VSP 4900 Series Switches: Hardware Installation Guide

Copyright © 2024 Extreme Networks, Inc. All rights reserved.

Legal Notice

Extreme Networks, Inc. reserves the right to make changes in specifications and other information contained in this document and its website without prior notice. The reader should in all cases consult representatives of Extreme Networks to determine whether any such changes have been made.
The hardware, firmware, software or any specifications described or referred to in this document are subject to change without notice.

Trademarks

Extreme Networks and the Extreme Networks logo are trademarks or registered trademarks of Extreme Networks, Inc. in the United States and/or other countries.
All other names (including any product names) mentioned in this document are the property of their respective owners and may be trademarks or registered trademarks of their respective companies/owners.
For additional information on Extreme Networks trademarks, see: www.extremenetworks.com/ company/legal/trademarks

Open Source Declarations

Some software files have been licensed under certain open source or third-party licenses. End-user license agreements and open source declarations can be found at: https:// www.extremenetworks.com/support/policies/open-source-declaration/

Table of Contents

Preface 6
Audience 6
Conventions 6
Text Conventions 6
Terminology 8
Providing Feedback 8
Getting Help 9
Subscribe to Service Notifications. 10
Documentation and Training 10
Overview of the VSP 4900 Series Switch 11
Versatile Interface Module Options for VSP 4900 Series Switches. 11
Management 12
Cooling. 12
Power Supplies 12
Solid-state Drives 13
Operating Temperatures. 13
VSP4900-48P Switch Features 13
VSP4900-12MXU-12XE Switch Features. 14
VSP4900-24S Switch Features. 15
VSP4900-24XE Switch Features. 16
VSP License Options 16
Power Supplies for Use with Your Switch 17
350 W AC Power Supplies 17
715 W AC Power Supplies. 18
1100 W AC Power Supplies 18
2000 W AC Power Supply 18
Expansion Modules 20
Versatile Interface Modules for the ExtremeSwitching VSP 4900 Series Switches. 20
VIM5-4X Versatile Interface Module. 23
VIM5-4XE Versatile Interface Module 23
VIM5-2Y Versatile Interface Module. 24
VIM5-4Y Versatile Interface Module. 25
VIM5-4YE Versatile Interface Module 26
VIM5-2Q Versatile Interface Module 27
Solid-state Drives. 28
Preparing to Install 29
Operating Environment Requirements. 30
Meet Building and Electrical Codes 30
Set up the Wiring Closet. 31
Controlling the Temperature 32
Controlling the Humidity Level. 33
Protect Your System from ESD (Electrostatic Discharge) 33
Rack Specifications and Recommendations. 33
Mechanical Recommendations for the Rack. 33
Ground the Rack. 34
Providing Adequate Space for the Rack. 34
Secure the Rack. 34
Evaluate and Meet Cable Requirements. 35
Label Cables and Keep Accurate Records. 35
Install Cable. 36
Use RJ45 Connector Jackets. 41
Prevent Radio Frequency Interference (RFI). 41
Meet Power Requirements. 42
Power Supply Requirements. 42
Requirements for Power Cords 42
UPS (Uninterruptible Power Supply) Requirements. 43
Follow Applicable Industry Standards. 44
Installing a Switch 45
Safety Considerations for Installing Switches. 46
What You Will Need for the Installation 46
Attach the Switch to a Rack or Cabinet. 47
Installing Optional Components. 49
Pluggable Transceiver Modules. 50
Optical Cables 50
Installing Internal AC Power Supplies. 50
Selecting Power Cords for AC Power Supplies. 50
Install a 350 W, 715 W, 1100 W, or 2000 W Internal AC Power Supply. 50
Turn on the Switch. 52
Connect Network Interface Cables. 52
Activating and Verifying the Switch 54
Connect the Switch to a Management Console 54
Configure the Switch for Use. 54
Installing Expansion Modules 56
Install a Versatile Interface Module in a 5520 Series Switch 56
Install an SSD Module. 57
Remove Switches from Service 59
Remove the Switch from the Rack. 59
Removing and Replacing Components. 62
Replace a 350 W or 715 W AC Power Supply 62
Replace an 1100 W AC Power Supply 64
Replace a 2000 W AC Power Supply. 66
Replace Fan Modules. 68
Replace a VIM or SSD in a VSP 4900 Series Switch 70
Monitoring the Switch 72
VSP 4900 Switch LEDs 72
Port LEDs in Default (SYS) Mode 73
Port LEDs in SPD Mode 73
Versatile Interface Modules (VIM5) Port LEDs. 74
VIM5 Port LEDs in Default (SYS) Mode. 74
VIM5 Port LEDs in SPD Mode. 74
Technical Specifications 76
VSP 4900 Series Switches Technical Specifications.76
Fan Speed and Temperature Variation 79
Power Options 80
Standards and Environmental Data 82
350 W AC Power Supplies Technical Specifications 84
715 W AC Power Supplies Technical Specifications 85
1100 W AC Power Supplies Technical Specifications 86
AC Power Supplies 86
2000 W AC Power Supply Technical Specifications. 87
Power Cord Requirements for AC-Powered Switches and AC Power Supplies 87
Safety and Regulatory Information 89
Considerations Before Installing 90
General Safety Precautions 90
Maintenance Safety 91
Fiber Optic Ports and Optical Safety. 91
GBIC, SFP (Mini-GBIC), QSFP+, XENPAK, and XFP Regulatory Compliance. 92
Cable Routing for LAN Systems 92
Installing Power Supply Units and Connecting Power 93
Selecting Power Supply Cords 94
Battery Notice 95
Battery Warning - Taiwan 95
EMC Warnings. 95
Taiwan BSMI Warning. 95
China CQC Warning 96
Japan (VCCI Class A). 96
Korea EMC Statement 96
Index 97

Preface

This guide provides the instructions and supporting information needed to install the following Extreme Networks® Summit $®$ family switches:

The guide includes information about site preparation, switch functionality, and switch operation.

Audience

This guide is intended for use by network administrators responsible for installing and setting up network equipment. It assumes a basic working knowledge of:

- Local area networks (LANs)
- Ethernet concepts
- Ethernet switching and bridging concepts
- Routing concepts
- Simple Network Management Protocol (SNMP)
- Basic equipment installation procedures

See the and the for information about configuring ExtremeSwitching switches.
Note
If the information in an installation note or release note shipped with your
Extreme Networks equipment differs from the information in this guide, follow
the installation or release note.

Conventions

This section discusses the conventions used in this guide.

Text Conventions

Unless otherwise noted, information in this document applies to all supported environments for the products in question. Exceptions, like command keywords associated with a specific software version, are identified in the text.

When a feature, function, or operation pertains to a specific hardware product, the product name is used. When features, functions, and operations are the same across an
entire product family, such as ExtremeSwitching switches or SLX routers, the product is referred to as the switch or the router.

Table 1: Notes and warnings

Table 2: Text

Convention	Description
screen displays	This typeface indicates command syntax, or represents information as it appears on the screen.
The words enter and type	When you see the word enter in this guide, you must type something, and then press the Return or Enter key. Do not press the Return or Enter key when an instruction simply says type.
Key names	Key names are written in boldface, for example Ctrl or Esc. lf you must press two or more keys simultaneously, the key names are linked with a plus sign (+). Example: Press Ctrl+Alt+Del

Table 2: Text (continued)

Convention	Description
Words in italicized type	Italics emphasize a point or denote new terms at the place where they are defined in the text. Italics are also used when referring to publication titles.
NEW!	New information. In a PDF, this is searchable text.

Table 3: Command syntax

Convention	Description
bold text	Bold text indicates command names, keywords, and command options.
italic text	Italic text indicates variable content.
[]	Syntax components displayed within square brackets are optional. Default responses to system prompts are enclosed in square brackets.
$\{\mathbf{x ~ \| ~ y ~ \| ~ z ~ \} ~}$	A choice of required parameters is enclosed in curly brackets separated by vertical bars. You must select one of the options.
$\mathbf{x ~ \| ~ y ~}$	A vertical bar separates mutually exclusive elements.
$<>$	Nonprinting characters, such as passwords, are enclosed in angle brackets.
\ldots	Repeat the previous element, for example, member [member...].
\backslash	In command examples, the backslash indicates a "soft" line break. When a backslash separates two lines of a command input, enter the entire command at the prompt without the backslash.

Terminology

When features, functionality, or operation is specific to a switch family, such as ExtremeSwitching, the family name is used. Explanations about features and operations that are the same across all product families simply refer to the product as the switch.

Providing Feedback

The Information Development team at Extreme Networks has made every effort to ensure the accuracy and completeness of this document. We are always striving to improve our documentation and help you work better, so we want to hear from you. We welcome all feedback, but we especially want to know about:

- Content errors, or confusing or conflicting information.
- Improvements that would help you find relevant information in the document.
- Broken links or usability issues.

If you would like to provide feedback, you can do so in three ways:

- In a web browser, select the feedback icon and complete the online feedback form.
- Access the feedback form at https://www.extremenetworks.com/documentationfeedback/.
- Email us at documentation@extremenetworks.com.

Provide the publication title, part number, and as much detail as possible, including the topic heading and page number if applicable, as well as your suggestions for improvement.

Getting Help

If you require assistance, contact Extreme Networks using one of the following methods:

Extreme Portal

Search the GTAC (Global Technical Assistance Center) knowledge base; manage support cases and service contracts; download software; and obtain product licensing, training, and certifications.

The Hub

A forum for Extreme Networks customers to connect with one another, answer questions, and share ideas and feedback. This community is monitored by Extreme Networks employees, but is not intended to replace specific guidance from GTAC.

Call GTAC

For immediate support: (800) 9982408 (toll-free in U.S. and Canada) or 1 (408) 579 2826. For the support phone number in your country, visit: www.extremenetworks.com/support/contact

Before contacting Extreme Networks for technical support, have the following information ready:

- Your Extreme Networks service contract number, or serial numbers for all involved Extreme Networks products
- A description of the failure
- A description of any actions already taken to resolve the problem
- A description of your network environment (such as layout, cable type, other relevant environmental information)
- Network load at the time of trouble (if known)
- The device history (for example, if you have returned the device before, or if this is a recurring problem)
- Any related RMA (Return Material Authorization) numbers

Subscribe to Service Notifications

You can subscribe to email notifications for product and software release announcements, Vulnerability Notices, and Service Notifications.

1. Go to www.extremenetworks.com/support/service-notification-form.
2. Complete the form (all fields are required).
3. Select the products for which you would like to receive notifications.
$\stackrel{\text { Note }}{\equiv}$ You can modify your product selections or unsubscribe at any time.
4. Select Submit.

Documentation and Training

Find Extreme Networks product information at the following locations:
Current Product Documentation
Release Notes
Hardware and software compatibility for Extreme Networks products
Extreme Optics Compatibility
Other resources such as white papers, data sheets, and case studies
Extreme Networks offers product training courses, both online and in person, as well as specialized certifications. For details, visit www.extremenetworks.com/education/.

Overview of the VSP 4900 Series Switch

> VSP4900-48P Switch Features on page 13
> VSP4900-12MXU-12XE Switch Features on page 14
> VSP4900-24S Switch Features on page 15
> VSP4900-24XE Switch Features on page 16
> VSP License Options on page 16

ExtremeSwitching VSP 4900 Series switches provide support that can be deployed in either Enterprise LAN or high-density, top-of-rack high-performance enterprise and aggregation applications. The switches also provide a modular Versatile Interface Module (VIM) slot that allows a user to choose an uplink model that is suitable for their needs. The VSP 4900 Series switches run the VOSS operating platform.

VSP 4900 Series switches include the following base models:

- VSP4900-48P - switch with 3 fan modules and 2 unpopulated power supply slots
- VSP4900-12MXU-12XE - switch with 3 fan modules and 2 unpopulated power supply slots
- VSP4900-24S - switch with 3 fan modules and 2 unpopulated power supply slots
- VSP4900-24XE - switch with 3 fan modules and 2 unpopulated power supply slots

The 10/100/1000BASE-T ports on the VSP 4900-48P model can operate in half-duplex mode when operating at 10 Mbps or 100 Mbps . In addition, this model supports IEEE 802.1AE MACsec.

Versatile Interface Module Options for VSP 4900 Series Switches

The following Versatile Interface Module (VIM) are available for VSP 4900 series switches:

- VIM5-4X versatile interface module that provides four 10-GbE (SFP+) ports.
- VIM5-4XE versatile interface module that provides four 10-GbE (SFP+) ports, LRM/ MACsec capable.
- VIM5-2Y versatile interface module that provides two 25-GbE (SFP28) ports.
- VIM5-4Y versatile interface module that provides four 25-GbE (SFP28) ports.
- VIM5-4YE versatile interface module that provides four 25-GbE (SFP28) MACsec capable ports.
- VIM5-2Q versatile interface module that provides two 40-GbE (QSFP) ports.

A

Warning

The switch must be powered off before you install any VIMs options. The interface module options are not hot swappable.

Management

An RJ45 serial console port on the rear panel of the VSP 4900 series switch enables you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a out of bound management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds.

There is also a USB console port. If the USB console port is connected, it will be selected over the RJ45 console port. The USB console port will disconnect when the switch is rebooted. You can re-connect the port if needed. When the USB console is active, any messages from the switch to the client terminal will be echoed to both the front panel USB console and the rear panel RJ45 serial port; however, no user input will be accepted from the rear panel port.

Cooling

Each base model is available with front-to-back cooling.
Switch cooling is provided by replaceable fan modules. The available fan module uses airflow from front to back. Two modular power supply slots accommodate AC power supplies. Power supplies have integrated cooling fans that operate independently of the switch fan.

A spare fan module (XN-FAN-OO2-F) with front-to-back airflow is available for VSP 4900 switches.

Power Supplies

Two power supply bays accommodate AC power supplies. Power supplies have integrated cooling fans that operate independently of the switch fans. Like the fan modules, the power supplies are available in models with front-to-back cooling airflow. For more information about the power supplies used in the VSP 4900 switches, see Removing and Replacing Components on page 62.

Power supplies are ordered separately.

Caution

Air must flow in the same direction for all installed fan modules and power supplies in a switch.

Solid-state Drives

Each Solid-state Drive (SSD) provides modular storage support. VSP 4900 series switches accommodates one SSD module using a reserved slot on the rear of the switch, and is supported on VOSS release 8.1.5 and later.

Warning
The switch must be powered off before you install any interface module options (VIM5s). The interface module options are not hot swappable.

See Solid-state Drives on page 28 for more information.

Operating Temperatures

All VSP 4900 switch models support an operating range from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

VSP4900-48P Switch Features

The front panel of the ExtremeSwitching VSP4900-48P switch includes:

- 48 10/100/1000Mb full/half duplex MACsec capable ports with 802.3at Type 2 PoE (30W)
- 1 VIM5 slot
- 2 USB A ports
- 1 USB micro B management port

Figure 1: VSP 4900 Series Switch: Front Panel

1 = Mode Button and System LEDs	$3=$ USB A ports	$5=$ VIM slot, shown with VIM installed
2 = USB micro B management port	4 = Access ports	

The rear panel of the ExtremeSwitching VSP4900-48P switch includes:

- 3 fan modules
- 2 unpopulated PSU slots
- RJ-45 console and management ports

Figure 2: VSP 4900 Series Switch: Rear Panel

$1=$ Grouding lug	$3=$ SSD slot	$5=$ Power supplies
$2=$ RJ45 console and management ports	$4=$ Fan modules	

VSP4900-12MXU-12XE Switch Features

The front panel of the ExtremeSwitching VSP4900-12MXU-12XE switch includes:

- $12100 \mathrm{Mb} / 1 / 2.5 / 5 / 10 \mathrm{~Gb}$ ports with 802.1 bt Type 3 PoE (60W)
- 12 1G/10Gb SFP+ LRM and MACsec capable ports
- 1 VIM5 slot
- 2 USB A ports
- 1 USB micro B management port

Figure 3: VSP4900-12MXU-12XE Series Switch: Front Panel

$1=$ Mode Button and System LEDs	$3=$ USB A ports	$5=$ VIM slot, covered
$2=$ USB micro B management port	$4=$ Access ports	

The rear panel of the ExtremeSwitching VSP4900 switch includes:

- 3 fan modules
- 2 unpopulated PSU slots
- RJ-45 console and management ports

Figure 4: VSP 4900 Series Switch: Rear Panel

$1=$ Grouding lug	$3=$ SSD slot	$5=$ Power supplies
$2=$ RJ45 console and management ports	$4=$ Fan modules	

VSP4900-24S Switch Features

The front panel of the ExtremeSwitching VSP4900-24S switch includes:

- 24 100/1000Mb SFP ports
- 1 VIM5 slot
- 2 USB A ports
- 1 USB micro B management port

Figure 5: VSP4900-24S Series Switch: Front Panel

$1=$ Mode Button and System LEDs	$3=$ USB A ports	$5=$ VIM slot, covered
2 = USB micro B management port	4 = Access ports	

The rear panel of the ExtremeSwitching VSP4900 switch includes:

- 3 fan modules
- 2 unpopulated PSU slots
- RJ-45 console and management ports

Figure 6: VSP 4900 Series Switch: Rear Panel

$1=$ Grouding lug	$3=$ SSD slot	$5=$ Power supplies
$2=$ RJ45 console and management ports	$4=$ Fan modules	

VSP4900-24XE Switch Features

The front panel of the ExtremeSwitching VSP4900-24XE switch includes:

- 24 1/10Gb SFP+ LRM and MACsec capable ports
- 1 VIM5 slot
- 2 USB A ports
- 1 USB micro B management port

Figure 7: VSP4900-24XE Series Switch: Front Panel

1 = Mode Button and System LEDs	$3=$ USB A ports	$5=$ VIM slot, covered
2 = USB micro B management port	4 = Access ports	

The rear panel of the ExtremeSwitching VSP4900 switch includes:

- 3 fan modules
- 2 unpopulated PSU slots
- RJ-45 console and management ports

Figure 8: VSP 4900 Series Switch: Rear Panel

$1=$ Grouding lug	$3=$ SSD slot	$5=$ Power supplies
$2=$ RJ45 console and management ports	$4=$ Fan modules	

VSP License Options

For information about licensing options for VOSS, see Administering VSP Operating System Software.

Power Supplies for Use with Your Switch

> 350 W AC Power Supplies on page 17
> 715 W AC Power Supplies on page 18
> 1100 W AC Power Supplies on page 18
> 2000 W AC Power Supply on page 18

Each VSP 4900 Series switch runs with two replaceable internal power supply units that provide all of the power needed for the switch to operate. You can remove one power supply without interrupting the switch's operation. The VSP4900-48P model requires power supplies to be ordered separately.

For more information, see the following topics:

- 350 W AC Power Supplies on page 17
- 715 W AC Power Supplies on page 18
- 1100 W AC Power Supplies on page 18
- 2000 W AC Power Supply on page 18

350 W AC Power Supplies

The 350 W AC PSU-FB (models XN-ACPWR-350W-FB and 10953 with front-to-back ventilation airflow) is compatible with VSP4900-24S and VSP4900-24XE switch models that have the same airflow direction as the power supply.

The 350 W AC power supply has a keyed power inlet (C16) that requires a notched (C15) power cord.

The 350 W AC power supply has the status LEDs listed in Table 4.

Table 4: 350 W AC Power Supply LED Status Indications

IN_OK (Green)	OUT_OK (Green or Red)	Description
Off	Off	No AC input power connection or low AC voltage
On	Off	AC input good; output disabled
On	(Red) On	AC input good; output fault
On	(Green) On	AC input good; output good

715 W AC Power Supplies

The 715 W AC PSU-FB (models XN-ACPWR-715W-FB and 10951 with front-to-back ventilation airflow) are compatible with VSP4900-48P and VSP4900-12MXU-12XE switch models that have the same airflow direction as the power supply.

The 715 W AC power supply has a keyed power inlet (C16) that requires a notched (C15) power cord.

The 715 W AC power supply has the status LEDs listed in the following table:

Table 5: 715 W AC Power Supply LED Status Indications

IN_OK (Green)	OUT_OK (Green or Red)	Description
Off	Off	No AC input power connection or low AC voltage.
On	Off	AC input good, 54V output disabled.
On	(Red) On	AC input good, output (54V) fault.
On	(Green) On	AC input good, DC outputs in spec.

1100 W AC Power Supplies

The 1100 W AC PSU-FB (models XN-ACPWR-1100W-FB and 10941 with front-to-back ventilation airflow) is compatible with VSP4900-48P and VSP4900-12MXU-12XE switch models that have the same airflow direction as the power supply.

The 1100 W AC power supply has a keyed power inlet (C16) that requires a notched (C15) power cord.

The 1100 W AC power supply has the status LEDs listed in the following table:

Table 6: 1100 W AC Power Supply LED Status Indications

IN_OK (Green)	OUT_OK (Green or Red)	Description
Off	Off	No AC input power connection or low AC voltage.
On	Off	AC input good, 54V output disabled.
On	(Red) On	AC input good, output (54V) fault.
On	(Green) On	AC input good, DC outputs in spec.

2000 W AC Power Supply

The 2000 W AC PSU-FB (models XN-ACPWR-2000W-FB and XN-ACPWR-2000WF with front-to-back ventilation airflow) are compatible with VSP4900-48P and

VSP4900-12MXU-12XE switch models that have the same airflow direction as the power supply.

Note
In order to obtain 2000W output from this power supply, the PSU must be connected to a 200-240VAC source.

The ExtremeSwitching 2000 W AC power supply has a keyed power inlet (C16) that requires a notched (C15) power cord.

The ExtremeSwitching 2000 W AC power supply has the status LEDs listed in the following table:

Table 7: ExtremeSwitching 2000 W AC Power Supply LED Status Indications

IN_OK (Green)	OUT_OK (Green or Red)	Description
Off	Off	No AC input power connection or low AC voltage.
On	Off	AC input good, 54V output disabled.
On	(Red) On	AC input good, output (54V) fault.
On	(Green) On	AC input good, DC outputs in spec.

Expansion Modules

Versatile Interface Modules for the ExtremeSwitching VSP 4900 Series

Switches on page 20
Solid-state Drives on page 28

Several different hardware accessories are available for expanding the capabilities of your Extreme Networks switch. Collectively, they are referred to as expansion modules.

- Versatile interface modules (VIM) are installed in one dedicated slot in the front of the switch to provide a dedicated 10/25/40G high speed port. If no module is installed, the option slot is covered by a blank panel.
- Solid-state Drives (SSDs) provide modular storage support.

The following table lists the types of expansion modules and the switch series with which they are compatible.

Table 8: Compatibility of Expansion Modules

Module Type	Name	No. of Ports	Type of Ports
SSD	XN-SSD-001-120	1	Modular 120GB SSD
VIM5	VIM5-4X	4	10GbE SFP+ optical ports
	VIM5-4XE	4	10GbE SFP+ LRM MACsec capable optical ports
	VIM5-2Y	2	25GbE SFP28 optical ports
	VIM5-4Y	4	25GbE SFP28 optical ports
	VIM5-4YE	4	25GbE SFP28 LRM MACsec capable optical ports
	VIM5-2Q	2	4OGbE QSFP optical ports

Versatile Interface Modules for the ExtremeSwitching VSP 4900 Series Switches

You can install a VIM5 versatile interface module in a dedicated slot in the front panel of the ExtremeSwitching VSP 4900 Series switch to provide 10/25/40G dedicated high
speed ports. The front panel of every VSP 4900 switch provides one slot to install the following:

- VIM5-4X versatile interface module that provides four 10-GbE (SFP+) ports.
- VIM5-4XE versatile interface module that provides four 10-GbE (SFP+) ports, LRM/ MACsec capable.
- VIM5-2Y versatile interface module that provides two 25-GbE (SFP28) ports.
- VIM5-4Y versatile interface modulethat provides four 25-GbE (SFP28) ports.
- VIM5-4YE versatile interface module that provides four 25-GbE (SFP28) MACsec capable ports.
- VIM5-2Q versatile interface module that provides two 40-GbE (QSFP) ports.

For 24 and 48-port models, the VIM5 ports are 2/1, 2/2, 2/3, 2/4 depending on the VIM installed.

VIM5s are ordered separately. Each VIM5 label can be found on the bottom side of the device, as seen in the following figure:

Figure 9: VIM5 Label

Table 9: VSP 4900 VIM5 Matrix

	VIM5-4X	VIM5-4XE	VIM5-2Y	VIM5-4Y	VIM5-4YE	VIM5-2Q
Usable ports (VSP4900- 48P and VSP4900-2 4S)	4	4	2	2	2	1
Usable ports (VSP4900- 24XE and VSP4900-1 2MXU-12XE)	4		4	2	4	年

* You must set sys vim-speed to 10G or 25G for VIM5-2Y and VIM5-4YE. The default is 25G. A reboot is not necessary after setting the speed.

See Versatile Interface Modules (VIM5) Port LEDs on page 74 for VIM5 LED details.

VIM5-4X Versatile Interface Module
The VIM5-4X versatile interface module provides four 10-GbE (SFP+) ports.
For information about the supported optical modules, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

Figure 10: VIM5-4X Versatile Interface Module

Table 10: Port Numbers for Ports on the VIM5-4X Module

ExtremeSwitching VSP 4900 port numbers for 24-port models	ExtremeSwitching VSP 4900 port numbers for 48-port models
$2 / 1,2 / 2,2 / 3,2 / 4$	$2 / 1,2 / 2,2 / 3,2 / 4$

VIM5-4XE Versatile Interface Module
The VIM5-4XE versatile interface module provides four 10-GbE (SFP+) ports, LRM/ MACsec capable.

For information about the supported optical modules, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

Figure 11: VIM5-4XE Versatile Interface Module

Table 11: Port Numbers for Ports on the VIM5-4XE Module

ExtremeSwitching VSP 4900 port numbers for 24-port models	ExtremeSwitching VSP 4900 port numbers for 48-port models
$2 / 1,2 / 2,2 / 3,2 / 4$	$2 / 1,2 / 2,2 / 3,2 / 4$

VIM5-2Y Versatile Interface Module
The VIM5-2Y versatile interface module provides two 25-GbE (SFP28) ports.
You must set sys vim-speed to 10G or 25G for VIM5-2Y. The default is 25G. A reboot is not necessary after setting the speed. For details about the sys vim-speed command, see the Command Line Interface Commands Reference for VOSS.

For information about the supported optical modules, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

Figure 12: VIM5-2Y Versatile Interface Module

Table 12: Port Numbers for Ports on the VIM5-2Y Module

ExtremeSwitching VSP 4900 port number for 24-port models	ExtremeSwitching VSP 4900 port numbers for 48-port models
$2 / 1,2 / 1$	$2 / 1,2 / 1$

VIM5-4Y Versatile Interface Module
The VIM5-4Y versatile interface module provides four 25-GbE (SFP28) ports.
$\stackrel{\text { Note }}{\equiv}$ are supported.
The VIM5-4Y can be configured to provide four 10GbE ports using the port partitioning CLI. For details about the configure ports partition command, see the Command Line Interface Commands Reference for VOSS.

For information about the supported optical modules, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

Figure 13: VIM5-4Y Versatile Interface Module

Table 13: Port Numbers for Ports on the VIM5-4Y Module

ExtremeSwitching VSP 4900 port number for 24-port models	ExtremeSwitching VSP 4900 port number for 48-port models
$25-28$	$49-52$

VIM5-4YE Versatile Interface Module
The VIM5-4YE versatile interface module provides four 25-GbE (SFP28) LRM/MACsec capable ports.

Note
For VSP4900-24S, only the first 25-GbE (SFP28) port is supported.
For VSP4900-48P, VSP4900-24XE, and VSP4900-12MXU-12XE, only the first two 25-GbE (SFP28) ports are supported.
You must set sys vim-speed to 10G or 25G for VIM5-4YE. The default is 25 G . A reboot is not necessary after setting the speed. For details about the sys vim-speed command, see the Command Line Interface Commands Reference for VOSS.

For information about the supported optical modules, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

Figure 14: VIM5-4YE Versatile Interface Module

Table 14: Port Numbers for Ports on the VIM5-4YE Module

ExtremeSwitching VSP 4900 port number for VSP4900-24S	ExtremeSwitching VSP 4900 port numbers for VSP4900-48P, 24XE, and 12MXU-12XE models
$2 / 1$	$2 / 1,2 / 2$

VIM5-2Q Versatile Interface Module
The VIM5-2Q versatile interface module provides two 40-GbE (QSFP) ports.

For VSP4900-48P and VSP4900-24S, only the first 40-GbE (QSFP) port is supported.

For information about the supported optical modules, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

Figure 15: VIM5-2Q Versatile Interface Module

Table 15: Port Numbers for Ports on the VIM5-2Q Module

ExtremeSwitching VSP 4900	ExtremeSwitching VSP 4900
port numbers for 24-port models	port numbers for 48-port models
$2 / 1$ in 1×40 mode	$2 / 1$ in 1×40 mode
$2 / 1,2 / 2,2 / 3,2 / 4$ in 4×10 mode	$2 / 1,2 / 2,2 / 3,2 / 4$ in 4×10 mode

Solid-state Drives

Solid-state Drives (SSD) provide modular storage support. VSP 4900 Series switches accommodate one SSD module using a reserved slot on the rear of the switch, which is supported on VOSS release 8.1.5 and later.

The following SSD module is available for VSP 4900 switches:

Table 16: Available SSD Module

SSD Module	Description	Compatible Switch Models
XN-SSD-001-120	Modular 120GB SSD	VSP4900 (all models)

Preparing to Install

Operating Environment Requirements on page 30
Rack Specifications and Recommendations on page 33
Evaluate and Meet Cable Requirements on page 35
Meet Power Requirements on page 42
Follow Applicable Industry Standards on page 44

Before you install your Extreme Networks equipment, careful planning can help ensure that it is used effectively and help prepare you for future growth.

Only qualified service personnel should install, maintain, or remove a switch, chassis, or its components. Qualified service personnel have had appropriate technical training and experience that is necessary to be aware of the hazards to which they are exposed when performing a task and of measures to minimize the danger to themselves or other people.

Note

Before installing or removing any components of the system, and before carrying out any maintenance procedures, read the safety information in Safety and Regulatory Information on page 89.

The information in this chapter is intended for the system administrator, network equipment technician, network manager, or facilities manager responsible for installing and managing the network hardware. The chapter assumes a working knowledge of local area network (LAN) operations, and a familiarity with communications protocols that are used on interconnected LANs.

This chapter covers the following aspects of site preparation:

1. Operating Environment Requirements on page 30

Verify that your site meets all environmental and safety requirements.
2. Rack Specifications and Recommendations on page 33

Ensure that mounting racks are safe and appropriate for the equipment.
3. Evaluate and Meet Cable Requirements on page 35

Understand the different cabling options and select the ones that best address your needs.
4. Meet Power Requirements on page 42

Ensure that power supplies are safe and appropriate for the equipment.
For details about the equipment's power requirements, see the "Technical Specifications" section.
5. Follow Applicable Industry Standards on page 44

Understand the applicable standards and ensure that they are being followed.

Operating Environment Requirements

Verify that your site meets all environmental and safety requirements.
Virtually all areas of the United States are regulated by building codes and standards. During the early planning stages of installing or modifying your network, it is important that you develop a thorough understanding of the regulations that pertain to your location and industry.

Meet Building and Electrical Codes

Building and electrical codes vary depending on your location. Comply with all code specifications when planning your site and installing cable. This section lists resources for obtaining additional information.

For information about major building codes, consult the following organization:
International Code Council (ICC)
5203 Leesburg Pike
Falls Church, VA 22041 USA
www.iccsafe.org

The organizations listed in Table 17 are authorities on electrical codes.

Table 17: Authorities on Electrical Codes

Organization	Address	Web Site URL
National Electrical Code (NEC) Classification (USA only) Recognized authority on safe electrical wiring. Federal, state, and local governments use NEC standards to establish their own laws, ordinances, and codes on wiring specifications. The NEC classification is published by the National Fire Protection Association (NFPA).	NFPA 1 Batterymarch Park Quincy, MA 02169 USA	www.nfpa.org/
Underwriters' Laboratory (UL) Independent research and testing laboratory. UL evaluates the performance and capability of electrical wiring and equipment to determine whether they meet certain safety standards when properly used. Acceptance is usually indicated by the words "UL Approved" or "UL Listed."	UL 333 Pfingsten Road Northbrook, IL 60062 USA	www.ul.com
National Electrical Manufacturing Association (NEMA) (USA only) Organization of electrical product manufacturers. Members develop consensus standards for cables, wiring, and electrical components.	NEMA 1300 N. 17th Street Rosslyn, VA 22209 USA	www.nema.org
Electronic Components Industry Association (ECIA) Trade association that develops technical standards, disseminates marketing data, and maintains contact with government agencies in matters relating to the electronics industry.	ECIA 111 Alderman Drive Suite 400 Alpharetta, GA 30005 USA	www.ecianow.or g
Federal Communications Commission (FCC) (USA only) Commission that regulates all interstate and foreign electrical communication systems that originate in the United States according to the Communications Act of 1934. The FCC regulates all U.S. telephone and cable systems.	FCC 445 12th Street S.W. Washington, DC 20554 USA	www.fcc.gov

Set up the Wiring Closet

Be aware of the following recommendations for your wiring closet:

- Make sure that your system is easily accessible for installation and service. See Rack Specifications and Recommendations on page 33 for more information.
- Use appropriate AC or DC power, power distribution, and grounding for your specific installation.
- Use a vinyl floor covering in your wiring closet. (Concrete floors accumulate dust, and carpets can cause static electricity.)
- Prevent unauthorized access to wiring closets by providing door locks. Install the equipment in a secured, enclosed, and restricted access location, ensuring that only qualified service personnel have access to the equipment.
- Provide adequate overhead lighting for easy maintenance.
- Be sure that each wiring closet has a suitable ground. All equipment racks and equipment installed in the closet should be grounded.
- Be sure that all system environmental requirements are met, such as ambient temperature and humidity.

Note

Consult an electrical contractor for commercial building and wiring specifications.

Controlling the Temperature

Extreme Networks equipment generates a significant amount of heat. It is essential that you provide a temperature-controlled environment for both performance and safety.

Install the equipment only in a temperature- and humidity-controlled indoor area that is free of airborne materials that can conduct electricity. Too much humidity can cause a fire. Too little humidity can produce electrical shock and fire.

Observe these additional thermal recommendations for the location where you plan to install your equipment:

- Ensure that the ventilation in the wiring closet is adequate to maintain a temperature no higher than $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. (Some configurations support higher operating temperatures. See Environmental Data in "Technical Specifications" for details.)
- Install a reliable air conditioning and ventilation system.
- Keep the ventilation in the wiring closet running during non-business hours; otherwise, the equipment can overheat.
- Maintain a storage temperature between $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ and $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$.

When internal system temperatures exceed the thermal shutdown temperature limit (typically about $20^{\circ} \mathrm{C}$ higher than normal system operating temperatures), the system's power supplies are turned off and the switch shuts down. The system remains in the OFF state until the system has sufficient time to cool and the internal thermal sensor measures a temperature lower than the maximum specified ambient temperature, at which time the system restarts automatically.

Alternately, you can restart the system immediately by removing and then restoring all line power to the system.

Safeguards are built into all Extreme Networks switches and power supply units to minimize the risk of fire.

Controlling the Humidity Level

To maximize equipment life, keep operating humidity between 50% and 70% relative humidity (non-condensing) during typical operation.

The equipment can operate between 5\% and 95\% relative humidity (non-condensing) for short intervals.

Protect Your System from ESD (Electrostatic Discharge)

Your system must be protected from static electricity or ESD. Take the following measures to ensure optimum system performance:

- Remove materials that can cause electrostatic generation (such as synthetic resins) from the wiring closet.
Check the appropriateness of floor mats and flooring.
- Connect metal chassis, conduit, and other metals to ground using dedicated grounding lines.
- Use electrostatically safe equipment.

If you are working with pluggable interface modules, wear an ESD-preventive wrist strap and connect the metal end to a grounded equipment rack or other source of ground.

Rack Specifications and Recommendations

Racks should conform to conventional standards.
In the United States, use EIA Standard RS-310C: Racks, Panels, and Associated Equipment. In countries other than the United States, use IEC Standard 297. In addition, verify that your rack meets the basic mechanical, space, and earthquake requirements that are described in this section.

Mechanical Recommendations for the Rack

Use equipment racks that meet the following mechanical recommendations:

- Use an open style, 19 -inch rack to facilitate easy maintenance and to provide proper ventilation.
- Use a rack made of steel or aluminum.
- The rack should use the universal mounting rail hole pattern that is identified in IEC Standard 297.
- The rack should have designated earth grounding connections (typically on the base).
- The rack must meet earthquake safety requirements equal to that of the installed chassis.
- The mounting holes should be flush with the rails to accommodate the chassis.
- The rack should support approximately $270 \mathrm{~kg}(600 \mathrm{lb})$.

Ground the Rack

The rack must be properly grounded.
Use a rack grounding kit and a ground conductor that is carried back to earth or to another suitable building ground.

At a minimum, follow these guidelines to ground equipment racks to the earth ground:

- CAD weld appropriate wire terminals to building I-beams or earth ground rods.
- For a DC-powered switch, use a minimum 14 AWG stranded copper wire for grounding.

AC-powered switches do not need separate chassis grounding.

- Position the earth ground as close to the equipment rack as possible to maintain the shortest wiring distance possible.
- Use a ground impedance tester or micro-ohm meter to test the quality of earth ground connection at the chassis. This will ensure good grounding between the chassis, rack, and earth ground.

Note
Because building codes vary worldwide, consult an electrical contractor to ensure proper equipment grounding for your specific installation.

Providing Adequate Space for the Rack

Provide enough space in front of and behind the equipment, so that you can service it easily and so that airflow is not impeded.

We recommend providing a minimum of 122 cm (48 in) in front of the rack and 76 cm (30 in) behind the rack. When using a relay (two-post) rack, provide a minimum of 61 cm (24 in) of space behind the mounted equipment. Extra room on each side is optional.

Note

The equipment does not have a switch for turning power on and off. For systems using an AC power supply, power to the switch is disconnected by removing the wall plug from the electrical outlet.

Be sure that cables and other equipment do not block the switch's air intake or outflow.

Secure the Rack

The rack should be attached to the wiring closet floor with $9.5 \mathrm{~mm}(3 / 8 \mathrm{in})$ lag screws or equivalent hardware. The floor under the rack should be level within 5 mm ($3 / 16 \mathrm{in}$). Use a floor-leveling cement compound if necessary or bolt the racks to the floor as shown.

Figure 16: Properly Secured Rack
Brace open equipment racks if the channel thickness is less than $6.4 \mathrm{~mm}(1 / 4 \mathrm{in})$.

Evaluate and Meet Cable Requirements

Use professional consultants for site planning and cabling.
The Building Industry Consulting Service International (BICSI) Registered Communications Distribution Designer (RCDD), which is globally recognized as a standard in site planning and cabling, can be used.

For information, visit www.bicsi.org.

Label Cables and Keep Accurate Records

A reliable cable labeling system is essential when planning and installing a network.
Keeping accurate records helps you to:

- Relocate devices easily.
- Make changes quickly.
- Isolate faults in the distribution system.
- Locate the opposite end of any cable.
- Know the types of network devices that your cabling infrastructure can support.

Follow these guidelines when setting up a cable labeling system suitable for your installation:

- Identify cables by securely attaching labels to all cable ends.
- Assign a unique block of sequential numbers to the group of cables that run between each pair of wiring closets.
- Assign a unique identification number to each equipment rack.
- Identify all wiring closets by labeling the front panel of your Extreme Networks equipment and other hardware.
- Keep accurate and current cable identification records.
- Post records near each equipment rack. For each cable drop, include information about the cable source, destination, and jumper location.

Install Cable
When you connect cable to your network equipment, keep the following things in mind.

- Examine cable for cuts, bends, and nicks.
- Support cable using a cable manager that is mounted above connectors to avoid unnecessary weight on the cable bundles.
- Use cable managers to route cable bundles to the left and right of the network equipment to maximize accessibility to the connectors.
- Provide enough slack, approximately 5 to 7.5 cm (2 to 3 in), to provide proper strain relief as shown in Figure 17 on page 37.
- Bundle cable using hook-and-loop straps to avoid injuring cables.
- If you build your own cable, be sure that connectors are properly crimped.
- When installing a patch panel using twisted pair wiring, untwist no more than 2.5 $\mathrm{cm}(1 \mathrm{in})$ of the cable to avoid radio frequency (RF) interference.
- Discharge the RJ45 Ethernet cable before plugging it into a port on the switch.

Caution

Unshielded twisted pair (UTP) cable can build up electrostatic charges when being pulled into a new installation. Before connecting any category 5 UTP cable to the switch, discharge ESD from the cable by plugging the RJ45 connector into a LAN static discharge device or use an equivalent method.

- Use plenum-rated cable when it is necessary for safety and fire rating requirements. Consult your local building codes to determine when it is appropriate to use plenum-rated cable, or refer to IEC standard 850.
- Keep all ports and connectors free of dust.

Figure 17: Properly Installed and Bundled Cable
1 = Ensure adequate slack and bend radius

Handle Fiber Optic Cable
Fiber optic cable must be handled carefully during installation.
Every cable has a minimum bend radius and fibers will be damaged if the cables are bent too sharply. It is also important not to stretch the cable during installation. Ensure
that the bend radius for fiber optic cables is equal to at least $5 \mathrm{~cm}(2 \mathrm{in})$ for each 90-degree turn as shown in Figure 18.
$\stackrel{+00}{\equiv} \quad$ Note
Kinks and sharp bends can destroy or impair the cable's ability to convey light pulses accurately from one end of the cable to the other. Use care in dressing the optical fiber cables: provide satisfactory strain relief to support the cable and maintain an adequate bend radius at all cable turns, particularly where the cable connects to the I/O module.

Figure 18: Bend Radius for Fiber Optic Cable
$1=$ Minimum $5 \mathrm{~cm}(2 \mathrm{in})$ radius in 90° bend

Cable Distances and Types

Table 18 on page 38 shows one example of cable media types and maximum distances that support reliable transmission in accordance with international standards (except where noted). Refer to Extreme Networks Pluggable Transceivers Installation Guide for descriptions of optics and cables, as well as a complete list of supported cable lengths.

Refer to Extreme Hardware/Software Compatibility and Recommendation Matrices for a list of the cable types that are compatible with your equipment.

Table 18: Cable Distances and Types

Standard	Media Type	MHz Rating	Maximum Distance (Meters)
O00BASE-SX (850nm optical window)	$50 / 125 \mu$ m multimode fiber	400	500
	$50 / 125 \mu$ m multimode fiber	500	550
	$62.5 / 125 \mu$ m multimode fiber	160	220
	$62.5 / 125 \mu$ m multimode fiber	200	275

Table 18: Cable Distances and Types (continued)

Standard	Media Type	$\mathrm{MHz} \cdot \mathrm{km}$ Rating	Maximum Distance (Meters)
$\begin{aligned} & \text { 1000BASE-LX } \\ & \text { (1300nm optical window) } \end{aligned}$	50/125 $\mu \mathrm{m}$ multimode fiber	400	550
	50/125 $\mu \mathrm{m}$ multimode fiber	500	550
	62.5/125 $\mu \mathrm{m}$ multimode fiber	500	550
	10/125 $\mu \mathrm{m}$ single-mode fiber	-	5,000
	10/125 $\mu \mathrm{m}$ single-mode fiber	-	10,000
1000BASE-ZX (1550nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	80,000
100BASE-LX100 (1550nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	100,000
1000BASE-BX10 (1490nm optical window) (1310nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	10,000
1000BASE-LX70 (1550nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	70,000
10/100/1000BASE-T SFP	(1 Gbps link) Category 5 and higher UTP cable	-	100
	(100 Mbps link) Category 5 and higher UTP cable	-	150
	(10 Mbps link) Category 5 and higher UTP cable	-	250
10GBASE-T SFP+	(10 Gb links) Category 6A and higher UTP cable	-	30
10GBASE-SR SFP+ (850nm optical window)	62.5 mm multimode fiber	160	26
	62.5 mm multimode fiber (OM1)	200	33
	50 mm multimode fiber	400	66
	50 mm multimode fiber (OM2)	500	82
	50 mm multimode fiber (OM3)	2000	300
10GBASE-LR SFP+ (1310nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	10,000

1 Proprietary to Extreme Networks. Connections between two Extreme Networks 1000BASE-LX interfaces that use 10/125 $\mu \mathrm{m}$ single-mode fiber can use a maximum distance of 10,000 meters.

Table 18: Cable Distances and Types (continued)

Standard	Media Type	MHz•km Rating	Maximum Distance (Meters)
lOGBASE-ER SFP+ (1550nm optical window)	$10 / 125$ um single-mode fiber	-	40,000
40GBASE-SR4 QSFP+ (850nm optical window)	50 mm multimode fiber (OM3)	-	100
	50 mm multimode fiber (OM4)		150
1000BASE-T	Category 5 and higher UTP cable	-	100
100BASE-TX	Category 5 and higher UTP cable	-	100
10BASE-T	Category 3 and higher UTP cable	-	100

Table 19 and Table 20 on page 40 list direct-attach cables available from Extreme Networks.

Table 19: Extreme Networks 100Gb Direct-Attach Cables

Cable Type	Part Number	Length
QSFP28-QSFP28 Direct attach passive copper cable	10411 or AA1405029- E6	1 meter
	10413 or AA1405031- E6	3 meters
	10414 or AA1405032-E6	5 meters
	10421	1 meter
	10423	3 meters
	10424	5 meters
QSFP28-4xSFP28 (4×25Gb) Active optical breakout cable	10444	20 meters

Table 20: Extreme Networks 40Gb Direct-Attach Cables

Cable Type	Part Number	Length
QSFP+ to QSFP+ Direct attach cable	AA1404037-E6	0.5 meter
	AA1404029-E6	1 meter
	AA1404030-E6	2 meters
	AA1404031-E6	3 meters
	AA1404032-E6	5 meters

Table 20: Extreme Networks 40Gb Direct-Attach Cables (continued)

Cable Type	Part Number	Length
QSFP+ to QSFP+ Active optical cable	AA1404028-E6	10 meters active optical
QSFP+ to 4xSFP+ Breakout cable	AA1404033-E6	1 meter
	AA1404035-E6	3 meters
	AA1404036-E6	5 meters
	AA1404041-E6	10 meters active optical

Use RJ45 Connector Jackets

Use RJ45 cable with connector jackets that are flush with the connector or that have connectors with a no-snag feature.

Using cable with jackets that are wider than the connectors can cause:

- Connectors that are not properly aligned with the port.
- Crowded cable installation, which can cause connectors to pop out of the port.

Figure 19 shows examples of recommended and non-recommended connector jacket types.

Figure 19: RJ45 Connector Jacket Types

Prevent Radio Frequency Interference (RFI)

If you use UTP cabling in an installation, take precautions to avoid radio frequency (RF) interference.

RF interference can cause degradation of signal quality, and, in an Ethernet network environment, can cause excessive collisions, loss of link status, or other physical layer problems that can lead to poor performance or loss of communication.

To prevent RF interference, avoid the following situations:

- Attaching UTP cable to AC power cables
- Routing UTP cable near antennas, such as a ham radio antenna
- Routing UTP cable near equipment that could exhibit RF interference, such as ARC welding equipment
- Routing UTP cable near electrical motors that contain coils
- Routing UTP cable near air conditioner units
- Routing UTP cable near electrical transformers

In areas or applications where these situations cannot be avoided, use fiber optic cabling or shielded twisted pair cabling.

Meet Power Requirements

Observe the following requirements and precautions for powering your hardware.

Power Supply Requirements

Follow these recommendations when you plan power supply connections for your equipment:

- Place the equipment in an area that accommodates the power consumption and component heat dissipation specifications.
- Be sure that your power supply meets the site DC power or AC power requirements of the network equipment.
- When you connect power to installed equipment, do not make this connection through an extension cord or power strip.
- If your switch includes more than one power supply, connect each power supply to a different, independent power source.

If a power source fails, it will affect only the switch power supply to which it is connected. If all switch power supplies are connected to a single power source, the entire switch is vulnerable to a power source failure.

- In regions that are susceptible to electrical storms, the best practice is to plug your system into a surge suppressor.

For detailed power specifications for your equipment, see "Technical Specifications."

Requirements for Power Cords

Most ExtremeSwitching switches do not ship with power cords. Visit www.extremenetworks.com/product/powercords/ for information on selecting and purchasing the correct power cords for use with specific Extreme Networks equipment. The web page provides specifications for power cords in each country so that you can purchase cords locally.

UPS (Uninterruptible Power Supply) Requirements

A UPS (uninterruptible power supply) is a device that sits between a power supply (such as a wall outlet) and a device (such as a switch) to prevent outages, sags, surges, and bad harmonics from adversely affecting the performance of the device.

A UPS traditionally can perform the following functions:

- Absorb relatively small power surges.
- Smooth out noisy power sources.
- Continue to provide power to equipment during line sags.
- Provide power for a period of time after a blackout has occurred.

In addition, some UPS devices or UPS-plus-software combinations provide the following functions:

- Automatically shut down equipment during long power outages.
- Monitor and log power supply status.
- Display the voltage (current draw) of the equipment.
- Restart equipment after a long power outage.
- Display the voltage currently on the line.
- Provide alarms on certain error conditions.
- Provide short-circuit protection.

Select a UPS

To determine UPS requirements for your switch, answer these questions:

- What are the amperage requirements?
- What is the longest potential time period that the UPS would be required to supply backup power?
- Where will the UPS be installed?
- What is the maximum transition time that the installation will allow? (See Provide a Suitable UPS Transition Time on page 44.)

$\stackrel{+0}{\equiv} \quad$| Note |
| :--- |
| Use a UPS that provides online protection. |

Calculate Volt-Amperage Requirements

To determine the size of UPS that you need:

1. Locate the voltage and amperage requirements for each piece of equipment. These numbers are usually found on a sticker on the back or bottom of your equipment.
2. Multiply the numbers together to get Volt-Amperes (VA):

VA $=$ Volts \times Amperes
3. Add the VA from all the pieces of equipment together to find the total VA requirement.
To determine the minimum volt-amperage requirements for your UPS, add 30\% to the total.

Provide a Suitable UPS Transition Time

UPS transition time is the time required for the UPS to change from providing AC power derived from the utility (or mains) supply to providing AC power derived from the battery backup. UPS transition time is sometimes called UPS transfer time.

UPS transition times vary between UPS models and implementations, but shorter transition times are preferred. For Extreme Networks stacking products, a UPS transition time of 20 milliseconds or less ensures optimum performance and minimizes service interruptions.

For high-availability and fault-tolerant installations in which the switches use redundant power supply units (PSUs), ensure that each PSU in a switch is connected to a different UPS and that each UPS is powered by an independent AC supply. This will prevent service interruptions when a power source is lost, or when a UPS unit fails. (Note that a single, appropriately sized UPS can power PSUs in multiple switches. The recommendation is simply that for any given switch, the two PSUs should be connected to different UPS units.)

Follow Applicable Industry Standards

Always follow applicable industry standards.
For more information, see the following ANSI/TIA/EIA standards:

- ANSI/TIA/EIA-568-A-the six subsystems of a structured cabling system
- ANSI/TIA/EIA-569-A—design considerations
- ANSI/TIA/EIA-606-cabling system administration
- ANSI/TIA/EIA-607-commercial building grounding and bonding requirements

You can access these standards at: www.ansi.org or www.tiaonline.org.

Installing a Switch

Safety Considerations for Installing Switches on page 46

What You Will Need for the Installation on page 46
Attach the Switch to a Rack or Cabinet on page 47
Installing Optional Components on page 49
Installing Internal AC Power Supplies on page 50
Turn on the Switch on page 52
Connect Network Interface Cables on page 52

Before you attempt to install or remove an Extreme Networks switch, read the precautions in Safety Considerations for Installing Switches on page 46.

Extreme Networks switches fit into standard 19-inch equipment racks.
A four-post rack-mounting kit is provided with the switch. A two-post kit can be ordered separately.

The installation process includes the following tasks:

1. Prepare to install the switch.

See What You Will Need for the Installation on page 46.
2. Install the switch in the rack.

See Attach the Switch to a Rack or Cabinet on page 47.
3. Install optional components: optical transceivers and cables.

See the instructions in Installing Optional Components on page 49.
4. If your switch does not come with an installed internal power supply, install one or two power supplies.
See Installing Internal AC Power Supplies on page 50.
Note
Be aware of whether the power supply you are installing is AC-powered or a DC-powered. The installation instructions are different depending upon what type of power is used.
5. Power up the switch.

See Turn on the Switch on page 52.
6. Connect network interface cables.

See Connect Network Interface Cables on page 52.
7. Perform initial network connection and configuration.

See Activating and Verifying the Switch on page 54.

Safety Considerations for Installing Switches

Read the information in this chapter thoroughly before you attempt to install or remove an Extreme Networks switch.

Ensure that proper ESD (electrostatic discharge) controls are in use before switch maintenance is performed. This includes but is not limited to wrist straps that are grounded to the switch housing and earth grounds.

Warning

Connect the chassis ground wire before you connect any DC power cables. Disconnect the ground wire after you disconnect all DC power cables.

Take care to load the equipment rack so that it is not top-heavy. Start installing equipment at the bottom of the rack and work up.

Do not cover vents that would restrict airflow.

$\stackrel{000}{=}$ Note
 See Safety and Regulatory Information on page 89 for additional safety information.
 See Technical Specifications on page 76 for additional information regarding regulatory compliance certifications.

What You Will Need for the Installation

Ensure that you have followed the guidance in "Preparing to Install," and ensure that you have the appropriate people and tools on hand.

Installing Extreme Networks switches is easiest when there are two people to maneuver the switch and attach mounting hardware.

Provide enough space in front of and behind the switch so that you can service it easily. Allow a minimum of $122 \mathrm{~cm}(48 \mathrm{in})$ in front of the rack and $76 \mathrm{~cm}(30 \mathrm{in})$ behind the rack.

If your switch has internal power supplies, make sure they have the same airflow direction as the fans in the switch.

Check Quick Reference Guide for your switch model to see what hardware is provided in the switch packaging. Most Extreme Networks switches come with the following hardware:

- Two rack mounting brackets (ears) adaptable for either a front-mount or mid-mount installation.
- Two long mounting brackets (rails) or slider kits for mounting in a four-post installation.
- Screws for attaching mounting hardware to the switch housing.

You need the following additional tools and equipment. These are not provided with your switch.

- Rack mounting screws: eight for a four-post installation; four for other installations. The size of the screws will vary based on the rack system you are using.
- Screwdriver for securing the rack mounting screws.
- \#2 Phillips screwdriver to attach bracket screws that are provided with the switch. Use a magnetic screwdriver.
- AC power cord. For switches with removable AC power supplies, a separate power cord is needed for each installed power supply. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87.
- ESD-preventive wrist strap for installing optional ports at the back of the switch.

Attach the Switch to a Rack or Cabinet

To attach a switch to a four-post rack or a cabinet, follow these steps.
Take care to load the rack so that it is not top-heavy. Start installing equipment at the bottom and work up.

1. Attach a rack ear to one side of the switch, screwing it into the holes so that the flange (ear) is flush with the front of the switch for a front mount.

If you are mid-mounting the switch, set the flange toward the back of the switch.
The following figures illustrate how to attach the brackets for two common mounting options.

- Figure 20 shows a mid-mount configuration using a short mounting bracket.
- Figure 21 shows a front-mount configuration using a short mounting bracket.

Figure 20: Mid-Mount: Attaching Short Mounting Brackets

Figure 21: Front Mount: Attaching Short Mounting Brackets
2. Attach the other rack ear to the other side.

If using screws other than those provided, ensure that the threaded length of the screws is within 4 to 5 cm .
3. Attach the rack rails to both sides of the switch using rack screws (rack screws provided).
4. Attach the rack ears to the front rack posts, using the screws (rack post screws not provided).
5. Slide the rack rails into the rack ears on both sides, and adjust them to the appropriate rack depth.

Figure 22: Attaching the Side Rails
6. Attach the rack rails to the rear rack posts, using the rack screws (not provided).
7. If a grounding lug is present, ground the switch.
a. At one end of the wire, strip the insulation to expose $\mathrm{l} / 2$ inch $(12 \mathrm{~mm})$ of bare wire.
b. Identify the grounding lug on the back of the switch.
c. Insert the stripped wire into the grounding lug.
d. Tighten the retaining screw with a straight-tip torque screwdriver to 20 in - lb (2.25 Nm).
e. Connect the other end of the wire to a known reliable earth ground point at your site.

After the switch is secured to the rack or cabinet, install optional components using the instructions in Installing Optional Components on page 49.

After installing optional components, install one or two power supplies using the instructions in Installing Internal AC Power Supplies on page 50.

Installing Optional Components

After the switch is secured to the rack, install optional components.
ExtremeSwitching switches support the use of pluggable transceivers and cables in the SFP+, SFP28, QSFP+, and QSFP28 formats.

For a list of the optical components supported with ExtremeSwitching devices, see the Extreme Optics website.

Pluggable Transceiver Modules

Extreme Networks offers several optical transceiver modules for transmitting and receiving data over optical fiber rather than through electrical wires.

Optical Cables

Direct-attach copper and fiber cables provide connections between unpopulated SFP+, SFP28, QSFP+, and QSFP28 ports.

Installing Internal AC Power Supplies

The following AC internal power supplies (PSUs) are available for VSP 4900 Series switches:

350 W AC PSU

Part numbers XN-ACPWR-350W-FB and 10953 are compatible with VSP 4900 switch models.

715 W AC PSU

Part numbers XN-ACPWR-715W-FB and 10951 are compatible with VSP 4900 switch models.

1100 W AC PSU

Part numbers XN-ACPWR-1100W-FB and 10941 are compatible with VSP 4900 switch models.

2000 W AC PSU

Part numbers XN-ACPWR-2000W-FB and XN-ACPWR-2000W-F are compatible with VSP 4900 switch models.

For installation instructions, see Install a $350 \mathrm{~W}, 715 \mathrm{~W}, 1100 \mathrm{~W}$, or 2000 W Internal AC Power Supply on page 50.

Selecting Power Cords for AC Power Supplies

 An AC power cord is not included with an AC power supply.You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed under Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87.

Install a 350 W, 715 W, 1100 W, or 2000 W Internal AC Power Supply

Warning
To prevent an electrical hazard, make sure that the AC power cord is not connected to the power supply before you install the power supply in the power supply bay.

Caution

Make sure the AC power supply circuit is not overloaded. Use proper overcurrent protection, such as a circuit breaker, to prevent overcurrent conditions.

An AC power cord is not included with the AC power supply. You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87.

To install a 350 W, 715 W , 1100 W , or 2000 W AC power supply in a switch, follow these steps:

1. If necessary, remove a blank panel from the back of the switch.
2. Verify that the power supply is right side up.
3. Verify that the power supply's airflow direction (front-to-back) is compatible with the switch.
4. Carefully slide the power supply all the way into the power supply bay, as shown in Figure 23.

Figure 23: Installing an AC Power Supply
5. Push the power supply in until the latch snaps into place.

Caution
Do not slam the power supply into the switch.

Note

If power supplies are not installed in both power supply bays, be sure to install a cover over the unoccupied bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.
6. Connect the power cord to the power supply.

If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.
7. Connect the power cord to a grounded AC power outlet.

Warning
Always make sure that the source outlet is properly grounded before plugging the $A C$ power cord into the $A C$ power supply.
8. To install a second power supply, repeat the procedure.

Turn on the Switch

An AC power cord is not included with the AC power supply. You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87.

To turn on an Extreme Networks switch, do the following.

1. For switches that are connected to AC power, connect the power cord to the AC power input socket on the switch (or power supply) and to an AC power outlet.
2. For switches that are connected to DC power, do the following:
a. Verify that the DC circuit is de-energized.
b. Verify that the ground wire is connected to the grounding lug on the rear of the switch.

The grounding lug is identified by the international symbol for earth ground:
c. Verify that the DC power input cables are properly connected to the DC power supplies at the rear of the switch.
d. Energize the circuit.
3. When power is connected, verify that the PSU LED turns green.

When the PSU LED has turned green, follow the instructions in Connect Network Interface Cables on page 52.

If the PSU and RPS LEDs do not turn green, refer to the LEDs topic for your switch model (in 5520 Series Switch LEDs) for troubleshooting information.

Connect Network Interface Cables

Use the appropriate type of cable to connect the ports of your switch to another switch or router.

Cable Type	Maximum Distance
CAT5E	55 meters
CAT6	55 meters
CAT6A	100 meters

Working carefully, one port at a time, do the following:

1. Verify that you have identified the correct cable for the port.
2. Use an alcohol wipe or other appropriate cleaning agent to clean the cable connectors; make sure they are free of dust, oil, and other contaminants.
3. If you are using optical fiber cable, align the transmit ($T x$) and receive ($R x$) connectors with the correct corresponding connectors on the switch or the I/O module.
4. Press the cable connectors into their mating connectors on the switch or I/O module until the cable connector is firmly seated.
5. Repeat the preceding steps for the remaining cables on this or other switches or I/O modules.
6. Dress and secure the cable bundle to provide appropriate strain relief and protection against bends and kinks.

Activating and Verifying the Switch

Connect the Switch to a Management Console on page 54
 Configure the Switch for Use on page 54

After you have installed the switch and connected network cables, perform the following tasks to configure the software on the switch and prepare it for use.

Check https://www.extremenetworks.com/support/compatibility-matrices/ extremecloud-hardware-support/ to see what switch models can be managed with ExtremeCloud ${ }^{\text {TM }}$. If your switch is entitled for management by ExtremeCloud, you can optionally use the installation instructions at https:// documentation.extremenetworks.com/extremecloud/quick_reference.

Otherwise, follow the instructions in these topics:

- Connect the Switch to a Management Console on page 54
- Configure the Switch for Use on page 54

Connect the Switch to a Management Console

Connect each switch's serial console interface (an RJ45 jack) to a PC or terminal. The PC or terminal will serve as the management console, used to monitor and configure the switch.

The default communication protocol settings for the serial console interface are:

- Baud rate: 115200
- Data bits: 8
- Stop bit: 1
- Parity: None

Configure the Switch for Use

After your switch is connected to power and completes its power-on self-tests, it is operational. Before logging in, verify that the switch LEDs are on (solid green or blinking green) and that it is connected to a management console as described in Connect the Switch to a Management Console on page 54.

To perform the initial login and complete initial configuration tasks, follow these steps from the management console.

1. Using a terminal emulator such as PuTTY or TeraTerm, connect to the switch using the serial port connection.
Be sure that your serial connection is set properly:

- Baud rate: 115200
- Data bits: 8
- Stop bit: 1

2. Press [Enter] one or more times until you see the login prompt.
3. At the login prompt, log in using the default user name rwa.

For example:
login: rwa
When prompted for the password, enter rwa.
When you are logged in with the role-based authentical level of rwa, you can configure the login and password values for the other role-based authentication levels. For details, see Quick Start Configuration for VOSS.
4. Follow the steps for provisioning and verifying the switch in Quick Start Configuration for VOSS.

The switch is ready for use.
To configure security, see Configuring Security.
To configure other switch features, see Documentation Reference.

Installing Expansion Modules

Install a Versatile Interface Module in a 5520 Series Switch on page 56

 Install an SSD Module on page 57This chapter describes how to install expansion modules:

- Versatile interface modules (VIM5s)
- Solid-state Drive (SSD) modules

$\stackrel{+000}{\equiv}$
 Note
 Read the information in this chapter thoroughly before trying install or remove an expansion module.

Install a Versatile Interface Module in a 5520 Series Switch

This section describes how to install a versatile interface module (VIM) in the front slot of a 5520 Series switch.

You need the following tools and materials to install a VIM:

- ESD-preventive wrist strap
- Flat head screwdriver

Caution
Extreme Networks VIMs are not hot-swappable. Disconnect power to the switch before removing an installed VIM or installing a new VIM.

To install a versatile interface module, follow these steps:

1. Attach the ESD wrist strap to your wrist and connect the metal end to an appropriate ground point on the rack.
2. Ensure that the switch is completely powered down.
3. Using two fingers, remove the cover plate from the VIM slot.
a. Squeeze the sides to release the plate, and pull down from the top to open. The plate will remain attached at the bottom.

Figure 24: Removing a slot Cover Plate (VIM slot cover shown)
4. Remove the new VIM from its anti-static packaging.
5. Install the VIM in the switch:
a. Carefully slide the VIM module into the switch.
b. Insert and tighten the retaining screws you previously removed, using the screws provided.

Figure 25: Tighten Screws on the Inserted VIM Module
1 = VIM module retaining screw locations

Install an SSD Module

This section describes how to install a Solid-state Drive (SSD) module in the rear slot of a switch.

You need the following tools and materials to install an SSD module:

- ESD-preventive wrist strap
- \#2 Phillips screwdriver

Warning
To prevent damage to the switch or VIM, the switch must be powered OFF when removing or installing SSD modules.

To install an SSD module, follow these steps:

1. Attach the ESD wrist strap to your wrist and connect the metal end to an appropriate ground point on the rack.
2. Ensure that the switch is completely powered down.
3. Remove the cover plate from the SSD slot (\#2 Phillips screwdriver required).

Figure 26: Switch with SSD Rear Panel
4. Remove the SSD module from its packaging.
5. Carefully slide the SSD module into the slot on the rear panel until it is firmly in place.

Figure 27: Insert SSD Module
6. Secure the SSD module using the screws provided.

Remove Switches from Service

Remove the Switch from the Rack on page 59

Removing a switch from service is a two-step process:

1. Disconnect the switch from its power source, following these steps as applicable:

- Disconnect and remove the switch's removable AC power supply. See "Adding or Replacing Power Supplies, Fans, and Expansion Modules."
- Disconnect the switch from its redundant power supply.

2. Remove the switch from the rack, following the steps in Remove the Switch from the Rack on page 59.

Read the information in this chapter thoroughly before you attempt to remove a switch.

Remove the Switch from the Rack

To remove or reposition a switch after you have mounted it in a rack, follow these steps.
These procedures assume that you have attached the switch to the rack as described in Installing a Switch on page 45.

1. Support the switch while you remove the rack-mounting screws that hold the front mounting brackets in place against the rack posts.
2. Remove the switch from the rack.

- For two-post installations, carefully slide the switch out of the rack.
- For four-post installations, carefully slide the switch forward out of the cabinet and off the rear mounting brackets.

See the following figures.

Figure 28: Removing a Front-Mounted Switch from a Two-Post Rack

Figure 29: Removing the Switch from a Four-Post Rack
3. Place the switch on a secure, flat surface.
4. Using a \#2 Phillips screwdriver, remove the front mounting brackets from the sides of the switch.
5. For four-post installations, remove the rear mounting brackets from the rear rack posts.

If you plan to use the switch again later, we recommend storing it with the mounting brackets attached.

Removing and Replacing Components

```
Replace a 350 W or 715 W AC Power Supply on page 62
Replace an 1100 W AC Power Supply on page 64
Replace a 2000 W AC Power Supply on page 66
Replace Fan Modules on page 68
```

You can replace internal power supplies and fan modules, as needed, while the switch is operating ("hot swapping").

VIMs and SSDs are not hot-swappable, and the switch must be disconnected from its power source before replacing these components.

For each switch, ensure that all installed power supplies and fan modules have the same front-to-back airflow direction.

Follow the procedures in this section to remove and replace power supplies, fan modules, and expansion modules, and to remove a switch from a rack.

Replace a 350 W or 715 W AC Power Supply

The 350 W AC power supplies with part numbers XN-ACPWR-350W-FB or 10953 are compatible with VSP4900-24S and VSP4900-24XE models.

The 715 W AC power supplies with part numbers XN-ACPWR-715W-FB or 10951 are compatible with VSP4900-48P and VSP4900-12MXU-12XE models.

These switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one AC power supply without powering down the switch.

You need the following tools and materials to replace a 350 W or 715 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

To replace a 350 W or 715 W AC power supply, follow these steps:

1. Disconnect the AC power cord from the wall outlet and from the power supply.
2. Note the orientation of the installed power supply, and the location of the latching tab at the right of the unit.
3. Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.
See Figure 30.

Figure 30: Removing a 350 W or 715 W AC Power Supply
4. Carefully slide the power supply the rest of the way out of the switch.

Caution

Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.

Note
If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.
5. Verify that the replacement power supply is oriented the same way as the unit you removed, and has the same airflow direction.
6. Carefully slide the power supply all the way into the power supply bay, as shown in Figure 37.
7. Push the power supply in until the latch snaps into place.

Caution

Do not slam the power supply into the switch.

Figure 31: Installing A 350 W or 715 W AC Power Supply
8. Connect the power cord to the power supply and to a grounded AC power outlet.

!Warning
Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.
9. If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

Replace an 1100 W AC Power Supply

The 1100 W AC power supplies with part numbers XN-ACPWR-1100W-FB and 10941 are compatible with VSP4900-48P and VSP4900-12MXU-12XE model switches.

The switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one AC power supply without powering down the switch.

You need the following tools and materials to replace a 1100 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

To replace a 1100 W AC power supply, follow these steps:

1. Disconnect the AC power cord from the wall outlet and from the power supply.
2. Note the orientation of the installed power supply, and the location of the latching tab at the right of the unit.
3. Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.

See Figure 32.

Figure 32: Removing an 1100 W AC Power Supply
4. Carefully slide the power supply the rest of the way out of the switch.

Caution
Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.

Note
If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.
5. Verify that the replacement power supply is oriented the same way as the unit you removed, and has the same airflow direction.
6. Carefully slide the power supply all the way into the power supply bay.

See Figure 33.

Figure 33: Installing an 1100 W AC Power Supply
7. Push the power supply in until the latch snaps into place.

Caution

Do not slam the power supply into the switch.
8. Connect the power cord to the power supply and to a grounded AC power outlet.

A

Warning

Always be sure that the source outlet is properly grounded before plugging the $A C$ power cord into the $A C$ power supply.
9. If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

Replace a 2000 W AC Power Supply

The ExtremeSwitching 2000 W AC power supplies with part numbers XN-ACPWR-2000W-FB and XN-ACPWR-2000W-F are compatible with VSP4900-48P and VSP4900-12MXU-12XE models.

These switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one Summit or ExtremeSwitching AC power supply without powering down the switch.

You need the following tools and materials to replace an ExtremeSwitching 2000 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

To replace an ExtremeSwitching 2000 W AC power supply, follow these steps:

1. Disconnect the AC power cord from the wall outlet and from the power supply.
2. Note the orientation of the installed power supply, and the location of the latching tab at the right of the unit.
3. Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.

Figure 34: Removing an ExtremeSwitching 2000 W AC Power Supply
4. Carefully slide the power supply the rest of the way out of the switch.

Caution

Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.

Note
If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.
5. Verify that the replacement power supply is oriented the same way as the unit you removed, and has the same airflow direction.
6. Carefully slide the power supply all the way into the power supply bay.

Figure 35: Installing an ExtremeSwitching 2000 W AC Power Supply
7. Push the power supply in until the latch snaps into place.

I Caution

- Do not slam the power supply into the switch.

8. Connect the power cord to the power supply and to a grounded AC power outlet.

Warning

Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.
9. If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

Replace Fan Modules

You can replace fan modules as needed while the switch is operating ("hot swapping").
All installed fan modules must blow air in the same direction and must match the airflow direction of the installed power supplies.

- If the switch's fan tray has a red tab, the airflow is front-to-back. Use a fan module labeled Air Out.

Note
The operating-system software cannot display the airflow direction.

Before you begin, have the replacement fan module on hand so that you can complete the replacement promptly. The switch can overheat if left without adequate cooling for an extended time.

To replace the fan module in a switch, do the following.

1. Gently pull the tab (labeled Air Out) on the end of the fan module.

The fan module is held in place by spring clips. As you pull, the clips will disenagage and the fan will stop.
2. Slide the fan module out of the switch and set it aside.
3. Verify that the airflow direction on the replacement fan module matches that of the installed fan modules.
Fans with front-to-back airflow have red tabs and are labeled Air Out.
4. Carefully slide the replacement fan module into the switch.

Push until the fan module snaps into place. The fan will automatically start to operate.

Replace a VIM or SSD in a VSP 4900 Series Switch

This section describes how to replace versatile interface modules (VIM5) in the front and solid-state drive (SSD) modules in the rear slot of a VSP 4900 switch.

You need the following tools and materials to install a VIM:

- ESD-preventive wrist strap
- \#2 Phillips screwdriver

!Caution
VIMs and SSDs are not hot-swappable. Disconnect power to the switch before removing an installed VIM or SSD and installing a new one.

The replacement procedure is the same for all VSP 4900 VIM5s and SSDs.
To replace a VIM or SSD:

1. Attach an ESD-preventive wrist strap to your wrist and connect the metal end to an appropriate ground point on the rack.
2. Disconnect the switch power.
3. Remove the existing VIM or SSD:
a. Remove the retaining screws holding the existing module in place.
b. Save the retaining screws to secure the new module in the switch.
c. Pull the old module out of the module slot.
4. Remove the new VIM or SSD from its anti-static packaging.
5. Install the VIM or SSD in the switch:
a. Carefully slide the module into the switch.
b. Insert and tighten the retaining screws you removed in step 3 .

Figure 36: Tighten Screws on the Inserted VIM5 Module

Figure 37: Tighten Screws on the Inserted SSD Module
1 = retaining screw locations

Monitoring the Switch

VSP 4900 Switch LEDs on page 72
 Versatile Interface Modules (VIM5) Port LEDs on page 74

The following topics help you monitor the status of the switch/appliance as it is running.

VSP 4900 Switch LEDs

ExtremeSwitching VSP 4900 Front Panel Port LEDs, as described in the following table:

Table 21: VSP 4900 Port LEDs

LED	Color/State	Port State
SYStem status LED (Legacy MGMT function)	Green Flash slowly	POST Passed, normal operation, blinks on standalone switch, stack master, and backup nodes in a stack; off for standby nodes in a stack
	Green Blinking	POST in progress
	Amber Blinking	POST failed or overheat
	Off	Power On
	Amber Blinking	Power supply failures
Fan status LEDS (F1, F2 and F3)	Green	Normal operation
	Amber Blinking	Fan failure
	Amber	Fan absent
Bluetooth Status LED (BT)	Green Blinking	Bluetooth pairing in progress
	Green	Bluetooth connected
Locator LED (LOC)	Blue Blinking	Locator function
Ethernet Port 1-24 or 1-48		
VIM5 Port 25-32 or 49-56		

The following figure shows the two alternate mode LEDs for VSP 4900 switches: SYS and SPD. The Mode button is used to cycle through two display modes for the port

LEDs. SYS and SPD display modes will expire after 30 seconds, at which time the port LEDs will revert to the default SYS mode.

Figure 38: VSP 4900 Mode and System Status LEDs

Port LEDs in Default (SYS) Mode
In the default SYS mode, SPD is OFF, and the port status will display behavior for link, traffic, and POE as described in the following table:

Table 22: Port LEDs in SYS Mode (default)

Color/State	Meaning
Steady green	Link is OK; port is not powered
Steady amber	Link is OK; port is powered; no traffic
Blinking green	Link is OK and transmitting packets; port is not powered
Blinking amber	Link is OK and transmitting packets; port is powered
Slow blinking amber	No link, or disabled port; port is powered
Alternating amber and green	Port has a power fault
Slow blinking green	Admin disabled and no power
Off	Port is not powered, has no link, or is disabled

Port LEDs in SPD Mode

After one press of the Mode button (see Figure 38 on page 73), the port LEDs will enter the SPD Display Mode, indicated by the SPD LED. SPD mode is used to help determine
the operational speed of a port. Color and blink pattern indicate speeds, as referenced by the following table:

Table 23: Port LEDs in SPD Mode

Color/State	Speed
Blinking amber	2.5 Mbps
Slow blinking green	5 Mbps
Steady green	10 Mbps
Blinking green	100 Mbps
Steady amber	1000 Mbps
Steady green	10 Gbps
Blinking amber	25 Gbps
Blinking green	40 Gbps

Versatile Interface Modules (VIM5) Port LEDs

There are two supported modes for ExtremeSwitching VIM5 port LEDs:

- SYS - default, use normal port LED behavior for link, traffic, and PoE
- SPD - use the port LEDs to indicate operational speed

VIM5 Port LEDs in Default (SYS) Mode

In the default SYS mode, SPD is OFF, and the port status will display behavior for link, traffic, and PoE as described in the following table:

Table 24: VIM5 Port LEDs in SYS Mode (default)

Color/State	Meaning
Steady green	Link is OK; port is not powered
Blinking green	Link is OK and transmitting packets; port is not powered
Slow blinking green	Port is admin disabled
Off	Port is not powered, has no link

VIM5 Port LEDs in SPD Mode

SPD mode is used to help determine the operational speed of a port. Color and blink pattern indicate speeds, as referenced by the following table:

Table 25: VIM5 Port LEDs in SPD Mode

Color/State	Speed
Steady green	10Gbps
Blinking green	40Gbps

Table 25: VIM5 Port LEDs in SPD Mode (continued)

Color/State	Speed
Steady amber	1 Gbps
Blinking amber	25 Gbps

$\stackrel{0.0}{\equiv} \quad$ Note
For the VIM5-2Q, the two LEDs in the QSFP+ cage are not supported/used, only the two sets of LEDs numbered L1-L4 on either side are supported as follows:

Figure 39: VIM5-2Q Port LEDs

Table 26: VIM5-2Q Port LEDs in SPD Mode

LED	Mapping
LED 1	represents 40G port status/speed or first 10G port's status/ speed when channelized
LED 2	status/speed for second 10G port when channelized
LED 3	status/speed for third 10G port when channelized
LED 4	status/speed for fourth 10G port when channelized

Technical Specifications

> VSP 4900 Series Switches Technical Specifications on page 76
> 350 W AC Power Supplies Technical Specifications on page 84 715 W AC Power Supplies Technical Specifications on page 85
> 1100 W AC Power Supplies Technical Specifications on page 86
> 2000 W AC Power Supply Technical Specifications on page 87
> Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87

This section lists technical specifications for the hardware products described in this document.

VSP 4900 Series Switches Technical Specifications
VSP 4900 Series includes the following switches:

- VSP4900-48P switch
- VSP4900-12MXU-12XE switch
- VSP4900-24S switch
- VSP4900-24XE switch

Table 27: VSP 4900 Unpackaged Dimensions

VSP4900 (all models)	Height: 1.72 inches $(4.36 \mathrm{~cm})$ Width: 17.34 inches $(44 \mathrm{~cm})$ Length: 19.23 inches $(48.8 \mathrm{~cm})$

Table 28: VSP 4900 Unpackaged Weight (With Blanks; No PSU or Fan Module)

VSP4900-48P switch	$17.38 \mathrm{lb}(7.88 \mathrm{~kg})$
VSP4900-12MXU-12XE switch	$16.67 \mathrm{lb}(7.56 \mathrm{~kg})$
VSP4900-24S switch	$17.21 \mathrm{lb}(7.81 \mathrm{~kg})$
VSP4900-24XE switch	

Table 29: VSP 4900 Packaged Dimensions

VSP4900 (all models)	Height: 6.22 inches $(15.8 \mathrm{~cm})$ Width: 21.58 inches $(54.8 \mathrm{~cm})$ Length: 23.39 inches $(59.4 \mathrm{~cm})$

Table 30: VSP 4900 Packaged Weight (No PSU or Fan Module)

VSP4900-48P switch	$21.63 \mathrm{lb}(9.81 \mathrm{~kg})$
VSP4900-12MXU-12XE switch	$21.48 \mathrm{lb}(9.75 \mathrm{~kg})$
VSP4900-24S switch	$22.02 \mathrm{lb}(9.99 \mathrm{~kg})$
VSP4900-24XE switch	

Table 31: VIM5 Module Unpacked Weights and Dimensions

VIM5 Module	Weight	Dimensions
VIM5-2Q	$0.40 \mathrm{lb}(0.18 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$
VIM5-2Y	$0.42 \mathrm{lb}(0.19 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$
VIM5-4Y	$0.47 \mathrm{lb}(0.21 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$
VIM5-4X	$0.40 \mathrm{lb}(0.18 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$

Table 31: VIM5 Module Unpacked Weights and Dimensions (continued)

VIM5 Module	Weight	Dimensions
VIM5-4XE	$0.45 \mathrm{lb}(0.20 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$
VIM5-4YE	$0.47 \mathrm{lb}(0.21 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$

Table 32: VIM5 Module Packed Weight and Dimensions

VIM5 Module	Weight	Dimensions
VIM5-2Q	$17.02 \mathrm{lb}(7.72 \mathrm{~kg})$	Height: 9.21 inches $(23.39 \mathrm{~cm})$ Width: 18.54 inches $(47.01 \mathrm{~cm})$ Length: 21.26 inches $(54 \mathrm{~cm})$
VIM5-2Y	$17.42 \mathrm{lb}(7.90 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$
VIM5-4Y	$18.77 \mathrm{lb}(8.51 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$
VIM5-4X	$17.06 \mathrm{lb}(7.74 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$
VIM5-4XE	$18.14 \mathrm{lb}(8.23 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$
VIM5-4YE	$18.77 \mathrm{lb}(8.51 \mathrm{~kg})$	Height: 1.57 inches $(3.99 \mathrm{~cm})$ Width: 1.92 inches $(4.88 \mathrm{~cm})$ Length: 6.16 inches $(15.64 \mathrm{~cm})$

Table 33: Fan and Acoustic Noise

Switch Model	Ambie nt Temp	VIM	PoE	Main Fan Speed (\% of max)	PSU1 + PSU2	Bystande r Sound Pressure	Declared Sound Power (LWAd)
VSP4900-4 8P switch	$25^{\circ} \mathrm{C}$	VIM5-4XE	720 W	20%	l100W (12/2 of max PoE power	45.8	56.6
VSP4900-12 MXU-12XE Switch	$25^{\circ} \mathrm{C}$	None	720 W	30%	$1450 \mathrm{~W}(1 / 2$ of max PoE power	50.3	55.1
VSP4900-2 4S switch	$25^{\circ} \mathrm{C}$	None	None	30%	350 W	49.5	56.2
VSP4900-2 4XE switch	$25^{\circ} \mathrm{C}$	None	None	30%	350 W	49.9	56.8
Note: *Power Supply fans at 100\%							
Note: Acoustic noise levels shown here represent noise emitted by the switch at room ambient temperatures. Values are based on a fully configured system consisting of two PSUs and two I/O modules operating under full load. Normal operating temperature range: $0^{\circ} \mathrm{C}$ to 50 50 C.							

Fan Speed and Temperature Variation

The speed of the fan increases only when the temperature of the device increases. Fan speed is not dependent on any fan failures.

Table 34: VSP 4900 Fan Speed and Power Consumption

Fan Speed	Fan Module RPM (typical)		Power	
	Inlet Fan	Outlet Fan	Typical	
Full	16,000 (typ)	13,500 (typ)	15.8W per module*	
Low	3,200 (typ)	2,800 (typ)		

* Some units are equipped with (1) fan module, while others are equipped with 2 . Total fan power is equal to the number of installed fan modules multiplied by the fan power for each module.

[^0]
Power Options

Table 35: VSP 4900 Power Supply Options

Switch Model	Power Supply
VSP4900-24S switch VSP4900-24XE switch	350 W AC power supply: Part nos. XN-ACPWR-350W-FB and 10953 350 W AC PS FB (front-to-back) Model PSSF351101A 100-240 V~200-240 V~ $50 / 60 \mathrm{~Hz}, 1.25 \mathrm{~A}$ max per PS
VSP4900-48P switch VSP4900-12MXU-12XE switch	715 W AC power supply: Part nos. XN-ACPWR-715W-FB and 10951715 W AC PS FB (front-to-back) Model PSSF711101A 100-127 V~200-240 V~ $50 / 60 \mathrm{~Hz}, 5.75 \mathrm{~A} / 2.75 \mathrm{~A}$ max per PS
VSP4900-48P switch VSP4900-12MXU-12XE switch	1100 W AC power supply: Part nos. XN-ACPWR-1100W-FB and 10941 1100 W AC PS FB (front to back), Model PSSF112101A $100-127 \mathrm{~V} \sim 200-240 \mathrm{~V} \sim$ $50 / 60 \mathrm{~Hz}, 10.5 \mathrm{~A} / 5.0 \mathrm{~A}$ max per PS
VSP4900-48P switch VSP4900-12MXU-12XE switch	2000 W AC power supply: Part nos. XN-ACPWR-200W-FB and XN-ACPWR-200W-F 2000 W AC PS FB (front to back), Model 100-127 V~200-240 V~ $50 / 60 \mathrm{~Hz}, 11.5 \mathrm{~A} / 5.5 \mathrm{~A}$ max per PS

Note

XN-ACPWR-Xxx-FB PSUs cannot be used with the 10941, 10951, 10953, or XN-ACPWR-2000W-F PSUs on the same switch.

The following are the minimum software versions that are required for use with XN -ACPWR-xxx-FB PSUs and the switch:

- EXOS version 31.3.1, EXOS version 30.7.2 for X465 only
- VOSS version 8.3

Previous software versions are not supported with XN-ACPWR-xxx-FB PSUs. You must upgrade to the listed minimum software version or later to use any of the XN-ACPWR-xxx-FB PSUs with the switch.

The following table lists supported PSU combinations when dual redundant PSUs are used on the switch.

Refer to the 5520 datasheet for appropriate PSUs for the switch.

Table 36: PSU Redundancy Compatibility Notes

Switch Model	Primary PSU	Secondary PSU
Non-PoE models	XN-ACPWR-350W-FB	XN-ACPWR-350W-FB
PoE models	XN-ACPWR-715W-FB or XN-ACPWR-1100W-FB or XN-ACPWR-2000W-FB	XN-ACPWR-715W-FB or XN-ACPWR-1100W-FB or XN-ACPWR-2000W-FB

Table 37: VSP 4900 Power Consumption

Switch Model	Minimum Heat Dissipation (BTU/hr)	Minimum Power Consumption (W)	Maximum Heat Dissipation (BTU/hr)	Maximum Power Consumption (W)
VSP4900-48P switch	280	82	1046	1746
VSP4900-12MXU-12XE switch	250.1	73.33	854	970.29
VSP4900-24S switch	178.5	52.3	589.5	172.7
VSP4900-24XE switch	271.4	79.5	707.5	207.3

Table 38: VSP 4900 PoE Power Budget

Switch Model	$1 \times 1100 \mathrm{~W}$ PSU	$2 \times 1100 \mathrm{~W}$ PSU
VSP4900-48P	845 W	1440 W
VSP4900-12MXU-12XE	845 W	1440 W

Table 39: CPU, Memory

CPU/Memory	
VSP4900-48P, VSP4900-24S	VSP4900-24XE , VSP4900-12MXU-12XE
2-core, 1.5GHz x86 CPU	4-core, 2.1GHz x86 CPU
2 GB DDR4 memory	8 GB DDR4 memory
8 GB eMMC Flash Memory	
12MB packet buffer per chip	

Standards and Environmental Data

Table 40: Safety Standards

North American Safety of ITE	UL 60950 UL 62368-1 CAN/CSA-C22.2 No. 62368-1 CSA 22.2 No. 60950-1 Complies with FCC 21CFR 1040.10 (US Laser Safety) CDRH Letter of Approval (US FDA Approval)
European Safety of ITE	IEC 60950-1 EN 60950-1 EN 60825-1 IEC/EN 62368-1 EN 62368-1
International Safety of ITE	CB Report \& Certificate per IEC 60950-1 + National Differences AS/NZX 60950-1 (Australia /New Zealand)

Table 41: EMI/EMC Standards

North America EMC for ITE	FCC CFR 47 part 15 Class A (USA) ICES-003 Class A (Canada)
European EMC standards	EN 55032:2015+AC:2016, Class A
	EN 55024:2010+A1:2015
	Class A includes IEC 61000-4-2, 3, 4, 5, 6, 11
	EN 61000-3-2:2014 (Harmonics)
	EN 61000-3-3:2013 (Flicker)
	ETSI EN 300 386 V2.1.1 (2016-07) (EMC Telecommunications)
	$2014 / 35 /$ EU Low Voltage Directive

Table 41: EMI/EMC Standards (continued)

International EMC certifications	CISPR 32: 2015, Class A (International Emissions) EN 55024 EN 55024:2010+Al:2015 Class A (International Immunity) IEC/EN 61000-4-2:2008 Electrostatic Discharge, 8kV Contact, 15 kV Air, Criteria A IEC/EN 61000-4-3-4-3:2010 Radiated Immunity 10V/m, Criteria IEC/EN 61000-4-4-4-4:2012 Transient Burst, 1 kV , Criteria A IEC/EN 61000-4-5-4-5:2014 Surge, 2 kV L-L, 2 kV L-G, Level 3, Criteria A IEC/EN 61000-4-6-4-6:2013 Conducted Immunity, 0.15-80 MHz , 10V/m unmod. RMS, Criteria A IEC/EN 61000-4-17:2004 Power Dips \& Interruptions, >30\%, 25 periods, Criteria C
Country-specific	VCCI Class A (Japan Emissions) BSMI (Taiwan Emissions) ACMA (C-Tick) (Australia Emissions) CCC Mark (China) KCC Mark, EMC Approval (Korea)

Table 42: Telecom Standards

	EN/ETSI 300386 EN 300386 V2.1.1 (2016-07) (EMC Telecommunications) EN/ETSI 300019 (Environmental for Telecommunications) MEF9 and MEF14 certified for EPL, EVPL, and ELAN

Table 43: IEEE 802.3 Media Access Standards

	IEEE 802.3ab 1000BASE-T
	IEEE 802.3z 1000BASE-X
	IEEE 802.3ae 10GBASE-X
	IEEE 802.3ba 40GBASE-X
	IEEE 802.3bz 2.5GBASE-T and 5GBASE-T (for X460-
	G2-16mp-32p-10GE4)
	IEEE 802.3at PoE Plus
	IEEE 802.3az (EEE)

Table 44: Environmental Data

```
Environmental
standards
```

EN/ETSI 300 019-2-1 v2.1.2 (2000-2009) - Class 1.2 Storage
EN/ETSI 300 019-2-2 v2.1.2 (1999-09) - Class 2.3
Transportation

Table 44: Environmental Data (continued)

	EN/ETSI 300 019-2-3 v2.1.2 (2003-04) - Class 3.1e Operational EN/ETSI 300753 (1997-10) - Acoustic Noise ASTM D3580 Random Vibration Unpackaged 1.5G
Operating conditions	Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $122^{\circ} \mathrm{F}$) Humidity: 10% to 95% relative humidity, non-condensing Altitude: 0 to 3,000 meters (9,850 feet) Operational shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G}), 11 \mathrm{~ms}, 60$ shocks Operational random vibration: 3 to 500 Hz at 1.5 Grms
Storage \& transportation conditions (packaged)	Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: 10% to 95% relative humidity, non-condensing Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}(18 \mathrm{G}), 6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to 500 Hz at 0.2 G Packaged random vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/ oct. from 20 to 200 Hz 14 drops minimum on sides and corners at 42 inches (<15 kg box)

350 W AC Power Supplies Technical Specifications

The 350 W AC power supplies with front-to-back airflow (part nos. XN-ACPWR-350W-FB and 10953) are available for use in VSP4900-24S and VSP4900-24XE model switches:

Table 45: Physical Specifications

Dimensions	Height: 1.57 inches $(4.0 \mathrm{~cm})$ Width: 3.25 inches $(8.3 \mathrm{~cm})$ Length: 10.22 inches $(26.0 \mathrm{~cm})$
Weight	$2.55 \mathrm{lb}(7.12 \mathrm{~kg})$

Table 46: Power Specifications

Voltage input range	$100-127 / 200-240 \sim 47$ to 63 Hz
Nominal input ratings	12.5 A max at 115 VAC and 6 A max at 230 VAC at Full 350 W load
Maximum inrush current	45 A at Max 264 VAC at 25 C with cold start
Output	$54 \mathrm{~V}, 13.2 \mathrm{~A} \mathrm{max}, 350 \mathrm{~W}$
Power supply input socket and cord	IEC/EN $60320-1 / \mathrm{Cl6} \mathrm{AC}$ input receptacles

Table 46: Power Specifications (continued)

Power cord wall plug	Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87
Efficiency	Minimum efficiency: 88% at maximum power output

Table 47: Environmental Specifications

Operating temperature	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation)
Storage temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operating humidity	93% relative humidity, non-condensing at 30C
Operational shock	$30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$

715 W AC Power Supplies Technical Specifications

The 715 W AC power supplies with front-to-back airflow (part nos. XN-ACPWR-715WFB and 10951) are available for use in VSP4900-48P and VSP4900-12MXU-12XE model switches.

Table 48: Physical Specifications

Dimensions	Height: 1.57 inches $(4.0 \mathrm{~cm})$ Width: 3.25 inches $(8.3 \mathrm{~cm})$ Length: 10.22 inches $(26.0 \mathrm{~cm})$
Weight	$2.55 \mathrm{lb}(1.12 \mathrm{~kg})$

Table 49: Power Specifications

Voltage input range	$100-127 / 200-240 \sim 47$ to 63 Hz
Nominal input ratings	12.5 A max at 115 VAC and 6 A max at 230 VAC at Full 715 W load
Maximum inrush current	45 A at Max 264 VAC at 25 C with cold start
Output	$54 \mathrm{~V}, 13.2 \mathrm{~A} \mathrm{max} 715 W$,
Power supply input socket and cord	IEC/EN 60320-1/C16 AC input receptacles
Power cord wall plug	Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87
Efficiency	Minimum efficiency: 88% at maximum power output

Table 50: Environmental Specifications

Operating temperature	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation)
Storage temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Table 50: Environmental Specifications (continued)

Operating humidity	93% relative humidity, non-condensing at 30C
Operational shock	$30 \mathrm{~m} / \mathrm{s}^{2}$ (3 G)

1100 W AC Power Supplies Technical Specifications

AC Power Supplies

The 1100 W AC power supplies with front-to-back airflow (part nos. XN-ACPWR-1100WFB and 10941) are available for use in VSP4900-48P and VSP4900-12MXU-12XE model switches.

Table 51: Physical Specifications

Dimensions	Height: 1.57 inches $(4.0 \mathrm{~cm})$ Width: 3.25 inches $(8.3 \mathrm{~cm})$ Length: 10.22 inches $(26.0 \mathrm{~cm})$
Weight	$2.55 \mathrm{lb}(1.12 \mathrm{~kg})$

Table 52: Power Specifications

Voltage input range	$100-127 / 200-240 \sim 47$ to 63 Hz
Nominal input ratings	12.5 A max at 115 VAC and 6 A max at 230 VAC at full 1100 W load
Maximum inrush current	45 A at Max 264 VAC at 25 C with cold start
Output	$54 \mathrm{~V}, 20 \mathrm{~A} \mathrm{max}, 1100 \mathrm{~W}$
Power supply input socket and cord	IEC/EN 60320-1/C16 AC input receptacles
Power cord wall plug	Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87
Efficiency	Minimum efficiency: 88\% at maximum power output

Table 53: Environmental Specifications

Operating temperature	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation)
Storage temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operating humidity	93% relative humidity, non-condensing at 30 C
Operational shock	$30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$

2000 W AC Power Supply Technical Specifications

The 2000 W AC power supplies with front-to-back airflow (part nos. XN-
ACPWR-200W-FB and XN-ACPWR-200W-F) are available for use in VSP4900-48P and VSP4900-12MXU-12XE model switches:

Table 54: Physical Specifications

Dimensions (with handle)	Height: 1.57 inches $(4 \mathrm{~cm})$ Width: 3.25 inches $(8.25 \mathrm{~cm})$ Length: 11.51 inches $(29.25 \mathrm{~cm})$
Dimensions (without handle)	Height: 1.57 inches $(4 \mathrm{~cm})$ Width: 3.25 inches $(8.25 \mathrm{~cm})$ Length: 10.25 inches $(26.05 \mathrm{~cm})$
Weight	$2.95 \mathrm{lb}(1.34 \mathrm{~kg})$

Table 55: Power Specifications

Voltage input range	$100-200 \sim 50$ to 60 Hz
Nominal input ratings	12.5 A max at 1175VAC and 6A max at 230VAC at Full 770 W load
Maximum inrush current	45 A at Max 264 VAC at 25C with cold start
Output	$54 \mathrm{~V}, 13.2 \mathrm{~A} \mathrm{max}, 2000 \mathrm{~W}$
Power supply input socket and cord	IEC/EN 60320-7/C16 AC input receptacles
Power cord wall plug	Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 87
Efficiency	Minimum efficiency: 88\% at maximum power output

Table 56: Environmental Specifications

Operating temperature	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation)
Storage temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operating humidity	93% relative humidity, non-condensing at 30 C
Operational shock	

Power Cord Requirements for AC-Powered Switches and AC Power Supplies

An AC power cord is not included with the AC power supply.

Power cords used with AC-powered switches or AC power supplies must meet the following requirements:

- The power cord must be agency-certified for the country of use.
- The power cord must have an IEC320-C15 connector for connection to the switch or power supply.
- The power cord must have an appropriately rated and approved wall plug applicable to the country of installation.
- For cords up to 14.76 feet (4.5 m) long, the wire size must be 15 AWG ($2 \mathrm{~mm}^{2}$) minimum wire length up to 4.9 feet (7.5 m).

The power cords for switches that use either the 1100 W or 715 W power supplies are keyed with a "notch" to ensure the proper orientation when plugged in. These cords are of 3×14 AWG.

For details about obtaining AC power cords for use in your country, refer to http:// www.extremenetworks.com/product/powercords/.

Safety and Regulatory Information

Considerations Before Installing on page 90
General Safety Precautions on page 90
Maintenance Safety on page 91
Fiber Optic Ports and Optical Safety on page 91
Cable Routing for LAN Systems on page 92
Installing Power Supply Units and Connecting Power on page 93
Selecting Power Supply Cords on page 94
Battery Notice on page 95
Battery Warning - Taiwan on page 95
EMC Warnings on page 95
Japan (VCCI Class A) on page 96
Korea EMC Statement on page 96

Warning

Read the following safety information thoroughly before installing Extreme Networks products. Failure to follow this safety information can lead to personal injury or damage to the equipment.

Only trained and qualified service personnel (as defined in IEC 60950-1 and AS/NZS 3260) should install, replace, or perform service to Extreme Networks switches and their components. Qualified personnel have read all related installation manuals, have the technical training and experience necessary to be aware of the hazards to which they are exposed in performing a task, and are aware of measures to minimize the danger to themselves or other persons.

If you are located in the United States, install the system in accordance with the U.S. National Electrical Code (NEC).

Considerations Before Installing

Consider the following items before you install equipment.

- For equipment designed to operate in a typical Telco environment that is environmentally controlled, choose a site that has the following characteristics:
- Temperature-controlled and humidity-controlled, such that the maximum ambient room temperature shall not exceed $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.
- Clean and free from airborne materials that can conduct electricity.
- Well ventilated and away from sources of heat including direct sunlight.
- Away from sources of vibration or physical shock.
- Isolated from strong electromagnetic fields produced by electrical devices.
- For equipment designed to be installed in environments that are not environmentally controlled, such as outdoor enclosures, see the product data sheet or for environmental conditions, temperature, and humidity.
- Establish at least 3 inches clearance on all sides for effective ventilation. Do not obstruct the air intake vent on the front, side, or rear ventilation grills. Locate the system away from heat sources.
- Make sure that your equipment is placed in an area that accommodates the power consumption and component heat dissipation specifications.
- Make sure that your power supplies meet the site DC power or AC power requirements of all the network equipment.
- Racks for Extreme Networks equipment must be permanently attached to the floor. Failure to stabilize the rack can cause the rack to tip over when the equipment is removed for servicing.
- Do not operate the system unless all modules, faceplates, front covers, and rear covers are in place. Blank faceplates and cover panels are required for the following functions:
- Preventing exposure to hazardous voltages and currents inside the equipment
- Containing electromagnetic interference (EMI) that might disrupt other equipment
- Directing the flow of cooling air through the equipment
- Ultimate disposal of this product should be handled according to all national laws and regulations.

General Safety Precautions

Follow these guidelines:

- Do not try to lift objects that you think are too heavy for you.
- When you install equipment in a rack, load heavier devices in the lower half of the rack first to avoid making the rack top-heavy.
- Use only tools and equipment that are in perfect condition. Do not use equipment with visible damage.
- Route cables in a manner that prevents possible damage to the cables and avoids causing accidents, such as tripping.
- Do not place a monitor or other objects on top of the equipment. The chassis cover is not designed to support weight.
- To reduce the risk of fire, use only \#26 AWG or larger telecommunications line cord. Use only copper conductors.
- Do not work on the system or connect or disconnect cables during periods of lightning activity.
- This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor.

Maintenance Safety

When you perform maintenance procedures on Extreme Networks equipment, follow these recommendations:

- Use only authorized accessories or components approved for use with this system. Failure to follow these instructions may damage the equipment or violate required safety and regulations.
- This system contains no customer serviceable components. Do not attempt to repair a chassis, power supply, module, or other component. In the event of failure, return the defective unit to Extreme Networks for repair or replacement, unless otherwise instructed by an Extreme Networks representative.
- To remove power from the system, you must unplug all power cords from wall outlets. The power cord is the disconnect device to the main power source.
- Disconnect all power cords before working near power supplies, unless otherwise instructed by a product-specific maintenance procedure.
- Replace a power cord immediately if it shows any signs of damage.
- When you work with optical devices, power supplies, or other modular accessories, put on an ESD-preventive wrist strap to reduce the risk of electronic damage to the equipment. Connect the other end of the strap to an appropriate grounding point on the equipment rack or to an ESD jack on the chassis if one is provided. Leave the ESD-preventive wrist strap permanently attached to the equipment rack or chassis so that it is always available when you need to handle components that are sensitive to ESD.
- Install all cables in a manner that avoids strain. Use tie wraps or other strain relief devices.

Fiber Optic Ports and Optical Safety

The following safety warnings apply to all optical devices used in Extreme Networks equipment that are removable or directly installed in an I/O module or chassis system.

Such devices include but are not limited to gigabit interface converters (GBICs), small form factor pluggable (SFP) modules (or mini-GBICs), QSFP+ modules, XENPAK transceivers, and XFP laser optic modules.

A

Warning

Laser optic modules become very hot after prolonged use. Take care when removing a laser optic module from the module or option card. If the laser optic module is too hot to touch, disengage the laser optic module and allow it to cool before removing it completely.
When working with laser optic modules, always take the precautions listed below to avoid exposure to hazardous radiation.

- Never look at the transmit LED/laser through a magnifying device while the transmit LED is powered on.
- Never look directly at a fiber port on the switch or at the ends of a fiber cable when they are powered on.
- Invisible laser radiation can occur when the connectors are open. Avoid direct eye exposure to the beam when optical connections are unplugged.
- Never alter, modify, or change an optical device in any way other than suggested in this document.

GBIC, SFP (Mini-GBIC), QSFP+, XENPAK, and XFP Regulatory Compliance
Extreme Networks pluggable optical modules and direct-attach cables meet the following regulatory requirements:

- Class 1 or Class 1M Laser Product
- EN60825-1:2007 2nd Ed. or later, European standard
- FCC 21 CFR Chapter 1, Subchapter J in accordance with FDA \& CDRH requirements
- Application of CE Mark in accordance with 2014/30/EU EMC Directive and the 2014/35/EU Low Voltage Directives
- UL and/or CSA registered component for North America
- 47 CFR Part 15, Class A when installed into Extreme products

Cable Routing for LAN Systems

Extreme Networks equipment meets the requirements for LAN system equipment.
LAN systems are designed for intra-building installations; that is, cable runs between devices must be in the same building as the connected units, except under the conditions listed in the next paragraph.

As allowed in the USA by the National Electrical Code (NEC), this equipment can be connected between buildings if any one of the following conditions is true:

- Cable runs between buildings are less than 140 feet long.
- Cable runs between buildings are directly buried.
- Cable runs between buildings are in an underground conduit, where a continuous metallic cable shield or a continuous metallic conduit containing the cable is bonded to each building grounding electrode system.

Caution
Failure to follow these requirements for cable routing conditions may expose the user to electrical shock and expose the unit to damage that can cause errors.

Warning

The Ethernet ports of the equipment and its sub-assemblies are suitable only for intra-building connections (within the same building) or for connections to unexposed wiring or cabling. (See the conditions listed above.) The Ethernet ports of this equipment or its sub-assemblies must not be metallically connected to interfaces that connect to the outside plant (OSP) or its wiring. Ethernet interfaces are designed for use only as intra-building interfaces (described as Type 2 or Type 4 ports in GR-1089-CORE, Issue 6) and require isolation from the exposed OSP wiring. The addition of Primary Protectors is not sufficient protection to connect these interfaces metallically to OSP wiring. This warning does not apply to $\mathrm{Tl} / \mathrm{E} 1$ ports because $\mathrm{T} 1 / \mathrm{E} 1$ ports have built-in isolation and surge protection that allows them to be connected to OSP wiring.

Installing Power Supply Units and Connecting Power

For the ratings and power input requirements of each power supply unit, see "Technical Specifications" or the data sheet for the power supply at www.extremenetworks.com.

Warning

Be sure to satisfy the requirements listed in this section when you install Extreme Networks power supplies or connect power.

When you install any power supply:

- Do not use excessive force when you insert a power supply into the bay.
- Do not attempt to open the power supply enclosure for any reason; the power supply does not contain user-serviceable parts. In the event of failure, return the defective power supply to Extreme Networks for repair or replacement.
- Do not put your hand into an open power supply bay when a power supply is not present.
- Before you work on equipment that is connected to power lines, remove all jewelry, including watches. Metal objects heat up when they are connected to power and ground and can cause serious burns or weld the metal object to the terminals.
- An electrical arc can occur when you connect or disconnect the power with power applied. This could cause an explosion in hazardous area installations. Be sure that power is removed from the device.
- When you install or replace equipment, always make the ground connection first and disconnect the ground connection last.

When you install DC power supplies or connect DC power:

- Extreme Networks DC power supplies do not have switches for turning the unit on and off. Make sure that the DC circuit is de-energized before connecting or disconnecting the DC power cord at the DC input power socket.
- Connect the system or power supply only to a DC power source that complies with the safety extra-low voltage (SELV) requirements in IEC 60950-based safety standards.
Note

Because building codes vary worldwide, consult an electrical contractor to
ensure proper equipment grounding and power distribution for your specific
installation and country.

Warning
Extreme Networks power supplies do not have switches for turning the unit
on and off. Disconnect all power cords to remove power from the device. Make
sure that these connections are easily accessible.
Extreme Networks alimentations n'ont pas de contact pour mettre l'appareil
sous et hors tension. Débranchez tous les cordons d'alimentation pour couper
l'alimentation de l'appareil. Assurez-vous que ces connexions sont facilement
accessibles.

Selecting Power Supply Cords

Extreme Networks does not include power input cords in the product box.
You can purchase a power cord for your product and for your specific country from your local Extreme Networks Channel Account Manager or Sales Manager, or you can purchase a cord from your local supplier. Requirements for the power cord are listed in the Technical Specifications for your product.

To locate a Sales Manager or Partner in your region, visit www.extremenetworks.com/ partners/where-to-buy.

Note

This equipment is not intended to be directly powered by power distribution systems where phase-phase voltages exceed 240 VAC (2P+PE), such as those used in Norway, France, and other countries. For these applications, use a transformer to step down the voltage to <240 VAC from phase-phase, or make a connection to a ($\mathrm{P}+\mathrm{N}+\mathrm{PE}$) power distribution where voltages do not exceed 240 VAC.
All installations should confirm that the product is reliably grounded according to the country's local electrical codes.

Battery Notice

Warning：This product contains a battery used to maintain product information．If the battery should need replacement it must be replaced by Service Personnel．Please contact Technical Support for assistance．

Risk of explosion if battery is replaced by an incorrect type． Dispose of expended battery in accordance with local disposal regulations．

Attention：Ce produit renferme une pile servant à conserver les renseignements sur le produit．Le cas échéant，faites remplacer la pile par le personnel du service de réparation．Veuillez communiquer avec l＇assistance technique pour du soutien．

Il y a risque d＇explosion si la pile est remplacée par un type de pile incorrect．Éliminez les piles usées en conformité aux règlements locaux d＇élimination des piles．

Battery Warning－Taiwan

警告

如果更換不正確之電池型式會有爆炸的風險，請依製造商說明書處理用過之電池。

EMC Warnings

Taiwan BSMI Warning
警告使用者：
此為甲類資訊技術設備，於居住環境中使用時，可能會造成射頻擾動，在此種情況下，使用者會被要求採取某些適當的對策。

China CQC Warning

警告使用者：

此为A级产品，在生活环境中，该产品可能会造成无线电干扰。
在这种情况下，可能需要用户对干扰采取切实可行的措施。
Japan（VCCI Class A）

A
Warning
This is a Class A product based on the standard of the VCCI Council．If this equipment is used in a domestic environment，radio interference may occur，in which case the user may be required to take corrective actions．

この装置は，クラスA情報技術装置です。この装置を家庭環境で使用す ると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

VCCI－A

Korea EMC Statement

이 기기는 업무용 환경에서 사용할 목적으로 적
합성평가를 받은 기기로서 가정용 환경에서 사
용하는 경우 전파간섭의 우려가 있습니다.

Index

Numerics

1100 W AC power supply
features 18
installing 50
replacing 64
2000 W AC power supply
features 18
installing 50
replacing 66
350 W AC power supply
features 17
installing 50
specifications 84
715 W AC power supply
features 18
installing 50
replacing 62
specifications 85
715 W DC power supply
features 18

A

AC power
connecting to switch 52
installing power supply 50
requirements for cords 87
access 31
acoustic noise
VSP 4900 switch 79
Air Out (on fan module) 68
airflow 68
amperage
calculating for UPS 43
ANSI standards 44

B

battery notice 95
bend radius 36,37
BICSI 35
brackets, for mounting in rack 59
building codes 30
Building Industry Consulting Service International., see BICSI

C

cabinet
cabinet (continued)
attaching switch 47
cable
ANSI standards 44
bend radius 37
bundling 36
category 536
fiber optic 37, 52
for switch ports 52
installing 36, 37
labeling 35
network interface 52
optical 49,50
plenum-rated 36
RJ45 41
slack 36
standards 35
types and distances 38
category 5 cable 36
commercial building standards 44
components
optional 49,50
configuring the switch 54
connecting
to management console 54
connecting power 52
connector jackets
RJ45 41
console port
settings 54
VSP 4900 series 11-13
conventions
notice icons 6
text 6
cooling 68
cords
requirements 87
selecting 94

D

DC power
connecting to switch 52
design standards 44
distances
cables 38
documentation
feedback 8
location 10

```
E
electric power
    connecting to switch 52
electrical codes 30
electrostatic discharge, see ESD
environmental requirements
    building codes }3
    electrical codes }3
    electrostatic discharge (ESD) }3
    humidity }3
    temperature }3
    wiring closet }3
equipment
    installing 45
    tools needed to install 46
equipment rack
    grounding }3
    mechanical recommendations }3
    mounting holes 33
    securing }3
    service access 34
    space requirements }3
ESD
    discharge from cable 36
    system protection }3
F
fan
    airflow 68
    replacing 68
fan speed
    VSP 4900 switch 79
feedback 8
fiber optic cable
    bend radius }3
    connecting 52
    handling 37
    installing }3
first switch login 54
frequency, see radio frequency interference (RFI)
front-to-back cooling 68
```

```
G
grounding
    racks }3
    requirements 44
    wiring closet }3
```


H

```
humidity 33
```


I

```
industry standards 44
initial switch login 54
```

```
installing
    1100 W AC power supply }5
    2000 W AC power supply 50
    715 W AC power supply }5
    connecting power 52
    fiber optic cable 37
    optical transceivers 49,50
    optional components 49,50
    personnel 46
    preparation }2
    preparing 46
    safety information 46
    switches 45-47
    tools 46
    VIM module 56
J
jackets
    RJ45 connector 41
labeling cables 35
LEDs
    VIM5 }7
    VSP 4900 72,73
license options 16
local management connection 54
logging in to the switch 54
```


M

```
management port
        connecting to switch 54
    settings 54
    VSP 4900 series 11-13
mounting brackets
    removing 59
```


N

```
network interface connections 52 notices 6
```


O

```
operating environment requirements 32
optical cables
installing 49, 50
optical transceivers installing 49, 50
optional components installing 49, 50
```


P

```
planning
site 29
```

plenum-rated cable 36
pluggable transceivers, see optical transceivers
port option cards
types 20
ports
console port settings 54
management 54
power
connecting to switch 52
requirements for cords 87
power cords
selecting 42, 94
power requirements
power supply 42
power specifications
VSP 4900 switch 81
power supply unit (PSU)
1100 W AC 18, 50
2000 W AC 18, 50, 87
350 W AC 17, 84
715 W AC 18, 50, 85
for VSP 4900 switches 80
installing 50
power requirements 42

R

rack
attaching switch 47
removing switch 59
rack specifications
grounding 34
securing to floor 34
space requirements 34
radio frequency interference (RFI)
patch panel installation 36
preventing 41
regulatory information 89
removing
1100 W AC power supply 64
2000 W AC power supply 66
715 W AC power supply 62
fan module 68
from rack 59
switch 59
replacing
1100 W AC power supply 64
2000 W AC power supply 66
715 W AC power supply 62
fan module 68
solid state drive (SSD) 70
versatile interface module (VIM) 70
restricted 31
restricted access 31
RFI, see radio frequency interference (RFI)
RJ45 cable 41

S

safety
precautions when installing 46
requirements 89
service access to the rack 34
settings
for management console 54
signal quality 41
site planning 29
site preparation 46
slack in cable 36
space requirements, rack 34
specifications
350 W AC power supply 84
715 W AC power supply 85
equipment racks 33
VSP 4900 switch 76, 79, 80, 82
SSD module 28,57
standards
cabling 35, 44
commercial building 44
design 44
grounding 44
support, see technical support
switches
attaching to cabinet 47
attaching to rack 47
connecting power 52
initial login 54
installing 45
installing optional components 49,50
removing 59
removing from rack 59
safety information 46
tools needed to install 46

T

technical support
contacting 9, 10
temperature 32
tools for installing equipment switches 46
transceivers, see optical transceivers
transition time
UPS 44

U

unshielded twisted pair, see UTP cable
UPS (uninterruptible power supply)
requirements 43
selecting 43
transition time 44
UTP cable
bend radius 36
category 536
discharge ESD 36

UTP cable (continued)
preventing RFI 41

V

versatile interface module (VIM) installing 56
types 20
VIM5-2Q 27
VIM5-2Y 24
VIM5-4X 23
VIM5-4XE 23
VIM5-4Y 25
VIM5-4YE 26
VIM5-2Q module
features 27
VIM5-2Y module
features 24
VIM5-4X module
features 23
VIM5-4XE module
features 23
VIM5-4Y module
features 25
VIM5-4YE module
features 26
virtualization license 16
VOSS
initial login 54
license options 16
VSP 4900 series switches
715 W AC power supply 62
acoustic noise 79
fan speed 79
features 11-13
power specifications 81
power supply unit (PSU) 80
specifications 76, 79, 80, 82
VSP4900-48P switch 11-13
VSP 4900 Series switches
features 13-16
LEDs 72, 73
VSP Series switches
license options 16

W

warnings 6
wiring closet
electrostatic discharge (ESD) 33
floor coverings 31
grounding 31
humidity 33
rack, securing 34
temperature 32
wiring terminals 34

x
 X460-G2 series switches 350 W power supply 84
 X465 series switches 2000 W AC power supply 87

[^0]: 2 Bystander Sound pressure is presented for comparison to other products measured using Bystander Sound Pressure*
 3 Declared Sound Power is presented in accordance with ISO 7779:2010(E), ISO 9296:2010 per ETSI/EN 300 753:2012-01

