be sent and received over the connection. This is the normal operational state of the connection.</td>
</tr>
<tr>
<td></td>
<td>• FIN-WAIT-1 - Waiting for a connection termination request from the remote TCP, or an acknowledgment of the connection termination request previously sent.</td>
</tr>
<tr>
<td></td>
<td>• FIN-WAIT-2 - Waiting for a connection termination request from the remote TCP.</td>
</tr>
<tr>
<td></td>
<td>• CLOSE-WAIT - Waiting for a connection termination request from the local user.</td>
</tr>
<tr>
<td></td>
<td>• CLOSING - Waiting for a connection termination request acknowledgment from the remote TCP.</td>
</tr>
<tr>
<td></td>
<td>• LAST-ACK - Waiting for an acknowledgment of the connection termination request previously sent to the remote TCP (which includes an acknowledgment of its connection termination request).</td>
</tr>
<tr>
<td></td>
<td>• TIME-WAIT - Waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request.</td>
</tr>
<tr>
<td></td>
<td>• CLOSED - There is no connection state.</td>
</tr>
<tr>
<td>Byte Sent</td>
<td>The number of bytes sent.</td>
</tr>
<tr>
<td>Byte Received</td>
<td>The number of bytes received.</td>
</tr>
<tr>
<td>Local host</td>
<td>The IPv6 address of the device.</td>
</tr>
<tr>
<td>Local port</td>
<td>The TCP port the Extreme device is using for the BGP4+ TCP session with the neighbor.</td>
</tr>
<tr>
<td>Remote host</td>
<td>The IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>Remote port</td>
<td>The TCP port the neighbor is using for the BGP4+ TCP session with the device.</td>
</tr>
<tr>
<td>ISentSeq</td>
<td>The initial send sequence number for the session.</td>
</tr>
<tr>
<td>SendNext</td>
<td>The next sequence number to be sent.</td>
</tr>
<tr>
<td>TotUnAck</td>
<td>The number of sequence numbers sent by the device that have not been acknowledged by the neighbor.</td>
</tr>
<tr>
<td>TotSent</td>
<td>The number of sequence numbers sent to the neighbor.</td>
</tr>
<tr>
<td>ReTrans</td>
<td>The number of sequence numbers that the device retransmitted because they were not acknowledged.</td>
</tr>
<tr>
<td>UnAckSeq</td>
<td>The current acknowledged sequence number.</td>
</tr>
<tr>
<td>IRcvSeq</td>
<td>The initial receive sequence number for the session.</td>
</tr>
<tr>
<td>RcvNext</td>
<td>The next sequence number expected from the neighbor.</td>
</tr>
<tr>
<td>SendWnd</td>
<td>The size of the send window.</td>
</tr>
</tbody>
</table>
### TABLE 72 show ipv6 bgp neighbor output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalRcv</td>
<td>The number of sequence numbers received from the neighbor.</td>
</tr>
<tr>
<td>DupliRcv</td>
<td>The number of duplicate sequence numbers received from the neighbor.</td>
</tr>
<tr>
<td>RcvWnd</td>
<td>The size of the receive window.</td>
</tr>
<tr>
<td>SendQue</td>
<td>The number of sequence numbers in the send queue.</td>
</tr>
<tr>
<td>RcvQue</td>
<td>The number of sequence numbers in the receive queue.</td>
</tr>
<tr>
<td>CngstWnd</td>
<td>The number of times the window has changed.</td>
</tr>
</tbody>
</table>

### Displaying routes advertised to a BGP4+ neighbor

You can display a summary or detailed information about the following:

- All routes a device has advertised to a neighbor.
- A specified route a device has advertised to a neighbor.

For example, to display a summary of all routes a device has advertised to neighbor 2001:db8::110, enter the following command at any level of the CLI.

```
device# show ipv6 bgp neighbor 2001:db8::110
```

#### Status codes

A list of the characters the display uses to indicate the route's status. The status code appears in the Status column of the display. The status codes are described in the command's output.

#### Prefix

The advertised route's prefix.

#### Next Hop

The next-hop for reaching the advertised route from the device.

#### MED

The value of the advertised route's MED attribute. If the route does not have a metric, this field is blank.

#### LocPrf

The degree of preference for the advertised route relative to other routes in the local autonomous system. When the BGP4+ algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference range is 0 - 4294967295.

### Syntax: show ipv6 bgp neighbor ipv6-address advertised-routes [ detail ] ipv6-prefix/prefix-length

The `ipv6-address` parameter displays routes advertised to a specified neighbor. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `detail` keyword displays detailed information about the advertised routes. If you do not specify this keyword, a summary of the advertised routes displays.

The `ipv6-prefix` and `prefix-length` parameters display the specified route advertised to the neighbor only. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

### TABLE 73 show ipv6 bgp neighbor advertised-routes output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP4+ Routes advertised to specified neighbor (appears only in display for all routes)</td>
<td>The number of routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route's status. The status code appears in the Status column of the display. The status codes are described in the command's output.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The advertised route's prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next-hop for reaching the advertised route from the device.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the advertised route's MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for the advertised route relative to other routes in the local autonomous system. When the BGP4+ algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference range is 0 - 4294967295.</td>
</tr>
</tbody>
</table>
TABLE 73 show ipv6 bgp neighbor advertised-routes output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>The value that this device associates with routes from a specific neighbor. For example, if the receives routes to the same destination from two BGP4+ neighbors, the prefers the route from the neighbor with the larger weight.</td>
</tr>
</tbody>
</table>
| Status        | The advertised route’s status, which can be one or more of the following:  
  • A - AGGREGATE. The route is an aggregate route for multiple networks.  
  • B - BEST. BGP4+ has determined that this is the optimal route to the destination.  
  • b - NOT-INSTALLED-BEST - BGP4+ has determined that this is the optimal route to the destination but did not install it in the IPv6 route table because the device received better routes from other sources (such as OSPFv3, RIPng, or static IPv6 routes).  
  • E - EBGP. The route was learned through a in another AS.  
  • I - IBGP. The route was learned through a in the same AS.  
  • L - LOCAL. The route originated on this device. |
| AS-PATH       | The AS-path information for the route. |

For example, to display details about all routes a device has advertised to neighbor 2001:db8::110, enter the following command at any level of the CLI.

device# show ipv6 bgp neighbor 2001:db8::110 advertised-routes detail
There are 2 routes advertised to neighbor 2001:db8::110
1 Prefix: 2001:db8:1::/48, Status: BL, Age: 6d13h28m7s
   NEXT_HOP: 2001:db8::106, Learned from Peer: Local Router
   LOCAL_PREF: none, MED: 1, ORIGIN: incomplete, Weight: 32768
   AS_PATH:
      Adj_RIB_out count: 1, Admin distance 190
2 Prefix: 2001:db8::/32, Status: BL, Age: 6d13h31m22s
   NEXT_HOP: 2001:db8::106, Learned from Peer: Local Router
   LOCAL_PREF: none, MED: 1, ORIGIN: incomplete, Weight: 32768
   AS_PATH:
      Adj_RIB_out count: 1, Admin distance 190

This display shows the following information.

TABLE 74 show ipv6 bgp neighbor advertised-routes detail output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP4+ Routes advertised to specified neighbor (appears only in display for all routes)</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Status codes</td>
<td>For information about this field, refer to Displaying routes advertised to a BGP4+ neighbor.</td>
</tr>
<tr>
<td>Prefix</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Status</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the advertised route, in seconds.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Learned from Peer</td>
<td>The IPv6 address of the neighbor from which this route is learned. ‘Local Router’ indicates that the device itself learned the route.</td>
</tr>
<tr>
<td>LOCAL_PREF</td>
<td>For information about this field, refer to the table above.</td>
</tr>
</tbody>
</table>
TABLE 74 show ipv6 bgp neighbor advertised-routes detail output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED</td>
<td>The value of the advertised route’s MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
</tbody>
</table>
| Origin | The source of the route information. The origin can be one of the following:  
  • EGP - The routes with this set of attributes came to BGP4+ through EGP.  
  • IGP - The routes with this set of attributes came to BGP4+ through IGP.  
  • INCOMPLETE - The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPFv3 or RIIPng.  
  When BGP4+ compares multiple routes to a destination to select the best route, IGP is preferred over EGP and both are preferred over INCOMPLETE. |
| Weight | For information about this field, refer to the table above. |
| AS-PATH | The AS-path information for the route. |
| Adj RIB out count | The number of routes in the device’s current BGP4+ Routing Information Base (Adj-RIB-Out) for a specified neighbor. |
| Admin distance | The administrative distance of the route. |

Displaying routes advertised to a BGP4+ neighbor

The route-attribute entries table lists sets of BGP4+ attributes stored in the device’s memory. Each set of attributes is unique and can be associated with one or more routes. In fact, the typically has fewer route attribute entries than routes.

For example, to display the route-attribute entries table for a BGP4+ neighbor 2001:db8::110, enter the following command:

```
device# show ipv6 bgp neighbor ipv6-address attribute-entries
```

Syntax: show ipv6 bgp neighbor ipv6-address attribute-entries

The ipv6-address parameter displays the route attribute entries for a specified neighbor. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

TABLE 75 show ipv6 bgp neighbor attribute-entries output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP Attribute Entries</td>
<td>The number of route attribute entries for the specified neighbor.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The IPv6 address of the next hop router for routes that have this set of attributes.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of the routes that have this set of attributes.</td>
</tr>
</tbody>
</table>
| Origin | The source of the route information. The origin can be one of the following:  
  • E - EBGP. The routes with this set of attributes came to BGP4+ through EGP. |
### TABLE 75 show ipv6 bgp neighbor attribute-entries output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• I - IBGP. The routes with this set of attributes came to BGP4+ through IGP.</td>
<td>• I - INCOMPLETE. The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPFv3 or RIPng. When BGP4+ compares multiple routes to a destination to select the best route, IGP is preferred over EGP and both are preferred over INCOMPLETE.</td>
</tr>
<tr>
<td>Originator</td>
<td>The originator of the route in a route reflector environment.</td>
</tr>
<tr>
<td>Cluster List</td>
<td>The route-reflector clusters through which this set of attributes has passed.</td>
</tr>
<tr>
<td>Aggregator</td>
<td>Aggregator information:</td>
</tr>
<tr>
<td>Atomic</td>
<td>Whether the network information in this set of attributes has been aggregated and this aggregation has resulted in information loss:</td>
</tr>
<tr>
<td>Local Pref</td>
<td>The degree of preference for routes that use this set of attributes relative to other routes in the local AS.</td>
</tr>
<tr>
<td>Communities</td>
<td>The communities that routes with this set of attributes are in.</td>
</tr>
<tr>
<td>AS Path</td>
<td>The ASs through which routes with this set of attributes have passed. The local AS is shown in parentheses.</td>
</tr>
<tr>
<td>Address</td>
<td>For debugging purposes only.</td>
</tr>
<tr>
<td>Hash</td>
<td>For debugging purposes only.</td>
</tr>
<tr>
<td>Reference Counts</td>
<td>For debugging purposes only.</td>
</tr>
</tbody>
</table>

### Displaying route flap dampening statistics for a BGP4+ neighbor

To display route flap dampening statistics for a specified BGP4+ neighbor, enter the following command at any level of the CLI.

```
device# show ipv6 bgp neighbor 2001:db8::110 flap-statistics
```

Total number of flapping routes: 14

<table>
<thead>
<tr>
<th>Network</th>
<th>From</th>
<th>Flaps Since</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>h&gt; 2001:db8:2::/48</td>
<td>10.90.213.77</td>
<td>0 :0 :13</td>
<td>0 :0 :0</td>
<td>65001 4355 1 701</td>
</tr>
<tr>
<td>*&gt; 2001:db8:34::/48</td>
<td>10.90.213.77</td>
<td>0 :0 :0 :0</td>
<td>65001 4355 701 62</td>
<td></td>
</tr>
</tbody>
</table>

**Syntax:** `show ipv6 bgp neighbor ipv6-address flap-statistics`

The `ipv6-address` parameter displays the route flap dampening statistics for a specified neighbor. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
### TABLE 76 show ipv6 bgp neighbor flap-statistics output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of flapping routes</td>
<td>The total number of routes in the neighbor’s BGP4+ route table that have changed state and thus have been marked as flapping routes.</td>
</tr>
<tr>
<td>Status code</td>
<td>Indicates the status of the route, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• &gt; - This is the best route among those in the neighbor’s BGP4+ route table to the route’s destination.</td>
</tr>
<tr>
<td></td>
<td>• d - This route is currently dampened, and thus unusable.</td>
</tr>
<tr>
<td></td>
<td>• h - The route has a history of flapping and is unreachable now.</td>
</tr>
<tr>
<td></td>
<td>• * - The route has a history of flapping but is currently usable.</td>
</tr>
<tr>
<td>Network</td>
<td>The destination network of the route.</td>
</tr>
<tr>
<td>From</td>
<td>The IPv6 address of the advertising peer.</td>
</tr>
<tr>
<td>Flaps</td>
<td>The number of flaps (state changes) the route has experienced.</td>
</tr>
<tr>
<td>Since</td>
<td>The amount of time (in hh:mm:ss) since the first flap of this route.</td>
</tr>
<tr>
<td>Reuse</td>
<td>The amount of time (in hh:mm:ss) after which the path is again available.</td>
</tr>
<tr>
<td>Path</td>
<td>The AS path of the route.</td>
</tr>
</tbody>
</table>

You also can display all the dampened routes by using the `show ipv6 bgp dampened-paths` command. For more information, refer to [Displaying dampened BGP4+ paths](#) on page 459.

### Displaying last error packet from a BGP4+ neighbor

You can display information about the last packet that contained an error from any of a device’s neighbors. The displayed information includes the error packet’s contents decoded in a human-readable format.

For example, to display information about the last error packet from any of a device’s neighbors, enter the following command.

```
device# show ipv6 bgp neighbor last-packet-with-error
Total number of BGP Neighbors: 266
No received packet with error logged for any neighbor
```

**Syntax:** `show ipv6 bgp neighbor last-packet-with-error`

### TABLE 77 show ipv6 bgp neighbor last-packet-with-error output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP Neighbors</td>
<td>The total number of configured neighbors for a device.</td>
</tr>
<tr>
<td>Last error</td>
<td>The error packet’s contents decoded in a human-readable format or notification that no packets with an error were received.</td>
</tr>
</tbody>
</table>

### Displaying Outbound Route Filters received from a BGP4+ neighbor

You can display the Outbound Route Filters (ORFs) received from a BGP4+ neighbor. This option applies to cooperative route filtering feature.

For example, to display the ORFs received from neighbor 2001:db8::110, enter the following command.

```
device# show ipv6 bgp neighbor 2001:db8::110 received prefix-filter
ip prefix-list 2001:db8::110: 4 entries
 seq 5 permit 2001:db8::3::45/16 ge 18 le 28
 seq 10 permit 2001:db8::4::88/24
 seq 15 permit 2001:db8::5::37/8 le 32
 seq 20 permit 2001:db8::6::83/16 ge 18
```
Syntax: `show ipv6 bgp neighbor ipv6-address received prefix-filter`

The `ipv6-address` parameter displays the prefix filter learned from a specified neighbor. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

**Displaying routes received from a BGP4+ neighbor**

You can display a summary or detailed route information received in route updates from a specified BGP4+ neighbor since you enabled the soft reconfiguration feature.

For example, to display a summary of the route information received in route updates from neighbor 2001:db8::10, enter the following command at any level of the CLI.

```
device# show ipv6 bgp neighbor 2001:db8::10 received-routes
```

There are 4 received routes from neighbor 2001:db8::10

Searching for matching routes, use ^C to quit....

<table>
<thead>
<tr>
<th>Status</th>
<th>Prefix</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:AGGREGATE</td>
<td>2001:db8:2002::/64</td>
<td>2001:db8::10</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>BE</td>
</tr>
<tr>
<td>AS_PATH: 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B:BEST</td>
<td>2001:db8:2003::/64</td>
<td>2001:db8::10</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>BE</td>
</tr>
<tr>
<td>AS_PATH: 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C:NOT-INSTALLED-BEST</td>
<td>2001:db8:2004::/64</td>
<td>2001:db8::10</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>BE</td>
</tr>
<tr>
<td>AS_PATH: 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D:DAMPED</td>
<td>2001:db8:2005::/64</td>
<td>2001:db8::10</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>BE</td>
</tr>
<tr>
<td>AS_PATH: 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The `detail` keyword displays detailed route information. If you do not specify this parameter, a summary of route information displays.

**TABLE 78** show ipv6 bgp neighbor received-routes output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP4+ Routes received from a neighbor</td>
<td>The number of routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route's status. The status code appears in the Status column of the display. The status codes are described in the command's output.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The received route's prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The IPv6 address of the next device that is used when forwarding a packet to the received route.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the route's MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for the advertised route relative to other routes in the local autonomous system. When the BGP4+ algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 - 4294967295.</td>
</tr>
<tr>
<td>Weight</td>
<td>The value that this device associates with routes from a specific neighbor. For example, if the receives routes to the same destination from two BGP4+ neighbors, the prefers the route from the neighbor with the larger weight.</td>
</tr>
<tr>
<td>Status</td>
<td>The advertised route's status, which can be one or more of the following: A - AGGREGATE. The route is an aggregate route for multiple networks.</td>
</tr>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>B - BEST. BGP4+ has determined that this is the optimal route to the destination.</td>
<td></td>
</tr>
<tr>
<td>b - NOT-INSTALLED-BEST - BGP4+ has determined that this is the optimal route to the destination but did not install it in the IPv6 route table because the device received better routes from other sources (such as OSPFv3, RIPng, or static IPv6 routes).</td>
<td></td>
</tr>
<tr>
<td>D - DAMPED. This route has been dampened (by the route dampening feature), and is currently unusable.</td>
<td></td>
</tr>
<tr>
<td>E - EBGP. The route was learned through a in another AS.</td>
<td></td>
</tr>
<tr>
<td>H - HISTORY. Route dampening is configured for this route, and the route has a history of flapping and is unreachable now.</td>
<td></td>
</tr>
<tr>
<td>I - IBGP. The route was learned through a in the same autonomous system.</td>
<td></td>
</tr>
<tr>
<td>L - LOCAL. The route originated on this device.</td>
<td></td>
</tr>
<tr>
<td>M - MULTIPATH. BGP4+ load sharing is enabled and this route was selected as one of the best ones to the destination. The best route among the multiple paths also is marked with ‘B’.</td>
<td></td>
</tr>
<tr>
<td>S - SUPPRESSED. This route was suppressed during aggregation and thus is not advertised to neighbors.</td>
<td></td>
</tr>
<tr>
<td>F - FILTERED. This route was filtered out by BGP4+ route policies on the device, but the saved updates containing the filtered routes.</td>
<td></td>
</tr>
</tbody>
</table>

**NOTE**
If the “m” is shown in lowercase, the software was not able to install the route in the IPv6 route table.

For example, to display details about routes received from neighbor 2001:db8:1::1, enter the following command at any level of the CLI.

```
device# show ipv6 bgp neighbor 2001:db8:1::1 received-routes detail
There are 4 received routes from neighbor 2001:db8:1::1
Searching for matching routes, use ^C to quit...
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
1 Prefix: 2001:db8:1000:1::/64, Status: BI, Age: 0h17m25s
NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
LOCAL_PREF: 100, MED: 0, ORIGIN: incomplete, Weight: 0
AS_PATH:
Adj_RIB_out count: 1, Admin distance 200
2 Prefix: 2001:db8:1::1, Status: I, Age: 0h17m25s
NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
LOCAL_PREF: 100, MED: 0, ORIGIN: incomplete, Weight: 0
AS_PATH:
3 Prefix: 2001:db8:11::1/128, Status: BI, Age: 0h17m25s
NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
LOCAL_PREF: 100, MED: 0, ORIGIN: igp, Weight: 0
AS_PATH:
4 Prefix: 2001:db8:17::/64, Status: BI, Age: 0h17m25s
NEXT_HOP: 2001:db8:1::1, Learned from Peer: 2001:db8:1::1 (100)
LOCAL_PREF: 100, MED: 0, ORIGIN: incomplete, Weight: 0
AS_PATH:
Adj_RIB_out count: 1, Admin distance 200
```
# Displaying BGP4+ information

## TABLE 79 show ipv6 bgp neighbor received-routes detail output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP4+ routes received from a neighbor</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Status codes</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Prefix</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Status</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the route, in seconds.</td>
</tr>
<tr>
<td>Next hop</td>
<td>The next-hop router for reaching the route from the device.</td>
</tr>
<tr>
<td>Learned from peer</td>
<td>The IPv6 address of the neighbor from which this route is learned. “Local Router” indicates that the device itself learned the route.</td>
</tr>
<tr>
<td>Local pref</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the route’s MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>Origin</td>
<td>The source of the route information. The origin can be one of the following: • EGP - The routes with this set of attributes came to BGP4+ through EGP. • IGP - The routes with this set of attributes came to BGP4+ through IGP. • INCOMPLETE - The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPFv3 or RIPng. When BGP4+ compares multiple routes to a destination to select the best route, IGP is preferred over EGP and both are preferred over INCOMPLETE.</td>
</tr>
<tr>
<td>Weight</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>AS Path</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Adj RIB out count</td>
<td>The number of routes in the device’s current BGP4+ Routing Information Base (Adj-RIB-Out) for a specified neighbor.</td>
</tr>
<tr>
<td>Admin distance</td>
<td>The administrative distance of the route.</td>
</tr>
</tbody>
</table>

## Displaying the Adj-RIB-Out for a BGP4+ neighbor

You can display a summary or detailed information about the following:

- All routes in a device’s current BGP4+ Routing Information Base (Adj-RIB-Out) for a specified neighbor.
- A specified route in a device’s current BGP4+ RIB for a specified neighbor.

The RIB contains the routes that the device either has most recently sent to the neighbor or is about to send to the neighbor.

For example, to display a summary of all routes in a device’s RIB for neighbor 2001:db8::110, enter the following command at any level of the CLI.

```
device# show ipv6 bgp neighbor 2001:db8::110 rib-out-routes
```

```
There are 2 RIB_out routes for neighbor 2001:db8::110

1 2001:db8:1234::/48 :: 1 100 32768 BL
 AS_PATH: AS_PATH:
2 2001:db8:2002::/48 :: 1 100 32768 BL
 AS_PATH: AS_PATH:
```

Syntax: `show ipv6 bgp neighbor ipv6-address rib-out-routes [ ipv6-prefix/prefix-length ] detail [ ipv6-prefix/prefix-length network-mask ]`
The `ipv6-address` parameter displays the RIB routes for a specified neighbor. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `ipv6-prefix` and `prefix-length` parameters display the specified RIB route for the neighbor. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `detail` `ipv6-prefix`, `prefix-length`, and `network-mask` parameters display detailed information about the specified RIB routes. If you do not specify this parameter, a summary of the RIB routes displays. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter. You must specify the `network-mask` parameter using 8-bit values in dotted decimal notation.

**TABLE 80** show ipv6 bgp neighbor rib-out-routes output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of RIB_out routes for a specified neighbor (appears only in display for all RIB routes)</td>
<td>The number of RIB routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route’s status. The status code appears in the Status column of the display. The status codes are described in the command’s output.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The RIB route’s prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next-hop router for reaching the route from the device.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the advertised route’s MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for the route relative to other routes in the local autonomous system. When the BGP4+ algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 - 4294967295.</td>
</tr>
<tr>
<td>Weight</td>
<td>The value that this device associates with routes from a specific neighbor. For example, if the receives routes to the same destination from two BGP4+ neighbors, the prefers the route from the neighbor with the larger weight.</td>
</tr>
<tr>
<td>Status</td>
<td>The RIB route’s status, which can be one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• A - AGGREGATE. The route is an aggregate route for multiple networks.</td>
</tr>
<tr>
<td></td>
<td>• B - BEST. BGP4+ has determined that this is the optimal route to the destination.</td>
</tr>
<tr>
<td></td>
<td>• E - EBGP. The route was learned through a in another autonomous system.</td>
</tr>
<tr>
<td></td>
<td>• I - IBGP. The route was learned through a in the same autonomous system.</td>
</tr>
<tr>
<td></td>
<td>• L - LOCAL. The route originated on this device.</td>
</tr>
<tr>
<td>AS-PATH</td>
<td>The AS-path information for the route.</td>
</tr>
</tbody>
</table>

For example, to display details about all RIB routes for neighbor 2001:db8::110, enter the following command at any level of the CLI.

```
device# show ipv6 bgp neighbor 2001:db8::110 rib-out-routes detail
```

```
There are 2 RIB_out routes for neighbor 2001:db8::110
1 Prefix: 2001:db8:1234::/48, Status: BL, Age: 6d18h17m53s
 NEXT_HOP: ::, Learned from Peer: Local Router
 LOCAL_PREF: 100, MED: 1, ORIGIN: incomplete, Weight: 32768
 AS_PATH: Adj_RIB_out count: 1, Admin distance 190
2 Prefix: 2001:db8:2002::/48, Status: BL, Age: 6d18h21m8s
```
TABLE 81 show ipv6 bgp neighbor rib-out-routes detail output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of RIB_out routes for a specified neighbor (appears only in display for all routes)</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Status codes</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Prefix</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Status</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the RIB route, in seconds.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Learned from Peer</td>
<td>The IPv6 address of the neighbor from which this route is learned. “Local Router” indicates that the device itself learned the route.</td>
</tr>
<tr>
<td>LOCAL_PREF</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the RIB route’s MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
</tbody>
</table>
| Origin | The source of the route information. The origin can be one of the following:  
  • EGP - The routes with this set of attributes came to BGP4+ through EGP.  
  • IGP - The routes with this set of attributes came to BGP4+ through IGP.  
  • INCOMPLETE - The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPFv3 or RIPng.  
When BGP4+ compares multiple routes to a destination to select the best route, IGP is preferred over EGP and both are preferred over INCOMPLETE. |
| Weight | For information about this field, refer to the table above. |
| AS-PATH | For information about this field, refer to the table above. |

Displaying the best and unreachable routes received from a BGP4+ neighbor

You can display a summary or detailed information about the following types of BGP4+ routes received from a specified neighbor:

- Best routes - The “best” routes to their destinations, which are installed in the device’s IPv6 route table.
- Unreachable - The routes whose destinations are unreachable using any of the BGP4+ paths in the IPv6 route table.

For example, to display a summary of the best routes to a destination received from neighbor 2001:db8::106, enter the following command.

```bash
device# show ipv6 bgp neighbor 2001:db8::106 routes best
There are 2 accepted routes from neighbor 2001:db8::106
Searching for matching routes, use ^C to quit...
Status A:AGGREGATE B:Best b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
Prefix Next Hop MED LocPrf Weight Status
1 2001:db8:2002::/48 2001:db8::106 1 100 0 BE
AS_PATH: 65001
2 2001:db8:2002:1234::/64 2001:db8::106 1 100 0 BE
AS_PATH: 65001
```
Syntax: show ipv6 bgp neighbor ipv6-address routes best | detail | best | unreachable | unreachable

The `ipv6-address` parameter displays the routes for a specified neighbor. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `best` keyword displays the "best" routes, which are installed in the IPv6 route table.

The `unreachable` keyword displays the routes whose destinations are unreachable using any of the BGP4+ paths in the IPv6 route table.

The `detail` keyword displays detailed information about the routes. If you do not specify this parameter, a summary of the routes displays.

This display shows the following information.

**TABLE 82** show ipv6 bgp neighbor routes best output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of accepted routes from a specified neighbor</td>
<td>The number of routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route's status. The status code appears in the Status column of the display. The status codes are described in the command's output.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The route's prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next-hop router for reaching the route from the device.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the route's MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for the route relative to other routes in the local autonomous system. When the BGP4+ algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 - 4294967295.</td>
</tr>
<tr>
<td>Weight</td>
<td>The value that this device associates with routes from a specific neighbor. For example, if the receives routes to the same destination from two BGP4+ neighbors, the prefers the route from the neighbor with the larger weight.</td>
</tr>
<tr>
<td>Status</td>
<td>The route's status, which can be one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• A - AGGREGATE. The route is an aggregate route for multiple networks.</td>
</tr>
<tr>
<td></td>
<td>• B - BEST. BGP4+ has determined that this is the optimal route to the destination.</td>
</tr>
<tr>
<td></td>
<td>• C - CONFED_EBGP. The route was learned from a neighbor in the same confederation and autonomous system, but in a different sub-AS within the confederation.</td>
</tr>
<tr>
<td></td>
<td>• D - DAMPED. This route has been dampened (by the route dampening feature), and is currently unusable.</td>
</tr>
<tr>
<td></td>
<td>• E - EBGP. The route was learned through a in another autonomous system.</td>
</tr>
<tr>
<td></td>
<td>• H - HISTORY. Route dampening is configured for this route, and the route has a history of flapping and is unreachable now.</td>
</tr>
<tr>
<td></td>
<td>• I - IBGP. The route was learned through a in the same autonomous system.</td>
</tr>
<tr>
<td></td>
<td>• L - LOCAL. The route originated on this device.</td>
</tr>
<tr>
<td></td>
<td>• M - MULTIPATH. BGP4+ load sharing is enabled and this route was selected as one of the best ones to the destination. The best route among the multiple paths also is marked with &quot;B&quot;.</td>
</tr>
</tbody>
</table>
TABLE 82 show ipv6 bgp neighbor routes best output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>If the &quot;m&quot; is shown in lowercase, the software was not able to install the route in the IPv6 route table.</td>
</tr>
<tr>
<td></td>
<td>• S - SUPPRESSED. This route was suppressed during aggregation and thus is not advertised to neighbors.</td>
</tr>
<tr>
<td></td>
<td>• F - FILTERED. This route was filtered out by BGP4+ route policies on the device, but the saved updates containing the filtered routes.</td>
</tr>
</tbody>
</table>

AS-PATH

The AS-path information for the route.

For example, to display detailed information about the best routes to a destination received from neighbor 2001:db8::106, enter the following command.

```
device# show ipv6 bgp neighbor 2000:4::106 routes detail best
```

There are 2 accepted routes from neighbor 2001:db8::106.

<table>
<thead>
<tr>
<th>Status</th>
<th>Prefix</th>
<th>NEXT_HOP</th>
<th>Learned from Peer</th>
<th>LOCAL_PREF</th>
<th>MED</th>
<th>ORIGIN</th>
<th>Weight</th>
</tr>
</thead>
</table>

TABLE 83 show ipv6 bgp neighbor routes detail bestoutput descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of accepted routes from a specified neighbor (appears only in display for all routes)</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Status codes</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Prefix</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Status</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the route, in seconds.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>Learned from Peer</td>
<td>The IPv6 address of the neighbor from which this route is learned. &quot;Local Router&quot; indicates that the device itself learned the route.</td>
</tr>
<tr>
<td>LOCAL_PREF</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>MED</td>
<td>The value of the RIB route's MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>Origin</td>
<td>The source of the route information. The origin can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• EGP - The routes with this set of attributes came to BGP4+ through EGP.</td>
</tr>
<tr>
<td></td>
<td>• IGP - The routes with this set of attributes came to BGP4+ through IGP.</td>
</tr>
<tr>
<td></td>
<td>• INCOMPLETE - The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPFv3 or RIPng.</td>
</tr>
</tbody>
</table>
**TABLE 83** show ipv6 bgp neighbor routes detail bestoutput descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>For information about this field, refer to the table above.</td>
</tr>
<tr>
<td>AS-PATH</td>
<td>For information about this field, refer to the table above.</td>
</tr>
</tbody>
</table>

**Displaying IPv6 neighbor route summary information**

You can display route summary information for all neighbors or a specified neighbor only.

For example, to display summary information for neighbor 2001:db8::110, enter the following command at any level of the CLI.

```
device# show ipv6 bgp neighbor 2001:db8::110 routes-summary
```

1   IP Address: 2001:db8::110
Routes Accepted/Installed:0, Filtered/Kept:0, Filtered:0
Routes Selected as BEST Routes:0
BEST Routes not Installed in IP Forwarding Table:0
Unreachable Routes (no IGP Route for NEXTHop):0
History Routes:0

NLRIs Received in Update Message:0, Withdraws:0 (0), Replacements:0
NLRIs Discarded due to
  Maximum Prefix Limit:0, AS Loop:0
  Invalid Nexthop:0, Invalid Nexthop Address:0.0.0.0
  Duplicated Originator_ID:0, Cluster_ID:0

Routes Advertised:2, To be Sent:0, To be Withdrawn:0
NLRIs Sent in Update Message:2, Withdraws:0, Replacements:0

Peer Out of Memory Count for:
  Receiving Update Messages:0, Accepting Routes(NLRI):0
  Attributes:0, Outbound Routes(RIB-out):0 Outbound Routes Holder:0

**Syntax:** show ipv6 bgp neighbor [ipv6-address] routes-summary

**TABLE 84** show ipv6 bgp neighbor routes-summary output descriptions

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address...</td>
<td>The IPv6 address of the neighbor</td>
</tr>
</tbody>
</table>
| Routes Received | How many routes the device has received from the neighbor during the current BGP4+ session:
  • Accepted or Installed - Indicates how many of the received routes the device accepted and installed in the BGP4+ route table.
  • Filtered or Kept - Indicates how many routes were filtered out, but were nonetheless retained in memory for use by the soft reconfiguration feature.
  • Filtered - Indicates how many of the received routes were filtered out. |
<p>| Routes Selected as BEST Routes | The number of routes that the device selected as the best routes to their destinations. |
| BEST Routes not Installed in IPv6 Forwarding Table | The number of routes received from the neighbor that are the best BGP4+ routes to their destinations, but were nonetheless not installed in the IPv6 route table because the device received better routes from other sources (such as OSPFv3, RIPng, or static IPv6 routes). |</p>
<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Unreachable Routes</strong></td>
<td>The number of routes received from the neighbor that are unreachable because the device does not have a valid RIPng, OSPFv3, or static IPv6 route to the next hop.</td>
</tr>
<tr>
<td><strong>History Routes</strong></td>
<td>The number of routes that are down but are being retained for route flap dampening purposes.</td>
</tr>
<tr>
<td><strong>NLRIs Received in Update Message</strong></td>
<td>The number of routes received in Network Layer Reachability (NLRI) format in UPDATE messages:</td>
</tr>
<tr>
<td></td>
<td>• Withdraws - The number of withdrawn routes the device has received.</td>
</tr>
<tr>
<td></td>
<td>• Replacements - The number of replacement routes the device has received.</td>
</tr>
<tr>
<td><strong>NLRIs Discarded due to</strong></td>
<td>Indicates the number of times the device discarded an NLRI for the neighbor due to the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• Maximum Prefix Limit - The device’s configured maximum prefix amount had been reached.</td>
</tr>
<tr>
<td></td>
<td>• AS Loop - An AS loop occurred. An AS loop occurs when the BGP4+ AS-path attribute contains the local AS number.</td>
</tr>
<tr>
<td></td>
<td>• Invalid Nexthop Address - The next hop value was not acceptable.</td>
</tr>
<tr>
<td></td>
<td>• Duplicated Originator_ID - The originator ID was the same as the local router ID.</td>
</tr>
<tr>
<td></td>
<td>• Cluster_ID - The cluster list contained the local cluster ID, or contained the local router ID (see above) if the cluster ID is not configured.</td>
</tr>
<tr>
<td><strong>Routes Advertised</strong></td>
<td>The number of routes the device has advertised to this neighbor:</td>
</tr>
<tr>
<td></td>
<td>• To be Sent - The number of routes the device has queued to send to this neighbor.</td>
</tr>
<tr>
<td></td>
<td>• To be Withdrawn - The number of NLRIs for withdrawing routes the device has queued up to send to this neighbor in UPDATE messages.</td>
</tr>
<tr>
<td><strong>NLRIs Sent in Update Message</strong></td>
<td>The number of NLRIs for new routes the device has sent to this neighbor in UPDATE messages:</td>
</tr>
<tr>
<td></td>
<td>• Withdraws - The number of routes the device has sent to the neighbor to withdraw.</td>
</tr>
<tr>
<td></td>
<td>• Replacements - The number of routes the device has sent to the neighbor to replace routes the neighbor already has.</td>
</tr>
<tr>
<td><strong>Peer Out of Memory Count for</strong></td>
<td>Statistics for the times the device has run out of BGP4+ memory for the neighbor during the current BGP4+ session:</td>
</tr>
<tr>
<td></td>
<td>• Receiving Update Messages - The number of times UPDATE messages were discarded because there was no memory for attribute entries.</td>
</tr>
<tr>
<td></td>
<td>• Accepting Routes(NLRI) - The number of NLRIs discarded because there was no memory for NLRI entries. This count is not included in the Receiving Update Messages count.</td>
</tr>
<tr>
<td></td>
<td>• Attributes - The number of times there was no memory for BGP4+ attribute entries.</td>
</tr>
<tr>
<td></td>
<td>• Outbound Routes (RIB-out) - The number of times there was no memory to place a “best” route into the neighbor’s route information base (Adj-RIB-Out) for routes to be advertised.</td>
</tr>
<tr>
<td></td>
<td>• Outbound Routes Holder - For debugging purposes only.</td>
</tr>
</tbody>
</table>
Displaying BGP4+ peer group configuration information

You can display configuration information for all peer groups or a specified peer group configured on a device.

For example, to display configuration information for a peer group named peer1, enter the following command at any level of the CLI.

device# show ipv6 bgp peer-group peer1
1 BGP peer-group is pg1, Remote AS: 65002
   Description: device group 1
   NextHopSelf: yes
   Address family : IPV4 Unicast
   Address family : IPV4 Multicast
   Address family : IPV6 Unicast
   Members:
     IP Address: 10.169.102.2
     IP Address: 10.169.100.2
     IP Address: 10.169.101.2
     IP Address: 10.169.103.2
     IP Address: 10.169.104.2
     IP Address: 10.169.105.2
     IP Address: 10.169.106.2
     IP Address: 10.169.107.2
     IP Address: 10.169.108.2
     IP Address: 10.169.109.2
     IP Address: 10.169.110.2
     IP Address: 10.169.111.2
     IP Address: 10.169.112.2

Syntax: show ipv6 bgp peer-group [peer-group-name]

The display shows only parameters that have values different from their default settings.

Displaying BGP4+ summary

To view summary BGP4+ information for the device, enter the following command at any level of the CLI.

device# show ipv6 bgp summary

BGP4 Summary
Router ID: 10.7.7.7  Local AS Number: 100
Confederation Identifier: not configured
Confederation Peers:
Maximum Number of IP ECMP Paths Supported for Load Sharing: 1
Number of Neighbors Configured: 1, UP: 0
Number of Routes Installed: 0
Number of Routes Advertising to All Neighbors: 0 (0 entries)
Number of Attribute Entries Installed: 0
'+': Data in InQueue '>': Data in OutQueue '-' : Clearing
'' *': Update Policy 'c': Group change 'p': Group change Pending
'r': Restarting 's': Stale '^': Up before Restart '<': EOR waiting

Neighbor Address   AS#   State  Time   Rt:Accepted  Filtered  Sent  ToSend
10:2::2            100  CONN  0h 9m 0s  0        0        0        0

Syntax: show ipv6 bgp summary

<table>
<thead>
<tr>
<th>Table 85 show ipv6 bgp summary output descriptions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The device's router ID.</td>
</tr>
<tr>
<td>Local AS Number</td>
<td>The BGP4+ AS number in which the device resides.</td>
</tr>
<tr>
<td>Confederation Identifier</td>
<td>The autonomous system number of the confederation in which the device resides.</td>
</tr>
</tbody>
</table>
TABLE 85 show ipv6 bgp summary output descriptions (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confederation Peers</td>
<td>The numbers of the local autonomous systems contained in the confederation. This list matches the confederation peer list you configure on the device.</td>
</tr>
<tr>
<td>Maximum Number of Paths Supported for Load Sharing</td>
<td>The maximum number of route paths across which the device can balance traffic to the same destination. The feature is enabled by default but the default number of paths is 1. You can increase the number from 2 - 8 paths.</td>
</tr>
<tr>
<td>Number of Neighbors Configured</td>
<td>The number of BGP4+ neighbors configured on this device.</td>
</tr>
<tr>
<td>Number of Routes Installed</td>
<td>The number of BGP4+ routes in the device's BGP4+ route table.</td>
</tr>
<tr>
<td>Number of Routes Advertising to All Neighbors</td>
<td>The total of the Rsent and RtoSend columns for all neighbors.</td>
</tr>
<tr>
<td>Number of Attribute Entries Installed</td>
<td>The number of BGP4+ route-attribute entries in the route-attributes table.</td>
</tr>
<tr>
<td>Neighbor Address</td>
<td>The IPv6 addresses of this BGP4+ neighbors.</td>
</tr>
<tr>
<td>AS#</td>
<td>The autonomous system number.</td>
</tr>
<tr>
<td>State</td>
<td>The state of this neighbor session with each neighbor. The states are from this perspective of the session, not the neighbor's perspective. The state values can be one of the following for each:</td>
</tr>
<tr>
<td>- IDLE - The BGP4+ process is waiting to be started. Usually, enabling BGP4+ or establishing a neighbor session starts the BGP4+ process.</td>
<td></td>
</tr>
<tr>
<td>- ADMND - The neighbor has been administratively shut down.</td>
<td></td>
</tr>
<tr>
<td>- CONNECT - BGP4+ is waiting for the connection process for the TCP neighbor session to be completed.</td>
<td></td>
</tr>
<tr>
<td>- ACTIVE - BGP4+ is waiting for a TCP connection from the neighbor.</td>
<td></td>
</tr>
<tr>
<td>NOTE</td>
<td>If the state frequently changes between CONNECT and ACTIVE, there may be a problem with the TCP connection.</td>
</tr>
<tr>
<td>Time</td>
<td>The time that has passed since the state last changed.</td>
</tr>
<tr>
<td>Accepted</td>
<td>The number of routes received from the neighbor that this installed in the BGP4+ route table. Usually, this number is lower than the RoutesRcvd</td>
</tr>
</tbody>
</table>
Configuring BGP4+ graceful restart

BGP4+ Graceful Restart (GR) can be configured for a global routing instance or for a specified Virtual Routing and Forwarding (VRF) instance.

The following sections describe how to enable the BGP4+ Graceful Restart feature.

NOTE
Graceful restart is not supported for multicast. Only IPv4 and IPv6 are supported.

BGP4+ Graceful Restart is fully supported by MLX and XMR Series devices. The CER and CES 2000 Series devices only support helper mode.

BGP4+ Graceful Restart can be executed in both IPv4 and IPv6 address families. Depending on the remote neighbor address family, the command and its parameters will be taken from the IPv4 family or IPv6 family.

When the graceful restart command is enabled, the BGP graceful restart capability is negotiated with neighbors in the BGP OPEN message when the session is established. If the neighbor also advertises support for graceful restart, then graceful restart is activated for that neighbor session. If the neighbor does not advertise support for graceful restart, then graceful restart is not activated for that neighbor session even though it is enabled locally. If the neighbor has not sent graceful restart parameters, the restarting device will not wait for the neighbor to start route-calculations, but graceful restart will be enabled.

Configuring BGP4+ graceful restart for the global routing instance

Use the following command to enable the BGP4+ graceful restart feature globally on a device.

```
device(config)# router bgp
device(config-bgp)# graceful-restart
```

Syntax: [no] graceful-restart

Configuring timers for BGP4+ graceful restart (optional)

You can optionally configure the following timers to change their values from the default values:

- Restart Timer
- Stale Routes Timer
- Purge Timer
Configuring the restart timer for BGP4+ graceful restart

Use the following command to specify the maximum amount of time a device will maintain routes from and forward traffic to a restarting device.

```
device(config-bgp-ipv6u)# graceful-restart restart-timer 150
```

Syntax: [no] graceful-restart restart-timer seconds

The `seconds` variable sets the maximum restart wait time advertised to neighbors. The allowable range is 1 to 3600 seconds. The default value is 120 seconds.

Configuring BGP4+ graceful restart stale routes timer

Use the following command to specify the maximum amount of time a helper device will wait for an end-of-RIB message from a peer before deleting routes from that peer.

```
device(config-bgp-ipv6u)# graceful-restart stale-routes-time 120
```

Syntax: [no] graceful-restart stale-routes-time seconds

The `seconds` variable sets the maximum time before a helper device cleans up stale routes. The allowable range is 1 to 3600 seconds. The default value is 360 seconds.

Configuring BGP4+ graceful restart purge timer

Use the following command to specify the maximum amount of time a device will maintain stale routes in its routing table before purging them.

```
device(config-bgp-ipv6u)# graceful-restart purge-time 900
```

Syntax: [no] graceful-restart purge-time seconds

The `seconds` variable sets the maximum time before a restarting device cleans up stale routes. The allowable range is 1 to 3600 seconds. The default value is 600 seconds.

Displaying BGP4+ graceful restart neighbor information

To display BGP4+ graceful restart information for BGP4 and BGP4+ neighbors, enter the `show ipv6 bgp neighbors` command.

```
device# show ipv6 bgp neighbors
 Total number of BGP Neighbors: 2
 1 IP Address: 2001:1001::1, AS: 63753 (IBGP), RouterID: 1.0.0.1, VRF: default-vrf
 Description: SWD-2
 State: ESTABLISHED, Time: 0h47m50s, KeepAliveTime: 60, HoldTime: 180
 KeepAliveTimer Expire in 26 seconds, HoldTimer Expire in 168 seconds
 Minimal Route Advertisement Interval: 0 seconds
 MD5 Password: $Qj0tZHMlXC1vbjYt
 UpdateSource: Loopback 1
 NextHopSelf: yes
 RefreshCapability: Received
 GracefulRestartCapability: Received
 Restart Time 120 sec, Restart bit 0
 afi/safi 2/1, Forwarding bit 0
 GracefulRestartCapability: Sent
 Restart Time 120 sec, Restart bit 0
 afi/safi 2/1, Forwarding bit 0
 Messages: Open Update KeepAlive Notification Refresh-Req
```

......
Dynamic Host Configuration Protocol (DHCP) snooping enables the device to filter untrusted DHCP packets in a subnet. DHCP snooping prevents MiM attacks, such as a malicious user posing as a DHCP server sending false DHCP server reply packets with the intention of misdirecting other users. DHCP snooping can also stop unauthorized DHCP servers and prevent errors due to user misconfiguration of DHCP servers.

**NOTE**
DHCP snooping does not dynamically build the ARP Inspection table.

**How DHCP snooping works**
When enabled on a VLAN, DHCP snooping stands between untrusted ports (those connected to host ports) and trusted ports (those connected to DHCP servers). A VLAN with DHCP snooping enabled forwards DHCP request packets from clients and discards DHCP server reply packets on untrusted ports, and it forwards DHCP server reply packets on trusted ports to DHCP clients, as shown in the following figures.

**FIGURE 31** DHCP snooping at work - on untrusted port
FIGURE 32 DHCP snooping at work - on trusted port

DHCP binding database

On trusted ports, DHCP server reply packets are forwarded to DHCP clients. The DHCP server reply packets collect client IP to MAC address binding information, which is saved in the DHCP binding database. This information includes MAC address, IP address, lease time, VLAN number, and port number.

In the Extreme device configuration, the DHCP binding database is integrated with the enhanced ARP table, which is used by Dynamic ARP Inspection. For more information, refer to ARP entries on page 37.

The lease time will be refreshed when the client renews its IP address with the DHCP server; otherwise the device removes the entry when the lease time expires.

System reboot and the binding database

To allow DAI and DHCP snooping to work smoothly across a system reboot, the binding database is saved to a file in the system flash memory after the user issues the "reload" command. DHCP learned entries are written to the system flash memory before the device reboots. The flash file is written and read only if DHCP snooping is enabled.

Configuring DHCP snooping

Follow the steps listed below to configuring DHCP snooping.

1. Enable DHCP snooping on a VLAN.
2. For ports that are connected to a DHCP server, change their trust setting to trusted.

The following table shows the default settings of DHCP snooping:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP snooping</td>
<td>Disabled</td>
</tr>
<tr>
<td>Trust setting for ports</td>
<td>Untrusted</td>
</tr>
</tbody>
</table>

Enabling DHCP snooping on a VLAN

DHCP packets for a VLAN with DHCP snooping enabled are inspected.

DHCP snooping is disabled by default. This feature must be enabled on the client and the DHCP server VLANs. To enable DHCP snooping, enter the following global command for these VLANs.

device(config)#ip dhcp-snooping vlan 2
The command enables DHCP snooping for a VLAN or a range of VLANs.

**Syntax:** [no] ip dhcp-snooping vlan vlan-number [ to vlan_number ] [ insert-relay-information ]

The `vlan-number` variable specifies the ID of a configured client or DHCP server VLAN.

If the [insert-relay-information] option is enabled, then DHCP option 82 is inserted in all the DHCP request packets. Refer to DHCP binding database on page 488 for more information.

**DHCP snooping suboptions**

When the DHCP relay agent information option is enabled, the DHCP relay adds the option 82 information to packets it receives from clients, then forwards the packets to the DHCP server. The DHCP server uses the option 82 information to decide which IP address to assign to the client or the DHCP server may use the information in the option 82 field for determining which services to grant to the client. The DHCP server sends its reply back to the DHCP relay, which removes the option 82 information field from the message, and then forwards the packet to the client.

Option 82 information is made up of a series of suboptions. This device supports suboption 1, suboption 2, and suboption 9.

- **Agent Circuit ID (suboption 1)** -- An ASCII string identifying the interface on which a client DHCP packet is received.
- **Agent Remote ID (suboption 2)** -- An ASCII string assigned by the relay agent that securely identifies the client.
- **Vendor-Specific (suboption 9)** -- Contains the Internet Assigned Numbers Authority (IANA) enterprise number (4874) and the layer 2 circuit ID and the user packet class.

Suboption 1 and suboption 2 are usually determined by the client network access device and depend on the network configuration. Suboption 9 can be used to associate specific data with the DHCP messages relayed between the DHCP relay and the DHCP server. The suboption 9 can include the client's IEEE 802.1p value, which identifies the client's user priority.

**Enabling trust on a port**

The default trust setting for a port is untrusted. To enable trust on a port connected to a DHCP server, enter commands such as the following.

```
device(config)#interface ethernet 1/1
device(config-if-e10000-1/1)#dhcp-snooping-trust
```

Port 1/1 is connected to a DHCP server. The commands change the CLI to the interface configuration level of port 1/1 and set the trust setting of port 1/1 to trusted.

**Syntax:** [no] dhcp-snooping-trust

**Clearing the DHCP binding database**

You can clear the DHCP binding database using the `clear dhcp-binding` command.

You can remove all entries in the database, or remove entries for a specific IP subnet, a VRF instance, or a VLAN id.

To remove all entries from the DHCP binding database, enter the following command.

```
device# clear dhcp-binding
```

For example, to clear entries for a specific IP subnet, enter a command such as the following.

```
device# clear dhcp 10.10.102.4
```

**Syntax:** clear dhcp [ ip subnet ] [ vlan vlan_id ] [ vrf vrf_name ]
The `vlan_id` variable specifies the ID of a configured VLAN.
The `vrf_name` variable specifies the VRF instance.

### DHCP option 82 insertion

DHCP option 82 insertion can be used to assist DHCP servers to implement dynamic address policy. When DHCP option 82 is present in DHCP packets, DHCP servers get additional information about the clients’ identity.

The Extreme device inserts DHCP option 82 when relaying DHCP request packets to DHCP servers. When DHCP server reply packets are forwarded back to DHCP clients, and sub-option 2 matches the local port MAC address, then DHCP option 82 is deleted. The `vlan/port` information is used to forward the DHCP reply. Refer to the following figures:

**FIGURE 33** DHCP option 82 is added to the packet

![DHCP option 82 added](image)

**FIGURE 34** DHCP option 82 is removed from the packet

![DHCP option 82 removed](image)

The option 82 insertion/deletion feature is available only when DHCP snooping is enabled for the client/server ports, and when the device is configured as a DHCP relay agent. By default, DHCP option 82 is off.

DHCP option 82 contains two sub-options; sub-option 1 (circuit ID) and sub-option 2 (remote ID).

Sub-option 1, relay agent circuit ID is in the following format.

```
VLAN id (2 bytes) / module id (1 byte) / port id (1 byte) (The module and port id will be 1 based).
```

The circuit ID identifies the location of the port, showing where the DHCP request comes from.

Typical address allocation is based on the gateway address of the relay agent.

Sub-option 2, Remote ID is in the following format.
Displaying DHCP snooping status and ports

To display the DHCP snooping status for a VLAN and the trusted and untrusted ports in the VLAN, enter the following command.

```
device#show ip dhcp-snooping vlan 172
```

IP DHCP snooping VLAN 172: Enabled

Trusted Ports : ethe 5/2 ethe 5/4

Untrusted Ports : ethe 4/24 ethe 9/4 to 9/5 ethe 9/12 ethe 9/14

Syntax: show ip dhcp-snooping [ vlan vlan-id ]

Displaying DAI binding entries

To display all ARP inspection binding entries, including dhcp bindings specific to a VRF instance, enter the following command.

```
device(config)#show dai 10.1.1.0/24
Total no. of entries: 51
```

<table>
<thead>
<tr>
<th>Idx</th>
<th>Type</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Port</th>
<th>Vlan Server IP</th>
<th>LTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>10.1.1.19</td>
<td>aabb.cc00.0012</td>
<td>10</td>
<td>10.1.1.2</td>
<td>3360</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>10.1.1.22</td>
<td>aabb.cc00.0007</td>
<td>10</td>
<td>10.1.1.2</td>
<td>3360</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>10.1.1.25</td>
<td>aabb.cc00.0030</td>
<td>10</td>
<td>10.1.1.2</td>
<td>3360</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>10.1.1.26</td>
<td>aabb.cc00.0004</td>
<td>10</td>
<td>10.1.1.2</td>
<td>3360</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>10.1.1.30</td>
<td>0030.488a.1c25</td>
<td>10</td>
<td>10.1.1.2</td>
<td>40200</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>10.1.1.32</td>
<td>aabb.cc00.0001</td>
<td>10</td>
<td>10.1.1.2</td>
<td>3360</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>10.1.1.34</td>
<td>aabb.cc00.0019</td>
<td>10</td>
<td>10.1.1.2</td>
<td>1560</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>10.1.1.39</td>
<td>aabb.cc00.000d</td>
<td>10</td>
<td>10.1.1.2</td>
<td>3360</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>10.1.1.44</td>
<td>aabb.cc00.0020</td>
<td>10</td>
<td>10.1.1.2</td>
<td>3360</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>10.1.1.46</td>
<td>aabb.cc00.0022</td>
<td>10</td>
<td>10.1.1.2</td>
<td>3360</td>
</tr>
</tbody>
</table>

Syntax: show dai [ vrf vrf_name ] [ vlan vlan-id ] [ ip-subnet ]

The vrf_name variable specifies the ARP entries that belong to a given VRF instance.

The vlan_id variable specifies the ID of a configured VLAN.

The ip subnet variable specifies the ARP entries that belong to specific IP-subnet address.

The following table describes the parameters of the show dai command:

**TABLE 86 Display of show dai**

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index (Idx)</td>
<td>The row number of this entry in the IP route table.</td>
</tr>
<tr>
<td>Type</td>
<td>The ARP entry type, which can be any one of the following: Dynamic - The Layer 3 Switch learned the entry from an incoming packet. Static - The Layer 3 Switch loaded the entry from the static ARP table when the device for the entry was connected to the Layer 3 Switch. DHCP - The Layer 3 Switch learned the entry from the DHCP binding address table.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the device.</td>
</tr>
<tr>
<td>Port</td>
<td>The source port for the host vlan.</td>
</tr>
<tr>
<td>Vlan Server IP</td>
<td>The VLAN Server IP address of the server which assigns the IP/MAC mapping.</td>
</tr>
<tr>
<td>LTime</td>
<td>The lease time (aging timer for a DHCP entry).</td>
</tr>
</tbody>
</table>
Displaying DHCP snooping statistics counters

NOTE
The last five dropped packets are displayed through the CLI. Notifications and traps are not sent.

To display the DHCP snooping statistics counters, enter the following command.

```plaintext
device#show ip dhcp-snooping-statistic slot 1
```

<table>
<thead>
<tr>
<th>Port</th>
<th>DHCP Packets Captured</th>
<th>DHCP Packets dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/19</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>1/20</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

The following table describes the output of the show ip dhcp snooping statistic.

<table>
<thead>
<tr>
<th>TABLE 87</th>
<th>Output from the show ip dhcp snooping statistic slot</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>Module number as positioned in the chassis.</td>
</tr>
<tr>
<td>Port</td>
<td>Port number in specified module.</td>
</tr>
<tr>
<td>DHCP Packets Captured</td>
<td>The number of DHCP packets captured on the port.</td>
</tr>
<tr>
<td>DHCP Packets Dropped</td>
<td>The number of DHCP packets dropped by DHCP snooping.</td>
</tr>
</tbody>
</table>

To display the DHCP snooping statistics counters for Ethernet ports, enter the following command.

```plaintext
device#show ip dhcp-snooping-statistic eth 1/20
```

DHCP packets captured: 9
DHCP packets dropped by snooping: 7
Last 5 packets dropped by snooping:

<table>
<thead>
<tr>
<th>Time</th>
<th>DHCP type</th>
<th>Source Mac/</th>
<th>Server IP/</th>
<th>Vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Source IP</td>
<td>Gateway IP</td>
<td></td>
</tr>
<tr>
<td>2008-05-03 00:29:43 OFFER</td>
<td>0030.4843.37ad 10.1.1.125</td>
<td>10.1.1.10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2008-05-03 00:29:59 OFFER</td>
<td>0030.4843.37ad 10.1.1.125</td>
<td>10.1.1.10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2008-05-03 00:31:18 OFFER</td>
<td>0030.4843.37ad 10.1.1.125</td>
<td>10.1.1.10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2008-05-03 00:31:22 OFFER</td>
<td>0030.4843.37ad 10.1.1.125</td>
<td>10.1.1.10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2008-05-03 00:31:30 OFFER</td>
<td>0030.4843.37ad 10.1.1.125</td>
<td>10.1.1.10</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ip dhcp-snooping-statistic [ slot slot ] | [ ethernet slot/port ]
NOTE
If an Ethernet port is provided, the last five dropped packets are displayed

1. DHCP packets captured
2. The number of DHCP packets captured on port 20.
3. DHCP packets dropped by snooping
4. The number of DHCP packets dropped by DHCP snooping.
5. Last 5 packets dropped by snooping
6. The last 5 DHCP packets dropped per port.
7. Time
8. The time tracking system for collecting statistically information. Date and time are displayed.
9. DHCP Type
10. The DHCP Type displays the following: OFFER - When the server responds with a proposal of parameters. ACK- When the server assign an IP address. NAK- When the server rejects the request from the client.
11. Source MAC or Source IP
12. The Source MAC or Source IP address
13. Server IP or Gateway IP
14. The Serve IP or Gateway IP
15. Vlan
16. The VLAN number that DHCP Snooping was rejected on.

Clearing DHCP snooping counters

To clear the DHCP snooping statistic counters for a specific slot, enter the following command.

device#clear dhcp-snooping-statistics slot 1

To clear the DHCP snooping statistic counters for a specific ethernet port, enter the following command.

device#clear dhcp-snooping-statistics ethernet 1/20

Syntax: clear dhcp-snooping-statistics [ slot slot ] || ethernet slot/port ]

DHCP snooping configuration example

The following example configures VLAN 2 and VLAN 20, and changes the CLI to the global configuration level to enable DHCP snooping on the two VLANs. The commands are as follows.

device(config)#vlan 2
device(config-vlan-2)#untagged ethe 1/3 to 1/4
device(config-vlan-2)#router-interface ve 2
device(config-vlan-2)#exit
device(config)# ip dhcp-snooping vlan 2
device(config)#vlan 20
device(config-vlan-20)#untagged ethe 1/1 to 1/2
device(config-vlan-20)#router-interface ve 20
On VLAN 2, client ports 1/3 and 1/4 are untrusted by default; all client ports are untrusted. Hence, only DHCP client request packets received on ports 1/3 and 1/4 are forwarded.

On VLAN 20, ports 1/1 and 1/2 are connected to a DHCP server. DHCP server ports are set to trusted.

Hence, DHCP server reply packets received on ports 1/1 and 1/2 are forwarded, and client IP or MAC binding information is collected.

The example also sets the DHCP server address for the local relay agent.

Zero Touch Provisioning

Zero Touch Provisioning allows Extreme devices to automatically obtain a dynamically assigned DHCP address, negotiate address lease renewal, and download flash image and configuration files. Figure 35 provides information about this feature.
Zero Touch Provisioning consists of the following steps.

1. The IP address validation and lease negotiation enables the DHCP client to automatically obtain and configure an IP address.
   a) As the Extreme device comes online, it checks if the DHCP client is enabled on any of the data ports.
   b) If no data port is enabled, the device tries to obtain an address on the management port.

   **NOTE**
   The management port is not enabled by default and needs to be enabled manually for the feature to operate. If the management port is configured with a static IP address, the Zero Touch Provisioning feature is automatically disabled.

2. The TFTP flash image is downloaded and updated. The device compares the file names of the requested flash image and the image stored in flash memory. If the names are different, the device downloads the new image from a TFTP server and writes the downloaded image to flash memory.

3. The Zero Touch Provisioning feature supports update of the existing monitor image and reload of the device.
4. The device downloads configuration files from a TFTP server and saves them as the running configuration.

Zero Touch Provisioning limitations

The following limitations apply to the Zero Touch Provisioning feature.

• By default, Zero Touch Provisioning is always enabled on a management port.
• Zero Touch Provisioning fails on a management port which has a static address configured on it.
• Zero Touch Provisioning does not support trunked ports or Link Aggregation Control Protocol (LACP) ports.
• During the Zero Touch Provisioning update, the existing configuration takes precedence over any configuration downloaded from the TFTP server.
• VE and VLAN numbers that are chosen for Zero Touch Provisioning cannot be used for other configurations.

Upgrade and downgrade considerations

• During a network upgrade procedure, the downloaded configuration files (as a part of the Zero Touch Provisioning process) may contain commands that cannot be executed using the current software version. In such a scenario, download the configuration files after a system reboot following the image download.
• During a network downgrade procedure, inspect the running configuration, because the system ignores errors due to incompatible commands from the previous configuration.

Supported options for DHCP

Zero Touch Provisioning supports the following DHCP options:

• DHCP Parameter Request List
  - Subnet Mask
  - Domain Name
  - Router
  - Host Name (optional)
  - TFTP Server Name
• DHCP Client
  - Server ID
  - IP Address Lease
  - Renewal Time Value
  - Rebind Time value
  - Subnet Net mask
  - Domain Name
  - Router
  - Domain Server
  - Host Name
  - TFTP Server Name

Supported messages for DHCP servers

Zero Touch Provisioning supports the following DHCP messages:

• DHCPACK
Zero Touch Provisioning

Configuring Zero Touch Provisioning

Zero Touch Provisioning allows this device to dynamically update its running configuration. This feature uses the DHCP client for address allocation and the TFTP server to download a specific configuration file.

NOTE
Virtual Ethernet (VE) and virtual LAN (VLAN) have to exist for the DHCP configuration to work.

To enable Zero Touch Provisioning on a port, use the `ip dhcp-client vlan` command. This command enables the autoconfiguration on any in-band port with the DHCP client configured on it.

```
device(config)# ip dhcp-client vlan 227 ve 227 tagged 1/1 auto-update enabled
```

Syntax: `[no] ip dhcp-client vlan vlannumber ve [ venumber | tagged | untagged | slot/port | auto-update enabled | auto-update disabled ]`

The `vlannumber` variable is the desired VLAN number for sending out tagged or untagged DHCP requests.
The `venumber` variable is the router interface number for sending out tagged or untagged DHCP requests.
The `tagged` or `untagged` options add the port as a tagged or untagged member of the VLAN.
The `slot/port` variable is the desired slot and port for the DHCP client.
The `auto-update enabled` option enables autoconfiguration on the port.
The `auto-update disabled` option disables autoconfiguration on the port.

NOTE
VLAN and VE are created when you run the `ip dhcp-client vlan` command.

Disabling auto-update on a port

To disable only the auto-update feature on a port, enter the following command.

```
device(config)# ip dhcp-client default-vlan untagged 1/1 auto-update disabled
```

Syntax: `ip dhcp-client vlan vlannumber ve [ venumber | tagged | untagged | slot/port | auto-update disabled ]`

Enabling autoconfiguration on a default VLAN

To enable autoconfiguration on a default VLAN, use the following command when auto-update is enabled on port 1/1.

```
device(config)# ip dhcp-client default-vlan untagged 1/1 auto-update enabled
```
Enabling autoconfiguration on a tagged VLAN
To enable autoconfiguration on a tagged VLAN, use the following command when the VLAN number is 227, the VE number is 227, and auto-update is enabled on port 1/1.

```
device(config)# ip dhcp-client vlan 227 ve 227 tagged 1/1 auto-update enabled
```

Enabling autoconfiguration on an untagged VLAN
To enable autoconfiguration on an untagged VLAN, use the following command when the VLAN number is 227, the VE number is 227, and auto-update is enabled on port 1/1.

```
device(config)# ip dhcp-client vlan 227 ve 227 untagged 1/1 auto-update enabled
```

Enabling autoconfiguration on a management port
To enable autoconfiguration on a management port, use the following command.

```
device(config)# ip dhcp-client vlan
```

Use the no ip dhcp-client vlan command to disable the DHCP client and autoconfiguration for the designated port.

Displaying Zero Touch Provisioning information
Run the show ip and the show ip interface commands to display information about the successful implementation of Zero Touch Provisioning.

```
device#show ip
Global Settings
 IP CAM Mode: static IPv6 CAM Mode: static
ttl: 64, arp-age: 10, bootp-relay-max-hops: 4, icmp-error-rate: 400
 IP Router-Id: 10.1.1.1
DHCP server address: 10.21.96.1
TFTP server address: 10.21.96.1
Configuration filename: extreme.cfg
enabled: UDP-Broadcast-Forwarding ICMP-Redirect Source-Route Load-Sharing RARP
disabled: Directed-Broadcast-Forwarding drop-arp-pending-packets IRDP Proxy-ARP RPF-Check RPF-Exclude-Default RIP BGP4 IS-IS OSPF VRRP VRRP-Extended VSRP
Configured Static Routes: 2
```

```
device#show ip interface
Interface IP-Address OK? Method Status Protocol VRF Type Lease Time
eth 1/1 10.1.1.1 YES NVRAM admin/down down default-vrf Static N/A
mgmt 1 10.21.96.160 YES NVRAM up up default-vrf Dynamic 672651
```

Table 88 describes the fields from the output of show ip interface command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The type and the slot and port number of the interface.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>The IP address of the interface.</td>
</tr>
<tr>
<td>NOTE</td>
<td>If an &quot;s&quot; is listed following the address, this is a secondary address. When the address was configured, the interface already had an IP address in the same subnet, so the software required the &quot;secondary&quot; option before the software could add the interface.</td>
</tr>
<tr>
<td>OK?</td>
<td>Whether the IP address has been configured on the interface.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Method</td>
<td>Whether the IP address has been saved in NVRAM. If you have set the IP address for the interface in the CLI or Web Management Interface, but have not saved the configuration, the entry for the interface in the Method field is “manual”.</td>
</tr>
<tr>
<td>Status</td>
<td>The link status of the interface. If you have disabled the interface with the disable command, the entry in the Status field will be “administratively down”. Otherwise, the entry in the Status field will be either “up” or “down”.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Whether the interface can provide two-way communication. If the IP address is configured, and the link status of the interface is up, the entry in the Protocol field will be “up”. Otherwise, the entry in the Protocol field will be “down”.</td>
</tr>
<tr>
<td>VRF</td>
<td>The VRF type.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of lease.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>The time when this lease will expire.</td>
</tr>
</tbody>
</table>
DHCPv6

• DHCP relay agent for IPv6

DHCP relay agent for IPv6

A client locates a DHCP server using a reserved, link-scoped multicast address. Direct communication between client and the server requires that they be attached by the same link. In some situations where ease-of-management, economy, and scalability are concerns, you can allow a DHCPv6 client to send a message to a DHCP server using a DHCPv6 relay agent. A DHCPv6 relay agent, which may reside on the client link, but is transparent to the client, relays messages between the client and the server.

When the relay agent receives a message, it creates a new relay-forward message, inserts the original DHCPv6 message, and sends the relay-forward message as the DHCP server.

Configuring DHCP for IPv6 relay agent

You can enable the DHCP for IPv6 relay agent function and specify the relay destination address (i.e. the DHCP server) on an interface by entering this command at the interface level.

```
device(config)# interface ethernet 2/3
device(config-if-e10000-2/3)#ipv6 dhcp-relay destination 2001:DB8::2
```

Syntax: [no] ipv6 dhcp-relay destination ipv6-address

Specify the `ipv6-address` as a destination address to which client messages are forwarded and which enables DHCP for IPv6 relay service on the interface. A maximum of 16 relay destination addresses may be entered.

DHCPv6 relay agent include options

You can configure the DHCPv6 relay agent to include the client’s remote ID, interface ID, or client link layer address as identifiers in the relay forward DHCPv6 messages.

In some network environments, it is useful for the relay agent to add information to the DHCPv6 message before relaying it. The information that the relay agent carries can also be used by the DHCP server to make decisions about the addresses, delegated prefixes, and configuration parameters that the client should receive. The DHCPv6 relay-forward message contains relay agent parameters that identify the client-facing interface on which the reply messages can be forwarded. You can use either one or all of the parameters as client identifiers.

The following options can be included in the relay-forward messages:

- Interface-ID option (18)
- Remote-ID option (37)
- Client link layer (MAC) address option (79)

The relay agent may send the interface-ID option (18) to identify the interface on which a client message was received. If the relay agent cannot use the address in the link-address field to identify the interface through which the response to the client will be relayed, the relay agent must include an interface-id option in the relay-forward message. If the relay agent receives a relay-reply message with an interface-ID option, the relay agent relays the message to the client through the interface identified by the option. The server must also copy the interface-ID option from the relay-forward message into the relay-reply message the server sends to the relay agent in response to the relay-forward message.
The remote-ID option (37) may be added by the DHCP relay agent that terminates switched or permanent circuits and uses a mechanism to identify the remote host end of the circuit. The remote ID must be unique. A DHCPv6 relay agent can be configured to include a remote-ID option in the relay-forward DHCPv6 messages.

The client link layer (MAC) address option (79) can be used along with other identifiers to associate DHCPv4 and DHCPv6 messages from a dual-stack client, and is useful in environments where operators using an existing DHCPv4 system with the client link layer address as the customer identifier need to correlate DHCPv6 assignments using the same identifier.

**NOTE**
If you enable the client link layer (MAC) option and save the configuration, and then downgrade to a version of the software that does not support this feature, an error message displays. You must remove any configuration related to this option before the downgrade and add the configuration after the upgrade to prevent this error.

**Specifying the IPv6 DHCP relay include options**

You can specify either one or all of the IPv6 DHCP relay include options in the relay-forward message.

The options include the interface-ID, remote-ID, or client MAC address. Perform the following steps to include the DHCPv6 relay options.

1. Enter interface configuration mode.
2. Enter the `ipv6 dhcp-relay include-options` command followed by the required options - `interface-ID`, `remote-ID` or `client-MAC-address`.

   The following example shows specifying the client-MAC-address as an option.

   ```
 device(config-if-e1000-2/1)# ipv6 dhcp-relay include-options client-mac-address
   ```

**DHCPv6 Relay Agent Prefix Delegation Notification**

DHCPv6 Relay Agent Prefix Delegation Notification feature allows a DHCPv6 server to dynamically delegate IPv6 prefixes to a DHCPv6 client using the DHCPv6 Prefix Delegation (PD) option. DHCPv6 prefix delegation enables an Internet service provider (ISP) to automate the process of assigning prefixes to a customer premises equipment (CPE) network. The CPE then assigns IPv6 subnets from the delegated IPv6 prefix to its downstream customer interfaces.

This feature description is shown in Figure 36.
A route is added to the IPv6 route table on the provider edge router (PE) for the delegated prefix to be delegated to requesting routers. The DHCP server chooses a prefix for delegation and responds with it to the CPE to the external network and to enable the correct forwarding of the IPv6 packets for the delegated IPv6 prefix. Adding the delegated prefix to the IPv6 route table ensures that the unicast Reverse Path Forwarding (uRPF) works correctly.

Since the PE is also a DHCPv6 relay agent (it relays DHCPv6 messages between the CPE and the DHCP server), it examines all DHCPv6 messages relayed between the CPE and the DHCP server and gathers information about a delegated prefix and then manages the advertisement of this delegated prefix to the external network.

**DHCPv6 Relay Agent Prefix Delegation Notification limitations**

The following limitations apply to the DHCPv6 Relay Agent Prefix Delegation Notification.

- The PD notification fails when the DHCPv6 messages between a DHCPv6 server and a DHCPv6 client containing the PD option are not relayed via the DHCPv6 relay agent.
- If the delegated prefix is released or renewed by the client at the time when the DHCPv6 relay agent is down or rebooting, then this release or renewal of the delegated prefix will not be detected by the relay agent. In such a condition, there could be stale static routes in the routing table. You must clear the stale routes.
- If there is no sufficient disk space on a flash disk, then the system may not store all the delegated prefixes in the IPv6 route table.
Upgrade and downgrade considerations

- When a router is upgraded to the version of software that supports this feature, the saved information about delegated prefixes will be examined and if the delegated prefix lifetime is not expired, then the prefix will be added to the IPv6 static route table.
- When a router is downgraded to the version of software that does not support this feature, the saved information about delegated prefixes is retained and it cannot be used.

Configuring DHCPv6 Relay Agent Prefix Delegation Notification

To set the number of delegated prefixes that can be learned at the global system level, use the `ipv6 dhcp-relay maximum-delegated-prefixes` command.

By default, the DHCPv6 Relay Agent Prefix Delegation Notification is enabled when the DHCPv6 relay agent feature is enabled on an interface. User can disable the DHCPv6 Relay Agent Prefix Delegation Notification at the system or the interface level by setting `ipv6 dhcp-relay maximum-delegated-prefixes` to 0 at the system or interface level as required.

NOTE
There should be a minimum free space of 7 MB in the flash memory to save information about delegated prefixes in flash on both the Active and Standby management processor

```
device(config)# ipv6 dhcp-relay maximum-delegated-prefixes 5000
```

Syntax: `[no] ipv6 dhcp-relay maximum-delegated-prefixes value`

The `value` parameter is used to limit the maximum number of prefixes that can be learned at the global level. The range is from 0 to 100000. The default value varies for different platforms.

Use the `no ipv6 dhcp-relay maximum-delegated-prefixes` command to set the parameter to the default value of the specified platform. Refer to Enabling DHCPv6 Relay Agent Prefix Delegation notification on an interface on page 504 for more information.

Enabling DHCPv6 Relay Agent Prefix Delegation notification on an interface

To set the number of delegated prefixes that can be learned at the interface level, use the `ipv6 dhcp-relay maximum-delegated-prefixes` command. This command limits the maximum number of prefixes that can be learned on the interface.

```
device(config-if-eth2/1)# ipv6 dhcp-relay maximum-delegated-prefixes 4000
```

Syntax: `[no] ipv6 dhcp-relay maximum-delegated-prefixes value`

The `value` parameter is used to limit the maximum number of prefixes that can be delegated. The range is from 0 to 20000. The default value is 20000.

Use the `no ipv6 dhcp-relay maximum-delegated-prefixes` command to set the parameter to the default value of the specified platform.

Table 89 lists the default and maximum prefix values for different platforms.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Default Maximum System Prefixes supported</th>
<th>Maximum System Prefixes supported</th>
<th>Default Maximum Interface Prefixes supported</th>
<th>Maximum Interface Prefixes supported</th>
<th>Default Maximum IPv6 Route</th>
<th>Maximum IPv6 routes that can be supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>CES 2000 Series</td>
<td>1000</td>
<td>8000</td>
<td>250</td>
<td>2000</td>
<td>1024</td>
<td>8192</td>
</tr>
<tr>
<td>CER 2000 Series</td>
<td>8000</td>
<td>100000</td>
<td>2000</td>
<td>20000</td>
<td>8192</td>
<td>131072</td>
</tr>
<tr>
<td>MLX Series</td>
<td>32000</td>
<td>100000</td>
<td>8000</td>
<td>20000</td>
<td>32768</td>
<td>114688</td>
</tr>
<tr>
<td>XMR Series</td>
<td>60000</td>
<td>100000</td>
<td>20000</td>
<td>20000</td>
<td>65536</td>
<td>245760</td>
</tr>
</tbody>
</table>
Assigning the administrative distance to DHCPv6 static routes

To assign the administrative distance to DHCPv6 static routes installed in IPv6 route table for the delegated prefixes on the interface, use the `ipv6 dhcp-relay distance` command at the interface level. The administrative distance value has to be set so that it does not replace the same IPv6 static route configured by the user.

```
device(config-if-eth-2/1)# ipv6 dhcp-relay distance 25
```

**Syntax:** `[no] ipv6 dhcp-relay distance value`

The `value` parameter is used to assign the administrative distance to DHCPv6 static routes on the interface. The range is from 1 to 255. The default value is 10. If the value is set to 255, then the delegated prefixes for this interface will not be installed in the IPv6 static route table.

Use the `no ipv6 dhcp-relay distance` command to set the parameter to a default value of 10.

Displaying the DHCPv6 Relay Agent Prefix Delegation Notification information

Enter the `show ipv6 dhcp-relay delegated-prefixes` command to display information about the delegated prefixes.

```
device#show ipv6 dhcp-relay delegated-prefixes vrf red
IPv6 DHCP Relay Delegated Prefixes Table - 2 entries VRF: red
IPv6 Prefix Client Interface ExpireTime
2001:db8:aaa::/48 2001:db8:103:1:1::8 eth 1/3 3h24m10s
2001:db8:bbb::/48 2001:db8:104:1:1::6 eth 1/4 0m28s
device#
```

**Syntax:** `show ipv6 dhcp-relay delegated-prefixes vrf vrf-name { X:X::X:M | client-id client ipv6 address | interface interface-id }`

The `vrf vrf-name` parameter is used to display the DHCPv6 delegated prefixes for a specific VRF.

The `X:X::X:M` parameter is used to display the specified delegated prefix information.

The `client-id client ipv6 address` parameter is used to display the delegated prefix for the specific client.

The `interface interface-id` parameter is used to display delegated prefixes for the specified outgoing interface.

Table 90 describes the fields from the output of `show ipv6 dhcp-relay delegated-prefixes` command.

**TABLE 90** Output from the show ipv6 dhcp-relay delegated-prefixes command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Prefix</td>
<td>The IPv6 prefix delegated to the client.</td>
</tr>
<tr>
<td>Client</td>
<td>The IPv6 address of the client.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface on which the DHCPv6 messages are relayed to the client.</td>
</tr>
<tr>
<td>ExpireTime</td>
<td>The remaining lifetime of the delegated prefix.</td>
</tr>
</tbody>
</table>

Displaying the DHCPv6 Relay configured destinations

Enter the `show ipv6 dhcp-relay destinations` command to display information about the delegated prefixes’ configured destinations for a specific interface.

```
device#show ipv6 dhcp-relay destinations
DHCPv6 Relay Destinations:
Interface ve 100:
 Destination 2001:db8:11::39 OutgoingInterface
 Destination 2001:db8:12::39 NA
Interface ve 101:
 Destination 2001:db8:13::39 OutgoingInterface
```

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06 505
Syntax: `show ipv6 dhcp-relay destinations`

Table 91 describes the fields from the output of `show ipv6 dhcp-relay destinations` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The configured destination IPv6 address.</td>
</tr>
<tr>
<td>OutgoingInterface</td>
<td>The interface on which packets will be relayed if the destination relay address is local link or multicast.</td>
</tr>
</tbody>
</table>

Displaying the DHCPv6 relay agent options

Enter the `show ipv6 dhcp-relay options` command to display information about the relay options available to the prefixed delegates for a specific interface.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Interface-Id</th>
<th>Remote-Id</th>
<th>Client-mac-address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ve 100</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ve 101</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ve 102</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 dhcp-relay options`

The following table describes the fields from the output of the `show ipv6 dhcp-relay options` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface name.</td>
</tr>
<tr>
<td>Interface-Id</td>
<td>The interface ID option. Yes indicates the option is used; No indicates the option is not used.</td>
</tr>
<tr>
<td>Remote-Id</td>
<td>The remote ID option. Yes indicates the option is used; No indicates the option is not used.</td>
</tr>
<tr>
<td>Client-mac-address</td>
<td>The client MAC address option. Yes indicates the option is used; No indicates the option is not used.</td>
</tr>
</tbody>
</table>

Displaying the DHCPv6 Relay prefix delegation information

Enter the `show ipv6 dhcp-relay prefix-delegation-information` command to display additional information about the DHCPv6 prefix delegation.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Current</th>
<th>Maximum</th>
<th>AdminDistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ve 100</td>
<td>20</td>
<td>20000</td>
<td>10</td>
</tr>
<tr>
<td>ve 101</td>
<td>4000</td>
<td>20000</td>
<td>10</td>
</tr>
<tr>
<td>ve 102</td>
<td>0</td>
<td>20000</td>
<td>10</td>
</tr>
<tr>
<td>ve 103</td>
<td>0</td>
<td>20000</td>
<td>10</td>
</tr>
<tr>
<td>ve 104</td>
<td>0</td>
<td>20000</td>
<td>10</td>
</tr>
<tr>
<td>ve 105</td>
<td>0</td>
<td>20000</td>
<td>10</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 dhcp-relay prefix-delegation-information`

Table 93 describes the fields from the output of the `show ipv6 dhcp-relay prefix-delegation-information` command.
**TABLE 93** Output from the show ipv6 dhcp-relay prefix-delegation-information command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface name.</td>
</tr>
<tr>
<td>Current</td>
<td>The number of delegated prefixes currently learned on the interface.</td>
</tr>
<tr>
<td>Maximum</td>
<td>The maximum number of delegated prefixes that can be learned on the interface.</td>
</tr>
<tr>
<td>AdminDistance</td>
<td>The current administrative distance used for prefixes learned on this interface when added to the IPv6 static route table.</td>
</tr>
</tbody>
</table>

**Displaying the DHCPv6 relay information for an interface**

Enter the `show ipv6 dhcp-relay interface` command to display DHCPv6 relay information for a specific interface.

```
device# show ipv6 dhcp-relay interface ve 100
DHCPv6 Relay Information for interface ve 100:
 Destinations:
 Destination: 2001:db8:1::39 OutgoingInterface: NA
 Options:
 Interface-Id: No Remote-Id: No Client-mac-address: Yes
 Prefix Delegation Notification:
 Current: 0 Maximum: 20000 AdminDistance: 10
```

**Syntax:** `show ipv6 dhcp-relay interface interface-type`

The `interface-type` variable presents the interface type, such as Ethernet, Point of Service (POS), or VE and the specific port number.

The following table describes the fields from the output of the `show ipv6 dhcp-relay interface` command.

**TABLE 94** Output from the show ipv6 dhcp-relay interface command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinations</td>
<td>The DHCPv6 relay destination configured on the interface.</td>
</tr>
<tr>
<td></td>
<td>• Destination: The configured destination IPv6 address.</td>
</tr>
<tr>
<td></td>
<td>• OutgoingInterface: The interface on which packet will be relayed if the destination relay address is link local or multicast.</td>
</tr>
<tr>
<td>Options</td>
<td>The current information about DHCPv6 relay options for the interface.</td>
</tr>
<tr>
<td></td>
<td>• Interface-Id: The interface ID option indicating whether the option is used.</td>
</tr>
<tr>
<td></td>
<td>• Remote-Id: The remote ID option indicating whether the option is used.</td>
</tr>
<tr>
<td></td>
<td>• Client-mac-address: The client MAC address indicating whether the option is used.</td>
</tr>
<tr>
<td>Prefix Delegation Notification</td>
<td>The current information about the DHCPv6 prefix delegation for the interface.</td>
</tr>
<tr>
<td></td>
<td>• Interface: The name of the interface.</td>
</tr>
<tr>
<td></td>
<td>• Current: The number of delegated prefixes currently learned on the interface.</td>
</tr>
<tr>
<td></td>
<td>• Maximum: The maximum number of delegated prefixes that can be learned on the interface.</td>
</tr>
<tr>
<td></td>
<td>• AdminDistance: The administrative distance used for prefixes learned on the specific interface when added to the IPv6 static route table.</td>
</tr>
</tbody>
</table>

**Clearing the DHCPv6 delegated prefixes**

To clear the DHCPv6 delegated prefixes for specific VRFs, use the `clear ipv6 dhcp-relay delegated-prefixes` command at the privilege level.

```
device# clear ipv6 dhcp-relay delegated-prefixes vrf VRF1
```

**Syntax:** `clear ipv6 dhcp-relay delegated-prefixes { vrf vrf-name } { X::X::X::X/M | all } interface interface-id`
The `vrf-name` parameter is used to clear the DHCPv6 delegated prefixes for a specific VRF. If this parameter is not provided, then the information for the default VRF is cleared.

The `X::X::X::X/M` parameter is used to clear the specified delegated prefix and remove the corresponding route permanently from the router.

The `all` parameter is used to clear all the delegated prefixes and remove the corresponding routes permanently from the router for the VRF.

The `interface-id` parameter is used to clear all the delegated prefixes and remove the corresponding routes permanently from the router for the specified outgoing interface.

**Clearing the DHCPv6 packet counters**

To clear all DHCPv6 packet counters, use the `clear ipv6 dhcp-relay statistics` command at the privilege level.

```
device# clear ipv6 dhcp-relay statistics
```

Syntax: `clear ipv6 dhcp-relay statistics`

**Enabling support for network-based ECMP load sharing for IPv6**

If network-based ECMP load sharing is configured, traffic is distributed across equal-cost paths based on the destination network address. Routes to each network are stored in CAM and accessed when a path to a network is required. Because multiple hosts are likely to reside on a network, this method uses fewer CAM entries than load sharing by host. When you configure network-based ECMP load sharing, you can choose either of the following CAM modes:

- **Dynamic mode** - In the dynamic mode, routes are entered into the CAM dynamically using a flow-based scheme, where routes are only added to the CAM as they are required. Once routes are added to the CAM, they can be aged-out when they are not in use. Because this mode conserves CAM, it is useful for situations where CAM resources are stressed or limited.
- **Static mode** - In the static mode, routes are entered into the CAM whenever they are discovered. Routes are not aged once routes are added to the CAM and can be aged-out when they are not in use.

IPv6 VPN CAM supports ECMP load sharing, which is created for IPv6 VPN routes.

**Configuring the CAM mode to support network-based ECMP load sharing for IPv6**

To configure the CAM mode to support network-based ECMP load sharing for IPv6, enter a command such as the following at the Global Configuration level.

```
device(config)# cam-mode ipv6 dynamic
```

Syntax: `[no] cam-mode ipv6 [dynamic | static | host ]`

The `dynamic` parameter configures the device for network-based ECMP load sharing using the dynamic CAM mode.

The `static` parameter configures the device for network-based ECMP load sharing using the static CAM mode.

The `host` parameter configures the device for host-based ECMP load sharing using the dynamic CAM mode.

You must restart the device for this command to take effect.
Displaying ECMP load-sharing information for IPv6

To display the status of ECMP load sharing for IPv6, enter the following command.

device# show ipv6
Global Settings
  unicast-routing enabled, ipv6 allowed to run, hop-limit 64
  reverse-path-check disabled
  urpf-exclude-default disabled
  session-logging-age 5
  No Inbound Access List Set
  No Outbound Access List Set
  Prefix-based IPv6 Load-sharing is Enabled, Number of load share paths: 4
  source-route disabled, forward-source-route disabled
Configured Static Routes: 66
Configured Static Mroutes: 66
RIP: enabled
OSPF (default VRF): enabled
BGP: enabled, 1 active neighbor(s) configured

Syntax: show ipv6

You can display the entries in the IPv6 forwarding cache by entering the show ipv6 cache command.

device# show ipv6 cache
Total number of IPv6 and IPv6 VPN cache entries: 3
  IPv6 Address  Next Hop  Interface
1  6000::       LOCAL  ve 60
2  6000::2     LOCAL  ve 60
3  fe80::768e:f8ff:fe2a:6200 LOCAL  ve 60

Syntax: show ipv6 cache [ index-number | ipv6-prefix/prefix-length | ipv6-address | ethernet port | ve number | tunnel number ]
The Intermediate System to Intermediate System (IS-IS) protocol is a link-state Interior Gateway Protocol (IGP) that is based on the International Standard for Organization/International Electrotechnical Commission (ISO/IEC) Open Systems Internet Networking model (OSI). In IS-IS, an intermediate system (router) is designated as either a Level 1 or Level 2 router. A Level 1 router routes traffic only within the area in which the router resides. A Level 2 router routes traffic between areas within a routing domain.

The implementation of IS-IS is based on the following specifications and draft specifications:

- ISO/IEC 10589 - "Information Technology - Telecommunication and information exchange between systems - Intermediate system to Intermediate system intra-domain routing information exchange protocol for use in conjunction with the protocol for providing the connection less-mode Network Service (ISO 8473)"; 1992
- ISO/IEC 8473 - "Information processing systems - Data Communications - Protocols for providing the connectionless-mode network service"; 1988
- ISO/IEC 9542 - "Information Technology - Telecommunication and information exchange between systems - End system to Intermediate system intra-domain routing information exchange protocol for use in conjunction with the protocol for providing the connection less-mode Network Service (ISO 8473)"; 1988
- RFC 2763 - "Dynamic Host Name Exchange Mechanism for IS-IS"; 2000.
- RFC 2966 - "Domain-wide Prefix Distribution with Two-Level IS-IS"; 2000
- Portions of the Internet Draft "IS-IS extensions for Traffic Engineering" draft-ietf-isis-traffic-02.txt (dated 2000). that describe the Extended IP reachability type-length-value (TLV type 135) and the extended Intermediate System (IS) reachability TLV (TLV type 22). These portions provide support for the wide metric version of IS-IS. No other portion is supported on Extreme’s implementation of IS-IS.

NOTE
The Extreme device does not support routing of Connectionless-Mode Network Protocol (CLNP) packets. The Extreme device uses IS-IS for TCP/IP only.
Relationship to the IP route table

The IS-IS routes are calculated and first placed in the IS-IS route table. The routes are then transferred to the IP route table. The best IS-IS path for a given destination is sent to the IP route table for comparison to the best paths from other protocols to the same destination. The CPU selects the path with the lowest administrative distance and places that path in the IP route table:
  • If the path provided by IS-IS has the lowest administrative distance, then the CPU places that IS-IS path in the IP route table.
  • If a path to the same destination supplied by another protocol has a lower administrative distance, the CPU installs the other protocol's path in the IP route table instead.

The administrative distance is a protocol-independent value from 1 - 255. Each path sent to the CPU, regardless of the source of the path (IS-IS, OSPF, static IP route, and so on) has an administrative distance.

Each route source has a default administrative distance. The default administrative distance for IS-IS is 115.

You can change the administrative distance for IS-IS and other routes sources.

Intermediate systems and end systems

IS-IS uses the following categories to describe devices within an IS-IS routing domain (similar to an OSPF Autonomous System):
  • Intermediate System (IS) - A device capable of forwarding packets from one device to another within the domain. In Internet Protocol (IP) terminology, an IS is a router.
  • End System (ES) - A device capable of generating or receiving packets within the domain. In IP terminology, an ES is an end node or IP host.

When you configure IS-IS on a device, the device is an IS.

Figure 37 shows an example of an IS-IS network.
FIGURE 37 An IS-IS network contains Intermediate Systems (ISs) and host systems

IS-IS Routing Domain

Router A

IP Host

Router B

IP Host

Router C

IP Host

Router D

Router E

An IS-IS routing domain can contain multiple areas.
IS-IS routers route within an area at Level-1.
IS-IS routers route between areas at Level-2.

NOTE
Since the implementation of IS-IS does not route OSI traffic but instead routes IP traffic, IP hosts are shown instead of ESs.

The other basic IS-IS concepts illustrated in this figure are explained in the following sections.

Domain and areas

IS-IS is an IGP, and thus applies only to routes within a single routing domain. However, you can configure multiple areas within a domain. A device can be a member of one area for each Network Entity Title (NET) you configure on the device. The NET contains the area ID for the area the NET is in.

In Intermediate systems and end systems on page 512, Routers A, B, and C are in area 1. Routers D and E are in area 2. All the routers are in the same domain.

Level-1 routing and Level-2 routing

You can configure an IS-IS router to perform one or both of the following levels of IS-IS routing:

NOTE
The ISO/IEC specifications use the spelling “routeing”, but this document uses the spelling “routing” to remain consistent with other Extreme documentation.

• Level-1 - A Level-1 router routes traffic only within the area the router is in. To forward traffic to another area, the Level-1 router sends the traffic to its nearest Level-2 router.
• Level-2 - A Level-2 router routes traffic between areas within a domain.

In Intermediate systems and end systems on page 512, Routers A and B are Level-1s only. Routers C and D are Level-1 and Level-2 ISs. Router E is a Level-1 IS only.

Neighbors and adjacencies

A device configured for IS-IS forms an adjacency with each of the IS-IS devices to which it is directly connected. An adjacency is a two-way direct link (a link without router hops) over which the two devices can exchange IS-IS routes and other protocol-related information. The link is sometimes called a “circuit”. The devices with which the device forms adjacencies are its neighbors, which are other ISs.

In Intermediate systems and end systems on page 512, Router A has an IS-IS adjacency with Router B. Likewise, Router B has an IS-IS adjacency with Router A and Router C.

Designated IS

A Designated IS is an IS-IS router that is responsible for gathering and distributing link state information to other Level-1 or Level-2 ISs within the same broadcast network (LAN). The Level-1 and Level-2 Designated ISs within a broadcast network are independent, although the same Extreme device can be a Level-1 Designated IS and a Level-2 Designated IS at the same time.

The Designated IS is elected based on the priority of each IS in the broadcast network. When an IS becomes operational, it sends a Level-1 or Level-2 Hello PDU to advertise itself to other ISs. If the IS is configured to be both a Level-1 and a Level-2 IS, the IS sends a separate advertisement for each level:

• The Level-1 IS that has the highest priority becomes the Level-1 Designated IS for the broadcast network.
• The Level-2 IS that has the highest priority becomes the Level-2 Designated IS for the broadcast network.

If the Designated IS becomes unavailable (for example, is rebooted), the IS with the next highest priority becomes the new IS. If two or more ISs have the highest priority, the IS with the highest MAC address becomes the Designated IS.

The priority is an interface parameter. Each interface that is enabled for IS-IS can have a different priority.

Figure 38 shows an example of the results of Designated IS elections. For simplicity, this example shows four of the five routers in Intermediate systems and end systems on page 512, with the same domain and areas.

Figure 38 Each broadcast network has a Level-1 Designated IS and a Level-2 Designated IS

Designated IS election has the following results in this network topology:

• Router B is the Level-1 Designated IS for broadcast network 1
• Router C is the Level-1 Designated IS for broadcast network 2
• Router D is the Level-2 Designated IS for broadcast network 3
In this example, the IS-IS priorities for the IS-IS interfaces in broadcast network 1 have been changed by an administrator. The priorities for the interfaces in the other broadcast networks are still set to the default (64). When there is a tie, IS-IS selects the interface with the highest MAC address.

**Broadcast pseudonode**

In a broadcast network, the Designated IS maintains and distributes link state information to other ISs by maintaining a pseudonode. A pseudonode is a logical host representing all the Level-1 or Level-2 links among the ISs in a broadcast network. Level-1 and Level-2 have separate pseudonodes, although the same device can be the pseudonode for Level-1 and Level-2.

**Route calculation and selection**

The Designated IS uses a Shortest Path First (SPF) algorithm to calculate paths to destination ISs and ESs. The SPF algorithm uses Link State PDUs (LSPDUs) received from other ISs as input, and creates the paths as output.

After calculating the paths, the Designated IS then selects the best paths and places them in the IS-IS route table. The Designated IS uses the following process to select the best paths.

1. Prefer the Level-1 path over the Level-2 path.
2. If there is no Level-1 path, prefer the internal Level-2 path over the external Level-2 path.
3. If there is still more than one path, prefer the path with the lowest metric.
4. If there is more than one path with the lowest metric, load share among the paths.

After selecting the best path to a destination, the software places the path in the IS-IS route table.

**Three-way handshake for point-to-point adjacencies**

Support was provided for Three-Way Handshake for Point-to-Point adjacencies as described in RFC 3373. This feature provides three-way handshake mechanisms on point-to-point interfaces for the following benefits:

- Identifies neighbor restarts within the holding time period
- Identifies uni-directional link failures and stops forming of an adjacency with a peer where such link failures occur.

**NOTE**

This feature is the default operation and cannot be turned off. Extreme devices with this feature are fully backward compatible with Extreme devices running an earlier release.

**IS-IS CLI levels**

The CLI includes various levels of commands for IS-IS. Figure 39 diagrams these levels.
The IS-IS CLI levels are as follows:

- A global level for the configuration of the IS-IS protocol. At this level, all IS-IS configurations at this level apply to IPv4 and IPv6. You enter this layer using the `router isis` command.
  - Under the global level, you specify an address family. Address families to separate the IS-IS configurations for IPv4 and IPv6. You enter configurations that are for a specific. You enter this level by entering the `address-family` command at the router isis level.
  - Under the address family level, you select a sub-address family, which is the type of routes for the configuration. For IS-IS, you specify `unicast`.
- An interface level.

### Global configuration level

You enter the global configuration level of IS-IS by entering the following command.

```
device(config)#router isis
device(config-isis-router)#
```

**Syntax:** `[no] router isis`  
The `config-isis-router#` prompt indicates that you are at the global level for IS-IS. A configuration that you enter at this level applies to both IS-IS IPv4 and IS-IS IPv6.

### Address family configuration level

The Extreme device’s implementation of IS-IS includes the address family configuration level. Address families allow you to configure IPv4 IS-IS unicast settings that are separate and distinct from IPv6 IS-IS unicast settings (when IPv6 is supported).

Under the address family level, Extreme devices currently support the unicast address family configuration level only. The Extreme device enters the IPv4 IS-IS unicast address family configuration level when you enter the following command while at the global IS-IS configuration level.

```
device(config-isis-router)# address-family ipv4 unicast
device(config-isis-router-ipv4u)#
```

**Syntax:** `address-family ipv4 unicast`  
The `(config-isis-router-ipv4u)#` prompt indicates that you are at the IPv4 IS-IS unicast address family configuration level. While at this level, you can access several commands that allow you to configure IPv4 IS-IS unicast settings.
NOTE
Each address family configuration level allows you to access commands that apply to that particular address family only. To enable a feature in a particular address family, you must specify any associated commands for that feature in that particular address family. You cannot expect the feature, which you may have configured in the IPv4 IS-IS unicast address family, to work in the IPv6 IS-IS unicast address family unless it is explicitly configured in the IPv6 IS-IS unicast address family.

To exit from the ipv4 IS-IS unicast address family configuration level, enter the following command.

```
device(config-isis-router-ipv4u)# exit-address-family
device(config-isis-router)#
```

Entering this command returns you to the global IS-IS configuration level.

Interface level

Some IS-IS definitions are entered at the interface level. To enable IS-IS at the interface level, enter the following command.

```
device(config)# interface ethernet 2/3
device(config-if-e1000-2/3)#ip router isis
```

Syntax: [no] ip router isis

Enabling IS-IS globally

To configure IPv4 IS-IS, perform the tasks listed below.

1. Globally enable IS-IS by entering the following command.

```
device(config)# router isis
ISIS: Please configure NET!
```

Once you enter `router isis`, the device enters the IS-IS router configuration level.

**Syntax: [no] router isis**

To disable IS-IS, use the `no` form of this command.
2. If you have not already configured a NET for IS-IS, enter commands such as the following.

```
device(config-isis-router)# net 49.2211.0000.00bb.cccc.00
device(config-isis-router)#
```

The commands in the example above configure a NET that has the area ID 49.2211, the system ID 0000.00bb.cccc (the device’s base MAC address), and SEL value 00.

**Syntax:** `[no] net area-id system-id sel`

The `area-id` parameter specifies the area and has the format xx or xx.xxxx. For example, 49 and 49.2211 are valid area IDs. The `system-id` parameter specifies the Extreme device’s unique IS-IS router ID and has the format xxxx.xxxx.xxxx. You can specify any value for the system ID. A common practice is to use the device’s base MAC address as the system ID. The base MAC address is also the MAC address of port 1. To determine the base MAC address, enter the following command at any level of the CLI: `show interfaces brief`. The base MAC address is listed in the first row of information, in the MAC column.

You must use the same system ID in all the NETs on the Extreme device.

**NOTE**

• If an IS is in the overload state for Level-2, other Level-2 ISs stop using the overloaded IS to forward Level-2 traffic. However, the IS can still forward Level-1 traffic, if applicable.

• If an IS is in the overload state for both levels, the IS cannot forward traffic at either level.

By default, the Extreme device automatically sets the overload bit to 1 (on) in its LSPDUs to other ISs if an overload condition occurs. You can set the overload bit on to administratively shut down IS-IS without disabling the protocol. Setting the overload bit on is useful when you want to make configuration changes without removing the Extreme device from the network.

In addition, you can configure the Extreme device to set the overload bit on for a specific number of seconds during startup, to allow IS-IS to become fully active before the device begins IS-IS routing. By default, there is no delay (0 seconds).

To immediately set the overload bit on, enter the following command.

```
device(config-isis-router)# set-overload-bit
```

This command administratively shuts down IS-IS by configuring the Extreme device to immediately set the overload bit to 1 (on) in all LSPs sent to other ISs.

To configure the Extreme device to temporarily set the overload bit on after a software reload, enter a command such as the following.

```
device(config-isis-router)# set-overload-bit on-startup 5
```

This command configures the Extreme device to set the overload bit on in all its IS-IS LSPs sent to other ISs during the first five seconds following a successful software reload. After the five seconds expire, the Extreme device resets the overload bit to off in all its IS-IS LSPs.

Syntax: `[no] set-overload-bit [ on-startup secs ]`

The `on-startup` parameter specifies the number of seconds following a reload to set the overload bit on. You can specify a number from 5 - 86400 (24 hours).

A new option has been added to the `set-overload-bit` command to prevent route black holing in support of RFC 3277. With this option set, the behavior of IS-IS will be changed during a device reboot. During a device reboot, IS-IS sets the overload bit in its LSPDUs until BGP has converged.

This feature is configured using the `set-overload-bit` command as shown in the following.

```
device(config-isis-router)# set-overload-bit on-startup wait-for-bgp 1000
```

Syntax: `[no] set-overload-bit on-startup wait-for-bgp max-bgp-wait-time`

The `max-bgp-wait-time` variable is the maximum time IS-IS will wait for BGP convergence to complete. Once this time has been exceeded without BGP converging, IS-IS will exit the overload state. The default value is 600 seconds (10 minutes), possible values range: 5 to 86400 seconds.

**Configuring authentication**

By default, a NetIron device does not authenticate packets sent to or received from an end system (ES) or other intermediate system (IS). In previous releases, the software let you configure area, domain, and circuit passwords to direct the device to check for a password in packets sent from the device.

The new method of configuring an authentication password introduces the option of using the Hashed Message Authentication codes - Message Digest 5 (HMAC-MD5) algorithm.

This implementation is in conformance with RFC 3567 - Intermediate System to Intermediate System (IS-IS) Cryptographic Authentication.
NOTE
The commands for setting the password used in previous versions of the software are now hidden in the CLI, however they are backward compatible and will operate in this release.

Configuring IS-IS authentication at the Router IS-IS mode
To configure IS-IS authentication at the Router IS-IS mode on a NetIron device, you must perform the following tasks:

- Configure IS-IS Authentication Mode
- Configure IS-IS Authentication Key
- Disable IS-IS Authentication Check (optional)

Configuring IS-IS authentication mode
The following commands configure the IS-IS for the authentication mode.

```
device(config)# router isis
device(config-isis-router)# auth-mode md5 level-1
```

Syntax: `[no] auth-mode [ cleartext | md5 ] [ level-1 | level-2 ]`

The `cleartext` parameter specifies that the IS-IS PDUs will be authenticated using a cleartext password.

The `md5` parameter specifies that the IS-IS PDUs will be authenticated using the Hashed Message Authentication codes - Message Digest 5 (HMAC-MD5) algorithm.

The `level-1` parameter specifies that the authentication type-length-value (TLV) tuple be added to the L1 LSP, L1 CSNP, and L1 PSNP packets.

The `level-2` parameter specifies that the authentication TLV tuple be added to the L2 LSP, L2 CSNP, and L2 PSNP packets.

NOTE
If the IS-IS interface is configured for point-to-point, the level-1 interface-level IS-IS authentication configuration is applied.

Configuring IS-IS authentication key
The following commands configure an authentication key to be used with the mode specified in Configuring IS-IS authentication mode on page 520.

```
device(config)# router isis
device(config-isis-router)# auth-mode md5 level-1
device(config-isis-router)# auth-key supervisor level-1
device(config-isis-router)# auth-key supervisor level-2
```

Syntax: `[no] auth-key string [ level-1 | level-2 ]`

The `string` variable specifies a text string that is used as an authentication password. The authentication mode must be configured before this value can be configured.

By default, the authentication key is encrypted. If you want the authentication key to be in clear text, insert a `0` between `auth-key` and `string`.

```
device(config-isis-router)# auth-key 0 supervisor level-1
```
The software adds a prefix to the authentication key string in the configuration. For example, the following portion of the code has the encrypted code “2”:

```plaintext
auth-key 2
$on-n level-1
```

The prefix can be one of the following:

- **0** = the key string is not encrypted and is in clear text
- **1** = the key string uses proprietary simple cryptographic 2-way algorithm (only for CES 2000 Series)
- **2** = the key string uses proprietary base64 cryptographic 2-way algorithm (only for XMR Series and MLX Series devices)

The **level-1** parameter specifies that the authentication key specified here is used to authenticate the L1 LSP, L1 CSNP and L1 PSNP packets.

The **level-2** parameter specifies that the authentication key specified here is used to authenticate the L2 LSP, L2 CSNP and L2 PSNP packets.

You must enter a configuration for both level-1 and level-2 in order to enter the auth-key string.

**NOTE**

If the authentication mode is reset for the level specified, the authentication key must also be reset.

**Disabling IS-IS authentication checking**

When transitioning from one authentication mode to another, changing the authentication mode can cause packets to drop because only some of the routers have been reconfigured. During such a transition, it can be useful to disable IS-IS authentication checking temporarily until all routers are reconfigured and the network is stable.

You can use the following commands to disable IS-IS authentication checking.

```plaintext
device(config)# router isis
device(config-isis-router)# no auth-check level-1
```

**Syntax:** `[no] auth-check [ level-1 | level-2 ]`

This command enables and disables IS-IS authentication checking. The default is enabled and the `no` parameter disables authentication checking.

The **level-1** parameter specifies that authentication checking is enabled/disabled for L1 LSP, L1 CSNP and L1 PSNP packets.

The **level-2** parameter specifies that authentication checking is enabled/disabled for L2 LSP, L2 CSNP and L2 PSNP packets.

**Configuring IS-IS MD5 authentication on a specified interface**

To configure IS-IS MD5 authentication on a specified interface on a NetIron device, you must perform the following tasks:

- Configure IS-IS Interface Authentication Mode for a Specified Interface
- Configure IS-IS Authentication Key on the Interface
- Disable IS-IS Authentication Check on an Interface (optional)

**Configuring IS-IS authentication mode for a specified interface**

The following commands configure the IS-IS for the authentication mode on a specified interface.

```plaintext
device(config)# interface ethernet 3/1
device(config-if-e10000-3/1)# isis auth-mode md5 level-1
```
Syntax: [no] isis auth-mode [ cleartext | md5 ] [ level-1 | level-2 ]

The cleartext parameter specifies that the IS-IS PDUs will be authenticated using a cleartext password.

The md5 parameter specifies that the IS-IS PDUs authenticated using the Hashed Message Authentication codes - Message Digest 5 (HMAC-MD5) algorithm.

The level-1 parameter specifies that the authentication TLV tuple be added to the L1 Hello packets.

The level-2 parameter specifies that the authentication TLV tuple be added to the L2 Hello packets.

**NOTE**
If either level-1 or level-2 are not specified, the configuration is applied to both level-1 and level-2.

**Configuring an IS-IS authentication key for a specified interface**

The following commands configure an authentication key to be used with the mode specified in Configuring IS-IS authentication mode for a specified interface on page 521.

```
device(config)# interface ethernet 3/1
device(config-if-e10000-3/1)# isis auth-key supervisor level-1
```

Syntax: [no] isis auth-key key [ level-1 | level-2 ]

The key value specifies a text string that is used as an authentication password. The authentication mode must be configured before this value can be configured.

The level-1 parameter specifies that the authentication key specified here is used to authenticate the L1 Hello packets.

The level-2 parameter specifies that the authentication key specified here is used to authenticate the L2 Hello packets.

**NOTE**
If either level-1 or level-2 are not specified, the configuration is applied to both level-1 and level-2.

**NOTE**
If the authentication mode is reset for the level specified, the authentication key must also be reset.

**NOTE**
The isis auth-key command allows the user to configure more 80 characters, but only the first 80 characters are used.

**Disabling IS-IS authentication checking on a specified interface**

When transitioning from one authentication mode to another, changing the authentication mode can cause packets to drop because only some of the routers have been reconfigured. During such a transition, it can be useful to disable IS-IS authentication checking temporarily until all routers are reconfigured and the network is stable.

You can use the following commands to disable IS-IS authentication checking on a specified interface.

```
device(config)# interface ethernet 3/1
device(if-e10000-3/1)# no isis auth-check level-1
```

Syntax: [no] isis auth-check [ level-1 | level-2 ]
This command enables and disables IS-IS authentication checking. The default is enabled and the no parameter disables authentication checking.

The level-1 parameter specifies that authentication checking is enabled/disabled for L1 Hello packets.

The level-2 parameter specifies that authentication checking is enabled/disabled for L2 Hello packets.

NOTE
If either level-1 or level-2 are not specified, the configuration is applied to both level-1 and level-2.

Changing the IS-IS level globally

By default, a NetIron device can operate as both a Level-1 and IS-IS Level-2 router. To globally change the level supported from Level-1 and Level-2 to Level-1 only, enter the following command.

device(config-isis-router)# is-type level-1

Syntax: [no] is-type level-1 | level-1-2 | level-2

The level-1 | level-1-2 | level-2 parameter specifies the IS-IS type. If you want to re-enable support for both IS-IS types, re-enter the command you entered to change the IS-IS type, and use “no” in front of the command.

To change the IS-IS on an interface, refer to Changing the IS-IS level on an interface on page 547.

Disabling or re-enabling display of hostname

Extreme’s implementation of IS-IS supports RFC 2763, which describes a mechanism for mapping IS-IS system IDs to the hostnames of the devices with those IDs. For example, if you set the hostname on the Extreme device to “IS-IS Router 1”, the mapping feature uses this name instead of the Extreme device’s IS-IS system ID in the output of the following commands:

- show isis database
- show isis interface
- show isis neighbor

The Extreme device’s hostname is displayed in each CLI command prompt, for example.

device(config-isis-router)#

The name mapping feature is enabled by default. If you want to disable name mapping, enter the following command.

device(config-isis-router)# no hostname

Syntax: [no] hostname

To display the name mappings, enter the show isis hostname command.

Changing the Sequence Numbers PDU interval

A Complete Sequence Numbers PDU (CSNP) is a complete list of the LSPs in the Designated IS’ link state database. The CSNP contains a list of all the LSPs in the database, as well as other information that helps IS neighbors determine whether their LSP databases are in sync with one another. The Designated IS sends CSNPs to the broadcast interface. Level-1 and Level-2 each have their own Designated IS.

A Partial Sequence Numbers PDU (PSNP) is a partial list of LSPs. ISs other than the Designated IS (that is, the non-Designated ISs) send PSNPs to the broadcast interface.
The CSNP interval specifies how often the Designated IS sends a CSNP to the broadcast interface. Likewise, the PSNP interval specifies how often other ISs (non-Designated ISs) send a PSNP to the broadcast interface.

The interval you can configure on the Extreme device applies to both Level-1 and Level-2 CSNPs and PSNPs. The default interval is 10 seconds. You can set the interval to a value from 0 - 65535 seconds.

To change the interval, enter a command such as the following.

```
device(config-isis-router)# csnp-interval 15
```

Syntax: `[no] csnp-interval secs`

The `secs` parameter specifies the interval and can be from 0 - 65535 seconds. The default is 10 seconds.

**NOTE**
PSNP has a default interval of 2 seconds and is not configurable.

**Changing the maximum LSP lifetime**

The maximum LSP lifetime is the maximum number of seconds an unrefreshed LSP can remain in the Extreme device's LSP database. The maximum LSP lifetime can be from 1 - 65535 seconds. The default is 1200 seconds (20 minutes).

To change the maximum LSP lifetime to 2400 seconds, enter a command such as the following.

```
device(config-isis-router)# max-lsp-lifetime 2400
```

Syntax: `[no] max-lsp-lifetime secs`

The `secs` parameter specifies the maximum LSP lifetime and can be from 1 - 65535 seconds. The default is 1200 seconds (20 minutes).

**NOTE**
The `max-lsp-lifetime` and the `lsp-refresh-interval` must be set in such a way that the LSPs are refreshed before the `max-lsp-lifetime` expires; otherwise, the Extreme device's originated LSPs may be timed out by its neighbors. Refer to Changing the LSP refresh interval on page 524.

**Changing the LSP refresh interval**

The LSP refresh interval is the maximum number of seconds the Extreme device waits between sending updated LSPs to its IS-IS neighbors. The interval can be from 1 - 65535 seconds. The default is 900 seconds.

To change the LSP refresh interval to 20000 seconds, enter a command such as the following.

```
device(config-isis-router)# lsp-refresh-interval 20000
```

Syntax: `[no] lsp-refresh-interval secs`

The `secs` parameter specifies the maximum refresh interval and can be from 1 - 65535 seconds. The default is 900 seconds (15 minutes).

**Changing the LSP generation interval**

The LSP generation interval is the minimum number of seconds the Extreme device waits between sending updated LSPs to its IS-IS neighbors. The interval can be from 1 - 120 seconds. The default is 10 seconds.
To change the LSP generation interval to 45 seconds, enter a command such as the following.

```
device(config Isis-router)# lsp-gen-interval 45
```

**Syntax:** [no] lsp-gen-interval secs

The `secs` parameter specifies the minimum refresh interval and can be from 1 - 120 seconds. The default is 10 seconds.

## Changing the LSP interval and retransmit interval

You LSP interval is the rate of transmission, in milliseconds of the LSPs. The retransmit interval is the time the device waits before it retransmits LSPs. To define an LSP interval, enter a command such as the following.

```
device(config Isis-router)# lsp-interval 45
```

**Syntax:** [no] lsp-interval milliseconds

Enter 1 - 4294967295 milliseconds for the LSP interval. The default is 33 milliseconds.

To define an interval for retransmission of LSPs enter a command such as the following.

```
device(config Isis-router)# retransmit-interval 3
```

**Syntax:** [no] retransmit-interval seconds

Enter 0 - 65535 seconds for the retransmission interval. The default is 5 seconds.

## Changing the SPF timer

Every IS maintains a Shortest Path First (SPF) tree, which is a representation of the states of each of the IS’s links to ESs and other ISs. If the IS is both a Level-1 and Level-2 IS, it maintains separate SPF trees for each level.

To ensure that the SPF tree remains current, the IS updates the tree at regular intervals following a change in network topology or the link state database. By default, the Extreme device recalculates its IS-IS tree every 5 seconds following a change. You can change the SPF timer to a value from 1 - 120 seconds.

```
NOTE
This command has been superseded by the IS-IS PSPF Exponential back-off feature.
```

To change the SPF interval, enter a command such as the following.

```
device(config Isis-router)# spf-interval 30
```

**Syntax:** [no] spf-interval secs

The `secs` parameter specifies the interval and can be from 1 - 120 seconds. The default is 5 seconds.

## Configuring the IS-IS PSPF exponential back-off feature

The Extreme device uses the exponential back-off mechanism to provide a more responsive approach to running the PSPF calculations. With this new feature, there is a new configurable command called `partial-spf-interval` that allows you to schedule PSPF processing as described in the following.

An `initial-wait` interval can be configured as a wait time after an LSP change until the first PSPF calculation. Optionally, this value is followed by another configurable variable called the `second-wait` interval that is used as a wait time between the first and second PSPF calculations. The `second-wait` interval (if configured) is then increased in multiples of 2 until it reaches the maximum hold time as
configured by the max-wait variable. Once reached, the maximum hold time remains the hold interval between PSPF calculations until there are no further changes in the network. When there are no network changes in a hold down period, the gap between PSPF calculations returns to the initial-wait interval and the process begins again.

If an initial-wait interval is configured without a second-wait interval, the max-wait variable is used for the second and all subsequent intervals.

If the initial-wait and second-wait intervals are not configured, the max-wait variable is used for the first and all subsequent intervals.

The IS-IS PSPF exponential back-off mechanism is configured using the partial-spf-interval command, as shown in the following.

```
device(config-isis-router)# partial-spf-interval 60 1000 5000
```

**Syntax:** 
```
[no] partial-spf-interval max-wait initial-wait second-wait
```

The max-wait variable specifies the maximum interval between PSPF recalculations. The range of acceptable values is 0 - 120000 milliseconds. The default is 5000 milliseconds (5 seconds).

The initial-wait variable is an optional value that specifies the wait time after an LSP change until the first PSPF calculation. The range of acceptable values is 0 - 120000 milliseconds. The default for this variable is value of the max-wait time.

The second-wait variable is an optional value that specifies the wait time between the first and second PSPF calculations. If this optional value is configured, it will be doubled with each PSPF recalculation until the value is equal to the spf-max-wait value. The range of acceptable values is 0 - 120000 milliseconds. The default for this variable is value of the max-wait time.

### Configuring the IS-IS flooding mechanism

The IS-IS fast flooding feature allows you to configure IS-IS on the router to flood Link State PDUs to other routers in the network before running SPF. This improves database synchronization by allowing LSP changes to be propagated to neighbors before running SPF. The IS-IS fast-flood feature is implemented using the fast-flood command as shown in the following.

```
device(config-isis-router)# fast-flood 10
```

**Syntax:** 
```
[no] fast-flood lsp-count
```

The lsp-count variable sets the number of LSPs that trigger SPF that must be flooded before running SPF. The SPF run will be delayed until the configured number of LSPs have been flooded. If the number of changed LSPs is less than the configured number, then only the changed LSPs are flooded. The variable can be set to the following values: 1 - 25. This variable is optional and will be set to a value of 4 if not specified.

### Globally disabling or re-enabling hello padding

By default, the Extreme device adds extra data to the end of a hello packet to make the packet the same size as the maximum length of PDU the Extreme device supports.

The padding applies to the following types of hello packets:

- ES hello (ESH PDU)
- IS hello (ISH PDU)
- IS to IS hello (IIH PDU)

The padding consists of arbitrarily valued octets. A padded hello PDU indicates the largest PDU that the Extreme device can receive. Other ISs that receive a padded hello PDU from the Extreme device can therefore ensure that the IS-IS PDUs they send the Extreme device. Similarly, if the Extreme device receives a padded hello PDU from a neighbor IS, the Extreme device knows the maximum size PDU that the Extreme device can send to the neighbor.
When padding is enabled, the maximum length of a Hello PDU sent by the Extreme device is 1514 bytes. If you need to disable padding, you can do so globally or on individual interfaces. Generally, you do not need to disable padding unless a link is experiencing slow performance. If you enable or disable padding on an interface, the interface setting overrides the global setting.

To globally disable padding of IS-IS hello PDUs, enter the following command.

```
device(config-isis-router)# no hello padding
```

This command disables all hello PDU padding on the Extreme device. To re-enable padding, enter the following command.

```
device(config-isis-router)# hello padding
```

**Syntax:**

```
[no] hello padding [point-to-point]
```

By default, hello padding is enabled. Enter the `no` form of the command to disable hello padding.

The `point-to-point` option enables hello PDU padding on Point-to-Point interfaces.

To disable hello padding on an interface, refer to [Disabling and enabling hello padding on an interface on page 547](#).

### Logging adjacency changes

The Extreme device can be configured to log changes in the status of an adjacency with another IS. Logging of the adjacency changes is disabled by default. To enable or disable them, use either of the following methods.

To enable logging of adjacency changes, enter the following command.

```
device(config-isis-router)# log adjacency
```

**Syntax:**

```
[no] log adjacency
```

To disable logging of adjacency changes, enter the following command.

```
device(config-isis-router)# no log adjacency
```

### Logging invalid LSP packets received

The Extreme device can be configured to provide logging of invalid LSP packets. Logging of the invalid LSP packets is disabled by default. To enable or disable this function, use either of the following methods.

To enable logging of invalid LSP packets, enter the following command.

```
device(config-isis-router)# log invalid-lsp-packets
```

**Syntax:**

```
[no] log invalid-lsp-packets
```

To disable logging of invalid LSP packets, enter the following command.

```
device(config-isis-router)# no log invalid-lsp-packets
```

### Disabling partial SPF optimizations

IS-IS employs certain partial SPF optimizations to make partial changes to the routing table in network change situations where the topology of the network has not changed but where there may be changes in the IP networks advertised by routers. These optimizations are termed partial SPF optimizations.

You can optionally configure IS-IS to perform a full SPF calculation when any network (non-topology) change occurs by using the `disable-partial-spf-opt` command. When `disable-partial-spf-opt` is configured, IS-IS always runs full SPF for all such network changes.
To disable partial SPF calculations for IS-IS, enter the following command.

```
device(config-isis-router)# disable-partial-spf-opt
```

Syntax: `[no] disable-partial-spf-opt`

To restore partial SPF optimizations, use the `no` form of this command.

### Disabling incremental SPF optimizations

In the event of certain topology changes (for instance non-local adjacency flaps), IS-IS employs incremental SPF optimizations to efficiently update the routing table. An incremental SPF is faster and takes fewer CPU cycles than a full SPF.

You can optionally configure IS-IS to perform a full SPF calculation when any network topology change occurs by using the `disable-incremental-spf-opt` command. When `disable-incremental-spf-opt` is configured, IS-IS always runs full SPF for all such network topology changes.

To disable incremental SPF optimizations for IS-IS, enter the following command.

```
device(config-isis-router)# disable-incremental-spf-opt
```

Syntax: `[no] disable-incremental-spf-opt`

To restore incremental SPF optimizations, use the `no` form of this command.

**NOTE**

If you disable the partial SPF optimizations (by using the `disable-partial-spf-opt` command), IS-IS automatically disables the incremental SPF optimizations and always runs full SPF, too. However, the reverse is not true: disabling incremental SPF optimizations does not disable partial optimizations.

### IS-IS incremental shortcut LSP SPF optimization

IS-IS can be configured to use an incremental shortcut LSP SPF optimization algorithm. Incremental shortcut LSP SPF optimization is more efficient when updating the routes in cases where the shortcut LSP state change does not influence the topology. Incremental Shortcut LSP SPF Optimizations are on by default.

**NOTE**

If you disable the partial SPF optimizations (by using the `disable-partial-spf-opt` command), IS-IS automatically disables the incremental SPF optimizations and always runs full SPF, too. However, the reverse is not true: disabling incremental SPF optimizations does not disable partial optimizations.

### Configuration considerations

Incremental Shortcut SPF optimizations will not be applicable to LSP shortcuts with metrics configured on them

Incremental Shortcut SPF optimizations will not be applicable to LSP shortcuts with negative relative metrics configured.

Incremental Shortcut SPF optimizations will not be applicable to announced LSP shortcuts.

### Disabling IS-IS Incremental Shortcut LSP SPF Optimization

To disable incremental shortcut LSP SPF optimization, enter the following commands at the global configuration mode.

```
device((config)#router isis
device(config-isis-router)#disable-inc-stct-spf-opt
```
Configuring IPv4 address family route parameters

This section describes how to modify the IS-IS parameters for the IS-IS IPv4 unicast address family. To enter the IPv4 unicast address family, refer to the Address family configuration level on page 516.

Changing the metric style

The metric style specifies the Types, Lengths, and Values (TLVs) an IS-IS LSP can have. The TLVs specify the types of data, the maximum length of the data, and the valid values for the data. One of the types of data the TLVs control is a route’s default-metric. By default, the Extreme device uses the standard IS-IS TLVs, which allows metric values from 1 - 63. The default metric style is called “narrow.” You can increase the range of metric values supported by the Extreme device by changing the metric style to wide. The wide metric style allows metric values in the range 1 - 16777215.

To change the metric style to wide, enter the following command.

```
device(config-isis-router-ipv4)# metric-style wide
```

This command changes the metric style for both Level-1 and Level-2.

Syntax: [no] metric-style wide [ level-1 | level-2 ]

The level-1 | level-2 parameter specifies the levels to which the change applies. If not specified, the changes are applied to both levels.

Changing the maximum number of load sharing paths

By default, IPv4 IS-IS can calculate and install four equal-cost paths into the IPv4 forwarding table. You can change the number of paths IPv4 IS-IS can calculate and install in the IPv4 forwarding table to a value from 1 to 32. If you change the number of paths to one, the Extreme device does not load share multiple route paths learned from IPv4 IS-IS.

NOTE
The maximum number of paths supported by the BR-MLX-10Gx24-DM module is 16.

For example, to change the number of paths IPv4 IS-IS can calculate and install in the IPv4 forwarding table to three, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv4u)# maximum-paths 3
```

Syntax: [no] maximum-paths number

The number parameter specifies the number of paths IPv4 IS-IS can calculate and install in the IPv4 forwarding table. The number value range is 2 to 32.

NOTE
The value specified in number is limited by the IP load-sharing value specified in the ip load-sharing command.

To return to the default number of maximum paths, enter the no form of this command.
Enabling advertisement of a default route

By default, the Extreme device does not generate or advertise a default route to its neighboring ISs. A default route is not advertised even if the device’s IPv4 route table contains a default route. You can enable the device to advertise a default route to all neighboring ISs using one of the following methods. By default, the feature originates the default route at Level 2 only. However, you can apply a route map to originate the default route to Level 1 only or at both Level 1 and Level 2.

NOTE
This feature requires the presence of a default route in the IPv4 route table.

To enable the Extreme device to advertise a default route that is originated a Level 2, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv4u)# default-information-originate
```

This command enables the device to advertise a default route into the IPv4 IS-IS area to which the device is attached.

Syntax: `[no] default-information-originate [ route-map name ]`

The `route-map name` parameter allows you to specify the level on which to advertise the default route. You can specify one of the following:

- Advertise to Level-1 ISs only.
- Advertise to Level-2 ISs only.
- Advertise to Level-1 and Level-2 ISs.

NOTE
The route map must be configured before you can use the route map as a parameter with the `default-information-originate` command.

To use a route map to specify the router to advertise a default route to Level 1, enter commands such as the following at the Global CONFIG level.

```
device(config)# route-map default_level1 permit 1
device(config-routemap default_level1)# set level level-1
device(config-routemap default_level1)# exit
device(config)# router isis
device(config-isis-router)# address-family ipv4 unicast
device(config-isis-router-ipv4u)# default-information-originate route-map default_level1
```

These commands configure a route map to set the default advertisement level to Level 1 only.

Syntax: `[no] route-map map-name permit | deny sequence-number`

Syntax: `[no] set level level-1 | level-1-2 | level-2`

For this use of a route map, use the `permit` option and do not specify a `match` statement. Specify a `set` statement to set the level to one of the following:

- `level-1` - Level 1 only.
- `level-1-2` - Level 1 and Level 2.
- `level-2` - Level 2 only (default).
**Matching based on IS-IS protocol type**

The `match` option has been added to the `route-map` command that allows IS-IS routes to be matched based on level-1 or level-2 or all IS-IS routes.

```plaintext
device(config-routemap test)# match protocol isis level-1
```

Syntax: `[no] match protocol isis { level-1 | level-2 }

The `match protocol isis level-1` option can be used to match the IS-IS Level-1 routes.

The `match protocol isis level-2` option can be used to match the IS-IS Level-2 routes.

**Changing the administrative distance for IPv4 IS-IS**

When the Extreme device has paths from multiple routing protocols to the same destination, it compares the administrative distances of the paths and selects the path with the lowest administrative distance to place in the IPv4 route table.

For example, if the Extreme device has a path from RIP, from OSPF, and IPv4 IS-IS to the same destination, and all the paths are using their protocols’ default administrative distances, the device selects the OSPF path, because that path has a lower administrative distance than the RIP and IPv4 IS-IS paths.

Here are the default IPv4 administrative distances on the Extreme device:

- Directly connected - 0 (this value is not configurable)
- Static - 1 (applies to all static routes, including default routes)
- EBGP - 20
- OSPF - 110
- IPv4 IS-IS - 115
- RIP - 120
- IBGP - 200
- Local BGP - 200
- Unknown - 255 (the device will not use this route)

Lower administrative distances are preferred over higher distances. For example, if the Extreme device receives routes for the same network from IPv4 IS-IS and from RIP, it will prefer the IPv4 IS-IS route by default.

To change the administrative distance for IPv4 IS-IS routes, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```plaintext
device(config-isis-router-ipv4u)# distance 100
```

Syntax: `[no] distance number

This command changes the administrative distance for all IPv4 IS-IS routes to 100.

The `number` parameter specifies the administrative distance. You can specify a value from 1 - 255. (Routes with a distance value of 255 are not installed in the routing table.) The default for IPv4 IS-IS is 115.

**Configuring summary addresses**

You can configure summary addresses to aggregate IS-IS route information. Summary addresses can enhance performance by reducing the size of the Link State database, reducing the amount of data the Extreme device needs to send to its neighbors, and reducing the CPU cycles used for IS-IS.
When you configure a summary address, the address applies only to Level-2 routes by default. You can specify Level-1 only, Level-2 only, or Level-1 and Level-2 when you configure the address.

To configure a summary address, enter a command such as the following.

```
device(config-isis-router-ipv4u)# summary-address 192.168.0.0 255.255.0.0
```

This command configures a summary address for all Level-2 IS-IS route destinations between 192.168.0.0 and 192.168.255.255.

Syntax: `[no] summary-address ip-addr subnet-mask [ | level-1 | level-1-2 | level-2 ]`

The `ip-addr subnet-mask` parameters specify the aggregate address. The mask indicates the significant bits in the address. Ones are significant, and zeros allow any value. In the command example above, the mask 255.255.0.0 matches on all addresses that begin with 192.168 and contain any values for the final two octets.

The `level-1 | level-1-2 | level-2` parameter specifies the route types to which the aggregate route applies. The default is `level-2`.

### Redistributing routes into IPv4 IS-IS

To redistribute routes into IPv4 IS-IS, you can perform the following configuration tasks:

- Change the default redistribution metric (optional).
- Configure the redistribution of a particular route type into IPv4 IS-IS (mandatory).

The Extreme device can redistribute routes from the following route sources into IPv4 IS-IS:

- BGP4+.
- RIP.
- OSPF.
- Static IPv4 routes.
- IPv4 routes learned from directly connected networks.

The Extreme device can also redistribute Level-1 IPv4 IS-IS routes into Level-2 IPv4 IS-IS routes, and Level-2 IPv4 IS-IS routes into Level-1 IPv4 IS-IS routes.

Redistribution from other sources into IPv4 IS-IS is disabled by default. When you enable redistribution, the device redistributes routes only into Level 2 by default. You can specify Level 1 only, Level 2 only, or Level 1 and Level 2 when you enable redistribution.

The device automatically redistributes Level-1 routes into Level-2 routes. Thus, you do not need to enable this type of redistribution. You also can enable redistribution of Level-2 routes into Level-1 routes.

The device attempts to use the redistributed route's metric as the route's IPv4 IS-IS metric. For example, if an OSPF route has an OSPF cost of 20, the device uses 20 as the route's IPv4 IS-IS metric. The device uses the redistributed route's metric as the IPv4 IS-IS metric unless the route does not have a valid metric. In this case, the device assigns the default metric value to the route. For information about the default metric, refer to the [Changing the default redistribution metric](#changing-the-default-redistribution-metric) on page 532 section, which follows this section.

### Changing the default redistribution metric

When IPv4 IS-IS redistributes a route from another route source (such as OSPF, BGP4+, or a static IPv4 route) into IPv4 IS-IS, it uses the route's metric value as its metric when the metric is not modified by a route map or metric parameter and the default redistribution metric is set to its default value of 0. You can change the default metric to a value from 0 - 65535.

**NOTE**

The implementation of IS-IS does not support the optional metric types Delay, Expense, or Error.
For example, to change the default metric to 20, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
 device(config-isis-router-ipv4u)# default-metric 20
```

**Syntax:** [no] default-metric value

The `value` parameter specifies the default metric. You can specify a value from 0 - 65535. The default is 0.

To restore the default value for the default metric, enter the `no` form of this command.

### Globally change the default redistribution metric

You can change the metric value for a specific interface by using the `isis metric` command or `isis ipv6 metric` command. This feature allows you to change the metric value globally for all the active ISIS interfaces using one command.

You can still configure the interface level metric. If ISIS metric is configured on the interface, it will take the precedence over the global configuration.

### Configuration steps

1. Configure router ISIS using the `router isis` command.
2. Go to the appropriate address-family using `address-family [ipv4/ipv6] unicast` command.
3. Configure default metric using `default-link-metric <value>` command.

### Configuration example

The following global configuration example ISIS default metric is for the IPv4 address-family. It can be similarly configured for IPv6 address-family.

```
 device(config)# router isis
 device(config-isis-router)# address-family ipv4 unicast
 device(config-isis-router-ipv4u)# default-link-metric 40
```

**Syntax:** [no] default-link-metric value [level-1 | level-2 ]

The `value` parameter is the default-link-metric value to be set for the given address-family. This is a required parameter for this command. There is no default value for this parameter. For metric-style narrow: 1 to 63. For metric-style wide: 1 to 16777215.

The `level` parameter is an optional parameter used to set the default-metric for only one of the levels. If this parameter is not given, the default-link-metric will be applied to both level-1 and level-2.

The `no` version of command will revert the metric value to default, which is 10.

### Metric behavior with change in metric-style

There are two types of metric styles in ISIS, narrow metric and wide metric. The range of the metric value is different in both of these styles. If there is a change in the metric-style configuration, the default-link-metric will also change with it. The new value of the default-link-metric will be equal to the minimum of a) configured value and b) the maximum value supported for the new metric-style.

If the metric style changes from narrow metric to wide metric, there will be no change in the value of default-link-metric.

If the metric style changes from wide metric to narrow metric, and if the value of default-link-metric is greater than 63, the default-link-metric will now take the value 63, as it is the maximum supported in the narrow metric.
ISIS Show command

The show isis command and show ipv6 isis command output has been modified to reflect the default-link-metric configured.

```
device#sh isis
....
Default redistribution metric: 0
Default link metric for level-1: 33
Default link metric for level-2: 5
Protocol Routes redistributed into IS-IS:
....
device#
```

Redistributing static IPv4 routes into IPv4 IS-IS

To redistribute static IPv4 routes from the IPv4 static route table into IPv4 IS-IS routes, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv4u)# redistribute static
```

This command configures the Extreme device to redistribute all static IPv4 routes into Level-2 IS-IS routes.

**Syntax:** `[no] redistribute static [ level-1 | level-1-2 | level-2 ] [ metric num ] [ metric-type [ external | internal ] ] [ route-map name ]`

The `level-1`, `level-1-2`, and `level-2` keywords restrict redistribution to the specified IPv4 IS-IS level.

The `metric num` parameter changes the metric. You can specify a value from 0 - 4294967295.

The `metric-type external | internal` parameter restricts redistribution to one of the following:

- **external** - The metric value is not comparable to an IPv4 IS-IS internal metric and is always higher than the IPv4 IS-IS internal metric.
- **internal** - The metric value is comparable to metric values used by IPv4 IS-IS. This is the default.

The `route-map name` parameter restricts redistribution to those routes that match the specified route map. The route map must already be configured before you use the route map name with the `redistribute` command. For example, to configure a route map that redistributes only the static IPv4 routes to the destination networks 192.168.0.0/24, enter commands such as the following:

```
device(config)# access-list 10 permit 192.168.0.0 0.0.255.255
device(config)# route-map static permit 10
device(config-route-map static)# match ip address 10
device(config-route-map static)# router isis
device(config-isis-router)# address-family ipv4 unicast
device(config-isis-router-ipv4u)# redistribute static route-map static
```

**Redistributing directly connected routes into IPv4 IS-IS**

To redistribute directly connected IPv4 routes into IPv4 IS-IS routes, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv4u)# redistribute connected
```

This command configures the Extreme device to redistribute all directly connected routes in the IPv4 route table into Level-2 IPv4 IS-IS.

**Syntax:** `[no] redistribute connected [ level-1 | level-1-2 | level-2 ] [ metric number ] [ metric-type [ external | internal ] ] [ route-map name ]`

The parameters are the same as the parameters for the `redistribute static` command.
Redistributing RIP routes into IPv4 IS-IS

To redistribute RIP routes into IPv4 IS-IS, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv4u)# redistribute rip
```

This command configures the Extreme device to redistribute all RIP routes into Level-2 IS-IS.

Syntax: `[no] redistribute rip [level-1 | level-1-2 | level-2] | metric number | metric-type [external | internal] | route-map name`

The parameters are the same as the parameters for the `redistribute static` command.

Redistributing OSPF routes into IPv4 IS-IS

To redistribute OSPF routes into IPv4 IS-IS, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv4u)# redistribute ospf
```

This command configures the Extreme device to redistribute all OSPF routes into Level-2 IPv4 IS-IS.

Syntax: `[no] redistribute ospf [level-1 | level-1-2 | level-2] | match [external1 | external2 | internal] | metric number | metric-type [external | internal] | route-map name`

Most of the parameters are the same as the parameters for the `redistribute static` command. However, the `redistribute ospf` command also has the `match external1 | external2 | internal` parameter. This parameter specifies the OSPF route type you want to redistribute into IPv4 IS-IS. By default, the `redistribute ospf` command redistributes only internal routes.

- `external1` - An OSPF type 1 external route.
- `external2` - An OSPF type 2 external route.
- `internal` - An internal route calculated by OSPF.

Redistributing BGP4+ routes into IPv4 IS-IS

To redistribute BGP4+ routes into IPv4 IS-IS, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv4u)# redistribute bgp
```

This command configures the device to redistribute all its BGP4 routes into Level-2 IPv4 IS-IS.

Syntax: `[no] redistribute bgp [level-1 | level-1-2 | level-2] | metric number | metric-type [external | internal] | route-map name`

The parameters are the same as the parameters for the `redistribute static` command.

Redistributing IPv4 IS-IS routes within IPv4 IS-IS

In addition to redistributing routes from other route sources into IPv4 IS-IS, the Extreme device can redistribute Level 1 IPv4 IS-IS routes into Level 2 IPv4 IS-IS routes, and Level 2 IPv4 IS-IS routes into Level 1 IPv4 IS-IS routes. By default, the device redistributes routes from Level 1 into Level 2.

**NOTE**

The Extreme device automatically redistributes Level 1 routes into Level 2 routes, even if you do not enable redistribution.

For example, to redistribute all IPv4 IS-IS routes from Level 2 into Level 1, enter the following command at the IPv4 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv4u)# redistribute isis level-2 into level-1
```
The device automatically redistributes Level-1 routes into Level 2.

Syntax: [no] redistribute isis level-1 into level-2 | level-2 into level-1 [ prefix-list name ]

The level-1 into level-2 | level-2 into level-1 parameter specifies the direction of the redistribution:
- level-1 into level-2 - Redistributes Level 1 routes into Level 2. This is the default.
- level-2 into level-1 - Redistributes Level 2 routes into Level 1.

The prefix-list name specifies an IP prefix list.

**Configuring IS-IS point-to-point over Ethernet**

IS-IS uses its neighbor’s MAC address to form an adjacency and stores the neighbors MAC address to recognize the adjacency in the future. This is no problem with directly adjacent routers but can become a problem when adjacency is required between routers that are more than one hop away. To accommodate an IS-IS network with this type of configuration, the IS-IS Point-to-Point over Ethernet feature has been developed.

Using the IS-IS Point-to-Point feature over ethernet, routers that are several hops away or available through an IP GRE tunnel (as described in Configuring IS-IS over a GRE IP tunnel on page 538) can form an IS-IS adjacency. It can be used when only two IS’s are part of the broadcast network. This feature is configured at the interface level of the routers that are forming an adjacency. For example, Figure 40 shows two Extreme devices several hops away from each other that are configured for IS-IS adjacency.

**FIGURE 40 IS-IS Point-to-Point configuration**

You can use the commands in the following configurations to enable the IS-IS Point-to-Point feature:

**Extreme IS-IS Router A configuration**

To configure Extreme IS-IS Router A for the IS-IS Point-to-Point feature use the following commands.

```
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# ip router isis
device(config-if-e10000-1/1)# ip address 10.10.2.2
device(config-if-e10000-1/1)# isis point-to-point
```
Extreme IS-IS Router B configuration

To configure Extreme IS-IS Router B for the IS-IS Point-to-Point feature use the following commands.

```snippet
device(config)# interface ethernet 2/1
device(config-if-e10000-2/1)# ip router isis
device(config-if-e10000-2/1)# ip address 10.10.1.2
device(config-if-e10000-2/1)# isis point-to-point
```

**Syntax:** `[no] isis point-to-point`

Displaying IS-IS point-to-point configuration

Use the `show isis interface` command to determine if IS-IS point-to-point is configured on an interface. In the example below, the lines in bold identify IS-IS point-to-point configuration.

```snippet
device# show isis interface
Total number of IS-IS Interfaces: 2
Interface : v128 Local Circuit Number: 0000000c
 Circuit Type : PTP Circuit Mode : LEVEL-1-2
 Circuit State: UP Passive State: FALSE
 MTU : 1497
 Level-1 Metric: 10, Level-1 Priority: 64
 Circuit State Changes: 1 Circuit Adjacencies State Changes: 1
 Rejected Adjacencies: 0
 Circuit Authentication Fails: 0 Bad LSP 0
 Control Messages Sent: 45600 Control Messages Received: 6778
 IP Enabled: TRUE
 IP Address and Subnet Mask: 10.1.1.1 255.255.255.0
 IPv6 Enabled: FALSE
```

To determine if IS-IS point-to-point link is being used by ISs, use the `show isis neighbor` command.

```snippet
device# show isis neighbor
System Id Interface SNPA State Holdtime Type Pri StateChgeTime
SFO-RX16 eth1/1 0000.00db.0eee UP 10 ISL2 64 0 :5 :5 :12
SFO-RX16 eth1/1 0000.00db.0eee UP 10 ISL1 64 0 :5 :5 :12
SFO-RX16 ve 128 0000.0000.0005 UP 30 PTPT 127 0 :4 :46:59
```

Configuring IS-IS over a GRE IP tunnel

As described in Configuring IS-IS point-to-point over Ethernet on page 536, IS-IS adjacency can be established over ethernet between routers that are more than one hop away using the IS-IS Point-to-Point feature. IS-IS over a GRE IP tunnel extends this capability by allowing you to configure IS-IS adjacency between routers on either end of a GRE IP tunnel. To configure IS-IS over a GRE IP Tunnel you must configure the following:

- Configure the routers that you want to establish adjacency for IS-IS point-to-point as described in Configuring IS-IS point-to-point over Ethernet on page 536.
- Configure a GRE IP Tunnel.
- Configure the routers used for the GRE IP Tunnel for IS-IS using the `router isis` command.
- Configure the tunnel interfaces on the routers used for the GRE IP Tunnel for IS-IS point-to-point using the `isis point-to-point` command.
Configuration considerations

The configuration considerations are as follows:

- When a GRE tunnel is configured, you cannot configure the same routing protocol on the tunnel through which the device learns the route to the tunnel destination. For example, if a device learns the tunnel destination route through the OSPF protocol, you cannot configure the OSPF protocol on the same Tunnel and vice-versa. When a tunnel has OSPF configured, the device cannot learn the tunnel destination route through OSPF. This will cause the system to become unstable.

- When you have keepalive configured on both sides of a GRE tunnel, we recommend that you disable the tunnel before changing any tunnel configurations. You can then re-enable the tunnel to restore it to normal functionality.

- When configuring a GRE IP Tunnel, the device must be configured with one of the following CAM Profiles: ipv4, ipv6, mpls-l3vpn, ipv4-vpn, multi-service-2 or mpls-l3vpn-2.

Configuring IS-IS over a GRE IP tunnel

Figure 41 displays a network configured for IS-IS over a GRE IP tunnel. In the example, Extreme IS-IS Router A and Extreme IS-IS Router B are configured for adjacency. Routers Extreme C and Extreme D are configured with a GRE IP tunnel. Following the illustration are examples of the configurations required for IS-IS over a GRE IP tunnel.

FIGURE 41 IS-IS over a GRE IP tunnel

The following examples describe the configurations that support IS-IS over a GRE IP tunnel for each of the routers in Figure 41.
**Extreme IS-IS Router A configuration**

To configure Extreme IS-IS Router A for the IS-IS Point-to-Point feature use the following commands.

```
device(config)# interface ethernet 2/1
device(config-if-e10000-2/1)# ip router isis
device(config-if-e10000-2/1)# ip address 10.10.1.2
device(config-if-e10000-2/1)# isis point-to-point
```

**Extreme IS-IS Router B configuration**

To configure Extreme IS-IS Router B for the IS-IS Point-to-Point feature use the following commands.

```
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# ip router isis
device(config-if-e10000-1/1)# ip address 10.10.2.2
device(config-if-e10000-1/1)# isis point-to-point
```

**Extreme C configuration**

To configure the Extreme C router for the IS-IS over a GRE IP tunnel feature, use the following commands.

```
device(config)# router isis
device(config-isis-router)# exit
device(config)# interface tunnel 1
device(config-tnif-1)# tunnel source 10.0.8.108
device(config-tnif-1)# tunnel destination 10.108.5.2
device(config-tnif-1)# tunnel mode gre ip
device(config-tnif-1)# isis point-to-point
device(config-tnif-1)# ip address 10.10.3.1/24
device(config-tnif-1)# exit
device(config)# ip route 10.10.2.0/24 10.10.3.1
```

**Extreme D configuration**

To configure the Extreme D router for the S-IS over a GRE IP tunnel feature, use the following commands.

```
device(config)# router isis
device(config-isis-router)# exit
device(config)# interface tunnel 1
device(config-tnif-1)# tunnel source ethernet 5/1
device(config-tnif-1)# tunnel destination 10.0.8.108
device(config-tnif-1)# tunnel mode gre ip
device(config-tnif-1)# isis point-to-point
device(config-tnif-1)# ip address 10.10.3.2/24
device(config-tnif-1)# exit
device(config)# ip route 10.10.1.0/24 10.10.3.1
```

**Displaying IS-IS over GRE IP tunnel**

You can use the `show isis interface` command to determine if IS-IS point-to-point is configured on a tunnel interface. In the example below, the lines in bold identify IS-IS point-to-point configuration in the `gre_tnl 1` interface.

```
device# show isis interface
Total number of IS-IS Interfaces: 2
Interface : gre_tnl 1
 Circuit State: UP Circuit Mode: LEVEL-1-2
 Circuit Type : PTP Passive State: FALSE
 Circuit Number: 0x02, MTU: 1497
 Level-1 Metric: 10, Level-1 Priority: 64
 Level-1 Auth-mode: None
 Level-2 Auth-mode: None
 Level-1 Metric: 10, Level-1 Priority: 50
```

**Extreme NetIron Routing Configuration Guide, 06.0.00a**

53-1004207-06 539
Level-1 Hello Interval: 10 Level-1 Hello Multiplier: 3
Level-1 Designated IS: XMR1-02 Level-1 DIS Changes: 0
Level-2 Metric: 10, Level-2 Priority: 50
Level-2 Hello Interval: 10 Level-2 Hello Multiplier: 3
Level-2 Designated IS: MLX2-02 Level-2 DIS Changes: 0
Circuit State Changes: 1 Circuit Adjacencies State Changes: 1
Rejected Adjacencies: 0
Circuit Authentication L1 failures: 0
Circuit Authentication L2 failures: 0
Bad LSPs: 0
Control Messages Sent: 318 Control Messages Received: 229
IP Enabled: TRUE
IP Address and Subnet Mask:
10.50.50.20         255.255.255.0
IPv6 Enabled: FALSE

To determine if IS-IS point-to-point link is being used by ISs, use the `show isis neighbor` command. In the example below, the line in bold identifies a point-to-point configuration on the XMR1 system for the gre_tnl 1 interface.

```
device# show isis neighbor
Total number of IS-IS Neighbors: 3
System Id Interface SNPA State Holdtime Type Pri StateChgeTime
0000.0000.0004 eth 6/2 0000.0076.4805 UP 30 ISL1 0 0 :0 :8 :42
0000.0000.0004 eth 6/2 0000.0076.4805 UP 30 ISL2 0 0 :0 :8 :42
XMR1 gre_tnl 1 0000.0000.0005 UP 30 PTPT 127 0 :0 :9 :16
```

You can use the `show ip route isis` command to determine if next hop is a tunnel. For example.

```
device# show ip route isis
Type Codes - B:BGP D: Connected I: ISIS S: Static R: RIP O:O SPF; Cost - Dist/Metric
 Destination Gateway Port Cost Type
1 10.30.30.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
2 10.100.100.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
3 10.100.101.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
4 10.100.102.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
5 10.100.103.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
6 10.100.104.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
7 10.100.105.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
8 10.100.106.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
9 10.100.107.0/24 10.50.50.10 gre_tnl 1 115/20 IL1
```

**IS-IS Non-Stop Routing**

**Overview**

**NOTE**

IS-IS NSR is not supported on the CES 2000 Series and CER 2000 Series platforms.

IS-IS Non-Stop Routing (NSR) enables the IS-IS router to maintain topology and data flow to avoid re-convergence in the network during a processor switchover or hitless-reload event. The IS-IS Bidirectional Forwarding Detection (BFD) sessions survive the switchover and hitless-reload conditions. In general, a router restart causes its peer to remove the routes originated from the router and reinstalls them. This IS-IS NSR feature enables the router to maintain neighbors and LSA database with its peer on the event of a router restart.

In IS-IS NSR, the processor switchovers and the hitless-reloads are treated the same as they are during startup and the overload bit is set in the same way as it is after a reboot. For more information on overload bit setup, refer to Setting the overload bit on page 518.

**NOTE**

IS-IS NSR is independent of Graceful Restart (GR) and GR help role mechanisms.
Limitations

- The IS-IS over GRE tunnel feature does not support IS-IS NSR. The GRE tunnel interface types are not supported.
- The IS-IS shortcuts are not supported because they depend on the MPLS tunnel.
- If the IS-IS hellos are forwarded at Layer 2 and the device executes a hitless-reload, hellos will not be forwarded for a brief time. The IS-IS adjacencies are lost for 12 seconds and there will be data traffic loss.
- The configuration events that occur close to switchover or hitless-reload may get lost due to CLI synchronization issues.
- The neighbor or interface state changes close to switchover or hitless-reload cannot be handled.
- The IS-IS neighbor hold timer is restarted upon IS-IS NSR switchover or hitless-reload.
- It is recommended to use the default IS-IS hello timer value. IS-IS neighbor sessions may flap during a linecard software upgrade if a shorter timer value is used.
- The traffic counters are not synchronized because the neighbor and LSP database counters are recalculated on the standby module during synchronization.
- With IS-IS NSR enabled, after switchover or hitless-reload to standby MP, IS-IS routes, LSP database and neighbor adjacencies are maintained so that there will be no loss of existing traffic to the IS-IS destinations.
- The IS-IS NSR hitless failover event may not be completely invisible to the network because, after switchover, additional flooding of CSNP packets will occur in the directly connected neighbors.

Enabling and disabling IS-IS NSR

To globally enable IS-IS NSR, enter the following commands.

```
device(config)# router isis
device(config-isis-router)# nonstop-routing
```

To globally disable IS-IS NSR, enter the following commands.

```
device(config)# router isis
device(config-isis-router)# no nonstop-routing
```

Syntax: `[no] nonstop-routing`

Disabling and enabling IS-IS graceful restart helper mode

Graceful Restart allows for the forwarding of data packets to continue along known routes while the routing protocol information is being restored following a processor switchover.

**NOTE**
The ISIS GR helper mode is enabled by default on the the router and there is no configuration required.

To disable ISIS graceful restart (GR) helper mode, enter the following commands.

```
device(config)# router isis
device(config-isis-router)# graceful-restart helper-disable
```

To enable the disabled ISIS graceful restart (GR) helper mode, enter the following commands.

```
device(config)# router isis
device(config-isis-router)# no graceful-restart helper-disable
```

`[no] graceful-restart helper-disable`
Displaying the IS-IS NSR status

To display the IS-IS NSR status, enter the following command.

```
device(config-isis-router)# show isis
IS-IS Routing Protocol Operation State: Enabled
IS-Type: Level-2
System ID: cccc.bbbb.aaaa
Manual area address(es):
22.6666
Level-1-2 Database State: On
Administrative Distance: 210
Maximum Paths: 4
Default redistribution metric: 0
Protocol Routes redistributed into IS-IS:
None
Number of Routes redistributed into IS-IS: 0
Level-1 Auth-mode: None
Level-2 Auth-mode: None
Metric Style Supported for Level-1: Narrow
Metric Style Supported for Level-2: Narrow
Graceful-Restart Helper support enabled
IS-IS Partial SPF Optimizations: Enabled
Timers:
 L1 SPF: Max-wait 5s Init-wait 5000ms Second-wait 5000ms
 L2 SPF: Max-wait 5s Init-wait 5000ms Second-wait 5000ms
 L1 SPF will run in 800msec
 L2 SPF is not scheduled
 PSPP: Max-wait 5000ms Init-wait 2000ms Second-wait 5000ms
 PSPP will run in 300msec
 LSP: max-lifetime 45s, refresh-interval 7s, gen-interval 10s
 retransmit-interval 5s, lsp-interval 33ms
 SNP: csnp-interval 10s, psnp-interval 2s
Global Hello Padding : Enabled
Global Hello Padding For Point to Point Circuits: Enabled
Ptp: Three Way HandShake Mechanism: Enabled
BGP Ipv4 Converged: FALSE, Ipv6 Converged: FALSE
IS-IS Traffic Engineering Support: Disabled
No ISIS Shortcuts Configured
BFD: Disabled
NSR: Enabled
 NSR State: Normal
 Standby MP: Ready
 Sync State: Enabled
Interfaces with IPv4 IS-IS configured:
ethernet 2/1 ve 20 ve 165 loopback 1 loopback 2 loopback 3
```

The following table describes the output of the `show isis` command.

### TABLE 95 Output from the `show isis` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
</table>
| IS-IS Routing Protocol Operation State | This field indicates the operating state of IS-IS and the possible states includes the following:  
  - Enabled - IS-IS is enabled.  
  - Disabled - IS-IS is disabled.  |
| IS-Type | This field indicates the intermediate system type and the possible types includes the following:  
  - Level 1 only - The device routes traffic only within the area in which it resides.  
  - Level 2 only - The device routes traffic between areas of a routing domain.  
  - Level 1-2 - The device routes traffic within the area in which it resides and between areas of a routing domain.  |
### TABLE 95 Output from the **show isis** command (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>System ID</td>
<td>This field indicates the unique IS-IS router ID. Typically, the router base MAC address is used as the system ID.</td>
</tr>
<tr>
<td>Manual area address(es)</td>
<td>This field indicates the Area address(es) of the device.</td>
</tr>
</tbody>
</table>
| Level-1-2 Database State | This field indicates the state of the Level 1-2 Database:  
  - On  
  - Off |
| Administrative Distance | This field specifies the current setting of the IS-IS administrative distance. |
| Maximum Paths          | This field specifies the number of paths IS-IS can calculate and install in the forwarding table. |
| Default redistribution metric | This field specifies the value of the default redistribution metric, which is the IS-IS cost of redistributing the route into IS-IS. |
| Number of Routes redistributed into IS-IS | This field specifies the number of routes distributed into IS-IS. |
| Level-1 Auth-mode      | This field indicates one of the following authentication modes set for Level-1 on the router:  
  - None  
  - md5  
  - cleartext |
| Level-2 Auth-mode      | This field indicates one of the following authentication modes set for Level-2 on the router:  
  - None  
  - md5  
  - cleartext |
| Metric Style Supported for Level-1 | This field indicates the metric style supported for Level-1 and the following values are supported:  
  - Wide - Wide Metric Style  
  - Narrow - Narrow Metric Style |
| Metric Style Supported for Level-2 | This field indicates the metric style supported for Level-2 and the following values are supported:  
  - Wide - Wide Metric Style  
  - Narrow - Narrow Metric Style |
| IS-IS Graceful restart helper mode | This field indicates the IS-IS GR helper mode function and the parameter can contain one of the following values:  
  - Enabled  
  - Disabled |
| IS-IS Partial SPF Optimizations | This field indicates the IS-IS partial SPEF optimization and the parameter can contain one of the following values:  
  - Enabled  
  - Disabled |
| Timers: L1 or L2 SPF:   | The following values are displayed individually for IS-IS levels 1 and 2. |
| max-wait               | This field indicates the maximum time gap that will occur between running of SPF calculations. It is the value configured as the spf-max-wait variable in the **spf-interval** command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525. |
| Init-wait              | This field indicates the initial time gap between an SPF event and the first running of SPF. This value reflects the spf-initial-time variable that is configured using the **spf-interval** command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525. |
### TABLE 95 Output from the `show isis` command (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second-wait</td>
<td>This field indicates the interval between the first running of SPF and the first recalculation of the SPF tree. If this optional value is configured, it will be doubled with each recalculation of the SPF tree until the value is equal to the max-wait value.</td>
</tr>
<tr>
<td></td>
<td>This value reflects the <code>spf-second-wait</code> variable that is configured using the <code>spf-interval</code> command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>SPF run status.</td>
<td>This field is not specifically labeled but it is displayed directly under the SPF timers. It can be any of the three values shown below:</td>
</tr>
<tr>
<td></td>
<td>• SPF is running</td>
</tr>
<tr>
<td></td>
<td>• SPF will run in sec where the sec variable is a value in seconds until the next time that SPF will be run.</td>
</tr>
<tr>
<td></td>
<td>• SPF is not scheduled</td>
</tr>
<tr>
<td>Timers: PSPF:</td>
<td></td>
</tr>
<tr>
<td>max-wait</td>
<td>This field indicates the maximum time gap that will occur between running of PSPF calculations. It is the value configured as the max-wait value in the <code>partial-spf-interval</code> command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>Init-wait</td>
<td>This field indicates the initial time gap between the wait time after an LSP change until the first PSPF calculation. This value reflects the initial-wait variable that is configured using the <code>partial-spf-interval</code> command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>Second-wait</td>
<td>This field indicates the wait time between the first and second PSPF calculations. If this optional value is configured, it will be doubled with each PSPF recalculation until the value is equal to the max-wait value.</td>
</tr>
<tr>
<td></td>
<td>This value reflects the <code>spf-second-wait</code> variable that is configured using the <code>partial-spf-interval</code> command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>PSPF run status.</td>
<td>This field is not specifically labeled but it is displayed directly under the PSPF timers. It can be any of the three values shown below:</td>
</tr>
<tr>
<td></td>
<td>• PSPF is running</td>
</tr>
<tr>
<td></td>
<td>• PSPF will run in sec where the sec variable is a value in seconds until the next time that PSPF will be run.</td>
</tr>
<tr>
<td></td>
<td>• PSPF is not scheduled</td>
</tr>
<tr>
<td>Timers: LSP:</td>
<td></td>
</tr>
<tr>
<td>max-lifetime</td>
<td>This field indicates the maximum number of seconds an unrefreshed LSP can remain in the device’s LSP database. The default value is 1000 sec.</td>
</tr>
<tr>
<td>refresh-interval</td>
<td>This field indicates the maximum number of seconds that a device waits between sending updated LSPs to its IS-IS neighbors. The default value is 1 sec.</td>
</tr>
<tr>
<td>gen-interval</td>
<td>This field indicates the minimum number of seconds that a device waits between sending updated LSPs to its IS-IS neighbors. The default value is 10 sec.</td>
</tr>
<tr>
<td>retransmit-interval</td>
<td>This field indicates the amount of time the device waits before it retransmits LSPs. The default value is 5 sec.</td>
</tr>
<tr>
<td>lsp-interval</td>
<td>This field indicates the rate of transmission (in milliseconds) of the LSPs.</td>
</tr>
</tbody>
</table>
### TABLE 95 Output from the show isis command (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timers: SNP:</td>
<td>The default rate is 33 ms.</td>
</tr>
<tr>
<td>csnp-interval</td>
<td>This field indicates how often the designated IS sends a CSNP to the broadcast interface. The default value is 10 sec.</td>
</tr>
<tr>
<td>psnp-interval</td>
<td>This field indicates how often the IS sends a PSNP. The default value is 2 sec.</td>
</tr>
</tbody>
</table>
| Global Hello Padding | The value can be:  
  • Enabled  
  • Disabled |
| Global Hello Padding For Point to Point Circuits | The value can be:  
  • Enabled  
  • Disabled |
| Ptpt Three Way HandShake Mechanism | The value can be:  
  • Enabled  
  • Disabled |
| IS-IS Traffic Engineering Support | The value can be:  
  • Enabled  
  • Disabled |
| BFD | The value can be:  
  • Enabled  
  • Disabled |
| Interfaces with IPv4 IS-IS configured | This field specifies the interfaces on which IPv4 IS-IS is configured. |
| NSR state | This field indicates the state of the IS-IS NSR and takes the following values:  
  • Normal - This indicates that the switchover is either compete or the switchover event is not triggered.  
  • SwitchOver Detected - This indicates that the switchover event is recognized by the IS-IS.  
  • All Card Done - This is an internal event after which the IS-IS starts sending hellos to its neighbors and schedules SPF.  
  • SPF Run Complete - This indicates that the SPF run and updating of the IS-IS routes to RTM is complete.  
  • Wait for BGP - This event indicates that the IS-IS is waiting for redistribution to complete. After redistribution to IS-IS is complete, the IS-IS NSR state will change to Normal. |
| Standby MP | This field indicates the standby MP is active, ready, or inactive:  
  • Active - This indicates the standby MP is active.  
  • Inactive - This indicates the standby MP is either down or not present.  
  • Ready - This indicates the standby MP is ready to accept configuration updates or database updates. |
| Sync State | This field indicates whether the synchronization state is enabled or disabled. The state changes depending on whether or not the Non Stop-Routing command is configured under the router IS-IS. |
| Interfaces with IPv4 IS-IS configured | This field specifies the interfaces configured with IPv4 IS-IS. |
Configuring ISIS properties on an interface

This section describes the IS-IS parameters for an interface.

Disabling and enabling IS-IS on an interface

In addition to enabling IS-IS globally, you also must enable the protocol on the individual interfaces connected to ISs or ESs. To enable IS-IS locally on specific interfaces, enter commands such as the following.

```
device(config)# interface ethernet 1/1
device(config-if-1/1)# ip router isis
device(config-if-1/1)# exit
device(config)# interface pos 2/3
device(config-if-2/3)# ip router isis
```

These commands enable IS-IS on ports 1/1 and 2/3. The NET configured above (at the IS-IS configuration level) applies to both interfaces.

Syntax: [no] ip router isis

Disabling or re-enabling formation of adjacencies

When you enable IS-IS on any type of interface except a loopback interface, the interface also is enabled to send advertisements and form an adjacency with an IS at the other end of the link by default. Adjacency formation and advertisements are disabled by default on loopback interfaces.

You can enable or disable adjacency formation and advertisements on an interface.

**NOTE**

The Extreme device advertises an IS-IS interface to its area regardless of whether adjacency formation is enabled.

To disable IS-IS adjacency formation on an interface, enter commands such as the following.

```
device(config)# interface ethernet 2/8
device(config-if-e1000-2/8)# isis passive
```

This command disables IS-IS adjacency formation on port 2/8. The device still advertises this IS-IS interface into the area, but does not allow the port to form an adjacency with the IS at the other end of the link.

Syntax: [no] isis passive

Setting the priority for designated IS election

The priority of an IS-IS interface determines the priority of the interface for being elected as a Designated IS. Level-1 has a Designated IS and Level-2 has a Designated IS. The Level-1 and Level-2 Designated ISs are independent, although the same device can become both the Level-1 Designated IS and the Level-2 Designated IS.

By default, the Level-1 and Level-2 priority is 64. You can configure an interface's priority to a value from 1 - 127. You can configure the same priority for both Level-1 and Level-2 or you can configure a different priority for each level. In case of a tie (if two or more devices have the highest priority within a given level), the device with the highest MAC address becomes the Designated IS for that level.

**NOTE**

You can set the IS-IS priority on an individual interface basis only. You cannot set the priority globally.
To set the IS-IS priority on an interface, enter commands such as the following.

```bash
device(config)# interface ethernet 2/8
device(config-if-e1000-2/8)# isis priority 127
```

This command sets the IS-IS priority on port 1/1 to 127. Since the command does not specify Level-1 or Level-2, the new priority setting applies to both IS-IS levels.

**Syntax:** `[no] isis priority num [ level-1 | level-2 ]`

The `num` parameter specifies the priority and can be from 1 - 127. A higher numeric value means a higher priority. The default is 64.

The `level-1 | level-2` parameter applies the priority to Level-1 only or Level-2 only. By default, the priority is applied to both levels.

### Limiting access to adjacencies with a neighbor

In addition to limiting access to an area (Level-1) or domain (Level-2), you can limit access to forming an IS-IS adjacency on a specific interface by entering a password at the interface configuration level. To enter this password, enter a command such as the following.

```bash
device(config)# interface ethernet 2/8
device(config-if-e1000-2/8)# isis password my-password
```

**Syntax:** `[no] isis password string`

The `string` parameter specifies the password. You can enter an alphanumeric string up to 80 characters long. The password can contain blank spaces. If you use a blank space in the password, you must use quotation marks (" ") around the entire password; for example, `isis password "admin 2"`.

### Changing the IS-IS level on an interface

The section Changing the IS-IS level globally on page 523 explains how to change the IS-IS level globally. By default, a NetIron device can operate as both a Level-1 and IS-IS Level-2 router. You can change the IS-IS type on an individual interface to be Level-1 only or Level-2 only. You also can reset the type to both Level-1 and Level-2.

**NOTE**

If you change the IS-IS type on an individual interface, the type you specify must also be specified globally. For example, if you globally set the type to Level-2 only, you cannot set the type on an individual interface to Level-1. The software accepts the setting but the setting does not take effect.

To change the IS-IS type on a specific interface, enter commands such as the following.

```bash
device(config)# interface ethernet 2/8
device(config-if-e1000-2/8)# isis circuit-type level-1
```

**Syntax:** `[no] isis circuit-type level-1 | level-1-2 | level-2`

The `level-1 | level-1-2 | level-2` parameter specifies the IS-IS type. If you want to re-enable support for both IS-IS types, re-enter the command you entered to change the IS-IS type, and use 

`no` in front of the command.

### Disabling and enabling hello padding on an interface

The section Globally disabling or re-enabling hello padding on page 526 explains what hello padding is, why it is important and how to globally disable or enable it on a device. You can also disable hello padding on a specific interface by entering commands such as the following.

```bash
device(config)# interface ethernet 2/8
device(config-if-e1000-2/8)# no isis hello padding
```
Syntax: [no] isis hello padding
By default, hello padding is enabled. Enter the no form of the command to disable hello padding.

Changing the hello interval
The hello interval controls how often an IS-IS interface sends hello messages to its IS-IS neighbors. The default interval is 10 seconds for Level-1 and Level-2. You can change the hello interval for one or both levels to a value from 1 - 65535 seconds.

To change the hello interval for Ethernet interface 2/8, enter commands such as the following.
```
device(config)# interface ethernet 2/8
device(config-if-e1000-2/8)# isis hello-interval 20
```
This command changes the hello interval to 20 seconds. By default, the change applies to Level-1 and Level-2.

Syntax: [no] isis hello-interval num [ level-1 | level-2 ]
The num parameter specifies the interval, and can be from 1 - 65535 seconds. The default is 10 seconds.
The level-1 | level-2 parameter applies the change to only the level you specify. If you do not use this parameter, the change applies to both levels.

Changing the hello multiplier
The hello multiplier is the number by which an IS-IS interface multiplies the hello interval to obtain the hold time for Level-1 and Level-2 IS-to-IS hello PDUs. The default multiplier is 3. You can set the multiplier to a value in the range 3 - 1000.

To change the hello multiplier for Ethernet interface 2/8, enter commands such as the following.
```
device(config)# interface ethernet 2/8
device(config-if-e1000-2/8)# isis hello-multiplier 50
```
This command changes the hello interval to 50. By default, the change applies to both Level-1 and Level-2.

Syntax: [no] isis hello-multiplier num [ level-1 | level-2 ]
The num parameter specifies the multiplier, and can be from 3 - 1000. The default is 3.
The level-1 | level-2 parameter applies the change to only the level you specify. If you do not use this parameter, the change applies to both levels.

DIS hello interval
The DIS hello interval value is derived from the hello interval configured under the interface. The default ISIS hellos interval is 10 sec. The default DIS hello interval is 10/3 = sec. The default values of the DIS hello interval is not changed.
However, if you configure a hello interval of 20 for an interface, then the DIS hello interval for the interface becomes 20/3 =6 sec.
The DIS hello multiplier is the same as the hello multiplier configured under the interface.

Changing the metric added to advertised routes
When the Extreme device originates an IS-IS route or calculates a route, the Extreme device adds a metric (cost) to the route. Each IS-IS interface has a separate metric value. The default is 10.
The Extreme device applies the interface-level metric to routes originated on the interface and also when calculating routes. The Extreme device does not apply the metric to link-state information that the Extreme device receives from one IS and floods to other ISs.

The default interface metric is 10. You can change the metric on an individual interface to a value in one of the following ranges:

- 1 - 63 for the narrow metric style (the default metric style for IPv4 ISIS)
- 1 - 16777215 for the wide metric style (the default metric style for IPv4 ISIS)

**NOTE**

If the metric value you want to use is higher than 63 but you have not changed the metric style to wide, change the metric style first, then set the metric. The IS-IS neighbors that will receive the advertisements also must be enabled to receive wide metrics.

To change the IS-IS metric on an interface, use the following CLI method.

```
device(config)# interface ethernet 2/8
device(config-if-e1000-2/8)# isis metric 15
```

**Syntax:** `[no] isis metric num [level-1 | level-2 ]`

The `num` parameter specifies the metric. The range of values you can specify depends on the metric style. You can specify 1 - 63 for the narrow metric style or 1 - 16777215 for the wide metric style. The default in either case is 10.

The `level-1 | level-2` parameter applies the change to only the level you specify. If you do not use this parameter, the change applies to both levels.

## Displaying IPv4 IS-IS information

You can display the following information:

- General IS-IS Information - Displaying ISIS general information on page 549
- The active configuration (the IS-IS commands in the running-config) - refer to Displaying the IS-IS configuration in the running-config on page 553
- Name mappings - Displaying the name mappings on page 553
- Neighbor information - Displaying neighbor information on page 553
- Neighbor adjacency changes - Displaying IS-IS Syslog messages on page 555
- Interface information - Displaying IS-IS interface information on page 556
- Route information - Displaying route information on page 559
- LSP database entries - Displaying LSP database entries on page 560
- Traffic statistics - Displaying traffic statistics on page 564
- Error statistics - Displaying error statistics on page 564
- IS-IS Log - Displaying the IS-IS SPF Log on page 566

## Displaying ISIS general information

To display general IPv4 IS-IS information, enter the following command at any CLI level.

```
device#show isis
IS-IS Routing Protocol Operation State: Enabled
IS-Type: Level-1-2
System ID: 0000.0011.1111
Manual area address(es): 47
Level-1-2 Database State: On
```
Administrative Distance: 115
Maximum Paths: 4
Default redistribution metric: 0
Protocol Routes redistributed into IS-IS:
  Static
Number of Routes redistributed into IS-IS: 11
Level-1 Auth-mode: None
Level-2 Auth-mode: None
Metric Style Supported for Level-1: Wide
Metric Style Supported for Level-2: Wide
IS-IS Partial SPF Optimizations: Enabled
Timers:
  L1 SPF: Max-wait 120s Init-wait 100ms Second-wait 120000ms
  L2 SPF: Max-wait 100s Init-wait 100ms Second-wait 100000ms
  L1 SPF is not scheduled
  L2 SPF is not scheduled
PSPF: Max-wait 120000ms Init-wait 120000ms Second-wait 120000ms
PSPF is not scheduled
LSP: max-lifetime 1200s, refresh-interval 900s, gen-interval 10s
  retransmit-interval 5s, lsp-interval 33ms
SNP: csnp-interval 10s, psnp-interval 2s
Global Hello Padding : Enabled
Global Hello Padding For Point to Point Circuits: Enabled
Ptpt Three Way HandShake Mechanism: Enabled
IS-IS Traffic Engineering Support: Disabled
BFD: Disabled
Interfaces with IPv4 IS-IS configured:
  eth 1/1

Syntax: show isis

This display shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
</table>
| IS-IS Routing Protocol Operation State | The operating state of IS-IS. Possible states include the following:
  - Enabled - IS-IS is enabled.
  - Disabled - IS-IS is disabled. |
| IS-Type | The intermediate system type. Possible types include the following:
  - Level 1 only - The device routes traffic only within the area in which it resides.
  - Level 2 only - The device routes traffic between areas of a routing domain.
  - Level 1-2 - The device routes traffic within the area in which it resides and between areas of a routing domain. |
| System ID | The unique IS-IS router ID. Typically, the device's base MAC address is used as the system ID. |
| Manual area address(es) | Area address(es) of the device. |
| Level-1-2 Database State | The state of the Level 1-2 Database:
  - On
  - Off |
| Administrative Distance | The current setting of the IS-IS administrative distance. |
| Maximum Paths | The number of paths IS-IS can calculate and install in the forwarding table |
| Default redistribution metric | The value of the default redistribution metric, which is the IS-IS cost of redistributing the route into IS-IS. |
| Number of Routes redistributed into IS-IS | The number of routes distributed into IS-IS. |
| Level-1 Auth-mode | One of the following authentication modes set for Level-1 on the router:
  - None |
<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>md5 cleartext</td>
<td></td>
</tr>
<tr>
<td>Level-2 Auth-mode</td>
<td>One of the following authentication modes set for Level-2 on the router: None, md5, cleartext</td>
</tr>
<tr>
<td>Metric Style Supported for Level-1</td>
<td>The following values are supported: Wide - Wide Metric Style, Narrow - Narrow Metric Style</td>
</tr>
<tr>
<td>Metric Style Supported for Level-2</td>
<td>The following values are supported: Wide - Wide Metric Style, Narrow - Narrow Metric Style</td>
</tr>
<tr>
<td>IS-IS Partial SPF Optimizations</td>
<td>This parameter can contain one of the following values: Enabled, Disabled</td>
</tr>
<tr>
<td>Timers: L1 or L2 SPF:</td>
<td>These values are displayed individually for IS-IS levels 1 and 2.</td>
</tr>
<tr>
<td>max-wait</td>
<td>The maximum time gap that will occur between running of SPF calculations. It is the value configured as the spf-max-wait variable in the spf-interval command as described in Configuring the IS-IS SPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>Init-wait</td>
<td>The initial time gap between an SPF event and the first running of SPF. This value reflects the spf-initial-time variable that is configured using the spf-interval command as described in Configuring the IS-IS SPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>Second-wait</td>
<td>The interval between the first running of SPF and the first recalculation of the SPF tree. If this optional value is configured, it will be doubled with each recalculation of the SPF tree until the value is equal to the max-wait value. This value reflects the spf-second-wait variable that is configured using the spf-interval command as described in Configuring the IS-IS SPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>SPF run status.</td>
<td>This field is not specifically labeled but is displayed directly under the SPF timers.) It can any of the three values shown below: SPF is running, SPF will run in sec where the sec variable is a value in seconds until the next time that SPF will be run, SPF is not scheduled</td>
</tr>
<tr>
<td>Timers: PSPF:</td>
<td>The maximum time gap that will occur between running of PSPF calculations. It is the value configured as the max-wait value in the partial-spf-interval command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>max-wait</td>
<td>The initial time gap between the wait time after an LSP change until the first PSPF calculation. This value reflects the initial-wait variable that is configured using the partial-spf-interval command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>Init-wait</td>
<td>The wait time between the first and second PSPF calculations. If this optional value is configured, it will be doubled with each PSPF recalculation until the value is equal to the max-wait value.</td>
</tr>
</tbody>
</table>
**TABLE 96 IS-IS neighbor information (continued)**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
<td>This value reflects the second-wait variable that is configured using the <code>partial-spf-interval</code> command as described in Configuring the IS-IS PSPF exponential back-off feature on page 525.</td>
</tr>
<tr>
<td>PSPF run status.</td>
<td>This field is not specifically labeled but is displayed directly under the PSPF timers. It can any of the three values shown below: • PSPF is running • PSPF will run in sec where the sec variable is a value in seconds until the next time that PSPF will be run. • PSPF is not scheduled</td>
</tr>
<tr>
<td>Timers: LSP:</td>
<td></td>
</tr>
<tr>
<td>max-lifetime</td>
<td>The maximum number of seconds an unrefreshed LSP can remain in the device’s LSP database. The default value is 1000 sec.</td>
</tr>
<tr>
<td>refresh-interval</td>
<td>The maximum number of seconds that a device waits between sending updated LSPs to its IS-IS neighbors. The default value is 1 sec.</td>
</tr>
<tr>
<td>gen-interval</td>
<td>The minimum number of seconds that a device waits between sending updated LSPs to its IS-IS neighbors. The default value is 10 sec.</td>
</tr>
<tr>
<td>retransmit-interval</td>
<td>The amount of time the device waits before it retransmits LSPs. The default value is 5 sec.</td>
</tr>
<tr>
<td>lsp-interval</td>
<td>The rate of transmission (in milliseconds) of the LSPs. The default rate is 33 ms.</td>
</tr>
<tr>
<td>Timers: SNP:</td>
<td></td>
</tr>
<tr>
<td>csnp-interval</td>
<td>How often the designated IS sends a CSNP to the broadcast interface. The default value is 10 sec.</td>
</tr>
<tr>
<td>psnp-interval</td>
<td>How often the IS sends a PSNP. The default value is 2 sec.</td>
</tr>
<tr>
<td>Global Hello Padding</td>
<td>This value can be: • Enabled • Disabled</td>
</tr>
<tr>
<td>Global Hello Padding For Point to Point Circuits</td>
<td>This value can be: • Enabled • Disabled</td>
</tr>
<tr>
<td>Ptpt Three Way HandShake Mechanism</td>
<td>This value can be: • Enabled • Disabled</td>
</tr>
<tr>
<td>IS-IS Traffic Engineering Support</td>
<td>This value can be: • Enabled • Disabled</td>
</tr>
<tr>
<td>BFD</td>
<td>This value can be: • Enabled • Disabled</td>
</tr>
<tr>
<td>Interfaces with IPv4 IS-IS configured</td>
<td>Interfaces on which IPv4 IS-IS is configured.</td>
</tr>
</tbody>
</table>
Displaying the IS-IS configuration in the running-config

You can display the global IS-IS configuration commands that are in effect on the Extreme device using the following CLI method.

NOTE
The running-config does not list the default values. Only commands that change a setting or add configuration information are displayed.

To list the global IS-IS configuration commands in the Extreme device's running-config, enter the following command at any level of the CLI:

```
device# show isis config
router isis
 net 20.00e0.5200.0001.00
end
```

The running-config shown in this example contains the command that enables IS-IS and a command that configures a NET.

To display the interface configuration information in the running-config, enter one of the following commands at any level of the CLI:

- `show running-config`
- `write terminal`

Syntax: `show isis config`

Displaying the name mappings

To display the mappings, enter the following command at any level of the CLI:

```
device# show isis hostname
Total number of entries in IS-IS Hostname Table: 1
 System ID Hostname * = local IS
* 0000.00cc.dddd XMR
```

Syntax: `show isis hostname`

The table in this example contains one mapping, for this Extreme device. The Extreme device's IS-IS system ID is "0000.00cc.dddd" and its hostname is "XMR". The display contains one entry for each IS that supports name mapping.

NOTE
Name mapping is enabled by default. When name mapping is enabled, the output of the `show isis database`, `show isis interface`, and `show isis neighbor` commands uses the host name instead of the system ID. To disable mapping so that these displays use the system ID instead, refer to Disabling or re-enabling display of hostname on page 523.

Displaying neighbor information

To display IS-IS neighbor information, enter the following command at any level of the CLI:

```
device# show isis neighbor
Total number of IS-IS Neighbors: 2
 System ID Interface SNPA State Holdtime Type Pri StateChgeTime
Protocol
00e0.52b5.7800 Ether2/4 00e0.52b5.7843 UP 10
 ISL2 64 0 :0 :16:8 M-ISIS
00e0.52b5.7800 Ether2/4 00e0.52b5.7843 UP 10
 ISL1 64 0 :0 :16:8 ISIS
```

Syntax: `show isis neighbor [ detail ]`
The **detail** option displays more details for each neighbor.

This display shows the following information.

**TABLE 97 IS-IS neighbor information**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of IS-IS Neighbors</td>
<td>The number of ISs with which the device has formed IS-IS adjacencies.</td>
</tr>
<tr>
<td>System ID</td>
<td>The System ID of the neighbor or the hostname of the neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>The device port or virtual interface attached to the neighbor.</td>
</tr>
<tr>
<td>SNPA</td>
<td>The Subnetwork Point of Attachment (SNPA), which is the MAC address of the device port or virtual interface attached to the neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the adjacency with the neighbor. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• DOWN - The adjacency is down.</td>
</tr>
<tr>
<td></td>
<td>• INIT - The adjacency is being established and is not up yet.</td>
</tr>
<tr>
<td></td>
<td>• UP - The adjacency is up.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>The neighbor’s advertised hold time.</td>
</tr>
<tr>
<td>Type</td>
<td>The IS-IS type of the adjacency. The type can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• ISL1 - Level-1 IS</td>
</tr>
<tr>
<td></td>
<td>• ISL2 - Level-2 IS</td>
</tr>
<tr>
<td></td>
<td>• ES - ES</td>
</tr>
</tbody>
</table>

**NOTE**
The device forms a separate adjacency for each IS-IS type. Thus, if the device has both types of IS-IS adjacencies with the neighbor, the display contains a separate row of information for each adjacency.

Pri	The priority of this IS to be elected as the Designated IS in this broadcast network.
StateChgeTime	The amount of time that has passed since the adjacency last changed state.
Protocol	The routing protocol supported by the neighbor. The protocol can be one of the following:
	• MT-ISIS - Multi-Topology is enabled on the neighbor.
	• ISIS - Multi-Topology is not enabled on the neighbor.

To display IS-IS neighbor detail information, enter the following command at any level of the CLI.

```
device# show isis neighbor detail
```

To display IS-IS neighbor detail information, enter the following command at any level of the CLI.

```
device# show isis neighbor detail
Total number of IS-IS Neighbors:
 1
 System ID Interface SNPA State Holdtime Type Pri StateChgeTime Protocol
 Core2 ve 501 0900.2b00.0005 UP 30 PTPT 127 0 :00:46:41 M-ISIS
3-Way HandShake TLV received: circuit-id 2
Area Address(es): 00.0000
Adj Usage L1
Protocols Supported: IP IPv6
IP Address: 191.28.1.2, circuit-id 2
```
**TABLE 98 IS-IS neighbor information**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of IS-IS Neighbors</td>
<td>The number of ISs with which the device has formed IS-IS adjacencies.</td>
</tr>
<tr>
<td>System ID</td>
<td>The System ID of the neighbor or the hostname of the neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>The device port or virtual interface attached to the neighbor.</td>
</tr>
<tr>
<td>SNPA</td>
<td>The Subnetwork Point of Attachment (SNPA), which is the MAC address of the device port or virtual interface attached to the neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the adjacency with the neighbor. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• DOWN - The adjacency is down.</td>
</tr>
<tr>
<td></td>
<td>• INIT - The adjacency is being established and is not up yet.</td>
</tr>
<tr>
<td></td>
<td>• UP - The adjacency is up.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>The neighbor’s advertised hold time.</td>
</tr>
<tr>
<td>Type</td>
<td>The IS-IS type of the adjacency. The type can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• ISL1 - Level-1 IS</td>
</tr>
<tr>
<td></td>
<td>• ISL2 - Level-2 IS</td>
</tr>
<tr>
<td></td>
<td>• ES - ES</td>
</tr>
<tr>
<td><strong>NOTE</strong></td>
<td>The device forms a separate adjacency for each IS-IS type. Thus, if the device has both types of IS-IS adjacencies with the neighbor, the display contains a separate row of information for each adjacency.</td>
</tr>
<tr>
<td>Pri</td>
<td>The priority of this IS to be elected as the Designated IS in this broadcast network.</td>
</tr>
<tr>
<td>StateChgeTime</td>
<td>The amount of time that has passed since the adjacency last changed state.</td>
</tr>
<tr>
<td>3-Way Handshake TLV received</td>
<td>The received 3-way handshake TLV for the interface.</td>
</tr>
<tr>
<td>Area Address (es)</td>
<td>The address of the area.</td>
</tr>
<tr>
<td>Protocols Supported</td>
<td>The topology supported by the neighbor.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the neighbor interface.</td>
</tr>
<tr>
<td>Adj Usage L1</td>
<td>The adjacency level used by the neighbor.</td>
</tr>
<tr>
<td>circuit ID</td>
<td>The ID of the IS-IS circuit running on the neighbor interface.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The routing protocol supported by the neighbor. The protocol can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• MT-ISIS - Multi-Topology is enabled on the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• ISIS- Multi-Topology is not enabled on the neighbor.</td>
</tr>
</tbody>
</table>

**Displaying IS-IS Syslog messages**

When logging is enabled, the Extreme device generates Syslog messages and SNMP traps for the following IS-IS events:

- Overload state (the Extreme device entering or leaving the overload state)
- Memory overrun (IS-IS is demanding more memory than is available)

You also can enable the Extreme device to generate Syslog messages and SNMP traps when an adjacency with a neighbor comes up or goes down. To enable logging of adjacency changes, refer to [Logging adjacency changes](#) on page 527.
To display Syslog entries, enter the following command at any level of the CLI.

```
device# show logging
```

Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)

Buffer logging: level ACDEINW, 3 messages logged

level code: A=alert C=critical D=debugging E=emergency E=error
I=informational N=notification W=warning

Static Log Buffer:

Dynamic Log Buffer (50 lines):
00d00h00m42s:N:BGP Peer 10.147.202.10 UP (ESTABLISHED)
00d00h00m18s:N:ISIS L2 ADJACENCY UP 0000.0034.1234 on interface 2/8
00d00h00m08s:N:ISIS L1 ADJACENCY UP 0000.0034.1234 on interface 2/8
00d00h00m08s:N:ISIS L2 ADJACENCY UP 0000.00de.5520 on interface 5/1
00d00h00m00s:I:Warm start

The messages in this example indicate that the software has been reloaded (Warm start) and adjacencies between the Extreme device and three ISs have come up.

Syntax: show logging

### Displaying interface information

To display information about the Extreme device’s IS-IS interfaces, enter the `show isis` commands at any level of the CLI, as the examples in this section illustrate.

The following is an example of the `show isis interface` command for an Ethernet Interface module configured for a Circuit Type BCAST.

```
device(config-if-e10000-1/1)#show isis interface
```

Total number of IS-IS Interfaces:

1

Interface: eth 1/1
Circuit State: UP Circuit Mode: LEVEL-1-2
Circuit Type: BCAST Passive State: FALSE
Circuit Number: 0x01, MTU: 1500
Level-1 Auth-mode: None
Level-2 Auth-mode: None
Level-1 Metric: 10, Level-1 Priority: 64
Level-1 Hello Interval: 5 Level-1 Hello Multiplier: 3
Level-1 Designated IS: mu2-01 Level-1 DIS Changes: 3
Level-2 Metric: 10, Level-2 Priority: 64
Level-2 Hello Interval: 5 Level-2 Hello Multiplier: 3
Level-2 Designated IS: mu2-01 Level-2 DIS Changes: 3
Next IS-IS LAN Level-1 Hello in 1 seconds
Next IS-IS LAN Level-2 Hello in 4 seconds
Number of active Level-1 adjacencies: 0
Number of active Level-2 adjacencies: 0
Circuit State Changes: 1 Circuit Adjacencies State Changes: 0
Rejected Adjacencies: 0
Circuit Authentication L1 failures: 0
Circuit Authentication L2 failures: 0
Bad LSPs: 0
Control Messages Sent: 63 Control Messages Received: 27
Hello Padding: Enabled
IP Enabled: TRUE
IP Addresses:
10.1.1.2/24
IPv6 Enabled: TRUE
IPv6 Addresses:
1000:1/128
IPv6 Link-Local Addresses:
fe80::200:ff:fe02:c000
MPLS TE Enabled: FALSE

The following is an example of the `show isis interface` command for a POS Interface module configured with a Circuit Type: PTP.

```
device#show isis interface
```

Total number of IS-IS Interfaces:
Syntax: `show isis interface [ brief | ethernet slot-number/port-number | pos slot-number/port-number | loopback number | ve number ]`

This display shows the following information.

**TABLE 99 IS-IS interface information**

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of IS-IS interfaces</td>
<td>The number of interfaces on which IS-IS is enabled.</td>
</tr>
<tr>
<td>Interface</td>
<td>The port or virtual interface number to which the information listed below applies.</td>
</tr>
<tr>
<td>Circuit State</td>
<td>The state of the circuit, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• DOWN</td>
</tr>
<tr>
<td></td>
<td>• UP</td>
</tr>
<tr>
<td>Circuit Mode</td>
<td>The IS-IS type in use on the circuit. The mode can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• LEVEL-1</td>
</tr>
<tr>
<td></td>
<td>• LEVEL-2</td>
</tr>
<tr>
<td></td>
<td>• LEVEL-1-2</td>
</tr>
<tr>
<td>Circuit Type</td>
<td>The type of IS-IS circuit running on the interface. The circuit type can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• BCAST (broadcast)</td>
</tr>
<tr>
<td></td>
<td>• PTP (Point-to-Point)</td>
</tr>
<tr>
<td>Passive State</td>
<td>The passive state determines whether the interface is allowed to form an IS-IS adjacency with the IS at the other end of the circuit. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• FALSE - The passive option is disabled. The interface can form an adjacency with the IS at the other end of the link.</td>
</tr>
<tr>
<td></td>
<td>• TRUE - The passive option is enabled. The interface cannot form an adjacency, but can still advertise itself into the area.</td>
</tr>
<tr>
<td>Circuit Number</td>
<td>The ID that the instance of IS-IS running on the interface applied to the circuit between this interface and the interface at the other end of the link.</td>
</tr>
<tr>
<td>MTU</td>
<td>The maximum length supported for IS-IS PDUs sent on this interface.</td>
</tr>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Level-1 Auth-mode</td>
<td>One of the following authentication modes set for Level-1 on the router:</td>
</tr>
<tr>
<td></td>
<td>- None</td>
</tr>
<tr>
<td></td>
<td>- md5</td>
</tr>
<tr>
<td></td>
<td>- cleartext</td>
</tr>
<tr>
<td>Level-2 Auth-mode</td>
<td>One of the following authentication modes set for Level-2 on the router:</td>
</tr>
<tr>
<td></td>
<td>- None</td>
</tr>
<tr>
<td></td>
<td>- md5</td>
</tr>
<tr>
<td></td>
<td>- cleartext</td>
</tr>
<tr>
<td></td>
<td>This parameter is not displayed for interfaces that are configured with a</td>
</tr>
<tr>
<td></td>
<td>Point-to-Point circuit type. This is because separate Level-2 Hello</td>
</tr>
<tr>
<td></td>
<td>messages are not sent on Point-to-Point interfaces. Consequently, “Hello</td>
</tr>
<tr>
<td></td>
<td>Interval”, “Hello Multiplier”, and “Authentication” parameters should always</td>
</tr>
<tr>
<td></td>
<td>be configured in the Level-1 mode for Point-to-Point interfaces.</td>
</tr>
<tr>
<td>Level-1 Metric</td>
<td>The default-metric value that the Extreme device inserts in IS-IS Level-1</td>
</tr>
<tr>
<td></td>
<td>PDUs for this interface.</td>
</tr>
<tr>
<td>Level-1 Priority</td>
<td>The priority of this IS to be elected as the Designated IS for Level-1 in</td>
</tr>
<tr>
<td></td>
<td>this broadcast network.</td>
</tr>
<tr>
<td>Level-1 Hello Interval</td>
<td>The number of seconds the software waits between sending Level-1 hello</td>
</tr>
<tr>
<td></td>
<td>PDUs to the IS at the other end of the circuit.</td>
</tr>
<tr>
<td>Level-1 Hello Multiplier</td>
<td>The number by which the software multiplies the hello interval to calculate</td>
</tr>
<tr>
<td></td>
<td>the hold time set in Level-1 Hello PDUs sent on the circuit.</td>
</tr>
<tr>
<td>Level-1 Designated IS</td>
<td>The NET of the Level-1 Designated IS.</td>
</tr>
<tr>
<td>Level-1 DIS Changes</td>
<td>The number of times the NET of the Level-1 Designated IS has changed.</td>
</tr>
<tr>
<td>Level-2 Metric</td>
<td>The default-metric value that the Extreme device inserts in IS-IS Level-2</td>
</tr>
<tr>
<td></td>
<td>PDUs for this interface.</td>
</tr>
<tr>
<td>Level-2 Priority</td>
<td>The priority of this IS to be elected as the Designated IS for Level-2 in</td>
</tr>
<tr>
<td></td>
<td>this broadcast network.</td>
</tr>
<tr>
<td>Level-2 Hello Interval</td>
<td>The number of seconds the software waits between sending Level-2 Hello</td>
</tr>
<tr>
<td></td>
<td>messages to the IS at the other end of the circuit.</td>
</tr>
<tr>
<td>Level-2 Hello Multiplier</td>
<td>The number by which the software multiplies the hello interval to calculate</td>
</tr>
<tr>
<td></td>
<td>the hold time set for Level-2 Hello PDUs sent on this circuit.</td>
</tr>
<tr>
<td></td>
<td>This parameter is not displayed for interfaces that are configured with a</td>
</tr>
<tr>
<td></td>
<td>Point-to-Point circuit type. This is because separate Level-2 Hello</td>
</tr>
<tr>
<td></td>
<td>messages are not sent on Point-to-Point interfaces. Consequently, “Hello</td>
</tr>
<tr>
<td></td>
<td>Interval”, “Hello Multiplier”, and “Authentication” parameters should always</td>
</tr>
<tr>
<td></td>
<td>be configured in the Level-1 mode for Point-to-Point interfaces.</td>
</tr>
<tr>
<td>Level-2 Designated IS</td>
<td>The NET of the Level-2 Designated IS.</td>
</tr>
<tr>
<td>Level-2 DIS Changes</td>
<td>The number of times the NET of the Level-2 Designated IS has changed.</td>
</tr>
<tr>
<td>Next IS-IS LAN Level-1 Hello</td>
<td>Number of seconds before next Level-1 Hello PDU will be transmitted by the</td>
</tr>
<tr>
<td></td>
<td>Extreme device.</td>
</tr>
<tr>
<td>Next IS-IS LAN Level-2 Hello</td>
<td>Number of seconds before next Level-2 Hello PDU will be transmitted by the</td>
</tr>
<tr>
<td></td>
<td>Extreme device.</td>
</tr>
<tr>
<td>Number of active Level-1 adjacencies</td>
<td>The number of ISs with which this interface has an active Level-1 adjacency.</td>
</tr>
<tr>
<td>Number of active Level-2 adjacencies</td>
<td>The number of ISs with which this interface has an active Level-2 adjacency.</td>
</tr>
<tr>
<td>Circuit State Changes</td>
<td>The number of times the state of the circuit has changed.</td>
</tr>
<tr>
<td>Circuit State Adjacencies Changes</td>
<td>The number of times an adjacency has started or ended on this circuit.</td>
</tr>
</tbody>
</table>
### TABLE 99 IS-IS interface information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejected Adjacencies</td>
<td>The number of adjacency attempts by other ISs rejected by the Extreme device.</td>
</tr>
<tr>
<td>Circuit Authentication L1 failures</td>
<td>The number of times the Extreme device rejected a circuit because the authentication did not match the authentication configured for Level-1 on the Extreme device.</td>
</tr>
<tr>
<td>Circuit Authentication L2 failures</td>
<td>The number of times the Extreme device rejected a circuit because the authentication did not match the authentication configured for Level-2 on the Extreme device.</td>
</tr>
<tr>
<td></td>
<td>This parameter is not displayed for interfaces that are configured with a Point-to-Point circuit type. This is because separate Level-2 Hello messages are not sent on Point-to-Point interfaces. Consequently, “Hello Interval”, “Hello Multiplier”, and “Authentication” parameters should always be configured in the Level-1 mode for Point-to-Point interfaces.</td>
</tr>
<tr>
<td>Bad LSP</td>
<td>The number of times the interface received a bad LSP from an IS at the other end of the circuit. The following conditions can cause an LSP to be bad:</td>
</tr>
<tr>
<td></td>
<td>• Invalid checksum</td>
</tr>
<tr>
<td></td>
<td>• Invalid length</td>
</tr>
<tr>
<td></td>
<td>• Invalid lifetime value</td>
</tr>
<tr>
<td>Control Messages Sent</td>
<td>The number of IS-IS control PDUs sent on this interface.</td>
</tr>
<tr>
<td>Control Messages Received</td>
<td>The number of IS-IS control PDUs received on this interface.</td>
</tr>
<tr>
<td>Hello Padding:</td>
<td>The Hello Padding configuration, which can be:</td>
</tr>
<tr>
<td></td>
<td>• Enabled</td>
</tr>
<tr>
<td></td>
<td>• Disabled</td>
</tr>
<tr>
<td>IP Enabled</td>
<td>If set to TRUE, the IP protocol is enabled for this circuit.</td>
</tr>
<tr>
<td>IP Address and Subnet Mask</td>
<td>The IP address and subnet mask for this interface.</td>
</tr>
<tr>
<td>IPv6 Enabled</td>
<td>If set to TRUE, the IPv6 protocol is enabled for this circuit.</td>
</tr>
<tr>
<td>IPv6 Address and Subnet Mask</td>
<td>The IPv6 address and subnet mask for this interface.</td>
</tr>
<tr>
<td>Ipv6 Link-Local Addresses</td>
<td>The IPv6 link local address for this interface.</td>
</tr>
<tr>
<td>MPLS TE Enabled:</td>
<td>If set to TRUE, MPLS Traffic Engineering protocol is enabled for this circuit.</td>
</tr>
<tr>
<td>BFD Enabled:</td>
<td>If set to TRUE, BiDirectional Forwarding Detection is enabled for this circuit.</td>
</tr>
</tbody>
</table>

### Displaying route information

To display the routes in the Extreme device’s IS-IS route table, use either of the following methods.

To display information about the routes in the Extreme device’s IS-IS route table, enter the following command at any level of the CLI.

```
device# show isis routes
Total number of IS-IS routes: 173
```

<table>
<thead>
<tr>
<th>Destination</th>
<th>Mask</th>
<th>Cost</th>
<th>Type</th>
<th>Tag</th>
<th>Flags</th>
<th>Path:</th>
<th>Next Hop IP:</th>
<th>Interface:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0</td>
<td>255.255.255.0</td>
<td>21</td>
<td>L2</td>
<td>00000000000000242</td>
<td>Interface: 7/1</td>
<td>1</td>
<td>10.1.1.1</td>
<td></td>
</tr>
<tr>
<td>10.0.0.1</td>
<td>255.255.255.30</td>
<td>L2</td>
<td>00000000000000242</td>
<td>Interface: 7/1</td>
<td>1</td>
<td>10.1.1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.10.0</td>
<td>255.255.255.30</td>
<td>L2</td>
<td>00000000000000242</td>
<td>Interface: 7/1</td>
<td>1</td>
<td>10.1.1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Displaying IPv4 IS-IS information

**Syntax:**  
```
show isis routes [ip-address subnet-mask | ip-address/prefix]
```

You may enter `ip-address subnet-mask` or `ip-address/prefix` if you want information for a specific route.

```
device# show isis routes 10.0.111.0 255.255.255.0
 10.0.111.0 255.255.255.0 21 L2 00000000 00000242
 Path: 1 Next Hop IP: 10.1.1.1 Interface: 7/1
```

This display shows the following information.

**TABLE 100 IS-IS route information**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of IS-IS routes</td>
<td>The total number of routes in the Extreme device's IS-IS route table. The total includes Level-1 and Level-2 routes.</td>
</tr>
<tr>
<td>Destination</td>
<td>The IP destination of the route.</td>
</tr>
<tr>
<td>Mask</td>
<td>The subnet mask for the destination address.</td>
</tr>
<tr>
<td>Cost</td>
<td>The IS-IS default metric for the route, which is the cost of using this route to reach the next-hop router to this destination.</td>
</tr>
<tr>
<td>Type</td>
<td>The route type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• L1 - Level-1 route</td>
</tr>
<tr>
<td></td>
<td>• L2 - Level-2 route</td>
</tr>
<tr>
<td>Tag</td>
<td>The tag value associated with the route.</td>
</tr>
<tr>
<td>Path</td>
<td>The path number in the table. The IS-IS route table can contain multiple equal-cost paths to the same destination, in which case the paths are numbered consecutively. When IP load sharing is enabled, the Extreme device can load balance traffic to the destination across the multiple paths.</td>
</tr>
<tr>
<td>Next Hop IP</td>
<td>The IP address of the next-hop interface to the destination.</td>
</tr>
<tr>
<td>Interface</td>
<td>The Extreme device interface (port or virtual interface) attached to the next hop.</td>
</tr>
<tr>
<td>Flags</td>
<td>Values used by Extreme technical support for troubleshooting.</td>
</tr>
</tbody>
</table>

### Displaying LSP database entries

Use the following methods to display summary or detailed information about the entries in the LSP database.

**NOTE**

The Extreme device maintains separate LSP databases for Level-1 LSPs and Level-2 LSPs.

**Displaying summary information**

To display summary information for all the LSPs in the Extreme device’s LSP databases, enter the following command at any level of the CLI.

```
device# show isis database
```

**IS-IS Level-1 Link State Database**

<table>
<thead>
<tr>
<th>LSPID</th>
<th>LSP Seq Num</th>
<th>LSP Checksum</th>
<th>LSP Holdtime</th>
<th>ATT/P/OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMR-1.00-00</td>
<td>0x00000000c</td>
<td>0xd048</td>
<td>963</td>
<td>1/0/0</td>
</tr>
<tr>
<td>XMR-1.01-00</td>
<td>0x00000004</td>
<td>0x99b0</td>
<td>957</td>
<td>0/0/0</td>
</tr>
<tr>
<td>XMR-1.02-00</td>
<td>0x000000001</td>
<td>0xc57b</td>
<td>961</td>
<td>0/0/0</td>
</tr>
<tr>
<td>XMR.00-00*</td>
<td>0x00000000b</td>
<td>0x23fb</td>
<td>1030</td>
<td>1/0/0</td>
</tr>
</tbody>
</table>

**IS-IS Level-2 Link State Database**

<table>
<thead>
<tr>
<th>LSPID</th>
<th>LSP Seq Num</th>
<th>LSP Checksum</th>
<th>LSP Holdtime</th>
<th>ATT/P/OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMR-1.00-00</td>
<td>0x00000000d</td>
<td>0x7d97</td>
<td>964</td>
<td>1/0/0</td>
</tr>
<tr>
<td>XMR-1.01-00</td>
<td>0x000000004</td>
<td>0x99b0</td>
<td>958</td>
<td>0/0/0</td>
</tr>
<tr>
<td>XMR-1.02-00</td>
<td>0x000000001</td>
<td>0xc20f</td>
<td>962</td>
<td>0/0/0</td>
</tr>
<tr>
<td>XMR.00-00*</td>
<td>0x00000000b</td>
<td>0x5647</td>
<td>1030</td>
<td>1/0/0</td>
</tr>
</tbody>
</table>
The command in this example shows information for the LSPS in the Extreme device’s Level-1 and Level-2 LSP databases. Notice that the display groups the Level-1 and Level-2 LSPs separately.

Syntax: `show isis database [isp-id | detail | l1 | l2 | level1 | level2]`

The `isp-id` parameter displays summary information about a particular LSP. Specify an LSPID for which you want to display information in HHHH.HHHH.HHHH.HH-HH format, for example, 3333.3333.3333.00-00. You can also enter name.HH-HH, for example, XMR.00-00.

The `detail` parameter displays detailed information about the LSPs. Refer to Displaying detailed information on page 562.

The `l1` and `level1` parameters display the Level-1 LSPs only. You can use either parameter.

The `l2` and `level2` parameters display the Level-2 LSPs only. You can use either parameter.

The `show isis database` summary display shows the following information.

**TABLE 101 IS-IS summary LSP database information**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>LSPID</strong></td>
<td>The LSP ID, which consists of the source ID (6 bytes), the pseudonode (1 byte), and LSPID (1 byte).</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong></td>
</tr>
<tr>
<td></td>
<td>If the address has an asterisk (‘*’) at the end, this indicates that the LSP is locally originated.</td>
</tr>
<tr>
<td><strong>LSP Seq Num</strong></td>
<td>The sequence number of the LSP.</td>
</tr>
<tr>
<td><strong>LSP Checksum</strong></td>
<td>The checksum calculated by the device that sent the LSP and used by the Extreme device to verify that the LSP was not corrupted during transmission over the network.</td>
</tr>
<tr>
<td><strong>LSP Holdtime</strong></td>
<td>The maximum number of seconds during which the LSP will remain valid.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong></td>
</tr>
<tr>
<td></td>
<td>The IS that originates the LSP sets the timer for the LSP. As a result, LSPs do not all have the same amount of time remaining when they enter the Extreme device’s LSP database.</td>
</tr>
<tr>
<td><strong>ATT</strong></td>
<td>A 4-bit value extracted from bits 4 - 7 in the Attach field of the LSP.</td>
</tr>
<tr>
<td><strong>P</strong></td>
<td>The value in the Partition option field of the LSP. The field can have one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• 0 - The IS that sent the LSP does not support partition repair.</td>
</tr>
<tr>
<td></td>
<td>• 1 - The IS that sent the LSP supports partition repair.</td>
</tr>
<tr>
<td><strong>OL</strong></td>
<td>The value in the LSP database overload field of the LSP. The field can have one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• 0 - The overload bit is off.</td>
</tr>
<tr>
<td></td>
<td>• 1 - The overload bit is on, indicating that the IS that sent the LSP is overloaded and should not be used as a IS-IS transit router for that level.</td>
</tr>
</tbody>
</table>
## Displaying detailed information

To display detailed information for all the LSPs in the Extreme device's LSP databases, enter the following command at any level of the CLI.

```
device# show isis database detail
```

### IS-IS Level-1 Link State Database

<table>
<thead>
<tr>
<th>LSPID</th>
<th>LSP Seq Num</th>
<th>LSP Checksum</th>
<th>LSP Holdtime</th>
<th>ATT/P/OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMR.00-00*</td>
<td>0x0000000b</td>
<td>0x23fb</td>
<td>971</td>
<td>1/0/0</td>
</tr>
</tbody>
</table>

Area Address: 49
NLPID: CC(IP)
Hostname: XMR14
IP Address: 10.1.1.1
IPv6 Address: 2001:db8::14
Metric: 10 IP-Internal 10.1.1.0/24 Up-bit: 0
Metric: 10 IS XMR.01

### IS-IS Level-2 Link State Database

<table>
<thead>
<tr>
<th>LSPID</th>
<th>LSP Seq Num</th>
<th>LSP Checksum</th>
<th>LSP Holdtime</th>
<th>ATT/P/OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMR.00-00*</td>
<td>0x0000000d</td>
<td>0x7d97</td>
<td>903</td>
<td>1/0/0</td>
</tr>
</tbody>
</table>

Area Address: 49
NLPID: IPv6IP
Hostname: XMR14
IP address: 10.1.1.1
IPv6 address: 2001:db8::14
Flooding to 1 interface: eth1/7
Metric: 10 IP-Internal 10.1.1.0/24 Up-bit: 0
Metric: 10 IP-Internal 10.85.1.0/24 Up-bit: 0
Metric: 10 IS XMR.01
Metric: 10 IS XMR.02

### TABLE 102 IS-IS detailed LSP database information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSPID</td>
<td>Refer to the description of the summary display.</td>
</tr>
<tr>
<td>LSP Seq Num</td>
<td>Refer to the description of the summary display.</td>
</tr>
<tr>
<td>LSP Checksum</td>
<td>Refer to the description of the summary display.</td>
</tr>
<tr>
<td>LSP Holdtime</td>
<td>Refer to the description of the summary display.</td>
</tr>
<tr>
<td>ATT or P or OL</td>
<td>Refer to the description of the summary display.</td>
</tr>
<tr>
<td>Area Address</td>
<td>The address of the area.</td>
</tr>
<tr>
<td>NLPID</td>
<td>The Network Layer Protocol Identifier (NLPID), which specifies the protocol the IS that sent the LSP is using. Usually, this value is &quot;CC(IP)&quot;.</td>
</tr>
<tr>
<td>IP address</td>
<td>The IP address of the interface that sent the LSP. The Extreme device can use this address as the next hop in routes to the addresses listed in the rows below.</td>
</tr>
<tr>
<td>Destination addresses</td>
<td>The rows of information below the IP address row are the destinations advertised by the LSP. The Extreme device can reach these destinations by using the IP address listed above as the next hop.</td>
</tr>
</tbody>
</table>

Each destination entry contains the following information:

- **Metric** - The value of the default metric, which is the IS-IS cost of using the IP address above as the next hop to reach this destination.
- **Device type** - The device type at the destination. The type can be one of the following:
  - End System - The device is an ES.
  - IP-Internal - The device is an ES within the current area.
  - IS - The IP address and subnet mask are listed. The NET (NSAP address) is listed.
TABLE 102 IS-IS detailed LSP database information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>– IP-Extended – Same as IP-Internal, except the device uses the extended TLV fields described in draft-ietf-isis-traffic-02.txt to carry the information.</td>
<td></td>
</tr>
<tr>
<td>– IS-Extended – Same as IS, except the device uses the extended TLV fields described in draft-ietf-isis-traffic-02.txt to carry the information.</td>
<td></td>
</tr>
</tbody>
</table>

Flooding to num interface: Identifies the number of interfaces on which the specific LSP entry will be flooded and identifies the interfaces.

Acking to num interface: Identifies the number of interfaces on which the specific LSP entry will be acknowledged and identifies the interfaces.

Displaying database summary information

The following command is used to display the ISIS database.

```
device# show isis database summary
IS-IS Level-1 Link State Database Summary
Number of LSPs : 2
Number of LSPs loading : 0
Number of LSP fragments : 0
Number of Pseudo LSPs : 1
Number of Pseudo LSP fragments : 0
Number of My LSPs : 1
Number of My LSP fragments : 0
Number of My Pseudo LSPs : 0
Number of My Pseudo LSP fragments : 0
Sum of LSPs Checksum : 0x00018004
```

```
IS-IS Level-2 Link State Database Summary
Number of LSPs : 2
Number of LSPs loading : 0
Number of LSP fragments : 0
Number of Pseudo LSPs : 1
Number of Pseudo LSP fragments : 0
Number of My LSPs : 1
Number of My LSP fragments : 0
Number of My Pseudo LSPs : 0
Number of My Pseudo LSP fragments : 0
Sum of LSPs Checksum : 0x00019775
```

Table 103 defines the fields shown in the above example output of the `show ip ospf interface brief` command.

TABLE 103 Output of the `show isis database summary` command

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of LSPs</td>
<td>Total number of LSPs in database (includes those in the loading state).</td>
</tr>
<tr>
<td>Number of LSPs loading</td>
<td>Number of LSPs pending a full LSP update. This value is generally non-zero during adjacency formation.</td>
</tr>
<tr>
<td>Number of LSP fragments</td>
<td>The number of LSPs with a non-zero LSP number (a fragment of an LSP).</td>
</tr>
<tr>
<td>Number of Pseudo LSPs</td>
<td>The number of pseudo LSPs.</td>
</tr>
<tr>
<td>Number of Pseudo LSP fragments</td>
<td>The number of pseudo LSPs with a non-zero LSP number (a fragment of an LSP).</td>
</tr>
<tr>
<td>Number of My LSPs</td>
<td>Total number of LSPs originated by this router.</td>
</tr>
<tr>
<td>Number of My LSP fragments</td>
<td>The number of LSPs originated by this router with a non-zero LSP number (a fragment of an LSP).</td>
</tr>
<tr>
<td>Number of My Pseudo LSPs</td>
<td>The number of pseudo LSPs originated by this router.</td>
</tr>
</tbody>
</table>
TABLE 103 Output of the show isis database summary command (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of My Pseudo LSP fragments</td>
<td>The number of pseudo LSPs originated by this router with a non-zero LSP number (a fragment of an LSP).</td>
</tr>
<tr>
<td>Sum of LSPs Checksum</td>
<td>Total checksum of all LSPs in database (including those in loading state). This number should be the same across ISIS routers during periods of network stability.</td>
</tr>
</tbody>
</table>

Displaying traffic statistics

The Extreme device maintains statistics for common IS-IS PDU types. To display the statistics, use either of the following methods.

To display IS-IS PDU statistics, enter the following command at any level of the CLI.

```
device# show isis traffic
```

<table>
<thead>
<tr>
<th>Message Received</th>
<th>Message Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1 Hellos</td>
<td>1029</td>
</tr>
<tr>
<td>Level-2 Hellos</td>
<td>1027</td>
</tr>
<tr>
<td>Level-1 LSP</td>
<td>6</td>
</tr>
<tr>
<td>Level-2 LSP</td>
<td>6</td>
</tr>
<tr>
<td>Level-1 CSNP</td>
<td>0</td>
</tr>
<tr>
<td>Level-2 CSNP</td>
<td>0</td>
</tr>
<tr>
<td>Level-1 PSNP</td>
<td>107</td>
</tr>
<tr>
<td>Level-2 PSNP</td>
<td>107</td>
</tr>
</tbody>
</table>

Syntax: show isis traffic

This display shows the following information.

TABLE 104 IS-IS traffic statistics

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1 Hellos</td>
<td>The number of Level-1 hello PDUs sent and received by the Extreme device.</td>
</tr>
<tr>
<td>Level-2 Hellos</td>
<td>The number of Level-2 hello PDUs sent and received by the Extreme device.</td>
</tr>
<tr>
<td>Level-1 LSP</td>
<td>The number of Level-1 link-state PDUs sent and received by the Extreme device.</td>
</tr>
<tr>
<td>Level-2 LSP</td>
<td>The number of Level-2 link-state PDUs sent and received by the Extreme device.</td>
</tr>
<tr>
<td>Level-1 CSNP</td>
<td>The number of Level-1 Complete Sequence Number PDUs (CSNPs) sent and received by the Extreme device.</td>
</tr>
<tr>
<td>Level-2 CSNP</td>
<td>The number of Level-2 CSNPs sent and received by the Extreme device.</td>
</tr>
<tr>
<td>Level-1 PSNP</td>
<td>The number of Level-1 Partial Sequence Number PDUs (PSNPs) sent and received by the Extreme device.</td>
</tr>
<tr>
<td>Level-2 PSNP</td>
<td>The number of Level-2 PSNPs sent and received by the Extreme device.</td>
</tr>
</tbody>
</table>

Displaying error statistics

To display IS-IS error statistics, enter the following command at any level of the CLI.

```
device# show isis counts
```

Area Mismatch: 0
Max Area Mismatch: 0
System ID Length Mismatch: 0
LSP Sequence Number Skipped: 0
LSP Max Sequence Number Exceeded: 0
Level-1 Database Overload: 0
Level-2 Database Overload: 0
Our LSP Purged: 0
PDU Drop Count
CSNP Auth Failures : [L1: 100] [L2: 0]
PSNP Auth Failures : [L1: 100] [L2: 0]
HELLO Auth Failures : [L1: 100] [L2: 0]
Adjacency not found : [L1: 100] [L2: 200]
Adjacency Level Mismatch : [L1: 100] [L2: 200]
IS Level Mismatch : [L1: 100] [L2: 200]
Length Too Short : [L1: 100] [L2: 200]
Length Too Large : [L1: 100] [L2: 200]
Max Area Check Failure : [L1: 100] [L2: 200]
Zero Checksum : [L1: 100] [L2: 200]
Checksum Mismatch : [L1: 100] [L2: 200]
Invalid Length : [L1: 100] [L2: 200]

**Syntax:** show isis counts

This display shows the following information.

**TABLE 105 IS-IS error statistics**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Mismatch</td>
<td>The number of times the Extreme device interface was unable to create a Level-1 adjacency with a neighbor because the Extreme device interface and the neighbor did not have any areas in common.</td>
</tr>
<tr>
<td>Max Area Mismatch</td>
<td>The number of times the Extreme device received a PDU whose value for maximum number of area addresses did not match the Extreme device's value for maximum number of area addresses.</td>
</tr>
<tr>
<td>System ID Length Mismatch</td>
<td>The number of times the Extreme device received a PDU whose ID field was a different length than the ID field length configured on the Extreme device.</td>
</tr>
<tr>
<td>LSP Sequence Number Skipped</td>
<td>The number of times the Extreme device received an LSP with a sequence number that was more than 1 higher than the sequence number of the previous LSP received from the same neighbor.</td>
</tr>
<tr>
<td>LSP Max Sequence Number Exceeded</td>
<td>The number of times the Extreme device attempted to set an LSP sequence number to a value higher than the highest number in the CSNP sent by the Designated IS.</td>
</tr>
<tr>
<td>Level-1 Database Overload</td>
<td>The number of times the Level-1 state on the Extreme device changed from Waiting to On or from On to Waiting.</td>
</tr>
<tr>
<td></td>
<td>• Waiting to On - This change can occur when the Extreme device recovers from a previous Level-1 LSP database overload and is again ready to receive new LSPs.</td>
</tr>
<tr>
<td></td>
<td>• On to Waiting - This change can occur when the Extreme device's Level-1 LSP database is full and the Extreme device receives an additional LSP, for which there is no room.</td>
</tr>
<tr>
<td>Level-2 Database Overload</td>
<td>The number of times the Level-2 state on the Extreme device changed from Waiting to On or from On to Waiting.</td>
</tr>
<tr>
<td></td>
<td>• The change from Waiting to On can occur when the Extreme device recovers from a previous Level-2 LSP database overload and is again ready to receive new LSPs.</td>
</tr>
<tr>
<td></td>
<td>• The change from On to Waiting can occur when the Extreme device's Level-2 LSP database is full and the Extreme device receives an additional LSP, for which there is no room.</td>
</tr>
<tr>
<td>Our LSP Purged</td>
<td>The number of times the Extreme device received an LSP that was originated by the Extreme device itself and had age zero (aged out).</td>
</tr>
<tr>
<td>PDU Drop Count</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 105 IS-IS error statistics (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Display...</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSNP Auth Failures</td>
<td>The number of CSNP Authentication failures recorded for Level-1 and Level-2. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>PSNP Auth Failures</td>
<td>The number of PSNP Authentication failures recorded for Level-1 and Level-2. This counter appears only if it has a value greater than 0.</td>
</tr>
<tr>
<td>HELLO Auth Failures</td>
<td>The number of HELLO Authentication failures recorded for Level-1 and Level-2. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>Adjacency not found</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because there is no valid adjacency on the interface where they were received. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>Adjacency Level Mismatch</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because the adjacency from which the PDU is received has a different level than the PDU level. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>IS Level Mismatch</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because the IS-IS router level mismatches with the PDU level received. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>Length Too Short</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because the received PDU length is less than the standard PDU header length. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>Length Too Long</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because the received PDU length is greater than the MTU of the link. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>Max Area Check Failure</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because the received PDU has a maximum area count different than what is configured on this IS-IS router. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>Zero Checksum</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because the received PDU has a zero checksum. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>Checksum Mismatch</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because the received PDU has a checksum different than the computed checksum on the received PDU. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
<tr>
<td>Invalid Length</td>
<td>The number of PDUs dropped at both Level-1 and Level-2 because the received PDU has a different length than what is advertised in the PDU header. This counter will only be displayed if it has a value greater than zero.</td>
</tr>
</tbody>
</table>

Displaying the IS-IS SPF Log

The `show isis spf-log` command displays the IS-IS Log, as shown in the following.

```
device#show isis spf-log detail
ISIS Level-1 SPF Log
When Duration Nodes Count Last-Trigger-LSP Trigger
0h1m57s 0 3 2 mu1.00-00 Adjacency Change
Ipv4 Route updates: 4000 Ipv6 Route updates: 0
First Trigger: 0h1m45s Adj TLV Changed in LSP mu2.00-00
Last Trigger : 0h1m45s Adj TLV Changed in LSP mu1.00-00
0h2m3s 0 3 2 mu2.00-00 New LSP
Ipv4 Route updates: 4000 Ipv6 Route updates: 0
First Trigger: 1h42m45s Adjacency mu2 is added
Last Trigger : 1h42m45s New LSP mu2.00-00 Appeared in database
```
Syntax: show isis spf-log { detail | level-1 [ detail ] | level-2 [ detail ] }

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 106 IS-IS SPF log information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>When</td>
</tr>
<tr>
<td>Duration</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Nodes</td>
</tr>
<tr>
<td>Count</td>
</tr>
<tr>
<td>Last Trigger LSP</td>
</tr>
<tr>
<td>Triggers</td>
</tr>
</tbody>
</table>

For a description of the trigger types, refer to the following table.

<table>
<thead>
<tr>
<th>TABLE 107 Trigger types and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
</tr>
<tr>
<td>Alternate Route Check</td>
</tr>
<tr>
<td>Route Change in L1 SPF Run</td>
</tr>
<tr>
<td>LSP Purged</td>
</tr>
</tbody>
</table>
### TABLE 107 Trigger types and description (continued)

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSP Added</td>
<td>A new LSP has appeared in the database. A full SPF calculation is needed to process this new LSP.</td>
</tr>
<tr>
<td>Summary Address Change</td>
<td>A summary address configuration change has occurred.</td>
</tr>
<tr>
<td>Adjacency State Change</td>
<td>An adjacency was added or deleted.</td>
</tr>
<tr>
<td>Admin Distance Change</td>
<td>The administrative distance configuration has changed.</td>
</tr>
<tr>
<td>LSP Header Change</td>
<td>The LSP header (attached or overload bits) is changed.</td>
</tr>
<tr>
<td>IS Neighbor TLV Change</td>
<td>An IS neighbor TLV was added or deleted in an LSP.</td>
</tr>
<tr>
<td>Area Address TLV Change</td>
<td>The area address TLV changed.</td>
</tr>
<tr>
<td>Interface IP Address Change</td>
<td>The IP address configuration changed.</td>
</tr>
<tr>
<td>IP Address TLV Change</td>
<td>An IP address TLV changed in the LSP.</td>
</tr>
<tr>
<td>IPv6 Address TLV Change</td>
<td>An IPv6 address TLV changed in the LSP.</td>
</tr>
<tr>
<td>IS-IS Level Change</td>
<td>The IS-IS level configuration changed.</td>
</tr>
<tr>
<td>Interface Metric Change</td>
<td>The IS-IS interface metric configuration changed.</td>
</tr>
<tr>
<td>LSP Changed - PSPF Disabled</td>
<td>The LSP changed and PSPF is disabled.</td>
</tr>
<tr>
<td>LSP Overload Bit Change</td>
<td>The overload bit in the LSP header changed.</td>
</tr>
<tr>
<td>Interface State Change</td>
<td>The interface state changed to up or down.</td>
</tr>
<tr>
<td>Redist Prefix-List Change</td>
<td>The redistribution list configuration changed.</td>
</tr>
<tr>
<td>Redist Policy Change</td>
<td>The redistribution policy configuration changed.</td>
</tr>
<tr>
<td>Maximum Path Change</td>
<td>The IS-IS maximum path configuration changed.</td>
</tr>
<tr>
<td>IP Load Sharing Change</td>
<td>The IP load sharing configuration changed.</td>
</tr>
<tr>
<td>User Cleared IS-IS Route</td>
<td>The user cleared a specific IS-IS route.</td>
</tr>
<tr>
<td>User Cleared IS-IS Routes</td>
<td>The user cleared all IS-IS routes.</td>
</tr>
<tr>
<td>Neighbor NLPID Change</td>
<td>NLPID set is changed in received hellos.</td>
</tr>
<tr>
<td>ISIS Enable</td>
<td>IS-IS was enabled.</td>
</tr>
<tr>
<td>ISTCT_SPF Computation</td>
<td>The user issued the <code>disable-incremental-stct-spf-opt</code> command.</td>
</tr>
<tr>
<td>User Cleared IS-IS All</td>
<td>The user issued the <code>clear isis all</code> command.</td>
</tr>
<tr>
<td>Interface Config Change</td>
<td>ISIS was enabled or disabled on a port.</td>
</tr>
<tr>
<td>User Trigger</td>
<td>The user issued the <code>clear isis spf-trigger</code> command.</td>
</tr>
<tr>
<td>Recompute InterLeve Routes</td>
<td>The neighbor IS-type is changed either from L1 to L12 or L12 to L1</td>
</tr>
<tr>
<td>Exited Overload State</td>
<td>IS-IS exited from an overload condition.</td>
</tr>
</tbody>
</table>

By using the `detail` option with the `show isis spf-log` command, you can display more detail about the total number of IPv4 and IPv6 route updates and the reason for the first and last SPF events. Like SPF events, the incremental SPF events are displayed. However, for incremental SPF, only the first trigger is displayed, as the example below illustrates. In addition, the logging changes include the number of RTM updates that were carried out in each SPF or incremental SPF run.

To show details about the RTM updates, use the `show isis spf-log detail` command, as follows.

```
device#show isis spf-log detail
ISIS Level-2 SPF Log
When Duration Nodes Count Last-Trigger-LSP Trigger
2h38m9s 0ms 3 2 XMR14.00-00 Adjacency State Change
Ipv4 Route updates: 4000 Ipv6 Route updates: 0
First Trigger: 2h39m23s loopback 1 State Changed to Up
Last Trigger: 2h38m14s Adjacency 0000.0000.0001 Added
2h41m17s 0ms 26 1 XMR14.00-00 IS Neighbor TLV Change
```
Clearing IS-IS SPF Log

You can clear the IS-IS SPF Log accumulated since the last software reload or last clearing of the SPF Log through use of the following command.

```
device# isis clear spf-log
```

Syntax: clear isis spf-log [ level-1 | level-2 ]

When the level-1 or level-2 options are used, only the log for the specified level is cleared. If not specified, both will be cleared.

Triggering the router to run SPF

You can trigger the router to run the SPF calculations through use of the following command.

```
device# clear isis spf-trigger
```

Syntax: clear isis spf-trigger [ level-1 | level-2 ]

When the level-1 or level-2 options are used, the SPF calculation is only triggered for the specified level. If not specified, the SPF calculation will be triggered for both.

Clearing IS-IS information

To clear the IS-IS information that the Extreme device has accumulated since the last time you cleared information or reloaded the software, use either of the following methods.

To clear IS-IS information, enter the clear isis all command at any level of the CLI except the User EXEC level.

```
device# clear isis all
```

This command clears all the following:

- Neighbors (closes the Extreme device's adjacencies with its IS-IS neighbors)
- Routes
- PDU statistics
- Error statistics

Syntax: clear isis all | counts | neighbor | route [ ip-address subnet-mask | ip-address/prefix ] | traffic

The all parameter clears all the IS-IS information. Using this option is equivalent to entering separate commands with each of the other options.

The counts parameter clears the error statistics.

The neighbor parameter closes the Extreme device’s adjacencies with its IS-IS neighbors and clears neighbor statistics.

The route [ ip-address subnet-mask | ip-address/prefix ] parameter clears the IS-IS route table or the specified matching route.

The traffic parameter clears the PDU statistics.
The traffic option also clears the values displayed in the show isis interface command's Control Messages Sent and Control Messages Received fields.

The neighbor option of the clear isis command has been enhanced as described in the following:

Syntax: clear isis neighbor all [ ethernet slot/port | pos slot/port | tunnel tunnel-id | ve port-number ]

The all option directs the router to clear all neighbors on all IS-IS interfaces or clear all neighbors on an interface specified using one of the following options:

- ethernet slot/port - clears all IS-IS neighbors on the specified Ethernet interface.
- pos slot/port - clears all IS-IS neighbors on the specified POS interface.
- ve port-no - clears all IS-IS neighbors on the specified virtual interface.
- tunnel tunnel-port - clears all IS-IS neighbors on the specified tunnel interface.

Syntax: clear isis neighbor sys-id [ ethernet slot/port | pos slot/port | tunnel tunnel-id | ve port-number ]

This command directs the router to clear the IS-IS neighbor specified by the sys-id variable on all possible interfaces or to clear the IS-IS neighbor specified by the sys-id variable on an interface specified using one of the following options:

- ethernet slot/port - clears the specified IS-IS neighbor on the specified Ethernet interface.
- pos slot/port - clears the specified IS-IS neighbor on the specified POS interface.
- ve port-no - clears the specified IS-IS neighbor on the specified virtual interface.
- tunnel tunnel-port - clears the specified IS-IS neighbor on the specified tunnel interface.

Clearing a specified LSP from IS-IS database

A new command has been added that allows you to clear a specified LSP from the IS-IS database. Running this command causes the regeneration of the specified LSP where this LSP was originated by this router. For example, to clear the LSP named "XMR-1.00-00" from the IS-IS database, enter the following command.

    device# clear isis database XMR-1.00-00

Syntax: clear isis database lsp-id [ level-1 | level-2 | level-1-2 ]

The lsp-id parameter displays summary information about a particular LSP. Specify an LSPID for which you want to display information in HHHH.HHHH.HHHH-HH-HH format, for example, 3333.3333.3333.00-00. You can also enter name.HH-HH, for example, XMR-00-00.

The level-1 parameter limits you to clear level-1 LSPs only.

The level-2 parameter limits you to clear level-2 LSPs only.

The level-1-2 parameter clears level-1 and level-2 LSPs. This is the default.

NOTE
The clear isis all command should be used to regenerate the complete database.
A description of the IS-IS protocol is provided in IS-IS (IPv6). This chapter describes the specific requirements for configuring a device for IPv6 IS-IS.

IPv6 IS-IS single-topology mode

IPv6 IS-IS supports single-topology mode, which means that you can run IPv6 IS-IS concurrently with other network protocols such as IPv4 IS-IS throughout a topology. However, when implementing a single topology, all routers in an area (Level 1 routing) or domain (Level 2 routing) must be configured with the same set of network protocols on all its interfaces. You can configure IPv4 IS-IS only, IPv6 IS-IS only, or both IPv4 IS-IS and IPv6 IS-IS. For example, to successfully implement both IPv4 and IPv6 IS-IS in an area, you must configure both IPv4 and IPv6 IS-IS on all router interfaces in the area.
A single shortest path first (SPF) per level computes the IPv4 and IPv6 routes. The use of a single SPF indicates that both IPv4 and IPv6 IS-IS routing protocols must share a common network topology.

The implementation of IPv4 IS-IS supports type, length, and value (TLV) parameters to advertise reachability to IPv4 networks. The TLVs specify the types of data, the length of the data, and the valid values for the data. IPv6 IS-IS advertises its information using new TLV parameters. The new TLV parameters for IPv6 support an extended default metric value.

In a single topology, if both IPv4 and IPv6 are configured on an interface, metric-style must be set to wide in both address families. Narrow is the default for IPv4. Wide is the default for IPv6.

**IS-IS CLI levels**

The CLI includes various levels of commands for IS-IS. Figure 43 diagrams these levels that includes the levels used for IPv6 IS-IS.
The IPv6 IS-IS CLI levels are as follows:

- A global level for the configuration of the IS-IS protocol. At this level, all IS-IS configurations at this level apply to IPv4 and IPv6. You enter this layer using the `router isis` command.
  - Under the global level, you specify an address family. Address families separate the IS-IS configuration IPv6 and IPv4. You enter configurations that are for a specific You enter this level by entering the `address-family` command at the router IS-IS level.
  - Under the address family level, you select a sub-address family, which is the type of routes for the configuration. For IS-IS, you specify `unicast`.
  - An interface level

### Global configuration level

You enter the global configuration level of IS-IS by entering the following command:

```
device(config)#router isis
device(config-isis-router)#
```

**Syntax:** router isis

The (config-isis-router)# prompt indicates that you are at the global level for IS-IS. Configurations you enter at this level apply to both IS-IS IPv4 and IS-IS IPv6.

### Address family configuration level

The implementation of IPv6 IS-IS includes a new configuration level: address family. You enter IS-IS definitions for IPv6 IS-IS under this level. Address-family allows you to create configurations for IPv6 IS-IS unicast routes that are separate and distinct from configurations for IPv4 IS-IS unicast routes.

Under the address family level, Extreme devices support the unicast address family configuration level only. The device enters the IPv6 IS-IS unicast address family configuration level when you enter the following command while at the global IS-IS configuration level:

```
device(config-isis-router)# address-family ipv6 unicast
device(config-isis-router-ipv6u)#
```

**Syntax:** address-family ipv6 unicast

The (config-isis-router-ipv6u)# prompt indicates that you are at the IPv6 IS-IS unicast address family configuration level. While at this level, you can access several commands that allow you to configure IPv6 IS-IS unicast routes.
NOTE
Each address family configuration level allows you to access commands that apply to that particular address family only. To enable a feature in a particular address family, you must specify any associated commands for that feature in that particular address family. You cannot expect the feature, which you may have configured in the IPv4 IS-IS unicast address family, to work in the IPv6 IS-IS unicast address family unless it is explicitly configured in the IPv6 IS-IS unicast address family.

To exit from the IPv6 IS-IS unicast address family configuration level, enter the following command:

```
device(config-isis-router-ipv6u)# exit-address-family
device(config-isis-router)#
```

Entering this command returns you to the global IS-IS configuration level.

Interface level

Some IS-IS definitions are entered at the interface level. To change to the interface level for IS-IS configuration, enter the following command.

```
device(config)# interface ethernet 2/3
device(config-if-e1000-2/3)# ipv6 router isis
```

Syntax: ipv6 router isis

Configuring IPv6 IS-IS

Enabling IPv6 IS-IS globally

Follow the steps listed below to configure IPv6 IS-IS globally.

1. You must enable the forwarding of IPv6 traffic on the device using the `ipv6 unicast-routing` command. Enter a command such as the following:

```
device# configure terminal
device(config)# ipv6 unicast-routing
```

Syntax: [no] ipv6 unicast-routing

2. Globally enable IS-IS by entering the following command:

```
device(config)# router isis
ISIS: Please configure NET!
```

Once you enter `router isis`, the device enters the IS-IS router configuration level.

Syntax: [no] router isis

To disable IS-IS, use the no form of this command.
3. If you have not already configured a NET for IS-IS, enter commands such as the following:

```
device(config-isis-router)# net 49.2211.0000.00bb.cccc.00
device(config-isis-router)#
```

The commands in the example above configure a NET that has the area ID 49.2211, the system ID 0000.00bb.cccc (the device’s base MAC address), and SEL value 00.

**Syntax:** `[no] net area-id.system-id.sel`

The `area-id` parameter specifies the area and has the format `xx` or `xx.xxxx`. For example, 49 and 49.2211 are valid area IDs.

The `system-id` parameter specifies the device’s unique IS-IS router ID and has the format `xxxx.xxxx.xxxx`. You can specify any value for the system ID. A common practice is to use the device’s base MAC address as the system ID. The base MAC address is also the MAC address of port 1. To determine the base MAC address, enter the following command at any level of the CLI: `show interfaces brief`. The base MAC address is listed in the first row of information, in the MAC column.

You must use the same system ID in all the NETs on the device.

**NOTE**

The parameter descriptions above are the recommended values for the NET. However, the CLI accepts any value that fits within the following lengths and formats:
- `xx.xxxx.xxxx.xxxx.00` - minimum length of NET
- `xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.00` - maximum length of NET

The `sel` parameter specifies the NSAP Selector (SEL). This value must always be 00 (two zeros). The value 00 indicates that this address is an NET.

To delete a NET, use the `no` form of this command.


5. Configure IS-IS parameters. Refer to the sections Globally configuring IS-IS on a device on page 576, Configuring IPv6 specific address family route parameters on page 576, and Configuring IS-IS properties on an interface on page 584.

### Enabling IS-IS and assigning an IPv6 address to an interface

To configure IPv6 IS-IS on the desired device interfaces, enter commands such as the following:

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 address 2001:db8:12d:1300::/64 eui-64
device(config-if-e100-3/1)# ipv6 router isis
```

The commands in this example assign the global IPv6 prefix `2001:db8:12d:1300::/64` to Ethernet interface 3/1 and enable IPv6 IS-IS on the interface.

**Syntax:** `ipv6 address ipv6-prefix/prefix-length [ eui-64 ]`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (`/`) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `eui-64` keyword configures the global or unique local address with an EUI-64 interface ID in the low-order 64 bits. The interface ID is automatically constructed in IEEE EUI-64 format using the interface’s MAC address.

**Syntax:** `[no] ipv6 router isis`

To disable IPv6 IS-IS on an interface, use the `no` form of this command.

The following configuration tasks are optional:

- Configure IPv6 route parameters.
• Redistribute routes from other route sources into IPv6 IS-IS.
• Perform IPv6 IS-IS adjacency checks.
• Disable partial SPF calculations.

Configuring IPv6 IS-IS single topology

If your IS-IS single topology will support both IPv6 and IPv4, you can configure both IPv6 and IPv4 on an IS-IS interface for Level 1, Level 2, or both Level 1 and Level 2. However, if you configure both IPv6 and IPv4 on an IS-IS interface, they must be configured to run on the same level. For example, you can configure IPv6 to run on Level 1 on an interface and IPv4 to also run on Level 1 on the same interface. However, you cannot configure IPv6 to run on Level 1 on an interface and IPv4 to run to Level 2 on the same interface.

To configure an IPv6 IS-IS single topology, you must perform the tasks listed below:

1. Globally enable IS-IS and configure at least one Network Entity Title (NET). The NET is the device’s network interface with IS-IS. You can configure up to three NETs on a device.
2. Configure the desired device interfaces with an IPv6 address and enable IPv6 IS-IS on the device interfaces.
3. Configure IS-IS parameters. Refer to the sections Globally configuring IS-IS on a device on page 576, Configuring IPv6 specific address family route parameters on page 576, and Configuring IS-IS properties on an interface on page 584.

Globally configuring IS-IS on a device

The following configuration tasks described in IS-IS (IPv4) on page 511, apply to IS-IS IPv6 configuration:

• Setting the Overload Bit
• Configuring Authentication
• Changing the IS-IS Level Globally
• Disabling or Re-enabling Display of Hostname
• Changing the Sequence Numbers PDU Interval
• Changing the Maximum LSP Lifetime
• Changing the LSP Refresh Interval
• Changing the LSP Generation Interval
• Changing the LSP Interval and Retransmit
• Changing the SPF Timer
• Globally Disabling or Re-Enabling Hello Padding
• Logging Adjacency Changes
• Disabling Partial SPF Calculations

Configuring IPv6 specific address family route parameters

This section describes how to modify the IS-IS the parameters for the IS-IS IPv6 address family.
Changing the maximum number of load sharing paths

By default, IPv6 IS-IS can calculate and install four equal-cost paths into the IPv6 forwarding table. You can change the number of paths IPv6 IS-IS can calculate and install in the IPv6 forwarding table to an amount from 1 - 8. If you change the number of paths to one, the device does not load share route paths learned from IPv6 IS-IS.

For example, to change the number of paths IPv6 IS-IS can calculate and install in the IPv6 forwarding table to three, enter the following command at the IPv6 IS-IS unicast address family configuration level:

```
device(config-isis-router-ipv6u)# maximum-paths 3
```

Syntax: [no] maximum-paths number

The `number` parameter specifies the number of paths IPv6 IS-IS can calculate and install in the IPv6 forwarding table. The `number` value range is 2 to 32 and the default is 1.

NOTE
The maximum number of paths supported by the BR-MLX-10Gx24-DM module is 16.

To return to the default number of maximum paths, enter the `no` form of this command.

Enabling advertisement of a default route

By default, the device does not generate or advertise a default route to its neighboring ISs. A default route is not advertised even if the device’s IPv6 route table contains a default route. You can enable the device to advertise a default route to all neighboring ISs using one of the following methods. By default, the feature originates the default route at Level 2 only. However, you can apply a route map to originate the default route to Level 1 only or at both Level 1 and Level 2.

NOTE
This feature requires the presence of a default route in the IPv6 route table.

To enable the device to advertise a default route that is originated a Level 2, enter the following command at the IPv6 IS-IS unicast address family configuration level:

```
device(config-isis-router-ipv6u)# default-information-originate
```

This command enables the device to advertise a default route into the IPv6 IS-IS area to which the device is attached.

Syntax: [no] default-information-originate [ route-map name ]

The `route-map name` parameter allows you to specify the level on which to advertise the default route. You can specify one of the following:

- Advertise to Level-1 ISs only.
- Advertise to Level-2 ISs only.
- Advertise to Level-1 and Level-2 ISs.

NOTE
The route map must be configured before you can use the route map as a parameter with the `default-information-originate` command.

To use a route map to configure the device to advertise a default route to Level 1, enter commands such as the following at the Global CONFIG level:

```
device(config)# route-map default_level1 permit 1
device(config-routeemap default_level1)# set level level-1
device(config-routeemap default_level1)# router isis
```
These commands configure a route map to set the default advertisement level to Level 1 only.

**Syntax:**

```
[no] route-map map-name permit | deny sequence-number
[no] set level level-1 | level-1-2 | level-2
```

For this use of a route map, use the `permit` option and do not specify a `match` statement. Specify a `set` statement to set the level to one of the following:

- `level-1` - Level 1 only.
- `level-1-2` - Level 1 and Level 2.
- `level-2` - Level 2 only (default).

### Changing the administrative distance for IPv6 IS-IS

When the device has paths from multiple routing protocols to the same destination, it compares the administrative distances of the paths and selects the path with the lowest administrative distance to place in the IPv6 route table.

For example, if the device has a path from RIPng, from OSPFv3, and IPv6 IS-IS to the same destination, and all the paths are using their protocols’ default administrative distances, the device selects the OSPFv3 path, because that path has a lower administrative distance than the RIPng and IPv6 IS-IS paths.

Here are the default IPv6 administrative distances on the device:

- Directly connected - 0 (this value is not configurable)
- Static - 1 (applies to all static routes, including default routes)
- EBGP - 20
- OSPFv3 - 110
- IPv6 IS-IS - 115
- RIPng - 120
- IBGP - 200
- Local BGP - 200
- Unknown - 255 (the device will not use this route)

Lower administrative distances are preferred over higher distances. For example, if the device receives routes for the same network from IPv6 IS-IS and from RIPng, it will prefer the IPv6 IS-IS route by default.

To change the administrative distance for IPv6 IS-IS routes, enter the following command at the IPv6 IS-IS unicast address family configuration level:

```
device(config-isis-router-ipv6u)# distance 100
```

**Syntax:**

```
[no] distance number
```

This command changes the administrative distance for all IPv6 IS-IS routes to 100.

The `number` parameter specifies the administrative distance. You can specify a value from 1 - 255. (Routes with a distance value of 255 are not installed in the routing table.) The default for IPv6 IS-IS is 115.
Configuring summary prefixes

You can configure summary prefixes to aggregate IPv6 IS-IS route information. Summary prefixes can enhance performance by reducing the size of the Link State database, reducing the amount of data a router needs to send to its neighbors, and reducing the CPU cycles used for IPv6 IS-IS.

When you configure a summary prefix, the prefix applies only to Level-2 routes by default. You can specify Level-1 only, Level-2 only, or Level-1 and Level-2 when you configure the prefix.

For example, to configure a summary prefix of 2001:db8://32 to be advertised to Level-1 routes only, enter the following command at the IPv6 IS-IS unicast address family configuration level:

   device(config-isis-router-ipv6u)# summary-prefix 2001:db8://32 level-1

Syntax: [no] summary-prefix ipv6-prefix/prefix-length [ level-1 | level-1-2 | level-2-only ]

The ipv6-prefix/prefix-length parameter specifies the aggregate address. You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

The level-1 | level-1-2 | level-2-only parameter specifies the route types to which the aggregate route applies. The default is level-2-only.

Redistributing routes into IPv6 IS-IS

To redistribute routes into IPv6 IS-IS, you can perform the following configuration tasks:

- Change the default redistribution metric (optional).
- Configure the redistribution of a particular route type into IPv6 IS-IS (mandatory).

The device can redistribute routes from the following route sources into IPv6 IS-IS:

- BGP4+
- RIPng.
- OSPFv3.
- Static IPv6 routes.
- IPv6 routes learned from directly connected networks.

The device can also redistribute Level-1 IPv6 IS-IS routes into Level-2 IPv6 IS-IS routes, and Level-2 IPv6 IS-IS routes into Level-1 IPv6 IS-IS routes.

Route redistribution from other sources into IPv6 IS-IS is disabled by default. When you enable redistribution, the device redistributes routes only into Level 2 by default. You can specify Level 1 only, Level 2 only, or Level 1 and Level 2 when you enable redistribution.

The device automatically redistributes Level-1 routes into Level-2 routes. Thus, you do not need to enable this type of redistribution. You also can enable redistribution of Level-2 routes into Level-1 routes.

The device attempts to use the redistributed route’s metric as the route’s IPv6 IS-IS metric. For example, if an OSPFv3 route has an OSPF cost of 20, the device uses 20 as the route’s IPv6 IS-IS metric. The device uses the redistributed route’s metric as the IPv6 IS-IS metric unless the route does not have a valid metric. In this case, the device assigns the default metric value to the route. For information about the default metric, refer to the "Changing the Default Redistribution Metric" section, which follows this section.
Changing the default redistribution metric

When IPv6 IS-IS redistributes a route from another route source (such as OSPFv3, BGP4+, or a static IPv6 route) into IPv6 IS-IS, it uses the route's metric value as its metric when the metric is not modified by a route map or metric parameter and the default redistribution metric is set to its default value of 0. You can change the default metric to a value from 0 - 65535.

NOTE
The implementation of IS-IS does not support the optional metric types Delay, Expense, or Error.

For example, to change the default metric to 20, enter the following command at the IPv6 IS-IS unicast address family configuration level.

    device(config-isis-router-ipv6u)# default-metric 20

Syntax: [no] default-metric number

The number parameter specifies the default metric. You can specify a value from 0 - 65535. The default is 0.

The restore the default value for the default metric, enter the no form of this command.

Globally change the default redistribution metric

The default-link-metric command allows you to change the metric value globally for all the active ISIS interfaces using one command. You can still configure the interface level metric. If ISIS metric is configured on the interface, it will take the precedence over the global configuration.

Configuration steps

1. Configure router ISIS using the router isis command.
2. Go to the appropriate address-family using address-family [ipv4/ipv6] unicast command.
3. Configure default metric using default-link-metric <value> command.

Configuration example

The following global configuration example is for the IPv4 address-family. It can be similarly configured for IPv6 address-family.

    device(config)#router isis
    device(config-isis-router)#address-family ipv4 unicast
    device(config-isis-router-ipv4u)# default-link-metric 40

Syntax: [no] default-link-metric value [ level-1 | level-2 ]

The value parameter is the default-link-metric value to be set for the given address-family. This is a required parameter for this command. There is no default value for this parameter. For metric-style narrow: 1 to 63. For metric-style wide: 1 to 16777215.

The level parameter is an optional parameter used to set the default-metric for only one of the levels. If this parameter is not given, the default-link-metric will be applied to both level-1 and level-2.

The no version of command will revert the metric value to default, which is 10.

IPv6 metric behavior with multi-topology configuration

The default-link-metric for IPv6 will depend upon the multi-topology configuration.

No multi-topology: The IPv6 default-link-metric will be same as that configured for IPv4 address-family.
Multi-topology: The IPv6 default-link-metric will be equal to the value configured for IPv6 address-family.

Multi-topology transition: The IPv6 default-link-metric will be equal to the value configured for IPv6 address-family.

**Metric behavior with change in metric-style**

There are two types of metric styles in ISIS, narrow metric and wide metric. The range of the metric value is different in both of these styles. If there is a change in the metric-style configuration, the default-link-metric will also change with it. The new value of the default-link-metric will be equal to the minimum of a) configured value and b) the maximum value supported for the new metric-style.

If the metric style changes from narrow metric to wide metric, there will be no change in the value of default-link-metric. If the metric style changes from wide metric to narrow metric, and if the value of default-link-metric is greater than 63, the default-link-metric will now take the value 63, as it is the maximum supported in the narrow metric.

**ISIS Show command**

The show isis command and show ipv6 isis command output has been modified to reflect the default-link-metric configured.

```
device#sh ipv6 isis
......
Default redistribution metric: 0
Default link metric for level-1: 15
Default link metric for level-2: 9
Protocol Routes redistributed into IS-IS:
```

**Redistributing static IPv6 routes into IPv6 IS-IS**

To redistribute static IPv6 routes from the IPv6 static route table into IPv6 IS-IS routes, enter the following command at the IPv6 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv6u)# redistribute static
```

This command configures the device to redistribute all static IPv6 routes into Level-2 IS-IS routes.

**Syntax:** `[no] redistribute static [ level-1 | level-1-2 | level-2 | metric number | metric-type external | internal | route-map name ]`  
The `level-1`, `level-1-2`, and `level-2` keywords restrict redistribution to the specified IPv6 IS-IS level.  
The `metricnumber` parameter changes the metric. You can specify a value from 0 - 4294967295.

The `metric-type external | internal` parameter restricts redistribution to one of the following:

- **external** - The metric value is not comparable to an IPv6 IS-IS internal metric and is always higher than the IPv6 IS-IS internal metric.
- **internal** - The metric value is comparable to metric values used by IPv6 IS-IS. This is the default.

The `route-map name` parameter restricts redistribution to those routes that match the specified route map. The route map must already be configured before you use the route map name with the `redistribute` command. For example, to configure a route map that redistributes only the static IPv6 routes to the destination networks 2001:db8::/32, enter commands such as the following.

```
device(config)# ipv6 access-list static permit any 2001:db8::/32
device(config)# route-map static permit 1
device(config-route-map static)# match ip address static
device(config-route-map static)# router isis
device(config-isis-router)# address-family ipv6 unicast
device(config-isis-router-ipv6u)# redistribute static route-map static
```
Redistributing directly connected routes into IPv6 IS-IS

To redistribute directly connected IPv6 routes into IPv6 IS-IS routes, enter the following command at the IPv6 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv6u)# redistribute connected
```

This command configures the device to redistribute all directly connected routes in the IPv6 route table into Level-2 IPv6 IS-IS.

**Syntax:** 

```
[no] redistribute connected [level-1 | level-1-2 | level-2 | metric number | metric-type external | internal | route-map name]
```

The parameters are the same as the parameters for the `redistribute static` command.

Redistributing RIPng routes into IPv6 IS-IS

To redistribute RIPng routes into IPv6 IS-IS, enter the following command at the IPv6 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv6u)# redistribute rip
```

This command configures the device to redistribute all RIPng routes into Level-2 IS-IS.

**Syntax:** 

```
[no] redistribute rip [level-1 | level-1-2 | level-2 | metric number | metric-type external | internal | route-map name]
```

The parameters are the same as the parameters for the `redistribute static` command.

Redistributing OSPF version 3 routes into IPv6 IS-IS

To redistribute OSPFv3 routes into IPv6 IS-IS, enter the following command at the IPv6 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv6u)# redistribute ospf
```

This command configures the device to redistribute all OSPFv3 routes into Level-2 IPv6 IS-IS.

**Syntax:** 

```
[no] redistribute ospf [level-1 | level-1-2 | level-2 | match external1 | external2 | internal | metric number | metric-type external | internal | route-map name]
```

Most of the parameters are the same as the parameters for the `redistribute static` command. However, the `redistribute ospf` command also has the `match external1 | external2 | internal` parameter. This parameter specifies the OSPF route type you want to redistribute into IPv6 IS-IS. By default, the `redistribute ospf` command redistributes only internal routes:

- `external1` - An OSPF type 1 external route.
- `external2` - An OSPF type 2 external route.
- `internal` - An internal route calculated by OSPF.

Redistributing BGP4+ routes into IPv6 IS-IS

To redistribute BGP4+ routes into IPv6 IS-IS, enter the following command at the IPv6 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv6u)# redistribute bgp
```

This command configures the device to redistribute all its BGP4 routes into Level-2 IPv6 IS-IS.

**Syntax:** 

```
[no] redistribute bgp [level-1 | level-1-2 | level-2 | metric number | metric-type external | internal | route-map name]
```

The parameters are the same as the parameters for the `redistribute static` command.
Redistributing IPv6 IS-IS routes within IPv6 IS-IS

In addition to redistributing routes from other route sources into IPv6 IS-IS, the device can redistribute Level 1 IPv6 IS-IS routes into Level 2 IPv6 IS-IS routes, and Level 2 IPv6 IS-IS routes into Level 1 IPv6 IS-IS routes. By default, the device redistributes routes from Level 1 into Level 2.

**NOTE**

The device automatically redistributes Level 1 routes into Level 2 routes, even if you do not enable redistribution.

For example, to redistribute all IPv6 IS-IS routes from Level 2 into Level 1, enter the following command at the IPv6 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv6u)# redistribute isis level-2 into level-1
```

The device automatically redistributes Level-1 routes into Level 2.

**Syntax:** `[no] redistribute isis level-1 into level-2 | level-2 into level-1 [ prefix-list name ]`

The `level-1 into level-2 | level-2 into level-1` parameter specifies the direction of the redistribution:

- **level-1 into level-2** - Redistributes Level 1 routes into Level 2. This is the default.
- **level-2 into level-1** - Redistributes Level 2 routes into Level 1.

The optional `prefix-list name` parameter allows you to specify the IPv6 prefixes that you want redistributed from Level 1 into Level 2 and from Level 2 into Level 1. Specify the name of the IPv6 prefix list that contains the desired prefixes.

For example, to redistribute the IPv6 prefix 2001:db8::/32 from Level 2 into Level 1, enter commands such as the following.

```
device(config)# ipv6 prefix-list routesfor2001 permit 2001:db8::/32
device(config)# router isis
device(config-isis-router)# address-family ipv6 unicast
device(config-isis-router-ipv6u)# redistribute isis level-2 into level-1 prefix-list routesfor2001
```

Disabling and re-enabling IPv6 protocol-support consistency checks

As discussed in IPv6 IS-IS single-topology mode on page 571, an IS-IS single topology must be configured to run the same set of network protocols (IPv4 IS-IS only, IPv6 IS-IS only, or both IPv4 IS-IS and IPv6 IS-IS).

By default, IS-IS performs consistency checks on hello packets. If a hello packet does not have the same configured network protocols, IS-IS rejects the packet. For example, a hello packet from a router running IPv4 and IPv6 IS-IS will be rejected by a router running either IPv4 IS-IS only or IPv6 IS-IS only, and the two routers will not become adjacent.

To allow two routers running different sets of network protocols to form an adjacency, enter the following command at the IPv6 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv6u)# no adjacency-check
```

This command disables the IPv6 IS-IS consistency check.

**Syntax:** `[no] adjacency-check`

To re-enable the consistency check, enter the following command at the IPv6 IS-IS unicast address family configuration level.

```
device(config-isis-router-ipv6u)# adjacency-check
```
Configuring IS-IS properties on an interface

The parameter settings for configuring IS-IS properties on a device apply to both IS-IS IPv4 and IS-IS IPv6 except for Changing the metric added to advertised routes on page 584 as described below. For details on how to perform all other IS-IS properties on an interface, refer to IS-IS (IPv4) on page 511.

Changing the metric added to advertised routes

When the device originates an IS-IS route or calculates a route, the device adds a metric (cost) to the route. Each IS-IS interface has a separate metric value. The default is 10.

The device applies the interface-level metric to routes originated on the interface and also when calculating routes. The device does not apply the metric to link-state information that the device receives from one IS and floods to other ISs.

The default interface metric is 10. You can change the metric on an individual interface to a value in one of the following ranges:

- 1 - 63 for the narrow metric style (the default metric style)
- 1 - 16777215 for the wide metric style

**NOTE**
If the metric value you want to use is higher than 63 but you have not changed the metric style to wide, change the metric style first, then set the metric. The IS-IS neighbors that will receive the advertisements also must be enabled to receive wide metrics.

To change the IS-IS metric on an interface, use the following CLI method.

```plaintext
device(config-isis-router)# interface ethernet 2/8
device(config-if-e1000-2/8)# isis metric 44
```

Syntax: `[no] isis metric num`

The `num` parameter specifies the metric. The range of values you can specify depends on the metric style. You can specify 1 - 63 for the narrow metric style or 1 - 16777215 for the wide metric style. The default in either case is 10.

When IPv6 IS-IS is enabled in a single topology, you must set the metric-style to be wide if you want to use an interface metric greater than 63.

IPv6 IS-IS Non-Stop Routing

**Overview**

**NOTE**
IPv6 IS-IS NSR is not supported on the CES 2000 Series and CER 2000 Series platforms.

IPv6 IS-IS Non-Stop Routing (NSR) enables the IPv6 IS-IS router to maintain topology and data flow to avoid re-convergence in the network during a processor switchover or hitless-reload event. The IS-IS Bidirectional Forwarding Detection (BFD) sessions survive the switchover and hitless-reload conditions. In general, a router restart causes its peer to remove the routes originated from the router and reinstalls them. This IS-IS NSR feature enables the router to maintain neighbors and LSA database with its peer on the event of a router restart. This feature is compatible with IPv4 IS-IS NSR.

**NOTE**
IPv6 IS-IS NSR is independent of Graceful Restart (GR) and GR help role mechanisms.
Limitations

- The IS-IS over GRE tunnel feature does not support IS-IS NSR. The GRE tunnel interface types are not supported.
- The IS-IS shortcuts are not supported because they depend on the MPLS tunnel.
- If the IS-IS hellos are forwarded at Layer 2 and the device executes a hitless-reload, hellos will not be forwarded for a brief time. The IS-IS adjacencies are lost for 12 seconds and there will be data traffic loss.
- The configuration events that occur close to switchover or hitless-reload may get lost due to CLI synchronization issues.
- The neighbor or interface state changes close to switchover or hitless-reload cannot be handled.
- The IS-IS neighbor hold timer is restarted upon IS-IS NSR switchover or hitless-reload.
- It is recommended to use the default IS-IS hello timer value. IS-IS neighbor sessions may flap during a linecard software upgrade if a shorter timer value is used.
- The traffic counters are not synchronized because the neighbor and LSP database counters are recalculated on the standby module during synchronization.
- With IS-IS NSR enabled, after switchover or hitless-reload to standby MP, IS-IS routes, LSP database and neighbor adjacencies are maintained so that there will be no loss of existing traffic to the IS-IS destinations.
- The IS-IS NSR hitless failover event may not be completely invisible to the network because, after switchover, additional flooding of CSNP packets will occur in the directly connected neighbors.

Configuring IS-IS NSR

To globally enable IS-IS NSR, enter the following commands.

```
device(config)# router isis
device(config-isis-router)# nonstop-routing
```

To globally disable IS-IS NSR, enter the following commands.

```
device(config)# router isis
device(config-isis-router)# no nonstop-routing
```

Syntax: [no] nonstop-routing

Displaying IPv6 IS-IS information

You can display the following information about IPv6 IS-IS:

- General IPv6 IS-IS information.
- IPv6 IS-IS configuration information.
- IPv6 IS-IS error statistics.
- LSP database entries.
- IS-IS system ID to hostname mappings.
- IPv6 IS-IS interface information.
- IPv6 IS-IS memory usage information.
- IPv6 IS-IS neighbor information.
- IPv6 IS-IS path information.
- IPv6 IS-IS redistribution information.
- IPv6 IS-IS route information.
IPV6 IS-IS traffic statistics.

### Displaying IPv6 IS-IS information

To display general IPv6 IS-IS information, enter the following command at any CLI level.

```plaintext
device# show ipv6 isis
```

<table>
<thead>
<tr>
<th>IS-IS Routing Protocol Operation State</th>
<th>The operating state of IPv6 IS-IS. Possible states include the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-Type</td>
<td>The intermediate system type. Possible types include the following:</td>
</tr>
<tr>
<td>System ID</td>
<td>The unique IS-IS router ID. Typically, the device's base MAC address is used as the system ID.</td>
</tr>
<tr>
<td>Manual area address(es)</td>
<td>Area address(es) of the device.</td>
</tr>
<tr>
<td>Interfaces with Integrated IS-IS for IPv6 configured</td>
<td>Interfaces on which IPv6 IS-IS is configured.</td>
</tr>
<tr>
<td>Following Routes are Redistributed into IS-IS for IPv6</td>
<td>Routes that are redistributed into IPv6 IS-IS. Possible routes include the following:</td>
</tr>
<tr>
<td>Number of Routes redistributed into IS-IS</td>
<td>The number of routes distributed into IS-IS</td>
</tr>
<tr>
<td>Domain password</td>
<td>The domain password, if one is configured.</td>
</tr>
</tbody>
</table>

**Syntax:** `show ipv6 isis`

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 108 IPv6 IS-IS information fields</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-IS Routing Protocol Operation State</td>
<td>The operating state of IPv6 IS-IS. Possible states include the following:</td>
</tr>
<tr>
<td>• Enabled - IPv6 IS-IS is enabled.</td>
<td></td>
</tr>
<tr>
<td>• Disabled - IPv6 IS-IS is disabled.</td>
<td></td>
</tr>
<tr>
<td>IS Type</td>
<td>The intermediate system type. Possible types include the following:</td>
</tr>
<tr>
<td>• Level 1 only - The device routes traffic only within the area in which it resides.</td>
<td></td>
</tr>
<tr>
<td>• Level 2 only - The device routes traffic between areas of a routing domain.</td>
<td></td>
</tr>
<tr>
<td>• Level 1-2 - The device routes traffic within the area in which it resides and between areas of a routing domain.</td>
<td></td>
</tr>
<tr>
<td>System ID</td>
<td>The unique IS-IS router ID. Typically, the device's base MAC address is used as the system ID.</td>
</tr>
<tr>
<td>Manual area address(es)</td>
<td>Area address(es) of the device.</td>
</tr>
<tr>
<td>Interfaces with Integrated IS-IS for IPv6 configured</td>
<td>Interfaces on which IPv6 IS-IS is configured.</td>
</tr>
<tr>
<td>Following Routes are Redistributed into IS-IS for IPv6</td>
<td>Routes that are redistributed into IPv6 IS-IS. Possible routes include the following:</td>
</tr>
<tr>
<td>• BGP - BGP4+ routes are redistributed into IPv6 IS-IS.</td>
<td></td>
</tr>
<tr>
<td>• RIP - RIPng routes are redistributed into IPv6 IS-IS.</td>
<td></td>
</tr>
<tr>
<td>• OSPF - OSPFv3 routes are redistributed into IPv6 IS-IS.</td>
<td></td>
</tr>
<tr>
<td>• STATIC - Static IPv6 routes are redistributed into IPv6 IS-IS.</td>
<td></td>
</tr>
<tr>
<td>• CONNECTED - IPv6 routes learned from directly connected networks are redistributed into IPv6 IS-IS.</td>
<td></td>
</tr>
<tr>
<td>Number of Routes redistributed into IS-IS</td>
<td>The number of routes distributed into IS-IS</td>
</tr>
<tr>
<td>Domain password</td>
<td>The domain password, if one is configured.</td>
</tr>
</tbody>
</table>
### TABLE 108 IPv6 IS-IS information fields (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area password</td>
<td>The domain password, if one is configured.</td>
</tr>
<tr>
<td>IS-IS IPv6 Route Administrative Distance</td>
<td>The current setting of the IPv6 IS-IS administrative distance.</td>
</tr>
<tr>
<td>Hold Time Between Two SPF Calculations</td>
<td>The setting of the SPF timer, which causes the device to recalculate the SPF tree of its IPv6 IS-IS links following a change in topology or the link state database.</td>
</tr>
</tbody>
</table>
| Global Hello Padding                 | The setting of the global hello padding feature, which can be one of the following:  
  • Disabled - Global padding for hello packets is disabled.  
  • Enabled - Global padding for hello packets is enabled. |

### Displaying the IPv6 IS-IS configuration in the running configuration

You can display the IPv6 IS-IS commands that are in effect on the device.

**NOTE**

The running configuration does not list the default values. Only commands that change a setting or add configuration information are displayed.

To display the IPv6 IS-IS configuration, enter the following command at any CLI level.

```
device# show ipv6 isis config
```

Current ISIS configuration:
```
router isis
net 49.6561.0000.0022.2222.00
address-family ipv4 unicast
distance 135
redistribute static
exit-address-family
address-family ipv6 unicast
redistribute static
exit-address-family
end
```

**Syntax: show ipv6 isis config**

The running configuration shown in this example contains the following commands:

- Global IPv6 IS-IS commands that enable IS-IS.
- Address family commands that configure IPv4 IS-IS unicast routes.
- Address family commands that configure IPv6 IS-IS unicast routes.

### Displaying IPv6 IS-IS error statistics

To display IPv6 IS-IS error statistics, enter the following command at any level of the CLI.

```
device# show ipv6 isis counts
```

Area Mismatch: 0  
Max Area Mismatch: 0  
System ID Length Mismatch: 0  
Authentication Fail: 0  
Corrupted LSP: 0  
LSP Sequence Number Skipped: 0  
LSP Max Sequence Number Exceeded: 0  
Level-1 Database Overload: 0  
Level-2 Database Overload: 0  
Our LSP Purged: 0
Syntax: show ipv6 isis counts

This display shows the following information.

### TABLE 109 IPv6 IS-IS error statistics

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Mismatch</td>
<td>The number of times the device interface was unable to create a Level-1 adjacency with a neighbor because the device interface and the neighbor did not have any areas in common.</td>
</tr>
<tr>
<td>Max Area Mismatch</td>
<td>The number of times the device received a PDU with a value for maximum number of area addresses that did not match the device’s value for maximum number of area addresses.</td>
</tr>
<tr>
<td>System ID Length Mismatch</td>
<td>The number of times the device received a PDU with an ID field that was a different length than the ID field length configured on the device.</td>
</tr>
<tr>
<td>Authentication Fail</td>
<td>The number of times authentication failed because the device was configured to authenticate IPv6 IS-IS packets in the packet’s domain or area, but the packet did not contain the correct password.</td>
</tr>
<tr>
<td>Corrupted LSP</td>
<td>The number of times the device detected a corrupted LSP in the device’s memory.</td>
</tr>
<tr>
<td>LSP Sequence Number Skipped</td>
<td>The number of times the device received an LSP with a sequence number that was more than 1 higher than the sequence number of the previous LSP received from the same neighbor.</td>
</tr>
<tr>
<td>LSP Max Sequence Number Exceeded</td>
<td>The number of times the device attempted to set an LSP sequence number to a value higher than the highest number in the CSNP sent by the Designated IS.</td>
</tr>
</tbody>
</table>
| Level-1 Database Overload      | The number of times the Level-1 state on the device changed from Waiting to On or from On to Waiting:  
  • Waiting to On - This change can occur when the device recovers from a previous Level-1 LSP database overload and is again ready to receive new LSPs.  
  • On to Waiting - This change can occur when the device’s Level-1 LSP database is full and the device receives an additional LSP, for which there is no room. |
| Level-2 Database Overload      | The number of times the Level-2 state on the device changed from Waiting to On or from On to Waiting:  
  • The change from Waiting to On can occur when the device recovers from a previous Level-2 LSP database overload and is again ready to receive new LSPs.  
  • The change from On to Waiting can occur when the device’s Level-2 LSP database is full and the device receives an additional LSP, for which there is no room. |
| Our LSP Purged                 | The number of times the device received an LSP that was originated by the device itself and had age zero (aged out). |

### Displaying LSP database entries

You can display summary or detailed information about the entries in the LSP database.

**NOTE**
The device maintains separate LSP databases for Level 1 LSPs and Level 2 LSPs.

To display summary information about the entries in the LSP database, enter the following command at any level of the CLI.

```
device# show ipv6 isis database
IS-IS Level-1 Link State Database
```
The command in this example displays information for the LSPs in the device's Level-1 and Level-2 LSP databases. Notice that the display groups the Level-1 and Level-2 LSPs separately.

Syntax: `show ipv6 isis database [ HHHH.HHHH.HHHH.HH-HH | detail | l1 | l2 | level1 | level2 ]`

The `HHHH.HHHH.HHHH.HH-HH` parameter restricts the display to the entry for the specified LSPID. (The LSPID consists of the source ID (HHHH.HHHH.HHHH), the pseudonode (HH-), and LSPID (-HH). To determine the device's source ID, use the `show ipv6 isis` command. For more information, refer to Displaying IPv6 IS-IS information on page 586. To determine the pseudonode and LSPID, use the `show ipv6 isis database` command.

**NOTE**
Name mapping is enabled by default. When name mapping is enabled, the output of the `show ipv6 isis database` command uses the hostname instead of the system ID. To disable mapping so that these displays use the system ID instead, enter the `no hostname` command at the IS-IS router configuration level.

The `detail` parameter displays detailed information about the LSPs. The detailed information display is discussed later in this section.

The `l1` and `level1` parameters restrict the display to the Level-1 LSP entries. You can use these parameters interchangeably.

The `l2` and `level2` parameters restrict the display to the Level-2 LSP entries. You can use these parameters interchangeably.

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 110 IPv6 IS-IS summary LSP database information</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>This field</strong></td>
</tr>
<tr>
<td>LSPID</td>
</tr>
<tr>
<td>Note: If the address has an asterisk (‘*’) at the end, this indicates that the LSP is locally originated.</td>
</tr>
<tr>
<td>LSP Seq Num</td>
</tr>
<tr>
<td>LSP Checksum</td>
</tr>
<tr>
<td>LSP Holdtime</td>
</tr>
<tr>
<td>Note: The IS that originates the LSP starts the timer for the LSP. As a result, LSPs do not all have the same amount of time remaining when they enter the device's LSP database.</td>
</tr>
<tr>
<td>ATT</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>• 0 - The IS that sent the LSP does not support partition repair.</td>
</tr>
<tr>
<td>• 1 - The IS that sent the LSP supports partition repair.</td>
</tr>
<tr>
<td>OL</td>
</tr>
<tr>
<td>• 0 - The overload bit is off.</td>
</tr>
</tbody>
</table>
You can display the detailed information of all the LSPs in the LSP databases with IS-IS MT transition support enabled or disabled, by entering the following command at any level of the CLI.

The following example shows the output for the `show ipv6 isis database detail` command without the transition support.

```
device# show ipv6 isis database detail
IS-IS Level-1 Link State Database
LSPID Seq Num Checksum Holdtime ATT/P/OL
Dist1.00-00 0x00001b2 0xed4 1183 0/0/0
 Area Address: 00.0000
 NLPID: IPv6 IP
 Topology: IPv6(Ovld:0 Att:0) IPv4
 Hostname: Dist1
 IP address: 101.1.1.1
 IPv6 address: 2000:56:1::1/1:1
 Metric: 10 IP-Extended 191.56.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.25.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.1.5.1/32 Up: 0 Subtlv: 0
 Metric: 10 IPv6 (MT-IPv6) 2000:56:1::0:1/96 Up: 0 Subtlv: 0
 Metric: 10 IPv6 (MT-IPv6) 2000:25:1::0:1/96 Up: 0 Subtlv: 0
 Metric: 10 IS (MT-IPv6) Dist2.00
 Metric: 10 IS (MT-IPv6) Edge2.00
 Metric: 10 IS-Extended Dist2.00
 Metric: 10 IS-Extended Edge2.00
Core2.00-00 0x0000049 0xee12 1174 0/0/0
 Area Address: 00.0000
 NLPID: IPv6 IP
 Topology: IPv6(Ovld:0 Att:0) IPv4
 Hostname: Core2
 IP address: 102.1.1.2
 IPv6 address: 2000:28:1::1/1:1:1
 Metric: 10 IP-Extended 191.28.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.68.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.1.8.1/32 Up: 0 Subtlv: 0
 Metric: 10 IPv6 (MT-IPv6) 2000:28:1::0/128 Up: 0 Subtlv: 0
 Metric: 10 IPv6 (MT-IPv6) 2000:68:1::0/128 Up: 0 Subtlv: 0
 Metric: 10 IPv6 (MT-IPv6) 2000:1:1::8/1/128 Up: 0 Subtlv: 0
 Metric: 10 IS (MT-IPv6) Dist2.12
 Metric: 10 IS (MT-IPv6) Core2.3c
 Metric: 10 IS (MT-IPv6) Core2.3d
 Metric: 10 IS (MT-IPv6) Edge2.00
 Metric: 10 IS-Extended Dist2.12
 Metric: 10 IS-Extended Core2.3c
 Metric: 10 IS-Extended Core2.3d
 Metric: 10 IS-Extended Edge2.00
Edge2.00-00* 0x00000190 0x88a9 1080 0/0/0
 Area Address: 00.0000
 NLPID: IPv6 IP
 Topology: IPv6(Ovld:0 Att:0) IPv4
 Hostname: Edge2
 IP address: 101.1.1.2
 IPv6 address: 2000:28:1::1/1:1:1
 Metric: 10 IP-Extended 101.1.0.0/16 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.1.2.1/32 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.28.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.25.1.0.24 Up: 0 Subtlv: 0
 Metric: 10 IPv6 (MT-IPv6) 2000:1::2/128 Up: 0 Subtlv: 0
 Metric: 10 IS-Extended Dist1.00
Dist2.00-00 0x000001b5 0x4780 1191 0/0/0
```

### TABLE 110 IPv6 IS-IS summary LSP database information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1 - The overload bit is on, indicating that the IS that sent the LSP is overloaded and should not be used as a Level-2 router.</td>
<td></td>
</tr>
</tbody>
</table>

Displaying IPv6 IS-IS information

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06
### IS-IS Level-1 Link State Database

<table>
<thead>
<tr>
<th>LSPID</th>
<th>Seq Num</th>
<th>Checksum</th>
<th>Holdtime</th>
<th>ATT/P/OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist1.00-00</td>
<td>0x0000001b3 0x8019 1066 0/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dist2.12-00</td>
<td>0x00000008 0xea06 1190 0/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows the output for the `show ipv6 isis database detail` command with transition support enabled.

```text
device# show ipv6 isis database detail
IS-IS Level-1 Link State Database

<table>
<thead>
<tr>
<th>LSPID</th>
<th>Seq Num</th>
<th>Checksum</th>
<th>Holdtime</th>
<th>ATT/P/OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core2.00-00</td>
<td>0x00000004a 0x3bd1 1086 0/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Displaying IPv6 IS-IS information

```
Metric: 10 IS-Extended Dist2.12
Metric: 10 IS-Extended Edge2.00
LSPID Seq Num Checksum Holdtime ATT/P/OL
Edge2.00-00* 0x00000191 0xdba2 1055 0/0/0
 Area Address: 00.0000
 NLPID: IPv6 IP
 Topology: IPv6(Ovld:0 Att:0) IPv4
 Hostname: Edge2
 IP address: 101.1.1.2
 IPv6 address: 2000:28:1::1:1:1
 Metric: 10 IP-Extended 101.1.0.0/16 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.28.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.25.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.1.2.1/32 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.1.2.1/32 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.2.1/32 Up: 0 Subtlv: 0
 Metric: 10 IPv6 Reachability 2000:1::1::2/128 Up: 0 Subtlv: 0
 Metric: 10 IS-Extended Dist1.00
LSPID Seq Num Checksum Holdtime ATT/P/OL
Dist2.00-00 0x000001b6 0x24b8 1100 0/0/0
 Area Address: 00.0000
 NLPID: IPv6 IP
 Topology: IPv6(Ovld:0 Att:0) IPv4
 Hostname: Dist2
 IP address: 102.1.1.1
 IPv6 address: 2000:56:1::1:1:2
 Metric: 10 IP-Extended 191.56.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.68.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.69.1.0/24 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.1.6.1/32 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.6.1/32 Up: 0 Subtlv: 0
 Metric: 10 IP-Extended 191.68.1.0/31 Up: 0 Subtlv: 0
 Metric: 10 IPv6 Reachability 2000:1::1::2/128 Up: 0 Subtlv: 0
 Metric: 10 IPv6 Reachability 2000:1::1::1/96 Up: 0 Subtlv: 0
 Metric: 10 IPv6 Reachability 2000:1::1::1/96 Up: 0 Subtlv: 0
 Metric: 10 IPv6 (MT-IPv6) 2000:1::1::1/96 Up: 0 Subtlv: 0
 Metric: 10 IPv6 (MT-IPv6) 2000:1::1::1/96 Up: 0 Subtlv: 0
 Metric: 10 IS (MT-IPv6) Dist2.12
 Metric: 10 IS (MT-IPv6) Dist2.3a
 Metric: 10 IS-Extended Dist2.00
LSPID Seq Num Checksum Holdtime ATT/P/OL
Dist2.12-00 0x00000009 0xe807 1100 0/0/0
 Metric: 0 IS-Extended Dist2.00
 Metric: 0 IS-Extended Core2.00
```

Syntax: `show ipv6 isis database detail [l1 | l2 | level1 | level2]`

The `l1` and `level1` options restrict the display to the level 1 LSP entries. You can use these options interchangeably.

The `l2` and `level2` options restrict the display to the level 2 LSP entries. You can use these options interchangeably.

For example, to display details about level 1 LSPs only, enter the following command at any CLI level.

```
device# show ipv6 isis database detail l1
```

Table 111 describes the output parameters of the `show ipv6 isis database detail` command.

**TABLE 111 Output parameters of the show ipv6 isis database detail command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSPID</td>
<td>The LSP ID, which consists of the source ID (HHHH.HHHH.HHHH), the pseudonode (HH-), and the LSPID (-HHH).</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong></td>
</tr>
<tr>
<td></td>
<td>An asterisk (*) at the end of the address indicates that the LSP is locally originated.</td>
</tr>
</tbody>
</table>
### TABLE 111 Output parameters of the `show ipv6 isis database detail` command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq Num</td>
<td>The sequence number of the LSP.</td>
</tr>
<tr>
<td>Checksum</td>
<td>The checksum calculated by the device that sent the LSP and used by the device to verify that the LSP was not corrupted during transmission over the network.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>The maximum number of seconds during which the LSP remains valid. <strong>NOTE</strong> The IS that originates the LSP starts the timer for the LSP. As a result, all LSPs do not have the same amount of time remaining when they enter the device LSP database.</td>
</tr>
<tr>
<td>ATT/P/OL</td>
<td>A 4-bit value extracted from 4 through 7 bits in the Attach field of the LSP.</td>
</tr>
<tr>
<td>Area Address</td>
<td>The address of the area.</td>
</tr>
</tbody>
</table>
| TLVs          | The remaining output displays the type, length, and value (TLV) parameters included in the LSPs. These parameters advertise reachability to IPv6 devices or networks. For example:  
  - A router identified as an IS and with its host name can be reached using the default metric.  
  - An end system within the current area identified as an IP-Extended and with the IP address, can be reached using the default metric.  
  - An IPv6 prefix is up and can be reached using the default metric.                                                                                                                                                  |
| NLPIID        | The Network Layer Protocol Identifier (NLPIID), which specifies the protocol the IS that sent the LSP is using. Usually, this value is "cc" but can also be "iso".          |
| Hostname      | The host name of the router that contains the LSP database is displayed.                                                                        |
| IPv6 address  | The IPv6 address of the interface that sent the LSP. The device can use this address as the next hop in routes to the addresses listed in the following rows. |
| IP address    | The IP address of the interface that sent the LSP. The device can use this address as the next hop in routes to the addresses listed in the following rows. |
| Destination addresses | The rows of information following the IP address row are the destinations advertised by the LSP. The device can reach these destinations by using the previously listed IP address as the next hop. Each destination entry contains the following information:  
  - Metric - The value of the default metric, which is the IS-IS cost of using the previous IP address as the next hop to reach this destination.  
  - Device type - The device type at the destination. The type can be one of the following:  
    - End System - The device is an ES.  
    - IP-Internal - The device is an ES within the current area. The IP address and subnet mask are listed.  
    - IS - The device is another IS. The NET (NSAP address) is listed.  
    - IP-Extended - Same as IP-Internal, except the device uses the extended TLV fields described in draft-ietf-isis-traffic-02.txt to carry the information. |
### Displaying the system ID to name mappings

IS-IS maps the IS-IS system IDs to the hostnames of the devices with those IS. To display these mappings, enter the following command at any level of the CLI.

```
device# show ipv6 isis hostname
```

```
Total number of entries in IS-IS Hostname Table: 2
System ID Hostname * = local IS
* 0000.0022.2222 Router2
0000.0011.1111 Router1
```

**Syntax:** `show ipv6 isis hostname`

This example contains two mappings for this device. The device's IS-IS system ID is "2222.2222.2222" and its hostname is "Router2". The display contains an entry for another router. The display contains one entry for each IS that supports name mapping.

**NOTE**

Name mapping is enabled by default. When name mapping is enabled, the output of the `show ipv6 isis database` and `show ipv6 isis neighbor` commands uses the hostname instead of the system ID. To disable mapping so that these displays use the system ID instead, enter the `no hostname` command at the IS-IS router configuration level.

### Displaying IPv6 IS-IS interface information

To display information about the interfaces on which IPv6 IS-IS is enabled, enter the following command at any level of the CLI.

```
device# show ipv6 isis interface
```

```
Total number of IS-IS Interfaces: 4
Interface : 2/1 Local Circuit Number: 00000001
 Circuit Type : BCAST Circuit Mode : LEVEL-1-2
 Circuit State: UP Passive State: FALSE
 MTU : 1497
 Level-1 Metric: 10, Level-1 Priority: 64
 Level-1 Hello Interval: 10 Level-1 Hello Multiplier: 3
 Level-1 Designated IS: Router2.01-22 Level-1 DIS Changes: 8
 Level-2 Metric: 10, Priority: 64
 Level-2 Hello Interval: 10 Level-2 Hello Multiplier: 3
 Level-2 Designated IS: Router2.01-00 Level-2 DIS Changes: 8
 Next IS-IS LAN Level-1 Hello in 1 seconds
 Next IS-IS LAN Level-2 Hello in 1 seconds
 Number of active Level-1 adjacencies: 1
 Number of active Level-2 adjacencies: 1
 Circuit State Changes: 0 Circuit Adjacencies State Changes: 2
 Rejected Adjacencies: 0
 Circuit Authentication Fails: 0 Bad LSP 0
 Control Messages Sent: 1696 Control Messages Received: 159
 IP Enabled: TRUE
 IP Address and Subnet Mask:
 10.0.0.2 255.0.0.0
 10.147.201.150 255.255.255.0
```

**NOTE**

Name mapping is enabled by default. When name mapping is enabled, the output of the `show ipv6 isis database` and `show ipv6 isis neighbor` commands uses the hostname instead of the system ID. To disable mapping so that these displays use the system ID instead, enter the `no hostname` command at the IS-IS router configuration level.
IPv6 Enabled: TRUE
IPv6 Address :
2001:db8::2

NOTE
The latter part of this display is truncated for brevity. The purpose of this display is to show all possible fields that might display rather than to show complete output.

Syntax: show ipv6 isis interface
This display shows the following information.

TABLE 112 IPv6 IS-IS interface information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of IS-IS interfaces</td>
<td>The number of interfaces on which IPv6 IS-IS is enabled.</td>
</tr>
<tr>
<td>Interface</td>
<td>The port or virtual interface number to which the information listed below applies.</td>
</tr>
<tr>
<td>Local Circuit Number</td>
<td>The ID that the instance of IPv6 IS-IS running on the interface applied to the circuit between this interface and the interface at the other end of the link.</td>
</tr>
<tr>
<td>Circuit Type</td>
<td>The type of IS-IS circuit running on the interface. The circuit type can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• BCAST - broadcast</td>
</tr>
<tr>
<td></td>
<td>• PTP - point-to-point</td>
</tr>
<tr>
<td>Circuit Mode</td>
<td>The IS-IS type in use on the circuit. The mode can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• LEVEL-1</td>
</tr>
<tr>
<td></td>
<td>• LEVEL-2</td>
</tr>
<tr>
<td></td>
<td>• LEVEL-1-2</td>
</tr>
<tr>
<td>Circuit State</td>
<td>The state of the circuit, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• DOWN</td>
</tr>
<tr>
<td></td>
<td>• UP</td>
</tr>
<tr>
<td>Passive State</td>
<td>The state of the passive option, which determines whether the interface is allowed to form an IS-IS adjacency with the IS at the other end of the circuit. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• FALSE - The passive option is disabled. The interface can form an adjacency with the IS at the other end of the link.</td>
</tr>
<tr>
<td></td>
<td>• TRUE - The passive option is enabled. The interface cannot form an adjacency, but can still advertise itself into the area.</td>
</tr>
<tr>
<td>MTU</td>
<td>The maximum length supported for IS-IS PDUs sent on this interface.</td>
</tr>
<tr>
<td>Level-1 Metric</td>
<td>The default-metric value that the device inserts in IS-IS Level-1 PDUs originated on this interface.</td>
</tr>
<tr>
<td>Level-1 Priority</td>
<td>The priority of this IS to be elected as the Designated IS for Level-1 in this broadcast network.</td>
</tr>
<tr>
<td>Level-1 Hello Interval</td>
<td>The number of seconds the software waits between sending Level-1 hello PDUs to the IS at the other end of the circuit.</td>
</tr>
<tr>
<td>Level-1 Hello Multiplier</td>
<td>The number by which the software multiplies the hello interval to calculate the hold time for Level-1 Hello messages received on the circuit.</td>
</tr>
<tr>
<td>Level-1 Designated IS</td>
<td>The NET of the Level-1 Designated IS.</td>
</tr>
<tr>
<td>Level-1 DIS Changes</td>
<td>The number of times the NET of the Level-1 Designated IS has changed.</td>
</tr>
<tr>
<td>Level-2 Metric</td>
<td>The default-metric value that the device inserts in IS-IS Level-2 PDUs originated on this interface.</td>
</tr>
</tbody>
</table>
### TABLE 112 IPv6 IS-IS interface information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-2 Priority</td>
<td>The priority of this IS to be elected as the Designated IS for Level-2 in this broadcast network.</td>
</tr>
<tr>
<td>Level-2 Hello Interval</td>
<td>The number of seconds the software waits between sending Level-2 Hello messages to the IS at the other end of the circuit.</td>
</tr>
<tr>
<td>Level-2 Hello Multiplier</td>
<td>The number by which the software multiplies the hello interval to calculate the hold time for Level-2 LSPs received on the circuit.</td>
</tr>
<tr>
<td>Level-2 Designated IS</td>
<td>The NET of the Level-2 Designated IS.</td>
</tr>
<tr>
<td>Level-2 DIS Changes</td>
<td>The number of times the NET of the Level-2 Designated IS has changed.</td>
</tr>
<tr>
<td>Next IS-IS LAN Level-1 Hello</td>
<td>Number of seconds before next Level-1 Hello message will be transmitted by the device.</td>
</tr>
<tr>
<td>Next IS-IS LAN Level-2 Hello</td>
<td>Number of seconds before next Level-2 Hello message will be transmitted by the device.</td>
</tr>
<tr>
<td>Number of active Level-1 adjacencies</td>
<td>The number of ISs with which this interface has an active Level-1 adjacency.</td>
</tr>
<tr>
<td>Number of active Level-2 adjacencies</td>
<td>The number of ISs with which this interface has an active Level-2 adjacency.</td>
</tr>
<tr>
<td>Circuit State Changes</td>
<td>The number of times the state of the circuit has changed.</td>
</tr>
<tr>
<td>Circuit State Adjacencies Changes</td>
<td>The number of times an adjacency has started or ended on this circuit.</td>
</tr>
<tr>
<td>Rejected Adjacencies</td>
<td>The number of adjacency attempts by other ISs rejected by the device.</td>
</tr>
<tr>
<td>Circuit Authentication Fails</td>
<td>The number of times the device rejected a circuit because the authentication did not match the authentication configured on the device.</td>
</tr>
</tbody>
</table>
| Bad LSP | The number of times the interface received a bad LSP from an IS at the other end of the circuit. The following conditions can cause an LSP to be bad:  
  • Invalid checksum  
  • Invalid length  
  • Invalid lifetime value |
| Control Messages Sent | The number of IS-IS control PDUs sent on this interface. |
| Control Messages Received | The number of IS-IS control PDUs received on this interface. |
| IP Enabled | The state of IP on the interface, which can be one of the following:  
  • TRUE - IP is enabled.  
  • FALSE - IP is disabled. |
| IP Address and Subnet Mask | The IP address(es) and sub-net masks configured on this interface. |
| IPv6 Enabled | The state of IPv6 on the interface, which can be one of the following:  
  • TRUE - IPv6 is enabled.  
  • FALSE - IPv6 is disabled. |
| IPv6 Address | The IPv6 address(es) configured on this interface. |

### Displaying IPv6 IS-IS memory usage

To display information about IPv6 IS-IS memory usage, enter the following command at any level of the CLI.

```
device# show ipv6 isis memory
Total Static Memory Allocated : 1333 bytes
Total Dynamic Memory Allocated : 157952 bytes
```

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Size</th>
<th>Allocated</th>
<th>Max-alloc</th>
<th>Alloc-Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTYPE_ISIS_IP6_SUMMARY_PR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_ISIS_OTHER</td>
<td>20</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Syntax: show ipv6 isis memory

This display shows the following information.

**TABLE 113 IPv6 IS-IS memory usage information**

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Static Memory Allocated</td>
<td>A summary of the amount of static memory allocated, in bytes, to IPv6 IS-IS.</td>
</tr>
<tr>
<td>Total Dynamic Memory Allocated</td>
<td>A summary of the amount of dynamic memory allocated, in bytes, to IPv6 IS-IS.</td>
</tr>
<tr>
<td>Memory Type</td>
<td>The type of memory used by IPv6 IS-IS. (This information is for use by Extreme technical support in case of a problem.)</td>
</tr>
<tr>
<td>Size</td>
<td>The size of a memory type.</td>
</tr>
<tr>
<td>Allocated</td>
<td>The amount of memory currently allocated to a memory type.</td>
</tr>
<tr>
<td>Max-alloc</td>
<td>The maximum amount of memory that was allocated to a memory type.</td>
</tr>
<tr>
<td>Alloc-Fails</td>
<td>The number of times an attempt to allocate memory to a memory type failed.</td>
</tr>
</tbody>
</table>

**Displaying IPv6 IS-IS neighbor information**

You can display a summary or detailed information for all neighbors with which the device has formed an IS-IS adjacency.

To display a summary of all IPv6 IS-IS neighbors of a device, enter the following command at any level of the CLI.

```
device# show ipv6 isis neighbor
```

Total number of IS-IS Neighbors: 2

<table>
<thead>
<tr>
<th>System Id</th>
<th>Interface</th>
<th>SNPA</th>
<th>State</th>
<th>Holdtime</th>
<th>Type</th>
<th>Pri</th>
<th>StateChgeTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router1</td>
<td>Ether 3/2</td>
<td>0000.0000.0020</td>
<td>UP</td>
<td>30</td>
<td>ISL2</td>
<td>64</td>
<td>0 :0 :14:1</td>
</tr>
<tr>
<td>Router1</td>
<td>Ether 3/2</td>
<td>0000.0000.0020</td>
<td>UP</td>
<td>30</td>
<td>ISL1</td>
<td>64</td>
<td>0 :0 :14:1</td>
</tr>
</tbody>
</table>

Syntax: show ipv6 isis neighbor [ detail ]

This display shows the following information.

**TABLE 114 Summary of IPv6 IS-IS neighbor information**

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of IS-IS Neighbors</td>
<td>The number of ISs with which the device has formed an IS-IS adjacency.</td>
</tr>
<tr>
<td>System ID</td>
<td>The system ID of the neighbor.</td>
</tr>
<tr>
<td><strong>Note</strong>: Name mapping is enabled by default. When name mapping is enabled, the output of the show ipv6 isis neighbor command uses the hostname instead of the system ID. To disable mapping so that these displays use the system ID instead, enter the no hostname command at the IS-IS router configuration level.</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>The device port or virtual interface attached to the neighbor.</td>
</tr>
<tr>
<td>SNPA</td>
<td>The Subnetwork Point of Attachment (SNPA), which is the MAC address of the device physical or virtual interface attached to the neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the adjacency with the neighbor. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• DOWN - The adjacency is down.</td>
</tr>
<tr>
<td></td>
<td>• INIT - The adjacency is being established and is not up yet.</td>
</tr>
</tbody>
</table>
### TABLE 114 Summary of IPv6 IS-IS neighbor information (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holdtime</td>
<td>The time between transmissions of IS-IS hello messages.</td>
</tr>
<tr>
<td>Type</td>
<td>The IS-IS type of the adjacency. The type can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• ISL1 - Level-1 IS</td>
</tr>
<tr>
<td></td>
<td>• ISL2 - Level-2 IS</td>
</tr>
<tr>
<td></td>
<td>• PTP - Point-to-Point IS</td>
</tr>
<tr>
<td></td>
<td>• ES - ES</td>
</tr>
<tr>
<td></td>
<td>Note: The device forms a separate adjacency for each IS-IS type. Thus, if the device has both types of IS-IS adjacencies with the neighbor, the display contains a separate row of information for each adjacency.</td>
</tr>
<tr>
<td>Pri</td>
<td>The priority of this IS to be elected as the Designated IS in this broadcast network.</td>
</tr>
<tr>
<td>StateChgeTime</td>
<td>The amount of time that has passed since the adjacency last changed state.</td>
</tr>
</tbody>
</table>

To display detailed information about all IPv6 IS-IS neighbors of a device, enter the following command at any level of the CLI.

```
device# show ipv6 isis neighbor detail
```

### TABLE 115 Detailed IPv6 IS-IS neighbor information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of IS-IS Neighbors</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>System ID</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>Interface</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>SNPA</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>State</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>Type</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>Pri</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>StateChgeTime</td>
<td>For information about this field, refer to Table 114.</td>
</tr>
<tr>
<td>Area Address(es)</td>
<td>The address(es) of areas to which the neighbor interface belongs.</td>
</tr>
<tr>
<td>IP Address(es)</td>
<td>The IP address(es) assigned to the neighbor interface.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>The IPv6 address(es) assigned to the neighbor interface.</td>
</tr>
<tr>
<td>Circuit ID</td>
<td>The ID of the IS-IS circuit running on the neighbor interface.</td>
</tr>
</tbody>
</table>
Displaying IPv6 IS-IS redistribution information

To display information about the IPv6 routes redistributed into IPv6 IS-IS, enter the following command at any level of the CLI.

```bash
device# show ipv6 isis redistributed-routes
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Protocol</th>
<th>Level</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8:1002::/48</td>
<td>Static</td>
<td>Level-2</td>
<td>1</td>
</tr>
<tr>
<td>2001:db8:2002::/48</td>
<td>Static</td>
<td>Level-2</td>
<td>1</td>
</tr>
<tr>
<td>2001:db8:3002::/48</td>
<td>Static</td>
<td>Level-2</td>
<td>1</td>
</tr>
<tr>
<td>2001:db8:4002::/48</td>
<td>Static</td>
<td>Level-2</td>
<td>1</td>
</tr>
<tr>
<td>2001:db8:5002::/48</td>
<td>Static</td>
<td>Level-2</td>
<td>1</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 isis redistributed-routes`

This display shows the following information.

**TABLE 116 IPv6 IS-IS redistribution information**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>The IPv6 routes redistributed into IPv6 IS-IS.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The protocol from which the route is redistributed into IPv6 IS-IS. Possible protocols include the following:</td>
</tr>
<tr>
<td></td>
<td>- BGP - BGP4+.</td>
</tr>
<tr>
<td></td>
<td>- RIP - RIPng.</td>
</tr>
<tr>
<td></td>
<td>- OSPF - OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>- Static - IPv6 static route table.</td>
</tr>
<tr>
<td></td>
<td>- Connected - A directly connected network.</td>
</tr>
<tr>
<td>Level</td>
<td>The IS-IS level into which a route is redistributed. Possible levels include the following:</td>
</tr>
<tr>
<td></td>
<td>- Level-1</td>
</tr>
<tr>
<td></td>
<td>- Level-2</td>
</tr>
<tr>
<td></td>
<td>- Level-1-2</td>
</tr>
<tr>
<td>Metric</td>
<td>The value of the default redistribution metric, which is the IS-IS cost of redistributing the route into IPv6 IS-IS.</td>
</tr>
</tbody>
</table>

Displaying the IPv6 IS-IS route information

To display the routes in the device's IPv6 IS-IS route table, enter the following command at any level of the CLI.

```bash
device# show ipv6 isis routes
```

**ISIS IPv6 Routing Table**

<table>
<thead>
<tr>
<th>Type</th>
<th>IPv6 Prefix</th>
<th>Next Hop Router</th>
<th>Interface</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>2001:db8:1:1000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>20</td>
</tr>
<tr>
<td>L1</td>
<td>2001:db8:1:2000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>20</td>
</tr>
<tr>
<td>L1</td>
<td>2001:db8:1:3000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>20</td>
</tr>
<tr>
<td>L1</td>
<td>2001:db8:1:4000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>20</td>
</tr>
<tr>
<td>L1</td>
<td>2001:db8:1:5000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>20</td>
</tr>
<tr>
<td>L1</td>
<td>2001:db8:2:1000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>30</td>
</tr>
<tr>
<td>L1</td>
<td>2001:db8:2:2000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>30</td>
</tr>
<tr>
<td>L1</td>
<td>2001:db8:2:3000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>30</td>
</tr>
<tr>
<td>L1</td>
<td>2001:db8:2:4000::/48</td>
<td>fe80::2e0:52ff:fe00:20</td>
<td>ethe 3/2</td>
<td>30</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 isis routes`

This display shows the following information.
TABLE 117 IPv6 IS-IS route information

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Routes</td>
<td>The total number of routes in the device’s IPv6 IS-IS route table. The total includes Level-1 and Level-2 routes.</td>
</tr>
<tr>
<td>Level1</td>
<td>The total number of Level-1 routes in the IPv6 IS-IS route table.</td>
</tr>
<tr>
<td>Level2</td>
<td>The total number of Level-1 routes in the IPv6 IS-IS route table.</td>
</tr>
<tr>
<td>Equal-cost multi-path</td>
<td>The total number of equal-cost routes to the same destination in the IPv6 IS-IS route table. If load sharing is enabled, the device equally distributes traffic among the routes.</td>
</tr>
<tr>
<td>Type</td>
<td>The route type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• L1 - Level-1 route</td>
</tr>
<tr>
<td></td>
<td>• L2 - Level-2 route</td>
</tr>
<tr>
<td>IPv6 Prefix</td>
<td>The IPv6 prefix of the route.</td>
</tr>
<tr>
<td>Next Hop Router</td>
<td>The IPv6 address of the next-hop interface to the destination.</td>
</tr>
<tr>
<td>Interface</td>
<td>The device interface (physical or virtual interface) attached to the next hop.</td>
</tr>
<tr>
<td>Cost</td>
<td>The IPv6 IS-IS default metric for the route, which is the cost of using this route to reach the next-hop router to this destination.</td>
</tr>
</tbody>
</table>

Displaying IPv6 IS-IS traffic statistics

The device maintains statistics for common IS-IS PDU types. To display the IPv6 traffic statistics, enter the following command at any level of the CLI.

```
device# show ipv6 isis traffic
```

Syntax: show ipv6 isis traffic

This display shows the following information.

TABLE 118 IPv6 IS-IS traffic statistics

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1 Hellos</td>
<td>The number of Level-1 hello PDUs sent and received by the device.</td>
</tr>
<tr>
<td>Level-2 Hellos</td>
<td>The number of Level-2 hello PDUs sent and received by the device.</td>
</tr>
<tr>
<td>PTP Hellos</td>
<td>The number of point-to-point hello PDUs sent and received by the device.</td>
</tr>
<tr>
<td>Level-1 LSP</td>
<td>The number of Level-1 link-state PDUs sent and received by the device.</td>
</tr>
<tr>
<td>Level-2 LSP</td>
<td>The number of Level-2 link-state PDUs sent and received by the device.</td>
</tr>
<tr>
<td>Level-1 CSNP</td>
<td>The number of Level-1 Complete Sequence Number PDUs (CSNPs) sent and received by the device.</td>
</tr>
<tr>
<td>Level-2 CSNP</td>
<td>The number of Level-2 CSNPs sent and received by the device.</td>
</tr>
<tr>
<td>Level-1 PSNP</td>
<td>The number of Level-1 Partial Sequence Number PDUs (PSNPs) sent and received by the device.</td>
</tr>
<tr>
<td>Level-2 PSNP</td>
<td>The number of Level-2 PSNPs sent and received by the device.</td>
</tr>
</tbody>
</table>
IPv6 IS-IS Multi-Topology

IPv6 IS-IS supports Multi-Topology (MT) mode, which allows you to configure both IPv4 and IPv6 topologies on the router interfaces in an area or a domain. However, when implementing an MT, all routers in an area (Level 1 routing) or a domain (Level 2 routing) can be configured with a set of independent topologies on all their interfaces, even on loopback interfaces. All routers in an area or a domain use the same type of IPv6 support, either single-topology or MT. In a network, the Shortest Path First (SPF) is calculated for each configured topology.

Figure 44 depicts a non-congruent topology with IPv6 IS-IS MT enabled. Router 1 is an IPv4 and IPv6 dual stack router, Router 2 is an IPv6 router, and Router 3 is an IPv4 router. All the routers (Router 1, Router 2, and Router 3) in the Area 1 are configured with a set of independent topologies.

FIGURE 44 IS-IS non-congruent topology

Configuration considerations for IPv6 IS-IS MT

The following are the configuration considerations:

- The wide metric style must be configured before enabling IPv6 IS-IS MT.
- IPv4, IPv6, or IPv4 and IPv6 configured on the same interface must run on the same IS-IS level.
- Enabling or disabling IPv6 IS-IS MT clears all adjacencies, LSP databases, and IPv6 IS-IS routes.
- All routers on a point-to-point or a broadcast interface must support at least one common topology (IPv4 or IPv6), when MT is enabled.

Migrating to IPv6 IS-IS MT

The following steps must be performed to migrate from a non-MT environment to an MT environment.

1. Assume that the entire network is not an IPv6 IS-IS MT environment, and ensure that all the routes are correct.
2. Use the `multi-topology transition` command to enable transition mode on each router one by one, and ensure that all the routes are correct.
3. After all the routers are in transition mode, use the `no multi-topology transition` command to disable transition mode on each router one by one. Ensure that all the routes are correct.
4. Change the topology to make IPv4 and IPv6 different.

**Maintaining MT adjacencies**

With the extension of IPv6 IS-IS MT, the new type, length, and value (TLV) parameters are added into the IS to IS hello (IIH) packets that advertise the topologies of the interface. In IPv6 IS-IS MT, the router advertises its information using the new TLV parameters such as MT ID TLV, MT IS Reachability TLV, MT Reachable IPv4 TLV, and MT Reachable IPv6 TLV. The TLVs specify the types of data, the maximum length of the data, and the valid values for the data.

**Forming adjacencies on the point-to-point interfaces**

On a point-to-point interface, adjacencies are formed with IS-IS routers that do not implement MT extensions. If two peers share at least one common topology, then an adjacency is formed between the peers.

**Forming adjacencies on the broadcast interfaces**

On a broadcast interface, all the MT-enabled routers advertise their MT capability TLV in their IIH packets. The MT-enabled IS-IS routers form adjacency with any IS-IS routers whether or not MT is enabled. A peering MT-disabled IS-IS router does not form adjacency when NLPID TLVs do not match.

**New TLV attributes**

The new TLV parameters to support the IPv6 IS-IS MT extension are MT ID TLV, MT IS Reachability TLV, MT Reachable IPv4 TLV, and MT Reachable IPv6 TLV.

**Enabling IPv6 IS-IS MT**

When you enable IPv6 IS-IS MT in an area or a domain, the MT-enabled router runs IPv6 IS-IS in multi SPF mode. You can enable IPv6 IS-IS MT transition mode in an area or a domain using the transition option of the multi-topology command. The transition option allows the network operating in IPv6 IS-IS single-topology support mode to continue to work while upgrading routers to include IPv6 IS-IS MT support. When you enable transition mode, the router advertises both the single-topology TLVs and MT TLVs.

When transition mode is not enabled, the routers operating in single-topology mode do not establish IPv6 connectivity with the routers operating in MT mode.

To enable IPv6 IS-IS MT, enter the following command at the IPv6 unicast address family configuration level.

```
device(config-isis-router-ipv6u)# multi-topology
```

**Syntax:** `[no] multi-topology`

The `no` form of the command disables IPv6 IS-IS MT.

To enable IPv6 IS-IS MT with transition support, enter the following command at the IPv6 unicast address family configuration level.

```
device(config-isis-router-ipv6u)# multi-topology transition
```

**Syntax:** `[no] multi-topology [ transition ]`

The transition option allows the network to undergo transition from IPv6 IS-IS single-topology mode to IPv6 IS-IS MT mode. By default, the transition mode is off.

The `no` form of the command disables the transition support.
Configuring the IS-IS IPv6 PSPF exponential back-off feature

The exponential back-off mechanism allows you to schedule PSPF processing for IPv6 IS-IS MT. An initial-hold-time interval is the wait time after an LSP change until the first PSPF calculation. Optionally, this value is followed by another configurable variable called the exponential-hold-time interval that is used as a wait time between the first and second PSPF calculations.

The exponential-hold-time interval is increased in multiples of two until it reaches the maximum hold time as configured by the max-hold-time variable. Once reached, the maximum hold time remains the hold interval between PSPF calculations until there are no further changes in the network. When there are no network changes in a hold down period, the gap between PSPF calculations returns to the initial-hold-time interval and the process begins again.

If the initial-hold-time interval is configured without an exponential-hold-time, the max-hold-time variable is used for the second and all subsequent intervals.

If the initial-hold-time and exponential-hold-time intervals are not configured, the max-hold-time variable is used for the first and all subsequent intervals.

To configure the minimum time between the two consecutive partial route calculations for IPv6 IS-IS MT, enter the following command under the IPv6 unicast address family configuration level.

```
device(config-isis-router-ipv6u)# partial-spf-interval 60 1000 5000
```

Syntax: `[no] partial-spf-interval max-hold-time initial-hold-time exponential-hold-time`

The `max-hold-time` variable specifies the maximum hold time between two Partial Shortest Path First (PSPF) calculations. The range is from 0 through 120000 milliseconds. The default value is 5000 milliseconds.

The `initial-hold-time` variable is an optional value that specifies the hold time after an LSP change until the first PSPF calculation. The range is from 0 through 120000 milliseconds. The default value is 5000 milliseconds.

The `exponential-hold-time` variable is an optional value that specifies the hold time between the first and second PSPF calculations. The range is from 0 through 120000 milliseconds. The default value is 5000 milliseconds.

The `no` form of the command resets all parameters to their default values.

Changing the SPF timer

You can configure the minimum time between two consecutive SPF computations for IPv6 IS-IS MT, by entering the following command under the IPv6 unicast address family configuration level.

```
device(config-isis-router-ipv6u)# spf-interval 5 2000 2000
```

Syntax: `[no] spf-interval max-hold-time initial-hold-time exponential-hold-time`

The `max-hold-time` variable specifies the maximum time gap between consecutive SPF calculations. The range is from 0 through 120 seconds. The default value is 5 seconds.

The `initial-hold-time` variable specifies the initial time gap between an SPF event and the first running of SPF. The range is from 0 through 120000 milliseconds. The default value is 5000 milliseconds.

The `exponential-hold-time` variable specifies the interval between two SPF calculations. The range is from 0 through 120000 milliseconds. The default value is 5000 milliseconds.

The `no` form of the command resets all parameters to their default values.
Changing the metric added value

When the device calculates a route, the device adds a metric (cost) to the route. Each IS-IS interface has a separate metric value. In IPv6 IS-IS MT, different metrics are configured on an interface for IPv4 and IPv6. When the metric value is configured for an interface, it rebuilds the route LSP and triggers IPv6 IS-IS MT SPF calculation.

To configure the metric value for an interface under IPv6 IS-IS MT, enter the following command.

```
device(config-if-e10000-1/4)# isis ipv6 metric 15
```

Syntax: `[no] isis ipv6 metric value [level-1 | level-2 ]`

The `value` variable specifies the metric. The metric range depends on the metric style. You can specify the range from 1 through 63 for the narrow metric style and from 1 through 16777215 for the wide metric style. The default value for both styles is 10.

The `level-1` option specifies that the level 1 router routes traffic only within an area. To forward traffic to another area, the level 1 router sends the traffic to its nearest level-2 router.

The `level-2` option specifies that the level 2 router routes traffic between the areas within a domain. The `level-1 | level-2` options apply the change to only the level you specify. If you do not use one of the options, the change applies to both the levels.

The `no` form of the command resets all parameters to their default values.

Configuration example to deploy IPv6 IS-IS MT

Figure 45 shows an example of a non-congruent topology enabled with IPv6 IS-IS MT. Router D1 supports both the IPv4 and IPv6 topologies, router D2 supports both the IPv4 and IPv6 topologies, router E2 supports an IPv4 topology, and router C2 supports both the IPv4 and IPv6 topologies.

**FIGURE 45 IPv6 IS-IS MT configuration**

![IPv6 IS-IS MT configuration diagram](image-url)

**Configuration commands to enable IPv6 IS-IS MT on router D1**

The following commands enable IPv6 IS-IS MT on router D1.

```
device(config)# router isis
device(config-isis-router)# net 00.0000.001b.ed03.1400.00
device(config-isis-router)# address-family ipv4 unicast
device(config-isis-router-ipv4u)# metric-style wide
```
device(config-isis-router-ipv4u)# exit-address-family
device(config-isis-router)# address-family ipv6 unicast
device(config-isis-router-ipv6u)# multi-topology
device(config-isis-router-ipv6u)# exit-address-family

Configuration commands to enable IPv6 IS-IS MT on router D2
The following commands enable IPv6 IS-IS MT on router D2.

device(config)# router isis
device(config-isis-router)# net 00.0000.001b.ed04.4400.00
device(config-isis-router)# address-family ipv4 unicast
device(config-isis-router-ipv4u)# metric-style wide
device(config-isis-router-ipv4u)# exit-address-family
device(config-isis-router)# address-family ipv6 unicast
device(config-isis-router-ipv6u)# multi-topology
device(config-isis-router-ipv6u)# exit-address-family

Configuration commands to enable IPv6 IS-IS MT on router E2
The following commands enable IPv6 IS-IS MT on router E2.

device(config)# router isis
device(config-isis-router)# net 00.0000.001b.ed04.4000.00
device(config-isis-router)# address-family ipv4 unicast
device(config-isis-router-ipv4u)# metric-style wide
device(config-isis-router-ipv4u)# exit-address-family
device(config-isis-router)# address-family ipv6 unicast
device(config-isis-router-ipv6u)# multi-topology
device(config-isis-router-ipv6u)# exit-address-family

Configuration commands to enable IPv6 IS-IS MT on router C2
The following commands enable IPv6 IS-IS MT on router C2.

device(config)# router isis
device(config-isis-router)# net 00.0000.001b.ed04.0000.00
device(config-isis-router)# address-family ipv4 unicast
device(config-isis-router-ipv4u)# metric-style wide
device(config-isis-router-ipv4u)# exit-address-family
device(config-isis-router)# address-family ipv6 unicast
device(config-isis-router-ipv6u)# multi-topology
device(config-isis-router-ipv6u)# exit-address-family

To display current running configuration for the router D2, enter the following command.

device# show running-config
router isis
net 00.0000.001b.ed04.4400.00
address-family ipv4 unicast
metric-style wide
exit-address-family
address-family ipv6 unicast
multi-topology
exit-address-family
End
default-link-metric

Configures the metric value globally on all active IPv6 IS-IS interfaces.

Syntax

```
default-link-metric value [level-1 | level-2]
no default-link-metric value [level-1 | level-2]
```

Command Default

The default-link-metric command is disabled by default.

Parameters

- **default-link-metric**
  - **value**: Specifies the global default-link-metric parameter for an IPv6 IS-IS unicast address family configuration.
  - **level-1 | level-2**: Specifies the IS-IS routing parameter as level-1 or level-2. You can choose to configure the default-link-metric parameter as either level-1 or level-2. If the IS-IS routing parameter is not configured, the default-link-metric value is applied to both level-1 and level-2.

Modes

IPv6 IS-IS unicast address family configuration level.

Usage Guidelines

Use the default-link metric value command to change the metric value globally on all active IPv6 IS-IS interfaces. The default-link metric value command is useful when you have a common IS-IS metric value on all IS-IS interfaces, other than the default metric value of 10. The command enables the metric value for IPv6 routes per address family configuration. Use the no form of the command to reset the metric value to the default value 10. The default-link metric value command is not applicable to MPLS IS-IS shortcuts and tunnel interfaces.

You can change the metric value for a specific interface using the isis metric command or the isis ipv6 metric command. The isis metric command configuration takes precedence over the default-link metric value command configuration.

The IPv6 default link metric value is dependent upon the configuration of the multi-topology command under the IPv6 IS-IS unicast address family. The IPv6 default link metric value is displayed in the output of the show isis interface command. Consider the following when the IS-IS multi-topology feature is enabled.
The multi-topology feature	IPv6 default link metric configuration
The **multi-topology** command is enabled. | The IPv6 default link metric is equal to the value configured under the IPv6 IS-IS unicast address family. For an example of this configuration, refer to the **multi-topology** command configuration in the Example section.
The **no multi-topology** command is enabled. | The IPv6 default link metric is equal to the value configured under the IPv4 IS-IS unicast address family.
The **multi-topology transition** command is enabled. | The IPv6 default link metric is equal to the value configured under the IPv6 IS-IS unicast address family.

During switchover or hitless upgrade, the IS-IS default link metric configuration is not affected. Backward compatibility is not supported.

**NOTE**
The **default-link-metric** value command is supported on the XMR Series, the MLX Series, and the CER 2000 Series and CES 2000 Series platforms.

### Examples

The following example configures the IS-IS default link metric value to 20 for an IPv6 address family. The default link metric value of 20 is applied to both level-1 and level-2.

```
device(config)#router isis
device(config-isis-router)#address-family-ipv6 unicast
device(config-isis-router-ipv6u)#default-link-metric 20
device(config-isis-router-ipv6u)#
```

The following example configures the **multi-topology** command under the IPv6 IS-IS unicast address family.

```
device(config)#router isis
device(config-isis-router)#address-family-ipv6 unicast
device(config-isis-router-ipv6u)#multi-topology
device(config-isis-router-ipv6u)#default-link-metric 20
```

Use the **show isis interface** command to display the configuration for the IPv6 IS-IS default link metric value. In the output below, the IPv4 default link metric displays a different value than the IPv6 default link metric because the **multi-topology** is configured. Refer to the **multi-topology** command configuration above for more information.

```
device(config)#show isis interface

... Circuit State: UP Circuit Mode: LEVEL-1-2
 Circuit Type: PTP Passive State: FALSE
 Circuit Number: 1, MTU: 1500
 Auth-mode: None
 Level-1 Metric: 30
 Hello Interval: 10 Hello Multiplier: 3
 Level-2 Metric: 30
 Next IS-IS PTP Hello in 0 seconds
 Circuit State Changes: 1 Circuit Adjacencies State Changes: 0
 Rejected Adjacencies: 0
 Circuit Authentication L1 failures: 0
 Bad LSPs: 0
 Control Messages Sent: 7 Control Messages Received: 0
 Hello Padding: Enabled
 IP Enabled: TRUE
 IPv6 Enabled: TRUE
 IPv6 Level-1 Metric: 20
 IPv6 Level-2 Metric: 20

...
History

<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.7.00</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
reverse-metric

Configures the reverse metric value at the IS-IS router level.

Syntax

```
reverse-metric [ value ] [ whole-lan ] [ te-def-metric ]
no reverse-metric [ value ] [ whole-lan ] [ te-def-metric ]
reverse-metric tlv-type [ value ]
no reverse-metric tlv-type [ value ]
```

Command Default

The `reverse-metric` command is disabled by default.

Parameters

- **reverse-metric**: Specifies the reverse metric parameter at the IS-IS router level.
- **value**: Specifies the reverse metric value in metric style. The metric style consists of narrow or wide style. The narrow metric range is from 1 - 63. The wide metric range is from 1 - 16777215. The default value is 16777214 irrespective of the metric style configured. If the reverse-metric value is configured, the local LSP is updated with the sum of the default metric and the reverse metric value. When the IS-IS neighbor router receives the reverse metric value through the IS hello, the neighbor router updates the cost to reach the original IS-IS router with the sum of default metric and the reverse metric value. This helps in shifting traffic to the other alternate paths.
- **whole-lan**: Specifies changing the reverse metric parameter for the entire LAN. The `whole-lan` option indicates the whole LAN bit in the flag. If the `whole-lan` option is enabled, the configured reverse metric value affects the entire LAN. If the `whole-lan` option is not enabled, the reverse metric value affects only the neighbor router. This option takes effect only on the multi-access LAN. IS-IS point-to-point interfaces are not affected when the `whole-lan` option is enabled.
- **te-def-metric**: Specifies setting the TE default metric sub-TLV. If the `te-def-metric` option is enabled, the router sends a TE default metric sub-TLV within the reverse-metric TLV.
- **tlv-type value**: Specifies the TLV type for the reverse metric parameter. The TLV type can only be configured at the IS-IS router level. The `tlv-type value` parameter must be configured in the range of unassigned IS-IS TLV values. The `tlv-type value` parameter should not be configured with existing IS-IS TLV types. The default value is 254.

Modes

IS-IS router level.

Usage Guidelines

Use the `reverse-metric` command when you are performing network maintenance operations, such as software upgrades, on an IS-IS router node. When maintenance operations are performed, the router undergoing maintenance should not be used by the neighbor routers to forward transit traffic. In order to shift traffic away from the router undergoing maintenance, configure the `reverse-metric` command on the maintenance router. The router undergoing maintenance first advertises a reverse metric TLV in a IS-IS hello PDU to its neighbor router on a point-to-point or multi-access link. When the neighbor router receives a high...
reverse metric value, the router selects alternate paths to forward traffic while maintenance is going on. The neighbor router adds the reverse metric TLV to its own TE default metric sub-TLV and recalculates its SPF tree and route topology. The neighbor router floods the new LSP containing the extended IS reachability TLV throughout the domain. Traffic gradually shifts onto alternate paths away from the link between the maintenance router and the neighbor router as nodes in the IS-IS domain receive the new LSP. Once the maintenance is complete, you can remove the reverse-metric command configuration from the router, and the reverse metric TLV in the IS-IS hello PDU is no longer advertised to the neighbor router. The IS-IS neighbor router reverts back to its original IS-IS metric, and the traffic switches to the original IS-IS router to reach its destination.

In a multi-access link, the IS-IS DIS router adds the reverse metric TLV value to each node’s default metric value in the pseudonode LSP when the whole-lan flag is set. All non-DIS nodes ignore the reverse metric TLV. If multiple neighbor routers advertise the reverse metric TLV with the whole LAN flag set, the neighbor router with the highest MAC address takes precedence, and the value advertised by that neighbor is updated in the pseudonode LSP for all neighbors. If some neighbor routers do not set the whole LAN flag, then the reverse metric TLV value advertised by the neighbor router is updated in the pseudonode LSP for that neighbor only.

The S flag is set when the sender of the reverse metric TLV signals to the neighbor router to use the TE sub-tlv for the default metric (sub-tlv type 18) in the reverse metric TLV. When the receiving router finds the S flag set in the reverse metric TLV, the router searches for the TE sub-tlv. The router adds the default metric value in the TE sub-tlv to the configured TE default metric value and recalculates the CSPF.

The no form of the command, specified with the configured value, resets the metric value to the default value of 16777214. The no reverse-metric command removes the entire reverse metric configuration.

NOTE
The reverse-metric value command is supported on the XMR Series, the MLX Series, and the CER 2000 Series and CES 2000 Series platforms.

Examples

The following example configures the reverse metric value to 50 at the router level. The whole-lan option is enabled to include the entire LAN.

```
device(config)#router isis
device(config-isis-router)#reverse-metric 50
```

```
device(config-isis-router)#reverse-metric 50 whole-lan
```

```
device(config-isis-router)#
```

Reverse Metric Value
The following example configures the reverse metric TLV type in the range of unassigned IS-IS TLV values.

device(config-isis-router)#reverse-metric tlv-type ?
DECIMAL Configure in the range of unassigned ISIS TLV values
device(config-isis-router)#reverse-metric tlv-type 230
device(config-isis-router)#

Use the `show isis config` command to display the configuration of the reverse metric value at the router level. The reverse metric value and the parameters, `whole-lan` and `te-def-metric` are highlighted in the output.

device(config)#show isis config
router isis
net 49.2211.aaaa.bbbb.cccc.00
reverse-metric 50 whole-lan te-def-metric
address-family ipv4 unicast
exit-address-family
address-family ipv6 unicast
exit-address-family

History

<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.7.00</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
isis reverse-metric

Configures the reserve metric value on a single IPv6 IS-IS interface.

Syntax

 isis reverse-metric [value] [whole-lan] [te-def-metric]
 no isis reverse-metric [value] [whole-lan] [te-def-metric]

Command Default

The isis reverse-metric command is disabled by default.

Parameters

isis reverse-metric Specifies the reverse metric parameter at the interface level.

value Specifies the reverse metric value in metric style. The metric style consists of narrow or wide style. The narrow metric range is from 1 - 63. The wide metric range is from 1 - 16777215. The default value is 16777214 irrespective of the metric style configured. If the reverse-metric value is configured, the local LSP is updated with the sum of the default metric and the reverse metric value. When the IS-IS neighbor router receives the reverse metric value through the IS hello, the neighbor router updates the cost to reach the original IS-IS router with the sum of default metric and the reverse metric value. This helps in shifting traffic to the other alternate paths.

whole-lan Specifies changing the reverse metric parameter for the entire LAN. The whole-lan option indicates the whole LAN bit in the flag. If the whole-lan option is enabled, the configured reverse metric value affects the entire LAN. If the whole-lan option is not enabled, the reverse metric value affects only the neighbor router. This option takes effect only on the multi-access LAN. IS-IS point-to-point interfaces are not affected when the whole-lan option is enabled.

te-def-metric Specifies setting the TE default metric sub-TLV. If the te-def-metric option is enabled, the router sends a TE default metric sub-TLV within the reverse-metric TLV.

Modes

IPv6 IS-IS interface level.

Usage Guidelines

Use the isis reverse-metric command when you are performing network maintenance operations, such as software upgrades, at the link level. When maintenance operations are performed, the link undergoing maintenance should not be used by the neighbor routers to forward transit traffic. In order to shift traffic away from the link undergoing maintenance, configure the isis reverse-metric command on the maintenance link. The router undergoing maintenance first advertises a reverse metric TLV in a IS-IS hello PDU to its neighbor router on a point-to-point or multi-access link. When the neighbor router receives a high reverse metric value, the router selects alternate paths to forward traffic while maintenance is going on. The neighbor router adds the reverse metric TLV to its own TE default metric sub-TLV and recalculates its SPF tree and route topology. The neighbor router floods the new LSP containing the extended IS reachability TLV throughout the domain. Traffic gradually shifts onto
alternate paths away from the link between the maintenance router and the neighbor router as nodes in the IS-IS domain receive the new LSP. Once the maintenance is complete, you can remove the `isis reverse-metric` command configuration on the link, and the reverse metric TLV in the IS-IS hello PDU is no longer advertised to the neighbor router. The IS-IS neighbor router reverts back to its original IS-IS metric, and the traffic switches to the original IS-IS link to reach its destination.

In a multi-access link, the IS-IS DIS router adds the reverse metric TLV value to each node’s default metric value in the pseudonode LSP when the whole-lan flag is set. All non-DIS nodes ignore the reverse metric TLV. If multiple neighbor routers advertise the reverse metric TLV with the whole LAN flag set, the neighbor router with the highest MAC address takes precedence, and the value advertised by that neighbor is updated in the pseudonode LSP for all neighbors. If some neighbor routers do not set the whole LAN flag, then the reverse metric TLV value advertised by the neighbor router is updated in the pseudonode LSP for that neighbor only.

The S flag is set when the sender of the reverse metric TLV signals to the neighbor router to use the TE sub-tlv for the default metric (sub-tlv type 18) in the reverse metric TLV. When the receiving router finds the S flag set in the reverse metric TLV, the router searches for the TE sub-tlv. The router adds the default metric value in the TE sub-tlv to the configured TE default metric value and recalculates the CSPF.

The no form of the command, specified with the configured value, resets the metric value to the default value of 16777214. The no `isis reverse-metric` command removes the entire reverse metric configuration.

NOTE
The `isis reverse-metric value` command is supported on the XMR Series, the MLX, and the CER 2000 Series and CES 2000 Series platforms.
Examples

The following example configures the reverse metric value to 70 on a single IPv6 IS-IS interface level. The `whole-lan` option is enabled to include the entire LAN.

```
device(config)#interface ethernet 1/3
device(config-if-e1000-1/3)#ipv6 address 100::1/64
device(config-if-e1000-1/3)#ipv6 router isis
device(config-if-e1000-1/3)# isis reverse-metric ?
DECIMAL           Narrow metric range 1-63, Wide metric range 1-16777214,
te-def-metric   Update TE default metric sub-tlv
whole-lan       Change metric for whole LAN
device(config-if-e1000-1/3)#isis reverse-metric 70 ?
te-def-metric   Update TE default metric sub-tlv
whole-lan       Change metric for whole LAN
<cr>
device(config-if-e1000-1/3)#isis reverse-metric 70 whole-lan
device(config-if-e1000-1/3)#
```

Use the `show ipv6 isis` command to display the configuration of the reverse metric value at the global level. The reverse metric value and flags are highlighted in the output.

```
device(config)#show ipv6 isis
IS-IS Routing Protocol Operation State: Enabled
IS-Type: Level-1-2
System ID: 1234.1234.1234
Manual area address(es):
  49

BFD: Disabled, BFD HoldoverInterval: 0
NSR: Disabled
ISIS Global Reverse Metric 63
ISIS Global Reverse Metric Flags: W S
LDP-SYNC: Not globally enabled
Interfaces with IPv6 IS-IS configured:
  None
```

Use the `show ipv6 isis interface` command to display the configuration of the reverse metric value at the interface level. The output below displays the isis configuration for a specific VE interface. The reverse metric value and flags are highlighted in the output.

```
device(config)#show ipv6 isis interface ve 30
Interface: ve 30
  Circuit State: UP Circuit Mode: LEVEL-1-2
  Circuit Type: BCAST Passive State: FALSE
  Circuit Number: 1, MTU: 1500
  Level-1 Auth-mode: None
  Level-2 Auth-mode: None
  Level-1 Metric: 63, Level-1 Priority: 64
  Level-1 Hello Interval: 10 Level-1 Hello Multiplier: 3
  Level-1 Designated IS: NI-MLX-6-01 Level-1 DIS Changes: 4
  Level-2 Metric: 63, Level-2 Priority: 64
  Level-2 Hello Interval: 10 Level-2 Hello Multiplier: 3
  Level-2 Designated IS: NI-MLX-6-01 Level-2 DIS Changes: 4

IPv6 Enabled: TRUE
IPv6 Level-1 Metric: 63
IPv6 Level-2 Metric: 63
IPv6 Addresses:
  30::1/64
IPv6 Link-Local Addresses:
  fe80::f8ff:fe2a:1200
MPLS TE Enabled: FALSE
ISIS Reverse Metric 16777214
ISIS Reverse Metric Flags: W S
LDP-SYNC: Disabled, State: -
```

History

<table>
<thead>
<tr>
<th>Release version</th>
<th>Command history</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.7.00</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Virtual Routing and Forwarding (VRF) allows routers to maintain multiple routing tables and forwarding tables on the same router. A Multi-VRF router can run multiple instances of routing protocols with a neighboring router with overlapping address spaces configured on different VRF instances.

Some vendors also use the terms Multi-VRF CE or VRF-Lite for this technology. VRF-Lite provides a reliable mechanism for a network administrator to maintain multiple virtual routers on the same device. The goal of providing isolation among different VPN instances is accomplished without the overhead of heavyweight protocols (such as MPLS) used in secure VPN technologies. Overlapping address spaces can be maintained among the different VPN instances.

Central to VRF-Lite is the ability to maintain multiple VRF tables on the same Provider Edge (PE) Router. VRF-Lite uses multiple instances of a routing protocol such as OSPF or BGP to exchange route information for a VPN among peer PE routers. The VRF-Lite capable PE router maps an input customer interface to a unique VPN instance. The router maintains a different VRF table for each VPN instance on that PE router. Multiple input interfaces may also be associated with the same VRF on the router, if they connect to sites belonging to the same VPN. This input interface can be a physical interface or a virtual Ethernet interface on a port.

In Multi-VRF deployments:

- Two VRF-capable routers must be directly connected at Layer 3, deploying BGP, OSPF, RIP, or static routes.
- Each VRF maintains unique routing and forwarding tables.
- Each VRF can be assigned one or more Layer 3 interfaces on a router to be part of the VRF.
- Each VRF can be configured with IPv4 address family, IPv6 address family, or both.
- A packet’s VRF instance is determined based on the VRF index of the interface on which the packet is received.
- Separate routing protocol instances are required for each VRF instance.
- Overlapping address spaces can be configured on different VRF instances.

Multi-VRF deployments provide the flexibility to maintain multiple virtual routers, which are segregated for each VRF instance. The following illustrates a generic, high-level topology where different enterprise functions are assigned unique VRF instances.
A Multi-VRF instance can be configured on any of the following:
- Virtual interfaces
- Loopback interfaces
- Tunnel interfaces - The tunnel can belong to any user-defined VRF, but the tunnel source and tunnel destination are restricted to the default VRF.

A Multi-VRF instance cannot be configured on any of the following:
- Physical interfaces
- Management interfaces

To configure Multi-VRF, perform the following steps:
- (Optional) Configure tagging on peer interfaces for security.
- Configure VRF instances.
- (Optional) Configure a Route Distinguisher (RD) for new VRF instances.
- Configure an IPv4 or IPv6 Address Family (AF) and Neighbor Discovery Protocol for new VRF instances.
- Configure routing protocols for new Multi-VRF instances.
Assign VRF instances to Layer 3 interfaces.

Configuring Multi-VRF

Configuring a VRF instance

Do the following to configure a VRF instance.

NOTE
A device can be configured with more than one VRF instance. You should define each VRF instance before assigning the VRF to a Layer 3 interface. The range of the instance name is from 1 through 255 alphanumeric characters.

ATTENTION
Using the overwrite option while downloading a configuration from a TFTP server to the running-config will lead to the loss of all VRF configurations when a VRF is configured on a routing interface.

1. In global configuration mode, create a VRF instance, "corporate" in this example.

   ```
   device(config)# vrf corporate
   device(config-vrf-corporate)#
   ```

2. (Optional) Assign a Route Distinguisher (RD).

 NOTE
 Each VRF instance is identified by a unique RD, which is prepended to the address being advertised. Because the RD provides overlapping client address space with a unique identifier, the same IP address can be used for different VRFs without conflict. The RD can be an AS number, followed by a colon (:) and a unique arbitrary number as shown below. Alternatively, it can be a local IP address followed by a colon (:) and a unique arbitrary number, as in "1.1.1.1:100."

   ```
   devic(config-vrf-corporate)# rd 11:11
   ```

3. (Optional) Assign a router ID.

   ```
   device(config-vrf-corporate)# ip router-id 1.1.1.1
   ```

4. Configure an address family on the VRF and exit. This example uses IPv4.

   ```
   device(config-vrf-corporate)# address-family ipv4
   device(config-vrf-corporate-ipv4)# exit-vrf
   ```

 NOTE
 For a specific address family you can also configure static route, static ARP, IGMP, and multicast for IPv4, and static route, IPv6 neighbor, and multicast for IPv6.

5. Verify the configuration.

   ```
   device(config)# show vrf
   Total number of VRFs configured: 2
   Status Codes - A:active, D:pending deletion, I:inactive
   Name       Default RD    vrf|v4|v6 Routes Interfaces
   corporate  11:11        A  | A| I   0
   guest      10:10        A  | A| I   0
   Total number of IPv4 unicast route for all non-default VRF is 0
   Total number of IPv6 unicast route for all non-default VRF is 0
   ```
Starting a routing process for a VRF

You must enable a routing protocol for each VRF instance. This example uses OSPF.

1. In global configuration mode, enable OSPF for the VRF instance “corporate.”

   ```
   device(config)# router ospf vrf corporate
   device(config-ospf-router-vrf-corporate)#
   ```

2. Configure the VRF to use BGP Area 0.

   ```
   device(config-ospf-router-vrf-corporate)# area 0
   ```

3. (Optional) Configure the VRF to ensure that essential OSPF neighbor state changes are logged, especially in the case of errors.

   ```
   device(config-ospf-router-vrf-corporate)# log adjacency
   ```

Assigning a Layer 3 interface to a VRF

The following example illustrates how a virtual Ethernet (VE) interface is assigned to a VRF, and how IP addresses and the OSPF protocol are configured.

ATTENTION

After you configure a VRF instance on the device, you must assign one or more Layer 3 interfaces (physical or virtual Ethernet) to the VRF. When you do this, all existing IP addresses are deleted; this action also triggers cache deletion, route deletion, and associated cleanup. After you assign an interface to the VRF, you must reconfigure the IP address and interface properties.

1. In global configuration mode, create a VE interface.

   ```
   device(config)# interface ve 10
   device(config-vif-10)#
   ```

2. In VE configuration mode, enable forwarding for the VRF “guest”.

   ```
   device(config-vif-10)# vrf forwarding guest
   Warning: All IPv4 and IPv6 addresses (including link-local) on this interface have been removed
   ```

3. Configure an IPv4 address and mask on the VE interface.

   ```
   device(config-vif-10)# ip address 192.168.1.254/24
   ```

4. Enable OSPF Area 0.

   ```
   device(config-vif-10)# ip ospf area 0
   ```

5. Configure the interface as passive and exit the configuration.

   ```
   device(config-vif-10)# ip ospf passive
   device(config-vif-10)# exit
   ```

Assigning a loopback interface to a VRF

Because a loopback interface is always available as long as the device is available, it allows routing protocol sessions to stay up even if the outbound interface is down. Assigning a loopback interface to a VRF is similar to assigning any interface. A loopback interface that is not assigned to a nondefault VRF belongs to the default VRF.
Do the following to assign a loopback interface to a nondefault VRF.

1. In global configuration mode, enter interface subtype configuration mode and assign a loopback interface.

 device(config)# interface loopback 1
 device(config-lbif-1)#

2. Use the `vrf forwarding` command to assign the interface to the VRF "customer-1" in this example.

 device(config-lbif-1)# vrf forwarding customer-1

3. Assign an IPv4 address and mask to the loopback interface.

 device(config-lbif-1)# ip address 10.0.0.1/24

Verifying a Multi-VRF configuration

The following examples illustrate the use of a variety of show commands that are useful in verifying Multi-VRF configurations.

To verify all configured VRFs in summary mode, enter the `show vrf` command, as in the following example.

device# show vrf
Total number of VRFs configured: 2
Status Codes - A:active, D:pending deletion, I:inactive
Name Default RD vrf|v4|v6 Routes Interfaces
green 1:1 A | A| A 12 ve111 ve211 ve311*
red 10:12 A | A| A 4 ve1117 port-id tn1*
Total number of IPv4 unicast route for all non-default VRF is 8
Total number of IPv6 unicast route for all non-default VRF is 8

To verify a specific VRF in detail mode, enter the `show vrf detail vrf-name` command, as in the following example.

device# show vrf green
VRF green, default RD 1:1, Table ID 1
IP Router-Id: 1.1.1.1
Interfaces: ve111 ve211 ve311 ve1116 ve2115
Address Family IPv4
Max Routes: 5500
Number of Unicast Routes: 6
Address Family IPv6
Max Routes: 400
Number of Unicast Routes: 6
To verify all configured VRFs in detail mode, enter the `show vrf detail` command, as in the following example.

```
device# show vrf detail
Total number of VRFs configured: 2
VRF green, default RD 1:1, Table ID 1
IP Router-ID: 1.1.1.1
Interfaces: Use "show vrf green" to see the list of interfaces
Address Family IPv4
Max Routes: 5500
Number of Unicast Routes: 6
Address Family IPv6
Max Routes: 400
Number of Unicast Routes: 6
VRF red, default RD 10:12, Table ID 2
IP Router-ID: 1.1.17.1
Interfaces:
Use "show vrf red" to see the list of interfaces
Address Family IPv4
Max Routes: 300
Number of Unicast Routes: 2
Address Family IPv6
Max Routes: 70
Number of Unicast Routes: 2
Total number of IPv4 unicast route for all non-default VRF is 8
Total number of IPv6 unicast route for all non-default VRF is 8
```

The following commands display additional information about a specific application, protocol configuration, or protocol state for both the default VRF and user-defined VRFs.

<table>
<thead>
<tr>
<th>Default VRF</th>
<th>User-defined VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip route</td>
<td><code>show ip route vrf vrf-name</code></td>
</tr>
<tr>
<td>show ip ospf neighbor</td>
<td><code>show ip ospf vrf vrf-name neighbor</code></td>
</tr>
<tr>
<td>show ip rip interface</td>
<td><code>show ip rip vrf vrf-name interface</code></td>
</tr>
<tr>
<td>show ip bgp summary</td>
<td><code>show ip bgp vrf vrf-name summary</code></td>
</tr>
</tbody>
</table>

Removing a VRF configuration

The following examples illustrate a variety of ways by which you can remove a VRF configuration: deleting a VRF instance from a port, deleting an address family from a VRF, and deleting the VRF globally.

To delete a VRF instance from a specific port, use the `no` form of the `vrf` command. This removes all Layer 3 interface bindings from the VRF, and returns the interface to default VRF mode. All IP addresses and protocol configuration on this Layer 3 interface are removed.

```
device(config-if-e1000-1/1)# no vrf forwarding1
All existing IP and IPv6 address will be removed from port 1/1
The port will be returned to default VRF
```

To delete an IPv4 or IPv6 address family from a VRF instance, use the `no` form of the `address-family` command. All configuration related to the address family on all ports of the VRF are removed. Routes allocated to the address family are returned to the global pool.

```
device(config-vrf-customer1)# no address-family ipv4
device(config-vrf-customer1)#
```

To delete a VRF instance globally, use the `no` form of the `vrf` command. All IPv4 or IPv6 addresses are removed from all interfaces.

```
device(config)# no vrf customer1
Warning: All IPv4 and IPv6 addresses (including link-local) from all interfaces in VRF customer1 have been removed
```
Configuring the maximum number of routes

You can use the `max-route` command to specify the number of routes held in the routing table per VRF instance, for an IPv4 or IPv6 VRF address family.

If this command is not used, the maximum number of routes is 4294967295. This number does not appear in a running configuration.

1. Enter global configuration mode.

 device# configure terminal

2. From global configuration mode, specify a VRF instance (in this example, "myvrf") and enter VRF configuration mode.

 device(config)# vrf myvrf

3. Enter the `address-family unicast` command, in this example for IPv4, and enter VRF address-family IPv4 unicast configuration mode.

 device(config-vrf-myvrf)# address-family ipv4 unicast

4. Enter the `max-route` command and specify the maximum number of routes to be held in the routing table for this VRF instance, 3600 in this example. (The range is from 1 through 4294967295.)

 device(vrf-myvrf-ipv4-unicast)# max-route 3600
Inter-VRF Routing overview

Inter-VRF routing feature permits routes from one VRF to import into other VRFs. This feature is useful in cases where all the VRFs share the same path to reach the external domain, but each VRF can still keep its internal routing information limited to its own VRF. Currently, the devices permit static routes to be configured across VRFs. User can configure to import routes from one VRF to other VRFs through configuration. The following figure depicts a network using inter-VRF to provide connectivity among sites that belong to multiple VPNs. To share the VPN routing table information with remote PEs, each PE creates separate virtual interfaces and runs different instances of the PE-PE routing protocol for each VRF.

FIGURE 47 A Network deploying Inter-VRF

Following are the route entries and routing tables in Router R1.
Features and benefits

Inter-VRF routing feature allows customers to selectively access each other's networks through configuration. It allows all VRFs to share the same path to the external domain while keeping internal routing information separate.

To import routes from multiple VRFs, multiple import commands need to be defined. The filtering criteria for routes to be imported are specified using route-maps by the user. Routes can be filtered based on BGP attributes, interfaces, IP addresses, next hops, metrics, metric types, protocols, route types and tags which are supported by our existing route-map infrastructure.

Routes from multiple (default 50) VRFs can be selectively imported into a target destination VRF. Imported routes can be redistributed using routing protocols.

Configuring IPv6 inter-VRF routing is very similar to configuring inter-VRF routing for IPv4. The behavior and CLI syntax of route-maps is the same between IPv4 and IPv6 address families.

The route-map attributes that are used for filtering the routes are:
TABLE 119 IPv4 Route-map handling

<table>
<thead>
<tr>
<th>Attributes used for filtering routes</th>
<th>Attributes set using a route map</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address (Prefix list, Access list)</td>
<td></td>
</tr>
<tr>
<td>Next hop (Prefix list, Access list)</td>
<td>Metric value</td>
</tr>
<tr>
<td>Metric value</td>
<td>Nexthop</td>
</tr>
<tr>
<td>Tag type</td>
<td>Distance</td>
</tr>
<tr>
<td>Route type</td>
<td>Tag</td>
</tr>
<tr>
<td>BGP attributes (AS path, Community, Ext community access list)</td>
<td></td>
</tr>
<tr>
<td>Interface type</td>
<td>Protocol type</td>
</tr>
</tbody>
</table>

TABLE 120 IPv6 Route-map handling

<table>
<thead>
<tr>
<th>Attributes used for filtering routes</th>
<th>Attributes set using a route map</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address (Prefix list)</td>
<td></td>
</tr>
<tr>
<td>Next hop (Prefix list)</td>
<td>Metric value</td>
</tr>
<tr>
<td>Metric value</td>
<td>Nexthop</td>
</tr>
<tr>
<td>Tag type</td>
<td>Distance</td>
</tr>
<tr>
<td>Route type</td>
<td>Tag</td>
</tr>
<tr>
<td>BGP attributes (AS path, Community, Ext community access list)</td>
<td></td>
</tr>
<tr>
<td>Interface type</td>
<td>Protocol type</td>
</tr>
</tbody>
</table>

Configuration considerations

These are the things to consider while configuring the device:

- Import configuration commands allow specifying a non-existing source VRF. Routes will be imported dynamically when the source VRF is created.
- If the route-map is empty or does not exist, importing will happen but no actions are applied since there are no rules in the route-map.
- If you change the configuration of a route-map, then all the VRFs which are configured to use this route-map will be processed again.

Tie breaker rules

The rules in the sequence below apply to break the tie when the same routes are imported from multiple VRFs including the local route:

- If routes are originated from different protocols, then the protocol with the best administrative distance will be used to break the tie.
- If the routes’ origin (protocol) are the same, then the metric value will be used to break the tie.
- If the metric value is the same, then routes learned in local VRF will be used to break the tie.
- If the metric value is the same, and a local VRF route is not available, then the lowest nexthop address will be used to break the tie.
- If the nexthop address is the same, then the oldest route will be used to break the tie.
Maximum route limitations

When importing routes from other VRFs, there may be a chance that routes are not added due to a limitation on the number of routes that the destination VRF can support. This may happen in the following cases:

1. The source VRF is importing more routes than the destination VRF can support.
2. The destination VRF is configured to limit the number of routes with a configuration command such as address-family ipv4 max-route or address-family ipv6 max-route.
3. While processing the route-map changes, you exceed the number of routes that the VRF can support because you process the new set of routes before deleting the old set of routes.

For any of the above situations, execute the `clear ip route VRF dest-vrf-name` followed by the `import src-vrf-name` command to recover.

BGP L3VPN configuration

No advertising of inter-vrf-leaked routes out to a Layer 3 VPN

When a route is imported from one VRF to another VRF using the inter-VRF route leaking feature, the imported route in the destination VRF can be redistributed into VRF-BGP. It can also be advertised out to the Layer 3 VPN network.

The advertised Layer 3 VPN route originally imported from a different VRF uses the export route-target(s) from the destination VRF. This feature does not automatically block inter-VRF leaked routes from being advertised out to a Layer 3 VPN network. To block inter-VRF leaked routes use the `no` version of the `export-vrf-leaked-routes` command. The default behavior is backward compatible. A BGP option has been added to disable backward compatibility.

Starting in 5.8.00d and 5.9.00a, the `export-vrf-leaked-routes` command also disables inter-VRF-leaking of BGP routes with LSP next-hop for IPv4 routes. Inter-VRF-leaking of BGP routes with LSP next-hop for IPv6 routes is not supported.

Refer to the NetIron Command Reference for more information.

Configuring Inter-VRF routing

The following configuration steps allow the VRF VPN to import IPv4 routes from the `default-vrf brcd-sj`.

```
device(config)#vrf vpn
device(config-vrf-vpn)#address-family ipv4
device(config-vrf-vpn-ipv4)#import routes vrf default-vrf route-map brcd-sj
```

The following configuration allows the default-vrf to import IPv4 routes from the non-default VRF VPN after satisfying conditions specified in the `route-map brcd-sj`.

```
device(config)#ip import routes vrf vpn route-map brcd-sj
```

From non-default VRF, user can configure the command in address-family mode.

Syntax: `import routes vrf vrf-name route-map route-map-name`

This command imports the IPv4 routes from `src-vrf` to `dest-vrf`. The `route-map import-map` is applied while importing the routes.

Syntax: `import routes vrf src-vrf route-map import-map`

From default VRF the commands for IPv4 and IPv6 are as below.
These commands import the IPv4 and IPv6 routes from src-vrf to default-vrf using the route-map import-map.

```
device(config)#ip import routes vrf src-vrf route-map import-map
device(config)#ipv6 import routes vrf src-vrf route-map import-map
```

TABLE 121 Route-map for non-default and default VRF

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>src-vrf</td>
<td>The source VRF from where the routes have been imported to the destination VRF. The "-" in the src-vrf column output denotes the route is local route.</td>
</tr>
<tr>
<td>import-map</td>
<td>Route-map which has clauses to filter the routes coming from src-vrf.</td>
</tr>
<tr>
<td>Defaults</td>
<td>By default no routes will be imported in to dest-vrf.</td>
</tr>
<tr>
<td>Range</td>
<td>User can configure a maximum of 50 import commands for a given VRF per address-family. If user tries to configure more than 50 commands then the configuration will be rejected and an error message will be generated.</td>
</tr>
<tr>
<td>No</td>
<td>The no command removes the configuration and all the routes imported from src-vrf will be removed in the dest-vrf.</td>
</tr>
</tbody>
</table>

NOTE
Warning message will be displayed when import route is issued for non-existing VRF as follows: "VRF vrf-name is not created yet".

NOTE
Warning message will be displayed when VRF is getting deleted by the user and exports routes to other VRFs: "All IPv4 and IPv6 export routes in VRF one have been removed".

Blocking inter-VRF leaked routes from being advertised for the IPv4 VPN unicast address-family

This task blocks inter-VRF leaked routes from being advertised out to a Layer 3 VPN network for the IPv4 VPN unicast address-family.

1. Enter the `configure terminal` command to access global configuration mode.
   ```
   device# configure terminal
   ```
2. Enter the `router bgp` command to enable BGP routing.
   ```
   device(config)# router bgp
   ```
3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.
   ```
   device(config-bgp)# local-as 65520
   ```
4. Enter the `address-family vpnv4 unicast` command to enter BGP address-family IPv4 VPN unicast configuration mode.
   ```
   device(config-bgp)# address-family vpnv4 unicast
   ```
5. Enter the `no export-vrf-leaked-routes` command to block inter-VRF leaked routes from being advertised out to a Layer 3 VPN network.
   ```
   device(config-bgp-vpn4u)# no export-vrf-leaked-routes
   ```
This example blocks inter-VRF leaked routes from being advertised out to a Layer 3 VPN network for the IPv4 VPN unicast address-family.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family vpnv4 unicast
device(config-bgp-vpn4u)# no export-vrf-leaked-routes
```

Blocking inter-VRF leaked routes from being advertised for the IPv6 VPN unicast address-family

This task blocks inter-VRF leaked routes from being advertised out to a Layer 3 VPN network for the IPv6 VPN unicast address-family.

1. Enter the `configure terminal` command to access global configuration mode.
   ```
   device# configure terminal
   ```

2. Enter the `router bgp` command to enable BGP routing.
   ```
   device(config)# router bgp
   ```

3. Enter the `local-as` command to configure the autonomous system number (ASN) in which your device resides.
   ```
   device(config-bgp)# local-as 65520
   ```

4. Enter the `address-family vpnv6 unicast` command to enter BGP address-family IPv6 VPN unicast configuration mode.
   ```
   device(config-bgp)# address-family vpnv6 unicast
   ```

5. Enter the `no export-vrf-leaked-routes` command to block inter-VRF leaked routes from being advertised out to a Layer 3 VPN network.
   ```
   device(config-bgp-vpn4u)# no export-vrf-leaked-routes
   ```

This example blocks inter-VRF leaked routes from being advertised out to a Layer 3 VPN network for the IPv6 VPN unicast address-family.

```
device# configure terminal
device(config)# router bgp
device(config-bgp)# local-as 65520
device(config-bgp)# address-family vpnv6 unicast
device(config-bgp-vpnv6)# no export-vrf-leaked-routes
```

Show commands

Use the following commands to display the IPv4 and IPv6 routing configuration on the device and to include the maximum allowed import VRFs.

```
device# show ip
```

This command will display the maximum IPv4 allowed import VRFs and list of import VRFs to default-vrf. The following is an example of this enhancement to `show ip`.

```
device(config)# show ip
Global Settings
IP CAM Mode: static IPvVPN CAM Mode: static
ttl: 64, arp-age: 10, bootp-relay-max-hops: 4, icmp-error-rate: 400
IP Router-Id: 10.0.0.1 load-sharing path: 4
enabled : UDP-Broadcast-Forwarding ICMP-Redirect ICMP-MPLS-Response Source-Route Load-Sharing
```
device # show ipv6

This command will display the maximum IPv6 allowed import VRFs and list of IPv6 import VRFs to default-vrf.

Displaying the IP route table for a specified VRF

To display the IP routes for a specified VRF, enter the following command at any CLI level for IPv4 and IPv6 respectively.

```
device# show ip route vrf one
device# show ipv6 route vrf one
```

Syntax: `show ip route vrf vrf-name [num] [ip-addr] [bgp] [connected] [isis] [ospf] [rip] [static] [tags]`

Syntax: `show ipv6 route vrf vrf-name [num] [ip-addr] [bgp] [connected] [isis] [ospf] [rip] [static] [tags] [nexthop nexthop_id] [ref-routes]`

The `vrf-name` parameter specifies the VRF for which you want to display the IP routes.

The `nexthop` option displays the next-hop information for all next hops in the routing table or for a specific entry. The `nexthop_id` parameter is a specific next-hop entry from the next hop table.

The `ref-routes` option allows you to display IPv6 routes in the forwarding table that refer to the specified nexthop entry.

The following table lists the information displayed by the `show ip/ipv6 route vrf` command.

<table>
<thead>
<tr>
<th>TABLE 122 CLI display of IP route-table</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>Total number of IP routes</td>
</tr>
<tr>
<td>Destination</td>
</tr>
<tr>
<td>NetMask</td>
</tr>
<tr>
<td>Gateway</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>Cost</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Uptime</td>
</tr>
</tbody>
</table>
TABLE 122 CLI display of IP route-table (continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>display parameter may change depending upon the age of the route to include the seconds (s), minutes (m), hours (h), and days (d), as described in the following: 400d - Only days (d) displayed 20d23h - days (d) and hours (h) displayed 14h33m - hours (h) and minutes (m) displayed 10m59s - minutes (m) and seconds (s) displayed</td>
<td></td>
</tr>
<tr>
<td>src-vrf</td>
<td>The source VRF from where the routes have been imported to the destination VRF. The "-" in the src-vrf column output denotes the route is local route.</td>
</tr>
</tbody>
</table>

Displaying the IP route table for a specified VRF import, local or summary

To display the IP routes for a specified VRF import or from local VRF or all VRFs summary, enter the following command at any CLI level for IPv4 and IPv6 respectively.

```
device# show ip route vrf one import/local/summary
device# show ipv6 route vrf one import/local/summary
```

Syntax: show ip route vrf [import | local | summary] vrf-name [num] | [ip-addr] | [bgp] | [connected] | [isis] | [ospf] | [rip] | [static] | [tags]
Syntax: show ipv6 route vrf [import | local | summary] vrf-name [num] | [ip-addr] | [bgp] | [connected] | [isis] | [ospf] | [rip] | [static] | [tags] | nexthop nexthop_id | ref-routes

The vrf-name parameter specifies the VRF for which you want to display the IP routes.
The nexthop option displays the next-hop information for all next hops in the routing table or for a specific entry. The nexthop_id parameter is a specific nexthop entry from the next hop table.
The ref-routes option allows you to display IPv6 routes in the forwarding table that refer to the specified nexthop entry.

Displaying the IP route table for a specified VRF on page 631 lists the information displayed by these commands.

Displaying IPv4 routes in VRF one

To display IP information for a specified VRF, enter the following command at any level of the CLI.

```
device(config)#show ip route vrf one
```

Total number of IP routes: 4
Type Codes - B:BGP D:Connected I:ISIS O:OSPF R:RIP S:Static; Cost - Dist/Metric
BGP Codes - i:iBGP e:eBGP
ISIS Codes - L1:Level-1 L2:Level-2
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2 s:Sham Link

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
<th>src-vrf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10.0.0.0/8</td>
<td>10.25.104.1</td>
<td>eth1/1</td>
<td>20</td>
<td>O</td>
<td>4d1h</td>
<td>c</td>
</tr>
<tr>
<td>2 10.0.0.0/16</td>
<td>10.25.103.1</td>
<td>eth2/1</td>
<td>20</td>
<td>O</td>
<td>3d1h</td>
<td>b</td>
</tr>
<tr>
<td>3 10.20.0.0/8</td>
<td>10.25.104.1</td>
<td>eth1/1</td>
<td>20</td>
<td>O</td>
<td>4d1h</td>
<td>-</td>
</tr>
<tr>
<td>4 10.40.0.0/8</td>
<td>10.25.105.1</td>
<td>eth2/1</td>
<td>20</td>
<td>O</td>
<td>3d1h</td>
<td>default</td>
</tr>
</tbody>
</table>
Displaying IPv4 routes in VRF one import

To display IP information for a specified VRF import, enter the following command at any level of the CLI.

```
device(config)#show ip route vrf one import
```

Type Codes - B:BGP D:Connected I:ISIS O:OSPF R:RIP S:Static; Cost - Dist/Metric
BGP Codes - i:iBGP e:eBGP
ISIS Codes - L1:Level-1 L2:Level-2
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2 s:Sham Link

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
<th>Uptime</th>
<th>src-vrf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0.0.0/8</td>
<td>eth1/1</td>
<td>20</td>
<td>O</td>
<td>4d1h</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>10.1.0.0/16</td>
<td>eth2/1</td>
<td>20</td>
<td>O</td>
<td>3d1h</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>10.40.0.0/8</td>
<td>eth2/1</td>
<td>20</td>
<td>O</td>
<td>3d1h</td>
<td>default</td>
</tr>
</tbody>
</table>

Displaying outputs routed from other VRF

To display all the other VRFs from where the routes will be imported into this VRF, enter the following command at any level of the CLI.

Syntax: show ip vrf vrf-name

```
device#show ip vrf one
VRF one, default RD 1001:11, Table ID 2 IFL ID 131070
Label: 500000, Label-Switched Mode: OFF
IP Router-Id: 10.1.1.2
 Interfaces:
   e2/8
No Export VPN route-target communities
No Import VPN route-target communities
No export route-map
No import route-map
Address Family IPv4
  Max Routes: 5120
  Imports routes from VRF: a, b, c, d
No Export VPN route-target communities
No Import VPN route-target communities
Address Family IPv6
  Max Routes: 128
  Imports routes from VRF: a, b
No Export VPN route-target communities
No Import VPN route-target communities
```

Configuring routes from multiple VRFs

This example shows the sequence of commands in configuring routes from multiple VRFs.

```
device# vrf a
device# rd 1111:11
device# address-family ipv4
device# import routes vrf b route-map import-map
device# import routes vrf c route-map import-map
device# exit-address-family
device# address-family ipv6
device# import routes vrf b route-map import-v6map
device# exit-address-family
device# exit-vrf
device# route-map import-map permit 10
device# match ip address prefix-list export
device# route-map import-map permit 15
device# match ip address prefix-list loop
```

NOTE

If the configuration of a route-map is changed, then the VRFs which are configured to use the respective route-map will be processed again.
Displaying IPv6 routes in VRF one from local

To display IP information for a specified VRF for IPv6 routes from the local VRF, enter the following command at any level of the CLI.

```
device(config)#show ipv6 route vrf one local
```

```
Type Codes - B:BGP C:Connected I:ISIS L:Local O:OSPF R:RIP S:Static
BGP  Codes - i:iBGP e:eBGP
ISIS Codes - L1:Level-1 L2:Level-2
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2
```

```
Destination       Gateway                    Port   Cost   Type      Uptime   src-vrf
  3000:/8  fe80::768e:f8ff:fe2a:d063 eth1/3  20     O      4d1h       -
```

Displaying IPv6 imported routes summary

To display IP information for all VRFs summary for IPv6 routes, enter the following command at any level of the CLI.

```
device(config)#show ipv6 route vrf one import vrf summary
```

```
IPv6 Routing Table - 10 entries:
  0 connected, 0 static, 0 RIP, 10 OSPF, 0 BGP, 0 ISIS
Number of prefixes: /64:10
```

NOTE

An error will be displayed when an attempt to match the source VRF name with the import VRF name.

Displaying IPv6 routes in VRF one imported from another VRF

To display IP information for a specified VRF import routes from VRF two, enter the following command at any level of the CLI.

```
device(config)#show ipv6 route vrf one import vrf b
```

```
Type Codes - B:BGP C:Connected I:ISIS L:Local O:OSPF R:RIP S:Static
BGP  Codes - i:iBGP e:eBGP
ISIS Codes - L1:Level-1 L2:Level-2
OSPF Codes - i:Inter Area 1:External Type 1 2:External Type 2
```

```
Destination       Gateway                    Port   Cost   Type      Uptime   src-vrf
  2000:/8  fe80::768e:f8ff:fe2a:d062 eth1/2  20     O      4d1h       -
```

Clearing IP routes

You can clear the entire routing-table or specific individual routes as needed.

To clear all routes from the IPv4 routing-table, enter the following command at any level of the CLI.

```
device# clear ip route
```

To clear route 10.157.22.0/24 from the IPv4 routing table, enter:

```
device# clear ip route 10.157.22.0/24
```

Syntax: clear [ip | ipv6] route [ip-addr/mask | ip-addr/mask-bits] [import | local | import vrf vrf-name] [nexthop nexthop_id

The following examples illustrate the use of the clear route command:

```
device# clear ip route vrf one [ <IP address > <Mask >] import
```
Clears the imported IPv4 routes from all other VRFs. When this command is issued with an IP address and mask, then the imported routes matching the address and mask from other VRFs are cleared.

```
device# clear ip route vrf one [<IP address > <Mask > local]
```

Clears the IPv4 routes from specific VRF. When this command is issued with an IP address and mask only, then the local routes matching the address and mask are cleared, otherwise this option is not available.

```
device# clear ip route vrf one [<IP address > <Mask >]
```

Clears the imported IPv4 routes from VRF two. When this command is issued with an IP address and mask, then imported routes matching the address and mask from VRF two are cleared.

```
device# clear ip route vrf one [<IP address > <Mask > import vrf two
```

Clears the imported IPv4 routes from the default-vrf. When this command is issued with an IP address and mask, then imported routes matching the address and mask from the default VRF are cleared.

```
device# clear ip route vrf one [<IP address > <Mask >]
```

Clears all routes from the IPv6 routing-table.

```
device# clear ipv6 route
```

Clears route 10.157.22.0/24 from the IPv6 routing-table.

```
device# clear ipv6 route vrf one [IPv6 addr/Prefix length ] import vrf two
```

Clears the imported IPv6 routes from VRF two. When this command is issued with an IPv6 address and prefix length, then the imported routes matching the IPv6 address and prefix length from VRF two are removed.

```
device# clear ipv6 route vrf one [IPv6 addr/Prefix length ] import vrf default-vrf
```

Clears the imported IPv6 routes from the default-vrf. When this command is issued with an IPv6 address and prefix length, then the imported routes matching the IPv6 address and prefix length from the default VRF are removed.

```
device# clear ipv6 route nexthop nexthop_ID
```

Clears the imported IPv6 routes for the specified nexthop ID on the interface module (LP).

Configuring the number of VRFs for IPv4 and IPv6

To limit the number of imported IPv4 or IPv6 routes into any VRF including the default VRF, the following command is available in the global configuration mode and not available in any individual VRF mode. Changes in the value in the global configuration mode will be effective in all VRFs.

```
device(config)# [ip|ipv6] max-import-vrfs 1-2048
```

The `no` command will set the value to the default value, which is 50.
If you configure `ip max-import-vrfs` to a number which is less than the currently imported routes in the IPv4 or IPv6 address family for any VRF, then the following error will be displayed and the configuration will not be accepted.

```
device(config)# [ip|ipv6]
    max-import-vrfs 2
Error: VRF one has 3 import commands configured in ipv4/ipv6 address families
```

The configured non-default value of `ip/ipv6 max-import-vrfs` may be displayed using the `show ip` or `show ip vrf-name` commands.

NOTE

A system maximum of 1000 import commands (including all VRFs, IPv4 and IPv6 address families) can be defined.

NOTE

Using the `system-max ip-vrf-route` command, the number of IPv4 routes per VRF instance is limited to 1024. Using the `system-max ipv6-vrf-route` command, the number of IPv6 routes per VRF instance is limited to 8192.

Modified CLI commands

The Inter-vrf routing feature makes it possible to import OSPF routes from one VRF to another VRF. There may be a need to advertise the imported OSPF routes back to the OSPF domain as external routes. This requires redistribution of OSPF into OSPF again, which was not supported in prior releases. With the introduction of redistribution, the following configuration is supported:

```
device(config-ospf-router)# redistribute ospf route-map <route-map-name>
```

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgp</td>
<td>Border Gateway Protocol (BGP)</td>
</tr>
<tr>
<td>connected</td>
<td>Connected</td>
</tr>
<tr>
<td>isis</td>
<td>Intermediate System to Intermediate System (IS-IS)</td>
</tr>
<tr>
<td>rip</td>
<td>Routing Information Protocol (RIP)</td>
</tr>
<tr>
<td>static</td>
<td>Static routes</td>
</tr>
</tbody>
</table>

ospf OSPF routes (new addition)

This command is applicable to OSPF, RIP and BGP. Currently IS-IS does not support VRFs and it is not possible to have IS-IS running in multiple VRFs.

If you configure to import the same protocol routes into the same protocol, then RTM will send back protocol routes belonging to other VRFs.

Redistribution of a protocol into itself is supported for the following protocols:

- **IPv4**
 1. OSPF->OSPF
 a) route-map option
 2. BGP->BGP
 a) route-map option
 b) Metric option
 3. RIP->RIP
 a) route-map option
 b) Metric option
 • IPv6
OSPF overview

OSPF is a link-state routing protocol. The protocol uses link-state advertisements (LSA) to update neighboring routers regarding its interfaces and information on those interfaces. The router floods these LSAs to all neighboring routers to update them regarding the interfaces. Each router maintains an identical database that describes its area topology to help a router determine the shortest path between it and any neighboring router.

The Extreme device supports the following types of LSAs, which are described in RFC 2328 and 3101:

- Router link
- Network link
- Summary link
- Autonomous system (AS) summary link
- AS external link
- Not-So-Stubby Area (NSSA) external link
- Grace LSAs

OSPF is built upon a hierarchy of network components. The highest level of the hierarchy is the Autonomous System (AS). An autonomous system is defined as a number of networks, all of which share the same routing and administration characteristics.

An AS can be divided into multiple areas. Each area represents a collection of contiguous networks and hosts. Areas limit the area to which link-state advertisements are broadcast, thereby limiting the amount of flooding that occurs within the network. An area is represented in OSPF by either an IP address or a number.
You can further limit the broadcast area of flooding by defining an area range. The area range allows you to assign an aggregate value to a range of IP addresses. This aggregate value becomes the address that is advertised instead all of the individual addresses it represents being advertised. You can assign up to 32 ranges in an OSPF area.

An OSPF router can be a member of multiple areas. Routers with membership in multiple areas are known as Area Border Routers (ABRs) . Each ABR maintains a separate topological database for each area the router is in. Each topological database contains all of the LSA databases for each router within a given area. The routers within the same area have identical topological databases. The ABR is responsible for forwarding routing information or changes between its border areas.

An Autonomous System Boundary Router (ASBR) is a router that is running multiple protocols and serves as a gateway to routers outside an area and those operating with different protocols. The ASBR is able to import and translate different protocol routes into OSPF through a process known as redistribution .

FIGURE 50 OSPF operating in a network
OSPF point-to-point links

In an OSPF point-to-point network, where a direct Layer 3 connection exists between a single pair of OSPF routers, there is no need for Designated and Backup Designated Routers, as is the case in OSPF multi-access networks. Without the need for Designated and Backup Designated routers, a point-to-point network establishes adjacency and converges faster. The neighboring routers become adjacent whenever they can communicate directly. In contrast, in broadcast and non-broadcast multi-access (NBMA) networks, the Designated Router and Backup Designated Router become adjacent to all other routers attached to the network.

Designated routers in multi-access networks

In a network that has multiple routers attached, OSPF elects one router to serve as the designated router (DR) and another router on the segment to act as the backup designated router (BDR). This arrangement minimizes the amount of repetitive information that is forwarded on the network by forwarding all messages to the designated router and backup designated routers responsible for forwarding the updates throughout the network.

Designated router election in multi-access networks

In a network with no designated router and no backup designated router, the neighboring router with the highest priority is elected as the DR, and the router with the next largest priority is elected as the BDR.

FIGURE 51 Designated and backup router election
If the DR goes off-line, the BDR automatically becomes the DR. The router with the next highest priority becomes the new BDR.

NOTE
Priority is a configurable option at the interface level. You can use this parameter to help bias one router as the DR.

FIGURE 52 Backup designated router becomes designated router

If two neighbors share the same priority, the router with the highest router ID is designated as the DR. The router with the next highest router ID is designated as the BDR.

NOTE
By default, the Extreme device's router ID is the IP address configured on the lowest numbered loopback interface. If the device does not have a loopback interface, the default router ID is the lowest numbered IP address configured on the device.

When multiple routers on the same network are declaring themselves as DRs, then both priority and router ID are used to select the designated router and backup designated routers.

When only one router on the network claims the DR role despite neighboring routers with higher priorities or router IDs, this router remains the DR. This is also true for BDRs.

The DR and BDR election process is performed when one of the following events occurs:

- an interface is in a waiting state and the wait time expires
• an interface is in a waiting state and a hello packet is received that addresses the BDR
• a change in the neighbor state occurs, such as:
 – a neighbor state transitions from ATTEMPT state to a higher state
 – communication to a neighbor is lost
 – a neighbor declares itself to be the DR or BDR for the first time

OSPF RFC 1583 and 2328 compliance

You can configure Extreme devices to be compliant with the RFC 1583 OSPFv2 specification. You can also configure Extreme devices to operate with the latest OSPF standard, RFC 2328.

Reduction of equivalent AS external LSAs

An OSPF ASBR uses AS External link advertisements (AS External LSAs) to originate advertisements of a route learned from another routing domain, such as a BGP4 or RIP domain. The ASBR advertises the route to the external domain by flooding AS External LSAs to all the other OSPF devices (except those inside stub networks) within the local OSPF Autonomous System (AS).

In some cases, multiple ASBRs in an AS can originate equivalent LSAs. The LSAs are equivalent when they have the same cost, the same next hop, and the same destination. The device optimizes OSPF by eliminating duplicate AS External LSAs in this case. The device with the lower router ID flushes the duplicate External LSAs from its database and thus does not flood the duplicate External LSAs into the OSPF AS. AS External LSA reduction, therefore, reduces the size of the link state database on the device. The AS External LSA reduction is described in RFC 2328.

In this example, Routers D and E are OSPF ASBRs, and thus communicate route information between the OSPF AS, which contains Routers A, B, and C, and another routing domain, which contains Router F. The other routing domain is running another routing protocol, such as BGP4 or RIP. Routers D, E, and F, therefore, are each running both OSPF and either BGP4 or RIP.
FIGURE 53 AS external LSA reduction

Notice that both Router D and Router E have a route to the other routing domain through Router F. OSPF eliminates the duplicate AS External LSAs. When two or more devices are configured as ASBRs have equal-cost routes to the same next-hop router in an external routing domain, the ASBR with the highest router ID floods the AS External LSAs for the external domain into the OSPF AS, while the other ASBRs flush the equivalent AS External LSAs from their databases. As a result, the overall volume of route advertisement traffic within the AS is reduced and the devices that flush the duplicate AS External LSAs have more memory for other OSPF data. Because Router D has a higher router ID than Router E, Router D floods the AS External LSAs for Router F to Routers A, B, and C. Router E flushes the equivalent AS External LSAs from its database.
Algorithm for AS external LSA reduction

The AS external LSA reduction example shows the normal AS External LSA reduction feature. The behavior changes under the following conditions:

- There is one ASBR advertising (originating) a route to the external destination, but one of the following happens:
 - A second ASBR comes on-line
 - A second ASBR that is already on-line begins advertising an equivalent route to the same destination.

In either case above, the router with the higher router ID floods the AS External LSAs and the other router flushes its equivalent AS External LSAs. For example, if Router D is offline, Router E is the only source for a route to the external routing domain. When Router D comes on-line, it takes over flooding of the AS External LSAs to Router F, while Router E flushes its equivalent AS External LSAs to Router F.

- One of the ASBRs starts advertising a route that is no longer equivalent to the route the other ASBR is advertising. In this case, the ASBRs each flood AS External LSAs. Since the LSAs either no longer have the same cost or no longer have the same next-hop router, the LSAs are no longer equivalent, and the LSA reduction feature no longer applies.

- The ASBR with the higher router ID becomes unavailable or is reconfigured so that it is no longer an ASBR. In this case, the other ASBR floods the AS External LSAs. For example, if Router D goes off-line, then Router E starts flooding the AS with AS External LSAs for the route to Router F.

Support for OSPF RFC 2328 Appendix E

Extreme devices support Appendix E in OSPF RFC 2328. Appendix E describes a method to ensure that an OSPF device generates unique link state IDs for type-5 (External) link state advertisements (LSAs) in cases where two networks have the same network address but different network masks.

NOTE
Support for Appendix E of RFC 2328 is enabled automatically and cannot be disabled. No user configuration is required.

Normally, an OSPF device uses the network address alone for the link state ID of the link state advertisement (LSA) for the network. For example, if the device needs to generate an LSA for network 10.1.2.3 255.0.0.0, the device generates ID 10.1.2.3 for the LSA.

However, suppose that an OSPF device needs to generate LSAs for all the following networks:

- 10.0.0.0 255.0.0.0
- 10.0.0.0 255.255.0.0
- 10.0.0.0 255.255.255.0

All three networks have the same network address, 10.0.0.0. Without support for RFC 2328 Appendix E, an OSPF device uses the same link state ID, 10.0.0.0, for the LSAs for all three networks. For example, if the device generates an LSA with ID 10.0.0.0 for network 10.0.0.0 255.0.0.0, this LSA conflicts with the LSA generated for network 10.0.0.0 255.255.0.0 or 10.0.0.0 255.255.255.0. The result is multiple LSAs that have the same ID but that contain different route information.

When appendix E is supported, the device generates the link state ID for a network as the following steps.

1. Does an LSA with the network address as its ID already exist?
 - No - Use the network address as the ID.
 - Yes - Go to “Support for OSPF RFC 2328 Appendix E”.
2. Compare the networks that have the same network address, to determine which network is more specific. The more specific network is the one that has more contiguous one bits in its network mask. For example, network 10.0.0.0 255.255.0.0 is more specific than network 10.0.0.0 255.0.0.0, because the first network has 16 ones bits (255.255.0.0) whereas the second network has only 8 ones bits (255.0.0.0).

- For the less specific network, use the networks address as the ID.
- For the more specific network, use the network’s broadcast address as the ID. The broadcast address is the network address, with all ones bits in the host portion of the address. For example, the broadcast address for network 10.0.0.0 255.255.0.0 is 10.0.255.255.

If this comparison results in a change to the ID of an LSA that has already been generated, the device generates a new LSA to replace the previous one. For example, if the device has already generated an LSA for network with ID 10.0.0.0 for network 10.0.0.0 255.255.255.0, the device must generate a new LSA for the network, if the device needs to generate an LSA for network 10.0.0.0 255.255.0.0 or 10.0.0.0 255.0.0.0.

OSPF graceful restart

The OSPF Graceful Restart feature provides support for high-availability routing. With this feature enabled, disruptions in forwarding are minimized and route flapping diminished to provide continuous service during times when a router experiences a restart.

With OSPF graceful restart enabled, a restarting router sends special LSAs to its neighbors called grace LSAs. These LSAs are sent to neighbors either before a planned OSPF restart or immediately after an unplanned restart. The grace LSA specifies a grace period for the neighbors of the restarting router to continue using the existing routes to and through the router after a restart. The restarting router comes up, it continues to use its existing OSPF routes as if nothing has occurred. In the background, the router re-acquires its neighbors prior to the restart and recalculates its OSPF routes and replaces them with new routes as necessary. Once the grace period has passed, the adjacent routers return to normal operation.

OSPF Graceful Restart can be enabled in the following configurations:

- Configuring OSPF Graceful Restart for the Global Instance – In this configuration all OSPF neighbors other than those used by VRFs are made subject to the Graceful Restart capability. The restart timer set globally does not apply to Graceful Restart on a configured VRF.
- Configuring OSPF Graceful Restart per VRF – In this configuration all OSPF neighbors for the specified VRF are made subject to the Graceful Restart capability. The restart timer set for a specific VRF only applies to that VRF.

NOTE

If a 32-slot XMR or MLX Series system running a version 03.6.00 or later application image is configured for OSPF graceful restart and intended to be used in switchover or hitless upgrade, the OSPF dead-interval needs to be changed to 60 seconds on OSPF interfaces to ensure that the graceful restart process succeeds without a timeout.

Hitless upgrade support for OSPF graceful restart

OSPF graceful restart experiences minimal packet loss during hitless upgrade on a non-default VRF. On a default VRF, there is no packet loss during hitless upgrade.
OSPFv2 stub router advertisement

OSPFv2 stub router advertisement is an open standard based feature and it is specified in RFC 3137. This feature provides a user with the ability to gracefully introduce and remove an OSPFv2 device from the network, by controlling when the data traffic can start and stop flowing through the device in cases where there are other OSPFv2 devices present on the network providing alternative paths for the traffic. This feature does not work if there is no alternative for the traffic through other OSPFv2 routers. The device can control the data traffic flowing through it by changing the cost of the paths passing through the configured device. By setting the path cost high the traffic will be redirected to other OSPFv2 devices providing a lower cost path. This change in path cost is accomplished by setting the metric of the links advertised in the Router LSA to a maximum value. When the OSPFv2 device is ready to forward the traffic, the links are advertised with the real metric value instead of the maximum value.

OSPFv2 stub router advertisement is useful for avoiding a loss of traffic during short periods when adjacency failures are detected and traffic is rerouted. Using this feature, traffic can be rerouted before an adjacency failure occurs due to common services interruptions such as a router being shutdown for maintenance.

OSPFv2 stub router advertisement is also useful during startup because it gives the device enough time to build up its routing table before forwarding traffic. This can be useful where BGP is enabled on the device because it takes time for the BGP routing table to converge.

You can also configure and set a metric value for the following LSA types:

- Summary (type 3 and type 4)
- External (type 5 and type 7)
- Opaque (type 10, TE link)

OSPFv2 Shortest Path First throttling

Rapid triggering of SPF calculations with exponential back-off to offer the advantages of rapid convergence without sacrificing stability. As the delay increases, multiple topology changes can occur within a single SPF. This dampens network activity due to frequent topology changes.

This scheduling method starts with an initial value after which a configured delay time is followed. If a topology change event occurs the SPF is schedule after the time specified by the initial value, the device starts a timer for the time period specified by a configured hold time value. If no topology events occur during this hold time, the router returns to using the initial delay time.

If a topology event occurs during the hold time period, the next hold time period is recalculated to a value that is double the initial value. If no topology events occur during this extended hold time, the device resets to its initial value. If an event occurs during this extended hold time, the next hold time is doubled again. The doubling occurs as long as topology events occur during the calculated hold times until a configured maximum delay time value is reached or no event occurs (which resets the router to the initial hold time). The maximum value is then held until the hold time expires without a topology change event occurring. At any time that a hold time expires without a topology change event occurring, the router reverts to the initial hold value and begins the process all over again.

For example, if you set the initial delay timer to 100 milliseconds, the hold timer to 300 and the maximum hold timer to 2000 milliseconds, the following will occur:

If a topology change occurs the initial delay of 100 milliseconds will be observed. If a topology change occurs during the hold time of 300 milliseconds the hold time is doubled to 600 milliseconds. If a topology change event occurs during the 600 millisecond period, the hold time is doubled again to 1200 milliseconds. If a topology change event occurs during the 1200 millisecond period, the hold time is doubled to 2400 milliseconds. Because the maximum hold time is specified as 2000, the value will be held at 2000. This 2000 millisecond period will then repeat as long as topology events occur within the maximum 2000 millisecond hold time. When a maximum hold time expires without a topology event occurring, the router reverts to the initial delay time and the cycle repeats as described.

Therefore, longer SPF scheduling values can be used during network topology instability.
IETF RFC and internet draft support

The implementation of OSPF Graceful Restart supports the following IETF RFC:

- RFC 3623: Graceful OSPF Restart

NOTE
A secondary management module must be installed for the device to function as a graceful restart device. If the device functions as a graceful restart helper device only, there is no requirement for a secondary management module.

Dynamic OSPF activation and configuration

OSPF is automatically activated when you enable it. The protocol does not require a software reload.

You can configure and save the following OSPF changes without resetting the system:

- All OSPF interface-related parameters (for example: area, hello timer, router dead time cost, priority, re-transmission time, transit delay)
- All area parameters
- All area range parameters
- All virtual-link parameters
- All global parameters
- creation and deletion of an area, interface or virtual link
- Changes to address ranges
- Changes to global values for redistribution
- Addition of new virtual links

OSPF VRF-Lite for customer edge routers

When a type 3, 5, or 7 LSA is sent from a provider edge (PE) router to a customer edge (CE) router, the DN (down) bit in the LSA options field must be set. This prevents any type 3, 5, or 7 LSA messages sent from the CE router to the PE router from being distributed any farther. The PE router ignores messages with the DN bit set and does not add these routes to the VRF routing table.

When you enable VRF-Lite on the CE router, the DN setting is ignored, allowing the CE router to add these routes to the VRF routing table.

To enable VRF-Lite, enter commands such as the following:

```
device(config)# router ospf vrf 1
device(config-ospf-router-vrf-1)# vrf-lite-capability
```

Syntax: [no] vrf-lite-capability

Use the no form of the command to disable VRF-Lite. This applies to the VRF instance only. It does not apply to the default VRF.

NOTE
For vpn4 external routes to be installed on CE routers, the domain-tags on PE routers must be different that the domain-tags on CE routers.

NOTE
This command applies to CE routers only. This command does not apply to PE routers.
Configuring OSPF

1. Enable OSPF on the router.
2. Assign the areas to which the router will be attached.
3. Assign individual interfaces to the OSPF areas.
4. Configure route map for route redistribution, if desired.
5. Enable redistribution, if desired.
6. Modify default global and port parameters as required.
7. Modify OSPF standard compliance, if desired.

Configuration rules

The configuration rules are as follows:

- If a router is to operate as an ASBR, you must enable the ASBR capability at the system level.
- Redistribution must be enabled on routers configured to operate as ASBRs.
- All router ports must be assigned to one of the defined areas on an OSPF router. When a port is assigned to an area, all corresponding subnets on that port are automatically included in the assignment.

OSPF parameters

You can modify or set the following global and interface OSPF parameters.

Global parameters

The global OSPF parameters are as follows:

- Modify OSPF standard compliance setting.
- Assign an area.
- Define an area range.
- Define the area virtual link.
- Set global default metric for OSPF.
- Change the reference bandwidth for the default cost of OSPF interfaces.
- Disable or re-enable load sharing.
- Enable or disable default-information-originate.
- Modify Shortest Path First (SPF) timers
- Define external route summarization
- Define redistribution metric type.
- Define redistribution route maps.
- Enable redistribution.
- Change the LSA pacing interval.
- Modify OSPF Traps generated.
- Modify database overflow interval.
- Stub Router advertisement
Set all the OSPFv2 interfaces to the passive state.

Interface parameters

The interface OSPF parameters are as follows:

- Assign interfaces to an area.
- Define the authentication key for the interface.
- Change the authentication-change interval
- Modify the cost for a link.
- Modify the dead interval.
- Modify MD5 authentication key parameters.
- Modify the priority of the interface.
- Modify the retransmit interval for the interface.
- Modify the transit delay of the interface.

NOTE

You set global level parameters at the OSPF CONFIG Level of the CLI. To reach that level, enter `router ospf` at the global CONFIG Level. Interface parameters for OSPF are set at the interface CONFIG Level using the CLI command `ip ospf`.

When using the Web Management Interface, you set OSPF global parameters using the OSPF configuration panel. All other parameters are accessed through links accessed from the OSPF configuration sheet.

Enable OSPF on the device

When you enable OSPF on the device, the protocol is automatically activated. To enable OSPF on the device, use the following method.

```
device(config)# router ospf
device(config-ospf-router)#
```

This command launches you into the OSPF router level where you can assign areas and modify OSPF global parameters.

Note regarding disabling OSPF

If you disable OSPF, the device removes all the configuration information for the disabled protocol from the running configuration. Moreover, when you save the configuration to the startup configuration file after disabling one of these protocols, all the configuration information for the disabled protocol is removed from the startup configuration file.

The CLI displays a warning message such as the following.

```
device(config-ospf-router)# no router ospf
router ospf mode now disabled. All ospf config data will be lost when writing to flash!
```

The Web Management Interface does not display a warning message.

If you have disabled the protocol but have not yet saved the configuration to the startup configuration file and reloaded the software, you can restore the configuration information by re-entering the `router ospf` command or by selecting the Web management option to enable the protocol. If you have already saved the configuration to the startup configuration file and reloaded the software, the information is gone.

If you are testing an OSPF configuration and are likely to disable and re-enable the protocol, you might want to make a backup copy of the startup configuration file containing the protocol’s configuration information. This way, if you remove the configuration information by
saving the configuration after disabling the protocol, you can restore the configuration by copying the backup copy of the startup configuration file onto the flash memory.

Resetting OSPF

The `clear ip ospf all` command globally resets (disables then re-enables) OSPF without deleting the OSPF configuration information. This command is equivalent to entering the commands `no router ospf` followed by `router ospf`. Whereas the `no router ospf` command disables OSPF and removes all the configuration information for the disabled protocol from the running-config, the `router ospf` command re-enables OSPF and restores the OSPF configuration information.

The `clear ip ospf all` command is useful if you are testing an OSPF configuration and are likely to disable and re-enable the protocol. This way, you do not have to save the configuration after disabling the protocol, and you do not have to restore the configuration by copying the backup copy of the startup-config file onto the flash memory.

To reset OSPF without deleting the OSPF configuration, enter the following command at the Global CONFIG level or at the Router OSPF level of the CLI:

```
device# clear ip ospf all
```

Syntax: `clear ip ospf all`

To reset OSPF for VRFs, enter command such as the following

```
device # clear ip ospf vrf [vrf-name] all
```

Syntax: `clear ip ospf vrf [vrf-name] all`

Assign OSPF areas

Once OSPF is enabled on the system, you can assign areas. Assign an IP address or number as the area ID for each area. The area ID is representative of all IP addresses (subnets) on a router port. Each port on a router can support one area.

An area can be normal, a stub, or a Not-So-Stubby Area (NSSA):

- Normal - OSPF routers within a normal area can send and receive External Link State Advertisements (LSAs).
- Stub - OSPF routers within a stub area cannot send or receive External LSAs. In addition, OSPF routers in a stub area must use a default route to the area’s Area Border Router (ABR) or Autonomous System Boundary Router (ASBR) to send traffic out of the area.
- NSSA - The ASBR of an NSSA can import external route information into the area.
 - ASBRs redistribute (import) external routes into the NSSA as type 7 LSAs. Type-7 External LSAs are a special type of LSA generated only by ASBRs within an NSSA, and are flooded to all the routers within only that NSSA.
 - ABRs translate type 7 LSAs into type 5 External LSAs, which can then be flooded throughout the AS. You can configure address ranges on the ABR of an NSSA so that the ABR converts multiple type-7 External LSAs received from the NSSA into a single type-5 External LSA.

When an NSSA contains more than one ABR, OSPF elects one of the ABRs to perform the LSA translation for NSSA. OSPF elects the ABR with the highest router ID. If the elected ABR becomes unavailable, OSPF automatically elects the ABR with the next highest router ID to take over translation of LSAs for the NSSA. The election process for NSSA ABRs is automatic.

To set up the OSPF areas use the following method.

```
device(config-ospf-router)# area 192.5.1.0
device(config-ospf-router)# area 200.5.0.0
device(config-ospf-router)# area 195.5.0.0
device(config-ospf-router)# area 0.0.0.0
device(config-ospf-router)# write memory
```
Assign a totally stubby area

By default, the device sends summary LSAs (LSA type 3) into stub areas. You can further reduce the number of link state advertisements (LSA) sent into a stub area by configuring the device to stop sending summary LSAs (type 3 LSAs) into the area. You can disable the summary LSAs when you are configuring the stub area or later after you have configured the area.

This feature disables origination of summary LSAs, but the device still accepts summary LSAs from OSPF neighbors and floods them to other neighbors. The device can form adjacencies with other routers regardless of whether summarization is enabled or disabled for areas on each router.

When you enter a command or apply a Web management option to disable the summary LSAs, the change takes effect immediately. If you apply the option to a previously configured area, the device flushes all of the summary LSAs it has generated (as an ABR) from the area.

NOTE
This feature applies only when the device is configured as an Area Border Router (ABR) for the area. To completely prevent summary LSAs from being sent to the area, disable the summary LSAs on each OSPF router that is an ABR for the area.

To disable summary LSAs for a stub area, enter commands such as the following.

```
device(config-ospf-router)# area 40 stub 99 no-summary
```

Syntax: [no] area { num | ip-addr }

The num and ip-addr parameters specify the area number, which can be a number or in IP address format. If you specify a number, the number can be from 0 - 2,147,483,647.

In versions prior to version 03.2.01, up to 18 OSPF areas are supported. Version 03.2.01 software and later support up to 200 OSPF areas.

Assign a Not-So-Stubby Area (NSSA)

The OSPF Not So Stubby Area (NSSA) feature enables you to configure OSPF areas that provide the benefits of stub areas, but that also are capable of importing external route information. OSPF does not flood external routes from other areas into an NSSA, but does translate and flood route information from the NSSA into other areas such as the backbone.

NSSAs are especially useful when you want to summarize Type-5 External LSAs (external routes) before forwarding them into an OSPF area. The OSPF specification (RFC 2328) prohibits summarization of Type-5 LSAs and requires OSPF to flood Type-5 LSAs throughout a routing domain. When you configure an NSSA, you can specify an address range for aggregating the external routes that the NSSA’s ABR exports into other areas.

The implementation of NSSA is based on RFC 3101.
This example shows two routing domains, a RIP domain and an OSPF domain. The ASBR inside the NSSA imports external routes from RIP into the NSSA as Type-7 LSAs, which the ASBR floods throughout the NSSA.

The ABR translates the Type-7 LSAs into Type-5 LSAs. If an area range is configured for the NSSA, the ABR also summarizes the LSAs into an aggregate LSA before flooding the Type-5 LSAs into the backbone.

Since the NSSA is partially “stubby” the ABR does not flood external LSAs from the backbone into the NSSA. To provide access to the rest of the Autonomous System (AS), the ABR generates a default Type-7 LSA into the NSSA.

Configuring an NSSA

To configure OSPF area 1.1.1.1 as an NSSA, enter the following commands.

```
device(config)# router ospf
device(config-ospf-router)# area 1.1.1.1 nssa 1
device(config-ospf-router)# write memory
```
Syntax: [no] area area-id nssa [[nssa-ext-metric] [default-information-originate [metric metric-value | metric-type type-value]] [no-redistribution] [translator-always] [translator-interval stability-interval]]

The area-id parameter specifies the area and has the format xx or xx.xxxx. For example, 49 and 49.2211 are valid area IDs.

The nssa-ext-metric parameter specifies the NSSA's advertised external route metric.

The default-information-originate metric metric-value parameter indicates the cost of the default LSA that originated into the NSSA area. The range is from 1 to 16777215.

The default-information-originate metric-type type-value parameter indicates the default external LSA type that originated into the NSSA area. The default type is type-2.

The no-summary option directs the router to not import type-3 summary LSAs into the NSSA area. The default operation is to import summary LSAs into an NSSA area.

The no-redistribution option prevents a NSSA Area Border Router (ABR) from generating external (type-7) LSA into an NSSA area. By default redistribution is enabled in a NSSA.

NOTE
Use this option when an ASBR generates type-5 LSA into normal areas and does not generate type-7 LSA into NSSA area.

The translator-always option configures the translator-role. By default, translator-always option is not set. The translator role by default is candidate.

The translator-interval stability-interval parameter configures the time interval for which an elected NSSA translator continues to perform its duties even after its NSSA translator role has been deposed by another router. By default, the stability-interval is 40 seconds and its range is from 10 to 60 seconds.

NOTE
The device does not inject the default route into an NSSA by default.

To configure additional parameters for OSPF interfaces in the NSSA, use the ip ospf area command at the interface level of the CLI.

Disabling the router to perform translations for NSSA LSAs

The no nssa-translator command allows you to disable the router to perform translations for NSSA LSAs. When this command is used, type 7 NSSA external LSAs are not translated into type 5 external LSAs. This command is useful when the router is an area border router with many NSSA areas, and does not need to export the NSSA external routes into the backbone.

The following command enables this feature.

```
device(config)# router ospf
device(config-ospf-router)# no nssa-translator
```

Syntax: [no] nssa-translator

Configuring an address range for the NSSA

If you want the ABR that connects the NSSA to other areas to summarize the routes in the NSSA before translating them into Type-5 LSAs and flooding them into the other areas, configure an address range. The ABR creates an aggregate value based on the address range. The aggregate value becomes the address that the ABR advertises instead of advertising the individual addresses represented by the aggregate. You can configure up to 32 ranges in an OSPF area.
To configure an address range in NSSA 1.1.1.1, enter the following commands. This example assumes that you have already configured NSSA 1.1.1.1.

```
device(config)# router ospf
device(config-ospf-router)# area 1.1.1.1 range 209.157.22.1 255.255.0.0
device(config-ospf-router)# write memory
```

Syntax:

```
[no] area { num | ip-addr range ip-addr ip-mask [ advertise | not-advertise ] }
```

The `num` and `ip-addr` parameters specify the area number, which can be in IP address format. If you specify a number, the number can be from 0 - 2,147,483,647.

The `range ip-addr` parameter specifies the IP address portion of the range. The software compares the address with the significant bits in the mask. All network addresses that match this comparison are summarized in a single route advertised by the router.

The `ip-mask` parameter specifies the portions of the IP address that a route must contain to be summarized in the summary route. In the example above, all networks that begin with 209.157 are summarized into a single route.

The `advertise` and `not-advertise` parameters specify whether you want the device to send type 3 LSAs for the specified range in this area. The default is `advertise`.

Assigning an area range (optional)

You can assign a range for an area, but it is not required. Ranges allow a specific IP address and mask to represent a range of IP addresses within an area, so that only that reference range address is advertised to the network, instead of all the addresses within that range. Each area can have up to 32 range addresses.

To define an area range for subnets on 10.45.5.1 and 10.45.6.2, enter the following command.

```
device(config)# router ospf
device(config-ospf-router)# area 10.45.5.1 range 10.45.0.0 255.255.0.0
device(config-ospf-router)# area 10.45.6.2 range 10.45.0.0 255.255.0.0
```

Syntax:

```
[no] area { num | ip-addr } range ip-addr ip-mask
```

The `num` and `ip-addr` parameters specify the area number, which can be in IP address format.

The `range ip-addr` parameter specifies the IP address portion of the range. The software compares the address with the significant bits in the mask. All network addresses that match this comparison are summarized in a single route advertised by the router.

The `ip-mask` parameter specifies the portions of the IP address that a route must contain to be summarized in the summary route. In the example above, all networks that begin with 10.45 are summarized into a single route.

Assigning an area cost (optional parameter)

You can assign a cost for an area, but it is not required. To consolidate and summarize routes at an area boundary, use the `area range cost` command in router configuration mode.

If the `cost` parameter is specified, it will be used (overriding the computed cost) to generate the summary LSA. If the `cost` parameter is not specified, then the existing range metric computation max or min cost of routes falling under this range will be used to generate summary LSA.

NOTE

The area should be already configured before using this command.
Creates an area range entry with ip address 10.1.1.1 and network mask 255.255.255.0 with the area-id 10.

device(config)# router ospf
device(config-ospf-router)# area 10 range 10.1.1.1 255.255.255.0

Modifies the address range status to **DoNotAdvertise**. Neither the individual intra-area routes falling under range nor the ranged prefix is advertised as summary LSA.

device(config)# router ospf
device(config-ospf-router)# area 10 range 10.1.1.1 255.255.255.0 not-advertise

Modifies the address range status to advertise and a Type 3 summary link-state advertisement (LSA) can be generated for this address range.

device(config)# router ospf
device(config-ospf-router)# area 10 range 10.1.1.1 255.255.255.0 advertise

Modifies the address range status to advertise and assign cost for this area range to 10.

device(config)# router ospf
device(config-ospf-router)# area 10 range 10.1.1.1 255.255.255.0 advertise cost 10

Modifies the address range status to not-advertise and cost from 10 to 5.

device(config)# router ospf
device(config-ospf-router)# area 10 range 10.1.1.1 255.255.255.0 not-advertise cost 5

Removes the cost from the area range. The area range will be advertised with computed cost which is the max/min(based on RFC 1583 compatibility) of all individual intra-area routes falling under this range.

device(config)# router ospf
device(config-ospf-router)# no area 10 range 10.1.1.1 255.255.255.0 cost 5

Removes the area range.

device(config)# router ospf
device(config-ospf-router)# no area 10 range 10.1.1.1 255.255.255.0

NOTE
This command does not work in incremental fashion. So both the optional parameters have to be configured each time. Otherwise it will take the default value.

Syntax: `no area { num | ip-addr range ip-addr ip-mask [advertise | not-advertise] cost cost-value }`

The **num** and **ip-addr** parameters specify the area number, which can be in IP address format.

The **range ip-addr** parameter specifies the IP address portion of the range. The software compares the address with the significant bits in the mask. All network addresses that match this comparison are summarized in a single route advertised by the router.

The **ip-mask** parameter specifies the portions of the IP address that a route must contain to be summarized in the summary route.

The **advertise** parameter sets the address range status to advertise and generates a Type 3 summary link-state advertisement (LSA). If at least a single route falls under the range, a ranged LSA will be advertised.

The not-advertise parameter sets the address range status to DoNotAdvertise. Neither the individual intra-area routes falling under range nor the ranged prefix is advertised as summary LSA.

The **cost cost-value** parameter specifies the cost-value to be used while generating type-3 summary LSA. If the cost value is configured, then configured cost is used while generating the summary LSA. If the cost value is not configured, then computed range cost will be used. The cost-value ranges from 1 - 16777215.

To disable this function, use the **no** form of this command.
Assigning interfaces to an area

Once you define OSPF areas, you can assign interfaces to the areas. All router ports must be assigned to one of the defined areas on an OSPF router. When a port is assigned to an area, all corresponding subnets on that port are automatically included in the assignment.

To assign interface 1/8 of Router A to area 10.5.0.0 and then save the changes, enter the following commands.

```
RouterA(config)# interface ethernet 1/8
RouterA(config-if-e10000-1/8)# ip ospf area 10.5.0.0
RouterA(config-if-e10000-1/8)# write memory
```

Setting all OSPFv2 interfaces to the passive state

You can set all the Open Shortest Path First Version 2 (OSPFv2) interfaces to the default passive state using the `default-passive-interface` command. When you configure the interfaces as passive, the interfaces drop all the OSPFv2 control packets.

To set all the OSPFv2 interfaces to passive, enter the following command.

```
device# configure terminal
device(config)# router ospf vrf A
device(config-ospf-router-vrf-A)# default-passive-interface
```

Syntax: `[no] default-passive-interface`

Modify interface defaults

OSPF has interface parameters that you can configure. For simplicity, each of these parameters has a default value. No change to these default values is required except as needed for specific network configurations.

Port default values can be modified using the following CLI commands at the interface configuration level of the CLI:

- `ip ospf area`
- `ip ospf auth-change-wait-time`
- `ip ospf authentication-key`
- `ip ospf cost`
- `ip ospf database-filter all out`
- `ip ospf dead-interval`
- `ip ospf hello-interval`
- `ip ospf md5-authentication key-activation-wait-time`
- `ip ospf mtu-ignore`
- `ip ospf passive`
- `ip ospf active`
- `ip ospf priority`
- `ip ospf retransmit-interval`
- `ip ospf transmit-delay`
OSPF interface parameters

The following parameters apply to OSPF interfaces:

- **area**—Assigns an interface to a specific area. You can assign either an IP address or number to represent an OSPF Area ID. If you assign a number, it can be any value from 0 - 2,147,483,647.

- **auth-change-wait-time**—OSPF gracefully implements authentication changes to allow all routers to implement the change and thus prevent disruption to neighbor adjacencies. During the authentication-change interval, both the old and new authentication information is supported. The default authentication-change interval is 300 seconds (5 minutes). You change the interval to a value from 0 - 14400 seconds.

- **authentication-key string**—

 By default, the authentication key is encrypted. If you want the authentication key to be in clear text, insert a 0 between `authentication-key` and `string`. For example:

  ```
  device(config-if-e10000-1/8)# ip ospf authentication-key 0 morningadmin
  ```

 The software adds a prefix to the authentication key string in the configuration. For example, the following portion of the code has the encrypted code “2”:

  ```
  ip ospf authentication-key 2 $on-o
  ```

 The prefix can be one of the following:
 - 0 = the key string is not encrypted and is in clear text.
 - 1 = the key string uses proprietary simple cryptographic 2-way algorithm.
 - 2 = the key string uses proprietary base64 cryptographic 2-way algorithm (only for XMR and MLX Series devices).

- **cost**—Indicates the overhead required to send a packet across an interface. You can modify the cost to differentiate between 100 Mbps, 1 Gbps, and 10 Gbps. The default cost is calculated by dividing 100 million by the bandwidth. For 10 Mbps links, the cost is 10. The cost for 100 Mbps, 1 Gbps, and 10 Gbps links is 1, because the speed of 100 Mbps and 10 Gbps was not in use at the time the OSPF cost formula was devised.

- **database-filter**—Blocks all outbound LSAs on the OSPF interface.

- **dead-interval**—Indicates the number of seconds that a neighbor router waits for a hello packet from the current router before declaring the router down. The value can be from 40 - 65535 seconds. The default is 40 seconds. The default OSPF timer values of 10 seconds for the hello-interval and 40 seconds for the dead-interval or higher are recommended on CER 2000 Series and CES 2000 Series platforms.

- **hello-interval**—Represents the length of time between the transmission of hello packets. The value can be from 1 - 65535 seconds. The default is 10 seconds. The default OSPF timer values of 10 seconds for the hello-interval and 40 seconds for the dead-interval or higher are recommended on CER 2000 Series and CES 2000 Series platforms.

- **MD5-authentication activation wait time**—The number of seconds the device waits until placing a new MD5 key into effect. The wait time provides a way to gracefully transition from one MD5 key to another without disturbing the network. The wait time can be from 0 - 14400 seconds. The default is 300 seconds (5 minutes).

- **MD5-authentication key string**—The MD5 `authentication-key` is a number from 1 - 255 and identifies the MD5 key that is being used. This parameter is required to differentiate among multiple keys defined on a router.

 By default, the authentication key is encrypted. If you want the authentication key to be in clear text, insert a 0 between `authentication-key` and `string`. For example,

  ```
  device(config-if-e10000-1/8)# ip ospf 1 md-5-authentication key-id 5 key 2 morningadmin
  ```
The software adds a prefix to the authentication key string in the configuration. For example, the following portion of the code has the encrypted code “2”.

```
ip ospf 1 md-5-authentication key-id 5 key 2 $on-o
```

The prefix can be one of the following:
- 0 = the key string is not encrypted and is in clear text.
- 1 = the key string uses proprietary simple cryptographic 2-way algorithm.
- 2 = the key string uses proprietary base64 cryptographic 2-way algorithm (only for XMR and MLX Series devices).

Rules for OSPF dead interval and hello interval timers

The following rules apply regarding these timers:
- If both the `hello-interval` and `dead-interval` parameters are configured, they will each be set to the values that you have configured.
- If the `hello-interval` parameter is configured, but not the `dead-interval` parameter, the `dead-interval` parameter will be set to a value that is 4 times the value set for the `hello-interval`.
- If the `dead-interval` parameter is configured, but not the `hello-interval` parameter, the `hello-interval` parameter will be set to a value that is 1/4 the value set for the `dead-interval`. The minimum value for the `hello-interval` is 1.
- The default OSPF timer values of 10 seconds for the hello-interval and 40 seconds for the dead-interval or higher are recommended on CER 2000 Series and CES 2000 Series platforms.
Changing the timer for OSPF authentication changes

When you make an OSPF authentication change, the software uses the authentication-change timer to gracefully implement the change. The software implements the change in the following ways:

- **Outgoing OSPF packets** - After you make the change, the software continues to use the old authentication to send packets, during the remainder of the current authentication-change interval. After this, the software uses the new authentication for sending packets.
- **Inbound OSPF packets** - The software accepts packets containing the new authentication and continues to accept packets containing the older authentication for two authentication-change intervals. After the second interval ends, the software accepts packets only if they contain the new authentication key.

The default authentication-change interval is 300 seconds (5 minutes). You change the interval to a value from 0 - 14400 seconds.

OSPF provides graceful authentication change for all the following types of authentication changes in OSPF:

- Changing authentication methods from one of the following to another of the following:
 - Simple text password
 - MD5 authentication
 - No authentication
- Configuring a new simple text password or MD5 authentication key
- Changing an existing simple text password or MD5 authentication key

To change the authentication-change interval, enter a command such as the following at the interface configuration level of the CLI.

```
device(config-if-e10000-2/5)# ip ospf auth-change-wait-time 400
```

Syntax: `[no] ip ospf auth-change-wait-time secs`

The `secs` parameter specifies the interval and can be from 0 - 14400 seconds. The default is 300 seconds (5 minutes).

NOTE
For backward compatibility, the `ip ospf md5-authentication key-activation-wait-time` command is still supported.

Block flooding of outbound LSAs on specific OSPF interfaces

By default, the device floods all outbound LSAs on all the OSPF interfaces within an area. You can configure a filter to block outbound LSAs on an OSPF interface. This feature is particularly useful when you want to block LSAs from some, but not all, of the interfaces attached to the area.

This command blocks all outbound LSAs. Beginning with version 03.6.00, the command has been enhanced to provide options for selective blocking of LSAs.

After you apply filters to block the outbound LSAs, the filtering occurs during the database synchronization and flooding. When a filtering configuration is changed on a interface, all adjacencies on the interface are set to the Extstart state to restart the database exchange process. In cases where an LSA has already been flooded on an interface prior to application of the LSA filter, the LSA will not be flushed out from the remote neighbors. In this situation the user must clear the link state database and the adjacencies on all remote neighbors to flush out the leaked LSAs or wait for the LSAs to be aged out.

If you remove the filters, the blocked LSAs are automatically re-flooded. You do not need to reset OSPF to re-flood the LSAs.

NOTE
You cannot block LSAs on virtual links, and LSA filtering is not supported on sham links.
To apply a filter to an OSPF interface to block flooding of outbound LSAs on the interface, enter the following command at the Interface configuration level for that interface.

```
device(config-if-e10000-1/1)# ip ospf database-filter all out
```

The command in this example blocks all outbound LSAs on the OSPF interface configured on port 1/1.

The **all** parameter directs the router to block all outbound LSAs on the OSPF interface.

The **all-external** option directs the router to allow the following LSAs: Router, Network, Opq-Area-TE, Opq-Link-Graceful and Type-3 Summary while it blocks all Type-4 and Type-5 LSAs unless directed by one of the following keywords:

- **allow-default** - allows only Type-5 default LSAs.
- **allow-default-and-type4** - allows Type-5 default LSAs and all Type 4 LSAs.

The **all-summary-external** option directs the router to allow the following LSAs: Router, Network, Opq-Area-TE and Opq-Link-Graceful while it blocks all Type-3, Type-4 and Type-5 LSAs unless directed by one of the following keywords:

- **allow-default** - allows only Type-3 or Type-5 default LSAs.
- **allow-default-and-type4** - allows Type-3 or Type-5 default LSAs and all Type 4 LSAs.

All Type-7 LSAs are always filtered if the `ip ospf database-filter` command is enabled.

By default, OSPF LSA filtering is disabled on all interfaces.

To remove the filter, enter a command such as the following.

```
device(config-if-e10000-1/1)# no ip ospf database-filter all out
```

Assign virtual links

All ABRs (area border routers) must have either a direct or indirect link to the OSPF backbone area (0.0.0.0 or 0). If an ABR does not have a physical link to the area backbone, the ABR can configure a virtual link to another router within the same area, which has a physical connection to the area backbone.

The path for a virtual link is through an area shared by the neighbor ABR (router with a physical backbone connection), and the ABR requiring a logical connection to the backbone.

Two parameters fields must be defined for all virtual links—transit area ID and neighbor router:

- The transit area ID represents the shared area of the two ABRs and serves as the connection point between the two routers. This number should match the area ID value.
- The neighbor router field is the router ID (IP address) of the router that is physically connected to the backbone, when assigned from the router interface requiring a logical connection. When assigning the parameters from the router with the physical connection, the router ID is the IP address of the router requiring a logical connection to the backbone.

NOTE

By default, the Extreme device's router ID is the IP address configured on the lowest numbered loopback interface. If the device does not have a loopback interface, the default router ID is the lowest numbered IP address configured on the device. When you establish an area virtual link, you must configure it on both of the routers (both ends of the virtual link).
The example shows an OSPF area border router, Device A, that is cut off from the backbone area (area 0). To provide backbone access to Device A, you can add a virtual link between Device A and Device C using area 1 as a transit area. To configure the virtual link, you define the link on the router that is at each end of the link. No configuration for the virtual link is required on the routers in the transit area.

To define the virtual link on Device A, enter the following commands:

```
device A(config)# router ospf
device A(config-router)# area 2
device A(config-router)# area 1
device A(config-router)# area 1 virtual-link 209.157.22.1
device A(config-router)# write memory
```

Enter the following commands to configure the virtual link on Device C.

```
device C(config)# router ospf
device C(config-router)# area 0
device C(config-router)# area 1
device C(config-router)# area 1 virtual-link 10.0.0.1
```
Syntax: [no] area { ip-addr | num } | virtual-link router-id [authentication-key string | dead-interval num | hello-interval num | retransmit-interval num | transmit-delay num | md5-authentication key-activation-wait-time num | md5-authentication key-id num key [0 | 1] string]

The area ip-addr and num parameters specify the transit area.

The virtual-link router-id parameter specifies the router ID of the OSPF router at the remote end of the virtual link. To display the router ID on a device, enter the show ip command.

Modify virtual link parameters

OSPF has some parameters that you can modify for virtual links. Notice that these are the same parameters as the ones you can modify for physical interfaces.

You can modify default values for virtual links using the following CLI command at the OSPF router level of the CLI, as shown in the following syntax:

Syntax: [no] area { ip-addr | num } | virtual-link router-id dead-interval num | hello-interval num | retransmit-interval num | transmit-delay num | authentication-key string | md5-authentication key key-string | md5-authentication key-activation-wait-time num |

Virtual link parameter descriptions

You can modify the following virtual link interface parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area ip-addr</td>
<td>num</td>
</tr>
<tr>
<td>virtual-link router-id</td>
<td>The router ID of the OSPF router at the remote end of the virtual link.</td>
</tr>
<tr>
<td>dead-interval num</td>
<td>The number of seconds that a neighbor router waits for a hello packet from the current router before declaring the router down. The value can be from 1 - 65S35 seconds. The default is 40 seconds.</td>
</tr>
<tr>
<td>hello-interval num</td>
<td>The length of time between the transmission of hello packets. The range is 1 - 65S35 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>retransmit-interval num</td>
<td>The interval between the re-transmission of link state advertisements to router adjacencies for this interface. The range is 0 - 3600 seconds. The default is 5 seconds.</td>
</tr>
<tr>
<td>transmit-delay num</td>
<td>The period of time it takes to transmit Link State Update packets on the interface. The range is 0 - 3600 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>authentication-key string</td>
<td>This parameter allows you to assign different authentication encryption methods on a port-by-port basis. OSPF supports three methods of authentication for each interface: none, simple encryption, and base 64 encryption. Only one encryption method can be active on an interface at a time. The simple encryption and base 64 encryption methods requires you to configure an alphanumeric password on an interface. The password can be up to eight characters long. All OSPF packets transmitted on the interface contain this password. All OSPF packets received on the interface are checked for this password. If the password is not present, then the packet is dropped. By default, the authentication key is encrypted. If you want the authentication key to be in clear text, insert a 0 between key and string. For example,</td>
</tr>
</tbody>
</table>

 device C(config-ospf-router)# area 1 virtual-link 10.0.0.1 authentication-key 0 afternoon

 The software adds a prefix to the authentication key string in the configuration. For example, the following portion of the code has the encrypted code '2'. |

 area 1 virtual-link 12.12.12.25 authentication-key 2 $on-o

 The prefix can be one of the following: |

 • 0 = the key string is not encrypted and is in clear text |
 • 1 = the key string uses proprietary simple cryptographic 2-way algorithm |
Changing the reference bandwidth for the cost on OSPFv2 interfaces

Each interface on which OSPFv2 is enabled has a cost associated with it. The device advertises its interfaces and their costs to OSPFv2 neighbors. For example, if an interface has an OSPFv2 cost of ten, the device advertises the interface with a cost of ten to other OSPFv2 routers.

By default, an interface's OSPFv2 cost is based on the port speed of the interface. The cost is calculated by dividing the reference bandwidth by the port speed. The default reference bandwidth is 100 Mbps, which results in the following default costs:

- 10 Mbps port - 10
- All other port speeds - 1

You can change the reference bandwidth. The following formula is used to calculate the cost:

\[
\text{Cost} = \frac{\text{reference-bandwidth}}{\text{interface-speed}}
\]

If the resulting cost is less than 1, the cost is rounded up to 1. The default reference bandwidth results in the following costs:

- 10 Mbps port's cost = 100/10 = 10
- 100 Mbps port's cost = 100/100 = 1
- 1000 Mbps port's cost = 100/1000 = 0.10, which is rounded up to 1
- 1 Gbps port's cost = 100/10000 = 0.01, which is rounded up to 1

The bandwidth for interfaces that consist of more than one physical port is calculated as follows:

- LAG group - The combined bandwidth of all the ports.
• Virtual interface - The combined bandwidth of all the ports in the port-based VLAN that contains the virtual interface.

The default reference bandwidth is 100 Mbps. You can change the reference bandwidth to a value from 1—4294967.

If a change to the reference bandwidth results in a cost change to an interface, the device sends a link-state update to update the costs of interfaces advertised by the device.

NOTE

If you specify the cost for an individual interface, the cost you specify overrides the cost calculated by the software.

Interface types to which the reference bandwidth does not apply

Some interface types are not affected by the reference bandwidth and always have the same cost regardless of the reference bandwidth in use:

• The cost of a loopback interface is always 1.
• The cost of a virtual link is calculated using the Shortest Path First (SPF) algorithm and is not affected by the auto-cost feature.
• The bandwidth for tunnel interfaces is 9 Kbps and is also subject to the auto-cost reference bandwidth setting.

Changing the reference bandwidth

To change the reference bandwidth, enter a command such as the following at the OSPF configuration level of the CLI.

```
device(config)# router ospf
device(config-ospf-router)# auto-cost reference-bandwidth 500
```

The reference bandwidth specified in this example results in the following costs:

• 10 Mbps port's cost = 500/10 = 50
• 100 Mbps port's cost = 500/100 = 5
• 1000 Mbps port's cost = 500/1000 = 0.5, which is rounded up to 1

The costs for 10 Mbps and 100 Mbps ports change as a result of the changed reference bandwidth. Costs for higher-speed interfaces remain the same.

Syntax: `[no] auto-cost { reference-bandwidth num | use-active-ports }

The *num* parameter specifies the reference bandwidth and can be a value from 1 - 4294967. The default is 100.

To restore the reference bandwidth to its default value and thus restore the default costs of interfaces to their default values, enter the following command.

```
device(config-ospf-router)# no auto-cost reference-bandwidth
```

Determining cost calculation for active ports only on LAG and VE interfaces

The default operation is for cost calculation of OSPF interfaces to be based upon all configured ports. There is also an option for the **auto-cost reference-bandwidth** command for the calculation of OSPF costs on active ports of LAG and VE interfaces. This option allows you to calculate cost based on the ports that are currently active. The following example enables cost calculation for currently active ports.

```
device(config-ospf-router)# auto-cost use-active-ports
```

The **use-active-ports** option enables cost calculation for currently active ports only. This option does not have any effect on non-VE or non-LAG interfaces. The default operation is for costs to be based on configured ports.
OSPFv2 route redistribution

Route redistribution imports and translates different protocol routes into a specified protocol type. On the device, redistribution is supported for static routes, ISIS, OSPF, RIP, and BGP. OSPF redistribution supports the import of static, ISIS, RIP, and BGP routes into OSPF routes.

NOTE
The device advertises the default route into OSPF even if redistribution is not enabled, and even if the default route is learned through an IBGP neighbor. IBGP routes (including the default route) are not redistributed into OSPF by OSPF redistribution (for example, by the OSPF `redistribute` command).

In the figure below, the device acting as the ASBR (Autonomous System Boundary Router) can be configured between the RIP domain and the OSPF domain to redistribute routes between the two domains.

NOTE
The ASBR must be running both RIP and OSPF protocols to support this activity.

NOTE
Do not enable redistribution until you have configured the redistribution route map. Otherwise, you might accidentally overload the network with routes you did not intend to redistribute.
FIGURE 56 Redistributing OSPF and static routes to RIP routes

Modify default metric for redistribution

The default metric is a global parameter that specifies the cost applied to all OSPF routes by default. The default value is 10. You can assign a cost from 1 - 65535.

NOTE
You also can define the cost on individual interfaces. The interface cost overrides the default cost.

To assign a default metric of 4 to all routes imported into OSPF, enter the following commands.

```
device(config)# router ospf
device(config-ospf-router)# default-metric 4
```

Syntax: `default-metric value`
The value can be from 1 - 15. The default is 10.

Enable route redistribution

NOTE
Do not enable redistribution until you have configured the redistribution route map. Otherwise, you might accidentally overload the network with routes you did not intend to redistribute.

To enable redistribution of RIP and static IP routes into OSPF, enter the following commands.

```
device(config)# router ospf
device(config-ospf-router)# redistribute rip
device(config-ospf-router)# redistribute static
device(config-ospf-router)# write memory
```

Example using a route map

To configure a route map and use it for redistribution of routes into OSPF, enter commands such as the following.

```
device(config)# ip route 1.1.0.0 255.255.0.0 10.95.7.30
device(config)# ip route 1.2.0.0 255.255.0.0 10.95.7.30
device(config)# ip route 1.3.0.0 255.255.0.0 10.95.7.30
device(config)# ip route 4.1.0.0 255.255.0.0 10.95.6.30
device(config)# ip route 4.2.0.0 255.255.0.0 10.95.6.30
device(config)# ip route 4.3.0.0 255.255.0.0 10.95.6.30
device(config)# ip route 4.4.0.0 255.255.0.0 10.95.6.30
device(config)# route-map abc permit 1
device(config-routemap abc)# match metric 5
device(config-routemap abc)# set metric 8
device(config-ospf-router)# redistribute static route-map abc
```

The commands in this example configure some static IP routes, then configure a route map and use the route map for redistributing static IP routes into OSPF.

The `ip route` commands configure the static IP routes. The `route-map` command begins configuration of a route map called "abc". The number indicates the route map entry (called the "instance") you are configuring. A route map can contain multiple entries. The software compares routes to the route map entries in ascending numerical order and stops the comparison once a match is found.

The `match` command in the route map matches on routes that have 5 for their metric value (cost). The `set` command changes the metric in routes that match the route map to 8.

The `redistribute static` command enables redistribution of static IP routes into OSPF, and uses route map "abc" to control the routes that are redistributed. In this example, the route map allows a static IP route to be redistributed into OSPF only if the route has a metric of 5, and changes the metric to 8 before placing the route into the OSPF route table.

The following command shows the result of the redistribution. Since only one of the static IP routes configured above matches the route map, only one route is redistributed. Notice that the route’s metric is 5 before redistribution but is 8 after redistribution.

```
device# show ip ospf database external
<table>
<thead>
<tr>
<th>Index</th>
<th>Aging</th>
<th>LS ID</th>
<th>Router</th>
<th>Netmask</th>
<th>Metric</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4.4.0.0</td>
<td>10.10.10.60</td>
<td>ffff0000</td>
<td>80000008</td>
<td>0000</td>
</tr>
</tbody>
</table>
```

Syntax: [no] redistribute [bgp | connected | rip | isis [level-1 | level-1-2 | level-2] | static [route-map map-name]]

The bgp, connected, rip, isis, and static parameters specify the route source.

The route-map map-name parameter specifies the route map name. The following match parameters are valid for OSPF redistribution:

- match ip address | next-hop acl-num
• match metric num
• match tag tag-value

NOTE
A match tag can take up to 16 tags. During the execution of a route-map a match on any tag value in the list is considered a successful match.

The following set parameters are valid for OSPF redistribution:
• set ip next hop ip-addr
• set metric [+ | -] num | none
• set metric-type type-1 type-1 | type-2
• set tag tag-value

NOTE
You must configure the route map before you configure a redistribution that uses the route map.

NOTE
When you use a route map for route redistribution, the software disregards the permit or deny action of the route map.

NOTE
For an external route that is redistributed into OSPF through a route map, the metric value of the route remains the same unless the metric is set by a set metric command inside the route map. The default-metric num command has no effect on the route. This behavior is different from a route that is redistributed without using a route map. For a route redistributed without using a route map, the metric is set by the default-metric command.

Load sharing
Extreme devices can load share among up to eight equal-cost IP routes to a destination. By default, IP load sharing is enabled. The default is 4 equal-cost paths but you can specify from 2 to 8 paths.

The device software can use the route information it learns through OSPF to determine the paths and costs.
FIGURE 57 Example OSPF network with four equal-cost paths

The device has four paths to R1:
- Router ->R3
- Router ->R4
- Router ->R5
- Router ->R6

Normally, the device chooses the path to the R1 with the lower metric. For example, if the metric for R3 is 1400 and the metric for R4 is 600, the device always chooses R4.

However, suppose the metric is the same for all four routers in this example. If the costs are the same, the device now has four equal-cost paths to R1. To allow the device to load share among the equal cost routes, enable IP load sharing. Four equal-cost OSPF paths are supported by default when you enable load sharing.

NOTE

The device is not source routing in these examples. The device is concerned only with the paths to the next-hop routers, not the entire paths to the destination hosts.

OSPF load sharing is enabled by default when IP load sharing is enabled.

Configure external route summarization

When the device is an OSPF Autonomous System Boundary Router (ASBR), you can configure it to advertise one external route as an aggregate for all redistributed routes that are covered by a specified address range.

When you configure an address range, the range takes effect immediately. All the imported routes are summarized according to the configured address range. Imported routes that have already been advertised and that fall within the range are flushed out of the AS and a single route corresponding to the range is advertised.
If a route that falls within a configured address range is imported by the device, no action is taken if the device has already advertised the aggregate route; otherwise the device advertises the aggregate route. If an imported route that falls within a configured address range is removed by the device, no action is taken if there are other imported routes that fall within the same address range; otherwise the aggregate route is flushed.

You can configure up to 32 address ranges. The device sets the forwarding address of the aggregate route to zero and sets the tag to zero.

If you delete an address range, the advertised aggregate route is flushed and all imported routes that fall within the range are advertised individually.

If an external LSDB overflow condition occurs, all aggregate routes are flushed out of the AS, along with other external routes. When the device exits the external LSDB overflow condition, all the imported routes are summarized according to the configured address ranges.

NOTE

If you use redistribution filters in addition to address ranges, the device applies the redistribution filters to routes first, then applies them to the address ranges.

NOTE

If you disable redistribution, all the aggregate routes are flushed, along with other imported routes.

NOTE

This option affects only imported, type 5 external routes. A single type 5 LSA is generated and flooded throughout the AS for multiple external routes. Type 7-route redistribution is not affected by this feature. All type 7 routes will be imported (if redistribution is enabled). To summarize type 7 LSAs or exported routes, use NSSA address range summarization.

To configure a summary address for OSPF routes, enter commands such as the following.

```
device(config-ospf-router)# summary-address 10.1.0.0 255.255.0.0
```

The command in this example configures summary address 10.1.0.0, which includes addresses 10.1.1.0, 10.1.2.0, 10.1.3.0, and so on. For all of these networks, only the address 10.1.0.0 is advertised in external LSAs.

Syntax: `summary-address ip-addr ip-mask`

The `ip-addr` parameter specifies the network address.

The `ip-mask` parameter specifies the network mask.

To display the configured summary addresses, enter the following command at any level of the CLI.

```
device# show ip ospf config
OSPF Redistribution Address Ranges currently defined:
  Range-Address  Subnetmask
  10.0.0.0          255.0.0.0
  10.0.1.0          255.255.255.0
  10.0.2.0          255.255.255.0
```

Syntax: `show ip ospf config`

Configure default route origination

When the device is an OSPF Autonomous System Boundary Router (ASBR), you can configure it to automatically generate a default external route into an OSPF routing domain. This feature is called "default route origination" or "default information origination".

By default, the device does not advertise the default route into the OSPF domain. If you want the device to advertise the OSPF default route, you must explicitly enable default route origination.
When you enable OSPF default route origination, the device advertises a type 5 default route that is flooded throughout the AS (except stub areas and NSSAs). In addition, internal NSSA ASBRs advertise their default routes as translatable type 7 default routes.

The device advertises the default route into OSPF even if OSPF route redistribution is not enabled, and even if the default route is learned through an IBGP neighbor.

NOTE
The device never advertises the OSPF default route, regardless of other configuration parameters, unless you explicitly enable default route origination using the following method.

If the device is an ASBR, you can use the “always” option when you enable the default route origination. The always option causes the ASBR to create and advertise a default route if it does not already have one configured.

If default route origination is enabled and you disable it, the default route originated by the device is flushed. Default routes generated by other OSPF routers are not affected. If you re-enable the feature, the feature takes effect immediately and thus does not require you to reload the software.

NOTE
The ABR (device) will not inject the default route into an NSSA by default and the command described in this section will not cause the device to inject the default route into the NSSA. To inject the default route into an NSSA, use the `area nssa default-information-originate` command.

To enable default route origination, enter the following command.

```
device(config-ospf-router)# default-information-originate
```

To disable the feature, enter the following command.

```
device(config-ospf-router)# no default-information-originate
```

Syntax: `[no] default-information-originate [always] [metric value] [metric-type type]`

The `always` parameter advertises the default route regardless of whether or not the router has a default route. This option is disabled by default.

NOTE
The `always` parameter is not necessary pre-FastIron 8.0 releases.

The `metric` value parameter specifies a metric for the default route. If this option is not used, the default metric is used for the route.

The `metric-type` type parameter specifies the external link type associated with the default route advertised into the OSPF routing domain. The `type` can be one of the following:

- `type1` - Type 1 external route
- `type2` - Type 2 external route

If you do not use this option, the default redistribution metric type is used for the route type.

The `route-map` parameter overrides other options. If set commands for `metric` and `metric-type` are specified in the route-map, the command-line values of metric and metric-type if specified, are “ignored” for clarification.

The `route-map rmap` parameter specifies the route map reference.
The corresponding route-map should be created before configuring the route-map option along with the default-information-originate command. If the corresponding route-map was not been created beforehand, then the an error message will be displayed stating that the route-map must be created.

NOTE
The route-map option cannot be used with a non-default address in the match conditions. The default-route LSA shall not be generated if a default route is not present in the routing table and a match ip address condition for an existing non-default route is configured in the route-map. The match ip-address command in the route-map is a no-op operation for the default information originate command.

Supported match and set conditions

The supported **match** and **set** conditions of a normal route-map configuration are as follows:

TABLE 123 Match Conditions

<table>
<thead>
<tr>
<th>Match Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ip nexthop prefix-list</td>
<td>prefixList</td>
</tr>
<tr>
<td>ip nexthop</td>
<td>accessList</td>
</tr>
<tr>
<td>interface</td>
<td>interfaceName</td>
</tr>
<tr>
<td>metric</td>
<td>metricValue</td>
</tr>
<tr>
<td>tag</td>
<td>routeTagValue</td>
</tr>
<tr>
<td>protocol-type</td>
<td>protocol route type and (or) sub-type value</td>
</tr>
<tr>
<td>route-type</td>
<td>route type (IS-IS sub-type values)</td>
</tr>
</tbody>
</table>

TABLE 124 Set Conditions

<table>
<thead>
<tr>
<th>Set Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>metric</td>
<td>metricValue</td>
</tr>
<tr>
<td>metric-type</td>
<td>type1/type2</td>
</tr>
<tr>
<td>tag</td>
<td>routeTagValue</td>
</tr>
</tbody>
</table>

OSPF non-stop routing

The graceful restart feature supported by open shortest path first (OSPF) maintains area topology and dataflow. Though the network requires neighboring routers to support graceful restart and perform hitless failover, the graceful restart feature may not be supported by all routers in the network. To eliminate this dependency, the non-stop routing (NSR) feature is supported on NetIron OS devices. NSR does not require support from neighboring routers to perform hitless failover. NSR does not support virtual link, so traffic loss is expected while performing hitless failover.

NSR does not require support from neighboring routers to perform hitless failover.

If the active management module fails, the standby management module takes over and maintains the current OSPF routes, link-state advertisements (LSAs), and neighbor adjacencies, so that there is no loss of existing traffic to the OSPF destination.
Synchronization of critical OSPFv2 elements

All types of LSAs and the neighbor information are synchronized to the standby module using the NSR synchronization library and IPC mechanism to transmit and receive packets.

Link state database synchronization

To ensure non-stop routing, when the active management module fails the standby management module takes over from the active management module, with the identical OSPF link state database it had before the failure. The next shortest path first (SPF) run after the switchover yields the same result in routes as the active module had before the failure. The OSPF protocol requires that all devices in the network have identical databases.

LSA delayed acknowledging

When an OSPF device receives LSAs from its neighbor, it acknowledges the LSAs. After the acknowledgement is received, the neighbor removes this device from its retransmission list and stops resending the LSAs.

In the case of NSR, the device fails after receiving the LSA from its neighbor and acknowledges that neighbor upon receipt of an LSA. The LSA synchronization to the standby module is then completed. In this case the standby module, when taking over from the active module, does not have that LSA in its database and the already acknowledged neighbor does not retransmit that LSA. For this reason, the NSR-capable device waits for LSA synchronization of the standby module to complete (Sync-Ack) before acknowledging the neighbor that sent the LSA.

LSA syncing and packing

When the LSA processing is completed on the active management module and the decision is made to install the LSA in its link state database (LSDB), OSPF synchronizes that LSA to the standby module. OSPF checks the current state of the database entry, whether or not it is marked for deletion. After checking the database state, OSPF packs the LSA status and other necessary information needed for direct installation in the standby OSPF LSDB, along with the LSA portion. When the LSA reaches the standby module, OSPF checks the database entry state in the buffer and takes appropriate action, such as adding, overwriting, updating, or deleting the LSA from the LSDB.

Neighbor device synchronization

When the neighbor device is added in the active management module, it is synchronized and added to the standby module. When the neighbor is deleted in the active module, it is synchronized to the standby module and deleted in the standby module. When the neighbor device state becomes 2way or full, the neighbor device is synchronized to the standby module. The following attributes of the neighbor device are synchronized to the standby module:

- Neighbor device ID
- Neighbor device IP address
- Destination device or backup destination device information
- Neighbor state 2way or full
- MD5 information
- Neighbor priority
Synchronization limitations

- If a neighbor device is inactive for 30 seconds, and if the standby module takes over in another 10 seconds, the neighbor device cannot be dropped. The inactivity timer starts again and takes another 40 seconds to drop the neighbor device.

- In standby module, the valid neighbor states are loading, down, 2way, and full. If the active management processor (MP) fails when the neighbor state is loading, the standby module cannot continue from loading, but the standby can continue from 2way and tries to establish adjacency between the neighboring devices.

- The minimum OSPF dead-interval timer value is 40 seconds. When the dead-interval value is configured to less than this minimum value, OSPF NSR cannot be supported.

Interface synchronization

Interface information is synchronized for interfaces such as PTPT, broadcast, and non-broadcast. Interface wait time is not synchronized to the standby module. If an interface waits for 30 seconds to determine the identity of the designated router (DR) or the backup designated router (BDR), and if the standby module takes over, the wait timer starts again and takes another 40 seconds for the interface state to change from waiting to BDR, DR, or DROther.

BFD with OSPF NSR

Bidirectional forwarding detection (BFD) supports MP switchover and all BFD sessions for OSPF with graceful OSPF NSR, which are in the up state after the switchover. The BFD sessions for OSPF that do not use OSPF NSR are cleared before the switchover and then re-established on the new active MP after the MP switchover.

In case the active MP learns an OSPF neighbor and then restarts before a new BFD session is established, the standby module will not have a BFD session for the new OSPF neighbor. To overcome this and to support OSPF NSR with BFD, the following functions are supported when the active MP restarts:

- During MP switchover, BFD checks whether OSPF NSR is enabled. If OSPF NSR is enabled, the existing BFD sessions for OSPF is maintained during the switchover.
- OSPF sets up or clears the BFD sessions after OSPF neighbor transition.
- After the switchover, BFD sessions correspond with the active OSPF neighbor.

Standby module operations

The standby management module with OSPF configuration performs the following functions.

Neighbor database

Neighbor information is updated in the standby module based on updates from the active module. Certain neighbor state and interface transitions are synchronized to the standby module. By default, the neighbor timers on the standby module are disabled.
LSA database

The standby module processes LSA synchronization events from the active module and unpacks the LSA synchronization information to directly install it in its LSDB, as the LSA has already been processed on the active module. The information required to install all types of LSAs (and special LSAs such as Grace LSAs) is packed by OSPF on the active module in the synchronization buffer, so that you can directly install LSAs on the standby module without extra processing.

The standby module is not allowed to originate any LSAs of its own. This is to maintain all information consistently from the active module. The active module synchronizes self-originated LSAs to the standby module.

LSA aging is not applicable on the standby module. During synchronization from the active module, the current LSA age is recorded and the new database timestamp is created on the standby module to later derive the LSA age as needed.

When the active module sends the LSAs to the standby module, based on the message, the standby module deletes or updates its LSDB with the latest information.

LSA acknowledging or flooding are not done on the standby module. When the LSA synchronization update arrives from the active module, it will be directly installed into the LSDB.

Enabling and disabling NSR

To enable NSR for OSPF, enter the following commands:

```
device(config)# router ospf
device(config-ospf-router)# nonstop-routing
```

To disable NSR for OSPF, enter the following commands:

```
device(config)# router ospf
device(config-ospf-router)# no nonstop-routing
```

Syntax: [no] nonstop-routing

If you enter the `graceful-restart` command when NSR is already enabled, the command is rejected with the following message: “Error - Please disable NSR before enabling Graceful Restart.”

Similarly, if you enter the `nonstop-routing` command when graceful restart is already enabled, the command is rejected and the following message is displayed: “Error - Please disable Graceful Restart before enabling NSR.”

To disable `graceful-restart` command, the following commands:

```
device(config)# router ospf
device(config-ospf-router)# no graceful-restart
```

Limitations of NSR

- Configurations that occur before the switchover are lost due to the CLI synchronization.
- Sham links are not supported.
- OSPF adjacency over GRE tunnels is not supported.
- Changes in the neighbor state or interface state before or during a switchover do not take effect.
- Traffic counters are not synchronized because the neighbor and LSA database counters are recalculated on the standby module during synchronization.
- LSA acknowledging is delayed because it has to wait until standby acknowledging occurs.
Depending on the sequence of redistribution or new LSAs (from neighbors), the LSAs accepted within the limits of the database may change after switchover.

In NSR hitless failover, after switchover, additional flooding-related protocol traffic is generated to the directly connected neighbors.

OSPF startup timers, database overflow, and max-metric, are not applied during NSR switchover.

Devices may generate OSPF log messages or reset OSPF neighbor timers, but these issues do not cause any OSPF or traffic disruption.

Adding additional parameters

Previously, to add new parameters, the old configuration had to be undone and the newer configuration had to be recreated. In release 04.1.00 however, to add new parameters, the existing configuration need not be undone or removed. Any successive configuration changes with new parameters is appended to the existing configuration. If the same parameter is entered again with a different value, then the corresponding parameter value is updated.

```
device(config-ospf-router)#default-information-originate route-map defaultToOspf
device(config-ospf-router)#default-information-originate always
device(config-ospf-router)#default-information-originate metric 200
```

In the above example, `default-information-originate` is enabled with the `route-map` parameter for the first CLI and the `always` and `metric` parameters are appended to the existing configuration. The running configuration of the above three split commands would be as follows:

```
device(config-ospf-router)#default-information-originate metric 200 route-map defaultToOspf
```

Disabling configuration

To disable the `route-map` parameter from the configuration, enter the following command:

```
device(config-ospf-router)# no default-information-originate route-map defaultToOspf
```

The above CLI would retain the configuration with `default-information-originate` alone and the `route-map` option would get reset or removed.

The following commands with any or all of the options will remove the options from the `default-information-originate` command if any of the options are configured:

```
device(config-ospf-router)# no default-information-originate always
device(config-ospf-router)# no default-information-originate always route-map test
device(config-ospf-router)# no default-information-originate always route-map test metric 200
device(config-ospf-router)# no default-information-originate always route-map test metric 200 metric-type type1
```

In the following example, the parameters of the `default-information-originate` command are reset if they are configured and if none of the parameters are configured then, these commands will have no effect.
To disable the origination of default route, issue the command with the `no` option and without any other options. This would remove the configuration of the default information origination even if any of the above mentioned options are configured.

Syntax:
```
[no] default-information-originate [ always ] [ metric metricvalue ] [ metric-type metric-type ] [ route-map rmap-name ]
```

The `always` parameter advertises the default route regardless of whether the router has a default route. This option is disabled by default.

The `metric value` parameter specifies a metric for the default route. If this option is not used, the default metric is used for the route.

The `metric-type type` parameter specifies the external link type associated with the default route advertised into the OSPF routing domain. The `type` can be one of the following:

- `type1` - Type 1 external route
- `type2` - Type 2 external route

If you do not use this option, the default redistribution metric type is used for the route type.

NOTE
If you specify a metric and metric type, the values you specify are used even if you do not use the `always` option.

The `route-map parameter overrides other options. If set commands for metric and metric-type are specified in the route-map, the command-line values of metric and metric-type if specified, are ignored for clarification.

The `route-map rmap` parameter specifies the route map reference.

The corresponding route-map should be created before configuring the `route-map` option along with the `default-information-originate`. If the corresponding route-map was not been created beforehand, then the an error message will be displayed stating that the route-map must be created.

OSPFv2 distribute list

A distribution list can be configured to explicitly deny specific routes from being eligible for installation in the IP route table. By default, all OSPFv2 routes in the OSPFv2 route table are eligible for installation in the IP route table. Receipt of LSAs are not blocked for the denied routes. The device still receives the routes and installs them in the OSPFv2 database. The denied OSPFv2 routes cannot be installed into the IP route table.

The OSPFv2 distribution list can be managed using ACLs or route maps to identify routes to be denied as described in the following sections:

- Configuring an OSPFv2 Distribution List using ACLs
- Configuring an OSPFv2 Distribution List using route maps

Configuring an OSPFv2 distribution list using ACLs

To configure an OSPFv2 distribution list using ACLs:

- Configure an ACL that identifies the routes you want to deny. Using a standard ACL allows you deny routes based on the destination network, but does not filter based on the network mask. To also filter based on the network mask of the destination network, use an extended ACL.
- Configure an OSPFv2 distribution list that uses the ACL as input.
Examples

In the following configuration example, the first three commands configure a standard ACL that denies routes to any 10.x.x.x destination network and allows all other routes for eligibility to be installed in the IP route table. The last three commands change the CLI to the OSPFv2 configuration level and configure an OSPFv2 distribution list that uses the ACL as input. The distribution list prevents routes to any 10.x.x.x destination network from entering the IP route table. The distribution list does not prevent the routes from entering the OSPFv2 database.

```plaintext
device(config)# ip access-list standard no_ip
device(config-std-nacl)# deny 10.0.0.0 0.255.255.255
device(config-std-nacl)# permit any
device(config)# router ospf
device(config-ospf-router) # area 0
device(config-ospf-router) # distribute-list no_ip in
```

In the following example, the first three commands configure an extended ACL that denies routes to any 10.31.39.x destination network and allows all other routes for eligibility to be installed in the IP route table. The last three commands change the CLI to the OSPFv2 configuration level and configure an OSPFv2 distribution list that uses the ACL as input. The distribution list prevents routes to any 10.31.39.x destination network from entering the IP route table. The distribution list does not prevent the routes from entering the OSPFv2 database.

```plaintext
device(config)# ip access-list extended DenyNet39
device(config-ext-nacl)# deny ip 10.31.39.0 0.0.0.255 any
device(config-ext-nacl)# permit ip any any
device(config)# router ospf
device(config-ospf-router) # area 0
device(config-ospf-router) # distribute-list DenyNet39 in
```

In the following example, the first command configures a numbered ACL that denies routes to any 10.31.39.x destination network and allows all other routes for eligibility to be installed in the IP route table. The last three commands change the CLI to the OSPFv2 configuration level and configure an OSPFv2 distribution list that uses the ACL as input. The distribution list prevents routes to any 10.31.39.x destination network from entering the IP route table. The distribution list does not prevent the routes from entering the OSPFv2 database.

```plaintext
device(config)# ip access-list 100 deny ip 10.31.39.0 0.0.0.255 any
device(config)# ip access-list 100 permit ip any any
device(config)# router ospf
device(config-ospf-router) # area 0
device(config-ospf-router) # distribute-list 100 in
```

Configuring an OSPFv2 distribution list using route maps

You can manage an OSPFv2 distribution list using route maps that apply match operations as defined by an ACL or an IP prefix list. You can also use other options available within the route maps and ACLs to further control the contents of the routes that OSPFv2 provides to the IP route table. This section describes an example of an OSPFv2 distribution list using a route map to specify an OSPFv2 administrative distance for routes identified by an IP prefix list.

To configure an OSPFv2 distribution list using route maps:

- Configure a route map that identifies the routes you want to manage
- Optionally configure an OSPFv2 administrative distance to apply to the OSPFv2 routes
- Configure an OSPFv2 distribution list that uses the route map as input

In the following example, the first two commands identify two routes using the `ip prefix-list test1` command. Next, a route map is created using the `prefix-list test1` command to identify the two routes and the `set distance` command to set the OSPFv2 administrative distance for these routes.
of those routes to 200. A distribution list is then configured under the OSPFv2 configuration that uses the route map named "setdistance" as input.

```
device(config)# ip prefix-list test1 seq 5 permit 10.100.1.0/24
device(config)# ip prefix-list test1 seq 10 permit 10.100.2.0/24
device(config)# route-map setdistance permit 1
device(config-route-map setdistance)# match ip address prefix-list test1
device(config-route-map setdistance)# set distance 200
device(config-route-map setdistance)# exit
device(config)# route-map setdistance permit 2
device(config-route-map setdistance)# exit
device(config)# router ospf
device(config-ospf-router)# area 0
device(config-ospf-router)# area 1
device(config-ospf-router)# distribute-list route-map setdistance in
device(config-ospf-router)# exit
```

Once this configuration is implemented, the routes identified by the `ip prefix-list` command and matched in the route map will have their OSPFv2 administrative distance set to 200. This is displayed in the output from the `show ip route` command, as shown below.

```
device# show ip route
Total number of IP routes: 4
Type Codes - B:BGP D:Connected I:ISIS S:Static R:RIP O:OSPF; Cost - Dist/Metric
          Destination        Gateway     Port       Cost          Type
          1     10.1.1.0/24        DIRECT      eth 1/1    0/0                     D
          2     10.100.1.0/24      10.1.1.1    eth 1/1    200/2       O
          3     10.100.2.0/24      10.1.1.1    eth 1/1    200/10      02
          4     10.100.6.0/24      10.1.1.1    eth 1/1    110/2       O
```

Routes 1 and 2 demonstrate the actions of the example configuration as both display an OSPFv2 administrative distance value of 200. Note that the value is applied to both OSPFv2 learned routes that match the route-map instance containing the set distance clause. The other OSPFv2 route (route 3), which does not match the relevant instance, continues to have the default OSPFv2 administrative distance of 110.

Modify SPF timers

The device uses the following timers when calculating the shortest path for OSPF routes:

- **SPF delay** - When the device receives a topology change, the software waits before it starts a Shortest Path First (SPF) calculation. By default, the software waits 0 (zero) seconds. You can configure the SPF delay to a value from 0 - 65535 seconds. If you set the SPF delay to 0 seconds, the software immediately begins the SPF calculation after receiving a topology change.

- **SPF hold time** - The device waits for a specific amount of time between consecutive SPF calculations. By default, the device waits zero seconds. You can configure the SPF hold time to a value from 0 - 65535 seconds. If you set the SPF hold time to 0 seconds, the software does not wait between consecutive SPF calculations.

You can set the delay and hold time to lower values to cause the device to change to alternate paths more quickly in the event of a route failure. Note that lower values require more CPU processing time.

You can change one or both of the timers.

To change the SPF delay and hold time, enter commands such as the following.

```
device(config-ospf-router)# timers spf 10 20
```

The command in this example changes the SPF delay to 10 seconds and changes the SPF hold time to 20 seconds.

To set the timers back to their default values, enter a command such as the following.

```
device(config-ospf-router)# no timers spf 10 20
```
Syntax: [no] timers spf delay hold-time

The delay parameter specifies the SPF delay.
The hold-time parameter specifies the SPF hold time.

NOTE
OSPF incrementally updates the OSPF routing table when new Type-3 or Type-4 Summary, Type-5 External, or Type-7 External NSSA LSAs are received.

Modify redistribution metric type

The redistribution metric type is used by default for all routes imported into OSPF unless you specify different metrics for individual routes using redistribution filters. Type 2 specifies a big metric (three bytes). Type 1 specifies a small metric (two bytes). The default value is type 2.

To modify the default value to type 1, enter the following command.

```
device(config-ospf-router)# metric-type type1
```

Syntax: [no] metric-type type1 | type2

The default is type2.

Modify administrative distance

The device can learn about networks from various protocols, including Border Gateway Protocol version 4 (BGP4), RIP, IS-IS, and OSPF. Consequently, the routes to a network may differ depending on the protocol from which the routes were learned. The default administrative distance for OSPF routes is 110.

The router selects one route over another based on the source of the route information. To do so, the router can use the administrative distances assigned to the sources. You can bias the decision the device makes by changing the default administrative distance for OSPF routes.

Configuring administrative distance based on route type

You can configure a unique administrative distance for each type of OSPF route. For example, you can use this feature to prefer a static route over an OSPF inter-area route but you also want to prefer OSPF intra-area routes to static routes.

The distance you specify influences the choice of routes when the device has multiple routes for the same network from different protocols. The device prefers the route with the lower administrative distance.

You can specify unique default administrative distances for the following route types:

- Intra-area routes
- Inter-area routes
- External routes

The default for all these OSPF route types is 110.

NOTE
This feature does not influence the choice of routes within OSPF. For example, an OSPF intra-area route is always preferred over an OSPF inter-area route, even if the intra-area route’s distance is greater than the inter-area route’s distance.
To change the default administrative distances for inter-area routes, intra-area routes, and external routes, enter the following command.

```bash
device(config-ospf-router)# distance external 100
device(config-ospf-router)# distance inter-area 90
device(config-ospf-router)# distance intra-area 80
```

Syntax: `[no] distance { external | inter-area | intra-area } distance

The `distance external`, `inter-area`, and `intra-area` parameters specify the route type for which you are changing the default administrative distance.

The `distance` parameter specifies the new distance for the specified route type. Unless you change the distance for one of the route types using commands such as those shown above, the default is 110.

To reset the administrative distance to its system default (110), enter a command such as the following.

```bash
device(config-ospf-router)# no distance external 100
```

Configure OSPF group LSA pacing

The device paces Link State Advertisement (LSA) refreshes by delaying the refreshes for a specified time interval instead of performing a refresh each time an individual LSA refresh timer expires. The accumulated LSAs constitute a group, which the device refreshes and sends out together in one or more packets.

The pacing interval, which is the interval at which the device refreshes an accumulated group of LSAs, is configurable to a range from 10 - 1800 seconds (30 minutes). The default is 240 seconds (four minutes). Thus, every four minutes, the device refreshes the group of accumulated LSAs and sends the group together in the same packets.

Usage guidelines

The pacing interval is inversely proportional to the number of LSAs the device is refreshing and aging. For example, if you have approximately 10,000 LSAs, decreasing the pacing interval enhances performance. If you have a very small database (40 - 100 LSAs), increasing the pacing interval to 10 - 20 minutes might enhance performance slightly.

Changing the LSA pacing interval

To change the LSA pacing interval, use the following CLI method.

To change the LSA pacing interval to two minutes (120 seconds), enter the following command.

```bash
device(config-ospf-router)# timers lsa-group-pacing 120
```

Syntax: `[no] timers lsa-group-pacing secs

The `secs` parameter specifies the number of seconds and can be from 10 - 1800 (30 minutes). The default is 240 seconds (four minutes).

To restore the pacing interval to its default value, enter the following command.

```bash
device(config-ospf-router)# no timers lsa-group-pacing
```
OSPFv2 type 3 LSA filtering

OSPFv2 type 3 LSA filtering provides an ABR that is running the OSPFv2 protocol with the ability to filter type 3 link-state advertisements (LSAs) that are sent between different OSPFv2 areas. Filtering of routes can be defined using prefix-list filters to either permit or deny certain prefixes. Only specified prefixes can be sent from one area to another area and all other prefixes are prohibited. OSPFv2 type 3 LSA filtering can be applied for the LSAs coming into a specific OSPFv2 area or going out of a specific OSPFv2 area, or into and out of the same OSPFv2 areas concurrently. Any change in the prefix-list used for type 3 filtering may result in the advertisement of new summary LSAs or the withdrawal of previously advertised summary LSAs.

Type 3 LSAs refer to summary links and are sent by ABRs to advertise destinations outside the area. OSPFv2 type 3 LSA filtering gives the administrator improved control of route distribution between OSPFv2 areas.

In certain situations, reachability for some IP network prefixes from outside of an area or to a specific area should be restricted. Such a situation is illustrated in the figure below where a device called R3 is advertising stub networks that belong to the non-backbone area (Area1). An ABR, R2, will generate summary routes for these prefixes. If OSPFv2 type 3 LSA filtering is not configured, all the stub networks are seen as summary LSAs in the backbone area (Area 0) and are flooded to all applicable OSPFv2 devices. These type 3 LSAs can be filtered out using the OSPFv2 type 3 LSA Filter.

FIGURE 58 OSPFv2 type 3 LSA filtering

Usage and configuration guidelines

- OSPFv2 type 3 LSA filtering is only applicable to ABRs. Configurations are accepted prior to the device becoming an ABR but OSPFv2 type 3 LSA filtering only occurs once the device becomes an ABR.
- When OSPFv2 type 3 LSA filtering is enabled in the “in” direction, all type 3 LSAs originated by the ABR to this area are filtered by the prefix list, based on information from all other areas. Type 3 LSAs, originated as a result of the area range command in a
different area, are treated like any other individually originated type 3 LSA. Any prefix that does not match an entry in the prefix list is implicitly denied.

- When OSPFv2 type 3 LSA filtering is enabled in the “out” direction, all type 3 LSAs advertised by the ABR are filtered by the prefix list, based on information from this area to all other areas. If the area range command has been used to configure type 3 LSAs for this area, these type 3 LSAs that correspond to these configurations are treated like any other type 3 LSA. Prefixes that do not match are implicitly denied.

TABLE 125 Behavior for prefix list configurations

<table>
<thead>
<tr>
<th>IP prefix list</th>
<th>OSPF area prefix list</th>
<th>Event</th>
<th>Filtering done</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>Not defined</td>
<td>None</td>
<td>No (permit all)</td>
</tr>
<tr>
<td>Not defined</td>
<td>Defined</td>
<td>None</td>
<td>Yes (deny all)</td>
</tr>
<tr>
<td>Not defined</td>
<td>Defined</td>
<td>IP prefix list defined</td>
<td>Recalculation</td>
</tr>
<tr>
<td>Defined (no rules configured)</td>
<td>Defined</td>
<td>None</td>
<td>Implicit deny (deny all)</td>
</tr>
<tr>
<td>Defined (rules configured)</td>
<td>Defined</td>
<td>IP prefix list deleted</td>
<td>Recalculation and deny all</td>
</tr>
<tr>
<td>Defined (rules configured)</td>
<td>Defined</td>
<td>IP prefix list rule added or modified or deleted</td>
<td>Recalculation</td>
</tr>
<tr>
<td>Defined (rules configured)</td>
<td>Defined</td>
<td>Area prefix list deleted</td>
<td>Recalculation and permit all</td>
</tr>
</tbody>
</table>

Configuring an OSPF area prefix list

To filter prefixes advertised in type 3 link-state advertisements (LSAs) between (OSPF) areas of an Area Border Router (ABR), use the area prefix-list command in router configuration mode. To change or cancel the filter, use the no form of this command.

Configuring OSPF ABR type 3 LSA filtering

To filter inter-area routes into a specified area, use the following commands beginning in router configuration mode.

To configure the router to run an OSPF process, enter commands such as the following.

```
device(config)# router ospf
device(config-ospf-router)##
```

To filter prefixes advertised in type 3 link-state advertisements (LSAs) between (OSPF) areas of an Area Border Router (ABR), use the area prefix-list command in router configuration mode. To change or cancel the filter, use the no form of this command.

```
device(config-ospf-router)## area 1 prefix-list area in
```

To configure the switch to filter inter-area routes out of the specified area, enter a command such as the following.

```
device(config-ospf-router)## area 10.10.10.1 prefix-list Routesfor20 out
```

Syntax: `[no] area { area-id | area_ip } prefix-list prefix-list-name { in | out }

The area, area-id, and area_ip parameters specify the area id in different formats.

The in keyword specifies that prefix list is applied to prefixes advertised to the specified area from other areas.

The out keyword specifies that prefix list is applied to prefixes advertised out of the specified area to other areas.

Defining and applying IP prefix lists

An IP prefix list specifies a list of networks. When you apply an IP prefix list to an area, the NetIron OS device sends or receives only a route whose destination is in the IP prefix list. The software interprets the prefix lists in order, beginning with the lowest sequence number.
To configure an IP prefix list and apply it to an area, enter commands such as the following.

```
device(config)# ip prefix-list Routesfor20 permit 20.20.0.0/24
device(config)# router ospf
device(config-ospf-router)# area 10.10.10.1 prefix-list Routesfor20 out
```

These commands configure an IP prefix list named Routesfor20, which permits routes to network 20.20.0.0/24. The `area` command configures the device to use IP prefix list Routesfor20 to determine which routes to send to area 10.10.10.1. The device sends routes that go to 20.20.x.x to area 10.10.10.1 because the IP prefix list explicitly permits these routes to be sent to the area.

Syntax:

```
ip prefix-list name [seq seq-value] [description string] {deny | permit} network-addr/mask-bits [ge ge-value] [le le-value]
```

The `name` variable specifies the prefix list name. You use this name when applying the prefix list to a neighbor.

The `seq seq-value` parameter is optional and specifies the IP prefix list’s sequence number. If you do not specify a sequence number, the software numbers them in increments of 5, beginning with prefix list entry 5. The software interprets the prefix list entries in numerical order, beginning with the lowest sequence number.

The `description string` parameter is a text string describing the prefix list.

The `deny` or `permit` parameters specify the action the software takes if a neighbor’s route is in this prefix list.

The prefix-list matches only on this network unless you use the `ge ge-value` or `le le-value` parameters. (See below.)

The `network-addr/mask-bits` variable specifies the network number and the number of bits in the network mask.

You can specify a range of prefix length for prefixes that are more specific than `network-addr/mask-bits`.

- If you specify only `ge ge-value`, then the mask-length range is from `ge ge-value` to 32.
- If you specify only `le le-value`, then the mask-length range is from length to `le le-value`.
- The `ge-value` or `le-value` you specify must meet the following condition:
 - `length < ge-value <= le-value <= 32`

If you do not specify `ge ge-value` or `le le-value`, the prefix list matches only on the exact network prefix you specify with the `network-addr/mask-bits` parameter.

Displaying the configured OSPF area prefix list

To display the prefix-lists attached to the areas, enter the following command.

```
device(config)# show ip ospf config
```

To change the LSA pacing interval to two minutes (120 seconds), enter the following command.

```
device(config)# show ip ospf config
```

OSPFv2 distribute list

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06 683
Virtual Interface Receive Bad Packet Trap: Enabled
Interface Retransmit Packet Trap: Disabled
Virtual Interface Retransmit Packet Trap: Disabled
Originate LSA Trap: Disabled
Originate MaxAge LSA Trap: Disabled
Link State Database Overflow Trap: Disabled
Link State Database Approaching Overflow Trap: Disabled

OSPF Area currently defined:

<table>
<thead>
<tr>
<th>Area-ID</th>
<th>Area-Type</th>
<th>Cost</th>
<th>Prefix List In</th>
<th>Prefix List Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>normal</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>0</td>
<td>Area_1_Pfx_list_in</td>
<td>Area_1_Pfx_List_Out</td>
</tr>
</tbody>
</table>

Syntax: show ip ospf config

Displaying the configured IP prefix list

To only display the configured ip prefix-list, enter a command such as the following.

```
device# show ip prefix-lists
ip prefix-list abc: 2 entries
  seq 5 deny 2.3.4.0/24
  seq 10 permit 4.5.0.0/16.0
```

Syntax: show ip prefix-lists prefix-list-name

The `prefix-list-name` specifies the name of the prefix list. You use this name when applying the prefix list to an area.

Modify OSPF traps generated

OSPF traps as defined by RFC 1850 are supported on device.

You can disable all or specific OSPF trap generation by entering the following CLI command.

```
device(config)# no snmp-server trap ospf
```

To later re-enable the trap feature, enter `snmp-server trap ospf`.

To disable a specific OSPF trap, enter the command as `no snmp-server trap ospf ospf-trap`.

These commands are at the OSPF router Level of the CLI.

Here is a summary of OSPF traps supported on device, their corresponding CLI commands, and their associated MIB objects from RFC 1850. The first list are traps enabled by default:

- `interface-state-change-trap` - [MIB object: OspfIfstateChange]
- `virtual-interface-state-change-trap` - [MIB object: OspfVirtIfStateChange]
- `neighbor-state-change-trap` - [MIB object:ospfNbrStateChange]
- `virtual-neighbor-state-change-trap` - [MIB object: ospfVirtNbrStateChange]
- `interface-config-error-trap` - [MIB object: ospfIfConfigError]
- `virtual-interface-config-error-trap` - [MIB object: ospfVirtIfConfigError]
- `interface-authentication-failure-trap` - [MIB object: ospfIfAuthFailure]
- `virtual-interface-authentication-failure-trap` - [MIB object: ospfVirtIfAuthFailure]
- `interface-receive-bad-packet-trap` - [MIB object: ospfIfrxBadPacket]
- `virtual-interface-receive-bad-packet-trap` - [MIB object: ospfVirtIfRxBadPacket]

The following traps are disabled by default.

- `interface-retransmit-packet-trap` - [MIB object: ospfTxRetransmit]
• *virtual-interface-retransmit-packet-trap* - [MIB object: ospfvirtIfTxRetransmit]
• *originate-lsa-trap* - [MIB object: ospfOriginLsa]
• *originate-maxage-lsa-trap* - [MIB object: ospfMaxAgeLsa]
• *link-state-database-overflow-trap* - [MIB object: ospfLsdbOverflow]
• *link-state-database-approaching-overflow-trap* - [MIB object: ospfLsdbApproachingOverflow]

To stop an OSPF trap from being collected, use the CLI command: `no trap ospf-trap` at the Router OSPF level of the CLI. To disable reporting of the neighbor-state-change-trap, enter the following command.

```
device(config-ospf-router)# no trap neighbor-state-change-trap
```

To reinstate the trap, enter the following command.

```
device(config-ospf-router)# trap neighbor-state-change-trap
```

Syntax: `[no] trap ospf-trap`

Modify OSPF standard compliance setting

You can configure the device to be compliant with the RFC 1583 OSPFv2 specification.

NOTE
In the current implementation, NetIron devices are not compliant with RFC3509.

To configure a device to be compliant with the RFC 1583 OSPFv2 specification, enter the following commands.

```
device# configure terminal
device(config)# router ospf
device(config-ospf-router)# rfc1583-compatibility
```

To configure a device to operate with the latest OSPF standard, RFC 2328, enter the following commands.

```
device# configure terminal
device(config)# router ospf
device(config-ospf-router)# no rfc1583-compatibility
```

Syntax: `[no] rfc1583-compatibility`

When upgrading software from 5.8x and earlier, the device preserves the existing configuration value for OSPF RFC 1583 compatibility based on the version of the startup configuration file. New OSPF configurations use the new default value.

Modify exit overflow interval

If a database overflow condition occurs on a router, the router eliminates the condition by removing entries that originated on the router. The exit overflow interval allows you to set how often a device checks to see if the overflow condition has been eliminated. The default value is 0. The range is 0 - 86400 seconds (24 hours). If the configured value of the database overflow interval is zero, then the router never leaves the database overflow condition.

To modify the exit overflow interval to 60 seconds, enter the following command.

```
device(config-ospf-router)# database-overflow-interval 60
```

Syntax: `[no] database-overflow-interval value`

The value can be from 0 - 86400 seconds. The default is 0 seconds.
Specify types of OSPF Syslog messages to log

You can specify which kinds of OSPF-related Syslog messages are logged. By default, the only OSPF messages that are logged are those indicating possible system errors. If you want other kinds of OSPF messages to be logged, you can configure the device to log them.

For example, to specify that all OSPF-related Syslog messages be logged, enter the following commands.

```
device(config)# router ospf
device(config-ospf-router)# log all
```

Syntax:
```
[no] log { all | adjacency [dr-only] | bad_packet [checksum] | database | memory | retransmit }
```

The log command has the following options:

- The all option causes all OSPF-related Syslog messages to be logged. If you later disable this option with the no log all command, the OSPF logging options return to their default settings.

- The adjacency option logs essential OSPF neighbor state changes, especially on error cases. This option is disabled by default. The dr-only sub-option only logs essential OSPF neighbor state changes where the interface state is designated router (DR).

 NOTE

 For interfaces where the designated router state is not applicable, such as point-to-point and virtual links, OSPF neighbor state changes will always be logged irrespective of the setting of the dr-only sub-option.

 NOTE

 A limitation with the dr-only sub-option is that when a DR/BDR election is underway, OSPF neighbor state changes pertaining to non-DR/BDR routers are not logged. Logging resumes once a DR is elected on that network.

- The bad_packet checksum option logs all OSPF packets that have checksum errors. This option is enabled by default.

- The bad_packet option logs all other bad OSPF packets. This option is disabled by default.

- The database option logs OSPF LSA-related information. This option is disabled by default.

- The memory option logs abnormal OSPF memory usage. This option is enabled by default.

- The retransmit option logs OSPF retransmission activities. This option is disabled by default.

Configuring an OSPF network type

To configure an OSPF network, enter commands such as the following.

```
device(config)# interface ethernet 1/5
device(config-if-1/5)# ip ospf network point-to-point
```

This command configures an OSPF point-to-point link on Interface 5 in slot 1.

Syntax:
```
[no] ip ospf network { point-to-point | broadcast | non-broadcast }
```

- The point-to-point option configures the network type as a point to point connection.

 NOTE

 Extreme devices support numbered point-to-point networks, meaning the OSPF router must have an IP interface address which uniquely identifies the router over the network. Extreme devices do not support unnumbered point-to-point networks.

- The broadcast option configures the network type as a broadcast connection. This is the default option for Ethernet, GRE, VE and Loopback interfaces.
The non-broadcast option configures the network type as a non-broadcast connection. This allows you to configure the interface to send OSPF traffic to its neighbor as unicast packets rather than multicast packets. This can be useful in situations where multicast traffic is not feasible (for example when a firewall does not allow multicast packets).

On a non-broadcast interface, the routers at either end of this interface must configure non-broadcast interface type and the neighbor IP address. There is no restriction on the number of routers sharing a non-broadcast interface (for example, through a hub/switch).

To configure an OSPF interface as a non-broadcast interface, you enable the feature on a physical interface or a VE, following the `ip ospf area` statement, and then specify the IP address of the neighbor in the OSPF configuration. The non-broadcast interface configuration must be done on the OSPF routers at either end of the link.

For example, the following commands configure VE 20 as a non-broadcast interface.

```device(config)# interface ve 20
device(config-vif-20)# ip address 10.1.20.4/24
device(config-vif-20)# ip ospf area 0
device(config-vif-20)# ip ospf network non-broadcast```

The following commands specify 10.1.20.1 as an OSPF neighbor address. The address specified must be in the same sub-net as the non-broadcast interface.

```device(config)# router ospf
device(config-ospf-router)# neighbor 10.1.20.1```

For example, to configure the feature in a network with three routers connected by a hub or switch, each router must have the linking interface configured as a non-broadcast interface, and the two other routers must be specified as neighbors.

Configuring OSPF Graceful Restart

OSPF Graceful Restart can be enabled in the following configurations:

- **Configuring OSPF Graceful Restart for the Global Instance** - In this configuration all OSPF neighbors other than those used by VRFs are made subject to the Graceful Restart capability. The restart timer set globally does not apply to Graceful Restart on a configured VRF.

- **Configuring OSPF Graceful Restart per VRF** - In this configuration all OSPF neighbors for the specified VRF are made subject to the Graceful Restart capability. The restart timer set for a specific VRF only applies to that VRF.

Configuring OSPF Graceful Restart for the global instance

OSPF Graceful restart can be configured for the global instance or for a specified Virtual Routing and Forwarding (VRF) instance. Configuring OSPF Graceful restart for the global instance does not configure it for any VRFs. The following sections describe how to enable the OSPF graceful restart feature for the global instance on a device.

Use the following command to enable the graceful restart feature for the global instance on a device.

```device(config)# router ospf
device(config-ospf-router)# graceful-restart```

**Syntax:** `[no] graceful-restart`

### Configuring OSPF Graceful Restart time for the global instance

Use the following command to specify the maximum amount of time advertised to a neighbor router to maintain routes from and forward traffic to a restarting router.

```device(config)# router ospf
device(config-ospf-router)# graceful-restart restart-time 120```
Syntax: [no] graceful-restart restart-time seconds
The seconds variable sets the maximum restart wait time advertised to neighbors.
Possible values are 10 - 1800 seconds.
The default value is 120 seconds.

Disabling OSPF Graceful Restart helper mode for the global instance
By default, a router supports other restarting routers as a helper. You can prevent your router from participating in OSPF Graceful Restart by using the following command.

```
device(config)# router ospf
device(config-ospf-router)# graceful-restart helper-disable
```

Syntax: [no] graceful-restart helper-disable
This command disables OSPF Graceful Restart helper mode.
The default behavior is to help the restarting neighbors.

Configuring OSPF Graceful Restart per VRF
The following sections describe how to enable the OSPF Graceful Restart feature on a specified VRF.
Use the following command to enable the graceful restart feature on a specified VRF.

```
device(config)# router ospf vrf blue
device(config-ospf-router)# graceful-restart
```

Syntax: [no] graceful-restart

Configuring OSPF Graceful Restart time per VRF
Use the following command to specify the maximum amount of time advertised to an OSPF neighbor router to maintain routes from and forward traffic to a restarting router.

```
device(config)# router ospf vrf blue
device(config-ospf-router)# graceful-restart restart-time 120
```

Syntax: [no] graceful-restart restart-time seconds
The seconds variable sets the maximum restart wait time advertised to OSPF neighbors of the VRF.
Possible values are 10 - 1200 seconds.
The default value is 60 seconds.

Disabling OSPF Graceful Restart helper mode per VRF
You can prevent your router from participating in OSPF Graceful Restart with VRF neighbors by using the following command.

```
device(config)# router ospf vrf blue
device(config-ospf-router)# graceful-restart helper-disable
```

Syntax: [no] graceful-restart helper-disable
This command disables OSPF Graceful Restart helper mode.
The default behavior is to help the restarting neighbors.
Configuring OSPF router advertisement

You can configure OSPF router advertisement in the router ospf mode or router ospf vrf mode as shown in the following examples.

```
device(config)# router ospf
device(config-ospf-router)# max-metric router-lsa all-vrfs on-startup 30 link all
device(config)# router ospf vrf blue
device(config-ospf-router)# max-metric router-lsa on-startup 30 link all
```

Syntax: `[no] max-metric router-lsa [all-vrfs] [on-startup { time | wait-for-bgp }] [summary-lsa metric-value] [external-lsa metric-value] [te-lsa metric-value] [all-lsas] [link { ptp | stub | transit | all }]`

The all-vrfs parameter specifies that the command will be applied to all VRF instances of OSPFv2.

NOTE
This command is supported only for VRFs that are already configured when the `max-metric router-lsa all-vrfs` command is issued.

Any new OSPF instance configured after the max-metric configuration is completed requires that the max-metric command be configured again to take in the new OSPF instance.

The on-startup parameter specifies that the OSPF router advertisement be performed at the next system startup. This is an optional parameter.

When using the on-startup option you can set a time in seconds for which the specified links in Router LSA will be advertised with the metric set to a maximum value of 0xFFFF. Optional values for time are 5 to 86400 seconds. There is no default value for time.

The wait-for-bgp option for the on-startup parameter directs OSPF to wait for either 600 seconds or until BGP has finished route table convergence (whichever event happens first), before advertising the links with the normal metric.

Using the link parameter you can specify the type of links for which the maximum metric is to be advertised. The default value is for maximum metric to be advertised for transit links only. This is an optional parameter.

Additional options are supported that allow you to select the following LSA types and set the required metric:

The summary-lsa option specifies that the metric for all summary type 3 and type 4 LSAs will be modified to the specified metric-value or the default value. The range of possible values for the metric-value variable are 1 to 16777214 (Hex: 0x00001 to 0x00FFFFFE). The default value is 16711680 (Hex: 0x00FF0000).

The external-lsa option specifies that the metric for all external type 5 and type 7 LSAs will be modified to the specified metric-value or a default value. The range of possible values for the metric-value variable are 1 to 16777214 (Hex: 0x00001 to 0x00FFFFFE). The default value is 16711680 (Hex: 0x00FF0000).

The te-lsa option specifies that the TE metric field in the TE metric sub tlv for all type 10 Opaque LSAs LINK TLV originated by the router will be modified to the specified metric-value or a default value. The range of possible values for the metric-value variable are 1 to 4294967295 (Hex: 0x000001 to 0xFFFFFFFF). The default value is 4294967295 (Hex: 0xFFFFFFFF). This parameter only applies to the default instance of OSPF.

Examples

The following examples of the command max-metric router-lsa command demonstrate how it can be used:

The following command indicates that OSPF is being shutdown and that all links in the router LSA should be advertised with the value OxFFFF and the metric value for all external and summary LSAs is set to 0xFF0000 until OSPF is restarted. This configuration will not be saved.

```
device(config)# router ospf
device(config-ospf-router)# max-metric router-lsa external-lsa summary-lsa link all
```
The following command indicates that OSPF is being shutdown and that all links in the router LSA should be advertised with the value 0xFFFF and the metric value for all external and summary LSAs should be set to 0xFFFF00 until OSPF is restarted. Also, if OSPF TE is enabled then all LINK TLVs advertised by the router in Opaque LSAs should be updated with the TE Metric set to 0xFFFFFFFF and the available bandwidth set to 0. This configuration will not be saved.

```
device(config)# router ospf
device(config-ospf-router)# max-metric router-lsa all-lsas link all
```

The following command indicates that OSPF is being shutdown and that all links in the router LSA should be advertised with the value 0xFFFF and the metric value for all summary LSAs should be set to 0xFFFFFE until OSPF is restarted. This configuration will not be saved.

```
device(config)# router ospf
device(config-ospf-router)# max-metric router-lsa summary-lsa 16777214 link all
```

The following command turns off the advertisement of special metric values in all Router, Summary, and External LSAs.

```
device(config)# router ospf
device(config-ospf-router)# no max-metric router-lsa
```

Configuring OSPF shortest path first throttling

To set OSPF shortest path first throttling to the values in the previous example, use the following command.

```
device(config-ospf-router)# timer throttle spf 200 300 2000
```

Syntax: `[no] timer throttle spf initial-delay hold-time max-hold-time`

The `initial-delay` variable sets the initial value for the SPF delay in milliseconds. Possible values are between 0 and 65535 milliseconds.

The `hold-time` variable sets the minimum hold time between SPF calculations after the initial delay. This value will be doubled after hold-time expires until the max-hold-time is reached. Possible values are between 0 and 65535 milliseconds.

The `max-hold-time` variable sets the maximum hold time between SPF calculations Possible values are between 0 and 65535 milliseconds.

NOTE

The hold time values that you specify are rounded up to the next highest 100 ms value. For example, any value between 0 and 99 will be configured as 100 ms.

Command replacement

This command overlaps in functionality with the timer throttle spf command which will be phased out. To use this command to replicate the exact functionality of the `timer throttle spf` command configure it as shown in the following.

```
device(config-ospf-router)# timer throttle spf 1000 5000 5000
```

Displaying OSPF Router Advertisement

Using the `show ip ospf` command you can display the current OSPF Router Advertisement configuration.

```
device# show ip ospf
OSPF Version                          Version 2
Router Id                             10.10.10.10
ASBR Status                           No         (0)
ABR Status                            No
Redistribute Ext Routes from          
External LSA Counter                  5
External LSA Checksum Sum             0002460e
```
Displaying OSPF information

You can use CLI commands and Web management options to display the following OSPF information:

- Trap, area, and interface information
- CPU utilization statistics
- Area information
- Neighbor information
- Interface information
- Route information
- External link state information
- Database Information
- Link state information
- Virtual Neighbor information
- Virtual Link information
- ABR and ASBR information
- Trap state information
- OSPF Point-to-Point Links
- OSPF Graceful Restart information
- OSPF Router Advertisement information

Displaying general OSPF configuration information

To display general OSPF configuration information, enter the following command at any CLI level.

```
device# show ip ospf config
Router OSPF: Enabled
Nonstop Routing: Disabled
Graceful Restart: Disabled
Graceful Restart Helper: Enabled
Graceful Restart Time: 120
Graceful Restart Notify Time: 0
Redistribution: Disabled
Default OSPF Metric: 50
OSPF Auto-cost Reference Bandwidth: Disabled
Default Passive Interface: Enabled
OSPF Redistribution Metric: Type2
OSPF External LSA Limit: 1447047
```
OSPF Database Overflow Interval: 0
RFC 1583 Compatibility: Enabled
Router id: 10.95.11.128
Interface State Change Trap: Enabled
Virtual Interface State Change Trap: Enabled
Neighbor State Change Trap: Enabled
Virtual Neighbor State Change Trap: Enabled
Interface Configuration Error Trap: Enabled
Virtual Interface Configuration Error Trap: Enabled
Interface Authentication Failure Trap: Enabled
Virtual Interface Authentication Failure Trap: Enabled
Interface Receive Bad Packet Trap: Enabled
Virtual Interface Receive Bad Packet Trap: Enabled
Interface Retransmit Packet Trap: Disabled
Virtual Interface Retransmit Packet Trap: Disabled
Originate LSA Trap: Disabled
Originate MaxAge LSA Trap: Disabled
Link State Database Overflow Trap: Disabled
Link State Database Approaching Overflow Trap: Disabled
OSPF Area currently defined:
<table>
<thead>
<tr>
<th>Area-ID</th>
<th>Area-Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>normal</td>
<td>0</td>
</tr>
</tbody>
</table>
OSPF Interfaces currently defined:
Ethernet Interface: 3/1-3/2
 ip ospf md5-authentication-key-activation-wait-time 300
 ip ospf cost 0
 ip ospf area 0
Ethernet Interface: v1
 ip ospf md5-authentication-key-activation-wait-time 300
 ip ospf cost 0
 ip ospf area 0

Syntax: show ip ospf config

The information related to the OSPF interface state is shown in bold text in the previous output.

TABLE 126 show ip ospf config output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router OSPF</td>
<td>Shows whether or not the router OSPF is enabled.</td>
</tr>
<tr>
<td>Nonstop Routing</td>
<td>Shows whether or not the non-stop routing is enabled.</td>
</tr>
<tr>
<td>Graceful Restart</td>
<td>Shows whether or not the graceful restart is enabled.</td>
</tr>
<tr>
<td>Graceful Restart Helper</td>
<td>Shows whether or not the OSPF graceful restart helper mode is enabled.</td>
</tr>
<tr>
<td>Graceful Restart Time</td>
<td>Shows the maximum restart wait time advertised to neighbors.</td>
</tr>
<tr>
<td>Graceful Restart Notify Time</td>
<td>Shows the graceful restart notification time.</td>
</tr>
<tr>
<td>Redistribution</td>
<td>Shows whether or not the redistribution is enabled.</td>
</tr>
<tr>
<td>Default OSPF Metric</td>
<td>Shows the default OSPF metric value.</td>
</tr>
<tr>
<td>OSPF Auto-cost Reference Bandwidth</td>
<td>Shows whether or not the auto-cost reference bandwidth option is enabled.</td>
</tr>
<tr>
<td>Default Passive Interface</td>
<td>Shows whether or not the default passive interface state is enabled.</td>
</tr>
<tr>
<td>OSPF Redistribution Metric</td>
<td>Shows the OSPF redistribution metric type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Type1</td>
</tr>
<tr>
<td></td>
<td>• Type2</td>
</tr>
<tr>
<td>OSPF External LSA Limit</td>
<td>Shows the external LSA limit value.</td>
</tr>
<tr>
<td>OSPF Database Overflow Interval</td>
<td>Shows the database overflow interval value.</td>
</tr>
<tr>
<td>RFC 1583 Compatibility</td>
<td>Shows whether or not the RFC 1583 compatibility is enabled.</td>
</tr>
<tr>
<td>Router id</td>
<td>Shows the ID of the OSPF router.</td>
</tr>
</tbody>
</table>
Displaying CPU utilization and other OSPF tasks

You can display CPU utilization statistics for OSPF and other tasks. To display CPU utilization statistics, enter the following command.

```plaintext
device# show tasks
```

Example

```
<table>
<thead>
<tr>
<th>Task Name</th>
<th>Pri</th>
<th>State</th>
<th>PC</th>
<th>Stack</th>
<th>Size</th>
<th>CPU Usage</th>
<th>task id</th>
<th>task vid</th>
</tr>
</thead>
<tbody>
<tr>
<td>idle</td>
<td>0</td>
<td>ready</td>
<td>00001904</td>
<td>04058fa0</td>
<td>4096</td>
<td>99</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>monitor</td>
<td>20</td>
<td>wait</td>
<td>0000d89c</td>
<td>0404bd80</td>
<td>8192</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>int</td>
<td>16</td>
<td>wait</td>
<td>0000d89c</td>
<td>04053f90</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>timer</td>
<td>15</td>
<td>wait</td>
<td>0000d89c</td>
<td>04057f90</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dbg</td>
<td>30</td>
<td>wait</td>
<td>0000d89c</td>
<td>0404ff08</td>
<td>8192</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>flash</td>
<td>17</td>
<td>wait</td>
<td>0000d89c</td>
<td>040ff9f0</td>
<td>8192</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>wd</td>
<td>31</td>
<td>wait</td>
<td>0000d89c</td>
<td>0409df80</td>
<td>8192</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>boot</td>
<td>17</td>
<td>wait</td>
<td>0000d89c</td>
<td>04203e28</td>
<td>65536</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>main</td>
<td>3</td>
<td>wait</td>
<td>0000d89c</td>
<td>2060cf38</td>
<td>65536</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>itc</td>
<td>6</td>
<td>wait</td>
<td>0000d89c</td>
<td>20612ae8</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tmr</td>
<td>5</td>
<td>wait</td>
<td>0000d89c</td>
<td>20627628</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ip_rx</td>
<td>5</td>
<td>wait</td>
<td>0000d89c</td>
<td>2062ff48</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>scp</td>
<td>5</td>
<td>wait</td>
<td>0000d89c</td>
<td>20635628</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>console</td>
<td>5</td>
<td>wait</td>
<td>0000d89c</td>
<td>2063e618</td>
<td>32768</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>vlan</td>
<td>5</td>
<td>wait</td>
<td>0000d89c</td>
<td>20648618</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>mac_mkr</td>
<td>5</td>
<td>wait</td>
<td>0000d89c</td>
<td>20657628</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>mrt_mkr</td>
<td>5</td>
<td>wait</td>
<td>0000d89c</td>
<td>2065c628</td>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Displaying OSPF information

To display OSPF area information, enter the following command at any CLI level:

```
device# show ip ospf area
```

Syntax: `show ip ospf area [area-id] [num]`

The `area-id` parameter shows information for the specified area.

The `num` parameter identifies the position of the entry number in the area table.
TABLE 128 show ip ospf area output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>The row number of the entry in the router's OSPF area table.</td>
</tr>
<tr>
<td>Area</td>
<td>The area number.</td>
</tr>
</tbody>
</table>
| Type | The area type, which can be one of the following:
 • nssa
 • normal
 • stub |
| Cost | The area's cost. |
| SPFR | The SPFR value. |
| ABR | The ABR number. |
| ASBR | The ABSR number. |
| LSA | The LSA number. |
| Chksum(Hex)| The checksum for the LSA packet. The checksum is based on all the fields in the packet except the age field. The device uses the checksum to verify that the packet is not corrupted. |

Displaying OSPF neighbor information

To display OSPF neighbor information, enter the following command at any CLI level.

```
device# show ip ospf neighbor
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Address</th>
<th>Pri</th>
<th>State</th>
<th>Neigh Address</th>
<th>Neigh ID</th>
<th>Ev</th>
<th>Op</th>
<th>Cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>v10</td>
<td>10.1.10.1</td>
<td>1</td>
<td>FULL/DR</td>
<td>10.1.10.2</td>
<td>10.65.12.1</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v11</td>
<td>10.1.11.1</td>
<td>1</td>
<td>FULL/DR</td>
<td>10.1.11.2</td>
<td>10.65.12.1</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v12</td>
<td>10.1.12.1</td>
<td>1</td>
<td>FULL/DR</td>
<td>10.1.12.2</td>
<td>10.65.12.1</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v13</td>
<td>10.1.13.1</td>
<td>1</td>
<td>FULL/DR</td>
<td>10.1.13.2</td>
<td>10.65.12.1</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v14</td>
<td>10.1.14.1</td>
<td>1</td>
<td>FULL/DR</td>
<td>10.1.14.2</td>
<td>10.65.12.1</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Syntax: `show ip ospf neighbor [router-id ip-addr | num | extensive]`

The `router-id ip-addr` parameter displays only the neighbor entries for the specified router.

The `num` parameter displays only the entry in the specified index position in the neighbor table. For example, if you enter "1", only the first entry in the table is displayed.

The `extensive` option displays detailed information about the neighbor.

TABLE 129 show ip ospf neighbor output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port through which the device is connected to the neighbor.</td>
</tr>
<tr>
<td>Address</td>
<td>The IP address of the port on which this device is connected to the neighbor.</td>
</tr>
</tbody>
</table>
| Pri | The OSPF priority of the neighbor.
 • For multi-access networks, the priority is used during election of the Designated Router (DR) and Backup designated Router (BDR).
 • For point-to-point links, this field shows one of the following values:
 • 1 = point-to-point link
 • 3 = point-to-point link with assigned subnet |
TABLE 129 show ip ospf neighbor output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>The state of the conversation between the device and the neighbor. This field can have one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• Down - The initial state of a neighbor conversation. This value indicates that there has been no recent information received from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• Attempt - This state is only valid for neighbors attached to non-broadcast networks. It indicates that no recent information has been received from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• Init - A Hello packet has recently been seen from the neighbor. However, bidirectional communication has not yet been established with the neighbor. (The router itself did not appear in the neighbor’s Hello packet.) All neighbors in this state (or higher) are listed in the Hello packets sent from the associated interface.</td>
</tr>
<tr>
<td></td>
<td>• 2-Way - Communication between the two routers is bidirectional. This is the most advanced state before beginning adjacency establishment. The Designated Router and Backup Designated Router are selected from the set of neighbors in the 2-Way state or greater.</td>
</tr>
<tr>
<td></td>
<td>• ExStart - The first step in creating an adjacency between the two neighboring routers. The goal of this step is to decide which router is the master, and to decide upon the initial Database Description (DD) sequence number. Neighbor conversations in this state or greater are called adjacencies.</td>
</tr>
<tr>
<td></td>
<td>• Exchange - The router is describing its entire link state database by sending Database Description packets to the neighbor. Each Database Description packet has a DD sequence number, and is explicitly acknowledged. Only one Database Description packet can be outstanding at any time. In this state, Link State Request packets can also be sent asking for the neighbor’s more recent advertisements. All adjacencies in Exchange state or greater are used by the flooding procedure. In fact, these adjacencies are fully capable of transmitting and receiving all types of OSPF routing protocol packets.</td>
</tr>
<tr>
<td></td>
<td>• Loading - Link State Request packets are sent to the neighbor asking for the more recent advertisements that have been discovered (but not yet received) in the Exchange state.</td>
</tr>
<tr>
<td></td>
<td>• Full - The neighboring routers are fully adjacent. These adjacencies will now appear in router links and network link advertisements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neigh Address</th>
<th>The IP address of the neighbor.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For point-to-point links, the value is as follows:</td>
</tr>
<tr>
<td></td>
<td>• If the Pri field is “1”, this value is the IP address of the neighbor router’s interface.</td>
</tr>
<tr>
<td></td>
<td>• If the Pri field is “3”, this is the subnet IP address of the neighbor router’s interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neigh ID</th>
<th>The neighbor router’s ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ev</td>
<td>The number of times the neighbor’s state changed.</td>
</tr>
<tr>
<td>Opt</td>
<td>The sum of the option bits in the Options field of the Hello packet. This information is used by Extreme technical support. Refer to Section A.2 in RFC 2178 for information about the Options field in Hello packets.</td>
</tr>
<tr>
<td>Cnt</td>
<td>The number of LSAs that were retransmitted.</td>
</tr>
</tbody>
</table>
Displaying OSPF interface information

To display OSPF interface information, enter the following command at any CLI level. The details of interface options are highlighted in the output.

```
device# show ip ospf interface ethernet 2/1
eth 2/1 admin up, oper down, ospf enabled, state down
  IP Address 1.1.78.8, Area 1
  Database Filter: Not Configured
  State down, Pri 1, Cost 1, Options ------E-, Type broadcast Events 0
  Timers(sec): Transmit 1, Retrans 5, Hello 10, Dead 40
```

If you specify an interface that is not configured within a specified VRF, then the following error message will display as shown in the example below:

```
device# show ip ospf vrf one interface ethernet 1/1
Error: Interface(eth 1/1) not part of VRF(one)
```

NOTE
You cannot display multiple ports for any interfaces. For example, when displaying OSPF interface information on ethernet 1/1 only one port can displayed at a given time.

Syntax: `show ip ospf [vrf vrf-name] interface [ip-addr] [brief] [ethernet port | loopback number | tunnel number | ve number]`

The `vrf vrf-name` parameter displays information for VRF, or a specific vrf-name.

The `ip-addr` parameter displays the OSPF interface information for the specified IP address.

The `brief` parameter displays interface information in the brief mode.

The `ethernet`, `loopback`, `tunnel`, and `ve` parameters to specify the interface for which to display information. If you specify an Ethernet interface, you can also specify the port number associated with the interface. If you specify a loopback, tunnel, or VE interface, you can also specify the number associated with the interface.

TABLE 130 show ip ospf interface output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The type of interface type and the port number or number of the interface.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the interface.</td>
</tr>
<tr>
<td>Area</td>
<td>The OSPF area configured on the interface</td>
</tr>
<tr>
<td>Database Filter</td>
<td>The router’s configuration for blocking outbound LSAs on an OSPF interface.</td>
</tr>
<tr>
<td></td>
<td>If Not Configured is displayed, there is no outbound LSA filter configured. This is the default condition.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the interface. Possible states include the following:</td>
</tr>
<tr>
<td></td>
<td>- DR - The interface is functioning as the Designated Router for OSPFv2.</td>
</tr>
<tr>
<td></td>
<td>- BDR - The interface is functioning as the Backup Designated Router for OSPFv2.</td>
</tr>
<tr>
<td></td>
<td>- Loopback - The interface is functioning as a loopback interface.</td>
</tr>
<tr>
<td></td>
<td>- P2P - The interface is functioning as a point-to-point interface.</td>
</tr>
<tr>
<td></td>
<td>- Passive - The interface is up but it does not take part in forming an adjacency.</td>
</tr>
<tr>
<td></td>
<td>- Waiting - The interface is trying to determine the identity of the BDR for the network.</td>
</tr>
<tr>
<td></td>
<td>- None - The interface does not take part in the OSPF interface state machine.</td>
</tr>
</tbody>
</table>
TABLE 130 show ip ospf interface output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
</table>
| Down | - The interface is unusable. No protocol traffic can be sent or received on such a interface.
| DR Other | - The interface is a broadcast or NBMA network on which another router is selected to be the DR.
| Active | - The interface sends or receives all the OSPFv2 control packets and forms the adjacency. |
| default | Shows whether or not the default passive state is set. |
| Pri | The interface priority. |
| Cost | The configured output cost for the interface. |
| Options | OSPF Options (Bit7 - Bit0):
| | - unused:1
| | - opaque:1
| | - summary:1
| | - dont_propagate:1
| | - nssa:1
| | - multicast:1
| | - external route capable:1
| | - tos:1 |
| Type | The area type, which can be one of the following:
| | - Broadcast
| | - Point to Point
| | - non-broadcast
| | - Virtual Link |
| Events | OSPF Interface Event:
| | - Interface_Up = 0x00
| | - Wait_Timer = 0x01
| | - Backup_Seen = 0x02
| | - Neighbor_Change = 0x03
| | - Loop_Indication = 0x04
| | - Unloop_Indication = 0x05
| | - Interface_Down = 0x06
| | - Interface_Passive = 0x07 |
| Timer intervals | The interval, in seconds, of the transmit-interval, retransmit-interval, hello-interval, and dead-interval timers. |
| DR | The router ID (IPv4 address) of the DR. |
| BDR | The router ID (IPv4 address) of the BDR. |
| Neighbor Count | The number of neighbors to which the interface is connected. |
| Adjacent Neighbor Count | The number of adjacent neighbor routers. |
| Neighbor: | The IP address of the neighbor. |

Displaying OSPF interface brief information

The following command displays the OSPF database brief information.

```
device# show ip ospf interface brief  
```

```
Number of Interfaces is 1
```
Interface Area IP Addr/Mask Cost State Nbrs(F/C)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Area</th>
<th>IP Addr/Mask</th>
<th>Cost</th>
<th>State</th>
<th>Nbrs(F/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth 1/2</td>
<td></td>
<td>10.1.1.2/24</td>
<td>1</td>
<td>down</td>
<td>0/0</td>
</tr>
</tbody>
</table>

TABLE 131 show ip ospf interface brief output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface through which the router is connected to the neighbor.</td>
</tr>
<tr>
<td>Area</td>
<td>The OSPF Area that the interface is configured in.</td>
</tr>
<tr>
<td>IP Addr/Mask</td>
<td>The IP address and mask of the interface.</td>
</tr>
<tr>
<td>Cost</td>
<td>The configured output cost for the interface.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the conversation between the router and the neighbor. This field can have one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• Down - The initial state of a neighbor conversation. This value indicates that there has been no recent information received from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• Attempt - This state is only valid for neighbors attached to non-broadcast networks. It indicates that no recent information has been received from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• Init - A Hello packet has recently been seen from the neighbor. However, bidirectional communication has not yet been established with the neighbor. (The router itself did not appear in the neighbor’s Hello packet.) All neighbors in this state (or higher) are listed in the Hello packets sent from the associated interface.</td>
</tr>
<tr>
<td></td>
<td>• 2-Way - Communication between the two routers is bidirectional. This is the most advanced state before beginning adjacency establishment. The Designated Router and Backup Designated Router are selected from the set of neighbors in the 2-Way state or greater.</td>
</tr>
<tr>
<td></td>
<td>• ExStart - The first step in creating an adjacency between the two neighboring routers. The goal of this step is to decide which router is the master, and to decide upon the initial Database Description (DD) sequence number. Neighbor conversations in this state or greater are called adjacencies.</td>
</tr>
<tr>
<td></td>
<td>• Exchange - The router is describing its entire link state database by sending Database Description packets to the neighbor. Each Database Description packet has a DD sequence number, and is explicitly acknowledged. Only one Database Description packet can be outstanding at any time. In this state, Link State Request packets can also be sent asking for the neighbor’s more recent advertisements. All adjacencies in Exchange state or greater are used by the flooding procedure. In fact, these adjacencies are fully capable of transmitting and receiving all types of OSPF routing protocol packets.</td>
</tr>
<tr>
<td></td>
<td>• Loading - Link State Request packets are sent to the neighbor asking for the more recent advertisements that have been discovered (but not yet received) in the Exchange state.</td>
</tr>
<tr>
<td></td>
<td>• Full - The neighboring routers are fully adjacent. These adjacencies will now appear in router links and network link advertisements.</td>
</tr>
<tr>
<td>Nbrs(F/C)</td>
<td>The number of adjacent neighbor routers. The number to the left of the “/” are the neighbor routers that are fully adjacent and the number to the right represents all adjacent neighbor routers.</td>
</tr>
</tbody>
</table>
Displaying OSPF route information

To display OSPF route information, enter the following command at any CLI level.

```
device# show ip ospf route
```

OSPF Area Summary Routes 1:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Mask</th>
<th>Path_Cost</th>
<th>Type2_Cost</th>
<th>Path_Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.65.0.0</td>
<td>255.255.0.0</td>
<td>0</td>
<td>0</td>
<td>Inter</td>
</tr>
</tbody>
</table>

Adv_Router

<table>
<thead>
<tr>
<th>Link_State</th>
<th>Dest_Type</th>
<th>State</th>
<th>Tag</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.10.1</td>
<td>Network</td>
<td>Valid</td>
<td>0</td>
<td>0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paths Out Port</th>
<th>Next_Hop</th>
<th>Type</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>DIRECT</td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

OSPF Regular Routes 208:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Mask</th>
<th>Path_Cost</th>
<th>Type2_Cost</th>
<th>Path_Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.10.0</td>
<td>255.255.255.252</td>
<td>1</td>
<td>0</td>
<td>Intra</td>
</tr>
</tbody>
</table>

Adv_Router

<table>
<thead>
<tr>
<th>Link_State</th>
<th>Dest_Type</th>
<th>State</th>
<th>Tag</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.10.1</td>
<td>Network</td>
<td>Valid</td>
<td>0</td>
<td>0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paths Out Port</th>
<th>Next_Hop</th>
<th>Type</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 v10</td>
<td>0.0.0.0</td>
<td>OSPF</td>
<td>00</td>
</tr>
</tbody>
</table>

Syntax: `show ip ospf routes [ip-addr]`

The `ip-addr` parameter specifies a destination IP address. If you use this parameter, only the route entries for that destination are shown.

TABLE 132 show ip ospf routes output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The IP address of the route's destination.</td>
</tr>
<tr>
<td>Mask</td>
<td>The network mask for the route.</td>
</tr>
<tr>
<td>Path_Cost</td>
<td>The cost of this route path. (A route can have multiple paths. Each path represents a different exit port for the device.)</td>
</tr>
<tr>
<td>Type2_Cost</td>
<td>The type 2 cost of this path.</td>
</tr>
<tr>
<td>Path_Type</td>
<td>The type of path, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Inter - The path to the destination passes into another area.</td>
</tr>
<tr>
<td></td>
<td>• Intra - The path to the destination is entirely within the local area.</td>
</tr>
<tr>
<td></td>
<td>• External1 - The path to the destination is a type 1 external route.</td>
</tr>
</tbody>
</table>
TABLE 132 show ip ospf routes output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- External2 - The path to the destination is a type 2 external route.</td>
</tr>
<tr>
<td>Adv_Router</td>
<td>The OSPF router that advertised the route to this device.</td>
</tr>
<tr>
<td>Link-State</td>
<td>The link state from which the route was calculated.</td>
</tr>
<tr>
<td>Dest_Type</td>
<td>The destination type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- ABR - Area Border Router</td>
</tr>
<tr>
<td></td>
<td>- ASBR - Autonomous System Boundary Router</td>
</tr>
<tr>
<td></td>
<td>- Network - the network</td>
</tr>
<tr>
<td>State</td>
<td>The route state, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- Changed</td>
</tr>
<tr>
<td></td>
<td>- Invalid</td>
</tr>
<tr>
<td></td>
<td>- Valid</td>
</tr>
<tr>
<td></td>
<td>This information is used by Extreme technical support.</td>
</tr>
<tr>
<td>Tag</td>
<td>The external route tag.</td>
</tr>
<tr>
<td>Flags</td>
<td>State information for the route entry. This information is used by Extreme technical support.</td>
</tr>
<tr>
<td>Paths</td>
<td>The number of paths to the destination.</td>
</tr>
<tr>
<td>Out_Port</td>
<td>The router port through which the device reaches the next hop for this route path.</td>
</tr>
<tr>
<td>Next_Hop</td>
<td>The IP address of the next-hop router for this path.</td>
</tr>
<tr>
<td>Type</td>
<td>The route type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- OSPF</td>
</tr>
<tr>
<td></td>
<td>- Static Replaced by OSPF</td>
</tr>
<tr>
<td>State</td>
<td>State information for the path. This information is used by Extreme technical support.</td>
</tr>
</tbody>
</table>

Displaying the routes that have been redistributed into OSPF

You can display the routes that have been redistributed into OSPF. To display the redistributed routes, enter the following command at any level of the CLI.

```
device# show ip ospf redistribute route
4.3.0.0 255.255.0.0 static
3.1.0.0 255.255.0.0 static
10.11.61.0 255.255.255.0 connected
4.1.0.0 255.255.0.0 static
```

In this example, four routes have been redistributed. Three of the routes were redistributed from static IP routes and one route was redistributed from a directly connected IP route.

Syntax: show ip ospf redistribute route [ip-addr ip-mask]

The `ip-addr ip-mask` parameter specifies a network prefix and network mask. Here is an example.

```
device# show ip ospf redistribute route 192.213.1.0 255.255.255.254
192.213.1.0 255.255.255.254 fwd 0.0.0.0 (0) metric 10 connected
```
Displaying OSPF database information

The following command displays the OSPF database.

device# show ip ospf database

Graceful Link States

<table>
<thead>
<tr>
<th>Area</th>
<th>Interface</th>
<th>Adv Rtr</th>
<th>Age</th>
<th>Seq(Hex)</th>
<th>Prd</th>
<th>Nbr Intf IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>eth 1/2</td>
<td>10.2.2.2</td>
<td>7</td>
<td>80000001</td>
<td>60</td>
<td>SW 10.1.1.2</td>
</tr>
</tbody>
</table>

Router Link States

<table>
<thead>
<tr>
<th>Index</th>
<th>AreaID</th>
<th>Type</th>
<th>LS ID</th>
<th>Adv Rtr</th>
<th>Seq(Hex)</th>
<th>Age</th>
<th>Cksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Rtr</td>
<td>10.2.2.2</td>
<td>10.2.2.2</td>
<td>80000003</td>
<td>93</td>
<td>0xac6c</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Rtr</td>
<td>10.1.1.1</td>
<td>10.1.1.1</td>
<td>80000005</td>
<td>92</td>
<td>0x699e</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Net</td>
<td>10.1.1.2</td>
<td>10.2.2.2</td>
<td>80000002</td>
<td>93</td>
<td>0xbd73</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>OpAr</td>
<td>10.0.0.3</td>
<td>10.1.1.1</td>
<td>80000005</td>
<td>83</td>
<td>0x48e7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>OpAr</td>
<td>10.0.0.2</td>
<td>10.2.2.2</td>
<td>80000006</td>
<td>80</td>
<td>0x50da</td>
</tr>
<tr>
<td>6</td>
<td>10.111.111.111</td>
<td>Rtr</td>
<td>10.1.1.1</td>
<td>10.1.1.1</td>
<td>80000004</td>
<td>142</td>
<td>0x0a38</td>
</tr>
<tr>
<td>7</td>
<td>10.111.111.111</td>
<td>Summ</td>
<td>10.1.1.1</td>
<td>10.1.1.1</td>
<td>80000001</td>
<td>147</td>
<td>0x292b</td>
</tr>
<tr>
<td>8</td>
<td>10.111.111.111</td>
<td>OpAr</td>
<td>10.0.0.2</td>
<td>10.1.1.1</td>
<td>80000002</td>
<td>179</td>
<td>0x063f</td>
</tr>
</tbody>
</table>

Type-5 AS External Link States

<table>
<thead>
<tr>
<th>Index</th>
<th>AreaID</th>
<th>LS ID</th>
<th>Router</th>
<th>Netmask</th>
<th>Metric</th>
<th>Flag</th>
<th>Fwd Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.9.1.13</td>
<td>10.1.1.1</td>
<td>ffffffff</td>
<td>00000000a</td>
<td>0000</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.9.1.26</td>
<td>10.1.1.1</td>
<td>ffffffff</td>
<td>00000000a</td>
<td>0000</td>
<td>0.0.0.0</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ip ospf database

TABLE 133 show ip ospf database output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>The OSPF area that the interface configured for OSPF graceful restart is in.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface that is configured for OSPF graceful restart.</td>
</tr>
</tbody>
</table>
| Prd | Grace Period: The number of seconds that the router's neighbors should continue to advertise the router as fully adjacent, regardless of the state of database synchronization between the router and its neighbors. Since this time period began when grace-LSA's LS age was equal to 0, the grace period terminates when either:
 * the LS age of the grace-LSA exceeds the value of a Grace Period
 * the grace-LSA is flushed |
| Rsn | Graceful restart reason: The reason for the router restart defined as one of the following:
 * UK – unknown
 * RS – software restart
 * UP – software upgrade or reload
 * SW – switch to redundant control processor |
| Nbr Intf IP | The IP address of the OSPF graceful restart neighbor. |
| Index | ID of the entry. |
| Aging | The age of the LSA in seconds. |
| Area ID | ID of the OSPF area. |
| Type | Link state type of the route. |
| LS ID | The ID of the link-state advertisement from which the router learned this route |
| Adv Rtr | ID of the advertised route. |
| Seq (Hex) | The sequence number of the LSA. The OSPF neighbor that sent the LSA stamps the LSA with a sequence number. This number enables the device
Displaying OSPF external link state information

To display the details of the external link state information for LSA with options, enter the following command at any CLI level. The options are highlighted under the LSA Header.

```plaintext
device# show ip ospf database external-link-state extensive
```

AS-external LSA

<table>
<thead>
<tr>
<th>Index</th>
<th>Age</th>
<th>LS ID</th>
<th>Router</th>
<th>Netmask</th>
<th>Metric</th>
<th>Flag</th>
<th>Forwarding Address</th>
<th>SyncState</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1064</td>
<td>5.1.1.0</td>
<td>21.21.21.21</td>
<td>fffffff00</td>
<td>0000000a</td>
<td>0000 0.0.0.0</td>
<td>Done</td>
<td></td>
</tr>
</tbody>
</table>

LSA Header:
- **age:** 1064,
- **options:** -------E-,
- **seq-nbr:** 0x80000001,
- **length:** 36

NetworkMask: 255.255.255.0

TOS 0:
- **metric_type:** 2,
- **metric:** 10
- **forwarding_address:** 0.0.0.0
- **external_route_tag:** 0

Syntax:
```
show ip ospf [vrf vrf-name] database external-link-state [advertise num | extensive | link-state-id A.B.C.D | router-id A.B.C.D | sequence-number num(Hex)]
```

The **vrf vrf-name** parameter displays information for a VRF, or a specific vrf-name.

The **advertise num** parameter displays the decoded data in the specified LSA packet. The **num** parameter identifies the LSA packet by its position in the router’s External LSA table. To determine an LSA packet’s position in the table, enter the `show ip ospf external-link-state` command to display the table.

The **extensive** option displays the LSAs in the decoded format.

NOTE
You cannot use the **extensive** option in combination with other display options. The entire database is displayed.

The **link-state-id A.B.C.D** parameter displays the External LSAs for the LSA source specified by A.B.C.D (link state ID).

The **router-id A.B.C.D** (advertising router ID) parameter shows the External LSAs for the specified OSPF router.

The **sequence-number num(Hex)** parameter displays the External LSA entries for the specified hexadecimal LSA sequence number.

TABLE 134 show ip ospf database external-link-state output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>ID of the OSPF area.</td>
</tr>
<tr>
<td>Type LS ID</td>
<td>Link state type of the route. The ID of the link-state advertisement.</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>ID of the advertising router.</td>
</tr>
</tbody>
</table>
TABLE 134 show ip ospf database external-link-state output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq(Hex)</td>
<td>The sequence number of the LSA. The OSPF neighbor that sent the LSA stamps the LSA with a sequence number. This number enables the device and other OSPF routers to determine which LSA for a given route is the most recent.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the LSA in seconds.</td>
</tr>
<tr>
<td>Chksum</td>
<td>The checksum for the LSA packet. The checksum is based on all the fields in the packet except the age field. The device uses the checksum to verify that the packet is not corrupted.</td>
</tr>
<tr>
<td>SyncState</td>
<td>This field indicates whether the synchronization is complete or not.</td>
</tr>
</tbody>
</table>

The following tables display the OSPF options, flags, and their abbreviations.

TABLE 135 OSPF option descriptions

<table>
<thead>
<tr>
<th>BIT</th>
<th>Displayed as</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>External route capable</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Multicast</td>
</tr>
<tr>
<td>3</td>
<td>N/P</td>
<td>N-NSSA translation capable (router LSA), P - translate to type-5 LSA.</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>Do not propagate bit.</td>
</tr>
<tr>
<td>5</td>
<td>Dc</td>
<td>Demand Circuit</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>Opaque LSA Capable</td>
</tr>
<tr>
<td>7</td>
<td>Dn</td>
<td>Down Bit</td>
</tr>
</tbody>
</table>

Displaying OSPF database-summary information

To display database-summary information, enter the following command at any CLI level.

```plaintext
device# show ip ospf database database-summary
Area ID    Router Network Sum-Net Sum-ASBR NSSA-Ext Opq-Area Subtotal
0.0.0.0    104    184     19      42       0        0        349
AS External                                                  308
Total      104    184     19      42       0        0        657
```

Syntax: show ip ospf database database-summary

TABLE 136 show ip ospf database database-summary output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>The area number.</td>
</tr>
<tr>
<td>Router</td>
<td>The number of router link state advertisements in that area.</td>
</tr>
<tr>
<td>Network</td>
<td>The number of network link state advertisements in that area.</td>
</tr>
<tr>
<td>Sum-Net</td>
<td>The number of summary link state advertisements in that area.</td>
</tr>
<tr>
<td>Sum-ASBR</td>
<td>The number of summary autonomous system boundary router (ASBR) link state advertisements in that area</td>
</tr>
<tr>
<td>NSSA-Ext</td>
<td>The number of not-so-stubby</td>
</tr>
<tr>
<td>Opq-area</td>
<td>the number of Type-10 (area-scope) Opaque LSA.s</td>
</tr>
</tbody>
</table>
Displaying OSPF database link state information

To display the details of the extensive link state information for LSA with options and flags, enter the following command at any CLI level. The options and flags are highlighted under the LSA Header.

```
device#show ip ospf database link-state extensive
```

Router LSA:
```
Area ID  Type LS ID         Adv Rtr         Seq(Hex) Age  Cksum  SyncState
0       Rtr  21.21.21.21   21.21.21.21   80000006 338  0xcd13 Done
LSA Header: options: -------E-, seq-nbr: 0x80000006, length: 60, flags:-----EB
link id = 31.31.31.31, link data = 106.50.50.10, type = virtual(4)
tos count = 0, tos0_metric = 1
link id = 106.10.10.10, link data = 106.10.10.10, type = transit(2)
tos count = 0, tos0_metric = 1
link id = 106.20.20.10, link data = 106.20.20.10, type = transit(2)
tos count = 0, tos0_metric = 1
```

Network LSA:
```
Area ID  Type LS ID         Adv Rtr         Seq(Hex) Age  Cksum  SyncState
0       Net  106.20.20.10   21.21.21.21   80000002 353  0x6285 Done
LSA Header: options: -------E-, seq-nbr: 0x80000002, length: 32
NetworkMask: 255.255.255.0
attached router: 21.21.21.21
attached router: 11.11.11.11
```

NSSA LSA:
```
Area ID  Type LS ID         Adv Rtr         Seq(Hex) Age  Cksum  SyncState
2       NSSA 2.0.0.0       130.130.130.3 80000001 426  0x780b Done
LSA Header: age: 426, options: -----P---, seq-nbr: 0x80000001, length: 36
NetworkMask: 255.255.255.0
TOS 0: metric_type: 2, metric: 10
forwarding_address: 106.30.30.10
external_route_tag: 0
```

Syntax:
```
```

The *vrf* *vrf-name* parameter displays information for a VRF, or a specific *vrf-name*.

The *advertise* *num* parameter displays the decoded data in the specified LSA packet. The *num* parameter identifies the LSA packet by its position in the router’s LSA table. To determine an LSA packet’s position in the table, enter the **show ip ospf link-state** command to display the table.

The *asbr* option shows ASBR LSAs.

The *extensive* option displays the LSAs in the decoded format.

NOTE

You cannot use the *extensive* option in combination with other display options. The entire database is displayed.

The *link-state-id* *A.B.C.D* parameter displays the LSAs for the LSA source specified by *A.B.C.D* (link state ID).

The *network* option shows network LSAs.

The *nssa* option shows NSSA LSAs.

The *router-id* *A.B.C.D* (advertising router ID) parameter shows the LSAs for the specified OSPF router.

The *sequence-number* *num* parameter displays the LSA entries for the specified hexadecimal LSA sequence number.
The **self-originate** option shows self-originated LSAs.

TABLE 137 show ip ospf database link-state output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>ID of the OSPF area</td>
</tr>
<tr>
<td>Type LS ID</td>
<td>Type and ID of the link state advertisement.</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>ID of the advertising router.</td>
</tr>
<tr>
<td>Seq(Hex)</td>
<td>The sequence number of the LSA. The OSPF neighbor that sent the LSA stamps the LSA with a sequence number. This number enables the device and other OSPF routers to determine which LSA for a given route is the most recent.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the LSA in seconds.</td>
</tr>
<tr>
<td>Cksum</td>
<td>The checksum for the LSA packet. The checksum is based on all the fields in the packet except the age field. The device uses the checksum to verify that the packet is not corrupted.</td>
</tr>
<tr>
<td>SyncState</td>
<td>This field indicates whether the synchronization is complete or not.</td>
</tr>
</tbody>
</table>

The following tables display the OSPF options, flags, and their abbreviations.

TABLE 138 OSPF option descriptions

<table>
<thead>
<tr>
<th>BIT</th>
<th>Displayed as</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>External route capable</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Multicast</td>
</tr>
<tr>
<td>3</td>
<td>N/P</td>
<td>N—NSSA translation capable (router LSA), P - translate to type-5 LSA.</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>Do not propagate bit.</td>
</tr>
<tr>
<td>5</td>
<td>Dc</td>
<td>Demand Circuit</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>Opaque LSA Capable</td>
</tr>
<tr>
<td>7</td>
<td>Dn</td>
<td>Down Bit</td>
</tr>
</tbody>
</table>

TABLE 139 Router LSA flag descriptions

<table>
<thead>
<tr>
<th>BIT</th>
<th>Displayed as</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B</td>
<td>Area Border Router</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>External route capable</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>Virtual Link</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Nt</td>
<td>NSSA translator</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Displaying OSPF ABR and ASBR information

To display OSPF ABR and ASBR information, enter the following command at any CLI level.

```
device# show ip ospf border-routers
```
Syntax: `show ip ospf border-routers [ip-addr]`

The `ip-addr` parameter displays the ABR and ASBR entries for the specified IP address.

```
 device# show ip ospf border-routers
      router ID  router type next hop router  outgoing interface  Area
      10.65.12.1  ABR      10.1.49.2       v49             0
      10.65.12.1  ASBR     10.1.49.2       v49             0
      10.65.12.1  ABR      10.65.2.251      v201            65
      10.65.12.1  ASBR     10.65.2.251      v201            65
```

Syntax: `show ip ospf border-routers`

<table>
<thead>
<tr>
<th>TABLE 140 show ip ospf border-routers output descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field</td>
</tr>
<tr>
<td>(Index)</td>
</tr>
<tr>
<td>Router ID</td>
</tr>
<tr>
<td>Router type</td>
</tr>
<tr>
<td>Next hop router</td>
</tr>
<tr>
<td>Outgoing interface</td>
</tr>
<tr>
<td>Area</td>
</tr>
</tbody>
</table>

Displaying OSPF trap status

All traps are enabled by default when you enable OSPF.

To display the state of each OSPF trap, enter the following command at any CLI level.

```
 device# show ip ospf trap
 Interface State Change Trap: Enabled
  Virtual Interface State Change Trap: Enabled
  Neighbor State Change Trap: Enabled
  Virtual Neighbor State Change Trap: Enabled
  Interface Configuration Error Trap: Enabled
  Virtual Interface Configuration Error Trap: Enabled
  Interface Authentication Failure Trap: Enabled
  Virtual Interface Authentication Failure Trap: Enabled
  Interface Receive Bad Packet Trap: Enabled
  Virtual Interface Receive Bad Packet Trap: Enabled
  Interface Retransmit Packet Trap: Disabled
  Virtual Interface Retransmit Packet Trap: Disabled
  Originate LSA Trap: Disabled
  Originate MaxAge LSA Trap: Disabled
  Link State Database Overflow Trap: Disabled
  Link State Database Approaching Overflow Trap: Disabled
```

Syntax: `show ip ospf trap`

Viewing Configured OSPF point-to-point links

You can use the `show ip ospf interface` command to display OSPF point-to-point information. Enter the following command at any CLI level.

```
 device# show ip ospf interface 192.168.1.1
 Ethernet 2/1,OSPF enabled
 IP Address 192.168.1.1, Area 0
 OSPF state ptr2ptr, Pri 1, Cost 1, Options 2, Type pt-2-pt Events 1
 Timers(sec): Transit 1, Retrans 5, Hello 10, Dead 40
 DR: Router ID 0.0.0.0 Interface Address 0.0.0.0
 BDR: Router ID 0.0.0.0 Interface Address 0.0.0.0
```
Neighbor Count = 0, Adjacent Neighbor Count= 1
Neighbor: 2.2.2.2
Authentication-Key:None
MD5 Authentication: Key None, Key-Id None, Auth-change-wait-time 300

Syntax: show ip ospf interface [ip-addr]
The ip-addr parameter displays the OSPF interface information for the specified IP address.

TABLE 141 show ip ospf interfaceoutput descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the interface.</td>
</tr>
<tr>
<td>OSPF state</td>
<td>The OSPF state of the interface.</td>
</tr>
<tr>
<td>Pri</td>
<td>The router priority.</td>
</tr>
<tr>
<td>Cost</td>
<td>The configured output cost for the interface.</td>
</tr>
</tbody>
</table>
| Options | OSPF Options (Bit7 - Bit0):
| | • unused:1 |
| | • opaque:1 |
| | • summary:1 |
| | • dont_propagate:1 |
| | • nssa:1 |
| | • multicast:1 |
| | • externals:1 |
| | • tos:1 |
| Type | The area type, which can be one of the following: |
| | • Broadcast = 0x01 |
| | • NBMA = 0x02 |
| | • Point to Point = 0x03 |
| | • Virtual Link = 0x04 |
| | • Point to Multipoint = 0x05 |
| Events | OSPF Interface Event:
| | • Interface_Up = 0x00 |
| | • Wait_Timer = 0x01 |
| | • Backup_Seen = 0x02 |
| | • Neighbor_Change = 0x03 |
| | • Loop_Indication = 0x04 |
| | • Unloop_Indication = 0x05 |
| | • Interface_Down = 0x06 |
| | • Interface_Passive = 0x07 |

Adjacent Neighbor Count
The number of adjacent neighbor routers.

Neighbor:
The IP address of the neighbor.

Displaying OSPF virtual neighbor and link information

You can display OSPF virtual neighbor and virtual link information.

You can display OSPF virtual neighbor and virtual link information. The show run output shows the configuration in the example.

 device# show run
 Current configuration:
 !
 ver V2.2.1T143
module 1 rx-bi-1g-24-port-fiber
module 2 rx-bi-10g-4-port
module 6 rx-bi-10g-4-port
module 7 rx-bi-1g-24-port-copper

no spanning-tree

! vlan 1 name DEFAULT-VLAN

! clock summer-time
clock timezone us Pacific
hostname R11-RX8
router ospf
area 2
area 1
area 1 virtual-link 10.1.1.10

FIGURE 59 OSPF virtual neighbor and virtual link example
Displaying OSPF virtual neighbor

Use the `show ip ospf virtual neighbor` command to display OSPF virtual neighbor information.

```
device# show ip ospf virtual neighbor
Index Transit Area    Router ID      Neighbor address options
1    1               131.1.1.10     135.14.1.10       2
Port    Address         state   events          count
6/2     27.11.1.27      FULL    5               0
```

Syntax: `show ip ospf virtual neighbor [num]`

The `num` parameter displays the table beginning at the specified entry number.

Displaying OSPF virtual link information

Use the `show ip ospf virtual link` command to display OSPF virtual link information.

```
device# show ip ospf virtual link
Index Transit Area     Router ID        Transit(sec) Retrans(sec) Hello(sec)
1    1                131.1.1.10       1            5            10
Dead(sec)        events           state        Authentication-Key
40               1                ptr2ptr      None
MD5 Authentication-Key:       None
MD5 Authentication-Key-ID:    None
MD5 Authentication-Key-Activation-Wait-Time:      300
```

Syntax: `show ip ospf virtual link [num]`

The `num` parameter displays the table beginning at the specified entry number.

Clearing OSPF neighbors

You can clear all OSPF neighbors or a specified OSPF neighbor using the following command.

```
device# clear ip ospf neighbor all
```

Syntax: `clear ip ospf neighbor {all | ip-address}`

Selecting the `all` option clears all of the OSPF neighbors on the router.

The `ip-address` variable allows you to clear a specific OSPF neighbor.

Displaying OSPF Graceful Restart information

To display OSPF Graceful Restart information for OSPF neighbors use the `show ip ospf neighbors` command as shown in the following.

```
device# show ip ospf neighbors
Port  Address       Pri State       Neigh Address  Neigh ID      Ev Opt Cnt
2/7   50.50.50.10   0   FULL/OTHER  50.50.50.1     10.10.10.30   21 66  0
< in graceful restart state, helping 1, timer 60 sec >
```

Use the following command to display Type 9 Graceful LSAs on a router.

```
device# show ip ospf database grace-link-state
Graceful Link States
Area  Interface  Adv Rtr  Age Seq(Hex) Prd Rsn  Nbr Intf IP
0     eth 1/2    2.2.2.2    7     80000001 60     SW   6.1.1.2
```

To display Type 9 Graceful LSAs on a router.
TABLE 142 show ip ospf database grace-link-state output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>The OSPF area that the interface configured for OSPF graceful restart is in.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface that is configured for OSPF graceful restart.</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>ID of the advertised route.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the LSA in seconds.</td>
</tr>
<tr>
<td>Seq (Hex)</td>
<td>The sequence number of the LSA. The OSPF neighbor that sent the LSA stamps the LSA with a sequence number. This number enables the device and other OSPF routers to determine which LSA for a given route is the most recent.</td>
</tr>
</tbody>
</table>
| Prd | Grace Period: The number of seconds that the router's neighbors should continue to advertise the router as fully adjacent, regardless of the state of database synchronization between the router and its neighbors. Since this time period began when grace-LSA's LS age was equal to 0, the grace period terminates when either:
 • the LS age of the grace-LSA exceeds the value of a Grace Period
 • the grace-LSA is flushed. |
| Rsn | Graceful restart reason: The reason for the router restart defined as one of the following:
 • UK - unknown
 • RS - software restart
 • UP - software upgrade or reload
 • SW - switch to redundant control processor |
| Nbr Intf IP | The IP address of the OSPF graceful restart neighbor. |

Displaying OSPF Router Advertisement information

Using the `show ip ospf` command you can display the current OSPF Router Advertisement configuration. The text show below in bold is displayed for an OSPF Router Advertisement configuration.

```
device# show ip ospf
OSPF Version                          Version 2
Router Id                             10.10.10.10
ASBR Status                           No
ABR Status                            No         (0)
Redistribute Ext Routes from          
External LSA Counter                  5
External LSA Checksum Sum             0002460e
Originate New LSA Counter             5
Rx New LSA Counter                    8
External LSA Limit                    14447047
Database Overflow Interval            0
Database Overflow State :            NOT OVERFLOWED
RFC 1583 Compatibility :              Enabled
Originating router-LSAs with maximum metric
  Condition: Always Current State: Active
Link Type: PTP STUB TRANSIT
Additional LSAs originated with maximum metric:
  LSA Type       Metric Value
  AS-External    16711680
  Type 3 Summary 16711680
  Type 4 Summary 16711680
  Opaque-TE     4294967295
```
Displaying the OSPF area translator status information

Run the `show ip ospf area` command at the OSPF router level, to display the status of the area translator.

```
device (config)# router ospf
device (config-ospf-router)# show ip ospf area
```

Number of Areas is 3, NSSA area 2

<table>
<thead>
<tr>
<th>Indx</th>
<th>Area</th>
<th>Type</th>
<th>Cost</th>
<th>SPFR</th>
<th>ABR</th>
<th>ASBR</th>
<th>LSA</th>
<th>Chksum (Hex)</th>
<th>Translator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>nssa</td>
<td>1</td>
<td>56</td>
<td>1</td>
<td>1</td>
<td>10802</td>
<td>153598b6</td>
<td>Candidate</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>normal</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0001a1f0</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>nssa</td>
<td>7</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>798</td>
<td>018c972d</td>
<td>Elected</td>
</tr>
</tbody>
</table>

TABLE 143 show ip ospf area output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indx</td>
<td>The row number of the entry in the router's OSPF area table.</td>
</tr>
<tr>
<td>Area</td>
<td>The area number.</td>
</tr>
<tr>
<td>Type</td>
<td>The area type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• nssa</td>
</tr>
<tr>
<td></td>
<td>• normal</td>
</tr>
<tr>
<td></td>
<td>• stub</td>
</tr>
<tr>
<td>Cost</td>
<td>The area's cost.</td>
</tr>
<tr>
<td>SPFR</td>
<td>The SPFR value. Number of times the SPF has run for this area.</td>
</tr>
<tr>
<td>ABR</td>
<td>The ABR number.</td>
</tr>
<tr>
<td>ASBR</td>
<td>The ASBR number.</td>
</tr>
<tr>
<td>LSA</td>
<td>The LSA number.</td>
</tr>
<tr>
<td>Chksum (hex)</td>
<td>The checksum for the LSA packet. The checksum is based on all the fields in the packet except the age field. The device uses the checksum to verify that the packet is not corrupted.</td>
</tr>
<tr>
<td>Translator</td>
<td>The translator role. The types of translator roles are:</td>
</tr>
<tr>
<td></td>
<td>• Candidate</td>
</tr>
<tr>
<td></td>
<td>• Elected</td>
</tr>
</tbody>
</table>

Clearing OSPF information

You can use the `clear ip ospf` commands to clear OSPF data on a router as described in the following:

- Neighbor information
- Reset the OSPF process
- Clear and re-add OSPF routes

Clearing OSPF neighbors

You can use the following command to delete and relearn all OSPF neighbors, all OSPF neighbors for a specified interface or a specified OSPF neighbor.

```
device# clear ip ospf neighbor all
```

Syntax: `clear ip ospf [vrf vrf-name] neighbor all [interface] | interface | ip-address [interface]`

Selecting the `all` option without specifying an interface clears all of the OSPF neighbors on the router.
The `interface` variable specifies the interface that you want to clear all of the OSPF neighbors on. The following types of interfaces can be specified:

- `ethernet unit/slot/port`
- `tunnel tunnel-ID`
- `ve ve-ID`

The `ip-address` variable allows you to clear a specific OSPF neighbor.

Disabling and re-enabling the OSPF process

You can use the following command to disable and re-enable the OSPF process on a router.

```bash
device# clear ip ospf all
```

Syntax: `clear ip ospf [vrf vrf-name] all`

This command resets the OSPF process and brings it back up after releasing all memory used while retaining all configurations.

Clearing OSPF routes

You can use the following command to clear all OSPF routes or to clear a specific OSPF route.

```bash
device# clear ip ospf routes all
```

Syntax: `clear ip ospf [vrf vrf-name] routes {all | ip-address/prefix-length}`

Selecting the `all` option resets the OSPF routes including external routes, and OSPF internal routes.

The `ip-address` and `prefix-length` variables specify a particular route to delete and then reschedules the SPF calculation.
Open Shortest Path First (OSPF) is a link-state routing protocol. OSPF uses link-state advertisements (LSAs) to update neighboring routers about its interfaces and information on those interfaces. A device floods LSAs to all neighboring routers to update them about the interfaces. Each router maintains an identical database that describes its area topology to help a router determine the shortest path between it and any neighboring router.

IPv6 supports OSPF Version 3 (OSPFv3), which functions similarly to OSPFv2, the version that IPv4 supports, except for the following enhancements:

- Support for IPv6 addresses and prefixes.
- Ability to configure several IPv6 addresses on a device interface. (While OSPFv2 runs per IP subnet, OSPFv3 runs per link. In general, you can configure several IPv6 addresses on a router interface, but OSPFv3 forms one adjacency per interface only, using the interface associated link-local address as the source for OSPF protocol packets. On virtual links, OSPFv3 uses the global IP address as the source. OSPFv3 imports all or none of the address prefixes configured on a router interface. You cannot select the addresses to import.)
- Ability to run one instance of OSPFv2 and one instance of OSPFv3 concurrently on a link.
- Support for IPv6 link-state advertisements (LSAs).

NOTE
Although OSPFv2 and OSPFv3 function in a similar manner, Extreme has implemented the user interface for each version independently of the other. Therefore, any configuration of OSPFv2 features will not affect the configuration of OSPFv3 features and vice versa.

Communication among OSPFv3 areas is provided by means of link-state advertisements (LSAs). OSPFv3 supports a number of types of LSAs:

- Router LSAs (Type 1)
- Network LSAs (Type 2)
- Interarea-prefix LSAs for ABRs (Type 3)
- Interarea-router LSAs for ASBRs (Type 4)
- Autonomous system External LSAs (Type 5)
- Group Membership LSAs (Type 6)
- NSSA External LSAs (Type 7)
- Link LSAs (Type 8)
Intra-area-prefix LSAs (Type 9)

For more information about these LSAs, refer to RFC 5340.

Configuring OSPFv3

To configure OSPFv3, you must perform the following steps.

- Enable OSPFv3 globally.
- Assign OSPFv3 areas.
- Assign device interfaces to an OSPF area.

The following configuration tasks are optional:

- Configure a virtual link between an Area Border Router (ABR) without a physical connection to a backbone area and the device in the same area with a physical connection to the backbone area.
- Change the reference bandwidth for the cost on OSPFv3 interfaces.
- Configure the redistribution of routes into OSPFv3.
- Configure default route origination.
- Modify the shortest path first (SPF) timers.
- Modify the administrative distances for OSPFv3 routes.
- Configure the OSPFv3 LSA pacing interval.
- Modify how often the Extreme device checks on the elimination of the database overflow condition.
- Modify the external link state database limit.
- Modify the default values of OSPFv3 parameters for device interfaces.
- Disable or re-enable OSPFv3 event logging.
- Set all the OSPFv3 interfaces to the passive state.

Enabling OSPFv3

Before enabling the device to run OSPFv3, you must perform the following steps.

- Enable the forwarding of IPv6 traffic on the device using the ipv6 unicast-routing command.
- Enable IPv6 on each interface over which you plan to enable OSPFv3. You enable IPv6 on an interface by configuring an IPv6 address or explicitly enabling IPv6 on that interface.

By default, OSPFv3 is disabled. To enable OSPFv3 for a default Virtual Routing and Forwarding (VRF), you must enable it globally.

To enable OSPFv3 globally, enter the following command.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)#
```

After you enter this command, the Extreme device enters the IPv6 OSPF configuration level, where you can access several commands that allow you to configure OSPFv3.
Enabling OSPFv3 in a VRF

To enable OSPFv3 for a default Virtual Routing and Forwarding (VRF), enter a command such as the following.

```
device(config-ospf6-router)# ipv6 router ospf vrf red
```

Syntax: `[no] ipv6 router ospf vrf vrf-name`

The `vrf-name` parameter specifies the name of the VRF in which OSPFv3 is being initiated.

Disabling OSPFv3 in a VRF

To disable OSPFv3 for a default Virtual Routing and Forwarding (VRF), enter a command such as the following.

```
device(config-ospf6-router)# no ipv6 router ospf vrf red
```

Syntax: `[no] ipv6 router ospf vrf vrf-name`

The `vrf-name` parameter specifies the name of the VRF in which OSPFv3 is being initiated.

If you disable OSPFv3, the device removes all the configuration information for the disabled protocol from the running-configuration file. Moreover, when you save the configuration to the startup-config file after disabling one of these protocols, all the configuration information for the disabled protocol is removed from the startup-config file.

When you disable OSPFv3, the following warning message is displayed on the console.

```
device(config-ospf6-router)# no ipv6 router ospf
ipv6 router ospf mode now disabled. All ospf config data will be lost when writing to flash!
```

If you have disabled the protocol but have not yet saved the configuration to the startup-config file and reloaded the software, you can restore the configuration information by re-entering the command to enable the protocol (for example, `ipv6 router ospf`). If you have already saved the configuration to the startup-config file and reloaded the software, the configuration information is gone. If you are testing an OSPF configuration and are likely to disable and re-enable the protocol, you should make a backup copy of the startup-config file containing the protocol configuration information. This way, if you remove the configuration information by saving the configuration after disabling the protocol, you can restore the configuration by copying the backup copy of the startup-config file onto the flash memory.

NOTE

All the configuration examples below are applicable for OSPFv3 configuration mode in VRFs as well.

Assigning OSPFv3 areas

After OSPFv3 is enabled, you can assign OSPFv3 areas. You can assign an IPv4 address or a number as the area ID for each area. The area ID is representative of all IPv4 addresses (subnets) on a device interface. Each device interface can support one area.

An area can be normal, a stub, or a Not-So-Stubby Area (NSSA):

- Normal - OSPFv3 devices within a normal area can send and receive External Link State Advertisements (LSAs).
- Stub - OSPFv3 devices within a stub area cannot send or receive External LSAs. In addition, OSPF devices in a stub area must use a default route to the area's Area Border Router (ABR) or Autonomous System Boundary Router (ASBR) to send traffic out of the area.
- NSSA - The ASBR of an NSSA can import external route information into the area.
 - ASBRs redistribute (import) external routes into the NSSA as type 7 LSAs. Type-7 External LSAs are a special type of LSA generated only by ASBRs within an NSSA, and are flooded to all the routers within only that NSSA.
ABRs translate type 7 LSAs into type 5 External LSAs, which can then be flooded throughout the AS. You can configure address ranges on the ABR of an NSSA so that the ABR converts multiple type-7 External LSAs received from the NSSA into a single type-5 External LSA.

When an NSSA contains more than one ABR, OSPFv3 elects one of the ABRs to perform the LSA translation for NSSA. OSPF elects the ABR with the highest router ID. If the elected ABR becomes unavailable, OSPFv3 automatically elects the ABR with the next highest router ID to take over translation of LSAs for the NSSA. The election process for NSSA ABRs is automatic.

For example, to set up OSPFv3 areas 2001:db8::32, 2001:db8::32, 2001:db8::15, and 2001:db8:64, enter the following commands.

```plaintext
device(config-ospf6-router)# area 2001:db8::32
device(config-ospf6-router)# area 2001:db8::32
device(config-ospf6-router)# area 2001:db8::15
device(config-ospf6-router)# area 2001:db8::64
```

Syntax: [no] area {number | ipv4-address}

The `number` and `ipv4-address` parameters specify the area number, which can be a number or in IPv4 address format.

NOTE
You can assign only one area on a device interface.

Assigning a totally stubby area

By default, the device sends summary LSAs (type 3 LSAs) into stub areas. You can reduce the number of LSAs sent into a stub area by configuring the device to stop sending summary LSAs into the area. You can disable the summary LSAs when you are configuring the stub area or later after you have configured the area.

This feature disables origination of summary LSAs into a stub area, but the device still accepts summary LSAs from OSPF neighbors and floods them to other areas. The device can form adjacencies with other routers regardless of whether summarization is enabled or disabled for areas on each router.

When you disable the summary LSAs, the change takes effect immediately. If you apply the option to a previously configured area, the device flushes all of the summary LSAs it has generated (as an ABR) from the area.

NOTE
This feature applies only when the Extreme device is configured as an Area Border Router (ABR) for the area. To completely prevent summary LSAs from being sent to the area, disable the summary LSAs on each OSPF router that is an ABR for the area.

For example, to disable summary LSAs for stub area 40 and specify an additional metric of 99, enter the following command.

```plaintext
device(config-ospf6-router)# area 40 stub 99 no-summary
```

Syntax: [no] area {number | ipv4-address} stub metric [no-summary]

The `number` and `ipv4-address` parameters specify the area number, which can be a number or in IPv4 address format. If you specify a number, the number can be from 0 through 2,147,483,647.

The `stub metric` parameter specifies an additional cost for using a route to or from this area and can be from 1 through 16777215.

There is no default. Normal areas do not use the cost parameter.

The `no-summary` parameter applies only to stub areas and disables summary LSAs from being sent into the area.
Assign a Not-So-Stubby Area (NSSA)

The OSPF Not So Stubby Area (NSSA) feature enables you to configure OSPF areas that provide the benefits of stub areas, but that also are capable of importing external route information. OSPF does not flood external routes from other areas into an NSSA, but does translate and flood route information from the NSSA into other areas such as the backbone.

NSSAs are especially useful when you want to summarize Type-5 External LSAs (external routes) before forwarding them into an OSPF area. The OSPF specification (RFC 2328) prohibits summarization of Type-5 LSAs and requires OSPF to flood Type-5 LSAs throughout a routing domain. When you configure an NSSA, you can specify an address range for aggregating the external routes that the NSSAs ABR exports into other areas.

Since the NSSA is partially “stubby” the ABR does not flood external LSAs from the backbone into the NSSA. To provide access to the rest of the Autonomous System (AS), the ABR generates a default Type-7 LSA into the NSSA.

Configuring an NSSA

Using the `area nssa` command, you can block the generation of type-3 and type-7 LSAs into an NSSA. This command also provides an option to configure the NSSA translator role.

Configuration examples

The following example creates an NSSA area with an area-id 100. If the router is an ABR then a type-3 summary LSA will be originated into the NSSA area and if the router is an ASBR then type-7 NSSA external LSA will be generated into NSSA area with a default external metric value of 10. The routers NSSA translator role will be set to candidate and it will participate in NSSA translation election.

```
device(config-ospf6-router)# area 100 nssa
```

The following example modifies the NSSA area 100 wherein type-7 NSSA external LSA will not be originated into NSSA area. But the type-3 summary LSAs will still be originated into NSSA area.

```
device(config-ospf6-router)# area 100 nssa no-redistribution
```

The following example modifies the NSSA area 100 wherein origination of type-3 summary LSAs (apart from type-3 default summary) will be blocked into NSSA area. The CLI works in incremental fashion and the origination of type-7 LSA will be continued to be blocked as ‘no-redistribution’ option was enabled in the previous command.

```
device(config-ospf6-router)# area 100 nssa no-summary
```

The following example modifies the NSSA area 100 wherein origination of the self-router acts as NSSA translator. The generation of type-3 & type-7 LSA will still be blocked into NSSA area.

```
device(config-ospf6-router)# area 100 nssa translator-always
```

The following example modifies the NSSA area 100 wherein origination of type-3 summary will be allowed, but origination of type-7 LSA will still be blocked. Also the self-router will still act as NSSA translator-always.

```
device(config-ospf6-router)# no area 100 nssa no-summary
```

Although the NSSA configuration can be done in an incremental fashion during show-run, all the configuration options will be displayed in just one line. For example, the output of the `show run` would be:

```
device(config-ospf6-router)# area 100 nssa no-redistribution translator-always
```

The following example deletes the NSSA area 100.

```
device(config-ospf6-router)# no area 100
```

Syntax:

```
[no] area area-id nssa [[stub-metric] [default-information-originate [metric metric-value [metric-type type-value]]] [no-summary] [no-redistribution] [translator-always] [translator-interval stability-interval]]
```
The *area-id* parameter specifies the area number, which can be a number or in IP address format. If you specify a number, the number can be from 0 to 2,147,483,647.

The *nsa stub-metric* parameter configures an area as a not-so-stubby-area (NSSA). The *stub-metric* will be the metric used for generating default LSA in a NSSA. The range of the value is 1 to 1048575. The default value is 10.

The *default-information-originate* parameter generates a default route into an NSSA. If no-summary option is enabled then a type-3 default LSA will be generated into NSSA else a type-7 LSA will be generated into NSSA. By default the *default-information-originate* parameter is not set.

The *metric metric-value* parameter specifies the cost of the default LSA originated into the NSSA area. The range is 1 to 1048575. There is no default

The *metric-type type-value* parameter specifies the type of the default external LSA originated into the NSSA area. It can be either type-1 or type-2. The default is type-1.

The *no-summary* parameter prevents an NSSA ABR from generating a type-3 summary into an NSSA. By default the summary LSA is originated into NSSA.

The *no-redistribution* parameter prevents an NSSA ABR from generating external (type-7) LSA into an NSSA area. This is used in the case where an ASBR should generate type-5 LSA into normal areas and should not generate type-7 LSA into NSSA area. By default, redistribution is enabled in a NSSA.

The *translator-always* parameter configures the translator-role. When configured on an ABR, this causes the router to unconditionally assume the role of an NSSA translator. By default, translator-always is not set, the translator role by default is candidate.

The *translator-interval* parameter configures the time interval for which an elected NSSA translator continues to perform its duties even after its NSSA translator role has been disposed by another router. By default the stability-interval is 40 seconds and its range will be 10 to 60 seconds.

Disabling the router to perform translations for NSSA LSAs

The *nsa-translator* command allows you to disable the router from performing translations for NSSA LSAs. When this command is used, type 7 NSSA external LSAs are not translated into type 5 external LSAs. This command is useful when the router is an area border router with many NSSA areas, and does not need to export the NSSA external routes into the backbone.

```console
device(config)# router ospf
device(config-ospf6-router)# no nssa-translator
```

Syntax: [no] nssa-translator

Configuring an address range for the NSSA

If you want the ABR that connects the NSSA to other areas to summarize the routes in the NSSA before translating them into Type-5 LSAs and flooding them into the other areas, configure an address range. The ABR creates an aggregate value based on the address range. The aggregate value becomes the address that the ABR advertises instead of advertising the individual addresses represented by the aggregate. You can configure up to 32 ranges in an OSPF area.

To configure an address range in NSSA 10.1.1.1, enter the following commands. This example assumes that you have already configured NSSA 10.1.1.1.

```console
device(config)# router ospf
device(config-ospf6-router)# area 10.1.1.1 range 11:11::0/32 //ipv6 address range
device(config-ospf6-router)# write memory
```

Syntax: [no] area {num | ip-addr} {range ipv6-addr/ipv6-subnet-mask} [advertise | not-advertise]
The `num` and `ip-addr` parameters specify the area number, which can be in IP address format. If you specify a number, the number can be from 0 - 2,147,483,647.

The `range ipv6-addr` parameter specifies the IP address portion of the range. The software compares the address with the significant bits in the mask. All network addresses that match this comparison are summarized in a single route advertised by the router.

The `ipv6-subnet-mask` parameter specifies the portions of the IPv6 address that a route must contain to be summarized in the summary route. In the example above, all networks that begin with 11:11::0 are summarized into a single route.

The `advertise` and `not-advertise` parameters specify whether you want the device to send type 3 LSAs for the specified range in this area. The default is `advertise`.

Assigning an area cost for OSPFv3 (optional parameter)

You can assign a cost for an area, but it is not required. To consolidate and summarize routes at an area boundary, use the `area range cost` command in router configuration mode.

If the `cost` parameter is specified, it will be used (overriding the computed cost) to generate the summary LSA. If the `cost` parameter is not specified, then the existing range metric computation max or min cost of routes falling under this range will be used to generate summary LSA.

NOTE

The area should be already configured before using this command.

Creates an area range entry with prefix 2001:db8::1/64 with the area-id 10.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# area 10 range 2001:db8::1/64
```

Modifies the address range status to DoNotAdvertise. Neither the individual intra-area routes falling under range nor the ranged prefix is advertised as summary LSA.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# area 10 range 2001:db8::1/64 not-advertise
```

Modifies the address range status to advertise and a Type 3 summary link-state advertisement (LSA) can be generated for this address range.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# area 10 range 2001:db8::1/64 advertise
```

Modifies the address range status to advertise and assign cost for this area range to 10.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# area 10 range 2001:db8::1/64 advertise cost 10
```

Modifies the address range status to not-advertise and cost from 10 to 5.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# area 10 range 2001:db8::1/64 not-advertise cost 5
```

Removes the cost from the area range. The area range will be advertised with computed cost which is the max/min (based on RFC 1583 compatibility) of all individual intra-area routes falling under this range.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# no area 10 range 2001:db8::1/64 cost 5
```
Removes the area range.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# no area 10 range 2001:db8::1/64
```

NOTE

This command does not work in incremental fashion. So both the optional parameters have to be configured each time. Otherwise it will take the default value.

Syntax: [no] area [num | ipv6-addr] range ipv6-addr/ipv6-subnet-mask [advertise | not-advertise] [cost cost-value]

The `num` and `ipv6-addr` parameters specify the area number, which can be in IP address format.

The `range` parameter specifies the IP address portion of the range. The software compares the address with the significant bits in the mask. All network addresses that match this comparison are summarized in a single route advertised by the router.

The `ipv6-subnet-mask` parameter specifies the portions of the IPv6 address that a route must contain to be summarized in the summary route. In the example above, all networks that begin with 193.45 are summarized into a single route.

The `advertise` parameter sets the address range status to advertise and generates a Type 3 summary link-state advertisement (LSA). If at least a single route falls under the range, a ranged LSA will be advertised.

The `not-advertise` parameter sets the address range status to DoNotAdvertise. Neither the individual intra-area routes falling under range nor the ranged prefix is advertised as summary LSA.

The `cost` parameter specifies the cost-value to be used while generating type-3 summary LSA. If the cost value is configured, then configured cost is used while generating the summary LSA. If the cost value is not configured, then computed range cost will be used. The cost-value ranges from 1 to 16777215.

To disable this function, use the `no` form of this command.

Assigning interfaces to an area

After you define OSPFv3 areas, you must assign device interfaces to the areas. All device interfaces must be assigned to one of the defined areas on an OSPF router. When an interface is assigned to an area, all corresponding subnets on that interface are automatically included in the assignment.

For example, to assign Ethernet interface 3/1 to area 10.5.0.0, enter the following commands.

```
device(config)# interface Ethernet 3/1
device(config-if-e100-3/1)# ipv6 ospf area 10.5.0.0
```

Syntax: [no] ipv6 ospf area {number | ipv4-address}

The `number` and `ipv4-address` parameters specify the area number, which can be a number or in IPv4 address format. If you specify a number, the number can be from 0 through 2,147,483,647.

To remove the interface from the specified area, use the `no` form of this command.

Specifying a network type

You can specify a point-to-point or broadcast network type for any OSPF interface of the following types: Ethernet, GRE, or VE interface. To specify the network type for an OSPF interface, use the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 ospf network broadcast
```

Syntax: [no] ipv6 ospf network {point-to-point | broadcast}
The **point-to-point** parameter specifies that the OSPF interface will support point-to-point networking. This is the default setting for GRE and tunnel interfaces.

The **broadcast** parameter specifies that the OSPF interface will support broadcast networking. This is the default setting for Ethernet and VE interfaces.

The no form of the command disables the command configuration.

Configuring virtual links

All ABRs must have either a direct or indirect link to an OSPF backbone area (0.0.0.0 or 0). If an ABR does not have a physical link to a backbone area, you can configure a virtual link from the ABR to another router within the same area that has a physical connection to the backbone area.

The path for a virtual link is through an area shared by the neighbor ABR (router with a physical backbone connection) and the ABR requiring a logical connection to the backbone.

Two parameters must be defined for all virtual links -- transit area ID and neighbor router:

- The transit area ID represents the shared area of the two ABRs and serves as the connection point between the two routers. This number should match the area ID value.
- The neighbor router is the router ID (IPv4 address) of the router that is physically connected to the backbone when assigned from the router interface requiring a logical connection. The neighbor router is the router ID (IPv4 address) of the router requiring a logical connection to the backbone when assigned from the router interface with the physical connection.

NOTE

By default, the router ID is the IPv4 address configured on the lowest-numbered loopback interface. If the device does not have a loopback interface, the default router ID is the lowest-numbered IPv4 address configured on the device.

When you establish an area virtual link, you must configure it on both ends of the virtual link. For example, imagine that ABR1 in areas 1 and 2 is cut off from the backbone area (area 0). To provide backbone access to ABR1, you can add a virtual link between ABR1 and ABR2 in area 1 using area 1 as a transit area. To configure the virtual link, you define the link on the router that is at each end of the link. No configuration for the virtual link is required on the routers in the transit area.

To define the virtual link on ABR1, enter the following command on ABR1.

```
device(config-ospf6-router)# area 1 virtual-link 10.157.22.1
```

To define the virtual link on ABR2, enter the following command on ABR2.

```
device(config-ospf6-router)# area 1 virtual-link 10.0.0.1
```

Syntax: `[no] area {number | ipv4-address} virtual-link router-id`

The `number` and `ipv4-address` parameters specify the transit area ID, area number, which can be a number, or in IPv4 address format. If you specify a number, the number can be from 0 through 2,147,483,647.

The `router-id` parameter specifies the router ID of the OSPF router at the remote end of the virtual link. To display the router ID on a router, enter the `show ip` command.

Assigning a virtual link source address

When routers at both ends of a virtual link communicate with one another, the source address included in the packets must be a global IPv6 address. The software automatically selects a global IPv6 address for each transit area and advertises this address into the transit area of the Intra-area-prefix LSA. The automatically selected global IPv6 address for a transit area is the first global IPv6 address of any loopback interface in the transit area. If no global IPv6 address is available on a loopback interface in the area, then the first global IPv6
address of the lowest-numbered interface in the UP state (belonging to the transit area) will be assigned. If no global IPv6 address is configured on any of the OSPF interfaces in the transit area, then the virtual links in the transit area will not operate. The automatically selected IPv6 global address is updated whenever the previously selected IPv6 address of the interface changes, is removed, or if the interface goes down.

NOTE
The existing selected virtual link address will not change because the global IPv6 address is now available on a loopback interface or a lower-numbered interface in the transit area. To force the global IPv6 address for the virtual link to be the global IPv6 address of a newly configured loopback, or a lower-numbered interface in the area, you will have to either disable the existing selected interface or remove the currently selected global IPv6 address from the interface.

Modifying virtual link parameters
You can modify the following virtual link parameters:

- **Dead-interval**: The number of seconds that a neighbor router waits for a hello packet from the device before declaring the router is down. The range is from 1 through 65535 seconds. The default is 40 seconds.
- **Hello-interval**: The length of time between the transmission of hello packets. The range is from 1 through 65535 seconds. The default is 10 seconds.
- **Retransmit-interval**: The interval between the retransmission of link state advertisements to router adjacencies for this interface. The range is from 0 through 3600 seconds. The default is 5 seconds.
- **Transmit-delay**: The period of time it takes to transmit Link State Update packets on the interface. The range is from 0 through 3600 seconds. The default is 1 second.

NOTE
The values of the **dead-interval** and **hello-interval** parameters must be the same at both ends of a virtual link. Therefore, if you modify the values of these parameters at one end of a virtual link, you must make the same modifications on the other end of the link. The values of the other virtual link parameters do not require synchronization.

For example, to change the **dead-interval** parameter to 60 seconds on the virtual links defined on ABR1 and ABR2, enter the following command on ABR1:

```
device(config-ospf6-router)# area 1 virtual-link 10.157.22.1 dead-interval 60
```

Enter the following command on ABR2.

```
device(config-ospf6-router)# area 1 virtual-link 10.0.0.1 dead-interval 60
```

Syntax: `[no] area {number | ipv4-address} virtual-link router-id [dead-interval seconds | hello-interval seconds | retransmit-interval seconds | transmit-delay seconds]`

The **area** **number** and **ipv4-address** parameters specify the transit area ID.

The **router-id** parameter specifies the router ID of the OSPF router at the remote end of the virtual link. To display the router ID on a device, enter the **show ip** command.

The **dead-interval**, **hello-interval**, **retransmit-interval**, and **transmit-delay** parameters are described earlier in this section.

Changing the reference bandwidth for the cost on OSPFv3 interfaces
Each interface on which OSPFv3 is enabled has a cost associated with it. The device advertises its interfaces and their costs to OSPFv3 neighbors. For example, if an interface has an OSPF cost of 10, the device advertises the interface with a cost of 10 to other OSPF routers.
By default, OSPF cost of an interface is based on the port speed of the interface. The software uses the following formula to calculate the cost.

\[
\text{Cost} = \frac{\text{reference-bandwidth}}{\text{interface-speed}}
\]

By default, the reference bandwidth is 100 Mbps. If the resulting cost is less than 1, the software rounds the cost up to 1. The default reference bandwidth results in the following costs:

- 10 Mbps port cost = 100/10 = 10
- 100 Mbps port cost = 100/100 = 1
- 1000 Mbps port cost = 100/1000 = 0.10, which is rounded up to 1
- 155 Mbps port cost = 100/155 = 0.65, which is rounded up to 1
- 622 Mbps port cost = 100/622 = 0.16, which is rounded up to 1
- 2488 Mbps port cost = 100/2488 = 0.04, which is rounded up to 1

The interfaces that consist of more than one physical port is calculated as follows:

- LAG group: The combined bandwidth of all the ports.
- Virtual (Ethernet) interface: The combined bandwidth of all the ports in the port-based VLAN that contains the virtual interface.

You can change the default reference bandwidth from 100 Mbps to a value from 1 through 4294967.

If a change to the reference bandwidth results in a cost change to an interface, the Extreme device sends a link-state update to update the costs of interfaces advertised by the Extreme device.

NOTE
If you specify a cost for an interface, your specified cost overrides the cost that the software calculates.

Some interface types are not affected by the reference bandwidth and always have the same cost regardless of the reference bandwidth in use:

- The cost of a loopback interface is always 1.
- The cost of a virtual link is calculated using the Shortest Path First (SPF) algorithm and is not affected by the auto-cost feature.
- The bandwidth for tunnel interfaces is 9 Kbps and is subject to the auto-cost feature.

For example, to change the reference bandwidth to 500, enter the following command.

```
device(config-ospf6-router)# auto-cost reference-bandwidth 500
```

The reference bandwidth specified in this example results in the following costs:

- 10 Mbps port cost = 500/10 = 50
- 100 Mbps port cost = 500/100 = 5
- 1000 Mbps port cost = 500/1000 = 0.5, which is rounded up to 1
- 155 Mbps port cost = 500/155 = 3.23, which is rounded up to 4
- 622 Mbps port cost = 500/622 = 0.80, which is rounded up to 1
- 2488 Mbps port cost = 500/2488 = 0.20, which is rounded up to 1

The costs for 10 Mbps, 100 Mbps, and 155 Mbps ports change as a result of the changed reference bandwidth. Costs for higher-speed interfaces remain the same.

Syntax: [no] auto-cost reference-bandwidth number

The `number` parameter specifies the reference bandwidth in the range from 1 through 4294967. The default is 100.
To restore the reference bandwidth to its default value and thus restore the default costs of the interfaces to their default values, enter the
no form of this command.

Redistributing routes into OSPFv3

In addition to specifying which routes are redistributed into OSPFv3, you can configure the following aspects related to route redistribution:

- Default metric.
- Metric type.
- Advertisement of an external aggregate route.

Configuring route redistribution into OSPFv3

You can configure the device to redistribute routes from the following sources into OSPFv3:

- IPv6 static routes
- Directly connected IPv6 networks
- BGP4+
- IPv6 IS-IS
- RIPng

You can redistribute routes in the following ways:

- By route types, for example, the Extreme device redistributes all IPv6 static and RIPng routes.
- By using a route map to filter which routes to redistribute, for example, the device redistributes specified IPv6 static and RIPng routes only.

For example, to configure the redistribution of all IPv6 static, RIPng, and IPv6 IS-IS level-1 and level-2 routes, enter the following commands.

device(config-ospf6-router)# redistribute static
device(config-ospf6-router)# redistribute rip
device(config-ospf6-router)# redistribute isis level-1-2

Syntax: [no] redistribute [bgp | connected | isis [level-1 | level-1-2 | level-2] | rip | static [metric number | metric-type type]]

The bgp, connected, rip, and static keywords specify the route source.

The level-1, level-1-2, and level-2 keywords (for IPv6 IS-IS only) allow you to specify that the device redistributes level-1 routes only, level-2 routes only, or both level-1 and level-2 routes.

The metric number parameter specifies the metric used for the redistributed route. If a value is not specified for this option, and the value for the default-metric command is set to 0, its default metric, then routes redistributed from the various routing protocols will have the metric value of the protocol from which they are redistributed.

The metric-type type parameter specifies an OSPF metric type for the redistributed route. You can specify external type 1 or external type 2. If a value is not specified for this option, the device uses the value specified by the metric-type command.

For example, to configure a route map and use it for redistribution of routes into OSPFv3, enter commands such as the following.

device(config)# ipv6 route 2001:db8:1::/32 2001:db8:343e::23
device(config)# ipv6 route 2001:db8:2::/32 2001:db8:343e::23
device(config)# ipv6 route 2001:db8:3::/32 2001:db8:343e::23 metric 5
device(config)# route-map abc permit 1
device(config-route-map abc)# match metric 5
device(config-route-map abc)# set metric 8
The commands in this example configure some static IPv6 routes and a route map, and use the route map for redistributing the static IPv6 routes into OSPFv3.

The **ipv6 route** commands configure the static IPv6 routes.

The **route-map** command begins configuration of a route map called “abc”. The number indicates the route map entry (called the “instance”) you are configuring. A route map can contain multiple entries. The software compares packets to the route map entries in ascending numerical order and stops the comparison once a match is found.

NOTE
The default action rule for route-map is to deny all routes that are not explicitly permitted.

The **match** command in the route map matches on routes that have 5 for their metric value (cost). The **set** command changes the metric in routes that match the route map to 8.

The **redistribute** command configures the redistribution of static IPv6 routes into OSPFv3, and uses route map “abc” to control the routes that are redistributed. In this example, the route map allows a static IPv6 route to be redistributed into OSPF only if the route has a metric of 5, and changes the metric to 8 before placing the route into the OSPF route redistribution table.

Syntax:
```bash
[no] redistribute {bgp | connected | isis | rip | static [route-map map-name]}
```

The **bgp**, **connected**, **isis**, **ip**, and **static** keywords specify the route source.

The **route-map map-name** parameter specifies the route map name. The following match parameters are valid for OSPFv3 redistribution:

- match ipv6 address | next-hop acl-number
- match metric number
- match tag tag-value

The following set parameters are valid for OSPFv3 redistribution:

- set ipv6 next-hop ipv6 address
- set metric [+ | -] number | none
- set metric-type type-1 | type-2
- set tag tag-value

NOTE
You must configure the route map before you configure a redistribution filter that uses the route map.

NOTE
When you use a route map for route redistribution, the software disregards the permit or deny action of the route map.

NOTE
For an external route that is redistributed into OSPFv3 through a route map, the metric value of the route remains the same unless the metric is set by a **set metric** command inside the route map or the **default-metric** command. For a route redistributed without using a route map, the metric is set by the metric parameter if set or the **default-metric** command if the metric parameter is not set.
Modifying default metric for routes redistributed into OSPF Version 3

The default metric is a global parameter that specifies the cost applied by default to routes redistributed into OSPFv3. The default value is 0.

If the **metric** parameter for the **redistribute** command is not set and the **default-metric** command is not set, the metric is set to 1, its default value, then routes redistributed from the various routing protocols will have the metric value of the protocol from which they are redistributed.

For information about the redistribute command, refer to Configuring route redistribution into OSPFv3 on page 726.

NOTE

You also can define the cost on individual interfaces. The interface cost overrides the default cost.

To assign a default metric of 4 to all routes imported into OSPFv3, enter the following command.

```
device(config-ospf6-router)# default-metric 4
```

Syntax: `[no] default-metric number`

You can specify a value from 0 - 65535. The default is 0.

To restore the default metric to the default value, use the `no` form of this command.

Modifying metric type for routes redistributed into OSPFv3

The device uses the **metric-type** parameter by default for all routes redistributed into OSPFv3 unless you specify a different metric type for individual routes using the **redistribute** command.

A type 1 route specifies a small metric (two bytes), while a type 2 route specifies a big metric (three bytes). The default value is type 2.

To modify the default value of type 2 to type 1, enter the following command.

```
device(config-ospf6-router)# metric-type type1
```

Syntax: `[no] metric-type {type1 | type2}`

To restore the metric type to the default value, use the `no` form of this command.

Configuring external route summarization

When the Extreme device is an OSPF Autonomous System Boundary Router (ASBR), you can configure it to advertise one external route as an aggregate for all redistributed routes that are covered by a specified IPv6 address range.

When you configure an address range, the range takes effect immediately. All the imported routes are summarized according to the configured address range. Imported routes that have already been advertised and that fall within the range are flushed out of the AS and a single route corresponding to the range is advertised.

If a route that falls within a configured address range is imported by the device, no action is taken if the device has already advertised the aggregate route; otherwise, the device advertises the aggregate route. If an imported route that falls within a configured address range is removed by the device, no action is taken if there are other imported routes that fall with in the same address range; otherwise the aggregate route is flushed.

You can configure up to 32 address ranges. The device sets the forwarding address of the aggregate route to zero and sets the tag to zero.

If you delete an address range, the advertised aggregate route is flushed and all imported routes that fall within the range are advertised individually.
If an external link state database overflow (LSDB) condition occurs, all aggregate routes are flushed out of the AS, along with other external routes. When the device exits the external LSDB overflow condition, all the imported routes are summarized according to the configured address ranges.

NOTE
If you use redistribution filters in addition to address ranges, the Extreme device applies the redistribution filters to routes first, then applies them to the address ranges.

NOTE
If you disable redistribution, all the aggregate routes are flushed, along with other imported routes.

NOTE
This option affects only imported, type 5 external routes. A single type 5 LSA is generated and flooded throughout the AS for multiple external routes.

To configure the summary address 2001:db8::/24 for routes redistributed into OSPFv3, enter the following command.

```
device(config-ospf6-router)# summary-address 2001:db8::/24
```

In this example, the summary prefix 2001:db8::/24 includes addresses 2001:db8:/1 through 2001:db8::/24. Only the address FEC0::/24 is advertised in an external link-state advertisement.

Syntax: `summary-address {ipv6-prefix/prefix-length}`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

Filtering OSPFv3 routes

You can filter the routes to be placed in the OSPFv3 route table by configuring distribution lists. OSPFv3 distribution lists can be applied globally or to an interface.

The functionality of OSPFv3 distribution lists is similar to that of OSPFv2 distribution lists. However, unlike OSPFv2 distribution lists, which filter routes based on criteria specified in an Access Control List (ACL), OSPFv3 distribution lists can filter routes using information specified in an IPv6 prefix list or a route map.

Configuration examples

The following sections show examples of filtering OSPFv3 routes using prefix lists globally and for a specific interface, as well as filtering OSPFv3 routes using a route map.

You can configure the device to use all three types of filtering. When you do this, filtering using route maps has higher priority over filtering using global prefix lists. Filtering using prefix lists for a specific interface has lower priority than the other two filtering methods.

The examples in this section assume the following routes are in the OSPFv3 route table.

```
device# show ipv6 ospf route
Current Route count: 5
  Intra: 3 Inter: 0 External: 2 (Type1 0/Type2 2)
  Equal-cost multi-path: 0
Destination                      Options Area             Cost Type2 Cost
Next Hop Router                Outgoing Interface
*IA 2001:db8:1::/64  --------- 10.0.0.1           0 0
  1:                                  ve 10
*E2 2001:db8:2::/64  ---------  0.0.0.0.0 10 0
```

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06 729
Configuring an OSPFv3 distribution list using an IPv6 prefix list as input

The following example illustrates how to use an IPv6 prefix list to filter OSPFv3 routes.

To specify an IPv6 prefix list called filterOspfRoutes that denies route 2001:db8:2::/64, enter the following commands.

```
device(config)# ipv6 prefix-list filterOspfRoutes seq 5 deny 2001:db8:2::/64
device(config)# ipv6 prefix-list filterOspfRoutes seq 7 permit ::/0 ge 1 le 128
```

Syntax: ipv6 prefix-list name [seq seq-value] [description string] [deny | permit] ipv6-addr/mask-bits [ge ge-value] [le le-value]

To configure a distribution list that applies the filterOspfRoutes prefix list globally.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# distribute-list prefix-list filterOspfRoutes in
```

Syntax: [no] distribute-list prefix-list name in [ethernet slot/port | ve num | loopback num]

After this distribution list is configured, route 2001:db8:2::/64 would be omitted from the OSPFv3 route table.

```
device# show ipv6 ospf route
Current Route count: 4
    Intra: 3 Inter: 0 External: 1 (Type1 0/Type2 1)
    Equal-cost multi-path: 0
    Next Hop Router
    Destination Options Area Cost Type2 Cost
                  Outgoing Interface
    *IA 2001:db8:1::/64
         --------- 10.0.0.1            0 0
         ve 10
    *IA 2001:db8:3::/64
         V6E---R-- 0.0.0.0            11 0
         ve 10
    *IA 2001:db8:4::/64
         --------- 0.0.0.0            10 0
         ve 11
    *E2 2001:db8:5::/64
         --------- 0.0.0.0            10 0
         ve 10
```

The following commands specify an IPv6 prefix list called filterOspfRoutesVe that denies route 2001:db8:3::/64.

```
device(config)# ipv6 prefix-list filterOspfRoutesVe seq 5 deny 2001:db8:3::/64
device(config)# ipv6 prefix-list filterOspfRoutesVe seq 10 permit ::/0 ge 1 le 128
```

The following commands configure a distribution list that applies the filterOspfRoutesVe prefix list to routes pointing to virtual interface 10.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# distribute-list prefix-list filterOspfRoutesVe in ve 10
```

After this distribution list is configured, route 2001:db8:3::/64, pointing to virtual interface 10, would be omitted from the OSPFv3 route table.

```
device# show ipv6 ospf route
Current Route count: 4
    Intra: 3 Inter: 0 External: 1 (Type1 0/Type2 1)
    Equal-cost multi-path: 0
    Next Hop Router
    Destination Options Area Cost Type2 Cost
                  Outgoing Interface
    *IA 2001:db8:1::/64
         --------- 10.0.0.1            0 0
         ve 10
    *IA 2001:db8:2::/64
         --------- 0.0.0.0            10 0
         ve 11
    *E2 2001:db8:5::/64
         --------- 0.0.0.0            10 0
         ve 10
```
Configuring an OSPFv3 distribution list using a route map as input

The following commands configure a route map that matches internal routes.

```plaintext
device(config)# route-map allowInternalRoutes permit 10
device(config-routemap allowInternalRoutes)# match route-type internal
```

The following commands configure a distribution list that applies the allowInternalRoutes route map globally to OSPFv3 routes.

```plaintext
device(config)# ipv6 router ospf
device(config-ospf6-router)# distribute-list route-map allowInternalRoutes in
```

Syntax: `[no] distribute-list route-map name in`

After this distribution list is configured, the internal routes would be included, and the external routes would be omitted from the OSPFv3 route table.

```plaintext
device# show ipv6 ospf route
Current Route count: 3
  Intra: 3 Inter: 0 External: 0 (Type1 0/Type2 0)
  Equal-cost multi-path: 0
  Destination Options Area Cost Type2 Cost
  Next Hop Router Outgoing Interface
*IA 2001:db8:3001::/64 --------- 10.0.0.1             0 0
  ::                             ve 10
*IA 2001:db8:3015::/64             V6E---R-- 0.0.0.0            11 0
  fe80::2e0:52ff:fe00:10         ve 10
*IA 2001:db8:3020::/64             --------- 0.0.0.0            10 0
  ::                             ve 11
```

Configuring default route origination

When the Extreme device is an OSPFv3 Autonomous System Boundary Router (ASBR), you can configure it to automatically generate a default external route into an OSPFv3 routing domain. This feature is called “default route origination” or “default information origination.”

By default, the Extreme device does not advertise the default route into the OSPFv3 domain. If you want the device to advertise the OSPF default route, you must explicitly enable default route origination.

When you enable OSPFv3 default route origination, the device advertises a type 5 default route that is flooded throughout the AS (except stub areas).

The device advertises the default route into OSPF even if OSPF route redistribution is not enabled, and even if the default route is learned through an IBGP neighbor. The router will not, however, originate default if the active default route is learned from an OSPF router in the same domain.

NOTE

The Extreme device does not advertise the OSPFv3 default route, regardless of other configuration parameters, unless you explicitly enable default route origination.

If default route origination is enabled and you disable it, the default route originated by the device is flushed. Default routes generated by other OSPFv3 routers are not affected. If you re-enable the feature, the feature takes effect immediately and thus does not require you to reload the software.

For example, to create and advertise a default route with a metric of 2 and as a type 1 external route, enter the following command.

```plaintext
device(config-ospf6-router)# default-information-originate always metric 2 metric-type type1
```
Syntax: [no] default-information-originate [always] [metric value] [metric-type type]

The always keyword originates a default route regardless of whether the device has learned a default route. This option is disabled by default.

The metric value parameter specifies a metric for the default route. If this option is not used, the value of the default-metric command is used for the route.

The metric-type type parameter specifies the external link type associated with the default route advertised into the OSPF routing domain. The type can be one of the following:
 • 1 - Type 1 external route
 • 2 - Type 2 external route

If you do not use this option, the default redistribution metric type is used for the route type.

NOTE
If you specify a metric and metric type, the values are used even if you do not use the always option.

To disable default route origination, enter the no form of the command.

Modifying Shortest Path First timers

The Extreme device uses the following timers when calculating the shortest path for OSPFv3 routes:
 • SPF delay - When the Extreme device receives a topology change, the software waits before it starts a Shortest Path First (SPF) calculation. By default, the software waits 5 seconds. You can configure the SPF delay to a value from 0 through 65535 seconds. If you set the SPF delay to 0 seconds, the software immediately begins the SPF calculation after receiving a topology change.
 • SPF hold time - The device waits a specific amount of time between consecutive SPF calculations. By default, it waits 10 seconds. You can configure the SPF hold time to a value from 0 through 65535 seconds. If you set the SPF hold time to 0 seconds, the software does not wait between consecutive SPF calculations.

You can set the SPF delay and hold time to lower values to cause the device to change to alternate paths more quickly if a route fails. Note that lower values for these parameters require more CPU processing time.

You can change one or both of the timers.

NOTE
If you want to change only one of the timers, for example, the SPF delay timer, you must specify the new value for this timer as well as the current value of the SPF hold timer, which you want to retain. The device does not accept only one timer value.

NOTE
If you configure SPF timers between 0-100, they will default to 0 and be displayed incorrectly in the running configuration.

To change the SPF delay to 10 seconds and the SPF hold to 20 seconds, enter the following command.

 device(config-ospf6-router)# timers spf 10 20

Syntax: [no] timers spf delay hold-time

For the delay and hold-time parameters, specify a value from 0 through 65535 seconds.

To set the timers back to their default values, enter the no version of this command.
Modifying administrative distance

The Extreme device can learn about networks from various protocols, including BGP4+, IPv6 IS-IS, RIPng, and OSPFv3. Consequently, the routes to a network may differ depending on the protocol from which the routes were learned. By default, the administrative distance for OSPFv3 routes is 110.

The device selects one route over another based on the source of the route information. To do so, the device can use the administrative distances assigned to the sources. You can influence the device’s decision by changing the default administrative distance for OSPFv3 routes.

Configuring administrative distance based on route type

You can configure a unique administrative distance for each type of OSPFv3 route. For example, you can use this feature to influence the Extreme device to prefer a static route over an OSPF inter-area route and to prefer OSPF intra-area routes to static routes.

The distance you specify influences the choice of routes when the device has multiple routes to the same network from different protocols. The device prefers the route with the lower administrative distance.

You can specify unique default administrative distances for the following OSPFv3 route types:

• Intra-area routes
• Inter-area routes
• External routes

The default for all of these OSPFv3 route types is 110.

NOTE

This feature does not influence the choice of routes within OSPFv3. For example, an OSPF intra-area route is always preferred over an OSPF inter-area route, even if the intra-area route’s distance is greater than the inter-area route’s distance.

For example, to change the default administrative distances for intra-area routes to 80, inter-area routes to 90, and external routes to 100, enter the following commands.

```
device(config-ospf6-router)# distance intra-area 80
device(config-ospf6-router)# distance inter-area 90
device(config-ospf6-router)# distance external 100
```

Syntax: [no] distance {external | inter-area | intra-area} distance

The external, inter-area, and intra-area keywords specify the route type for which you are changing the default administrative distance.

The distance parameter specifies the new distance for the specified route type. You can specify a value from 1 through 255.

To reset the administrative distance of a route type to its system default, enter the no form of this command.

Configuring the OSPFv3 LSA pacing interval

The Extreme device paces OSPFv3 LSA refreshes by delaying the refreshes for a specified time interval instead of performing a refresh each time an individual LSA’s refresh timer expires. The accumulated LSAs constitute a group, which the device refreshes and sends out together in one or more packets.

The pacing interval, which is the interval at which the Extreme device refreshes an accumulated group of LSAs, is configurable to a range from 10 through 1800 seconds (30 minutes). The default is 240 seconds (four minutes). Thus, every four minutes, the device refreshes the group of accumulated LSAs and sends the group together in the same packets.
The pacing interval is inversely proportional to the number of LSAs the Extreme device is refreshing and aging. For example, if you have approximately 10,000 LSAs, decreasing the pacing interval enhances performance. If you have a very small database (40 - 100 LSAs), increasing the pacing interval to 10 - 20 minutes might enhance performance only slightly.

To change the OSPFv3 LSA pacing interval to two minutes (120 seconds), enter the following command.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# timers lsa-group-pacing 120
```

Syntax: [no] timers lsa-group-pacing seconds

The seconds parameter specifies the number of seconds and can be from 10 through 1800 (30 minutes). The default is 240 seconds (four minutes).

To restore the pacing interval to its default value, use the no form of the command.

Modifying exit overflow interval

If a database overflow condition occurs on the Extreme device, the device eliminates the condition by removing entries that originated on the device. The exit overflow interval allows you to set how often a device checks to see if the overflow condition has been eliminated. The default value is 0. If the configured value of the database overflow interval is 0, then the device never leaves the database overflow condition.

For example, to modify the exit overflow interval to 60 seconds, enter the following command.

```
device(config-ospf6-router)# database-overflow-interval 60
```

Syntax: database-overflow-interval seconds

The seconds parameter can be a value from 0 through 86400 seconds (24 hours).

To reset the exit overflow interval to its system default, enter the no form of this command.

Modifying external link state database limit

By default, the link state database can hold a maximum of 2000 entries for external (type 5) LSAs. You can change the maximum number of entries from 500 - 8000. After changing this limit, make sure to save the running-config file and reload the software. The change does not take effect until you reload or reboot the software.

For example, to change the maximum number entries from the default of 2000 to 3000, enter the following command.

```
device(config-ospf6-router)# external-lsdb-limit 3000
```

Syntax: external-lsdb-limit entries

The entries parameter can be a numerical value from 500 through 8000 seconds.

To reset the maximum number of entries to its system default, enter the no form of this command.

Setting all OSPFv3 interfaces to the passive state

You can set all the Open Shortest Path First Version 3 (OSPFv3) interfaces to the default passive state using the default-passive-interface command. When you configure the interfaces as passive, the interfaces drop all the OSPFv3 control packets.

To set all the OSPFv3 interfaces to passive, enter the following commands.

```
device# configure terminal
device(config)# ipv6 router ospf vrf A
device(config-ospf6-router-vrf-A)# default-passive-interface
```
Syntax: [no] default-passive-interface

Modifying OSPFv3 interface defaults

OSPFv3 has interface parameters that you can configure. For simplicity, each of these parameters has a default value. No change to these default values is required except as needed for specific network configurations.

You can modify the default values for the following OSPF interface parameters:

- **cost**: Indicates the overhead required to send a packet across an interface. You can modify the cost to differentiate between 100 Mbps and 1000 Mbps (1 Gbps) links. The command syntax is `ipv6 ospf cost number`. The default cost is calculated by dividing 100 million by the bandwidth. For 10 Mbps links, the cost is 10. The cost for both 100 Mbps and 1000 Mbps links is 1, because the speed of 1000 Mbps was not in use at the time the OSPF cost formula was devised.

- **dead-interval**: Indicates the number of seconds that a neighbor router waits for a hello packet from the device before declaring the router down. The command syntax is `ipv6 ospf dead-interval seconds`. The value can be from 1 through 2147483647 seconds. The default is 40 seconds.

- **hello-interval**: Represents the length of time between the transmission of hello packets. The command syntax is `ipv6 ospf hello-interval seconds`. The value can be from 1 through 65535 seconds. The default is 10 seconds.

- **instance**: Indicates the number of OSPFv3 instances running on an interface. The command syntax is `ipv6 ospf instance number`. The value can be from 0 through 255. The default is 1.

- **MTU-ignore**: Allows you to disable a check that verifies the same MTU is used on an interface shared by neighbors. The command syntax is `ipv6 ospf mtu-ignore`. By default, the mismatch detection is enabled.

- **network**: Allows you to configure the OSPF network type. The command syntax is `ipv6 ospf network [point-to-multipoint]`. The default setting of the parameter depends on the network type.

- **passive**: When you configure an OSPF interface to be passive, that interface does not send or receive OSPF route updates. This option affects all IPv6 subnets configured on the interface. The command syntax is `ipv6 ospf passive`. By default, all OSPF interfaces are active and thus can send and receive OSPF route information. Since a passive interface does not send or receive route information, the interface is in effect a stub network.

- **active**: When you configure an OSPFv3 interface to be active, that interface sends or receives all the control packets and forms the adjacency. By default, the `ipv6 ospf active` command is disabled. Whenever you configure the OSPFv3 interfaces to be passive using the `default-passive-interface` command, all the OSPFv3 interfaces stop sending and receiving control packets. To send and receive packets over specific interfaces, you can use the `ipv6 ospf active` command.

- **priority**: Allows you to modify the priority of an OSPF router. The priority is used when selecting the designated router (DR) and backup designated routers (BDRs). The command syntax is `ipv6 ospf priority number`. The value can be from 0 through 255. The default is 1. If you set the priority to 0, the router does not participate in DR and BDR election.

- **retransmit-interval**: The time between retransmissions of LSAs to adjacent routers for an interface. The command syntax is `ipv6 ospf retransmit-interval seconds`. The value can be from 0 through 3600 seconds. The default is 5 seconds.

- **Transmit-delay**: The time it takes to transmit Link State Update packets on this interface. The command syntax is `ipv6 ospf transmit-delay seconds`. The range is 0 through 3600 seconds. The default is 1 second.

Disabling or re-enabling event logging

OSPFv3 supports the logging of OSPFv3 events. The log-status change command controls the generation of all OSPFv3 logs. You can disable or re-enable the logging of events related to OSPFv3, such as neighbor state changes and database overflow conditions. By default, the Extreme device does not logs these events.
To disable the logging of events, enter the following command.

```
device(config-ospf6-router)# no log-status-change
```

Syntax: `[no] log-status-change`

To re-enable the logging of events, enter the following command.

```
device(config-ospf6-router)# log-status-change
```

IPsec for OSPFv3

IPsec secures OSPFv3 communications by authenticating and encrypting each IP packet of a communication session.

IPsec is available for OSPFv3 traffic only and only for packets that are "for-us". A for-us packet is addressed to one of the IPv6 addresses on the device or to an IPv6 multicast address. Packets that are just forwarded by the line card do not receive IPsec scrutiny.

Extreme devices support the following components of IPsec for IPv6-addressed packets:

- Authentication through Encapsulating Security Payload (ESP) in transport mode
- HMAC-SHA1-96 as the authentication algorithm
- Manual configuration of keys
- Configurable rollover timer

IPsec can be enabled on the following logical entities:

- Interface
- Area
- Virtual link

With respect to traffic classes, this implementation of IPsec uses a single security association (SA) between the source and destination to support all traffic classes and so does not differentiate between the different classes of traffic that the DSCP bits define.

IPsec on a virtual link is a global configuration. Interface and area IPsec configurations are more granular.

Among the entities that can have IPsec protection, the interfaces and areas can overlap. The interface IPsec configuration takes precedence over the area IPsec configuration when an area and an interface within that area use IPsec. Therefore, if you configure IPsec for an interface and an area configuration also exists that includes this interface, the interface’s IPsec configuration is used by that interface. However, if you disable IPsec on an interface, IPsec is disabled on the interface even if the interface has its own, specific authentication.

For IPsec, the system generates two types of databases. The security association database (SAD) contains a security association for each interface or one global database for a virtual link. Even if IPsec is configured for an area, each interface that uses the area’s IPsec still has its own security association in the SAD. Each SA in the SAD is a generated entry that is based on your specifications of an authentication protocol (ESP in the current release), destination address, and a security policy index (SPI). The SPI number is user-specified according to the network plan. Consideration for the SPI values to specify must apply to the whole network.

The system-generated security policy databases (SPDs) contain the security policies against which the system checks the for-us packets. For each for-us packet that has an ESP header, the applicable security policy in the security policy database (SPD) is checked to see if this packet complies with the policy. The IPsec task drops the non-compliant packets. Compliant packets continue on to the OSPFv3 task.
Configuring IPsec for OSPFv3

This section describes how to configure IPsec for an interface, area, and virtual link. It also describes how to change the key rollover timer if necessary and how to disable IPsec on a particular interface for special purposes.

By default, OSPFv3 IPsec authentication is disabled. The following IPsec parameters are configurable:

- ESP security protocol
- Authentication
- HMAC-SHA1-96 authentication algorithm
- Security parameter index (SPI)
- A 40-character key using hexadecimal characters
- An option for not encrypting the keyword when it appears in show command output
- Key rollover timer
- Specifying the key add remove timer

NOTE

In the current release, certain keyword parameters must be entered even though only one keyword choice is possible for that parameter. For example, the only authentication algorithm in the current release is HMAC-SHA1-96, but you must nevertheless enter the keyword for this algorithm. Also, ESP currently is the only authentication protocol, but you must still enter the esp keyword. This section describes all keywords.

IPsec for OSPFv3 considerations

IPsec generates security associations and security policies based on certain user-specified parameters. Refer to the NetIron Command Reference for more information on user-specified parameters.

- The system creates a security association for each interface or virtual link based on the values specified by the user.
- The system creates a security policy database for each interface or virtual link based on the values specified by the user.
- You can configure the same SPI and key on multiple interfaces and areas, but they still have unique IPsec configurations because the SA and policies are added to each separate security policy database (SPD) that is associated with a particular interface. If you configure an SA with the same SPI in multiple places, the rest of the parameters associated with the SA—such as key, cryptographic algorithm, security protocol, and so on—must match. If the system detects a mismatch, it displays an error message.
- IPsec authentication for OSPFv3 requires the use of multiple SPDs, one for each interface. A virtual link has a separate, global SPD. The authentication configuration on a virtual link must be different from the authentication configuration for an area or interface, as required by RFC4 552. The interface number is used to generate a non-zero security policy database identifier (SPDID), but for the global SPD for a virtual link, the system-generated SPDID is always zero. As a hypothetical example, the SPD for interface eth 1/1 might have the system-generated SPDID of 1, and so on.
- If you change an existing key, you must also specify a different SPI value. For example, in an interface context where you intend to change a key, you must enter a different SPI value—which occurs before the key parameter on the command line—before you enter the new key.
- The old key is active for twice the current configured key rollover interval for the inbound direction. In the outbound direction, the old key remains active for a duration equal to the key rollover interval. If the key rollover interval is set to 0, the new key immediately takes effect for both directions.
Interface and area IPsec considerations

This section describes the precedence of interface and area IPsec configurations.

If you configure an interface IPsec by using the `ipv6 ospf authentication` command in the context of a specific interface, that interface’s IPsec configuration overrides the area configuration of IPsec.

If you configure IPsec for an area, all interfaces that utilize the area-wide IPsec (where interface-specific IPsec is not configured) nevertheless receive an SPD entry (and SPDID number) that is unique for the interface.

The area-wide SPI that you specify is a constant for all interfaces in the area that use the area IPsec, but the use of different interfaces results in an SPDID and an SA that are unique to each interface. The security policy database depends partly on the source IP address, so a unique SPD for each interface results.

Considerations for IPsec on virtual links

The IPsec configuration for a virtual link is global, so only one security association database and one security policy database exist for virtual links if you choose to configure IPsec for virtual links.

The virtual link IPsec SAs and policies are added to all interfaces of the transit area for the outbound direction. For the inbound direction, IPsec SAs and policies for virtual links are added to the global database.

NOTE
The security association (SA), security protocol index (SPI), security protocol database (SPD), and key have mutual dependencies, as the subsections that follow describe.

Specifying the key rollover timer

Configuration changes for authentication take effect in a controlled manner through the key rollover procedure as specified in RFC 4552, Section 10.1. The key rollover timer controls the timing of the existing configuration changeover. The key rollover timer can be configured in the IPv6 router OSPF context, as the following example illustrates.

```
device(config-ospf6-router)# key-rollover-interval 200
```

Syntax: `key-rollover-interval time`

The range for the `key-rollover-interval` is 0 through 14400 seconds. The default is 300 seconds.

Specifying the key add remove timer

The `key-add-remove` timer is used in an environment where interoperability with other vendors is required on a specific interface. This parameter is used to determine the interval time when authentication addition and deletion will take effect.

The `key-add-remove-interval` timer can be used to set the required value globally, or on a specific interface as needed. Interface configuration takes preference over system level configuration.

By default, the `key-add-remove-interval` is set to 300 seconds to smoothly interoperate with NetIron OS routers.

To set the `key-add-remove-interval` globally to 100 seconds, enter the following commands:

```
device(config-ospf6-router)# key-add-remove-interval 100
```

To set the `key-add-remove-interval` to 100 seconds on a specific interface, enter the following command:

```
device(config-if-e1000-1/10)#ipv6 ospf authentication ipsec key-add-remove-interval 100
```

Syntax: `[no] ipv6 ospf authentication ipsec key-add-remove-interval range`
The no form of this command sets the key-add-remove-interval back to a default of 300 seconds.

The ipv6 command is available in the configuration interface context for a specific interface.

The ospf keyword identifies OSPFv3 as the protocol to receive IPsec security.

The authentication keyword enables authentication.

The ipsec keyword specifies IPsec as the authentication protocol.

The range is a value between 0 and 14400 seconds.

This command is not set by default and key-add-remove-interval is set to the same value as key-rollover-interval.

NOTE

This command will not resolve the issue completely on a network where NetIron OS routers running software that does not support key-add-remove-interval (earlier versions of NetIron RO5.3.00) and other vendor’s routers are present. In this case, disabling and enabling the interface or setting key-rollover-interval to 0 will resolve the issue.

Configuring IPsec on a interface

For IPsec to work, the IPsec configuration must be the same on all the routers to which an interface connects.

For multicast, IPsec does not need or use a specific destination address, the destination address is "do not care," and this status is reflected by the lone pair of colons (:) for destination address in the show command output.

To configure IPsec on an interface, proceed as in the following example.

NOTE

The IPsec configuration for an interface applies to the inbound and outbound directions. Also, the same authentication parameters must be used by all devices on the network to which the interface is connected, as described in section 7 of RFC 4552.

```plaintext
device(config-if-e10000-1/2)# ipv6 ospf auth ipsec spi 429496795 esp sha1 abcdef12345678900987654321fedcba12345678
```

Syntax: [no] ipv6 ospf authentication ipsec spi \{spi-num\} esp \{sha1\} [no-encrypt] key

The no form of this command deletes IPsec from the interface.

The ipv6 command is available in the configuration interface context for a specific interface.

The ospf keyword identifies OSPFv3 as the protocol to receive IPsec security.

The authentication keyword enables authentication.

The ipsec keyword specifies IPsec as the authentication protocol.

The spi keyword and the spi-num variable specify the security parameter that points to the security association. The near-end and far-end values for spi-num must be the same. The range for spi-num is decimal 256 through 4294967295.

The mandatory esp keyword specifies ESP (rather than authentication header) as the protocol to provide packet-level security. In the current release, this parameter can be esp only.

The sha1 keyword specifies the HMAC-SHA1-96 authentication algorithm. This mandatory parameter can be only the sha1 keyword in the current release.

Including the optional no-encrypt keyword means that when you display the IPsec configuration, the key is displayed in its unencrypted form and also saved as unencrypted.
The key variable must be 40 hexadecimal characters. To change an existing key, you must also specify a different SPI value. You cannot just change the key without also specifying a different SPI, too. For example, in an interface context where you intend to change a key, you must type a different SPI value -- which occurs before the key parameter on the command line -- before you type the new key.

If no-encrypt is not entered, then the key will be encrypted. This is the default. The system adds the following in the configuration to indicate that the key is encrypted:

- encrypt = the key string uses proprietary simple cryptographic 2-way algorithm (only for CES and CER 2000 Series devices)
- encryptb64 = the key string uses proprietary base64 cryptographic 2-way algorithm (only for XMR and MLX Series devices)

This example results in the configuration shown in the screen output that follows. Note that because the optional no-encrypt keyword was omitted, the display of the key has the encrypted form by default.

```
interface ethernet 1/2
  enable
  ip address 10.3.3.1/8
  ipv6 address 2001:db8:3::1/64
  ipv6 ospf area 1
  ipv6 ospf authentication ipsec spi 429496795 esp sha1 encryptb64 $ITJkQG5HWnw4M09tWVd
```

Configuring IPsec for an area

This application of the `area` command (for IPsec) applies to all of the interfaces that belong to an area unless an interface has its own IPsec configuration. The interface IPsec can be operationally disabled if necessary.) To configure IPsec for an area in the IPv6 router OSPF context, proceed as in the following example.

```
device(config-ospf6-router)# area 2 auth ipsec spi 400 esp sha1 abcef12345678901234fedcba098765432109876
```

Syntax: `[no] area area-id authentication ipsec spi spi-num esp sha1 [no-encrypt] key`

The no form of this command deletes IPsec from the area.

The area command and the area-id variable specify the area for this IPsec configuration. The area-id can be an integer in the range 0 through 2,147,483,647 or have the format of an IP address.

The authentication keyword specifies that the function to specify for the area is packet authentication.

The ipsec keyword specifies that IPsec is the protocol that authenticates the packets.

The spi keyword and the spi-num variable specify the index that points to the security association. The near-end and far-end values for spi-num must be the same. The range for spi-num is decimal 256 through 4294967295.

The mandatory esp keyword specifies ESP (rather than authentication header) as the protocol to provide packet-level security. In the current release, this parameter can be esp only.

The sha1 keyword specifies the HMAC-SHA1-96 authentication algorithm. This mandatory parameter can be only the sha1 keyword in the current release.

Including the optional no-encrypt keyword means that the 40-character key is not encrypted upon either its entry or its display. The key must be 40 hexadecimal characters.

If no-encrypt is not entered, then the key will be encrypted. This is the default. The system adds the following in the configuration to indicate that the key is encrypted:

- encrypt = the key string uses proprietary simple cryptographic 2-way algorithm (only for CES and CER 2000 Series devices)
- encryptb64 = the key string uses proprietary base64 cryptographic 2-way algorithm (only for XMR and MLX Series devices)

The configuration in the preceding example results in the configuration for area 2 that is illustrated in the following.

```
ipv6 router ospf
  area 0
  area 1
```
Configuring IPsec for a virtual link

IPsec on a virtual link has a global configuration.

To configure IPsec on a virtual link, enter the IPv6 router OSPF context of the CLI and proceed as the following example illustrates. (Note the no-encrypt option in this example.)

```
device(config-ospf6-router)# area 1 vir 10.2.2.2 auth ipsec spi 360 esp sha1 no-encrypt
123456789009876543211234567890987654321
```

Syntax: [no] area area-id virtual nbr-id authentication ipsec spi spi-num esp sha1 [no-encrypt] key

The no form of this command deletes IPsec from the virtual link.

The area command and the area-id variable specify the area is to be configured. The area-id can be an integer in the range 0 through 2,147,483,647 or have the format of an IP address.

The virtual keyword indicates that this configuration applies to the virtual link identified by the subsequent variable nbr-id. The variable nbr-id is in dotted decimal notation of an IP address.

The authentication keyword specifies that the function to specify for the area is packet authentication.

The ipsec keyword specifies that IPsec is the protocol that authenticates the packets.

The spi keyword and the spi-num variable specify the index that points to the security association. The near-end and far-end values for spi-num must be the same. The range for spi-num is decimal 256 through 4294967295.

The mandatory esp keyword specifies ESP (rather than authentication header) as the protocol to provide packet-level security. In the current release, this parameter can be esp only.

The sha1 keyword specifies the HMAC-SHA1-96 authentication algorithm. This mandatory parameter can be only the sha1 keyword in the current release.

Including the optional no-encrypt keyword means that the 40-character key is not encrypted in show command displays. If no-encrypt is not entered, then the key will be encrypted. This is the default. The system adds the following in the configuration to indicate that the key is encrypted:

- encrypt = the key string uses proprietary simple cryptographic 2-way algorithm (only for CES and CER Series devices)
- encryptb64 = the key string uses proprietary base64 cryptographic 2-way algorithm (only for XMR and MLX Series devices)

This example results in the following configuration.

```
area 1 virtual-link 10.2.2.2
area 1 virtual-link 10.2.2.2 authentication ipsec spi 360 esp sha1 no-encrypt 12
34567890987654321
```

Disabling IPsec on an interface

For the purpose of troubleshooting, you can operationally disable IPsec on an interface by using the ipv6 ospf authentication ipsec disable command in the CLI context of a specific interface. This command disables IPsec on the interface whether its IPsec configuration is the area’s IPsec configuration or is specific to that interface. The output of the show ipv6 ospf interface command shows the current setting for the disable command.

To disable IPsec on an interface, go to the CLI context of the interface and proceed as in the following example.

```
device(config-if-e10000-1/2)# ipv6 ospf auth ipsec disable
```

Syntax: [no] ipv6 ospf authentication ipsec disable
The no form of this command restores the area and interface-specific IPsec operation.

Changing the key rollover timer

Configuration changes for authentication takes effect in a controlled manner through the key rollover procedure as specified in RFC 4552, Section 10.1. The key rollover timer controls the timing of the configuration changeover. The key rollover timer can be configured in the IPv6 router OSPF context, as the following example illustrates.

```
device(config-ospf6-router)# key-rollover-interval 200
```

Syntax: `key-rollover-interval time`

The range for the key-rollover-interval is 0 through 14400 seconds. The default is 300 seconds.

Clearing IPsec statistics

This section describes the `clear ipsec statistics` command for clearing statistics related to IPsec. The command resets to 0 the counters (which you can view as a part of IP Security Packet Statistics). The counters hold IPsec packet statistics and IPsec error statistics. The following example illustrates the `show ipsec statistics` output.

```
device# show ipsec statistics
IPSecurity Statistics
secEspCurrentInboundSAs 1          ipsecEspTotalInboundSAs: 2
secEspCurrentOutboundSA 1          ipsecEspTotalOutboundSAs: 2
IPSecurity Packet Statistics
secEspTotalInPkts: 20         ipsecEspTotalInPktsDrop: 0
secEspTotalOutPkts: 84
IPSecurity Error Statistics
secAuthenticationErrors 0
secReplayErrors: 0          ipsecPolicyErrors: 13
secOtherReceiveErrors: 0      ipsecSendErrors: 0
secUnknownSpiErrors: 0
```

To clear the statistics, enter the `clear ipsec statistics` command as in the following example.

```
device# clear ipsec statistics
```

Syntax: `clear ipsec statistics`

This command takes no parameters.

Configuring OSPFv3 Graceful Restart Helper mode

To enable the graceful restart (GR) helper capability, use the `graceful-restart helper` command in the OSPFv6 interface mode. Graceful restart for OSPFv6 helper mode is enabled by default.

```
device(config-ospf6-router)# graceful-restart helper strict-lsa-checking
```

Syntax: `[no] graceful-restart helper [disable | strict-lsa-checking]`

The `disable` keyword is used to disable the graceful-restart helper capability. By default, it is enabled.

The `strict-lsa-checking` keyword is used to enable the graceful-restart helper device to terminate restart supporting any topology change. By default, it is disabled.
Configuring OSPFv3 Non-stop routing (NSR)

In graceful restart, the restarting neighbors need to help build the routing information during the failover, but the graceful restart helper may not be supported by all devices in a network. Hence to eliminate this dependency, the non-stop routing (NSR) feature is supported on NetIron OS devices. NSR does not require support from neighboring devices to perform hitless failover. NSR does not support IPv6-over-IPv4 tunnel and virtual link, so traffic loss is expected while performing hitless failover.

To enable NSR for OSPFv3, use the `nonstop-routing` command in the OSPFv6 interface mode.

```
device(config)# ipv6 router ospf
device(config-ospf6-router)# nonstop-routing
```

To disable NSR for OSPFv3, use the `no` form of the `nonstop-routing` command.

Syntax: `[no] nonstop-routing

Configuring OSPFv3 max-metric router LSA

The OSPFv3 max-metric router LSA feature enables OSPFv3 to advertise its locally generated router LSAs with a maximum metric to direct transit traffic away from the router, while still routing for directly connected networks. By advertising the maximum metric, the router will not attract transit traffic. A router which does not handle transit traffic and only forwards packets destined for its directly connected links is known as a stub router. In OSPFv3 networks, a device could be placed in a stub router role by advertising large metrics for its connected links, so that the cost of a path through the device becomes larger than that of an alternative path.

You can configure OSPFv3 max-metric router LSA in either startup or non-startup mode. Configuring max-metric on startup may be helpful on ASBRs where protocols such as BGP converge after OSPF converges. Configuring max-metric on non-startup may be helpful in database overflow scenarios.

Max metric router LSA is configured in an incremental fashion. To configure OSPFv3 to advertise router LSAs with the cost of point-to-point and transit links set to 65535, enter the following command.

```
device(config-ospf6-router)# max-metric router-lsa
```
To modify OSPFv3 to advertise intra-area-prefix LSAs with the cost of stubs set to 65535 and the cost of external LSAs set to 16711680, enter the following command:

```
device(config-ospf6-router)# max-metric router-lsa include-stub external-lsa
```

To modify OSPFv3 to advertise summary type-3 and type-4 LSAs with the cost set to 10000, enter the following command. Executing this command will not alter the existing include-stub and external-lsa configuration.

```
device(config-ospf6-router)# max-metric router-lsa summary-lsa 10000
```

Although max-metric router LSA configuration is done in an incremental fashion, the show run command displays the configuration in just one line. For example, after executing the three configuration commands above, the output of the show run command would be:

```
device(config-ospf6-router)# max-metric router-lsa include-stub summary-lsa 10000 external-lsa
```

To remove the include-stub and summary-lsa options from this configuration, enter the following command.

```
device(config-ospf6-router)# no max-metric router-lsa include-stub summary-lsa
```

The output of show run would then be:

```
device(config-ospf6-router)# max-metric router-lsa external-lsa
```

By default, when max-metric router LSA is configured, OSPFv3 always advertises the maximum metric for router LSAs and external LSAs. To modify OSPFv3 to advertise the max-metric for a period of 60 seconds only on startup, enter the following command.

```
device(config-ospf6-router)# max-metric router-lsa on-startup 60
```

The output of show run would then be:

```
device(config-ospf6-router)# max-metric router-lsa external-lsa on-startup 60
```

OSPFv3 can also be configured to advertise the max-metric for stub on startup using the following command:

```
device(config-ospf6-router)# max-metric router-lsa include-stub
```

OSPFv3 would then be configured to advertise the max-metric for stub, router LSA and summary LSA on startup and the output of show run would be:

```
device(config-ospf6-router)# max-metric router-lsa include-stub external-lsa on-startup 60
```

To remove the on-startup option alone, so that OSPFv3 will always advertise the max-metric for router LSA, intra-area-prefix LSA and summary LSA, enter the following command:

```
device(config-ospf6-router)# no max-metric router-lsa on-startup
```

The output of show run would then be:

```
device(config-ospf6-router)# max-metric router-lsa include-stub external-lsa
```

Syntax: `[no] max-metric router-lsa [include-stub][summary-lsa [max-metric-value]] [external-lsa [max-metric-value]] [on-startup {seconds | wait-for-bgp}]

The router-lsa parameter configures the device to advertise the maximum metric for point-to-point and transit links. The maximum metric value is 65535.

The include-stub parameter specifies the advertisement of the maximum metric value (65535) for point-to-point and broadcast stub links in the intra-area-prefix LSA.

NOTE

You cannot specify a maximum metric value with the include-stub parameter. If you specify include-stub, point-to-point and broadcast stub links in the intra-area-prefix LSA are advertised at a value of 65535.
The `summary-lsa [max-metric-value]` parameter configures the maximum metric value for inter-area-prefix type-3 and type-4 LSAs. The range is from 1 through 16777215. The default value is 16711680.

NOTE
Setting the `max-metric-value` for `summary-lsa` to 16777215 makes the route unreachable.

The `external-lsa [max-metric-value]` parameter configures the maximum metric value for external type-5 and type-7 LSAs. The range is from 1 through 16777215. The default value is 16711680.

NOTE
Setting the `max-metric-value` for `external-lsa` to 16777215 makes the route unreachable.

The `on-startup {seconds | wait-for-bgp}` parameter specifies the advertisement of the maximum metric for a limited period only, on startup. The `seconds` variable specifies the length of time in seconds. The range is from 5 through 86400. The `wait-for-bgp` parameter specifies that the maximum metric is advertised until BGP converges or for 600 seconds. When the `on-startup` option is not specified, a device configured with `max-metric router-lsa` always advertises the max-metric.

The `no` form of the command removes the configuration.

NOTE
The `on-startup` configuration does not apply to NSR restarts.

Displaying OSPFv3 information

You can display the information for the following OSPFv3 parameters:

- Areas
- Link state databases
- Interfaces
- Memory usage
- Neighbors
- Redistributed routes
- Routes
- SPF
- Virtual links
- Virtual neighbors
- IPsec
- key-add-remove interval

General OSPFv3 configuration information

To indicate whether the Extreme device is operating as ASBR or not, enter the following command at any CLI level.

```
device# show ipv6 ospf
OSPFv3 Process number 0 with Router ID 0x10010101(10.1.1.1)
  Running 0 days 0 hours 1 minutes 53 seconds
  Number of AS scoped LSAs is 3
  Sum of AS scoped LSAs Checksum is fabdd4de
  External LSA Limit is 250000
```
Database Overflow Interval is 10
Database Overflow State is NOT OVERFLOWED
Route calculation executed 0 times
Pending outgoing LSA count 0
Authentication key rollover interval 30 seconds
Authentication key add/remove interval 0 seconds
Number of areas in this router is 3
Router is operating as ABR
Router is operating as ASBR, Redistribute: CONNECTED
High Priority Message Queue Full count: 0
BFD is disabled

The output of the `show ipv6 ospf` command indicates if the Extreme device is operating as ASBR. If the device is not operating as ASBR, then there is no information about redistribution in the output.

Displaying OSPFv3 area information

To display global OSPFv3 area information for the device, enter the following command at any CLI level.

```
device# show ipv6 ospf area
```

```
Area 0:
  Interface attached to this area: loopback 2 ethe 3/2 tunnel 2
  Number of Area scoped LSAs is 6
  Statistics of Area 0:
    SPF algorithm executed 16 times
    SPF last updated: 335256 sec ago
    Current SPF node count: 3
    Router: 2 Network: 1
    Maximum of Hop count to nodes: 2
```

Syntax: `show ipv6 ospf area [area-id]`

You can specify the `area-id` parameter in the following formats:

- As an IPv4 address, for example, 192.168.1.1.
- As a numerical value from 0 through 2,147,483,647.

The `area-id` parameter restricts the display to the specified OSPF area.

TABLE 145 show ipv6 ospf area output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>The area number.</td>
</tr>
<tr>
<td>Interface attached to this area</td>
<td>The device interfaces attached to the area.</td>
</tr>
<tr>
<td>Number of Area scoped LSAs is N</td>
<td>Number of LSAs (N) with a scope of the specified area.</td>
</tr>
<tr>
<td>SPF algorithm executed is N</td>
<td>The number of times (N) the OSPF Shortest Path First (SPF) algorithm is executed within the area.</td>
</tr>
<tr>
<td>SPF last updated</td>
<td>The interval in seconds that the SPF algorithm was last executed within the area.</td>
</tr>
<tr>
<td>Current SPF node count</td>
<td>The current number of SPF nodes in the area.</td>
</tr>
<tr>
<td>Router</td>
<td>Number of router LSAs in the area.</td>
</tr>
<tr>
<td>Network</td>
<td>Number of network LSAs in the area.</td>
</tr>
<tr>
<td>Index</td>
<td>The row number of the entry in the router’s OSPF area table.</td>
</tr>
<tr>
<td>Statistics of Area</td>
<td>The number of the area whose statistics are displayed.</td>
</tr>
<tr>
<td>Maximum hop count to nodes.</td>
<td>The maximum number of hop counts to an SPF node within the area.</td>
</tr>
</tbody>
</table>
Displaying OSPFv3 database information

You can display a summary of the device's link state database or detailed information about a specified LSA type.

To display a summary of a device's link state database, enter the following command at any CLI level.

```
device# show ipv6 ospf database
```

LSA Key = Rtr:Router Net:Network Inap:InterPrefix Inar:InterRouter
 Extn:ASExternal Grp:GroupMembership Typ7:Type7 Link:Link
 Iap:IntraPrefix Grc:Grace

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Type</th>
<th>LSID</th>
<th>Adv Rtr</th>
<th>Seq(Hex)</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
<th>Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Iap</td>
<td>10.1.1.1</td>
<td>80000001</td>
<td>3</td>
<td>343d</td>
<td>52</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Iap</td>
<td>10.2.2.2</td>
<td>80000001</td>
<td>8</td>
<td>c61d</td>
<td>58</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 ospf database advrtr ipv4-address | as-external [advrtr ipv4-address | link-id number] | extensive | inter-prefix [advrtr ipv4-address | link-id number] | inter-router [advrtr ipv4-address | link-id number] | intra-prefix [advrtr ipv4-address | link-id number] | link [advrtr ipv4-address | link-id number] | link-id number | network [advrtr ipv4-address | link-id number] | router [advrtr ipv4-address | link-id number]]`

The `advrtr ipv4-address` parameter displays detailed information about the LSAs for a specified advertising router only.

The `as-external` keyword displays detailed information about the AS externals LSAs only.

The `extensive` keyword displays detailed information about all LSAs in the database.

The `inter-prefix` keyword displays detailed information about the inter-area prefix LSAs only.

The `inter-router` keyword displays detailed information about the inter-area router LSAs only.

The `intra-prefix` keyword displays detailed information about the intra-area prefix LSAs only.

The `link` keyword displays detailed information about the link LSAs only.

The `link-id number` parameter displays detailed information about the specified link LSAs only.

The `network number` displays detailed information about the network LSAs only.

The `router number` displays detailed information about the router LSAs only.

The `scope area-id` parameter displays detailed information about the LSAs for a specified area, AS, or link.

TABLE 146 show ipv6 ospf database output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>The OSPF area in which the device resides.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of LSA. LSA types can be the following:</td>
</tr>
<tr>
<td></td>
<td>- Rtr - Router LSAs (Type 1).</td>
</tr>
<tr>
<td></td>
<td>- Net - Network LSAs (Type 2).</td>
</tr>
<tr>
<td></td>
<td>- Inap - Inter-area prefix LSAs for ABRs (Type 3).</td>
</tr>
<tr>
<td></td>
<td>- Inar - Inter-area router LSAs for ASBRs (Type 4).</td>
</tr>
<tr>
<td></td>
<td>- Extn - AS external LSAs (Type 5).</td>
</tr>
<tr>
<td></td>
<td>- Link - Link LSAs (Type 8).</td>
</tr>
<tr>
<td></td>
<td>- Iap - Intra-area prefix LSAs (Type 9).</td>
</tr>
<tr>
<td>LS ID</td>
<td>The ID of LSA in Decimal.</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>The device that advertised the route.</td>
</tr>
<tr>
<td>Seq(Hex)</td>
<td>The sequence number of the LSA. The OSPF neighbor that sent the LSA stamps it with a sequence number to enable the device and other OSPF routers to determine which LSA for a given route is the most recent.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the LSA, in seconds.</td>
</tr>
</tbody>
</table>
Displaying OSPFv3 information

TABLE 146 show ipv6 ospf database output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chksum</td>
<td>A checksum for the LSA packet. The checksum is based on all the fields in the packet except the age field. The device uses the checksum to verify that the packet is not corrupted.</td>
</tr>
<tr>
<td>Len</td>
<td>The length, in bytes, of the LSA.</td>
</tr>
<tr>
<td>Sync</td>
<td>Sync status with the slave management processor (MP).</td>
</tr>
</tbody>
</table>

To display the `show ipv6 ospf database advr` command output, enter the following command at any CLI level:

```
device# show ipv6 ospf database advr 10.4.4.4
LSA Key - Rtr:Router Net:Network Inap:InterPrefix Inar:InterRouter
Extn:ASExternal Grp:GroupMembership Typ7:Type7 Link:Link
Iap:IntraPrefix
Area ID     Type LSID    Adv Rtr     Seq(Hex)  Age  Cksum  Len
1           Iap     0      10.4.4.4     80000001 1085 99fa  44

Number of Prefix: 1
  Referenced LS Type: Router
  Referenced LS ID: 0
  Referenced Advertising Router: 10.4.4.4
  Prefix Options: Metric: 1
  Prefix: 2001:db8:11::/64

LSA Key - Rtr:Router Net:Network Inap:InterPrefix Inar:InterRouter
Extn:ASExternal Grp:GroupMembership Typ7:Type7 Link:Link
Iap:IntraPrefix
Area ID     Type LSID    Adv Rtr     Seq(Hex)  Age  Cksum  Len
1           Typ7     1     10.4.4.4     80000001  394 a8a6  36

  Bits: N--
  Metric: 1
  Prefix Options:
    Referenced LSType: 0
    Prefix: 2001:db8:11::/64
```

To display detailed information about all LSAs in the database, enter the following command at any CLI level:

```
device# show ipv6 ospf database extensive
LSA Key - Rtr:Router Net:Network Inap:InterPrefix Inar:InterRouter
Extn:ASExternal Grp:GroupMembership Typ7:Type7 Link:Link
Iap:IntraPrefix Grc:Grace
Area ID     Type LS ID     Adv Rtr         Seq(Hex)  Age  Cksum  Len
0           Link 00000031  10.1.1.1     80000001  35   6db9   56
  Router Priority: 1
  Options: V6E---R--
  LinkLocal Address: fe80::1
  Number of Prefix: 1
  Prefix Options:
    Prefix: 2001:db8:3002::/64

Area ID     Type LS ID     Adv Rtr         Seq(Hex)  Age  Cksum  Len
0           Iap     00000159  10.223.223.223 800000ab 357 946b  56
  Number of Prefix: 2
  Referenced LS Type: Network
  Referenced LS ID: 00000159
  Referenced Advertising Router: 10.223.223.223
  Prefix Options: Metric: 0
  Prefix: 2001:db8:2000:44::/64
  Prefix Options: Metric: 0
  Prefix: 2001:db8:46a::/64

Area ID     Type LS ID     Adv Rtr         Seq(Hex)  Age  Cksum  Len
0           Rtr 00000039    10.223.223.223 800000b1 355 8f2d  40
  Capability Bits: --EOptions:
    V6E---R--
  Type: Transit Metric: 1
  Interface ID: 00000058 Neighbor Interface ID: 00000058
```
Neighbor Router ID: 10.223.223.223

Area ID Type LS ID Adv Rtr Seq(Hex) Age Cksum Len
0 Net 000001f4 10.223.223.223 800000ab 346 190a 32
Options: V6E---R--
Attached Router: 10.223.223.223
Attached Router: 10.1.1.1

Area ID Type LS ID Adv Rtr Seq(Hex) Age Cksum Len
N/A Extn 000001df 10.223.223.223 800000af 368 0aa8 32
Bits: E
Metric: 00000001
Prefix Options:
Prefix: 2001:db8::/32

Area ID Type LS ID Adv Rtr Seq(Hex) Age Cksum Len
1 Inap 0000011d 10.1.1.188 80000001 124 25de 36
Metric: 2
Prefix Options:
Prefix: 2001:db8:2::/64

Area ID Type LS ID Adv Rtr Seq(Hex) Age Cksum Len
0 Inar 0000005b 10.1.1.198 80000001 990 dbad 32
Options: V6E---R--
Metric: 1
Destination Router ID:10.1.1.188

NOTE
Portions of this display are truncated for brevity. The purpose of this display is to show all possible fields that might display rather than to show complete output.

The fields that display depend upon the LSA type as shown in the following.

TABLE 147 OSPFv3 detailed database information fields

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router LSA (Type 1) (Rtr) Fields</td>
<td></td>
</tr>
<tr>
<td>Capability Bits</td>
<td>A bit that indicates the capability of the device. The bit can be set to one of the following: B - The device is an area border router. E - The device is an AS boundary router. V - The device is a virtual link endpoint. W - The device is a wildcard multicast receiver.</td>
</tr>
<tr>
<td>Options</td>
<td>A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following: V6 - The device should be included in IPv6 routing calculations. E - The device floods AS-external-LSAs as described in RFC 2740. MC - The device forwards multicast packets as described in RFC 1586. N - The device handles type 7 LSAs as described in RFC 1584. R - The originator is an active router. DC -The device handles demand circuits.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of interface. Possible types can be the following: Point-to-point - A point-to-point connection to another router. Transit - A connection to a transit network. Virtual link - A connection to a virtual link.</td>
</tr>
</tbody>
</table>
TABLE 147 OSPFv3 detailed database information fields (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>The cost of using this router interface for outbound traffic.</td>
</tr>
<tr>
<td>Interface ID</td>
<td>The ID assigned to the router interface.</td>
</tr>
<tr>
<td>Neighbor Interface ID</td>
<td>The interface ID that the neighboring router has been advertising in hello packets sent on the attached link.</td>
</tr>
<tr>
<td>Neighbor Router ID</td>
<td>The router ID (IPv4 address) of the neighboring router that advertised the route. (By default, the router ID is the IPv4 address configured on the lowest numbered loopback interface. If the device does not have a loopback interface, the default router ID is the lowest numbered IPv4 address configured on the device.)</td>
</tr>
</tbody>
</table>

Network LSA (Type 2) (Net) Fields

- **Options**: A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following:
 - **V6**: The device should be included in IPv6 routing calculations.
 - **E**: The device floods AS-external-LSAs as described in RFC 2740.
 - **MC**: The device forwards multicast packets as described in RFC 1586.
 - **N**: The device handles type 7 LSAs as described in RFC 1584.
 - **R**: The originator is an active router.
 - **DC**: The device handles demand circuits.

- **Attached Router**: The address of the neighboring router that advertised the route.

Inter-Area Prefix LSA (Type 3) (Inap) Fields

- **Metric**: The cost of the route.
- **Prefix Options**: An 8-bit field describing various capabilities associated with the prefix.
- **Prefix**: The IPv6 prefix included in the LSA.

Inter-Area Router LSA (Type 4) (Inar) Fields

- **Options**: A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following:
 - **V6**: The device should be included in IPv6 routing calculations.
 - **E**: The device floods AS-external-LSAs as described in RFC 2740.
 - **MC**: The device forwards multicast packets as described in RFC 1586.
 - **N**: The device handles type 7 LSAs as described in RFC 1584.
 - **R**: The originator is an active router.
 - **DC**: The device handles demand circuits.

- **Metric**: The cost of the route.
- **Destination Router ID**: The ID of the router described in the LSA.

AS External LSA (Type 5) (Extn) Fields

- **Bits**: The bit can be set to one of the following:
 - **E**: If bit E is set, a Type 2 external metric. If bit E is zero, a Type 1 external metric.
 - **F**: A forwarding address is included in the LSA.
 - **T**: An external route tag is included in the LSA.

- **Metric**: The cost of this route, which depends on bit E.
- **Prefix Options**: An 8-bit field describing various capabilities associated with the prefix.
- **Referenced LS Type**: If non-zero, an LSA with this LS type is associated with the LSA.
- **Prefix**: The IPv6 prefix included in the LSA.
TABLE 147 OSPFv3 detailed database information fields (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link LSA (Type 8) (Link) Fields</td>
<td></td>
</tr>
<tr>
<td>Router Priority</td>
<td>The router priority of the interface attaching the originating router to the link.</td>
</tr>
<tr>
<td>Options</td>
<td>The set of options bits that the router would like set in the network LSA that will be originated for the link.</td>
</tr>
<tr>
<td>Link Local Address</td>
<td>The originating router’s link-local interface address on the link.</td>
</tr>
<tr>
<td>Number of Prefix</td>
<td>The number of IPv6 address prefixes contained in the LSA.</td>
</tr>
<tr>
<td>Prefix Options</td>
<td>An 8-bit field of capabilities that serve as input to various routing calculations:</td>
</tr>
<tr>
<td></td>
<td>• NU - The prefix is excluded from IPv6 unicast calculations.</td>
</tr>
<tr>
<td></td>
<td>• LA - The prefix is an IPv6 interface address of the advertising router.</td>
</tr>
<tr>
<td></td>
<td>• MC - The prefix is included in IPv6 multicast routing calculations.</td>
</tr>
<tr>
<td></td>
<td>• P - NSSA area prefixes are readvertised at the NSSA area border.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The IPv6 prefix included in the LSA.</td>
</tr>
</tbody>
</table>

Intra-Area Prefix LSAs (Type 9) (Iap) Fields

Number of Prefix	The number of prefixes included in the LSA.
Referenced LS Type, Referenced LS ID	Identifies the router-LSA or network-LSA with which the IPv6 address prefixes are associated.
Referenced Advertising Router	The address of the neighboring router that advertised the route.
Prefix Options	An 8-bit field describing various capabilities associated with the prefix.
Metric	The cost of using the advertised prefix.
Prefix	The IPv6 prefix included in the LSA.
Number of Prefix	The number of prefixes included in the LSA.

Displaying IPv6 interface information

You can use the following command to display a summary of IPv6 Interface information.

device# show ipv6 interface

Syntax: show ipv6 interface [ethernet port | loopback number | tunnel number | ve number]

The ethernet, loopback, tunnel, and ve parameters specify the interface for which to display information.

If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a loopback, tunnel, or VE interface, also specify the number associated with the interface.

TABLE 148 show ipv6 interface output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Codes</td>
<td>Shows the routing protocol enabled on the interface. The routing protocol can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• R - RIP</td>
</tr>
<tr>
<td></td>
<td>• O - OSPF</td>
</tr>
<tr>
<td></td>
<td>• I – IS-IS</td>
</tr>
<tr>
<td>Interface</td>
<td>Shows the type, slot, and port number of the interface.</td>
</tr>
</tbody>
</table>
TABLE 148 show ipv6 interface output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stat/Port</td>
<td>Shows the status of the link and the protocol for the interface. The status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Up</td>
</tr>
<tr>
<td></td>
<td>• Down</td>
</tr>
<tr>
<td>IGPs</td>
<td>Shows the type of the Interior Gateway Protocols (IGPs) enabled on the interface.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>Shows the link local IPv6 address configured for the interface.</td>
</tr>
<tr>
<td>VRF</td>
<td>Specifies the VRF to which the interface belongs.</td>
</tr>
</tbody>
</table>

Displaying IPv6 OSPFv3 interface information

IPv6 Interface information can be displayed in either a brief or full mode. The following sections describe the command to display these modes and the resulting output:

- Displaying IPv6 OSPFv3 Interface Information in Brief Mode
- Displaying IPv6 OSPFv3 Interface Information in Full Mode

Displaying IPv6 OSPFv3 interface information in brief mode

You can use the following command to display a summary of IPv6 Interface information.

```
device# show ipv6 ospf interface brief
```

Number of Interfaces is 3

<table>
<thead>
<tr>
<th>Interface</th>
<th>Area</th>
<th>Status</th>
<th>Type</th>
<th>Cost</th>
<th>State</th>
<th>Nbrs(F/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth 1/1</td>
<td>1</td>
<td>up</td>
<td>BCST</td>
<td>1</td>
<td>BDR</td>
<td>0/1</td>
</tr>
<tr>
<td>eth 2/1</td>
<td>1</td>
<td>up</td>
<td>BCST</td>
<td>1</td>
<td>DR</td>
<td>0/0</td>
</tr>
<tr>
<td>loopback 1</td>
<td>1</td>
<td>up</td>
<td>BCST</td>
<td>1</td>
<td>Loopback</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Syntax: show ipv6 ospf interface brief

TABLE 149 show ipv6 ospf interface brief output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Interfaces</td>
<td>Number of OSPFv3-enabled interfaces.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface type, and the port number or number of the interface.</td>
</tr>
<tr>
<td>Area</td>
<td>The OSPF area configured on the interface.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the link and the protocol. Possible status include the following:</td>
</tr>
<tr>
<td></td>
<td>• Up.</td>
</tr>
<tr>
<td></td>
<td>• Down.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of OSPFv3 circuit running on the interface. Possible types include the following:</td>
</tr>
<tr>
<td></td>
<td>• BCST- Broadcast interface type</td>
</tr>
<tr>
<td></td>
<td>• P2P- Point-to-point interface type</td>
</tr>
<tr>
<td></td>
<td>• UNK- The interface type is not known at this time</td>
</tr>
<tr>
<td>Cost</td>
<td>The overhead required to send a packet across an interface.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the interface. Possible states include the following:</td>
</tr>
<tr>
<td></td>
<td>• DR - The interface is functioning as the Designated Router for OSPFv3.</td>
</tr>
</tbody>
</table>
TABLE 149 show ipv6 ospf interface brief output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BDR - The interface is functioning as the Backup Designated Router for OSPFv3.</td>
<td></td>
</tr>
<tr>
<td>• Loopback - The interface is functioning as a loopback interface.</td>
<td></td>
</tr>
<tr>
<td>• P2P - The interface is functioning as a point-to-point interface.</td>
<td></td>
</tr>
<tr>
<td>• Passive - The interface is up but it does not take part in forming an adjacency.</td>
<td></td>
</tr>
<tr>
<td>• Waiting - The interface is trying to determine the identity of the BDR for the network.</td>
<td></td>
</tr>
<tr>
<td>• None - The interface does not take part in the OSPF interface state machine.</td>
<td></td>
</tr>
<tr>
<td>• Down - The interface is unusable. No protocol traffic can be sent or received on such a interface.</td>
<td></td>
</tr>
<tr>
<td>• DR other - The interface is a broadcast or NBMA network on which another router is selected to be the DR.</td>
<td></td>
</tr>
</tbody>
</table>

Nbrs (F/C) | The number of adjacent neighbor routers. The number to the left of the "/" are the neighbor routers that are fully adjacent and the number to the right represents all adjacent neighbor routers.

Displaying IPv6 OSPFv3 interface information in full mode

You can display detailed information about all OSPFv3 interfaces by using the show ipv6 ospf interface command, as the following truncated example illustrates.

device#show ipv6 ospf interface
eth 1/3 is down, type BROADCAST
 Interface is disabled
eth 1/8 is up, type BROADCAST
IPv6 Address:
 2001:db8:18:18:18::1/64
 2001:db8:18:18::/64
Instance ID 255, Router ID 10.1.1.1
 Area ID 1, Cost 1
 State Active (default passive) DR, Transmit Delay 1 sec, Priority 1
 Timer intervals :
 Hello 10, Hello Jitter 10 Dead 40, Retransmit 5
 Authentication: Enabled
 KeyRolloverTime(sec): Configured: 30 Current: 0
 KeyRolloverState: NotActive
 Outbound: SPI:121212, ESP, SHA1
 Key:1234567890123456789012345678901234567890
 Inbound: SPI:121212, ESP, SHA1
 Key:1234567890123456789012345678901234567890
 DR:10.2.2.2 BDR:10.1.1.1 Number of I/F scoped LSAs is 2
 DRElection: 1 times, DelayedLSAck: 83 times
 Neighbor Count = 1, Adjacent Neighbor Count= 1
 Neighbor:
 10.2.2.2 (DR)
 Statistics of interface eth 1/8:
 Type tx rx tx-byte rx-byte
 Unknown 0 0 0 0
 Hello 1415 1408 56592 56320
 DbDesc 3 3 804 804
 LSReq 1 1 28 28
 LSUpdate 193 121 15616 9720
 LSack 85 109 4840 4924
 OSPF messages dropped, no authentication: 0
eth 2/2 is up, type POINT-TO-POINT
IPv6 Address:
 2001:db8:22:22::1/64
 2001:db8:22:22::/64
You can display detailed OSPFv3 information about a specific interface using the following command at any level of the CLI.

Syntax: `show ipv6 ospf interface [brief] [ethernet slot/port] [loopback number] [tunnel number] [ve number]`

The `ethernet`, `loopback`, `tunnel`, and `ve` parameter specify the interface for which to display information. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a loopback, tunnel, or VE interface, also specify the number associated with the interface.

TABLE 150 show ipv6 ospf interface output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface status</td>
<td>The status of the interface. Possible status includes the following:</td>
</tr>
<tr>
<td></td>
<td>• Up.</td>
</tr>
<tr>
<td></td>
<td>• Down.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of OSPFv3 circuit running on the interface. Possible types include the following:</td>
</tr>
<tr>
<td></td>
<td>• BROADCAST</td>
</tr>
<tr>
<td></td>
<td>• POINT TO POINT UNKNOWN</td>
</tr>
<tr>
<td></td>
<td>• POINT TO POINT</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>The IPv6 address assigned to the interface.</td>
</tr>
<tr>
<td>Instance ID</td>
<td>An identifier for an instance of OSPFv3.</td>
</tr>
<tr>
<td>Router ID</td>
<td>The IPv4 address of the device. By default, the router ID is the IPv4 address configured on the lowest numbered loopback interface. If the device does not have a loopback interface, the default router ID is the lowest numbered IPv4 address configured on the device.</td>
</tr>
<tr>
<td>Area ID</td>
<td>The IPv4 address or numerical value of the area in which the interface belongs.</td>
</tr>
<tr>
<td>Cost</td>
<td>The overhead required to send a packet through the interface.</td>
</tr>
<tr>
<td>default</td>
<td>Shows whether or not the default passive state is set.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the interface. Possible states include the following:</td>
</tr>
<tr>
<td></td>
<td>• DR - The interface is functioning as the Designated Router for OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>• BDR - The interface is functioning as the Backup Designated Router for OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>• Loopback - The interface is functioning as a loopback interface.</td>
</tr>
<tr>
<td></td>
<td>• P2P - The interface is functioning as a point-to-point interface.</td>
</tr>
<tr>
<td></td>
<td>• Passive - The interface is up but it does not take part in forming an adjacency.</td>
</tr>
<tr>
<td></td>
<td>• Waiting - The interface is trying to determine the identity of the BDR for the network.</td>
</tr>
</tbody>
</table>
TABLE 150 show ipv6 ospf interface output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit delay</td>
<td>The amount of time, in seconds, it takes to transmit Link State Updates packets on the interface.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority used when selecting the DR and the BDR. If the priority is 0, the interface does not participate in the DR and BDR election.</td>
</tr>
<tr>
<td>Timer intervals</td>
<td>The interval, in seconds, of the hello-interval, dead-interval, and retransmit-interval timers.</td>
</tr>
<tr>
<td>DR</td>
<td>The router ID (IPv4 address) of the DR.</td>
</tr>
<tr>
<td>BDR</td>
<td>The router ID (IPv4 address) of the BDR.</td>
</tr>
<tr>
<td>Number of I/F scoped LSAs</td>
<td>The number of interface LSAs scoped for a specified area, AS, or link.</td>
</tr>
<tr>
<td>DR Election</td>
<td>The number of times the DR election occurred.</td>
</tr>
<tr>
<td>Delayed LSA Ack</td>
<td>The number of the times the interface sent a delayed LSA acknowledgement.</td>
</tr>
<tr>
<td>Neighbor Count</td>
<td>The number of neighbors to which the interface is connected.</td>
</tr>
<tr>
<td>Adjacent Neighbor Count</td>
<td>The number of neighbors with which the interface has formed an active adjacency.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>The router ID (IPv4 address) of the neighbor. This field also identifies the neighbor as a DR or BDR, if appropriate.</td>
</tr>
<tr>
<td>Interface statistics</td>
<td>The following statistics are provided for the interface:</td>
</tr>
<tr>
<td></td>
<td>• Unknown - The number of Unknown packets transmitted and received by the interface. Also, the total number of bytes associated with transmitted and received Unknown packets.</td>
</tr>
<tr>
<td></td>
<td>• Hello - The number of Hello packets transmitted and received by the interface. Also, the total number of bytes associated with transmitted and received Hello packets.</td>
</tr>
<tr>
<td></td>
<td>• DbDesc - The number of Database Description packets transmitted and received by the interface. Also, the total number of bytes associated with transmitted and received Database Description packets.</td>
</tr>
<tr>
<td></td>
<td>• LSReq - The number of link-state requests transmitted and received by the interface. Also, the total number of bytes associated with transmitted and received link-state requests.</td>
</tr>
<tr>
<td></td>
<td>• LSUpdate - The number of link-state updates transmitted and received by the interface. Also, the total number of bytes associated with transmitted and received link-state requests.</td>
</tr>
<tr>
<td></td>
<td>• LSAck - The number of link-state acknowledgements transmitted and received by the interface. Also, the total number of bytes associated with transmitted and received link-state acknowledgements.</td>
</tr>
</tbody>
</table>
Displaying OSPFv3 memory usage

To display information about OSPFv3 memory usage, enter the following command at any level of the CLI.

```
device# show ipv6 ospf memory
```

```
Total Static Memory Allocated : 5829 bytes
Total Dynamic Memory Allocated : 0 bytes
```

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Size</th>
<th>Allocated</th>
<th>Max-alloc</th>
<th>Alloc-Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTYPE_OSPF6_TOP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_LSA_HDR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_RMAP_COMPILED</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_OTHER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_THREAD_MASTER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_AREA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_AREA_RANGE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_SUMMARY_ADDR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_IF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_NEIGHBOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_ROUTE_NODE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_ROUTE_INFO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_PREFIX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_LSA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_VERTEX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_SPTREE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_NEXTHOP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_EXTERNAL_INFO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_THREAD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 ospf memory`

TABLE 151 show ipv6 ospf memory output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Static Memory Allocated</td>
<td>A summary of the amount of static memory allocated, in bytes, to OSPFv3.</td>
</tr>
<tr>
<td>Total Dynamic Memory Allocated</td>
<td>A summary of the amount of dynamic memory allocated, in bytes, to OSPFv3.</td>
</tr>
<tr>
<td>Memory Type</td>
<td>The type of memory used by OSPFv3. (This information is for use by Extreme technical support in case of a problem.)</td>
</tr>
<tr>
<td>Size</td>
<td>The size of a memory type.</td>
</tr>
<tr>
<td>Allocated</td>
<td>The amount of memory currently allocated to a memory type.</td>
</tr>
<tr>
<td>Max-alloc</td>
<td>The maximum amount of memory that was allocated to a memory type.</td>
</tr>
<tr>
<td>Alloc-Fails</td>
<td>The number of times an attempt to allocate memory to a memory type failed.</td>
</tr>
</tbody>
</table>

Displaying OSPFv3 neighbor information

You can display a summary of OSPFv3 neighbor information for the device or detailed information about a specified neighbor.

To display a summary of OSPFv3 neighbor information for the device, enter the following command at any CLI level.

```
device# show ipv6 ospf neighbor
```

```
RouterID     Pri State    DR              BDR         Interface [State]
10.1.1.1     1 Full       10.223.223.223 10.1.1.1 ethe 3/2 [DR]
```

Syntax: `show ipv6 ospf neighbor [router-id ipv4-address]`

The `router-id ipv4-address` parameter displays only the neighbor entries for the specified router.
TABLE 152 show ipv6 ospf neighbor output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The IPv4 address of the neighbor. By default, the router ID is the IPv4</td>
</tr>
<tr>
<td></td>
<td>address configured on the lowest numbered loopback interface. If the</td>
</tr>
<tr>
<td></td>
<td>device does not have a loopback interface, the default router ID is the</td>
</tr>
<tr>
<td></td>
<td>lowest numbered IPv4 address configured on the device.</td>
</tr>
<tr>
<td>Pri</td>
<td>The OSPFv3 priority of the neighbor. The priority is used during election</td>
</tr>
<tr>
<td></td>
<td>of the DR and BDR.</td>
</tr>
<tr>
<td>State</td>
<td>The state between the device and the neighbor. The state can be one of</td>
</tr>
<tr>
<td></td>
<td>the following:</td>
</tr>
<tr>
<td></td>
<td>• Down</td>
</tr>
<tr>
<td></td>
<td>• Attempt</td>
</tr>
<tr>
<td></td>
<td>• Init</td>
</tr>
<tr>
<td></td>
<td>• 2-Way</td>
</tr>
<tr>
<td></td>
<td>• ExStart</td>
</tr>
<tr>
<td></td>
<td>• Exchange</td>
</tr>
<tr>
<td></td>
<td>• Loading</td>
</tr>
<tr>
<td></td>
<td>• Full</td>
</tr>
<tr>
<td>DR</td>
<td>The router ID (IPv4 address) of the DR.</td>
</tr>
<tr>
<td>BDR</td>
<td>The router ID (IPv4 address) of the BDR.</td>
</tr>
<tr>
<td>Interface [State]</td>
<td>The interface through which the router is connected to the neighbor. The</td>
</tr>
<tr>
<td></td>
<td>state of the interface can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• DR - The interface is functioning as the Designated Router for OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>• BDR - The interface is functioning as the Backup Designated Router for</td>
</tr>
<tr>
<td></td>
<td>OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>• Loopback - The interface is functioning as a loopback interface.</td>
</tr>
<tr>
<td></td>
<td>• P2P - The interface is functioning as a point-to-point interface.</td>
</tr>
<tr>
<td></td>
<td>• Passive - The interface is up but it does not take part in forming</td>
</tr>
<tr>
<td></td>
<td>an adjacency.</td>
</tr>
<tr>
<td></td>
<td>• Waiting - The interface is trying to determine the identity of the</td>
</tr>
<tr>
<td></td>
<td>BDR for the network.</td>
</tr>
<tr>
<td></td>
<td>• None - The interface does not take part in the OSPF interface state</td>
</tr>
<tr>
<td></td>
<td>machine.</td>
</tr>
<tr>
<td></td>
<td>• Down - The interface is unusable. No protocol traffic can be sent or</td>
</tr>
<tr>
<td></td>
<td>received on such an interface.</td>
</tr>
<tr>
<td></td>
<td>• DR other - The interface is a broadcast or NBMA network on which another</td>
</tr>
<tr>
<td></td>
<td>router is selected to be the DR.</td>
</tr>
</tbody>
</table>

For example, to display detailed information about a neighbor with the router ID of 10.1.1.1, enter the `show ipv6 ospf neighbor router-id` command at any CLI level.

device# show ipv6 ospf neighbor router-id 10.3.3.3
RouterID Pri State DR BDR Interface [State]
10.3.3.3 1 Full 10.3.3.3 10.1.1.1 ve 10 [BDR]
DbDesc bit for this neighbor: --s
Nbr Ifindex of this router: 1
Nbr DDRDecision: DR 10.3.3.3, BDR 10.1.1.1
Last received DbDesc: opt:xxx ifmtu:0 bit:--s seqnum:0
Number of LSAs in DbDesc retransmitting: 0
Number of LSAs in SummaryList: 0
Number of LSAs in RequestList: 0
Number of LSAs in RetransList: 0
SeqnumMismatch 0 times, BadLSReq 0 times
OnewayReceived 0 times, InactivityTimer 0 times
TABLE 153 show ipv6 ospf neighbor router-id output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The IPv4 address of the neighbor. By default, the router ID is the IPv4 address configured on the lowest numbered loopback interface. If the device does not have a loopback interface, the default router ID is the lowest numbered IPv4 address configured on the device.</td>
</tr>
<tr>
<td>Pri</td>
<td>The OSPFv3 priority of the neighbor. The priority is used during election of the DR and BDR.</td>
</tr>
</tbody>
</table>
| State | The state between the device and the neighbor. The state can be one of the following:
 - Down
 - Attempt
 - Init
 - 2-Way
 - ExStart
 - Exchange
 - Loading
 - Full |
| DR | The router ID (IPv4 address) of the DR. |
| BDR | The router ID (IPv4 address) of the BDR. |
| Interface [State] | The interface through which the router is connected to the neighbor. The state of the interface can be one of the following:
 - DR - The interface is functioning as the Designated Router for OSPFv3.
 - BDR - The interface is functioning as the Backup Designated Router for OSPFv3.
 - Loopback - The interface is functioning as a loopback interface.
 - P2P - The interface is functioning as a point-to-point interface.
 - Passive - The interface is up but it does not take part in forming an adjacency.
 - Waiting - The interface is trying to determine the identity of the BDR for the network.
 - None - The interface does not take part in the OSPF interface state machine.
 - Down - The interface is unusable. No protocol traffic can be sent or received on such a interface.
 - DR other - The interface is a broadcast or NBMA network on which another router is selected to be the DR. |
| DbDesc bit | The Database Description packet, which includes 3 bits of information:
 - The first bit can be "i" or "-". "i" indicates the inet bit is set. "-" indicates the inet bit is not set.
 - The second bit can be "m" or "-". "m" indicates the more bit is set. "-" indicates the more bit is not set.
 - The third bit can be "m" or "s". An "m" indicates the master. An "s" indicates standby. |
| Index | The ID of the LSA from which the neighbor learned of the router. |
| DR Decision | The router ID (IPv4 address) of the neighbor’s elected DR and BDR. |
TABLE 153 show ipv6 ospf neighbor router-id output descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Received Db Desc</td>
<td>The content of the last database description received from the specified neighbor.</td>
</tr>
<tr>
<td>Number of LSAs in Db Desc retransmitting</td>
<td>The number of LSAs that need to be retransmitted to the specified neighbor.</td>
</tr>
<tr>
<td>Number of LSAs in Summary List</td>
<td>The number of LSAs in the neighbor’s summary list.</td>
</tr>
<tr>
<td>Number of LSAs in Request List</td>
<td>The number of LSAs in the neighbor’s request list.</td>
</tr>
<tr>
<td>Number of LSAs in Retransmit List</td>
<td>The number of LSAs in the neighbor’s retransmit list.</td>
</tr>
<tr>
<td>Seqnum Mismatch</td>
<td>The number of times sequence number mismatches occurred.</td>
</tr>
<tr>
<td>BadLSReq</td>
<td>The number of times the neighbor received a bad link-state request from the device.</td>
</tr>
<tr>
<td>One way received</td>
<td>The number of times a hello packet, which does not mention the router, is received from the neighbor. This omission in the hello packet indicates that the communication with the neighbor is not bidirectional.</td>
</tr>
<tr>
<td>Inactivity Timer</td>
<td>The number of times that the neighbor’s inactivity timer expired.</td>
</tr>
<tr>
<td>Db Desc Retransmission</td>
<td>The number of times sequence number mismatches occurred.</td>
</tr>
<tr>
<td>LSReqRetrans</td>
<td>The number of times the neighbor retransmitted link-state requests to the device.</td>
</tr>
<tr>
<td>LSUpdateRetrans</td>
<td>The number of times the neighbor retransmitted link-state updates to the device.</td>
</tr>
<tr>
<td>LSA Received</td>
<td>The number of times the neighbor received LSAs from the device.</td>
</tr>
<tr>
<td>LS Update Received</td>
<td>The number of times the neighbor received link-state updates from the device.</td>
</tr>
</tbody>
</table>

Displaying routes redistributed into OSPFv3

You can display all IPv6 routes or a specified IPv6 route that the device has redistributed into OSPFv3.

To display all IPv6 routes that the device has redistributed into OSPFv3, enter the following command at any level of the CLI.

```
device# show ipv6 ospf redistribute route
```

Syntax: `show ipv6 ospf redistribute route [ipv6-prefix]`

The `ipv6-prefix` parameter specifies an IPv6 network prefix. (You do not need to specify the length of the prefix.)

For example, to display redistribution information for the prefix `2001:db8::`, enter the following command at any level of the CLI.

```
device# show ipv6 ospf redistribute route 2001:db8:
```

Table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>An ID for the redistributed route.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The IPv6 routes redistributed into OSPFv3.</td>
</tr>
</tbody>
</table>
TABLE 154 show ipv6 ospf redistribute route output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>The protocol from which the route is redistributed into OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>Redistributed protocols can be the following:</td>
</tr>
<tr>
<td></td>
<td>• BGP - BGP4+.</td>
</tr>
<tr>
<td></td>
<td>• RIP - RIPng.</td>
</tr>
<tr>
<td></td>
<td>• IS-IS - IPv6 IS-IS.</td>
</tr>
<tr>
<td></td>
<td>• Static - IPv6 static route table.</td>
</tr>
<tr>
<td></td>
<td>• Connected - A directly connected network.</td>
</tr>
<tr>
<td>Metric Type</td>
<td>The metric type used for routes redistributed into OSPFv3. The metric</td>
</tr>
<tr>
<td></td>
<td>type can be the following:</td>
</tr>
<tr>
<td></td>
<td>• Type-1 - Specifies a small metric (2 bytes).</td>
</tr>
<tr>
<td></td>
<td>• Type-2 - Specifies a big metric (3 bytes).</td>
</tr>
<tr>
<td>Metric</td>
<td>The value of the default redistribution metric, which is the OSPF cost</td>
</tr>
<tr>
<td></td>
<td>of redistributing the route into OSPFv3.</td>
</tr>
</tbody>
</table>

Displaying OSPFv3 route information

You can display the entire OSPFv3 route table for the device or only the route entries for a specified destination.

To display the entire OSPFv3 route table for the device, enter the following command at any level of the CLI.

```
device# show ipv6 ospf route
Current Route count: 4
    Intra: 4 Inter: 0 External: 0 (Type1 0/Type2 0)
    Equal-cost multi-path: 0
    OSPF Type: IA- Intra, OA - Inter, E1 - External Type1, E2 - External Type2
    Destination Cost E2Cost Tag Flags Dis
    IA 2001:db8:200:1::1/128 Outgoing_Interface Adv_Router
        ::           loopback 1    10.1.2.1
        Cost E2Cost Tag Flags Dis
    Destination IA 2001:db8:300:1::1/128 Outgoing_Interface Adv_Router
        ::           loopback 2    10.1.2.1
        Cost E2Cost Tag Flags Dis
    Destination IA 2001:db8:400:1::1/128 Outgoing_Interface Adv_Router
        ::           loopback 1    10.1.2.1
        Cost E2Cost Tag Flags Dis
    Destination IA 2001:db8:500:1::1/128 Outgoing_Interface Adv_Router
        ::           loopback 2    10.1.2.1
        Cost E2Cost Tag Flags Dis
```

Syntax: `show ipv6 ospf routes [ipv6-prefix]`

The `ipv6-prefix` parameter specifies a destination IPv6 prefix. (You do not need to specify the length of the prefix.) If you use this parameter, only the route entries for this destination are shown.

For example, to display route information for the destination prefix 2000::, enter the following command at any level of the CLI.

```
device# show ipv6 ospf routes 2000::
    Destination Cost E2Cost Tag Flags Dis
    IA 2000::/64 Outgoing_Interface Adv_Router
        ::           eth 1/1    10.1.1.1
```

Extremet NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06
TABLE 155 OSPFv3 route information

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Route Count (Displays with the entire OSPFv3 route table only)</td>
<td>The number of route entries currently in the OSPFv3 route table.</td>
</tr>
<tr>
<td>Intra/Inter/External (Type1/Type2) (Displays with the entire OSPFv3 route table only)</td>
<td>The breakdown of the current route entries into the following route types:
 - Inter - The number of routes that pass into another area.
 - Intra - The number of routes that are within the local area.
 - External1 - The number of type 1 external routes.
 - External2 - The number of type 2 external routes.</td>
</tr>
<tr>
<td>Equal-cost multi-path (Displays with the entire OSPFv3 route table only)</td>
<td>The number of equal-cost routes to the same destination in the OSPFv3 route table. If load sharing is enabled, the device equally distributes traffic among the routes.</td>
</tr>
<tr>
<td>Destination</td>
<td>The IPv6 prefixes of destination networks to which the device can forward IPv6 packets. "*IA" indicates the next router is an intra-area router.</td>
</tr>
<tr>
<td>Cost</td>
<td>The type 1 cost of this route.</td>
</tr>
<tr>
<td>E2 Cost</td>
<td>The type 2 cost of this route.</td>
</tr>
<tr>
<td>Tag</td>
<td>The route tag for this route.</td>
</tr>
<tr>
<td>Flags</td>
<td>Flags associated with this route.</td>
</tr>
<tr>
<td>Dis</td>
<td>Administrative Distance for this route.</td>
</tr>
<tr>
<td>Next-Hop Router</td>
<td>The IPv6 address of the next router a packet must traverse to reach a destination.</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>The router interface through which a packet must traverse to reach the next-hop router.</td>
</tr>
<tr>
<td>Adv_Router</td>
<td>The IP address of the advertising router.</td>
</tr>
</tbody>
</table>

Displaying OSPFv3 SPF information

You can display the following OSPFv3 SPF information:

- SPF node information for a specified area.
- SPF table for a specified area.
- SPF tree for a specified area.

For example, to display information about SPF nodes in area 0, enter the `show ipv6 ospf spf node area` command at any level of the CLI.

```
device# show ipv6 ospf spf node area 0
SPF node for Area 0
SPF node 10.223.223.223,  cost: 0,  hops: 0
  nexthops to node: 
    parent nodes: 
      child nodes: 10.223.223.223:88
SPF node 10.223.223.223:88,  cost: 1,  hops: 1
  nexthops to node: 
    ethe 3/2
    parent nodes: 10.223.223.223
    child nodes: 10.1.1.1:0
SPF node 10.1.1.1:0,  cost: 1,  hops: 2
  nexthops to node: 
    fe80::2e0:52ff:fe91:bb37 ethe 3/2
    parent nodes: 10.223.223.223:88
    child nodes: 

Syntax: show ipv6 ospf spf node area [area-id]
```

The node keyword displays SPF node information.
The `area area-id` parameter specifies a particular area. You can specify the `area-id` in the following formats:

- As an IPv4 address; for example, 192.168.1.1.
- As a numerical value from 0 through 2,147,483,647.

TABLE 156 show ipv6 ospf spf node area output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF node</td>
<td>Each SPF node is identified by its device ID (IPv4 address). If the node is a child node, it is additionally identified by an interface on which the node can be reached appended to the router ID in the format <code>router-id:interface-id</code>.</td>
</tr>
<tr>
<td>Cost</td>
<td>The cost of traversing the SPF node to reach the destination.</td>
</tr>
<tr>
<td>Hops</td>
<td>The number of hops needed to reach the parent SPF node.</td>
</tr>
<tr>
<td>Next Hops to Node</td>
<td>The IPv6 address of the next hop-router or the router interface through which to access the next-hop router.</td>
</tr>
<tr>
<td>Parent Nodes</td>
<td>The SPF node’s parent nodes. A parent node is an SPF node at the highest level of the SPF tree, which is identified by its router ID.</td>
</tr>
<tr>
<td>Child Nodes</td>
<td>The SPF node’s child nodes. A child node is an SPF node at a lower level of the SPF tree, which is identified by its router ID and interface on which the node can be reached.</td>
</tr>
</tbody>
</table>

For example, to display the SPF table for area 0, enter the following command at any level of the CLI.

```sh
device# show ipv6 ospf spf table area 0
```

SPF table for Area 0

<table>
<thead>
<tr>
<th>Destination</th>
<th>Bits</th>
<th>Options</th>
<th>Cost</th>
<th>Nexthop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 10.1.1.1</td>
<td>----</td>
<td>V6E-----R</td>
<td>1</td>
<td>fe80::2e0:52ff:fe91:bb37</td>
<td>ethe 3/2</td>
</tr>
<tr>
<td>N 10.223.223.223[88]</td>
<td>----</td>
<td>V6E-----R</td>
<td>1</td>
<td>::</td>
<td>ethe 3/2</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 ospf spf table area area-id`

The `table` parameter displays the SPF table.

The `area area-id` parameter specifies a particular area. You can specify the `area-id` in the following formats:

- As an IPv4 address, for example, 192.168.1.1.
- As a numerical value from 0 through 2,147,483,647.

TABLE 157 show ipv6 ospf spf table area output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The destination of a route, which is identified by the following:</td>
</tr>
<tr>
<td></td>
<td>• "R", which indicates the destination is a router. "N", which indicates the destination is a network.</td>
</tr>
<tr>
<td></td>
<td>• An SPF node's device ID (IPv4 address). If the node is a child node, it is additionally identified by an interface on which the node can be reached appended to the router ID in the format <code>router-id:interface-id</code>.</td>
</tr>
<tr>
<td>Bits</td>
<td>A bit that indicates the capability of the device. The bit can be set to one of the following:</td>
</tr>
<tr>
<td></td>
<td>• B - The device is an area border router.</td>
</tr>
<tr>
<td></td>
<td>• E - The device is an AS boundary router.</td>
</tr>
<tr>
<td></td>
<td>• V - The device is a virtual link endpoint.</td>
</tr>
<tr>
<td></td>
<td>• W - The device is a wildcard multicast receiver.</td>
</tr>
<tr>
<td>Options</td>
<td>A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following:</td>
</tr>
</tbody>
</table>
TABLE 157 show ipv6 ospf spf table area output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>V6</td>
<td>The router should be included in IPv6 routing calculations.</td>
</tr>
<tr>
<td>E</td>
<td>The router floods AS-external-LSAs as described in RFC 2740.</td>
</tr>
<tr>
<td>MC</td>
<td>The router forwards multicast packets as described in RFC 1586.</td>
</tr>
<tr>
<td>N</td>
<td>The router handles type 7 LSAs as described in RFC 1584.</td>
</tr>
<tr>
<td>R</td>
<td>The originator is an active router.</td>
</tr>
<tr>
<td>DC</td>
<td>The router handles demand circuits.</td>
</tr>
<tr>
<td>Cost</td>
<td>The cost of traversing the SPF node to reach the destination.</td>
</tr>
<tr>
<td>Next hop</td>
<td>The IPv6 address of the next hop-router.</td>
</tr>
<tr>
<td>Interface</td>
<td>The router interface through which to access the next-hop router.</td>
</tr>
</tbody>
</table>

For example, to display the SPF tree for area 0, enter the following command at any level of the CLI.

```
device# show ipv6 ospf spf tree area 0
SPF tree for Area 0
  +-- 10.223.223.223 cost 0
  |  +-- 10.223.223.223:88 cost 1
  |  +-- 10.1.1.1:0 cost 1
```

Syntax: `show ipv6 ospf spf tree area area-id`

The `tree` keyword displays the SPF table.

The `area area-id` parameter specifies a particular area. You can specify the `area-id` in the following formats:

- As an IPv4 address; for example, 192.168.1.1.
- As a numerical value from 0 through 2,147,483,647.

In this sample output, consider the SPF node with the router ID 10.223.223.223 to be the top (root) of the tree and the local router. Consider all other layers of the tree (10.223.223.223:88 and 10.1.1.1:0) to be destinations in the network. Therefore, traffic destined from router 10.223.223.223 to router 10.1.1.1:0 must first traverse router 10.223.223.223:88.

Displaying OSPFv3 GR Helper mode information

Run the `show ipv6 ospf` command to display information about the graceful restart helper mode.

```
device# (config-ospf6-router)#show ipv6 ospf
OSPFV3 Process number 0 with Router ID 0x10010101(10.1.1.1)
Running 0 days 0 hours 18 minutes 21 seconds
Number of AS scoped LSAs is 0
Sum of AS scoped LSAs Checksum is 00000000
External LSA Limit is 250000
Database Overflow Interval is 10
Database Overflow State is NOT OVERFLOWED
Nonstop-routing is ENABLED
Route calculation executed 0 times
Pending outgoing LSA count 0
Authentication key rollover interval 300 seconds
Number of areas in this router is 1
High Priority Message Queue Full count: 0
BFD is disabled
Graceful restart helper is enabled, strict lsa checking enabled
```
Displaying OSPFv3 NSR information

Run the `show ipv6 ospf` command to display information about the NSR support.

```
device# (config-ospf6-router)#show ipv6 ospf
OSPFv3 Process number 0 with Router ID 0x10010101(10.1.1.1)
    Running 0 days 0 hours 18 minutes 21 seconds
    Number of AS scoped LSAs is 0
    Sum of AS scoped LSAs Checksum is 00000000
    External LSA Limit is 250000
    Database Overflow Interval is 10
    Database Overflow State is NOT OVERFLOWED
    Nonstop-routing is ENABLED
    Route calculation executed 0 times
    Pending outgoing LSA count 0
    Authentication key rollover interval 300 seconds
    Number of areas in this router is 1
    High Priority Message Queue Full count: 0
    BFD is disabled
    Graceful restart helper is enabled, strict lsa checking enabled
```

Displaying OSPFv3 max-metric router LSA information

Run the `show ipv6 ospf` command to display information about the NSR support.

```
device# (config-ospf6-router)#show ipv6 ospf
OSPFv3 Process number 0 with Router ID 0x01010101(1.1.1.1)
    Running 0 days 0 hours 11 minutes 56 seconds
    Number of AS scoped LSAs is 0
    Sum of AS scoped LSAs Checksum is 00000000
    External LSA Limit is 250000
    Database Overflow Interval is 10
    Database Overflow State is NOT OVERFLOWED
    Route calculation executed 1 times
    Pending outgoing LSA count 0
    Authentication key rollover interval 300 seconds
    Number of areas in this router is 1
    High Priority Message Queue Full count: 0
    BFD is disabled
    Graceful restart helper is disabled
    Originate LSAs with maximum metric on startup, rem time 58 sec
    Include stub
    Additional LSAs originated with maximum metric:
    LSA Type Metric Value
    Summary 16711680
    External 16711680
```

Displaying IPv6 OSPF virtual link information

To display OSPFv3 virtual link information on a NetIron device, enter the `show ipv6 ospf virtual-link` command at any level of the CLI.

```
device# show ipv6 ospf virtual-link
Transit Area ID  Router ID     Interface Address         State
1         1    10.1.1.1        201:db8::2               P2P
```

Syntax: show ipv6 ospf virtual-link

TABLE 158 show ipv6 ospf virtual-link output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index number associated with the virtual link.</td>
</tr>
<tr>
<td>Transit Area ID</td>
<td>The ID of the shared area of two ABRs that serves as a connection point between the two routers.</td>
</tr>
</tbody>
</table>
TABLE 158 show ipv6 ospf virtual-link output descriptions (continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>Router ID of the router at the other end of the virtual link (virtual neighbor).</td>
</tr>
<tr>
<td>Interface Address</td>
<td>The local address used to communicate with the virtual neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the virtual link. Possible states include the following:</td>
</tr>
<tr>
<td></td>
<td>• P2P - The link is functioning as a point-to-point interface.</td>
</tr>
<tr>
<td></td>
<td>• DOWN - The link is down.</td>
</tr>
</tbody>
</table>

Displaying OSPFv3 virtual neighbor information

To display OSPFv3 virtual neighbor information for the device, enter the following command at the enabled level of the CLI.

```
device# show ipv6 ospf virtual-neighbor
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Router ID</th>
<th>Address</th>
<th>State</th>
<th>Interface</th>
</tr>
</thead>
</table>

Syntax: show ipv6 ospf virtual-neighbor [brief]

The `brief` option results in an output that omits the Option, QCount, and Timer fields.

TABLE 159 show ipv6 ospf virtual-neighbor output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index number associated with the virtual neighbor.</td>
</tr>
<tr>
<td>Router ID</td>
<td>IPv4 address of the virtual neighbor.</td>
</tr>
<tr>
<td>Address</td>
<td>The IPv6 address to be used for communication with the virtual neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The state between the device and the virtual neighbor. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Down</td>
</tr>
<tr>
<td></td>
<td>• Attempt</td>
</tr>
<tr>
<td></td>
<td>• Init</td>
</tr>
<tr>
<td></td>
<td>• 2-Way</td>
</tr>
<tr>
<td></td>
<td>• ExStart</td>
</tr>
<tr>
<td></td>
<td>• Exchange</td>
</tr>
<tr>
<td></td>
<td>• Loading</td>
</tr>
<tr>
<td></td>
<td>• Full</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface type.</td>
</tr>
<tr>
<td>Option</td>
<td>The bits set in the virtual-link hello or database descriptors.</td>
</tr>
<tr>
<td>QCount</td>
<td>The number of packets that are in the queue and ready for transmission. If the system is stable, this number should always be 0.</td>
</tr>
<tr>
<td>Timer</td>
<td>A timer that counts down until a hello packet should arrive. If "timers" elapses and a hello packet has not arrived, the VL neighbor is declared to be down.</td>
</tr>
</tbody>
</table>

IPsec examples

This section contains examples of IPsec configuration and the output from the IPsec-specific `show` commands. In addition, IPsec-related information appears in general `show` command output for interfaces and areas.
The `show` commands that are specific to IPsec are:

- `show ipsec sa`
- `show ipsec policy`
- `show ipsec statistics`

The other `show` commands with IPsec-related information are:

- `show ipv6 ospf area`
- `show ipv6 ospf interface`
- `show ipv6 ospf vrf`

Showing IPsec security association information

The `show ipsec sa` command displays the IPSec security association databases, as follows.

```
device# show ipsec sa
IPSEC Security Association Database (Entries:8)
SPID(vrf:if) Dir Encap SPI  Destination       AuthAlg EncryptAlg
1:ALL   in  ESP  512        2001:db8:1::1  sha1     Null
1:e1/1  out ESP 302        ::                  sha1     Null
1:e1/1  in  ESP 302        FE80::             sha1     Null
1:e1/1  out ESP 512        2001:db8:1::2  sha1     Null
2:ALL   in  ESP 512        2001:db8:1::1  sha1     Null
2:e1/2  out ESP 302        ::                  sha1     Null
2:e1/2  in  ESP 302        FE80::             sha1     Null
2:e1/2  out ESP 512        2001:db8:1::2  sha1     Null
```

Syntax: `show ipsec sa`

Showing IPsec policy

The `show ipsec policy` command displays the database for the IPsec security policies. The fields for this `show` command output appear in the screen output example that follows. However, you should understand the layout and column headings for the display before trying to interpret the information in the example screen.

Each policy entry consists of two categories of information:

- The policy information
- The SA used by the policy

The policy information line in the screen begins with the heading Ptype and also has the headings Dir, Proto, Source (Prefix:TCP/UDP Port), and Destination (Prefix:TCP/UDP Port). The SA line contains the SPDID, direction, encapsulation (always ESP in the current release), the user-specified SPI.

```
device# show ipsec policy
IPSEC Security Policy Database (Entries:8)
PType Dir Proto Source(Prefix:TCP/UDP Port) Destination(Prefix:TCP/UDP Port)
SA: SPDID(vrf:if) Dir Encap SPI  Destination
use  in  OSPF  FE80::/10: any
     ::/0: any
SA: 2:e1/2   in  ESP  302        FE80::
use  out OSPF FE80::/10: any
     ::/0: any
SA: 2:e1/2   out ESP  302        ::
use  in OSPF FE80::/10: any
     ::/0: any
SA: 1:e1/1   in  ESP  302        FE80::
use  out OSPF FE80::/10: any
     ::/0: any
SA: 1:e1/1   out ESP  302        ::
```
Syntax: show ipsec policy

TABLE 160 show ipsec policy output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>PType</td>
<td>This field contains the policy type. Of the existing policy types, only the “use” policy type is supported, so each entry can have only “use.”</td>
</tr>
<tr>
<td>Dir</td>
<td>The direction of traffic flow to which the IPsec policy is applied. Each direction has its own entry.</td>
</tr>
<tr>
<td>Proto</td>
<td>The only possible routing protocol for the security policy in the current release is OSPFv3.</td>
</tr>
<tr>
<td>Source</td>
<td>The source address consists of the IPv6 prefix and the TCP or UDP port identifier.</td>
</tr>
<tr>
<td>Destination</td>
<td>The destination address consists of the IPv6 prefix. Certain logical elements have a bearing on the meaning of the destination address and its format, as follows: For IPsec on an interface or area, the destination address is shown as a prefix of 0xFE80 (link local). The solitary “::” (no prefix) indicates a “do not care” situation because the connection is multicast. In this case, the security policy is enforced without regard for the destination address. For a virtual link (SPDID = 0), the address is required.</td>
</tr>
</tbody>
</table>

TABLE 161 SA used by the policy

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>This heading points at the SA-related headings for information used by the security policy. Thereafter, on each line of this part of the IPsec entry (which alternates with lines of policy information, “SA:” points at the fields under those SA-related headings. The remainder of this table describes each of the SA-related items.</td>
</tr>
<tr>
<td>SPDID</td>
<td>The security policy database identifier (SPDID) consists of two parts; the first part is an VRF id and the second part is an interface ID. The SPDID 0/ALL is a global database for the default VRF that applies to all interfaces.</td>
</tr>
<tr>
<td>Dir</td>
<td>The Dir field is either “in” for inbound or “out” for outbound.</td>
</tr>
<tr>
<td>Encap</td>
<td>The type of encapsulation in the current release is ESP.</td>
</tr>
<tr>
<td>SPI</td>
<td>Security parameter index.</td>
</tr>
<tr>
<td>Destination</td>
<td>The IPv6 address of the destination endpoint. From the standpoint of the near interface and the area, the destination is not relevant and therefore appears as .::/any. For a virtual link, both the inbound and outbound destination addresses are relevant.</td>
</tr>
</tbody>
</table>

Showing IPsec statistics

The show ipsec statistics command displays the error and other counters for IPsec, as this example shows,

```
device# show ipsec statistics
IPSec Security Statistics
```

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06
767
secEspCurrentInboundSAs 1 ipsecEspTotalInboundSAs: 2
secEspCurrentOutboundSA 1 ipsecEspTotalOutboundSAs: 2

IPSecurity Packet Statistics
secEspTotalInPkts: 19 ipsecEspTotalInPktsDrop: 0
secEspTotalOutPkts: 83

IPSecurity Error Statistics
secAuthenticationErrors 0
secReplayErrors: 0 ipsecPolicyErrors: 13
secOtherReceiveErrors: 0 ipsecSendErrors: 0
secReplayErrors: 0 ipsecPolicyErrors: 13
secOtherReceiveErrors: 0 ipsecSendErrors: 0
secUnknownSpiErrors: 0

Syntax: show ipsec statistics

This command takes no parameters.

Displaying IPsec configuration for an area

The show ipv6 ospf area command includes information about IPsec for one area or all areas. In the following example, the IPsec information is in bold. IPsec is enabled in the first area (area 0) in this example but not in area 3. Note that in area 3, the IPsec key was specified as not encrypted.

device(config-ospf6-router)# show ipv6 ospf area
Area 0:
 Authentication: Not Configured
 Active interface(s) attached to this area: eth 1/1
 Inactive interface(s) attached to this area: None
 Number of Area scoped LSAs is 2
 Sum of Area LSAs Checksum is 00021139
 Statistics of Area 1:
 SPF algorithm executed 1 times
 SPF last updated: 111 sec ago
 Current SPF node count: 1
 Router: 1 Network: 0
 Maximum of Hop count to nodes: 0
Area 1: Area is NSSA, no redistribution
 Authentication: Not Configured
 NSSA translator status: Enabled, NSSA translator interval: 40 sec
 Active interface(s) attached to this area: eth 1/1
 Inactive interface(s) attached to this area: None
 Number of Area scoped LSAs is 2
 Sum of Area LSAs Checksum is 00021139
 Statistics of Area 1:
 SPF algorithm executed 1 times
 SPF last updated: 111 sec ago
 Current SPF node count: 1
 Router: 1 Network: 0
 Maximum of Hop count to nodes: 0
Area 2: Area is stub
 Authentication: Not Configured
 Active interface(s) attached to this area: None
 Inactive interface(s) attached to this area: None
 Number of Area scoped LSAs is 0
 Sum of Area LSAs Checksum is 00000000
 Statistics of Area 2:
 SPF algorithm executed 0 times
 SPF last updated: 89562 sec ago
 Current SPF node count: 0
 Router: 0 Network: 0
 Maximum of Hop count to nodes: 0
Area 3: Area is NSSA, no summary
 Authentication: Not Configured
 NSSA translator status: Elected, NSSA translator interval: 60 sec
 Active interface(s) attached to this area: eth 1/4
 Inactive interface(s) attached to this area: None
 Number of Area scoped LSAs is 1
Statistics of Area 1:
- SPF algorithm executed 1 times
- SPF last updated: 111 sec ago
- Current SPF node count: 1
- Router: 1 Network: 0
- Maximum of Hop count to nodes: 0

Syntax: `show ipv6 ospf area [area-id]`

The `area-id` parameter restricts the display to the specified OSPF area. You can specify the `area-id` parameter in the following formats:

- An IPv6 address, for example, 2001:db8::10
- A numerical value in the range 0 through 2,147,483,647

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>This field shows whether or not authentication is configured. If this field says “Not Configured,” the IPsec-related fields (bold in example screen output) are not displayed at all.</td>
</tr>
<tr>
<td>KeyRolloverTime</td>
<td>The number of seconds between each initiation of a key rollover. This field shows the configured and current times.</td>
</tr>
</tbody>
</table>
| KeyRolloverState | Can be:
- Not active: key rollover is not active.
- Active phase 1: rollover is in its first interval.
- Active phase 2: rollover is in its second interval. |
| Current | Shows current SPI, authentication algorithm (currently ESP only), encryption algorithm (currently SHA1 only), and the current key. |
| New | Shows new SPI (if changed), authentication algorithm (currently ESP only), encryption algorithm (currently SHA1 only), and the new key. |
| Old | Shows old SPI (if changed), authentication algorithm (currently ESP only), encryption algorithm (currently SHA1 only), and the old key. |

Displaying IPsec for an interface

To see IPsec configuration for a particular interface or all interfaces, use the `show ipv6 ospf interface` command as in the following example. IPsec information appears in bold.

device# show ipv6 ospf interface
eth 1/3 is down, type BROADCAST
 Interface is disabled
eth 1/8 is up, type BROADCAST
 IPv6 Address: 2001:db8:18:18:18::1/64
 2001:db8:18:18::/64
 Instance ID 255, Router ID 10.1.1.1
 Area ID 1, Cost 1
 State BDR, Transmit Delay 1 sec, Priority 1
 Timer intervals:
 Hello 10, Hello Jitter 10
 Dead 40, Retransmit 5
 Authentication:Enabled
 KeyRolloverTime (sec): Configured: 30 Current: 0
 KeyRolloverState: NotActive
 Outbound: SPI:121212, ESP, SHA1
 Key:1234567890123456789012345678901234567890
 Inbound: SPI:121212, ESP, SHA1
 Key:1234567890123456789012345678901234567890
 DR:10.2.2.2 BDR:10.1.1.1 Number of I/F scoped LSAs is 2
 DRElection: 1 times, DelayedLSAck: 83 times
 Neighbor Count = 1, Adjacent Neighbor Count= 1

Sum of Area LSAs Checksum is 00023299

TABLE 162 show ipv6 ospf area output descriptions
Neighbor:
10.2.2.2 (DR)

Statistics of interface eth 1/8:

<table>
<thead>
<tr>
<th>Type</th>
<th>tx</th>
<th>rx</th>
<th>tx-byte</th>
<th>rx-byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hello</td>
<td>1415</td>
<td>1408</td>
<td>56592</td>
<td>56320</td>
</tr>
<tr>
<td>DDDesc</td>
<td>3</td>
<td>3</td>
<td>804</td>
<td>804</td>
</tr>
<tr>
<td>LSReq</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>LSUpdate</td>
<td>193</td>
<td>121</td>
<td>15616</td>
<td>9720</td>
</tr>
<tr>
<td>LSAck</td>
<td>85</td>
<td>109</td>
<td>4840</td>
<td>4924</td>
</tr>
</tbody>
</table>

OSPF messages dropped, no authentication: 0

Syntax: show ipv6 ospf interface [ethernet slot/port | loopback number | tunnel number | ve number]

TABLE 163 show ipv6 ospf interface output descriptions

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>This field shows whether or not authentication is configured. If this field says “Not Configured,” the IPsec-related fields (bold in example screen output) are not displayed at all.</td>
</tr>
<tr>
<td>KeyRolloverTime</td>
<td>The number of seconds between each initiation of a key rollover. This field shows the configured and current times.</td>
</tr>
<tr>
<td>KeyRolloverState</td>
<td>Can be: Not active: key rollover is not active. Active phase 1: rollover is in its first interval. Active phase 2: rollover is in its second interval.</td>
</tr>
<tr>
<td>Current</td>
<td>Shows current SPI, authentication algorithm (currently ESP only), encryption algorithm (currently SHA1 only), and the current key.</td>
</tr>
<tr>
<td>New (Inbound or Outbound)</td>
<td>Shows new SPI (if changed), authentication algorithm (currently ESP only), encryption algorithm (currently SHA1 only), and the new key.</td>
</tr>
<tr>
<td>Old (Inbound or Outbound)</td>
<td>Shows old SPI (if changed), authentication algorithm (currently ESP only), encryption algorithm (currently SHA1 only), and the old key.</td>
</tr>
<tr>
<td>OSPF messages dropped</td>
<td>Shows the number of packets dropped because the packets failed authentication (for any reason).</td>
</tr>
</tbody>
</table>

Displaying IPsec for a virtual link

To display IPsec for a virtual link, run the `show ipv6 ospf virtual-link brief` or `show ipv6 ospf virtual-link` command, as the following examples illustrate.

device# show ipv6 ospf virtual-link brief
Index Transit Area ID Router ID Interface Address State

device# show ipv6 ospf virtual-link
Transit Area ID Router ID Interface Address State

Timer intervals (sec):
Hello 10, Hello Jitter 10, Dead 40, Retransmit 5, TransmitDelay 1
Delayed LSAck: 5 times

Authentication: Configured
KeyRolloverTime (sec): Configured: 10 Current: 0
KeyRolloverState: NotActive
Outbound: SPI:100004, ESP, SHA1
Key:123456789012345678901234567890123456789012345678901234567890
Inbound: SPI:100004, ESP, SHA1
Key:123456789012345678901234567890123456789012345678901234567890

Statistics:
<table>
<thead>
<tr>
<th>Type</th>
<th>tx</th>
<th>rx</th>
<th>tx-byte</th>
<th>rx-byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hello</td>
<td>65</td>
<td>65</td>
<td>2600</td>
<td>2596</td>
</tr>
</tbody>
</table>
Syntax: `show ipv6 ospf virtual-link [brief]`

The optional `brief` keyword limits the display to the Transit, Area ID, Router ID, Interface Address, and State fields for each link.

Changing a key

In this example, the key is changed. Note that the SPI value is changed from 300 to 310 to comply with the requirement that the SPI is changed when the key is changed.

Initial configuration command.

```
device(config-if-e10000-1/3)# ipv6 ospf auth ipsec spi 300 esp sha1
no-encrypt 1234567890098765431234567890aabbccddf
```

Command for changing the key.

```
device(config-if-e10000-1/3)# ipv6 ospf auth ipsec spi 310 esp sha1
no-encrypt 98989898900987654321234567890aabbccddf
```

Displaying IPv6 OSPF information for a VRF

To display IPv6 OSPF information for a VRF or all VRF interfaces, use the `show ipv6 ospf vrf` command as in the following example.

```
device# show ipv6 ospf vrf red
OSPF V3 Process number 0 with Router ID 0x10020202(10.2.2.2)
Running 0 days 0 hours 5 minutes 49 seconds
Number of AS scoped LSAs is 0
Sum of AS scoped LSAs Checksum is 00000000
External LSA Limit is 2500000
Database Overflow Interval is 10
Database Overflow State is NOT OVERFLOWED
Route calculation executed 0 times
Pending outgoing LSA count 0
Authentication key rollover interval 30 seconds
Number of areas in this router is 4
Router is operating as ABR
Router is operating as ASBR, Redistribute: CONNECTED
High Priority Message Queue Full count: 0
BFD is disabled
```

Syntax: `show ipv6 ospf vrf vrf-name [area area-id | virtual-links]`

The `vrf-name` parameter specifies the VRF that you want the OSPF area information for.

The `area-id` parameter shows information for the specified area.

The `virtual-link` parameter displays the entry that corresponds to the IP address you enter.

Use the `show ipv6 ospf vrf` command to display the currently selected IPv6 global address for use by the Virtual Links in each transit area.

```
device# show ipv6 ospf vrf red area
Area 3:
   Authentication: Not Configured
   Interface attached to this area:
   Number of Area scoped LSAs is 3
   Sum of Area LSAs Checksum is 0001a6c4
   Statistics of Area 3:
   SPF algorithm executed 3 times
```
OSPFv3 clear commands

The following OSPFv3 clear commands are supported.

Clearing all OSPFv3 data

You can use the clear ipv6 ospf all command to clear all OSPF data by disabling and enabling the OSPFv3 processes as shown in the following.

device# clear ipv6 ospf all

Syntax: clear ipv6 ospf all
Clearing all OSPFv3 packet counters
You can use the `clear ipv6 ospf traffic` command to clear all OSPFv3 packet counters as shown in the following.
```
device# clear ipv6 ospf traffic
```
Syntax: `clear ipv6 ospf traffic`

Scheduling Shortest Path First (SPF) calculation
You can use the `clear ipv6 ospf force-spf` command to perform the SPF calculation without clearing the OSPF database, as shown in the following.
```
device# clear ipv6 ospf force-spf
```
Syntax: `clear ipv6 ospf force-spf`

Clearing all redistributed routes from OSPFv3
You can use the `clear ipv6 ospf redistribution` command to clear all redistributed routes from OSPF, as shown in the following.
```
device# clear ipv6 ospf redistribution
```
Syntax: `clear ipv6 ospf redistribution`

Clearing OSPFv3 neighbors
You can use the `clear ipv6 ospf neighbor` command to delete and relearn OSPF neighbors, as shown in the following:
- Clearing all OSPF Neighbors
- Clearing OSPF Neighbors Attached to a Specified Interface

Clearing all OSPF neighbors
You can use the `clear ipv6 ospf neighbor all` command to delete and relearn all OSPF neighbors, as shown in the following.
```
device# clear ipv6 ospf neighbor all
```
Syntax: `clear ipv6 ospf neighbor all`

Clearing OSPF neighbors attached to a specified interface
You can use the `clear ipv6 ospf neighbor interface` command to delete and relearn the OSPF neighbors attached to a specified interface, as shown in the following.
```
device# clear ipv6 ospf neighbor interface ethernet 1/1
```
Syntax: `clear ipv6 ospf neighbor interface [ethernet slot/port | ve port-no | tunnel tunnel-port] [nbr-id]`
Specify the interface options as shown in the following options.
- **ethernet slot/port**: clears OSPF neighbors on the specified Ethernet interface.
- **ve port-no**: clears OSPF neighbors on the specified virtual interface.
- **tunnel tunnel-port**: clears OSPF neighbors on the specified tunnel interface.
Specifying the \texttt{nbr-id} variable limits the \texttt{clear ipv6 ospf neighbor} command to an individual OSPF neighbor attached to the interface.

Clearing OSPFv3 counters

You can use the \texttt{ospf counts} command to clear OSPF neighbor's counters as described in the following:

- Clearing all OSPF Counters
- Clearing the OSPF Counters for a Specified Neighbor
- Clearing the OSPF Counters for a Specified Interface

Clearing all OSPFv3 counters

You can clear all OSPF counters using the \texttt{clear ipv6 ospf counts} command, as shown in the following.

```
device# clear ipv6 ospf counts
```

Syntax: \texttt{clear ipv6 ospf counts}

Clearing OSPFv3 counters for a specified neighbor

You can clear all OSPF counters for a specified neighbor using the \texttt{clear ipv6 counts neighbor} command, as shown in the following.

```
device# clear ipv6 ospf counts neighbor 10.10.10.1
```

Syntax: \texttt{clear ipv6 ospf counts neighbor \textit{nbr-id}}

The \textit{nbr-id} variable specifies the neighbor ID of the OSPF neighbor whose counters you want to clear.

Clearing OSPFv3 counters for a specified interface

You can clear all OSPFv3 counters for a specified interface using the \texttt{clear ipv6 counts neighbor interface} command, as shown in the following.

```
device# clear ipv6 ospf counts interface ethernet 3/1
```

Syntax: \texttt{clear ipv6 ospf counts neighbor [interface ethernet slot/port | ve port-no | tunnel tunnel-port] [nbr-id]}

Specify the interface options as shown in the following options.

- \texttt{ethernet slot/port} - clears OSPFv3 counters for OSPFv3 neighbors on the specified Ethernet interface.
- \texttt{ve port-no} - clears OSPFv3 counters for OSPFv3 neighbors on the specified virtual interface.
- \texttt{tunnel tunnel-port} - clears OSPFv3 counters for OSPFv3 neighbors on the specified tunnel interface.

Using an \textit{nbr-id} value limits the displayed output to an individual OSPFv3 neighbor attached to the interface.
RIP

- RIP overview... 775
- RIP parameters and defaults... 775
- Configuring RIP parameters.. 777
- Displaying RIP Information... 783
- Displaying CPU utilization statistics..786

RIP overview

Routing Information Protocol (RIP) is an IP route exchange protocol that uses a distance vector (a number representing distance) to measure the cost of a given route. The cost is a distance vector because the cost often is equivalent to the number of router hops between the Extreme device and the destination network.

A device can receive multiple paths to a destination. The software evaluates the paths, selects the best path, and saves the path in the IP route table as the route to the destination. Typically, the best path is the path with the fewest hops. A hop is another router through which packets must travel to reach the destination. If a RIP update is received from another router that contains a path with fewer hops than the path stored in the Extreme device route table, the older route is replaced with the newer one. The new path is then included in the updates sent to other RIP routers, including Extreme devices.

RIP routers, including Extreme devices, also can modify a route cost, generally by adding to it, to bias the selection of a route for a given destination. In this case, the actual number of router hops may be the same, but the route has an administratively higher cost and is thus less likely to be used than other, lower-cost routes.

A RIP route can have a maximum cost of 15. Any destination with a higher cost is considered unreachable. Although limiting to larger networks, the low maximum hop count prevents endless loops in the network.

Extreme devices support the following RIP versions:
- Version 1 (v1)
- Version 2 (v2, the default)
- V1 compatible with v2

RIP parameters and defaults

You can configure global RIP parameters for the protocol and interface RIP parameters on those interfaces that send and receive RIP information.

RIP global parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP state</td>
<td>The global state of the protocol.</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
TABLE 164 RIP global parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative distance</td>
<td>The administrative distance is a numeric value assigned to each type of route on the device. When the device is selecting from among multiple routes (sometimes of different origins) to the same destination, the device compares the administrative distances of the routes and selects the route with the lowest administrative distance.</td>
<td>120</td>
</tr>
<tr>
<td>Redistribution</td>
<td>RIP can redistribute routes from other routing protocols such as OSPF and BGP4 into RIP. A redistributed route is one that a router learns through another protocol, and then distributes into RIP.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Redistribution metric</td>
<td>RIP assigns a RIP metric (cost) to each external route redistributed from another routing protocol into RIP.</td>
<td>1</td>
</tr>
<tr>
<td>Update Interval</td>
<td>How often the router sends route updates to its RIP neighbors.</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Learning default routes</td>
<td>The device can learn default routes from its RIP neighbors.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Advertising and learning with specific neighbors</td>
<td>The device learns and advertises RIP routes with all its neighbors by default. You can prevent the device from advertising routes to specific neighbors or learning routes from specific neighbors.</td>
<td>Learning and advertising permitted for all neighbors</td>
</tr>
</tbody>
</table>

RIP interface parameters

TABLE 165 RIP interface parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
</table>
| RIP state and version | The state of the protocol and the version that is supported on the interface. The version can be one of the following:
 • Version 1 only
 • Version 2 only
 • Version 1, but also compatible with version 2 | Disabled|
TABLE 165 RIP interface parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>You also must enable RIP globally.</td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td>A numeric cost the device adds to RIP routes learned on the interface. This parameter applies only to RIP routes.</td>
<td>1</td>
</tr>
<tr>
<td>Learning default routes</td>
<td>Locally overrides the global setting.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Loop prevention</td>
<td>The method a device uses to prevent routing loops caused by advertising a route on the same interface as the one on which the device learned the route.</td>
<td>Split horizon</td>
</tr>
<tr>
<td></td>
<td>• Split horizon - The device does not advertise a route on the same interface as the one on which the device learned the route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Poison reverse - The device assigns a cost of 16 ("infinite" or "unreachable") to a route before advertising it on the same interface as the one on which the device learned the route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE Enabling poison reverse disables split horizon on the interface.</td>
<td></td>
</tr>
<tr>
<td>Advertising and learning specific routes</td>
<td>You can control the routes that a device learns or advertises.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The device learns and advertises all RIP routes on all interfaces.</td>
<td></td>
</tr>
</tbody>
</table>

Configuring RIP parameters

Enabling RIP

RIP is disabled by default. To enable RIP, you must enable it globally and also on individual interfaces on which you want to advertise RIP. Globally enabling the protocol does not enable it on individual interfaces. When you enable RIP on a port, you also must specify the version (version 1 only, version 2 only, or version 1 compatible with version 2).

To enable RIP globally, enter the `router rip` command.

```plaintext
device(config)# router rip
```

Syntax: [no] router rip

After globally enabling the protocol, you must enable it on individual interfaces. You can enable the protocol on physical interfaces as well as virtual routing interfaces. To enable RIP on an interface, enter commands such as the following.

```plaintext
device(config)# interface ethernet 1/1
device(config-if-e1000-1/1)# ip rip v1-only
```

Syntax: [no] ip rip (v1-only | v1-compatible-v2 | v2-only)
Configuring route costs

By default, the device port increases the cost of a RIP route that is learned on the port. The device increases the cost by adding one to the route metric before storing the route.

You can change the amount that an individual port adds to the metric of RIP routes learned on the port.

To increase the metric for learned routes, enter the `ip rip metric-offset` command.

```
device(config-if-e1000-1/1)# ip rip metric-offset 5 in
```

In the above example, the `ip rip metric-offset` command configures the port to add 5 to the cost of each route it learns.

Syntax: `[no] ip rip metric-offset num [in | out]`

The `num` variable specifies a range from 1 through 16.

NOTE
RIP considers a route with a metric of 16 to be unreachable. You can prevent the device from using a specific port for routes learned though that port by setting its metric to 16.

The `in` keyword applies to routes the port learns from RIP neighbors.

The `out` keyword applies to routes the port advertises to its RIP neighbors.

Changing the administrative distance

By default, the Extreme device assigns the default RIP administrative distance (120) to RIP routes. When comparing routes based on administrative distance, the Extreme device selects the route with the lower distance. You can change the administrative distance for RIP routes.

To change the administrative distance for RIP routes, enter the `distance` command followed by a value from 1 through 255. The following example changes the administrative distance to 140 for all RIP routes.

```
device# configure terminal
device(config)# router rip
device(config-rip-router)# distance 140
```

Configuring redistribution

You can configure the Extreme device to redistribute routes learned through Open Shortest Path First (OSPF) or Border Gateway Protocol version 4 (BGP4), connected into RIP, or static routes. When you redistribute a route from one of these other protocols into RIP, the Extreme device can use RIP to advertise the route to its RIP neighbors.

To configure redistribution, perform the following tasks.

1. Configure redistribution filters (optional). You can configure filters to permit or deny redistribution for a route based on its origin (OSPF, BGP4, and so on), the destination network address, and the route's metric. You also can configure a filter to set the metric based on these criteria.

2. Change the default redistribution metric (optional). The Extreme device assigns a RIP metric of 1 to each redistributed route by default. You can change the default metric to a value up to 15.

3. Enable redistribution.
Configuring redistribution filters

RIP redistribution filters apply to all interfaces. Use route maps to define how you want to deny or permit redistribution.

NOTE
The default redistribution action is permit, even after you configure and apply redistribution filters to the virtual routing interface. If you want to tightly control redistribution, apply a filter to deny all routes as the last filter (the filter with the highest ID), and then apply filters to allow specific routes.

A route map is a named set of match conditions and parameter settings that the Extreme device can use to modify route attributes and to control redistribution of the routes into other protocols. A route map consists of a sequence of up to 50 instances. The Extreme device evaluates a route according to a route map's instances in ascending numerical order. The route is first compared against instance 1, then against instance 2, and so on. If a match is found, the Extreme device stops evaluating the route against the route map instances.

Route maps can contain match statements and set statements. Each route map contains a permit or deny action for routes that match the match statements:

- If the route map contains a permit action, a route that matches a match statement is permitted; otherwise, the route is denied.
- If the route map contains a deny action, a route that matches a match statement is denied.
- If a route does not match any match statements in the route map, the route is denied. This is the default action. To change the default action, configure the last match statement in the last instance of the route map to "permit any any".
- If there is no match statement, the route is considered to be a match.
- For route maps that contain address filters, AS-path filters, or community filters, if the action specified by a filter conflicts with the action specified by the route map, the route map's action takes precedence over the individual filter's action.

If the route map contains set statements, routes that are permitted by the route map's match statements are modified according to the set statements.

In RIP, the match statements are based on prefix lists and access control lists. Set statements are based on tag values and metric values.

To configure redistribution filters, enter the following command.

```device(config-rip-router)# redistribute bgp route-map longroute```

**Syntax:** `[no] redistribute {connected | bgp | ospf | static [metric value | route-map name]}`

The `connected` keyword applies redistribution to connected types.

The `bgp` keyword applies redistribution to BGP4 routes.

The `ospf` keyword applies redistribution to OSPF routes.

The `static` keyword applies redistribution to IP static routes.

The `metric value` parameter sets the RIP metric value from 1 through 15 that will be applied to the routes imported into RIP.

The `route-map name` parameter indicates the route map's name.

**Matching based on RIP protocol type**

The `match` option has been added to the `route-map` command that allows statically configured routes or the routes learned from the IGP protocol RIP.

To configure the route map to match to RIP, enter the `match protocol rip` command.

```device(config-routemap test)# match protocol rip```

Syntax: `[no] match protocol rip`
Changing the default redistribution metric

When the Extreme device redistributes a route into RIP, the software assigns a RIP metric (cost) to the route. By default, the software assigns a metric of 1 to each route that is redistributed into RIP. You can increase the metric that the Extreme device assigns, up to 15.

To change the RIP metric the Extreme device assigns to redistributed routes, enter a command such as the following.

```
device(config-rip-router)# default-metric 10
```

This command assigns a RIP metric of 10 to each route that is redistributed into RIP.

Syntax: [no] default-metric 1-15

Configuring route learning and advertising parameters

By default, a device learns routes from all its RIP neighbors and advertises RIP routes to those neighbors.

You can configure the following learning and advertising parameters:

- **Update interval** - The update interval specifies how often the device sends RIP route advertisements to its neighbors. You can change the interval to a value from 3 through 65535 seconds. The default is 30 seconds.
- **Learning and advertising of RIP default routes** - The Extreme device can learn and advertise RIP default routes. You can disable learning and advertising of default routes on a global or individual interface basis.
- **Learning of standard RIP routes** - By default, the Extreme device can learn RIP routes from all its RIP neighbors. You can configure RIP neighbor filters to explicitly permit or deny learning from specific neighbors.

Enabling learning of RIP default routes

By default, the Extreme device does not learn default RIP routes. You can enable learning of RIP default routes on a global or interface basis.

To enable learning of default RIP routes on a global basis, enter the following command.

```
device(config-rip-router)# learn-default
```

Syntax: [no] learn-default

To enable learning of default RIP routes on an interface, enter the `ip rip learn-default` command.

```
device(config)# interface ethernet 1/1
device(config-if-e10000-1/1)# ip rip learn-default
```

Syntax: [no] ip rip learn-default

Configuring a RIP neighbor filter

By default, a device learns RIP routes from all its RIP neighbors. Neighbor filters allow you to specify the neighbor routers from which the Extreme device can receive RIP routes. Neighbor filters apply globally to all ports.

To configure a RIP neighbor filters, enter the `neighbor` command.

```
device(config-rip-router)# neighbor 1 deny any
```

This command configures the Extreme device so that the device does not learn any RIP routes from any RIP neighbors.

Syntax: [no] neighbor filter-num {permit | deny} {source-ip-address | any}

The following commands configure the Extreme device to learn routes from all neighbors except 10.70.12.104. Once you define a RIP neighbor filter, the default action changes from learning all routes from all neighbors to denying all routes from all neighbors except the
ones you explicitly permit. Thus, to deny learning from a specific neighbor but allow all other neighbors, you must add a filter that allows learning from all neighbors. Make sure you add the filter to permit all neighbors as the last filter (the one with the highest filter number). Otherwise, the software can match on the permit all filter before a filter that denies a specific neighbor, and learn routes from that neighbor.

```bash
device(config-rip-router)# neighbor 2 deny 10.70.12.104
device(config-rip-router)# neighbor 64 permit any
```

Changing the route loop prevention method

RIP uses the following methods to prevent routing loops:

- **Split horizon** - The device does not advertise a route on the same interface as the one on which the Extreme device learned the route. This is the default.
- **Poison reverse** - The device assigns a cost of 16 (“infinite” or “unreachable”) to a route before advertising it on the same interface as the one on which the Extreme device learned the route.

These loop prevention methods are configurable on a global basis as well as on an individual interface basis. One of the methods is always in effect on an interface enabled for RIP. Thus, if you disable one method, the other method is enabled.

NOTE

These methods are in addition to RIP’s maximum valid route cost of 15.

To disable poison reverse and enable split horizon on a global basis, enter the following command.

```bash
device(config-rip-router)# no poison-reverse
```

Syntax: `[no] poison-reverse`

To disable poison reverse and enable split horizon on an interface, enter commands such as the following.

```bash
device(config)#interface ethernet 1/1
device(config-if-e10000-1/1)# no ip rip poison-reverse
```

Syntax: `[no] ip rip poison-reverse`

To disable split horizon and enable poison reverse on an interface, enter commands such as the following.

```bash
device(config)#interface ethernet 1/1
device(config-if-e10000-1/1)# ip rip poison-reverse
```

You can configure the Extreme device to avoid routing loops by advertising local RIP routes with a cost of 16 (“infinite” or “unreachable”) when these routes go down.

```bash
device(config-rip-router)# poison-local-routes
```

Syntax: `[no] poison-local-routes`

Suppressing RIP route advertisement on a VRRP or VRRPE backup interface

NOTE

This section applies only if you configure the device for Virtual Router Redundancy Protocol (VRRP) or VRRP Extended (VRRPE).
Normally, a VRRP or VRRPE Backup includes route information for the virtual IP address (the backed up interface) in RIP advertisements. As a result, other routers receive multiple paths for the backed up interface and might sometimes unsuccessfully use the path to the Backup rather than the path to the Master.

You can prevent the backups from advertising route information for the backed up interface by enabling suppression of the advertisements.

To suppress RIP advertisements for the backed up interface, enter the following commands.

```
device(config)# router rip
device(config-rip-router)# use-vrrp-path
```

Syntax: `[no] use-vrrp-path`

The syntax is the same for VRRP and VRRP-E.

Configuring RIP route filters using prefix-lists and route maps

You can configure prefix lists to permit or deny specific routes, then apply them globally or to individual interfaces and specify whether the lists apply to learned routes (in) or advertised routes (out).

You can configure route maps to permit or deny specific routes, then apply a route map to an interface, and specify whether the map applies to learned routes (in) or advertised routes (out).

```
NOTE
A route is defined by the destination’s IP address and network mask.

NOTE
By default, routes that do not match a prefix list are learned or advertised. To prevent a route from being learned or advertised, you must configure a prefix list to deny the route.
```

To configure a prefix list, enter commands such as the following.

```
device(config)# ip prefix-list list1 permit 10.53.4.1 255.255.255.0
device(config)# ip prefix-list list2 permit 10.53.5.1 255.255.255.0
device(config)# ip prefix-list list3 permit 10.53.6.1 255.255.255.0
device(config)# ip prefix-list list4 deny 10.53.7.1 255.255.255.0
```

The prefix lists permit routes to three networks, and deny the route to one network.

Because the default action is permit, all other routes (routes not explicitly permitted or denied by the filters) can be learned or advertised.

Syntax: `[no] ip prefix-list name [permit | deny] [source-ip-address | any] source-mask | any]`

To apply a prefix list at the global level of RIP, enter commands such as the following.

```
device(config-rip-router)# prefix-list list1 in
```

Syntax: no prefix-list name [in | out]

To apply prefix lists to a RIP interface, enter commands such as the following.

```
device(config-if-e1000-1/2)# ip rip prefix-list list2 in
device(config-if-e1000-1/2)# ip rip prefix-list list3 out
```

Syntax: no ip rip prefix-list name [in | out]

In is for Inbound filtering. It applies the prefix list to routes the Extreme device learns from its neighbor on the interface.

Out is for Outbound filtering. It applies the prefix list to routes the Extreme device advertises to its neighbor on the interface.
The commands apply RIP list2 route filters to all routes learned from the RIP neighbor on the port and applies the lists to all routes advertised on the port.

To configure a route-map, enter commands such as the following.

```
device(config)#access-list 21 deny 160.1.0.0 0.0.255.255
device(config)#access-list 21 permit any
device(config)#route-map routemap1 permit 21
device(config-route-map routemap1)# match ip address 21
device(config)#route-map routemap2 permit 22
```

The route-map permit routes to two networks, and denies the route to one network.

Syntax: `[no] route-map map-name {permit | deny} num`

To apply a route map to a RIP interface, enter commands such as the following.

```
device(config-if-e1000-1/2)#ip rip route-map map1 in
```

Syntax: `[no] ip rip route-map name {in | out}`

The route-map can be a prefix list or an ACL. Setting this command can change the metric.

In applies the route map to routes the Extreme device learns from its neighbor on the interface.

Out applies the route map to routes the Extreme device advertises to its neighbor on the interface.

The commands apply route map map1 as route filters to routes learned from the RIP neighbor on the port.

Setting RIP timers

You can set basic update timers for the RIP protocol. The protocol must be enabled in order to set the timers. The `timers` command specifies how often RIP update messages are sent.

To set the timers, enter the following commands.

```
device(config-router rip
device(config-rip-router)# 60 180 180 120
```

Syntax: `[no] timers update-timer timeout-timer hold-down-timer garbage-collection-timer`

The `update-timer` parameter sets the amount of time between RIP routing updates. The possible value ranges from 3 - 65535. The default is 30 seconds.

The `timeout-timer` parameter sets the amount of time after which a route is considered unreachable. The possible value ranges from 9 - 65535. The default is 180 seconds.

The `hold-down-timer` parameter sets the amount of time during which information about other paths is ignored. The possible value ranges from 0 - 65535. The default is 180 seconds.

The `garbage-collection-timer` sets the amount of time after which a route is removed from the rip routing table. The possible value ranges from 0 - 65535. The default is 120 seconds.

Displaying RIP Information

To display RIP filters, enter the following command at any CLI level.

```
device# show ip rip
RIP Summary
 Default port 520
 Administrative distance is 120
```
Updates every 30 seconds, expire after 180
Holddown lasts 180 seconds, garbage collect after 120
Last broadcast 2, Next Update 26
Need trigger update 0, Next trigger broadcast 3
Minimum update interval 25, Max update Offset 5
Split horizon is on; poison reverse is off
Import metric 1
Prefix List, Inbound : Not set
Prefix List, Outbound : Not set
Route-map, Inbound : Not set
Route-map, Outbound : Not set
Redistribute:

No Neighbors are configured in RIP Neighbor Filter Table

Syntax: `show ip rip`

TABLE 166 CLI display of neighbor filter information

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP Summary area</td>
<td>Shows the current configuration of RIP on the device.</td>
</tr>
<tr>
<td>Static metric</td>
<td>Shows the static metric configuration. "not defined" means the route map has not been distributed.</td>
</tr>
<tr>
<td>OSPF metric</td>
<td>Shows what OSPF route map has been applied.</td>
</tr>
<tr>
<td>Neighbor Filter Table area</td>
<td>The filter number. You assign this number when you configure the filter.</td>
</tr>
<tr>
<td>Action</td>
<td>The action the Extreme device takes for RIP route packets to or from the specified neighbor:</td>
</tr>
<tr>
<td></td>
<td>• deny - If the filter is applied to an interface's outbound filter group, the filter prevents the Extreme device from advertising RIP routes to the specified neighbor on that interface. If the filter is applied to an interface's inbound filter group, the filter prevents the Extreme device from receiving RIP updates from the specified neighbor.</td>
</tr>
<tr>
<td></td>
<td>• permit - If the filter is applied to an interface's outbound filter group, the filter allows the Extreme device to advertise RIP routes to the specified neighbor on that interface. If the filter is applied to an interface's inbound filter group, the filter allows the Extreme device to receive RIP updates from the specified neighbor.</td>
</tr>
<tr>
<td>Neighbor IP Address</td>
<td>The IP address of the RIP neighbor.</td>
</tr>
</tbody>
</table>

To display RIP filters for a specific interface, enter the following command.

device# show ip rip interface ethernet 1/20
Interface eth 1/20
 Rip Mode : Version 2 Running: TRUE
 Route summarization disabled
 Split horizon is on; poison reverse is off
 Default routes not accepted
 Metric-offset, Inbound 1
 Metric-offset, Outbound 0
 Prefix List, Inbound : Not set
 Prefix List, Outbound : Not set
 Route-map, Inbound : Not set
 Route-map, Outbound : Not set
Interface ve 10
 Rip Mode : Compatible Running: TRUE
 Route summarization disabled
 Split horizon is off; poison reverse is on
 Default routes not accepted
 Metric-offset, Inbound 1
 Metric-offset, Outbound 0
Prefix List, Inbound : Not set
Prefix List, Outbound : Not set
Route-map, Inbound : Not set
Route-map, Outbound : Not set
Interface ve 20
RIP Mode : Version1 Running: TRUE
Route summarization enabled
Split horizon is off; poison reverse is on
Default routes not accepted
Metric-offset, Inbound 1
Metric-offset, Outbound 0
Prefix List, Inbound : Not set
Prefix List, Outbound : Not set
Route-map, Inbound : Not set
Route-map, Outbound : Not set

Syntax: `show ip rip interface ifName`

To display RIP route information, enter the following command.

device# show ip rip route
RIP Routing Table - 35 entries:
 10.0.0.0/8, from 10.1.0.2, ve 10 (2)
 RIP, metric 4, tag 0, timers: aging 17 holddown -163
 10.0.0.0/8, from 10.1.0.2, ve 10 (6)
 RIP, metric 16, tag 0, timers: holddown 19 garbage 19
 10.1.1.0/24, from 10.0.0.0, eth 1/20 (34)
 MCAST, metric 1, tag 0, timers: none
 10.1.0.0/24, from 10.0.0.0, ve 10 (1)
 MCAST, metric 1, tag 0, timers: none

Syntax: `show ip rip route`

To display current running configuration for interface 1/20, enter the following command.

device# show running-config interface ethernet 1/20
interface ethernet 1/20
 enable
 ip ospf area 0
 ip ospf priority 0
 ip rip v2-only
 ip address 10.1.1.2/24
 ipv6 address 2000::1/32
 ipv6 enable
!

To display current running configuration for ve 10, enter the following command.

device# show running-config interface ve 10
interface ve 10
 ip ospf area 2
 ip rip v1-compatible-v2
 ip rip poison-reverse
 ip address 10.1.0.1/24
 ipv6 address 2001:db8:1::14/64
!

To display current running configuration for ve 20, enter the following command.

device# show running-config interface ve 20
interface ve 20
 ip ospf area 1
 ip rip v1-only
 ip rip poison-reverse
 ip address 10.2.0.1/24
!
Displaying CPU utilization statistics

You can display CPU utilization statistics for RIP and other IP protocols. To display CPU utilization statistics for RIP, enter the `show cpu-utilization` command at any level of the CLI.

```
device#show cpu-utilization

07:46:48 GMT+00 Mon Nov 18 2013
... Usage average for all tasks in the last 1 seconds ...

Name               us/sec  %
idle                978720 100
con                 18       0
mon                 110      0
flash               116      0
dbg                 27       0
boot                89       0
main                0        0
itc                 0        0
tmr                 2201     0
ip_rx               6413     0
sfm_mgr             2309     0
scp                  49       0
ipagent             0        0
console             227      0
vlan                163      0
mac_mgr             84       0
mrp                  219     0
varp                0        0
erp                 214      0
mxrp                69       0
snms                0        0
rtm                 796      0
rtm6                686      0
ip_tx               2858     0
rip                  0       0
l2vpn                0       0
mpls                0       0
```

(Output truncated)

Syntax: `show cpu-utilization`

The command lists the usage statistics for the previous five-second, one-minute, five-minute, and fifteen-minute intervals.
RIPng Overview

Routing Information Protocol (RIP) is an IP route exchange protocol that uses a distance vector (a number representing a distance) to measure the cost of a given route. RIP uses a hop count as its cost or metric.

IPv6 RIP, known as Routing Information Protocol Next Generation or RIPng, functions similarly to IPv4 RIP version 2. RIPng supports IPv6 addresses and prefixes.

RIPng maintains a Routing Information Database (RIB), which is a local route table. The local RIB contains the lowest-cost IPv6 routes learned from other RIP routers. RIPng attempts to add routes from its local RIB into the main IPv6 route table.

Configuring RIPng

To configure RIPng, you must enable RIPng globally on the Extreme device and on individual device interfaces. The following configuration tasks are optional:

• Change the default settings of RIPng timers
• Configure how the Extreme device learns and advertises routes
• Configure which routes are redistributed into RIPng from other sources
• Configure how the Extreme device distributes routes through RIPng
• Configure poison reverse parameters

Enabling RIPng

Before configuring the device to run RIPng, you must do the following:

• Enable the forwarding of IPv6 traffic on the device using the ipv6 unicast-routing command.
• Enable IPv6 on each interface over which you plan to enable RIPng. You enable IPv6 on an interface by configuring an IPv6 address or explicitly enabling IPv6 on that interface.

By default, RIPng is disabled. To enable RIPng, you must enable it globally on the Extreme device and also on individual device interfaces.

NOTE
Enabling RIPng globally on the Extreme device does not enable it on individual device interfaces.

To enable RIPng globally, enter the following command.

```
device(config-rip-router)#ipv6 router rip
device(config-ripng-router)#
```
After you enter this command, the device enters the RIPng configuration level, where you can access several commands that allow you to configure RIPng.

Syntax: [no] ipv6 router rip

To disable RIPng globally, use the no form of this command.

After enabling RIPng globally, you must enable it on individual Extreme device interfaces. You can enable it on physical as well as virtual routing interfaces. For example, to enable RIPng on Ethernet interface 3/1, enter the following commands.

```bash
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 rip enable
```

Syntax: [no] ipv6 rip enable

To disable RIPng on an individual device interface, use the no form of this command.

Enabling RIPng for a VRF instance

To enable RIPng for a specific VRF instance, enter the following commands:

```bash
device(config-rip-router)# ipv6 router rip vrf red
device(config-ripng-router-vrf-red)#
```

Syntax: [no] ipv6 router rip vrf vrf-name

`vrf-name` is the specified VRF name for the RIPng. If the VRF name is not specified, RIPng is configured using the default VRF.

To disable RIPng for a specific VRF instance, use the no form of this command.

Configuring RIPng timers

<table>
<thead>
<tr>
<th>Timer</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update</td>
<td>Amount of time (in seconds) between RIPng routing updates.</td>
<td>30 seconds.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Amount of time (in seconds) after which a route is considered unreachable.</td>
<td>180 seconds.</td>
</tr>
<tr>
<td>Hold-down</td>
<td>Amount of time (in seconds) during which information about other paths is ignored.</td>
<td>180 seconds.</td>
</tr>
<tr>
<td>Garbage-collection</td>
<td>Amount of time (in seconds) after which a route is removed from the routing table.</td>
<td>120 seconds.</td>
</tr>
</tbody>
</table>

You can adjust these timers for RIPng. Before doing so, keep the following caveats in mind:

- If you adjust these RIPng timers, Extreme strongly recommends setting the same timer values for all routers and access servers in the network.
- Setting the update timer to a shorter interval can cause the devices to spend excessive time updating the IPv6 route table.
- Extreme recommends setting the timeout timer value to at least three times the value of the update timer.
- Extreme recommends a shorter hold-down timer interval, because a longer interval can cause delays in RIPng convergence.
The following example sets updates to be advertised every 45 seconds. If a route is not heard from in 135 seconds, the route is declared unusable. Further information is suppressed for an additional 10 seconds. Assuming no updates, the route is flushed from the routing table 20 seconds after the end of the hold-down period.

```plaintext
device(config)# ipv6 router rip
device(config-ripng-router)# timers 45 135 10 20
```

Syntax: [no] timers update-timer timeout-timer hold-down-timer garbage-collection-timer

Possible values for the timers are as follows:

- Update timer: 3 through 65535 seconds.
- Timeout timer: 9 through 65535 seconds.
- Hold-down timer: 9 through 65535 seconds.
- Garbage-collection timer: 9 through 65535 seconds.

NOTE
You must enter a value for each timer, even if you want to retain the current setting of a particular timer.

To return to the default values of the RIPng timers, use the no form of this command.

Configuring route learning and advertising parameters

You can configure the following learning and advertising parameters:

- Learning and advertising of RIPng default routes.
- Advertising of IPv6 address summaries.
- Metric of routes learned and advertised on a device interface.

Configuring default route learning and advertising

By default, the device does not learn IPv6 default routes (::/0). You can originate default routes into RIPng, which causes individual Extreme device interfaces to include the default routes in their updates. When configuring the origination of the default routes, you can also do the following:

- Suppress all other routes from the updates.
- Include all other routes in the updates.

For example, to originate default routes in RIPng and suppress all other routes in updates sent from Ethernet interface 3/1, enter the following commands.

```plaintext
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 rip default-information only
```

To originate IPv6 default routes and include all other routes in updates sent from Ethernet interface 3/1, enter the following commands.

```plaintext
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 rip default-information originate
```

Syntax: [no] ipv6 rip default-information { only | originate }

The **only** keyword originates the default routes and suppresses all other routes from the updates.

The **originate** keyword originates the default routes and includes all other routes in the updates.

To remove the explicit default routes from RIPng and suppress advertisement of these routes, use the no form of this command.
Advertising IPv6 address summaries

You can configure RIPng to advertise a summary of IPv6 addresses from a device interface and to specify an IPv6 prefix that summarizes the routes.

If a route's prefix length matches the value specified in the `ipv6 rip summary-address` command, RIPng advertises the prefix specified in the `ipv6 rip summary-address` command instead of the original route.

For example, to advertise the summarized prefix 2001:db8::/36 instead of the IPv6 address 2001:db8:0:adff:8935:e838:78:e0ff with a prefix length of 64 bits from Ethernet interface 3/1, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 address 2001:db8:0:adff:8935:e838:78:e0ff /64
device(config-if-e100-3/1)# ipv6 rip summary-address 2001:db8::/36
```

Syntax: `[no] ipv6 rip summary-address ipv6-prefix/prefix-length`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (`/`) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

To stop the advertising of the summarized IPv6 prefix, use the `no` form of this command.

Changing the metric of routes learned and advertised on an interface

A device interface increases the metric of an incoming RIPng route it learns by an offset (the default is one). The device then places the route in the route table. When the device sends an update, it advertises the route with the metric plus the default offset of zero in an outgoing update message.

You can change the metric offset an individual interface adds to a route learned by the interface or advertised by the interface. For example, to change the metric offset for incoming routes learned by Ethernet interface 3/1 to one and the metric offset for outgoing routes advertised by the interface to three, enter the following commands.

```
device(config)# interface ethernet 3/1
device(config-if-e100-3/1)# ipv6 rip metric-offset 1
device(config-if-e100-3/1)# ipv6 rip metric-offset out 3
```

In this example, if Ethernet interface 3/1 learns about an incoming route, it will increase the incoming metric by two (the default offset of 1 and the additional offset of 1 as specified in this example). If Ethernet interface 3/1 advertises an outgoing route, it will increase the metric by 3 as specified in this example.

Syntax: `[no] ipv6 rip metric-offset [out] 1-16`

To return the metric offset to its default value, use the `no` form of this command.

Redistributing routes into RIPng

You can configure the Extreme device to redistribute routes from the following sources into RIPng:

- IPv6 static routes
- Directly connected IPv6 networks
- BGP4+
- IPv6 IS-IS
- OSPFv3
When you redistribute a route from BGP4+, IPv6 IS-IS, or OSPFv3 into RIPng, the device can use RIPng to advertise the route to its RIPng neighbors.

When configuring the Extreme device to redistribute routes, such as BGP4+ routes, you can optionally specify a metric for the redistributed routes. If you do not explicitly configure a metric, the default metric value of one is used.

For example, to redistribute OSPFv3 routes into RIPng, enter the following command.

```
device(config)# ipv6 router rip
device(config-ripng-router)# redistribute ospf
```

Syntax: `[no] redistribute{ bgp | connected | isis | ospf | static [metric number] }

For the metric, specify a numerical value that is consistent with RIPng.

Controlling distribution of routes through RIPng

You can create a prefix list and then apply it to RIPng routing updates that are received or sent on a device interface. Performing this task allows you to control the distribution of routes through RIPng.

For example, to permit the inclusion of routes with the prefix 2001:db8::/32 in RIPng routing updates sent from Ethernet interface 3/1, enter the following commands.

```
device(config)# ipv6 prefix-list routesfor2001 permit 2001:db8::/32
device(config)# ipv6 router rip
device(config-ripng-router)# distribute-list prefix-list routesfor2001 out
```

To deny prefix lengths greater than 64 bits in routes that have the prefix 2001:db8::/64 and allow all other routes received on tunnel interface 3/1, enter the following commands.

```
device(config)# ipv6 prefix-list 2001routes deny 2001:db8::/64 le 128
device(config)# ipv6 prefix-list 2001routes permit ::/0 ge 0 le 128
device(config)# ipv6 router rip
device(config-ripng-router)# distribute-list prefix-list 2001routes in
```

Syntax: `[no] distribute-list prefix-list name { in | out }

The name parameter indicates the name of the prefix list generated using the `ipv6 prefix-list` command. The `in` keyword indicates that the prefix list is applied to incoming routing updates on the specified interface. The `out` keyword indicates that the prefix list is applied to outgoing routing updates on the specified interface.

For the `interface` parameter, you can specify the ethernet, loopback, ve, or tunnel keywords. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE or tunnel interface, also specify the VE or tunnel number.

To remove the distribution list, use the `no` form of this command.

Configuring poison reverse parameters

By default, poison reverse is disabled on a RIPng Extreme device. If poison reverse is enabled, RIPng advertises routes it learns from a particular interface over that same interface with a metric of 16, which means that the route is unreachable.

If poison reverse is enabled on the RIPng Extreme device, it takes precedence over split horizon (if it is also enabled).

To enable poison reverse on the RIPng Extreme device, enter the following commands.

```
device(config)# ipv6 router rip
device(config-ripng-router)# poison-reverse
```

Syntax: `[no] poison-reverse"
To disable poison-reverse, use the \texttt{no} form of this command.

By default, if a RIPng interface goes down, the Extreme device does not send a triggered update for the interface's IPv6 networks. To better handle this situation, you can configure a RIPng Extreme device to send a triggered update containing the local routes of the disabled interface with an unreachable metric of 16 to the other RIPng routers in the routing domain. You can enable the sending of a triggered update by entering the following commands.

\begin{verbatim}
device(config)# ipv6 router rip
device(config-ripng-router)# poison-local-routes
\end{verbatim}

Syntax: [\texttt{no}] poison-local-routes

To disable the sending of a triggered update, use the \texttt{no} form of this command.

Clearing RIPng routes from IPv6 route table

To clear all RIPng routes from the RIPng route table and the IPv6 main route table and reset the routes, enter the following command at the Privileged EXEC level or any of the configuration levels of the CLI.

\begin{verbatim}
device# clear ipv6 rip route
\end{verbatim}

Syntax: \texttt{clear ipv6 rip route}

Clearing RIPng for a VRF instance

To clear all RIPng routes for a specific VRF, enter the following command:

\begin{verbatim}
device# clear ipv6 rip vrf red route
\end{verbatim}

Syntax: \texttt{clear ipv6 rip vrf vrf-name route}

Displaying RIPng information

You can display the following RIPng information:

- RIPng configuration
- RIPng routing table

Displaying RIPng configuration

To display RIPng configuration information, enter the \texttt{show ipv6 rip} command at any CLI level.

\begin{verbatim}
device# show ipv6 rip
IPv6 rip enabled, port 521
 Administrative distance is 120
 Updates every 30 seconds, expire after 180
 Holddown lasts 180 seconds, garbage collect after 120
 Split horizon is on; poison reverse is off
 Default routes are not generated
 Periodic updates 5022, trigger updates 10
 Distribute List, Inbound : Not set
 Distribute List, Outbound : Not set
 Distribute: CONNECTED
\end{verbatim}

Syntax: \texttt{show ipv6 rip}
TABLE 168 show ipv6 rip output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 RIP status/port</td>
<td>The status of RIPng on the device. Possible status is "enabled" or "disabled." The UDP port number over which RIPng is enabled.</td>
</tr>
<tr>
<td>Administrative distance</td>
<td>The setting of the administrative distance for RIPng.</td>
</tr>
<tr>
<td>Updates/expiration</td>
<td>The settings of the RIPng update and timeout timers.</td>
</tr>
<tr>
<td>Holdown/garbage collection</td>
<td>The settings of the RIPng hold-down and garbage-collection timers.</td>
</tr>
<tr>
<td>Split horizon/poison reverse</td>
<td>The status of the RIPng split horizon and poison reverse features. Possible status is "on" or "off."</td>
</tr>
<tr>
<td>Default routes</td>
<td>The status of RIPng default routes.</td>
</tr>
<tr>
<td>Periodic updates/trigger updates</td>
<td>The number of periodic updates and triggered updates sent by the RIPng Extreme device.</td>
</tr>
<tr>
<td>Distribution lists</td>
<td>The inbound and outbound distribution lists applied to RIPng.</td>
</tr>
<tr>
<td>Redistribution</td>
<td>The types of IPv6 routes redistributed into RIPng. The types can include the following:</td>
</tr>
<tr>
<td></td>
<td>• STATIC - IPv6 static routes are redistributed into RIPng.</td>
</tr>
<tr>
<td></td>
<td>• CONNECTED - Directly connected IPv6 networks are redistributed into RIPng.</td>
</tr>
<tr>
<td></td>
<td>• BGP - BGP4+ routes are redistributed into RIPng.</td>
</tr>
<tr>
<td></td>
<td>• IS-IS - IPv6 IS-IS routes are redistributed into RIPng.</td>
</tr>
<tr>
<td></td>
<td>• OSPF - OSPFv3 routes are redistributed into RIPng.</td>
</tr>
</tbody>
</table>

Displaying RIPng configuration for a VRF instance

To display the RIPng configuration information for a VRF instance, enter the following command:

```
device# show ipv6 rip vrf red
IPV6 rip enabled, port 521
Administrative distance is 120
Updates every 30 seconds, expire after 180
Holdown lasts 180 seconds, garbage collect after 120
Split horizon is on; poison reverse is off
Default originate routes are not generated
Periodic updates 1137, trigger updates 6
Distribute List, Inbound : Not set
Distribute List, Outbound : Not set
Redistribute: BGP
```

Syntax: `ipv6 rip vrf vrf-name`

Displaying RIPng routing table

To display the RIPng routing table, enter the following command at any CLI level.

```
device# show ipv6 rip route
IPV6 RIP Routing Table - 4 entries:
2001:db8::/64, from ::, null (0)
    CONNECTED, metric 1, tag 0, timers: none
2001:db8:46a::/64, from ::, null (1)
    CONNECTED, metric 1, tag 0, timers: none
2001:db8::1/128, from ::, null (2)
    CONNECTED, metric 1, tag 0, timers: none
2001:db8:2::/64, from ::, null (3)
    CONNECTED, metric 1, tag 0, timers: none
```
Syntax: `show ipv6 rip route [ipv6-prefix/prefix-length | ipv6-address]`

The `ipv6-prefix/prefix-length` parameters restrict the display to the entries for the specified IPv6 prefix. You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `ipv6-address` parameter restricts the display to the entries for the specified IPv6 address. You must specify this parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

TABLE 169 show ipv6 rip route output descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 RIP Routing Table entries</td>
<td>The total number of entries in the RIPng routing table.</td>
</tr>
<tr>
<td><code>ipv6-prefix</code>/<code>prefix-length</code></td>
<td>The IPv6 prefix and prefix length.</td>
</tr>
<tr>
<td><code>ipv6-address</code></td>
<td>The IPv6 address.</td>
</tr>
<tr>
<td>Next-hop router</td>
<td>The next-hop router for this Extreme device. If <code>::</code> appears, the route is originated locally.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface name. If "null" appears, the interface is originated locally.</td>
</tr>
<tr>
<td>Source of route</td>
<td>The source of the route information. The source can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• RIP - routes learned by RIPng.</td>
</tr>
<tr>
<td></td>
<td>• CONNECTED - IPv6 routes redistributed from directly connected networks.</td>
</tr>
<tr>
<td></td>
<td>• STATIC - IPv6 static routes are redistributed into RIPng.</td>
</tr>
<tr>
<td></td>
<td>• BGP - BGP4+ routes are redistributed into RIPng.</td>
</tr>
<tr>
<td></td>
<td>• OSPF - OSPFv3 routes are redistributed into RIPng.</td>
</tr>
<tr>
<td>Metric number</td>
<td>The cost of the route. The <code>number</code> parameter indicates the number of hops to the destination.</td>
</tr>
<tr>
<td>Tag number</td>
<td>The tag value of the route.</td>
</tr>
<tr>
<td>Timers</td>
<td>Indicates if the hold-down timer or the garbage-collection timer is set.</td>
</tr>
</tbody>
</table>

Displaying RIPng routing table for a VRF instance

To display the RIPng route information for a specified VRF, enter the following command at any CLI level.

```
device# show ipv6 rip vrf red route
IPv6 RIP Routing Table - 4 entries:
  2001:db8::/64, from ::, null (0)
    CONNECTED, metric 1, tag 0, timers: none
  2001:db8:46a::/64, from ::, null (1)
    CONNECTED, metric 1, tag 0, timers: none
  2001:db8:1/128, from ::, null (2)
    CONNECTED, metric 1, tag 0, timers: none
  2001:db8:2::/64, from ::, null (3)
    CONNECTED, metric 1, tag 0, timers: none
```

Syntax: `ipv6 rip [vrf vrf-name] route [ipv6-prefix/prefix-length | ipv6-address]`
VRRPv2

VRRPv2 overview

Virtual Router Redundancy Protocol (VRRP) is an election protocol that provides redundancy to routers within a Local Area Network (LAN).

VRRP was designed to eliminate a single point of failure in a static default-route environment by dynamically assigning virtual IP routers to participating hosts. A virtual router is a collection of physical routers whose interfaces must belong to the same IP subnet. A virtual router ID (VRID) is assigned to each virtual router, but there is no restriction against reusing a VRID with a different address mapping on different LANs.

NOTE

VRRP extended (VRRP-E) is an extended version of the VRRP protocol. Extreme Networks developed VRRP-E as a proprietary protocol to address some limitations in standards-based VRRP.

Before examining more details about how VRRP works, it is useful to see why VRRP was developed to solve the issue of a single point of failure.
FIGURE 60 Single point of failure with Device 1 being the Host1 default gateway

To connect to the Internet or an internal intranet Host 1, in the figure, uses the IP address of 192.168.4.1 on Router 1 as its default gateway. If this interface goes down, Host 1 is cut off from the rest of the network. Router 1 is a single point of failure for Host 1 to access other networks. In small networks, the administrative burden of configuring Router 2 as the new default gateway is not an issue, but in larger networks reconfiguring default gateways is impractical. Configuring a VRRP virtual router on Router 1 and Router 2 provides a redundant path for the hosts. VRRP allows you to provide alternate router paths for a host without changing the IP address or MAC address by which the host knows its gateway.

To illustrate how VRRP works, the following figure shows the same network, but a VRRP virtual router is configured on the two physical routers, Router 1 and Router 2. This virtual router provides redundant network access for Host 1. If Router 1 were to fail, Router 2 would provide the default gateway out of the subnet.
The blue rectangle in the figure represents a VRRP virtual router. When you configure a virtual router, one of the configuration parameters is a group number (also known as a virtual router ID or VRID), which can be a number from 1 through 255. The virtual router is identified with a group, and within the VRRP group, there is one physical device that forwards packets for the virtual router and this is called a master VRRP device. The VRRP master device may be a Layer 3 switch or a router.

In VRRP, one of the physical IP addresses is configured as the IP address of the virtual router, the virtual IP address. The device on which the virtual IP address is assigned becomes the VRRP owner, and this device responds to packets addressed to any of the IP addresses in the virtual router group. The owner device becomes the master VRRP device by default and is assigned the highest priority. Backup devices are configured as members of the virtual router group, and, if the master device goes offline, one of the backup devices assumes the role of the master device.

NOTE
VRRP operation is independent of BGP4, OSPF, and RIP. Their operation is unaffected when VRRP is enabled on the same interface as BGP4, OSPF, and RIP.

VRRP terminology

Before implementing VRRP in your network, you must understand some key terms and definitions.

The following VRRP-related terms are in logical order, not alphabetic order:

VRID1
Switch1 = Master
IP address = 192.53.5.1
MAC address = 00-00-5E-00-01-01
Priority = 255

VRID1
Switch2 = Backup
IP address = 192.53.5.1
MAC address = 00-00-5E-00-01-01
Priority = 100

Host1
Default Gateway
192.53.5.1

Internet or enterprise Intranet

Switch1
e 2/4
192.53.5.1
Owner

Switch2
e 3/2
192.53.5.3

Internet or enterprise Intranet
Virtual router
A collection of physical routers that can use VRRP to provide redundancy to routers within a LAN.

Virtual router ID
A group of physical routers that are assigned to the same virtual router ID (VRID).

Virtual router address
The virtual router IP address must belong to the same subnet as a real IP address configured on the VRRP interface, and it can be the same as a real IP address configured on the VRRP interface. The virtual router whose virtual IP address is the same as a real IP address is the IP address owner and the default master.

Owner
The owner is the physical router whose real interface IP address is the IP address that you assign to the virtual router. The owner responds to packets addressed to any of the IP addresses in the corresponding virtual router. The owner, by default, is the master and has the highest priority (255).

Master
The physical router that responds to packets addressed to any of the IP addresses in the corresponding virtual router. For VRRP, if the physical router whose real interface IP address is the IP address of the virtual router, then this physical router is always the master.

Backup
Routers that belong to a virtual router, but are not the master. If the master becomes unavailable, the backup router with the highest priority (a configurable value) becomes the new master. By default, routers are given a priority of 100.

VRRP hold timer

The hold timer delays the preemption of a master VRRP device by a high-priority backup device.

A hold timer is used when a VRRP-enabled device that was previously a master device failed, but is now back up. This restored device now has a higher priority than the current VRRP master device, and VRRP normally triggers an immediate switchover. In this situation, it is possible that not all software components on the backup device have converged yet. The hold timer can enforce a waiting period before the higher-priority backup device assumes the role of master VRRP device again. The timer must be set to a number greater than 0 seconds for this functionality to take effect.

Hold timer functionality is supported in both version 2 and version 3 of VRRP and VRRP-E.

VRRP interval timers

Various timers for the intervals between hello messages sent between devices running VRRP can be configured.

hello intervals

Hello messages are sent from the master VRRP device to the backup devices. The purpose of the hello messages is to determine that the master device is still online. If the backup devices stop receiving hello messages for a period of time, as defined by the dead interval, the backup devices assume that the master device is offline. When the master device is offline, the backup device with the highest priority assumes the role of the master device.

NOTE

The hello intervals must be set to the same value on both owner and backup devices for the same VRID.

dead interval

The dead interval is defined as the period of time for which backup devices wait for a hello message from the master device before assuming that the master device is offline. An immediate switchover to the backup device with the highest priority is triggered after the dead interval expires and there is no hello message from the master device. If a value for the dead interval is not configured, the default value is calculated as three times the hello interval plus the skew time. Skew time is defined as \((256 - \text{priority})/256\).

NOTE

The dead interval must be set to the same value on both owner and backup devices for the same VRID.
backup hello message state and interval

By default, backup devices do not send hello messages to advertise themselves to the master device. Hello messages from backup devices can be activated, and the messages are sent at 60-second intervals, by default. The interval between the backup hello messages can be modified.

VRRP authentication

The VRRP authentication type is not a parameter specific to the virtual router ID (VRID). VRRP uses the authentication type associated with the interfaces on which the virtual router ID (VRID) is defined.

If your interfaces do not use authentication, neither does VRRP. For example, if you configure your device interfaces to use a simple password to authenticate traffic, VRRP uses the same simple password, and VRRP packets that do not contain the password are dropped.

In summary, if the interfaces on which you configure the virtual router ID use authentication, the VRRP or VRRP-E packets on those interfaces must use the same authentication. The following VRRP and VRRP-E authentication types are supported:

- **No authentication**—The interfaces do not use authentication. This authentication type is the default.
- **Simple**—The interfaces use a simple text string as a password in packets that they send. If the interfaces use simple password authentication, the virtual router configured on the interfaces must use the same authentication type and the same password.
- **MD5**—This method of authentication ensures that the packet is authentic and cannot be modified in transit. Syslog and SNMP traps are generated when a packet is dropped due to MD5 authentication failure. MD5 authentication is supported only in VRRP-E, and the device configuration is unique on a per-interface basis. The MD5 authentication configuration on an interface takes effect for all VRRP-E virtual routers configured on a particular interface.

NOTE
Using MD5 authentication implies that the software does not need to run checksum verification on the receiving device because the authentication code (the message digest 5 algorithm) is used to verify the integrity of the VRRP-E message header.

NOTE
Authentication is not supported for VRRPv3.

VRRP master device abdication to backup device

To allow temporary control of a VRRP virtual router ID (VRID) to pass to a backup device, you can force the master device to abdicate to a backup device by setting a lower priority.

Changing the priority of a VRRP master device allows a temporary abdication of the master device status to allow a backup device with a higher priority to assume the master device role. By default, a VRRP owner device has a priority of 255, and the lower priority must be set to a lower priority than at least one of the backup devices associated with the VRID.

When you change the priority of a VRRP owner, the change takes effect only for the current power cycle. The change is not saved to the startup configuration file when you save the configuration, and it is not retained across a reload or reboot. Following a reload or reboot, the VRRP owner again has priority 255.

NOTE
This feature supports IPv4 VRRP only. IPv6 VRRP, VRRP-E, and IPv6 VRRP-E are not supported.
ARP and VRRP control packets

Control packets for ARP and VRRP are handled differently by VRRP and VRRP-E.

Source MAC addresses in VRRP control packets

- VRRP—The virtual MAC address is the source.
- VRRP-E—The physical MAC address is the source.

VRRP control packets

- VRRP—Control packets are IP type 112 (reserved for VRRP), and they are sent to the VRRP multicast address 224.0.0.18.
- VRRP-E—Control packets are UDP packets destined to port 8888, and they are sent to the all-router multicast address 224.0.0.2.

Gratuitous ARP

When a VRRP device (either master or backup) sends an ARP request or a reply packet, the MAC address of the sender is the MAC address of the router interface. One exception is if the owner sends an ARP request or a reply packet, in which case the MAC address of the sender is the virtual MAC address. Only the master answers an ARP request for the virtual router IP address. Any backup router that receives this request forwards the request to the master.

- VRRP—A control message is sent only once when the VRRP device assumes the role of the master VRRP device.
- VRRP-E—A control message is sent every 2 seconds by the VRRP-E master device because VRRP-E control packets do not use the virtual MAC address.

Enabling an owner VRRP device

This task is performed on the device that is designated as the owner VRRP device because the IP address of one of its physical interfaces is assigned as the IP address of the virtual router. For example, Router 1 is the owner VRRP device in the figure that follows. For each VRRP session, there are master and backup routers, and the owner router is elected, by default, as the master router.
1. On the device designated as the owner VRRP device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

 `device# configure terminal`

2. Globally enable VRRP.

 `device(config)# router vrrp`

3. Configure the Ethernet interface link for Router 1.

 `device(config)# interface ethernet 1/6`

4. Configure the IP address of the interface.

 `device(config-if-e1000-1/6)# ip address 10.53.5.1/24`

5. Assign Router 1 to the virtual router ID (VRID) 1.

 `device(config-if-e1000-1/6)# ip vrrp vrid 1`

 NOTE
 You can assign a VRID number in the range of 1 through 255.
6. Designate this router as the VRRP owner device.

 device(config-if-e1000-1/6-vrid-1)# owner

7. Configure the IP address of the VRID.

 device(config-if-e1000-1/6-vrid-1)# ip-address 10.53.5.1

8. Enable the VRRP session.

 device(config-if-e1000-1/6-vrid-1)# activate

The following example configures a VRRP owner device.

 device# configure terminal
 device(config)# router vrrp
 device(config)# interface ethernet 1/6
 device(config-if-e1000-1/6)# ip address 10.53.5.1/24
 device(config-if-e1000-1/6)# ip vrrp vrid 1
 device(config-if-e1000-1/6-vrid-1)# owner
 device(config-if-e1000-1/6-vrid-1)# ip-address 10.53.5.1
 device(config-if-e1000-1/6-vrid-1)# activate

VRRP router 1 for this interface is activating

Enabling a backup VRRP device

This task is performed on any device that is designated as a backup VRRP device. For each VRRP virtual routing instance, there is one master device and all other devices are backups. For example, Router 2 in Figure 62 on page 801 is assigned as a backup device. Repeat this task for all devices that are to be designated as backup devices.

1. On the device designated as a backup VRRP device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

 device# configure terminal

2. Globally enable VRRP.

 device(config)# router vrrp

3. Configure the Ethernet interface link.

 device(config)# interface ethernet 1/5

4. Configure the IP address of the interface for Router 2. All devices configured for the same virtual router ID (VRID) must be on the same subnet.

 device(config-if-e1000-1/5)# ip address 10.53.5.3/24

5. Assign Router 2 to VRID 1, the same VRID as Router 1.

 device(config-if-e1000-1/5)# ip vrrp vrid 1

 NOTE
 You can assign a VRID number in the range of 1 through 255.
6. Designate this router as a backup VRRP device.

   ```
   device(config-if-e1000-1/5-vrid-1)# backup priority 110
   ```

 While configuring a backup device, you can set a priority that is used when a master VRRP device goes offline. The backup device with the highest priority will assume the role of master device.

7. Configure the number of seconds between hello messages.

   ```
   device(config-if-e1000-1/5-vrid-1)# hello-interval 10
   ```

8. By default, backup VRRP devices do not send hello messages to advertise themselves to the master. Use the following command to enable a backup router to send hello messages to the master VRRP device.

   ```
   device(config-if-e1000-1/5-vrid-1)# advertise backup
   ```

9. Configure the IP address of the VRID.

   ```
   device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.1
   ```

 The VRID IP address is the same virtual IP address you used for Router 1.

10. Enable the VRRP session.

    ```
    device(config-if-e1000-1/5-vrid-1)# activate
    ```

 VRRP router 1 for this interface is activating

The following example configures a VRRP backup device.

```
device# configure terminal
device(config)# router vrrp
device(config)# interface ethernet 1/5
device(config-if-e1000-1/5)# ip address 10.53.5.3/24
device(config-if-e1000-1/5)# ip vrrp vrid 1
device(config-if-e1000-1/5-vrid-1)# backup priority 110
device(config-if-e1000-1/5-vrid-1)# hello-interval 10
device(config-if-e1000-1/5-vrid-1)# advertise backup
device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.1
device(config-if-e1000-1/5-vrid-1)# activate
```

VRRP router 1 for this interface is activating

Configuring simple text authentication on VRRP interfaces

A simple text password can be used for interface authentication in a network. VRRP uses the authentication type associated with the interfaces on which you define the virtual router ID (VRID).

A VRRP session must be configured and running.

If you configure your device interfaces to use a simple password to authenticate traffic, VRRP interfaces can be configured with the same simple password, and VRRP packets that do not contain the password are dropped. If your interfaces do not use authentication, neither does VRRP. Repeat this task on all interfaces on all devices that support the VRID.

NOTE

This task supports VRRPv2 and VRRP-Ev2 only. VRRPv3 and VRRP-Ev3 are not supported.

1. From privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

   ```
   device# configure terminal
   ```

2. Globally enable VRRP.

   ```
   device(config)# router vrrp
   ```

3. Configure an Ethernet interface.

   ```
   device(config)# interface ethernet 1/6
   ```

4. Enter the simple text password configuration using the `ip vrrp auth-type` command with a text password.

   ```
   device(config-if-e10000-1/6)# ip vrrp auth-type simple-text-auth yourpwd
   ```

5. Verify the password on the interface using the `show ip vrrp` command with either the VRID or Ethernet options.

   ```
   device(config-if-e10000-1/6-vrid-1)# show ip vrrp
   ```

 Total number of VRRP routers defined: 1
 Interface ethernet 1/6
 auth-type simple text authentication
 VRID 1
 state backup
 administrative-status enabled
 mode owner
 priority 99
 current priority 99
 hello-interval 1 sec
 ip-address 10.53.5.1
 backup routers 10.53.5.2

 In this example, the authentication type is simple text authentication. A `show running-config` command with appropriate parameters will actually display the password. The output verifies the type of authentication.

Configuring MD5 authentication on VRRP interfaces

Interfaces can be configured with an MD5 encrypted password for authentication, and VRRP can use the same authentication type associated with the interfaces on which you define the virtual router ID (VRID).

If you configure your device interfaces to use an MD5 encrypted password to authenticate traffic, VRRP interfaces can be configured with the same MD5 password, and VRRP packets that do not contain the password are dropped. If your interfaces do not use authentication, neither does VRRP. Repeat this task on all interfaces on all devices that support the VRID.

1. From privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

   ```
   device# configure terminal
   ```

2. Globally enable VRRP.

   ```
   device(config)# router vrrp
   ```

3. Specify an interface associated with the VRRP VRID.

   ```
   device(config)# interface ethernet 1/6
   ```
4. Enter the MD5 password configuration using the `ip vrrp auth-type` command with a text password. The password will be encrypted when saved in the configuration file. When an MD5 authentication password is configured on an interface, a syslog message is displayed.

   ```
   device(config-if-e10000-1/6)# ip vrrp auth-type md5-auth gy42mb
   Aug 10 18:17:39 VRRP: Configuration VRRP_CONFIG_MDI5_AUTHENTICATION request received
   Aug 10 18:17:39 VRRP: Port 1/6, VRID 2 - send advertisement
   Ver:3 Type:1 Vrid:2 Pri:240 #IP:1 AuthType:2 Adv:1 Chksum:0x0000
   HMAC-MD5 CODE:[000000000000000000400010]
   IpAddr: 10.53.5.1
   ```

5. Verify the password on the interface using the `show ip vrrp` command.

   ```
   device(config-if-e10000-1/6-vrid-1)# show ip vrrp
   Total number of VRRP routers defined: 1
   Interface ethernet 1/6
   auth-type MD5 authentication
   VRID 1
   state backup
   administrative-status enabled
   mode owner
   priority 99
   current priority 99
   hello-interval 1 sec
   ip-address 10.53.5.1
   backup routers 10.53.5.2
   ```

 In this example, the auth-type is MD5 authentication where the entered password is encrypted. A `show run` command with appropriate parameters will actually display the encrypted password, and you can use the `enable password-display` command to actually display the encrypted password. The output verifies the type of authentication.

 The following example enables MD5 authentication on Ethernet interface 1/6 and verifies the authentication type.

   ```
   device# configure terminal
   device(config)# router vrrp
   device(config)# interface ethernet 1/6
   device(config-if-e10000-1/6)# ip vrrp auth-type MD5 yourpwd
   device(config-if-e10000-1/6-vrid-1)# show ip vrrp
   Total number of VRRP routers defined: 1
   Interface ethernet 1/6
   auth-type MD5 authentication
   VRID 1
   state backup
   administrative-status enabled
   mode owner
   priority 99
   current priority 99
   hello-interval 1 sec
   ip-address 10.53.5.1
   backup routers 10.53.5.2
   ```

Abdicating VRRP master device status

Changing the priority of a VRRP master device allows a temporary abdication of the master device status to allow a backup device with a higher priority to assume the master device role.

A VRRP session must be configured and running.

When you change the priority of a VRRP owner, the change takes effect only for the current power cycle. The change is not saved to the startup configuration file when you save the configuration, and it is not retained across a reload or reboot. Following a reload or reboot, the VRRP owner again has priority 255.
NOTE
This task is supports IPv4 VRRP only. IPv6 VRRP, VRRP-E, and IPv6 VRRP-E are not supported.

1. On the master device and from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

2. Globally enable VRRP.

   ```
   device(config)# router vrrp
   ```

3. Configure an Ethernet interface.

   ```
   device(config)# interface ethernet 1/6
   ```

4. Enter the virtual router ID (VRID) for which the device is the VRRP owner.

   ```
   device(config-if-e1000-1/6)# ip vrrp vrid 1
   ```

 NOTE
 You can assign a VRID number in the range of 1 through 255.

5. Enter a priority for this device that is lower than the priority of at least one backup device associated with the VRID.

   ```
   device(config-if-e1000-1/6-vrid-1)# owner priority 99
   ```

6. Verify the abdication of the master device using the `show ip vrrp` command.

   ```
   device(config-if-e10000-1/6-vrid-1)# show ip vrrp
   ```

 Total number of VRRP routers defined: 1
 Interface ethernet 1/6
 auth-type no authentication
 VRID 1
 state backup
 administrative-status enabled
 mode owner
 priority 99
 current priority 99
 hello-interval 1 sec
 ip-address 10.53.5.1
 backup routers 10.53.5.2

 In this example, the mode shows this device as the owner of the virtual router (mode owner), but the VRRP priority for the device is only 99 and the state is now backup instead of master. The administrative status is still enabled. The output verifies that this device is now a backup device.
Tracked ports and track priority with VRRP and VRRP-E

Port tracking allows interfaces not configured for VRRP or VRRP-E to be monitored for link-state changes that can result in dynamic changes to the VRRP device priority.

A tracked port allows you to monitor the state of the interfaces on the other end of a route path. A tracked interface also allows the virtual router to lower its priority if the exit path interface goes down, allowing another virtual router in the same VRRP (or VRRP-E) group to take over. When a tracked interface returns to an up state, the configured track priority is added to the current virtual router priority value. The following conditions and limitations exist for tracked ports:

- Track priorities must be lower than VRRP or VRRP-E priorities.
- The dynamic change of router priority can trigger a master device switchover if preemption is enabled. However, if the router is an owner, the master device switchover will not occur.
- The maximum number of interfaces that can be tracked for a virtual router is 16.
- Port tracking is allowed for physical interfaces and port channels.

Tracking ports and setting the VRRP priority

Configuring port tracking on an exit path interface and setting a priority on a VRRP device enables VRRP to monitor the interface. For VRRP, if the interface goes down, the device priority is set to the priority value and another backup device with a higher priority assumes the role of master. For VRRP-E, if the interface goes down, the device priority is lowered by the priority value and another backup device with a higher priority assumes the role of master.

Configure this task on the device on which the tracked interface exists.

NOTE
Only IPv4/IPv6 IPsec tunnels can be configured with a specific `track-port` command priority. Other interfaces use the track priority associated with the `owner` or `backup` commands.

1. Enter the `configure terminal` command to enter global configuration mode.

 device# configure terminal

2. Enter the `router vrrp` command to configure VRRP globally.

 device(config)# router vrrp

3. Configure the Ethernet interface.

 device(config)# interface ethernet 1/6

4. Enter the IP address for the interface to be used for the virtual router ID (VRID).

 device(config-if-e10000-1/6)# ip address 10.53.5.3/24

5. Enter the following command to enter the appropriate VRRP virtual router ID (VRID) mode.

 device(config-if-e10000-1/6)# ip vrrp vrid 1
6. Enter the `track-port` command to set the track port and priority:

```
device(config-if-e10000-1/6-vrid-1)# track-port tunnel 1 priority 40
```

The priority value is used when a tracked port goes down and the new priority is set to this value. Ensure that the priority value is lower than the priority set for any existing master or backup device to force a renegotiation for the master device.

The following example shows how to configure tunnel 1 on virtual router 1 to be tracked; if the interface fails, the VRRP priority of the device becomes 40, forcing a negotiation for a new master device.

```
device# configure terminal
device(config)# router vrrp
device(config)# interface ethernet 1/6
device(config-if-e10000-1/6)# ip address 10.53.5.1/24
device(config-if-e10000-1/6)# ip vrrp vrid 1
device(config-if-e10000-1/6-vrid-1)# track-port tunnel 1 priority 40
```

VRRP backup preemption

Preemption of a backup VRRP device acting as a master device is allowed when another backup device has a higher priority.

By default, preemption is enabled for VRRP. In VRRP, preemption allows a backup device with the highest priority to become the master device when the master (also the owner) device goes offline. If another backup device is added with a higher priority, it will assume the role of the master VRRP device. In some larger networks there may be a number of backup devices with varying levels of priority, and preemption can cause network flapping. To prevent the flapping, disable preemption.

NOTE

If preemption is disabled for VRRP, the owner device is not affected because the owner device always preempts the active master. When the owner device is online, the owner device assumes the role of the master device regardless of the setting for the preempt parameter.

In VRRP-E, preemption is disabled by default. In situations where a new backup device is to be added with a higher priority, preemption can be enabled. There are no owner devices in VRRP-E to automatically preempt a master device.

Disabling VRRP backup preemption

VRRP backup preemption can be disabled to avoid route flapping when a backup VRRP device that is acting as the master device could be preempted by another backup device with a higher priority value.

A VRRP or VRRP-E session must be globally enabled using the `router vrrp` or `router vrrp-extended` command in global configuration mode.

Preemption is enabled by default for VRRP and VRRP-E, but if several devices come back online with higher priorities than the original backup device, route flapping can occur as these devices preempt each other. The following steps can be used when you want to avoid a backup device acting as the master from being preempted by another backup device with a higher priority value.

1. Enter interface configuration mode.

```
device(config)# interface ethernet 1/5
```

2. Enter the IP address for the interface to be used for the virtual router ID (VRID).

```
device(config-if-e10000-1/5)# ip address 10.53.5.3/24
```
3. Enter the following command to enter the appropriate VRRP VRID mode.

 device(config-if-e10000-1/5)# ip vrrp vrid 1

4. Enter the non-preempt-mode command to disable backup preemption.

 device(config-if-e10000-1/5-vrid-1)# non-preempt-mode

 Even if a backup device has a higher priority than the current backup acting as a master device, the backup device will not assume the role of the VRRP master device.

The following example disables preemption on a backup VRRP device.

 device(config)# router vrrp
 device(config)# interface ethernet 1/5
 device(config-if-e10000-1/5)# ip address 10.53.5.3/24
 device(config-if-e10000-1/5)# ip vrrp vrid 1
 device(config-if-e10000-1/5-vrid-1)# non-preempt-mode

Virtual router MAC address

When you configure a virtual routing ID (VRID), the software automatically uses the MAC address as the MAC address of the virtual router. The first five octets of the address are the standard MAC prefix for VRRP packets. The last octet is the VRID.

When the virtual router becomes the master router, it broadcasts a gratuitous ARP (GARP) request containing the virtual router’s MAC address for each IP address associated with the virtual router. Hosts use the MAC address of the virtual router in routed traffic they send to their default IP gateway.

You can manually configure a unique virtual MAC address for each IPv4 and IPv6 VRRP instance per VRID. If there is no manually configured virtual MAC address for a VRRP instance, the system automatically assigns one.

The ability to configure a unique virtual MAC address is subject to the following limitations:

- This feature does not support configurable VRRP virtual MAC addresses over Multi-Chassis Trunking (MCT).
- This feature has no impact on short-path forwarding for VRRP-E.

NOTE

A virtual MAC address can be dynamically updated while a VRRP or VRRP-E session is enabled. When the VRRP or VRRP-E virtual MAC address is modified on the master device, expect a traffic drop until the host device receives the GARP or Router Advertisement (RA) containing the updated virtual MAC address from the master VRRP device.

Configuring unique virtual MAC addresses per VRID

In addition to system-configured standards-based virtual MAC addresses, you can manually configure a unique virtual MAC address for each IPv4 and IPv6 VRRP instance per virtual routing ID (VRID). If there is no manually configured virtual MAC address for a VRRP instance, the system automatically assigns one.

For the MLX Series platform, you can configure a maximum of 2000 virtual MAC addresses. For CES 2000 Series and CER 2000 Series platforms, you can configure a maximum of 255 virtual MAC addresses.

NOTE

System-assigned virtual MAC addresses and manually configured virtual MAC addresses can exist at the same time on the device under the same VRID, however the configured value takes precedence. When the configured value is deleted, the assigned value again applies.
NOTE
A virtual MAC address can be dynamically updated while a VRRP or VRRP-E session is enabled. When the VRRP or VRRP-E virtual MAC address is modified on the master device, expect a traffic drop until the host device receives the GARP request or Router Advertisement (RA) containing the updated virtual MAC address from the master VRRP device.

To configure a unique VRRP or VRRP-E virtual MAC address for a VRID, complete the following steps.

1. On the device designated as a VRRP-E device, from privileged EXEC mode, enter configuration mode by issuing the `configure terminal` command.

 device# configure terminal

2. Globally enable the VRRP-E protocol.

 device(config)# router vrrp-extended

3. Configure the ethernet interface link.

 device(config-vrrpe-router)# interface ethernet 1/5

4. Configure the IP address of the interface. All devices configured for the same VRID must be on the same subnet.

 device(conf-if-e1000-1/5)# ip address 10.53.5.3/24

5. Assign the device to VRID 1.

 device(conf-if-e1000-1/5)# ip vrrp-extended vrid 1

 NOTE
 You can assign a VRID number in the range of 1 through 255.

6. To configure an IPv4 virtual MAC address for VRID 1 (for example), enter the following command at the configure VRID level of the CLI:

 device(config-if-e1000-1/5-vrid-1)# virtual-mac aaaa.bbbb.cccc

 NOTE
 System-assigned virtual MAC addresses and manually configured virtual MAC addresses can exist at the same time on the device under the same VRID, however the configured value takes precedence. When the configured value is deleted, the assigned value again applies.
7. To display IPv4 VRRP-E virtual MAC address configuration information about VRID 1 (for example), enter the following command:

```
device# show ip vrrp-extended vrid 1
```

```
Interface 1/5
--------------
auth-type md5-authentication
VRID 1 (index 1)
interface 1/5
state master
administrative-status disabled
mode non-owner(backup)
virtual mac aaaa.bbbb.cccc (configured)
priority 100
current priority 100
track-priority 5
hello-interval 1 sec
backup hello-interval 60 sec
slow-start timer (configured) 30 sec
advertise backup disabled
dead-interval 0 ms
preempt-mode true
virtual ip address 10.20.1.100
short-path-forwarding disabled
```

The following example configures an IPv4 virtual MAC address for VRID 1 on a VRRP-E device. This example shows all the steps required to configure and activate a VRRP-E device.

```
device# configure terminal
device(config)# router vrrp-extended
device(config)# interface ethernet 1/5
device(config-if-e1000-1/5)# ip address 10.53.5.3/24
device(config-if-e1000-1/5)# ip vrrp-extended vrid 1
device(config-if-e1000-1/5-vrid-1)# backup priority 50 track-priority 10
device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.1
device(config-if-e1000-1/5-vrid-1)# virtual-mac aaaa.bbbb.cccc
device(config-if-e1000-1/5-vrid-1)# activate
```

Suppressing RIP route advertisements on VRRP backup devices

RIP route advertisement suppression can be enabled on VRRP backup devices to prevent other VRRP devices from learning multiple paths for a backed-up interface.

A VRRP or VRRP-E session with master and backup devices must be configured and running.

Normally, a VRRP or VRRP-E backup includes route information for the virtual IP address (the backed-up interface) in RIP advertisements. As a result, other devices receive multiple paths for the backed-up interface and might sometimes unsuccessfully use the path to the backup device rather than the path to the master device.

You can prevent the backups from advertising route information for the backed-up interface by enabling suppression of the advertisements.
NOTE
The command syntax is the same for VRRP and VRRP-E.

1. Enter the `configure terminal` command to access global configuration mode.

 device# configure terminal

2. Enable RIP.

 device(config)# router rip

3. Suppress RIP route advertisements.

 device(config-rip-router)# use-vrrp-path

The following example suppresses RIP advertisements for the backed-up interface.

 device# configure terminal
device(config)# router rip
device(config-rip-router)# use-vrrp-path

VRRP-Ev2 overview

VRRP Extended (VRRP-E) is an extended version of VRRP. VRRP-E is designed to avoid the limitations in the standards-based VRRP.

VRRP-E is implemented the following differences from RFC 3768 which describes VRRPv2 to provide extended functionality and ease of configuration:

- VRRP-E does not include the concept of an owner device, and a master VRRP-E is determined by the priority configured on the device.
- While the VRRP-E virtual router IP address must belong in the same subnet as a real IP address assigned to a physical interface of the device on which VRRP-E is configured, it must not be the same as any of the actual IP addresses on any interface.
- Configuring VRRP-E uses the same task steps for all devices; there are no differences between master and backup device configuration. The device configured with the highest priority assumes the master role.

NOTE
VRRP-E is supported on the devices described in this guide. In a mixed-device environment, consult your documentation for the other devices to determine if VRRP-E is supported. VRRP-E does not interoperate with VRRP sessions.

Enabling a VRRP-E device

This task is performed on any device that is designated as a VRRP extended (VRRP-E) device. For each VRRP-E virtual routing instance, there is one master device and all other devices are backups; but, unlike VRRP, every device is configured as a backup and the device with the highest priority becomes the master VRRP-E device. Repeat this task for all devices that are to be designated as VRRP-E devices.
NOTE
Only VRRP or VRRP-E can be enabled in your network.

1. On the device designated as a VRRP-E device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

 device# configure terminal

2. Globally enable VRRP-E.

 device(config)# router vrrp-extended

3. Configure the Ethernet interface link.

 device(config-vrrpe-router)# interface ethernet 1/5

4. Configure the IP address of the interface. All devices configured for the same virtual router ID (VRID) must be on the same subnet.

 device(config-if-e1000-1/5)# ip address 10.53.5.3/24

5. Assign the device to VRID 1.

 device(config-if-e1000-1/5)# ip vrrp-extended vrid 1

 NOTE
 You can assign a VRID number in the range of 1 through 255.

6. Designate this router as a backup VRRP device.

 device(config-if-e1000-1/5-vrid-1)# backup priority 50 track priority 10

 While configuring a backup device, you can set a priority that is used when a master VRRP device goes offline. The backup device with the highest priority will assume the role of master device.

7. Configure the IP address of the VRID.

 device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.1

 The IP address associated with the VRID must not be configured on any of the devices used for VRRP-E.

8. Enable the VRRP-E session.

 device(config-if-e1000-1/5-vrid-1)# activate

 VRRP-E router 1 for this interface is activating

The following example configures a VRRP-E device.

```
device# configure terminal
device(config)# router vrrp-extended
device(config-vrrpe-router)# interface ethernet 1/5
device(config-if-e1000-1/5)# ip address 10.53.5.3/24
device(config-if-e1000-1/5)# ip vrrp-extended vrid 1
device(config-if-e1000-1/5-vrid-1)# backup priority 50 track-priority 10
device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.1
device(config-if-e1000-1/5-vrid-1)# activate
VRRP-E router 1 for this interface is activating
```
VRRP-E load-balancing using short-path forwarding

The VRRP-E Extension for Server Virtualization feature allows devices to bypass the VRRP-E master router and directly forward packets to their destination through interfaces on the VRRP-E backup router. This is called short-path forwarding. A backup router participates in a VRRP-E session only when short-path forwarding is enabled.

Packet routing with short-path forwarding to balance traffic load

When short-path forwarding is enabled, traffic load-balancing is performed because both master and backup devices can be used to forward packets.

FIGURE 63 Short-path forwarding

If you enable short-path forwarding in both master and backup VRRP-E devices, packets sent by Host Server 1 (in the figure) and destined for the Internet cloud through the device on which a VRRP-E backup interface exists can be routed directly to the VRRP-E backup device (blue dotted line) instead of being switched to the master router and then back (red dotted-dash line).
In the figure, load-balancing is achieved using short-path forwarding by dynamically moving the virtual servers between Host Server 1 and Host Server 2.

Short-path forwarding with revert priority

Revert priority is used to dynamically enable or disable VRRP-E short-path forwarding. If short-path forwarding is configured with revert priority on a backup router, the revert priority represents a threshold for the current priority of the VRRP-E session. When the backup device priority is higher than the configured revert priority, the backup router is able to perform short-path forwarding. If the backup priority is lower than the revert priority, short-path forwarding is disabled.

Configuring VRRP-E load-balancing using short-path forwarding

VRRP-E traffic can be load-balanced using short-path forwarding on the backup devices. Before configuring VRRP-E load-balancing, VRRP-E must be configured on all devices in the VRRP-E session. Perform this task on all backup VRRP-E Layer 3 devices to allow load sharing within a VRRP extended group.

1. Use the `configure terminal` command to enter global configuration mode.

 device# configure terminal

2. To globally enable VRRP-E, enter the `router vrrp-extended` command.

 device(config)# router vrrp-extended

3. Enter the `interface ve` command with an associated VLAN number.

 device(config-vrrpe-router)# interface ve 10

 In this example, virtual Ethernet (ve) configuration mode is entered and the interface is assigned a VLAN number of 10.

4. Enter an IP address for the interface using the `ip address` command.

 device(config-vif-10)# ip address 192.168.4.1/24

5. Enter the `ip vrrp-extended vrid` command with a number to assign a VRRP-E virtual router ID to the device.

 device(config-vif-10)# ip vrrp-extended vrid 5

 In this example, VRRP-E group configuration mode is entered.

6. Enter the `backup` command with a `priority` value to configure the device as a VRRP-E backup device.

 device(config-vif-10-vrid-5)# backup priority 50

7. Enter the `ip-address` command with an IP address that is not used on any VRRP-E device interface to add a virtual IP address to the VRRP-E instance.

 device(config-vif-10-vrid-5)# ip-address 192.168.4.254

8. Enter the `short-path-forwarding` command with a `revert-priority` value to configure the backup VRRP-E device as an alternate path with a specified priority.

 device(config-vif-10-vrid-5)# short-path-forwarding revert-priority 50

 When the backup device priority is higher than the configured `revert-priority` value, the backup router is able to perform short-path forwarding. If the backup priority is lower than the revert priority, short-path forwarding is disabled.
9. Enter the **activate** command to activate the VRRP-E instance.

```
device(config-vif-10-vrid-5)# activate
```

In the following example, short-path forwarding is configured on a backup VRRP-E device, and a revert priority threshold is configured. If the backup device priority falls below this threshold, short-path forwarding is disabled.

```
device# configure terminal
device(config)# router vrrp-extended
device(config-vrrpe-router)# interface ve 10
device(config-vif-10)# ip address 192.168.4.1/24
device(config-vif-10)# ip vrrp-extended vrid 5
device(config-vif-10-vrid-5)# backup priority 50
device(config-vif-10-vrid-5)# ip-address 192.168.4.254
device(config-vif-10-vrid-5)# short-path-forwarding revert-priority 50
device(config-vif-10-vrid-5)# activate
```

VRRP-E slow start timer

In a VRRP extended (VRRP-E) configuration, if a master device goes offline, the backup router with the highest priority takes over after the expiration of the dead interval timer. When the original master device is back online, you can configure a slow-start timer interval that extends the time interval beyond the dead interval before the original master device transitions back to the role of master device.

The slow-start interval allows additional time for routing protocols, for example OSPF, to converge without causing route flapping during the transition from backup device to master device. Included in the VRRP-E slow-start timer feature are track port state changes and restart options. The `use-track-port` option implements a slow-start timer for the first tracked port "up" state change, in addition to the VRRP-E initialization state. The `restart` option restarts the slow-start timer for subsequent tracked port "up" state changes.

NOTE

If you change the backup priority of a VRRP-E backup router to be higher than the priority of the original master device, the slow-start timer will not work. The original master device will take over from the backup device immediately.

Configuring a VRRP-E slow-start timer

The slow-start timer is a VRRP-E interval timer that extends beyond the dead interval during a transition from the backup device that assumed the master role to the original master device that is back online and has a higher priority.

In a VRRP extended (VRRP-E) configuration, if a master device goes offline, the backup router with the highest priority takes over after the expiration of the dead interval timer. When the original master device is back online, you can configure a slow-start timer interval that extends the time interval beyond the dead interval before the original master device transitions back to the role of master device.

1. Use the `configure terminal` command to enter global configuration mode.

```
device# configure terminal
```

2. To globally enable VRRP-E, enter the `router vrrp-extended` command.

```
device(config)# router vrrp-extended
```

3. Enter the `slow-start` command with options to configure the interval, in seconds, and whether tracked-port state changes trigger the slow-start interval.

```
device(config-vrrpe-router)# slow-start 40 use-track-port restart
```
In this example, the slow-start timer interval is set to 40 seconds, and the slow-start timer also runs after the first and subsequent tracked-port state changes.

```
device# configure terminal
device(config)# router vrrp-extended
device(config-vrrpe-router)# slow-start 40 use-track-port restart
```

Multiple virtual IP address support for VRRP-E

Support for multiple virtual IPv4 addresses per interface is available for a VRRP extended (VRRP-E) router instance. For an interface that has multiple subnet IPv4 addresses, a single VRRP-E provides redundancy when all the IP addresses are configured for the VRRP-E instance.

All virtual IP addresses must be configured before activating the VRRP-E instance. If a virtual IP address is to be added, the VRRP-E router instance must be disabled, and the configuration changes made before reactivating the VRRP-E instance. Between master and backup VRRP-E devices the virtual IP address configuration must be consistent to allow the generation of the same virtual MAC address for a specific virtual router ID (VRID). Gratuitous ARP messages are sent for all the configured IP addresses of each VRRP-E instance. To avoid regeneration of the virtual MAC address when a lower value virtual IPv4 address is configured, configure a static virtual MAC address for the VRRP-E router instance.

NOTE

Multiple virtual IPv4 address support is not compatible with the VRRP-E scaling feature.

Configuring multiple virtual IP addresses for VRRP-E

Configuring multiple virtual IPv4 addresses for an interface assigned as a VRRP extended (VRRP-E) router instance.

For an interface that has multiple subnet IPv4 addresses, a single VRRP-E provides redundancy when all the IP addresses are configured for the VRRP-E instance. In this task, configuring a static MAC address is an optional step.

1. From privileged EXEC mode, enter configuration mode by issuing the `configure terminal` command.
   ```
   device# configure terminal
   ```

2. Globally enable the VRRP-E protocol by entering the `router vrrp-extended` command.
   ```
   device(config)# router vrrp-extended
   ```

3. Configure the ethernet interface for the VRRP-E instance.
   ```
   device(config)# interface ethernet 1/1
   ```

4. Configure an IP address on the interface.
   ```
   device(config-if-e1000-1/1)# ip address 10.10.10.1/24
   ```

5. Repeat Step 4 for all IP addresses on the interface.
   ```
   device(config-if-e1000-1/1)# ip address 10.20.20.1/24
   ```

6. Configure a VRRP extended instance using a virtual routing ID (VRID).
   ```
   device(config-if-e1000-1/1)# ip vrrp-extended vrid 2
   ```
7. Configure the device as a backup VRRP-E device for VRID 2.
 `device(config-if-e1000-1/1-vrid-2)# backup`

8. Configure an optional static MAC address for VRID 2.
 `device(config-if-e1000-1/1-vrid-2)# virtual-mac aaaa.bbbb.cccc`

9. Configure a virtual IP address for VRID 2.
 `device(config-if-e1000-1/1-vrid-2)# ip-address 10.10.10.10`

10. Repeat Step 9 to configure all the virtual IP addresses for VRID 2.
 `device(config-if-e1000-1/1-vrid-2)# ip-address 10.20.20.20`

 If you want to add a new virtual IP address after the initial setup, you must first deactivate the virtual router and then reconfigure all the virtual IP addresses.

11. Activate the virtual IP address or addresses for VRID 2.
 `device(config-if-e1000-1/1-vrid-2)# activate`

The following example configures seven virtual IP addresses for VRRP-E virtual router instance 2.

```
device# configure terminal
device(config)# router vrrp-extended
device(config)# interface ethernet 1/1
device(config-if-e1000-1/1)# ip address 10.10.10.1/24
device(config-if-e1000-1/1)# ip address 10.20.20.1/24
device(config-if-e1000-1/1)# ip address 10.30.30.1/24
device(config-if-e1000-1/1)# ip address 10.40.40.1/24
device(config-if-e1000-1/1)# ip address 10.50.50.1/24
device(config-if-e1000-1/1)# ip address 10.60.60.1/24
device(config-if-e1000-1/1)# ip address 10.70.70.1/24
device(config-if-e1000-1/1)# ip vrrp-extended vrid 2
device(config-if-e1000-1/1-vrid-2)# backup
device(config-if-e1000-1/1-vrid-2)# virtual-mac aaaa.bbbb.cccc
device(config-if-e1000-1/1-vrid-2)# ip-address 10.10.10.10
device(config-if-e1000-1/1-vrid-2)# ip-address 10.20.20.20
device(config-if-e1000-1/1-vrid-2)# ip-address 10.30.30.30
device(config-if-e1000-1/1-vrid-2)# ip-address 10.40.40.40
device(config-if-e1000-1/1-vrid-2)# ip-address 10.50.50.50
device(config-if-e1000-1/1-vrid-2)# ip-address 10.60.60.60
device(config-if-e1000-1/1-vrid-2)# ip-address 10.70.70.70
device(config-if-e1000-1/1-vrid-2)# activate
```
Displaying multiple virtual IP addresses for VRRP-E information

Displays information about the multiple virtual IPv4 addresses that are configured for a VRRP-E instance.

Several options of the `show ip vrrp-extended` command can display information about the multiple virtual IP addresses configured for a VRRP-E instance. Use the steps below in any order.

1. Enter the `show ip vrrp-extended brief` command to display the number of configured virtual IPv4 addresses for each VRRP-E router instance and the virtual IPv4 addresses.

   ```
   device# show ip vrrp-extended brief
   Total number of VRRP-Extended routers defined: 3
   Flags Codes - P:Preempt 2:V2 3:V3
   Short-Path-Fwd Codes - ER: Enabled with revertible option, RT: reverted,
   NR: not reverted
   Intf VRID Curr Flags State MasterIP BackupIP (No) VirtualIP Short-Track MCT
   Prio Address Address Address Path-Fwd VPLS-State
   --------------------------------------------------------------------------------
   1/1  1    100  P2    Master Local    Unknown  ( 7) 10.10.10.10 Enabled Disable
   10.20.20.20
   10.30.30.30
   10.40.40.40
   10.50.50.50
   10.60.60.60
   10.70.70.70
   ```

2. Enter the `show ip vrrp-extended vrid [VRID] interface [interface]` command with a specific VRID and interface to display the number of configured IPv4 addresses for each VRRP-E router instance and the actual IPv4 addresses in a different format with the detailed information about each virtual router instance.

   ```
   device# show ip vrrp-extended vrid 1 ethernet 1/1
   Interface 1/1
   ----------------
   auth-type no authentication
   VRID 1 (index 1)
   interface 1/1
   state master
   administrative-status enabled
   mode non-owner(backup)
   virtual mac 02e0.527d.7c01
   priority 100
   current priority 100
   track-priority 5
   hello-interval 1 sec
   backup hello-interval 60 sec
   slow-start timer (configured) 0 sec
   advertise backup disabled
   dead-interval 3500 ms
   preempt-mode true
   number of configured virtual address 7
   virtual ip address 10.10.10.10 10.20.20.20 10.30.30.30 10.40.40.40
   10.50.50.50 10.60.60.60 10.70.70.70
   next hello sent in 1000 ms
   Track MCT-VPLS-State: Disable
   short-path-forwarding enabled
   ```
VRRP-E scaling using logical groups

Scaling the number of VRRP extended (VRRP-E) instances up to 4000 instances is allowed using a grouping mechanism. VRRP-E instances are configured into logical groups consistently across all the VRRP-E master and backup devices.

Each VRRP-E logical group is assigned with a group master and the configuration is performed to identify the group master for each VRRP-E virtual router ID (VRID) configured on a device. Group members stop advertising hello messages and they inherit the state of the group master. The significant reduction in load on the CPU when the hello advertisements are not sent or processed, allows more VRRP-E instances to be configured.

A gratuitous ARP router advertisement is sent from the group-master on behalf of its group members once every 30 seconds by default to allow the devices on the network to learn the virtual MAC address of the group master. The gratuitous ARP router advertisement interval can be configured.

NOTE
If the maximum number of VRRP-E instances exist, configuring a gratuitous ARP router advertisement interval lower than 5 seconds can result in high CPU usage.

The configuration for the following commands is inherited from the group master device configuration. VRRP-E ignores the configuration of any parameter that is to be inherited from the group master.

- advertise
- auth-type
- backup
- backup-hello-interval
- dead-interval
- hello-interval
- non-preempt-mode
- use-v2-checksum

The configuration for the following commands is not inherited from the group master. Group members retain their individual configuration parameters from these commands.

- activate
- enable
- ip-address
- ipv6-address
- short-path-forwarding
- virtual-mac

NOTE
The VRRP-E scaling feature is not compatible with the VRRP-E multiple virtual IP addresses feature.
Configuring VRRP-E scaling

Configuring VRRP-E instances into logical groups using a group master and configuring a gratuitous ARP router advertisement interval allows the number of VRRP-E instances to scale up to 4000 instances.

This task has to be repeated for all VRRP-E instances that are to be part of the same group. VRRP-E instances are always physically grouped on the same device and the logical group is maintained consistently across all devices. VRRP-E scaling is supported for IPv4 and IPv6 VRRP-E sessions.

NOTE
The VRRP-E scaling feature is not compatible with the VRRP-E multiple virtual IP addresses feature.

1. From privileged EXEC mode, enter configuration mode by issuing the configure terminal command.

 device# configure terminal

2. Globally enable the IPv6 VRRP-E protocol by entering the ipv6 router vrrp-extended command.

 device(config)# ipv6 router vrrp-extended

3. Configure the gratuitous ARP interval for the IPv6 VRRP-E instance.

 device(config-ipv6-VRRP-E-router)# garp-ra-interval 90

 NOTE
 In IPv4 VRRP-E the router prompt does not display the “-VRRP-E-router” text.

4. Configure the ethernet interface for the IPv6 VRRP-E instance.

 device(config-ipv6-VRRP-E-router)# interface ethernet 1/5

5. Configure an IPv6 address on the interface.

 device(config-if-e1000-1/5)# ipv6 address 3013::2/64

6. Configure an IPv6 VRRP extended instance using a virtual routing ID (VRID).

 device(config-if-e1000-1/5)# ipv6 vrrp-extended vrid 2

7. Configure the device as a backup VRRP-E device for VRID 2.

 device(config-if-e1000-1/5-ipv6-vrid-2)# backup priority 50 track-priority 20

8. Configure a virtual link-local IPv6 address for VRID 2.

 device(config-if-e1000-1/5-ipv6-vrid-2)# ipv6-address fe80::768e:f8ff:fe2a:0099

9. Configure a virtual IPv6 address for VRID 2.

 device(config-if-e1000-1/5-ipv6-vrid-2)# ipv6-address 3013::99

10. Configures the VRRP-E master for a group for VRID 2.

 device(config-if-e1000-1/5-ipv6-vrid-2)# group-master interface ethernet 1/2 vrid 1

 In this example,

11. Activate the virtual IP address or addresses for VRID 2.

 device(config-if-e1000-1/5-ipv6-vrid-2)# activate
The following example configures virtual router 1 on interface Ethernet 1/2 as the VRRP-E group master of virtual router 2 on interface Ethernet 1/5. Virtual router 2 will stop sending and receiving VRRP-E packets because VRID 1 now maintains the session for virtual router 2 by sending and receiving VRRP-E packets. The interval between gratuitous ARP messages is set to 90 seconds.

```
device# configure terminal
device(config)# router ipv6 vrrp-extended
device(config-ipv6-VRRP-E-router)# garp-ra-interval 90
device(config-ipv6-VRRP-E-router)# interface ethernet 1/5
device(config-if-e1000-1/5)# ipv6 address 3013::2/64
device(config-if-e1000-1/5)# ipv6 vrrp-extended vrid 2
device(config-if-e1000-1/5-ipv6-vrid=2)# backup priority 50 track-priority 20
device(config-if-e1000-1/5-ipv6-vrid=2)# ipv6-address fe80::768e:f8ff:fe2a:0099
device(config-if-e1000-1/5-ipv6-vrid=2)# ipv6-address 3013::99
device(config-if-e1000-1/5-ipv6-vrid=2)# group-master interface ethernet 1/2 vrid 1
device(config-if-e1000-1/5-ipv6-vrid=2)# activate
```

Displaying VRRP-E scaling information

Displays information about VRRP-E group members and group masters configured for the VRRP-E scaling feature.

Several options of the `show ip vrrp-extended` or `show ipv6 vrrp-extended` commands can display information about the VRRP-E scaling feature configuration. Use the steps below in any order.

1. Enter the `show ip vrrp-extended` or the `show ipv6 vrrp-extended` command with the `vrid` option to display group member information for the VRRP-E scaling feature for a specific VRID. In the example below, output for VRID 1 shows the total number of group members and in which VRIDs the members are configured.

```
device(config)# show ip vrrp-extended vrid 1
VRID 1 (index 1)
    interface 1/1
        state master
        administrative-status enabled
        .
        group-member count 3
        group-members
            ethernet 1/2 vrid 2
            ethernet 1/2 vrid 3
            ethernet 1/2 vrid 4
```

2. Enter the `show ipv6 vrrp-extended` or the `show ip vrrp-extended` command with a specific VRID and interface to display group master information for the VRRP-E scaling feature for a specific interface. Only partial output is displayed.

```
device# show ipv6 vrrp-extended ve 100 vrid 2
VRID 2 (index 2)
    interface v100
        state backup
        .
        group-master ve 100 vrid 1
```

Displaying VRRPv2 information

Various show commands can be used to display statistical and summary information about VRRP and VRRP-E configurations.

Before displaying VRRP information, VRRPv2 must be configured and enabled in your VRRP or VRRP-E network to generate traffic.
Use one or more of the following commands to display VRRPv2 information. The commands do not have to be entered in this order.

1. Enter the `show ip vrrp` command with the `vrid` option and a virtual router ID (VRID) to display IPv4 VRRP configuration information about VRID 1.

   ```
   device# show ip vrrp vrid 1
   Interface 1/1
   ----------------
   auth-type no authentication
   VRID 1 (index 1)
   interface 1/1
   state master
   administrative-status enabled
   version v2
   mode owner
   virtual mac aaaa.bbbb.cccc (configured)
   priority 255
   current priority 255
   track-priority 2
   hello-interval 1 sec
   backup hello-interval 6
   ```

2. Enter the `show ip vrrp brief` command.

   ```
   device(config)# show ip vrrp brief
   Total number of VRRP routers defined: 2
   Flags Codes - P:Preempt 2:V2 3:V3 S:Short-Path-Fwd
   Inte- VRID  Current  Flags    State   Master IP Backup IP  Virtual IP
   rface       Priority                  Address   Address    Address
   ----------------------------------------------------------------------
   1/1   10    255      P2-      Master  Local     Unknown    10.30.30.2
   1/3   13    100      P2-      Master  Local     Unknown    10.13.13.3
   ```

 This example displays summary information about VRRP sessions.

3. Enter the `show ip vrrp-extended statistics` command for Ethernet interface 1/5.

   ```
   device# show ip vrrp-extended interface Ethernet 1/5
   Interface 1/5
   ----------------
   VRID 2
   - number of transitions to backup state = 1
   - number of transitions to master state = 1
   - total number of vrrp-extended packets received = 0
     . received backup advertisements = 0
     . received packets with zero priority = 0
     . received packets with invalid type = 0
     . received packets with invalid authentication type = 0
     . received packets with authentication type mismatch = 0
     . received packets with authentication failures = 0
     . received packets dropped by owner = 0
     . received packets with ttl errors = 0
     . received packets with ipv6 address mismatch = 0
     . received packets with advertisement interval mismatch = 0
     . received packets with invalid length = 0
   - total number of vrrp-extended packets sent = 2004
     . sent backup advertisements = 0
     . sent packets with zero priority = 0
     . received neighbor solicitation packets dropped = 0
     . received proxy neighbor solicitation packets dropped = 0
     . received ip packets dropped = 0
   ```
Clearing VRRPv2 statistics

VRRPv2 session counters can be cleared using a CLI command.

Ensure that VRRPv2 or VRRP-Ev2 is configured and enabled in your network.

To determine the effect of clearing the VRRP statistics, an appropriate show command is entered before and after the clear command.

1. Enter the exit command to return to privileged EXEC mode.
2. Enter the show ip vrrp statistics command for Ethernet interface 1/5.

```
device# show ip vrrp statistics ethernet 1/5
Interface 1/5
--------------
VRID 2
- number of transitions to backup state = 1
- number of transitions to master state = 1
- total number of vrrp packets received = 0
  . received backup advertisements = 0
  . received packets with zero priority = 0
- total number of vrrp packets sent = 2004
  . sent backup advertisements = 6
  . sent packets with zero priority = 0
- received neighbor solicitation packets dropped = 0
```

3. Enter the clear ip vrrp statistics command.

```
device# clear ip vrrp statistics
```

4. Enter the show ip vrrp statistics command for Ethernet interface 1/5.

```
device# show ip vrrp statistics ethernet 1/5
Interface 1/5
--------------
VRID 2
- number of transitions to backup state = 0
- number of transitions to master state = 0
- total number of vrrp packets received = 0
  . received backup advertisements = 0
  . received packets with zero priority = 0
- total number of vrrp packets sent = 6
  . sent backup advertisements = 0
  . sent packets with zero priority = 0
- received neighbor solicitation packets dropped = 0
```

In this show output for a specified interface after the clear ip vrrp statistics command has been entered, you can see that the statistical counters have been reset. Although some of the counters are showing numbers because VRRP traffic is still flowing, the numbers are much lower than in the initial show ip vrrp statistics command output.
VRRPv3 overview

VRRP version 3 (VRRPv3) introduces IPv6 address support for both standard VRRP and VRRP enhanced (VRRP-E).

Virtual Router Redundancy Protocol (VRRP) is designed to eliminate the single point of failure inherent in a static default routed environment by providing redundancy to Layer 3 devices within a local area network (LAN). VRRP uses an election protocol to dynamically assign the default gateway for a host to one of a group of VRRP routers on a LAN. Alternate gateway router paths can be allocated without changing the IP address or MAC address by which the host device knows its gateway.

VRRPv3 implements support for IPv6 addresses for networks using IPv6, and it also supports IPv4 addresses for dual-stack networks configured with VRRP or VRRP-E. VRRPv3 is compliant with RFC 5798. The benefit of implementing VRRPv3 is faster switchover to backup devices than can be achieved using standard IPv6 neighbor discovery mechanisms. With VRRPv3, a backup router can become a master router in a few seconds with less overhead traffic and no interaction with the hosts.

When VRRPv3 is configured, the master device that owns the virtual IP address and a master device that does not own the virtual IP address can both respond to ICMP echo requests (using the ping command) and accept Telnet and other management traffic sent to the virtual IP address. In VRRPv2, only a master device on which the virtual IP address is the address of an interface on the master device can respond to ping and other management traffic.

The following are other IPv6 VRRPv3 functionality details:

- VRRPv2 functionality is supported by VRRPv3 except for VRRP authentication.
- Two VRRP and VRRP-E sessions cannot share the same group ID on the same interface.

NOTE

When implementing IPv6 VRRPv3 across a network with devices from other vendors, be aware of a potential interoperability issue with IPv6 VRRPv3 and other vendor equipment. Extreme has implemented IPv6 VRRPv3 functionality to comply with RFC 5798 and will interoperate comfortably with other vendors that support RFC 5798.
Enabling an IPv6 VRRPv3 owner device

This task is performed on the device that is designated as the owner VRRP device because the IPv6 address of one of its physical interfaces is assigned as the IP address of the virtual router. For each VRRP session, there are master and backup routers, and the owner router is elected, by default, as the master router.

NOTE
When implementing IPv6 VRRPv3 across a network with devices from other vendors, be aware of a potential interoperability issue. IPv6 VRRPv3 functionality is implemented to comply with RFC 5798 and will interoperate well with other vendors that support RFC 5798.

1. On the device designated as the owner VRRP device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.
   ```
   device# configure terminal
   ```

2. Before enabling IPv6 VRRP, you must globally enable IPv6 routing.
   ```
   device(config)# ipv6 unicast-routing
   ```

3. Globally enable IPv6 VRRP.
   ```
   device(config)# ipv6 router vrrp
   ```

4. Configure the Ethernet interface link for the owner device.
   ```
   device(config)# interface ethernet 1/5
   ```

5. Configure the IPv6 address of the interface.
   ```
   device(config-if-e1000-1/5)# ipv6 address fd2b::2/64
   ```

6. Assign the owner device to the virtual router ID (VRID) 2.
   ```
   device(config-if-e1000-1/5)# ipv6 vrrp vrid 2
   ```

 NOTE
 You can assign a VRID number in the range of 1 through 255.

7. Designate this router as the VRRP owner device.
   ```
   device(config-if-e1000-1/5-vrid-2)# owner
   ```

8. Assign an IPv6 link-local address to the VRID for use in the local network.
   ```
   device(config-if-e1000-1/5-vrid-2)# ipv6-address fe80::768e:f8ff:fe2a:0099
   ```

9. Assign a global IPv6 address to the VRID.
   ```
   device(config-if-e1000-1/5-vrid-2)# ipv6-address fd2b::2
   ```

10. Enable the VRRP session.
    ```
    device(config-if-e1000-1/5-vrid-2)# activate
    ```
The following example configures a VRRP owner device.

```
device# configure terminal
device(config)# ipv6 unicast-routing
device(config)# ipv6 router vrrp
device(config-ipv6-vrrp-router)# interface ethernet 1/5
device(config-if-e1000-1/5)# ipv6 address fd2b::2/64
device(config-if-e1000-1/5)# ipv6 vrrp vrid 2
device(config-if-e1000-1/5-vrid-2)# owner
device(config-if-e1000-1/5-vrid-2)# ipv6-address fe80::768e:f8ff:fe2a:0099
device(config-if-e1000-1/5-vrid-2)# ipv6-address fd2b::2
device(config-if-e1000-1/5-vrid-2)# activate
```

Enabling an IPv6 VRRPv3 backup device

This task is performed on all devices that are designated as backup VRRPv3 devices. Initially a backup priority is set to 100. For each VRRPv3 session, there are master and backup routers, and the IPv6 address assigned here to the VRID is the IPv6 address of the master router. The task is repeated on each backup VRRPv3 device with corresponding changes to the interface number and IPv6 address of the interface.

NOTE

When implementing IPv6 VRRPv3 across a network with devices from other vendors, be aware of a potential interoperability issue. IPv6 VRRPv3 functionality is implemented to comply with RFC 5798 and will interoperate well with other vendors that support RFC 5798.

1. On the device designated as a backup VRRPv3 device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

   ```
   device# configure terminal
   ```

2. Globally enable IPv6 VRRP.

   ```
   device(config)# ipv6 router vrrp
   ```

3. Configure the Ethernet interface link for the owner device.

   ```
   device(config-ipv6-vrrp-router)# interface ethernet 1/4
   ```

4. Configure the IPv6 address of the interface.

   ```
   device(config-if-e1000-1/4)# ipv6 address fd2b::3/64
   ```

5. Assign the backup device to the virtual router ID (VRID) 2.

   ```
   device(config-if-e1000-1/4)# ipv6 vrrp vrid 2
   ```

 NOTE

 You can assign a VRID number in the range of 1 through 255.

6. Designate this router as a VRRPv3 backup device and assign it a priority of 100.

   ```
   device(config-if-e1000-1/4-vrid-2)# backup priority 100
   ```

7. By default, backup VRRP devices do not send hello messages to advertise themselves to the master. Use the following command to enable a backup router to send hello messages to the master VRRP device.

   ```
   device(config-if-e1000-1/4-vrid-2)# advertise backup
   ```
8. Assign the IPv6 link-local address to the VRID for use in the local network.

 device(config-if-e1000-1/4-vrid-2)# ipv6-address fe80::768e:f8ff:fe2a:0099

9. Assign the global IPv6 address to the VRID.

 device(config-if-e1000-1/4-vrid-2)# ipv6-address fd2b::2

10. Enable the VRRP session.

 device(config-if-e1000-1/4-vrid-2)# activate

The following example configures an IPv6 VRRPv3 backup device.

```
device# configure terminal
device(config)# ipv6 router vrrp
device(config-ipv6-vrrp-router)# interface ethernet 1/4
device(config-if-e1000-1/4)# ipv6 address fd2b::3/64
device(config-if-e1000-1/4)# ipv6 vrrp vrid 2
device(config-if-e1000-1/4-vrid-2)# backup priority 100
device(config-if-e1000-1/4-vrid-2)# advertise backup
device(config-if-e1000-1/4-vrid-2)# ipv6-address fe80::768e:f8ff:fe2a:0099
device(config-if-e1000-1/4-vrid-2)# ipv6-address fd2b::2
device(config-if-e1000-1/4-vrid-2)# activate
```

Enabling an IPv4 VRRPv3 owner device

VRRPv3 supports IPv4 sessions as well as IPv6 sessions. To configure a VRRPv3 session for IPv4, assign a virtual router group with the VRRP version set to 3. This task is performed on the device that is designated as the owner VRRP device because the IP address of one of its physical interfaces is assigned as the IP address of the virtual router.

1. On the device designated as the owner VRRP device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

 device# configure terminal

2. Globally enable VRRP.

 device(config)# router vrrp

3. Configure an Ethernet interface.

 device(config)# interface ethernet 1/6

4. Configure the IP address of the interface.

 device(config-if-e1000-1/6)# ip address 10.53.5.1/24

5. Assign the virtual router ID (VRID) 1 to the interface.

 device(config-if-e1000-1/6)# ip vrrp vrid 1

 NOTE
 You can assign a VRID number in the range of 1 through 255.

6. Designate this router as the VRRP owner device.

 device(config-if-e1000-1/6-vrid-1)# owner
7. Configure the IP address of the VRID.

 device(config-if-e1000-1/6-vrid-1)# ip-address 10.53.5.1

8. Enable the VRRP session.

 device(config-if-e1000-1/6-vrid-1)# activate

The following example configures an IPv4 VRRPv3 owner device.

```bash
device# configure terminal
device(config)# router vrrp
device(config)# interface ethernet 1/6
device(config-if-e1000-1/6)# ip address 10.53.5.1/24
device(config-if-e1000-1/6)# ip vrrp vrid 1
device(config-if-e1000-1/6-vrid-1)# owner
device(config-if-e1000-1/6-vrid-1)# ip-address 10.53.5.1
device(config-if-e1000-1/6-vrid-1)# activate
```

VRRPv3 router 1 for this interface is activating

Enabling an IPv4 VRRPv3 backup device

VRRPv3 supports IPv4 sessions as well as IPv6 sessions. To configure a VRRPv3 session for IPv4, assign a virtual router group with the VRRP version set to 3. This task is performed on any device that is designated as an IPv4 backup VRRPv3 device. For each VRRP virtual routing instance, there is one master device and all other devices are backups. Repeat this task on all devices that are to be designated as backup devices.

1. On a device designated as a backup VRRP device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

 device# configure terminal

2. Globally enable VRRP.

 device(config)# router vrrp

3. Configure the Ethernet interface.

 device(config)# interface ethernet 1/5

4. Configure the IP address of the interface. All devices configured for the same virtual router ID (VRID) must be on the same subnet.

 device(config-if-e1000-1/5)# ip address 10.53.5.3/24

5. Assign the same VRID as the VRID used by the owner device.

 device(config-if-e1000-1/5)# ip vrrp vrid 1

 NOTE

 You can assign a VRID number in the range of 1 through 255.

6. Designate this router as a backup VRRP device.

 device(config-if-e1000-1/5-vrid-1)# backup priority 110

 While configuring a backup device, you can set a priority that is used when a master VRRP device goes offline. The backup device with the highest priority will assume the role of master device.
7. Configure the IP address of the VRID.

```config
device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.1
```

The VRID IP address is the same virtual IP address that you used for the VRRP owner device.

8. Enable the VRRP session.

```config
device(config-if-e1000-1/5-vrid-1)# activate
```

VRRP router 1 for this interface is activating

The following example configures a VRRP owner device.

```config
device# configure terminal
device(config)# router vrrp
device(config)# interface ethernet 1/5
device(config-if-e1000-1/5)# ip address 10.53.5.3/24
device(config-if-e1000-1/5)# ip vrrp vrid 1
device(config-if-e1000-1/5-vrid-1)# backup priority 110
device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.1
device(config-if-e1000-1/5-vrid-1)# activate
```

VRRP router 1 for this interface is activating

Tracked ports and track priority with VRRP and VRRP-E

Port tracking allows interfaces not configured for VRRP or VRRP-E to be monitored for link-state changes that can result in dynamic changes to the VRRP device priority.

A tracked port allows you to monitor the state of the interfaces on the other end of a route path. A tracked interface also allows the virtual router to lower its priority if the exit path interface goes down, allowing another virtual router in the same VRRP (or VRRP-E) group to take over. When a tracked interface returns to an up state, the configured track priority is added to the current virtual router priority value.

The following conditions and limitations exist for tracked ports:

- Track priorities must be lower than VRRP or VRRP-E priorities.
- The dynamic change of router priority can trigger a master device switchover if preemption is enabled. However, if the router is an owner, the master device switchover will not occur.
- The maximum number of interfaces that can be tracked for a virtual router is 16.
- Port tracking is allowed for physical interfaces and port channels.

Tracking ports and setting VRRP priority using VRRPv3

Configuring port tracking on an exit path interface and setting a priority on a VRRPv3 device enables VRRPv3 to monitor the interface. For VRRPv3, if the interface goes down, the device priority is set to the priority value and another backup device with a higher priority assumes the role of master. For VRRP-Ev3, if the interface goes down, the device priority is lowered by the priority value and another backup device with a higher priority assumes the role of master.

Before enabling IPv6 VRRPv3, you must globally enable IPv6 routing using the `ipv6 unicast-routing` command.

Configure this task on the device on which the tracked interface exists.
NOTE
Only IPv4/IPv6 IPsec tunnels can be configured with a specific track-port command priority. Other interfaces use the track priority associated with the owner or backup commands.

1. Enter the configure terminal command to enter global configuration mode.
   ```
   device# configure terminal
   ```

2. Enter the ipv6 router vrrp command to configure VRRPv3 globally.
   ```
   device(config)# ipv6 router vrrp
   ```

3. Configure the Ethernet interface.
   ```
   device(config)# interface ethernet 1/6
   ```

4. Enter the IPv6 address for the interface to be used for the virtual router ID (VRID).
   ```
   device(config-if-e10000-1/6)# ipv6 address fd2b::2/64
   ```

5. Enter the following command to enter the appropriate VRRPv3 virtual router ID (VRID) mode.
   ```
   device(config-if-e10000-1/6)# ipv6 vrrp vrid 1
   ```

6. Enter the track-port command to set the tracked port and priority:
   ```
   device(config-if-e10000-1/6-vrid-1)# track-port tunnel 1 priority 20
   ```

 The priority value is used when a tracked port goes down and the new priority is set to this value. Ensure that the priority value is lower than the priority set for any existing master or backup device to force a renegotiation for the master device.

The following example shows how to configure tunnel interface 1 on virtual router 1 to be tracked; if the interface fails, the IPv6 VRRPv3 priority of the device becomes 20, forcing a negotiation for a new master device.

   ```
   device# configure terminal
device(config)# ipv6 router vrrp
device(config)# interface ethernet 1/6
device(config-if-e10000-1/6)# ipv6 address fd2b::2/64
device(config-if-e10000-1/6)# ipv6 vrrp vrid 1
device(config-if-e10000-1/6-vrid-1)# track-port tunnel 1 priority 20
   ```

Tracked IPsec tunnels and track priority with VRRP and VRRP-E

IPsec tunnel tracking using VRRP or VRRP Extended (VRRP-E) is helpful in monitoring network reachability changes that can result in dynamic changes to the master VRRP or VRRP-E device priority.

Business-critical network traffic requires security options to be configured in the network. VRRP or VRRP-E can be implemented together with IP security (IPsec) to provide redundancy and scalability. The tunnels to be tracked are outgoing interfaces for the device on which they are configured. If any of the tracked tunnels goes down, VRRP or VRRP-E can quickly assign a new master device to minimize any loss of packets through the network. For VRRP, if the tracked tunnel goes down, the current router priority is reduced to the
priority set for the tracked tunnel resulting in renegotiation for the master device. For VRRP-E, if the tracked tunnel goes down, the current router priority is reduced by the priority set for the tracked tunnel resulting in renegotiation for the master device. When a tracked tunnel returns to an up state, the priority of the VRRP or VRRP-E device is restored to the original value to force a renegotiation for the master device. The following conditions and limitations exist for tracked tunnels:

- Track priorities must be lower than VRRP or VRRP-E priorities.
- The dynamic change of router priority can trigger a master device switchover if preemption is enabled and if the owner router goes down.
- The maximum number of tunnels or interfaces that can be tracked for a virtual router is 8.
- IPsec tunnel tracking is supported for IPv4 VRRP and IPv4 or IPv6 VRRP-E. IPv6 VRRP does not support IPsec tunnels.
- IPv4 VRRP or VRRP-E can track only IPv4 IPsec tunnels and IPv6 VRRP-E can track only IPv6 IPsec tunnels.

NOTE
Tracking IPsec tunnels is supported only on BR-MLX-10GX4-M-IPSEC modules running on MLXe devices.

Configuring VRRP tracking for IPsec tunnels

IPsec tunnels can be tracked for a VRRP virtual routing instance.

This task is performed on any device configured with IPsec tunnels that is designated as a VRRP device. Before configuring IPsec tunnel tracking, IPsec tunnels must be configured. Repeat this task for all devices on which VRRP IPsec tunnel tracking is required up to a maximum of 8 tracked tunnels or interfaces.

NOTE
IPsec tunnel tracking is supported for IPv4 VRRP and IPv4 or IPv6 VRRP-E. IPv6 VRRP does not support IPsec tunnels.

1. Enter the `configure terminal` command to enter global configuration mode.
   ```
   device# configure terminal
   ```

2. Enter the `router vrrp` command to configure VRRP globally.
   ```
   device(config)# router vrrp
   ```

3. Configure the Ethernet interface.
   ```
   device(config)# interface ethernet 1/6
   ```

4. Enter the IP address for the interface to be used for the virtual router ID (VRID).
   ```
   device(config-if-e10000-1/6)# ip address 10.53.5.3/24
   ```

5. Enter the following command to enter the appropriate VRRP virtual router ID (VRID) mode.
   ```
   device(config-if-e10000-1/6)# ip vrrp vrid 1
   ```

6. Enter the `track-port` command to set the track port and priority:
   ```
   device(config-if-e10000-1/6-vrid-1)# track-port tunnel 1 priority 20
   ```
 The priority value is used when a tracked port goes down and the new priority is set to this value. Ensure that the priority value is lower than the priority set for any existing master or backup device to force a renegotiation for the master device.

7. Exit to Privileged EXEC mode.
   ```
   device(config-if-e10000-1/6)# end
   ```
8. Verify the tracked IPsec tunnel configuration using the `show ip vrrp` command.

```plaintext
device# show ip vrrp
VRID 1 (index 1)
  interface 1/6
  state MASTER
  administrative-status disabled
  version v2
  mode incomplete
  virtual mac 0000.5e00.0101
  priority 100
  current priority 100
  track-priority 20
  hello-interval 1 sec
  backup hello-interval 60 sec
  track-port tunnel 1(up)
```

The partial output shows the tracked port tunnel number and status.

The following example shows how to configure tunnel 1 on virtual router 1 to be tracked; if the tunnel fails, the VRRP priority of the device becomes 20, forcing a negotiation for a new master device.

```plaintext
device# configure terminal
device(config)# router vrrp
device(config)# interface ethernet 1/6
device(config-if-e10000-1/6)# ip address 10.53.5.1/24
device(config-if-e10000-1/6)# ip vrrp vrid 1
device(config-if-e10000-1/6-vrid-1)# track-port tunnel 1 priority 20
```

Configuring VRRP-E tracking for IPsec tunnels

IPsec tunnels can be tracked for a VRRP-E virtual routing instance.

This task is performed on any device that is designated as a VRRP extended (VRRP-E) device. Before configuring IPsec tunnel tracking, IPsec tunnels must be configured. Repeat this task for all devices on which VRRP-E IPsec tunnel tracking is required up to a maximum of 8 tracked tunnels or interfaces.

NOTE

IPsec tunnel tracking is supported for IPv4 VRRP and IPv4 or IPv6 VRRP-E. IPv6 VRRP does not support IPsec tunnels.

1. On the device designated as a VRRP-E device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

   ```plaintext
device# configure terminal
```

2. Globally enable VRRP-E.

   ```plaintext
device(config)# router vrrp-extended
```

3. Configure the Ethernet interface link.

   ```plaintext
device(config-vrrpe-router)# interface ethernet 1/5
```

4. Configure the IP address of the interface. All devices configured for the same virtual router ID (VRID) must be on the same subnet.

   ```plaintext
device(config-if-e1000-1/5)# ip address 10.53.5.3/24
```
5. Assign the device to VRID 1.

 device(config-if-e1000-1/5)# ip vrrp-extended vrid 1

 NOTE
 You can assign a VRID number in the range of 1 through 255.

6. Designate this router as a backup VRRP device.

 device(config-if-e1000-1/5-vrid-1)# backup priority 50 track priority 10

 While configuring a backup device, you can set a priority that is used when a master VRRP device goes offline. The backup device with the highest priority will assume the role of master device.

7. Configure the IP address of the VRID.

 device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.254

 The IP address associated with the VRID must not be configured on any of the devices used for VRRP-E.

8. Enter the **track-port** command to set the track port and priority for one end of the IPsec tunnel.

 device(config-if-e1000-1/5-vrid-1)# track-port tunnel 1 priority 10

 The priority value is used when a tracked tunnel goes down and the new priority is reduced by this value. Ensure that the priority value is lower than the priority set for any existing master or backup device to force a renegotiation for the master device.

9. Enter the **track-port** command to set the track port and priority of the IPsec tunnel.

 device(config-if-e1000-1/5-vrid-1)# track-port tunnel 2 priority 20

 The priority value is used when a tracked port goes down and the new priority is reduced by this value. Ensure that the priority value is lower than the priority set for any existing master or backup device to force a renegotiation for the master device.

10. Enable the VRRP-E session.

 device(config-if-e1000-1/5-vrid-1)# activate

 VRRP-E router 1 for this interface is activating

The following example configures a VRRP-E device to track IPsec tunnels 1 and 2.

```
device# configure terminal
device(config)# router vrrp-extended
device(config-vrrpe-router)# interface ethernet 1/5
device(config-if-e1000-1/5)# ip address 10.53.5.3/24
device(config-if-e1000-1/5)# ip vrrp-extended vrid 1
device(config-if-e1000-1/5-vrid-1)# backup
device(config-if-e1000-1/5-vrid-1)# ip-address 10.53.5.1
device(config-if-e1000-1/5-vrid-1)# track-port tunnel 1 priority 10
device(config-if-e1000-1/5-vrid-1)# track-port tunnel 2 priority 20
device(config-if-e1000-1/5-vrid-1)# activate
VRRP-E router 1 for this interface is activating
```
Accept mode for backup VRRP devices

Accept mode allows a backup VRRP device to respond to ping, traceroute, and Telnet packets if the backup device becomes the master VRRP device.

For each VRRP virtual routing instance, there is one master device and all other devices are backups. Accept mode allows some network management functionality for backup VRRP devices, providing the ability to respond to ping, traceroute, and Telnet packets. By default, nonowner VRRP devices do not accept packets destined for the IPv4 or IPv6 VRID addresses. Troubleshooting network connections to the VRRP nonowner master device is difficult unless accept mode is enabled.

NOTE
The accept mode functionality enables a VRRP nonowner master device to respond to ping, Telnet, and traceroute packets, but the device will not respond to SSH packets.

Enabling accept mode on a backup VRRP device

Enabling accept mode allows a backup VRRP device to respond to ping, traceroute, and Telnet packets if the backup device becomes the master VRRP device.

This task is performed on any device that is designated as a backup VRRP device, and the functionality is activated if the backup device becomes a master VRRP device. Repeat this task for all devices that are to be designated as backup devices.

NOTE
The accept mode functionality does not support SSH packets.

1. On the device designated as a backup VRRP device, from privileged EXEC mode, enter global configuration mode by issuing the `configure terminal` command.

 device# configure terminal

2. Globally enable VRRP.

 device(config)# router vrrp

3. Configure the Ethernet interface link.

 device(config)# interface ethernet 1/1/5

4. Configure the IP address of the interface. All devices configured for the same virtual router ID (VRID) must be on the same subnet.

 device(config-if-e1000-1/1/5)# ip address 10.53.5.3/24

5. Assign this backup device to VRID 1, the same VRID as the VRRP owner device.

 device(config-if-e1000-1/1/5)# ip vrrp vrid 1

 NOTE
 You can assign a VRID number in the range of 1 through 255.

6. Designate this router as a backup VRRP device.

 device(config-if-e1000-1/1/5-vrid-1)# backup priority 110

 While configuring a backup device, you can set a priority that is used when a master VRRP device goes offline. The backup device with the highest priority will assume the role of master device.
7. Enable accept mode for this device.

 device(conf-if-e1000-1/1/5-vrid-1)# accept-mode

8. Exit configuration mode and return to privileged EXEC mode.

 device(conf-if-e1000-1/1/5-vrid-1)# end

9. Verify that accept mode is enabled.

 device# show ip vrrp vrid 1

 Interface 1/1/5

 auth-type no authentication
 VRID 1 (index 1)
 interface 1/1/5
 state master
 administrative-status enabled
 version v2
 mode non-owner (backup)
 virtual mac aaaa.bbbb.cccc (configured)
 priority 110
 current priority 110
 track-priority 2
 hello-interval 1 sec
 accept-mode enabled
 .
 .

The following example enables accept mode for a backup VRRP device.

Alternate VRRPv2 checksum for VRRPv3 IPv4 sessions

If VRRPv3 is configured on an Extreme device in a network with third-party peering devices using VRRPv2-style checksum calculations for IPv4 VRRPv3 sessions, a VRRPv2-style checksum must be configured for VRRPv3 IPv4 sessions on the device.

VRRPv3 introduced a new checksum method for both IPv4 and IPv6 sessions, and this version 3 checksum computation is enabled by default. To accommodate third-party devices that still use a VRRPv2-style checksum for IPv4 VRRPv3 sessions, a command-line interface (CLI) command is available for configuration on a device. The new version 2 checksum method is disabled by default and is applicable only to IPv4 VRRPv3 sessions. If configured for VRRPv2 sessions, the VRRPv2-style checksum command is accepted, but it has no effect.
Enabling the VRRPv2 checksum computation method in a VRRPv3 IPv4 session

An alternate VRRPv2-style checksum can be configured in a VRRPv3 IPv4 session for compatibility with third-party network devices. VRRPv3 uses the v3 checksum computation method by default for both IPv4 and IPv6 sessions on the NetIron OS devices. Third-party devices may have only a VRRPv2-style checksum computation available for a VRRPv3 IPv4 session. The `use-v2-checksum` command is entered in interface configuration mode.

1. Use the `configure terminal` command to enter global configuration mode.

 `device# configure terminal`

2. Enable VRRP globally.

 `device(config)# router vrrp`

3. Enter the `interface` command with an interface type and number.

 `device(config)# interface ethernet 2/4`

4. To configure a VRRP virtual routing ID, use the `ip vrrp vrid` command with an associated ID number.

 `device(config-if-e1000-2/4)# ip vrrp vrid 14`

5. To enable VRRP version 3 (VRRPv3), enter the `version` command with a version number of v3.

 `device(config-if-e1000-2/4-vrid-14)# version v3`

6. To enable the v2 checksum computation method in an IPv4 VRRPv3 session, use the `use-v2-checksum` command in VRRP configuration mode.

 `device(config-if-e1000-2/4-vrid-14)# use-v2-checksum`

7. Enter the IP address for the interface using the `ip-address` command.

8. To activate the interface, enter the `activate` command.

 `device(config-if-e1000-2/4-vrid-14)# activate`

The following example shows the v2 checksum computation method enabled for an VRRPv3 IPv4 session on a device.

```
device# configure terminal
device(config)# router vrrp
device(config)# interface ethernet 2/4
device(config-if-e1000-2/4)# ip vrrp vrid 14
device(config-if-e1000-2/4-vrid-14)# version v3
device(config-if-e1000-2/4-vrid-14)# use-v2-checksum
device(config-if-e1000-2/4-vrid-14)# activate
```
Displaying alternate VRRPv2 checksum settings

The verification of the use of the alternate VRRPv2-style checksum for VRRPv3 IPv4 sessions is achieved using several CLI commands.

The following steps are both optional and can be used to verify that the alternate VRRPv2-style checksum computation command, `use-v2-checksum`, has been set for VRRPv3 IPv4 sessions.

1. Use the `show running-config` command to verify that the `use-v2-checksum` command has been configured for a specified interface. Only part of the output is displayed.

   ```
   device# show running-config
   interface ethernet 2/4
   ip address 10.14.14.2/24
   ip vrrp vrid 14
   backup
   use-v2-checksum
   exit
   ```

2. Use the `show ip vrrp` command with a virtual router ID number to display the current settings of a specific VRRP session, including the `use-v2-checksum` command, if configured.

   ```
   device# show ip vrrp vrid 14
   Interface 2/4
   ----------------
   auth-type no authentication
   VRID 14 (index 1)
   interface 2/4
   state initialize
   administrative-status disabled
   version v3 - use-v2-checksum
   mode non-owner(backup)
   virtual mac 0000.5e00.010e
   priority 100
   current priority 100
   track-priority 1
   hello-interval 1 sec
   backup hello-interval 60 sec
   slow-start timer (configured) 0 sec
   advertise backup disabled
   dead-interval 3500 ms
   preempt-mode true
   ```

Automatic generation of a virtual link-local address for VRRPv3

The virtual MAC address is used to automatically generate the IPv6 virtual link-local address to simplify the configuration of IPv6 VRRP and standardize implementations across vendor platforms. Subsequent VRRPv3 advertisements carry the auto-generated virtual link-local address.

The default VRRPv3 implementation allows only the link-local address that is configured on a physical interface to be used as the virtual IPv6 address of a VRRPv3 session. This limits configuring a link-local address for each VRRP instance on the same physical interface because there can be only one link-local address per physical interface.
When IPv6 link-local address auto-generation is configured for IPv6 VRRP, a virtual IPv6 link-local address is generated automatically using the EUI-64 result of the virtual MAC address. The virtual IPv6 link-local address is generated for a specific VRRP instance and the virtual link-local address is carried in VRRPv3 advertisements. The auto-generation process is defined in RFC 5798 allowing cross-vendor platform support. This ability to generate a link-local address automatically depends on the existence of a consistent virtual MAC address in the local network.

If the virtual link-local address is configured manually, the configured address takes precedence over the automatically generated address. The administrator should ensure that the configured virtual link-local address is consistent across all routers in the LAN. When the manually configured address is removed, the auto-generated address is used.

If there is a mismatch in the IPv6 addresses field, the devices drop the advertisements that are sent by backup VRRP routers. The advertisements from the master VRRP router are not dropped regardless of the IPv6 address comparison. The virtual MAC must be consistent on the local network. When the virtual MAC is modified, the virtual link-local address is regenerated.

As an Extreme proprietary protocol, VRRP Extended version 3 (VRRP-Ev3) is not supported.

Enabling auto-generation of an IPv6 virtual link-local address

This task is performed on all the devices that are designated as backup VRRPv3 devices. Initially a backup priority is set to 100. For each VRRPv3 session there are master and backup routers, the IPv6 address assigned here to the VRID is the IPv6 address of the master router. The task is repeated on each backup VRRPv3 device with corresponding changes to the interface number and IPv6 address of the interface.

1. On the device designated as a backup VRRPv3 device, from privileged EXEC mode, enter configuration mode by issuing the `configure terminal` command.

 device# configure terminal

2. Globally enable the IPv6 VRRP protocol.

 device(config)# ipv6 router vrrp

3. Configure the ethernet interface link for the owner device.

 device(config)# interface ethernet 1/4

4. Configure the IPv6 address of the interface.

 device(config-if-e1000-1/4)# ipv6 address 3013::3/64

5. Assign the backup device to the virtual router ID (VRID) 2.

 device(config-if-e1000-1/4)# ipv6 vrrp vrid 2

 NOTE

 You can assign a VRID number in the range of 1 through 255.

6. Designate this router as the VRRPv3 backup device and assign a priority of 100.

 device(config-if-e1000-1/4-vrid-1)# backup priority 100

7. Automatically generate the IPv6 link-local address for the VRID for use in the local network.

 device(config-if-e1000-1/4-vrid-2)# ipv6-address auto-gen-link-local
8. Assign the global IPv6 address to the VRID.

 device(config-if-e1000-1/4-vrid-2)# ipv6-address 3013::2

9. Enable the VRRP session.

 device(config-if-e1000-1/4-vrid-2)# activate

10. To verify that link-local addresses are being automatically generated, enter the show ipv6 vrrp command for this VRID.

 device(config-if-e1000-1/4-vrid-2)# show ipv6 vrrp vrid 2

 VRID 2 (index 1)
 interface 1/1
 state master
 administrative-status enabled
 version v3
 mode owner
 virtual mac 0000.5e00.0101
 virtual link-local fe80::200:5eff:fe00:201
 priority 255
 current priority 255
 hello-interval 1000 ms
 backup hello-interval 60000 ms
 number of configured virtual address 2
 ipv6-address 1::2:45::2
 ipv6-address 1::2:46::2
 next hello sent in 300 ms
 Track MCT-VPLS-State: Disable

The following example configures an automatic generation of an IPv6 VRRPv3 link-local address for backup device.

 device# configure terminal
 device(config)# ipv6 router vrrp
 device(config-ipv6-vrrp-router)# interface ethernet 1/4
 device(config-if-e1000-1/4)# ipv6 address 3013::3/64
 device(config-if-e1000-1/4)# ipv6 vrrp vrid 2
 device(config-if-e1000-1/4-vrid-2)# backup priority 100
 device(config-if-e1000-1/4-vrid-2)# ipv6-address auto-gen-link-local
 device(config-if-e1000-1/4-vrid-2)# ipv6-address 3013::2
 device(config-if-e1000-1/4-vrid-2)# activate

Displaying VRRPv3 statistics

Various show commands can display statistical information about IPv6 VRRP configurations.

Before displaying statistics, VRRPv3 must be configured and enabled in your network to generate traffic.

Use one or more of the following commands to display VRRPv3 information. The commands do not have to be entered in this order.

1. Use the `exit` command to return to privileged EXEC mode, if required.
2. Enter the `show ipv6 vrrp` command to display IPv6 VRRPv3 configuration information.

```
device(config)# show ipv6 vrrp
```

```
Total number of VRRP routers defined: 1
Interface 1/3
----------------
auth-type no authentication
VRID 13 (index 2)
interface 1/3
state master
administrative-status enabled
version v3
mode non-owner(backup)
virtual mac 0000.5e00.0217
priority 100
current priority 100
track-priority 1
hello-interval 1000 ms
backup hello-interval 60000 ms
advertise backup disabled
dead-interval 3000 ms
preempt-mode true
ipv6-address fd2b::1
next hello sent in 700 ms
short-path-forwarding disabled
```

3. To view detailed statistical information about IPv6 VRRPv3, enter the `show ipv6 vrrp statistics` command.

```
device# show ipv6 vrrp statistics
```

```
Global IPv6 VRRP statistics
---------------------------
- received vrrp packets with checksum errors = 0
- received vrrp packets with invalid version number = 0
- received vrrp packets with unknown or inactive vrid = 0
Interface 1/3
-----------
VRID 13
- number of transitions to backup state = 1
- number of transitions to master state = 1
- total number of vrrp packets received = 0
  . received backup advertisements = 19
  . received packets with zero priority = 0
  . received packets with invalid type = 0
  . received packets with invalid authentication type = 0
  . received packets with authentication type mismatch = 0
  . received packets with authentication failures = 0
  . received packets dropped by owner = 0
  . received packets with ttl errors = 0
  . received packets with ipv6 address mismatch = 0
  . received packets with advertisement interval mismatch = 0
  . received packets with invalid length = 0
  . total number of vrrp packets sent = 1175
  . sent backup advertisements = 0
  . sent packets with zero priority = 0
  . sent neighbor solicitation packets dropped = 0
  . sent proxy neighbor solicitation packets dropped = 0
  . received ipv6 packets dropped = 0
```
Clearing VRRPv3 statistics

VRRPv3 session counters can be cleared using a CLI command.

Ensure that VRRPv3 is configured and enabled in your network.

1. Enter the end command, if required, to return to privileged EXEC mode.
2. Enter the clear ipv6 vrrp statistics command.

device# clear ipv6 vrrp statistics

VRRP-Ev3 Overview

VRRP Extended version 3 (VRRP-Ev3) introduces IPv6 address support to the Extreme Networks proprietary VRRP Extended version 2 (VRRP-Ev2) protocol. VRRP-Ev3 is designed to avoid the limitations in the standards-based VRRPv3 protocol.

To create VRRP-Ev3, Extreme Networks has implemented the following differences from the RFC 5798 that describes VRRPv3 to provide extended functionality and ease of configuration:

• VRRP-Ev3 does not include the concept of an owner device and a master VRRP-Ev3 device is determined by the priority configured on the device.
• While the VRRP-Ev3 virtual router IP address must belong in the same subnet as a real IP address assigned to a physical interface of the device on which VRRP-Ev3 is configured, it must not be the same as any of the actual IP addresses on any interface.
• Configuring VRRP-Ev3 uses the same task steps for all devices; no differences between master and backup device configuration. The device configured with the highest priority assumes the master role.

NOTE
VRRP-Ev3 is supported on the devices described in this guide. In a mixed-device environment, consult your documentation for the other devices to determine if VRRP-Ev3 is supported.
VRRP-Ev3 does not interoperate with with VRRPv2 or VRRPv3 sessions.

Enabling an IPv6 VRRP-Ev3 device

This task is performed on any device that is designated as a VRRP extended version 3 (VRRP-Ev3) device. For each VRRP-Ev3 virtual routing instance, there is one master device and all other devices are backups; but, unlike VRRPv3, every device is configured as a backup and the device with the highest priority becomes the master device. Repeat this task for all devices that are to be designated as VRRP-Ev3 devices.

NOTE
Only VRRPv3 or VRRP-Ev3 can be enabled in your network.

1. On the device designated as a VRRP-Ev3 device, from privileged EXEC mode, enter global configuration mode by issuing the configure terminal command.

device# configure terminal

2. Globally enable VRRP-Ev3.

device(config)# ipv6 router vrrp-extended
3. Configure the Ethernet interface link.

 device(config-ipv6-vrrpe-router)# interface ethernet 1/7

4. Configure the IPv6 address of the interface. All devices configured for the same virtual router ID (VRID) must be on the same subnet.

 device(config-if-e1000-1/7)# ipv6 address fd4b::4/64

5. Assign the device to VRID 4.

 device(config-if-e1000-1/7)# ipv6 vrrp-extended vrid 4

 NOTE
 You can assign a VRID number in the range of 1 through 255.

6. Designate this router as a backup VRRPv3 device. All VRRP-Ev3 devices are initially configured as backup devices; the device with the highest priority assumes the role of master device.

 device(config-if-e1000-1/7-vrid-4)# backup priority 110

 While configuring a backup device, you can set a priority that is used when the designated master VRRP device goes offline. The backup device with the highest priority will assume the role of master device.

7. Configure an IPv6 link-local address for the VRID.

 device(config-if-e1000-1/7-vrid-4)# ipv6-address fe80::768e:f8ff:fe2a:0089

8. Configure a global IPv6 address for the VRID.

 device(config-if-e1000-1/7-vrid-4)# ipv6-address fd4b::99

 The IPv6 address associated with the VRID must not be configured on any of the devices used for VRRP-Ev3.

9. Enable the VRRP session.

 device(config-if-e1000-1/7-vrid-4)# activate

 VRRP-E router 4 for this interface is activating

The following example configures a backup VRRP-Ev3 device.

```
device# configure terminal
device(config)# ipv6 router vrrp-extended
device(config-if-e1000-1/7)# interface ethernet 1/7
device(config-if-e1000-1/7)# ipv6 address fd4b::4/64
device(config-if-e1000-1/7)# ipv6 vrrp-extended vrid 4
device(config-if-e1000-1/7-vrid-4)# backup priority 50
device(config-if-e1000-1/7-vrid-4)# ipv6-address fe80::768e:f8ff:fe2a:0089
device(config-if-e1000-1/7-vrid-4)# ipv6-address fd4b::99
device(config-if-e1000-1/7-vrid-4)# activate
VRRP-E router 4 for this interface is activating
```
VRRP-Ev3 sub-second failover

VRRP-Ev3 introduces a scale time factor to the advertisement interval that results in sub-second failover times.

In VRRP version 2, an advertisement interval can be set to decrease the time period between advertisements to allow for shorter or longer convergence times. In VRRPv3, a new CLI command is introduced to allow scaling of the advertisement interval timer. When a scaling value is configured, the existing advertisement interval timer value is divided by the scaling value. For example, if the advertisement interval is set to 1 second and the scaling value is set to 10, the new advertisement interval is 100 milliseconds. Using the timer scaling, VRRP-Ev3 sub-second convergence is possible if a master fails.

For each VRRP-Ev3 session, the same advertisement interval and scale value should be used. There are some limits on the number of VRRP sessions configured with advertisement intervals of one second or less, for details see the VRRPv3 Performance and Scalability Metrics section.

NOTE
MLX Series devices only support a scaling factor of 10. For interoperability with these devices, use an advertisement interval scale factor of 10.

Configuring sub-second failover using VRRP-Ev3

Configuring a scale factor making the interval between VRRP advertisements to be set in milliseconds allows a sub-second convergence time if a master VRRP device fails.

The configuring sub-second failover using VRRP-Ev3 task is only supported by VRRP-Ev3.

NOTE
Increased timing sensitivity as a result of this configuration could cause protocol flapping during periods of network congestion.

1. Enter the `configure` command to access global configuration mode.

 device# configure

2. Enter the `rbridge-id` command with an RBridge ID to enter RBridge ID configuration mode.

 device(config)# rbridge-id 122

3. To globally enable VRRP-Ev3, enter the `ipv6 protocol vrrp-extended` command.

 device(config-rbridge-id-122)# ipv6 protocol vrrp-extended

4. Enter the `interface ve` command with an associated VLAN number.

 device(config-rbridge-id-122)# interface ve 2019

 In this example, virtual Ethernet (ve) configuration mode is entered and the interface is assigned with a VLAN number of 2019.

5. Enter an IPv6 address for the interface using the `ipv6 address` command.

 device(config-ve-2019)# ipv6 address 2001:2019:8192::122/64

6. Enter the `ipv6 vrrp-extended-group` command with a number to assign a VRRP-E group to the device.

 device(config-ve-2018)# ipv6 vrrp-extended-group 19

 In this example, VRRP-Ev3 group configuration mode is entered.
7. Enter the `advertisement-interval` command with a value to set the time period in seconds between VRRP advertisements.

```
device(config-vrrp-extended-group-19)# advertisement-interval 1
```

8. Enter the `advertisement-interval-scale` command with a value of 1, 2, 5, or 10. The VRRP advertisement interval is divided by this number to set the time period in milliseconds between VRRP advertisements.

```
device(config-vrrp-extended-group-19)# advertisement-interval-scale 10
```

In this example, the scale number of 10 divided into the advertisement interval of 1 sets the interval between advertisements to 100 milliseconds. If a master VRRP-E device fails, the convergence time to a backup VRRP-E device may be in less than half a second.

The following example demonstrates how to configure a VRRP advertisement interval of 100 milliseconds for an IPv6 VRRP-Ev3 group.

```
device# configure
device(config)# rbridge-id 122
device(config-rbridge-id-122)# ipv6 protocol vrrp-extended
device(config-rbridge-id-122)# interface ve 2019
device(config-ve-2019)# ipv6 address 2001:2019:8192::122/64
device(config-ve-2019)# ipv6 vrrp-extended-group 19
device(config-vrrp-extended-group-19)# advertisement-interval 1
device(config-vrrp-extended-group-19)# advertisement-interval-scale 10
```

Displaying and clearing VRRP-Ev3 statistics

Several show commands can display statistical information about IPv6 VRRP-Ev3 configurations. To reset the IPv6 VRRP-Ev3 statistics, there is a CLI command.

Before displaying statistics, VRRP-Ev3 must be configured and enabled in your network to generate traffic.

Use one or more of the following commands to display VRRP-Ev3 information. The commands do not have to be entered in this order.

1. Use the `exit` command to return to privileged EXEC mode, if required.
2. Enter the `show ipv6 vrrp-extended brief` command to display VRRP-Ev3 summary information.

```
device(config)# show ipv6 vrrp-extended brief
```

```
Total number of VRRP routers defined: 1
Flags Codes - P:Preempt 2:V2 3:V3 S:Short-Path-Fwd

<table>
<thead>
<tr>
<th>Intf</th>
<th>VRID</th>
<th>CurrPrio</th>
<th>Flags</th>
<th>State</th>
<th>Master-IPv6</th>
<th>Backup-IPv6</th>
<th>Virtual-IPv6 Address</th>
<th>Master-IPv6 Address</th>
<th>Backup-IPv6 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>2</td>
<td>100</td>
<td>F3-</td>
<td>Master Local</td>
<td>fd2b::2</td>
<td>fd2b::99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Extreme NetIron Routing Configuration Guide, 06.0.00a
53-1004207-06

845
3. Enter the `show ipv6 vrrp-extended vrid 1` command to display detailed IPv6 VRRP-E configuration information about VRID 1.

 device# show ipv6 vrrp-extended vrid 1
 Interface 1/1

 auth-type md5-authentication
 VRID 1 (index 1)
 interface 1/1
 state master
 administrative-status enabled
 mode non-owner(backup)
 virtual mac dddd.eeee.ffff (configured)
 priority 100
 current priority 100
 track-priority 5
 backup hello-interval 60 sec
 advertise backup disabled
 dead-interval 0 ms
 preempt-mode true
 virtual ipv6 address 10:20:1::100

4. Enter the `clear ipv6 vrrp-extended statistics` command to reset the statistical counters for an IPv6 VRRP-Ev3 session.

 device# clear ipv6 vrrp-extended statistics