ExtremeSwitching 5420 Series Hardware Installation Guide

Copyright © 2023 Extreme Networks, Inc. All rights reserved.

## Legal Notice

Extreme Networks, Inc. reserves the right to make changes in specifications and other information contained in this document and its website without prior notice. The reader should in all cases consult representatives of Extreme Networks to determine whether any such changes have been made.
The hardware, firmware, software or any specifications described or referred to in this document are subject to change without notice.

## Trademarks

Extreme Networks and the Extreme Networks logo are trademarks or registered trademarks of Extreme Networks, Inc. in the United States and/or other countries.
All other names (including any product names) mentioned in this document are the property of their respective owners and may be trademarks or registered trademarks of their respective companies/owners.
For additional information on Extreme Networks trademarks, see: www.extremenetworks.com/ company/legal/trademarks

## Open Source Declarations

Some software files have been licensed under certain open source or third-party licenses. End-user license agreements and open source declarations can be found at: https:// www.extremenetworks.com/support/policies/open-source-declaration/

## Table of Contents

Preface ..... 7
Audience ..... 7
Conventions ..... 7
Text Conventions .....  .7
Terminology ..... 9
Providing Feedback ..... 9
Getting Help ..... 10
Subscribe to Product Announcements ..... 10
Documentation and Training ..... 11
ExtremeSwitching 5420 Series Overview ..... 12
Management ..... 13
Cooling ..... 13
Power Supplies ..... 14
Stacking ..... 14
Secure Boot ..... 14
Operating Temperatures. ..... 15
Feature Licensing ..... 15
5420F-8W-16P-4XE Switch Features. ..... 15
5420F-24P-4XE Switch Features ..... 16
5420F-24S-4XE Switch Features. ..... 17
5420F-24T-4XE Switch Features ..... 18
5420F-16MW-32P-4XE Switch Features. ..... 20
5420F-16W-32P-4XE Switch Features ..... 21
5420F-48P-4XE Switch Features ..... 22
5420F-48P-4XL Switch Features ..... 23
5420F-48T-4XE Switch Features ..... 24
5420M-24T-4YE Switch Features ..... 25
5420M-24W-4YE Switch Features. ..... 26
5420M-16MW-32P-4YE Switch Features. ..... 28
5420M-48T-4YE Switch Features ..... 29
5420M-48W-4YE Switch Features ..... 30
Secure Boot ..... 32
Switch Engine ..... 32
Fabric Engine ..... 32
Secure Boot Troubleshooting ..... 33
Power Supplies for Use with Your Switch ..... 34
150 W AC Power Supply ..... 34
600 W AC PoE Power Supply. ..... 35
920 W AC PoE Power Supply. ..... 35
1200 W AC PoE Power Supply ..... 36
2000 W AC PoE Power Supply. ..... 36
Site Preparation ..... 38
Plan Your Site ..... 38
Operating Environment Requirements ..... 39
Meet Building and Electrical Codes ..... 39
Set up the Wiring Closet ..... 40
Control the Temperature. ..... 41
Control the Humidity Level ..... 42
Protect Your System from ESD (Electrostatic Discharge) ..... 42
Rack Specifications and Recommendations ..... 42
Mechanical Recommendations for the Rack. ..... 43
Ground the Rack. ..... 43
Provide Adequate Space for the Rack ..... 43
Secure the Rack. ..... 44
Evaluate and Meet Cable Requirements. ..... 44
Label Cables and Keep Accurate Records. ..... 45
Install Cable. ..... 45
Use RJ45 Connector Jackets ..... 50
Prevent Radio Frequency Interference (RFI) ..... 50
Meeting Power Requirements. .....  51
Requirements for PoE Devices. ..... 51
Power Supply Requirements. ..... 51
Requirements for Power Cords ..... 51
UPS (Uninterruptible Power Supply) Requirements ..... 52
Follow Applicable Industry Standards. ..... 53
Build Stacks ..... 54
Introduction to Stacking. ..... 54
Build Basic Stacks ..... 55
SummitStack Topologies. ..... 57
SummitStack Terms. ..... 60
Plan to Create Your Stack ..... 64
Enable and Disable the Stacking-Support Option ..... 64
Recommendations for Placing Switches for Stacked Operation. ..... 64
Recommendations for Configuring Stacks ..... 65
Combine Switches from Different Series. ..... 66
Select Stacking Cables. ..... 66
Using the Extreme Stacking Tool ..... 66
Set up the Physical Stack ..... 68
Connect the Switches to Form the Stack Ring ..... 68
Connect Your Stack to the Management Network ..... 71
Installing Your Switch. ..... 72
Safety Considerations for Installing Switches. ..... 73
What You Will Need for the Installation. ..... 73
Attach the Switch to a Rack or Cabinet. ..... 74
Install Optional Components. ..... 75
Pluggable Transceiver Modules ..... 76
Optical Cables ..... 76
Install Internal AC Power Supplies ..... 76
Connect Network Interface Cables. ..... 76
Turn on the Switch ..... 77
Activate and Verify the Switch. ..... 78
Connect the Switch to a Management Console. ..... 78
Log in for the First Time on Switch Engine. ..... 78
Configure the Switch's IP Address for the Management VLAN. ..... 80
Change the Switch OS via the Bootloader Menu ..... 80
Change the Switch OS via the Startup Menu. ..... 81
Log In for the First Time on Fabric Engine. ..... 81
Replace Internal AC Power Supplies ..... 83
Replacing a 150 W AC Power Supply. ..... 83
Replacing a 600 W, 920 W, 1200 W, or 2000 W AC PoE Power Supply. ..... 85
Replace Fan Modules ..... 88
Pre-Installation Requirements. ..... 88
Airflow Direction Requirements. ..... 88
Replace a Fan Module ..... 88
Monitoring the Device. ..... 90
5420 Series Switch LEDs. ..... 90
Port LEDs in Default (SYS) Mode. ..... 91
Port LEDs in SPD Mode ..... 92
Port LEDs in STK Mode ..... 93
Management Port LEDs ..... 93
Technical Specifications ..... 94
Extreme 5420 Series Technical Specifications. ..... 95
External Interfaces ..... 95
Weights and Dimensions ..... 99
Acoustic Noise and Fan Speed. ..... 100
Acoustic Noise ..... 100
Fan Speed. ..... 100
CPU, Memory Specifications. ..... 107
Mean Time Between Failures. ..... 101
Power Specifications ..... 103
Power Supply Options. ..... 103
5420F Internal Fixed and Secondary Power Supply Options. ..... 104
5420F PoE Power Budget ..... 104
5420M Primary and Secondary Power Supply Options. ..... 105
5420M PoE Power Budget ..... 105
Minimum/Maximum Power Consumption and Heat Dissipation ..... 106
Environmental. ..... 107
Environmental Specifications ..... 107
Environmental Compliance. ..... 107
Environmental Operating Conditions.. ..... 107
Packaging and Storage Specifications ..... 107
Standards ..... 107
North American ITE ..... 107
European ITE. ..... 108
International ITE. ..... 108
EMI/EMC Standards ..... 108
IEEE 802.3 Media Access Standards. ..... 109
Power Cord Requirements for AC-Powered Switches and AC Power Supplies ..... 109
Console Connector Pinouts. ..... 109
Safety and Regulatory Information. ..... 112
Considerations Before Installing. .....  .113
General Safety Precautions. .....  .113
Maintenance Safety. ..... 114
Fiber Optic Ports and Optical Safety. ..... 114
GBIC, SFP (Mini-GBIC), QSFP+, XENPAK, and XFP Regulatory Compliance. ..... 115
Cable Routing for LAN Systems. ..... 115
Install Power Supply Units and Connect Power .....  .116
Selecting Power Supply Cords. ..... 177
Battery Notice. ..... 117
Battery Warning - Taiwan ..... 118
EMC Warnings. ..... 118
Taiwan BSMI Warning. ..... 118
China CQC Warning. ..... 118
Japan (VCCI Class A). ..... 119
Korea EMC Statement ..... 119
Index. ..... 120


## Preface

This guide provides the instructions and supporting information needed to install the Extreme Networks® ${ }^{8} 420$ Series switches.

The guide includes information about site preparation, device functionality, and device operation.

## Audience

This guide is intended for use by network administrators responsible for installing and setting up network equipment. It assumes a basic working knowledge of:

- Local area networks (LANs)
- Ethernet concepts
- Ethernet switching and bridging concepts
- Routing concepts
- Simple Network Management Protocol (SNMP)
- Basic equipment installation procedures

See the Switch Engine 32.1 User Guide and the Switch Engine 32.1 Command Reference Guide for information about configuring ExtremeSwitching switches.

## Note

If the information in an installation note or release note shipped with your Extreme Networks equipment differs from the information in this guide, follow the installation or release note.

## Conventions

This section discusses the conventions used in this guide.

## Text Conventions

Unless otherwise noted, information in this document applies to all supported environments for the products in question. Exceptions, like command keywords associated with a specific software version, are identified in the text.

When a feature, function, or operation pertains to a specific hardware product, the product name is used. When features, functions, and operations are the same across an entire product family, such as ExtremeSwitching switches or SLX routers, the product is referred to as the switch or the router.

Table 1: Notes and warnings

| Icon | Notice type | Alerts you to... |
| :---: | :---: | :---: |
|  | Tip | Helpful tips and notices for using the product |
|  | Note | Useful information or instructions |
|  | Important | Important features or instructions |
|  | Caution | Risk of personal injury, system damage, or loss of data |
|  | Warning | Risk of severe personal injury |

Table 2: Text

| Convention | Description |
| :--- | :--- |
| screen displays | This typeface indicates command syntax, or represents <br> information as it is displayed on the screen. |
| The words enterand <br> type | When you see the word enter in this guide, you must type <br> something, and then press the Return or Enter key. Do not <br> press the Return or Enter key when an instruction simply <br> says type. |
| Key names | Key names are written in boldface, for example Ctrl or Esc. <br> If you must press two or more keys simultaneously, the <br> key names are linked with a plus sign (+). Example: Press <br> Ctrl+Alt+Del |
| Words in italicized type | Italics emphasize a point or denote new terms at the place <br> where they are defined in the text. Italics are also used <br> when referring to publication titles. |
| $\mathbf{N E W !}$ | New information. In a PDF, this is searchable text. |

Table 3: Command syntax

| Convention | Description |
| :--- | :--- |
| bold text | Bold text indicates command names, keywords, and <br> command options. |
| italictext | Italic text indicates variable content. |

Table 3: Command syntax (continued)

| Convention | Description |
| :--- | :--- |
| [] | Syntax components displayed within square brackets are <br> optional. <br> Default responses to system prompts are enclosed in <br> square brackets. |
| $\{\mathbf{x ~ \| ~ y ~ \| ~ \mathbf { z ~ \} }}$ | A choice of required parameters is enclosed in curly <br> brackets separated by vertical bars. You must select one of <br> the options. |
| $\mathbf{x ~ \| ~ \mathbf { y ~ }}$ | A vertical bar separates mutually exclusive elements. <br> $<>$ <br> $\ldots$Nonprinting characters, such as passwords, are enclosed in <br> angle brackets. |
| Repeat the previous element, for example, <br> member [member...]. |  |
|  | In command examples, the backslash indicates a "soft" line <br> break. When a backslash separates two lines of a command <br> input, enter the entire command at the prompt without the <br> backslash. |

## Terminology

When features, functionality, or operation is specific to a device family, such as ExtremeSwitching, the family name is used. Explanations about features and operations that are the same across all product families simply refer to the product as the device.

## Providing Feedback

The Information Development team at Extreme Networks has made every effort to ensure the accuracy and completeness of this document. We are always striving to improve our documentation and help you work better, so we want to hear from you. We welcome all feedback, but we especially want to know about:

- Content errors, or confusing or conflicting information.
- Improvements that would help you find relevant information in the document.
- Broken links or usability issues.

If you would like to provide feedback, you can do so in three ways:

- In a web browser, select the feedback icon and complete the online feedback form.
- Access the feedback form at https://www.extremenetworks.com/documentationfeedback/.
- Email us at documentation@extremenetworks.com.

Provide the publication title, part number, and as much detail as possible, including the topic heading and page number if applicable, as well as your suggestions for improvement.

## Getting Help

If you require assistance, contact Extreme Networks using one of the following methods:

## Extreme Portal

Search the GTAC (Global Technical Assistance Center) knowledge base; manage support cases and service contracts; download software; and obtain product licensing, training, and certifications.

## The Hub

A forum for Extreme Networks customers to connect with one another, answer questions, and share ideas and feedback. This community is monitored by Extreme Networks employees, but is not intended to replace specific guidance from GTAC.

## Call GTAC

For immediate support: (800) 9982408 (toll-free in U.S. and Canada) or 1 (408) 579 2826. For the support phone number in your country, visit: www.extremenetworks.com/support/contact

Before contacting Extreme Networks for technical support, have the following information ready:

- Your Extreme Networks service contract number, or serial numbers for all involved Extreme Networks products
- A description of the failure
- A description of any actions already taken to resolve the problem
- A description of your network environment (such as layout, cable type, other relevant environmental information)
- Network load at the time of trouble (if known)
- The device history (for example, if you have returned the device before, or if this is a recurring problem)
- Any related RMA (Return Material Authorization) numbers


## Subscribe to Product Announcements

You can subscribe to email notifications for product and software release announcements, Field Notices, and Vulnerability Notices.

1. Go to The Hub.
2. In the list of categories, expand the Product Announcements list.
3. Select a product for which you would like to receive notifications.
4. Select Subscribe.
5. To select additional products, return to the Product Announcements list and repeat steps 3 and 4.

You can modify your product selections or unsubscribe at any time.

## Documentation and Training

Find Extreme Networks product information at the following locations:
Current Product Documentation
Release Notes
Hardware and software compatibility for Extreme Networks products
Extreme Optics Compatibility
Other resources such as white papers, data sheets, and case studies
Extreme Networks offers product training courses, both online and in person, as well as specialized certifications. For details, visit www.extremenetworks.com/education/.

# ExtremeSwitching 5420 Series Overview 

5420F-8W-16P-4XE Switch Features on page 15<br>5420F-24P-4XE Switch Features on page 16<br>5420F-24S-4XE Switch Features on page 17<br>5420F-24T-4XE Switch Features on page 18<br>5420F-16MW-32P-4XE Switch Features on page 20<br>5420F-16W-32P-4XE Switch Features on page 21<br>5420F-48P-4XE Switch Features on page 22<br>5420F-48P-4XL Switch Features on page 23<br>5420F-48T-4XE Switch Features on page 24<br>5420M-24T-4YE Switch Features on page 25<br>$5420 \mathrm{M}-24 \mathrm{~W}-4 \mathrm{YE}$ Switch Features on page 26<br>5420M-16MW-32P-4YE Switch Features on page 28<br>5420M-48T-4YE Switch Features on page 29<br>$5420 \mathrm{M}-48 \mathrm{~W}-4 \mathrm{YE}$ Switch Features on page 30

The ExtremeSwitching 5420 Series is a family of high-performance, feature-rich edge switches designed for the next-generation digital enterprise. The 5420 Series universal hardware provides end-to-end secure network segmentation, in addition to advanced policy capabilities, and offers a user-selectable choice of Extreme's flagship switch operating systems. The 5420 is a uniquely flexible platform that can be deployed across a range of edge and wiring-closet environments.

The 5420 Series consists of 14 models in the 5420M and the 5420F families. The 5420M models include field-replaceable power supplies and fans, and $4 \times 1 / 10 / 25 \mathrm{~Gb}$ built-in uplink ports. The 5420F models have a fixed power supply and one or more fixed fans, a second field-replaceable power supply, and $4 \times 1 / 10 \mathrm{~Gb}$ built-in uplink ports.

Both the 5420M and the 5420F families include 24 and 48-port 1 Gigabit models, as well as 1 / 2.5 Gigabit multi-rate models. Both also provide 30/60/90W PoE capabilities making them an ideal wired backend for wireless APs or in support of next-generation power Ethernet devices, such as digital signage, pan-tilt-zoom cameras, smart lighting, or point-of-sale terminals.

The 5420 Series includes the following models:

- 5420F-8W-16P-4XE Switch Features on page 15
- 5420F-24P-4XE Switch Features on page 16
- 5420F-24S-4XE Switch Features on page 17
- 5420F-24T-4XE Switch Features on page 18
- 5420F-16MW-32P-4XE Switch Features on page 20
- 5420F-16W-32P-4XE Switch Features on page 21
- 5420F-48P-4XE Switch Features on page 22
- 5420F-48P-4XL Switch Features on page 23
- 5420F-48T-4XE Switch Features on page 24
- 5420M-24T-4YE Switch Features on page 25
- 5420M-24W-4YE Switch Features on page 26
- 5420M-16MW-32P-4YE Switch Features on page 28
- 5420M-48T-4YE Switch Features on page 29
- 5420M-48W-4YE Switch Features on page 30


## Management

An RJ45 serial console port on the front panel of the switch enables you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to an out-of-band management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds.

There is one Micro-B USB console port on the front panel. If the Micro-B USB console port is connected, it will be selected over the RJ45 console port. The Micro-B USB console port will disconnect when the switch is rebooted. You can re-connect the port if needed. When the Micro-B USB console is active, any messages from the switch to the client terminal will be echoed to both the USB console and the rear panel RJ45 serial port; however, no user input will be accepted from the rear panel port.

## Note

Using a Micro-USB Type B to USB Type A cable, connect the Micro-USB Type B end to the switch, and the USB Type A end to a laptop or PC and complete the driver installation steps

There are also two USB 2.0 Type A ports on the front panel. They can host removable devices like flash drives.

## Cooling

Each base model is available with front-to-back cooling.
Switch cooling is provided by one replaceable fan module or two or three fixed fans. The available fan modules use airflow from front to back. Switch fans are not
responsible for cooling the power supplies; power supplies have integrated cooling fans that operate independently of the switch fan.

A spare fan module (XN-FAN-OOO) with front-to-back airflow is available for 5420 Series switches.

## Power Supplies

5420F models have 1 hot-swappable PSU and 1 fixed PSU. 5420M models have 2 hotswappable PSUs. For more information about the power supplies used in the 5420 Series switches, see Power Supplies for Use with Your Switch on page 34.

Power supplies are ordered separately.

## Stacking

Each switch comes equipped with two stacking ports, also referred to as Universal Ethernet ports. The stacking ports are labeled U1 and U2 and are located on the front of the switch. When running Switch Engine, these ports can be used in either stacking mode or Ethernet mode. When in stacking mode, up to eight systems can be stacked using qualified direct attach cables and optical transceivers. The U1 and U2 ports operate as stacking ports by default. Use the disable stacking-support command to set the U1 and U2 ports in Ethernet mode. Fabric Engine does not support stacking, but the U1 and U2 ports can be used as Ethernet ports by Fabric Engine when Fabric Engine is in non-fabric mode. When used as Ethernet ports, the U1 and U2 ports can support data rates of either 10Gb using SFP+ optics or 20Gb using SFP-DD optics. 5420M switch models support two 10Gb channels on each SFP-DD port when the ports are used as Ethernet ports on Switch Engine 31.6 and later. 5420F switch models support one 10Gb channel on each SFP-DD port when the ports are used as Ethernet ports

Stacking cables are ordered separately.
For information about optical modules, see the Extreme Optics website.
For information about stacking, see Build Stacks on page 54.

## Secure Boot

Secure boot establishes a chain-of-trust relationship in the boot process. The chain-of-trust is established by cryptographic checks at each stage of the boot process to validate the integrity and authenticity of the next stage before it can execute. The current implementation validates boot images. It cannot be disabled after it has been programmed on the device. There is no command-line interface or commands to enable or disable secure boot. The status of the boot image verification can be monitored in the operating system.

For more information, see Secure Boot on page 32.

## Operating Temperatures

All 5420 Series switch models support an operating range from $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Temperature restrictions apply for some models at higher altitudes.

## Feature Licensing

The 5420 Series switches support Unified Licensing, so that you can use them with multiple operating systems. There are two methods of acquiring feature licenses: manual or through ExtremeCloud IQ ${ }^{\text {TM }}$ (XIQ).

For Switch Engine licensing, see the Feature License Requirements for your version of the Switch Engine software.

For Fabric Engine licensing, see the Licensing chapter in the Fabric Engine User Guide for your version of the Fabric Engine operating system.

For XIQ licensing, see ExtremeCloud IQ.

## 5420F-8W-16P-4XE Switch Features

The front panel of the 5420F-8W-16P-4XE switch includes:

- 8 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with 802.3bt Type 4 PoE (90W).


Note
Half-duplex is not supported on these ports when operating at 1Gbps.

- 16 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with Type 2 PoE+ (30W) ports
- 4 1/10Gb SFP+ MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 1: 5420F-8W-16P-4XE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $4=10 / 100 / 1000 B A S E-T$ out-of-band <br> management port | $7=$ SFP-DD <br> stacking ports |
| :--- | :--- | :--- |


| 2 = Mode button | $5=$ RJ-45 serial console port | $8=1 / 100$ SFP + <br> ports |
| :--- | :--- | :--- |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 2 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 2: 5420F-8W-16P-4XE Rear Panel

| $1=$ Grounding lug | $3=$ AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420F-24P-4XE Switch Features

The front panel of the 5420F-24P-4XE switch includes:

- 24 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with 802.3at Type 2 PoE+ (30W).
$\stackrel{000}{\equiv}$ Note
Half-duplex is not supported on these ports when operating at 1Gbps.
- 4 1/10Gb SFP+ MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 1 10/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 3: 5420F-24P-4XE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $4=10 / 100 / 1000 B A S E-T$ out-of-band <br> management port | $7=$ SFP-DD <br> stacking ports |
| :--- | :--- | :--- |
| $2=$ Mode button | $5=$ RJ-45 serial console port | $8=1 / 10 G$ SFP+ <br> ports |
| $3=$ USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 2 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 4: 5420F-24P-4XE Rear Panel

| $1=$ Grounding lug | $3=$ AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420F-24S-4XE Switch Features

The front panel of the 5420F-24S-4XE switch includes:

- 24 100/1000BASE-X SFP MACsec capable ports (unpopulated)
$\stackrel{000}{=}$ Note
Half-duplex is not supported on these ports when operating at 1Gbps.
- $41 / 10 \mathrm{~Gb}$ SFP+ MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 5: 5420F-24S-4XE Front Panel

| $1=100 / 1000 B A S E-X$ ports | $4=10 / 100 / 1000 B A S E-T$ <br> management port | $7=$ SFP-D-DD <br> stacking ports |
| :--- | :--- | :--- |
| 2 = Mode button | $5=$ RJ-45 serial console port | $8=1 / 10 G$ SFP+ <br> ports |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 2 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 6: 5420F-24S-4XE Rear Panel

| $1=$ Grounding lug | $3=$ AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420F-24T-4XE Switch Features

The front panel of the 5420F-24T-4XE switch includes:

- 24 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports.

$\stackrel{\text { Po0 }}{\equiv}=$| Note |
| :--- |
| PoE on RJ-45 ports is not supported. |

$\stackrel{000}{\equiv}$ Note $\begin{aligned} & \text { Half-duplex is not supported on these ports when operating at 1Gbps. }\end{aligned}$

- $47 / 10 G b$ SFP+ MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 7: 5420F-24T-4XE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $4=10 / 100 / 1000 B A S E-T$ out-of-band <br> management port | $7=$ SFP-DD <br> stacking ports |
| :--- | :--- | :--- |
| $2=$ Mode button | $5=$ RJ-45 serial console port | $8=1 / 10 G$ SFP+ <br> ports |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 2 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 8: 5420F-24T-4XE Rear Panel

| 1 = Grounding lug | 3 = AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420F-16MW-32P-4XE Switch Features

The front panel of the 5420F-16MW-32P-4XE switch includes:

- $16100 \mathrm{Mb} / 1 \mathrm{~Gb} / 2.5 \mathrm{~Gb}$ MACsec capable ports with 802.3bt Type 4 PoE (90W).

[星 $\quad$| Note |
| :--- |
| Half-duplex is not supported on these ports when operating at 1Gbps. |

- 32 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with Type 2 PoE+ (30W)
- 4 1/10Gb SFP+ MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 9: 5420F-16MW-32P-4XE Front Panel

| $1=100 \mathrm{Mb} / 1 \mathrm{~Gb} / 2.5 \mathrm{~Gb}$ ports | $4=$ USB Micro-B console port | $7=$ USB Type-A ports |
| :--- | :--- | :--- |
| $2=10 / 100 / 1000 B A S E-T$ <br> ports | $5=10 / 100 / 1000 B A S E-T$ out-of- <br> band management port | $8=$ SFP-DD stacking <br> ports |
| $3=$ Mode button | $6=$ RJ-45 serial console port | $9=1 / 10 G$ SFP+ ports |

The rear panel of the switch includes:

- 3 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 10: 5420F-16MW-32P-4XE Rear Panel

| $1=$ Grounding lug | 3 = AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420F-16W-32P-4XE Switch Features

The front panel of the 5420F-16W-32P-4XE switch includes:

- 16 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with 802.3bt Type 4 PoE (90W).
$\stackrel{\text { Note }}{\equiv}$ Half-duplex is not supported on these ports when operating at 1Gbps.
- 32 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with Type 2 PoE (30W).
- $47 / 10 G b$ SFP+ MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 11: 5420F-16W-32P-4XE Front Panel

| 1 = 10/100/1000BASE-T ports <br> (Type 4 PoE (90W)) | 4 = USB Micro-B console port | $7=$ USB Type-A <br> ports |
| :--- | :--- | :--- |
| $2=10 / 100 / 1000 B A S E-T ~ p o r t s ~$ <br> (Type 2 PoE (30W)) | $5=10 / 100 / 1000 B A S E-T ~ o u t-o f-$ <br> band management port | $8=$ SFP-DD <br> stacking ports |
| 3 = Mode button | $6=$ RJ- 45 serial console port | $9=1 / 10 G$ SFP+ ports |

The rear panel of the switch includes:

- 3 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 12: 5420F-16W-32P-4XE Rear Panel

| 1 = Grounding lug | 3 = AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420F-48P-4XE Switch Features

The front panel of the 5420F-48P-4XE switch includes:

- 48 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with Type $2 \mathrm{PoE}+(30 \mathrm{~W})$.


## 일 $\quad \begin{aligned} & \text { Note } \\ & \text { Half-duplex is not supported on these ports when operating at 1Gbps. }\end{aligned}$

- 4 1/10Gb SFP+ MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port

$\stackrel{\text { Note }}{\equiv 000}$| If you are trying to activate a MACsec license on a 5420F-48P-4XE switch with |
| :--- |
| hardware revision AC, contact GTAC for the latest support information. |



Figure 13: 5420F-48P-4XE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $10 / 100 / 1000 B A S E-T$ <br> management port | $7=$ SFP-D-band <br> ports |
| :--- | :--- | :--- |
| 2 = Mode button | $5=$ RJ- 45 serial console port | $8=1 / 10 G$ SFP+ ports |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 3 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 14: 5420F-48P-4XE Rear Panel

| 17 = Grounding lug | 3 = AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420F-48P-4XL Switch Features

The front panel of the 5420F-48P-4XL switch includes:

- 48 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with Type 2 PoE+ (30W).

```
# No0
Half-duplex is not supported on these ports when operating at 1Gbps.
```

- 4 10Gb SFP+ MACsec capable LRM capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 15: 5420F-48P-4XL Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $4=10 / 100 / 1000 B A S E-T$ out-of- <br> band management port | $7=$ SFP-DD stacking <br> ports |
| :--- | :--- | :--- |


| 2 = Mode button | $5=R J-45$ serial console port | $8=10 G$ SFP+ LRM <br> and MACsec capable <br> ports |
| :--- | :--- | :--- |
| $3=$ USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 3 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 16: 5420F-48P-4XL Rear Panel

| $1=$ Grounding lug | 3 = AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420F-48T-4XE Switch Features

The front panel of the 5420F-48T-4XE switch includes:

- 48 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports
$\stackrel{\text { Note }}{\equiv}$ Half-duplex is not supported on these ports when operating at 1Gbps.
- $47 / 10 \mathrm{~Gb}$ SFP+ MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports (unpopulated)
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 17: 5420F-48T-4XE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $4=10 / 100 / 1000 B A S E-T$ out-of-band <br> management port | $7=$ SFP-DD <br> stacking ports |
| :--- | :--- | :--- |
| 2 = Mode button | $5=$ RJ-45 serial console port | $8=1 / 10 G$ SFP+ <br> ports |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 2 fixed fan modules
- Grounding lug
- 1 AC power inlet connector
- 1 power supply slot


Figure 18: 5420F-48T-4XE Rear Panel

| $1=$ Grounding lug | 3 = AC power inlet connector |
| :--- | :--- |
| 2 = Fixed fan modules | 4 = Power supply slot |

## 5420M-24T-4YE Switch Features

The front panel of the 5420M-24T-4YE switch includes:

- 24 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports


Note
Half-duplex is not supported on these ports when operating at 1Gbps.

- 4 1/10/25Gb SFP28 MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports


## $\stackrel{000}{=}$ Note <br> These ports can operate either as stacking ports, or as 10G Ethernet ports with SFP+ optics using the disable stacking-support command.

- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 19: 5420M-24T-4YE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $4=10 / 100 / 1000 B A S E-T$ out-of-band <br> management port | $7=$ SFP-DD <br> stacking ports |
| :--- | :--- | :--- |
| 2 = Mode button | $5=$ RJ-45 serial console port | $8=1 / 10 / 25 G$ SFP28 <br> ports |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 1 fan module
- Grounding lug
- 2 power supply slots


Figure 20: 5420M-24T-4YE Rear Panel

| $1=$ Grounding lug | 3 = Power supply slots |
| :--- | :--- |
| 2 = Fan module |  |

## 5420M-24W-4YE Switch Features

The front panel of the 5420M-24W-4YE switch includes:

- 24 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with 802.3bt Type 4 PoE (90W)


Note
Half-duplex is not supported on these ports when operating at 1Gbps.

- 4 1/10/25Gb SFP28 MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports

Note
These ports can operate either as stacking ports, or as 10G Ethernet ports with SFP+ optics using the disable stacking-support command.

- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 21: 5420M-24W-4YE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | 4 = 10/100/1000BASE-T out-of-band <br> management port | $7=$ SFP-DD <br> stacking ports |
| :--- | :--- | :--- |
| 2 = Mode button | $5=$ RJ-45 serial console port | $8=1 / 10 / 25 G$ SFP28 <br> ports |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 1 fan module
- Grounding lug
- 2 power supply slots


Figure 22: 5420M-24W-4YE Rear Panel

| $1=$ Grounding lug | 3 = Power supply slots |
| :--- | :--- |
| 2 = Fan module |  |

## 5420M-16MW-32P-4YE Switch Features

The front panel of the 5420M-16MW-32P-4YE switch includes:

- $16100 \mathrm{Mb} / 1 \mathrm{~Gb} / 2.5 \mathrm{~Gb}$ MACsec cabable ports with 802.3bt Type 4 PoE (90W)
$\stackrel{\text { Note }}{\equiv}$ Half-duplex is not supported on these ports when operating at 1Gbps.
- 32 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with Type 2 PoE+ (30W)
- 4 1/10/25Gb SFP28 MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports
Note
These ports can operate either as stacking ports, or as 10G Ethernet ports
with SFP+ optics using the disable stacking-support command.
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 23: 5420M-16MW-32P-4YE Front Panel

| $1=100 \mathrm{Mb} / 1 \mathrm{~Gb} / 2.5 \mathrm{~Gb}$ <br> ports10/100/1000BASE-T ports | 4 = USB Micro-B console port | $7=$ USB Type-A <br> ports |
| :--- | :--- | :--- |
| $2=10 / 100 / 1000$ BASE-T ports | $5=10 / 100 / 1000 B A S E-T$ out-of- <br> band management port | $8=$ SFP-DD <br> stacking ports |
| $3=$ Mode button | $6=$ RJ- 45 serial console port | $9=1 / 10 / 25 \mathrm{C}$ SFP28 <br> ports |

The rear panel of the switch includes:

- 1 fan module
- Grounding lug
- 2 power supply slots


Figure 24: 5420M-16MW-32P-4YE Rear Panel

| $1=$ Grounding lug | 3 = Power supply slots |
| :--- | :--- |
| 2 = Fan module |  |

## 5420M-48T-4YE Switch Features

The front panel of the 5420M-48T-4YE switch includes:

- 48 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports


Half-duplex is not supported on these ports when operating at 1Gbps.

- 4 1/10/25Gb SFP28 MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports


Note
These ports can operate either as stacking ports, or as 10G Ethernet ports with SFP+ optics using the disable stacking-support command.

- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


Figure 25: 5420M-48T-4YE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $4=10 / 100 / 1000 B A S E-T$ out-of-band <br> management port | $7=$ SFP-DD <br> stacking ports |
| :--- | :--- | :--- |
| 2 = Mode button | $5=$ RJ- 45 serial console port | $8=1 / 10 / 25 G$ SFP28 <br> ports |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 1 fan module
- Grounding lug
- 2 power supply slots


Figure 26: 5420M-48T-4YE Rear Panel

| $1=$ Grounding lug | 3 = Power supply slots |
| :--- | :--- |
| 2 = Fan module |  |

## 5420M-48W-4YE Switch Features

The front panel of the 5420M-48W-4YE switch includes:

- 48 10/100/1000BASE-T full/half duplex (autosensing) MACsec capable ports with 802.3bt Type 4 PoE (90W)
年

Note
Half-duplex is not supported on these ports when operating at 1Gbps.

- 4 1/10/25Gb SFP28 MACsec capable uplink ports (unpopulated)
- 2 Stacking/SFP-DD ports
 with SFP+ optics using the disable stacking-support command.
- 1 Serial console port (RJ-45)
- 110/100/1000BASE-T out-of-band management port
- 2 USB Type-A ports for management or external flash
- 1 USB Micro-B console port


If you are trying to activate a MACsec license on a 5420M-48W-4YE switch with hardware revision AC, contact GTAC for the latest support information.


Figure 27: 5420M-48W-4YE Front Panel

| $1=10 / 100 / 1000 B A S E-T$ ports | $4=10 / 100 / 1000 B A S E-T$ out-of-band <br> management port | $7=$ SFP-DD <br> stacking ports |
| :--- | :--- | :--- |
| 2 = Mode button | $5=$ RJ-45 serial console port | $8=1 / 10 / 25 G$ SFP28 <br> ports |
| 3 = USB Micro-B console port | $6=$ USB Type-A ports |  |

The rear panel of the switch includes:

- 1 fan module
- Grounding lug
- 2 power supply slots


Figure 28: 5420M-48W-4YE Rear Panel

| $1=$ Grounding lug | 3 = Power supply slots |
| :--- | :--- |
| 2 = Fan module |  |

## Secure Boot

The status of the boot image verification can be monitored in the operating system.

## Switch Engine

The Trusted Delivery field in the output of the show switch and show system commands in Switch Engine displays the status of the boot image verification. For example:

```
5520-24X-EXOS.2 # sh switch
SysName: 5520-24X-EXOS
SysLocation:
SysContact: https://www.extremenetworks.com/support/
System MAC: 00:04:96:F2:F8:00
System Type: 5520-24X-EXOS
SysHealth check: Enabled (Normal)
Recovery Mode: All
System Watchdog: Enabled
Trusted Delivery: Boot Image Verified
Current Time: Mon Jul 27 19:35:03 2020
Timezone: [Auto DST Disabled] GMT Offset: 0 minutes, name is UTC.
Boot Time: Mon Jul 27 19:31:50 2020
```

Trusted delivery can only be in one of two states:

- Boot Image Verified
- Boot Image Verification Failed


## Fabric Engine

The Trusted Delivery Status field in the show sys-info command in Fabric Engine displays the status of the boot image verification. For example:


Trusted delivery status can only be in one of two states:

- Boot Image Verified
- Boot Image Verification Failed


## Secure Boot Troubleshooting

When there is a secure boot validation failure, the switch is booted to a recovery stage or halts. Contact GTAC for assistance with recovering the switch.


## Power Supplies for Use with Your Switch

```
150 W AC Power Supply on page 34
600 W AC PoE Power Supply on page 35
920 W AC PoE Power Supply on page 35
1200 W AC PoE Power Supply on page 36
2000 W AC PoE Power Supply on page 36
```

5420F models have 1 hot-swappable PSU and 1 fixed PSU. 5420M models have 2 hotswappable PSUs. You can remove one power supply without interrupting the switch's operation.

Power supplies are ordered separately.
For more information, see the following topics:

- 150 W AC Power Supply on page 34
- 600 W AC PoE Power Supply on page 35
- 920 W AC PoE Power Supply on page 35
- 1200 W AC PoE Power Supply on page 36
- 2000 W AC PoE Power Supply on page 36

150 W AC Power Supply
The 150 W AC power supply (Model XN-ACPWR-150W with front-to-back ventilation airflow) is compatible with 542OF-24T-4XE, 542OF-24S-4XE, 5420F-48T-4XE, $5420 \mathrm{M}-24 \mathrm{~T}-4 \mathrm{YE}$, and 5420M-48T-4YE switch models.

The 150 W AC power supply has a keyed power inlet (C14) that requires a (C13) power cord.

The 150 W AC power supply has the status LEDs listed in the following table:

Table 4: 150 W AC Power Supply LED Status Indications

| LED State | Description |
| :--- | :--- |
| Off | No AC input power connection |
| Green | Output ON and OK |

Table 4: 150 W AC Power Supply LED Status Indications (continued)

| LED State | Description |
| :--- | :--- |
| Green/1Hz <br> flashing | AC present/only 12VSB on <br> (PSU off) or PSU in Smart ON state |
| Amber | AC cord unplugged or AC power lost; with a second PSU in parallel still <br> with AC input power |
| Amber/1H <br> z flashing | PSU warning (high temp, high power, high current, slow fan) |
| Amber | PSU critcal event and shutdown (failure, OCP, OVP, Fan failure) |

## 600 W AC PoE Power Supply

The 600W AC PoE power supply (Model XN-ACPWR-600W with front-to-back ventilation airflow) is compatible with 540F-24P-4XE and 5420F-8W-16P-4XE switch models.

The 600 W AC power supply has a keyed power inlet (C14) that requires a (C13) power cord.

The 600 W AC PoE power supply has the status LEDs listed in the following table:

Table 5: $\mathbf{6 0 0}$ W AC PoE Power Supply LED Status Indications

| DC_OK <br> (left) | AC_OK <br> (right) | Description |
| :--- | :--- | :--- |
| Green/1 <br> Hz <br> flashing | Green | AC present / only stand by outputs on. |
| Green | Green | Power supply DC outputs on and OK. |
| Red | Green | Power supply failure. PSU shut down*. |

*Power supply DC fail : OCP, OVP, OTP, fan.
920 W AC PoE Power Supply
The 920 W AC PoE power supply (Model XN-ACPWR-920W with front-toback ventilation airflow) is compatible with 5420F-48P-4XE, 5420F-48P-4XL, $5420 \mathrm{M}-24 \mathrm{~W}-4 \mathrm{YE}, 542 \mathrm{MM}-48 \mathrm{~W}-4 \mathrm{YE}, 542 \mathrm{OM}-16 \mathrm{MW}-32 \mathrm{P}-4 \mathrm{YE}$ switch models.

The 920 W AC power supply has a keyed power inlet (C14) that requires a (C13) power cord.

The 920 W AC PoE power supply has the status LEDs listed in the following table:

Table 6: 920 W AC PoE Power Supply LED Status Indications

| DC_OK <br> (left) | AC_OK <br> (right) | Description |
| :--- | :--- | :--- |
| Green/1 <br> Hz <br> flashing | Green | AC present / only standby outputs on. |
| Green | Green | Power supply DC outputs on and OK. |
| Red | Green | Power supply failure. PSU shut down*. |

*Power supply DC fail : OCP, OVP, OTP, fan.

## 1200 W AC PoE Power Supply

The 1200 W AC PoE power supply (Model XN-ACPWR-1200W with front-to-back ventilation airflow) is compatible with 5420F-16W-32P-4XE and 5420F-16MW-32P-4XE switch models.

The 1200 W AC PoE power supply has a keyed power inlet (C16) that requires a notched (C15) power cord.

The 1200 W AC PoE power supply has the status LEDs listed in the following table:

Table 7: 1200 W AC PoE Power Supply LED Status Indications

| DC_OK <br> (left) | AC_OK <br> (right) | Description |
| :--- | :--- | :--- |
| Green/1 <br> Hz <br> flashing | Green | AC present / only standby outputs on. |
| Green | Green | Power supply DC outputs on and OK. |
| Red | Green | Power supply failure. PSU shut down*. |

*Power supply DC fail : OCP, OVP, OTP, fan.

## 2000 W AC PoE Power Supply

The 2000 W AC PoE power supply (Model XN-ACPWR-2000W with front-to-back ventilation airflow) is compatible with 5420M-48W-4YE and 5420M-16MW-32P-4YE switch models.

In order to obtain 2000W output from this power supply, the PSU must be connected to a 200-240VAC source.

The 2000 W AC PoE power supply has a keyed power inlet (C16) that requires a notched (C15) power cord.

The 2000 W AC PoE power supply has the status LEDs listed in the following table:
Table 8: $\mathbf{2 0 0 0}$ W AC PoE Power Supply LED Status Indications

| DC_OK <br> (left) | AC_OK <br> (right) | Description |
| :--- | :--- | :--- |
| Green/1 <br> Hz <br> flashing | Green | AC present / only standby outputs on. |
| Green | Green | Power supply DC outputs on and OK. |
| Red | Green | Power supply failure. PSU shut down*. |

*Power supply DC fail : OCP, OVP, UVP, OTP, fan.


## Site Preparation

## Plan Your Site on page 38 <br> Operating Environment Requirements on page 39 <br> Rack Specifications and Recommendations on page 42 <br> Evaluate and Meet Cable Requirements on page 44 <br> Meeting Power Requirements on page 51 <br> Follow Applicable Industry Standards on page 53

By carefully planning your site, you can maximize the performance of your existing network and ensure that it is ready to migrate to future networking technologies.

The information in this chapter is intended for the system administrator, network equipment technician, network manager, or facilities manager responsible for installing and managing the network hardware. The chapter assumes a working knowledge of local area network (LAN) operations, and a familiarity with communications protocols that are used on interconnected LANs.

Only qualified service personnel should install, maintain, or remove a switch, chassis, or its components. Qualified service personnel have had appropriate technical training and experience that is necessary to be aware of the hazards to which they are exposed when performing a task and of measures to minimize the danger to themselves or other people.

(1) \begin{tabular}{l}
Note <br>

| Before installing or removing any components of the system, and before |
| :--- |
| carrying out any maintenance procedures, read the safety information in |
| "Technical Specifications." |

\end{tabular}

## Plan Your Site

To install your equipment successfully, you should plan the site carefully. The site planning process has three major parts:

1. Meeting site requirements.

The physical installation site must meet the following requirements for a safe and successful installation:

- Building and electrical code requirements
- Environmental, safety, and thermal requirements for the equipment you plan to install
- Equipment rack requirements

2. Evaluating and meeting cable requirements.

After examining your physical site and verifying that all environmental requirements are met, evaluate and compare your existing cable plant with the requirements of the Extreme Networks equipment to determine if you need to install new cables.
3. Meeting power requirements.

To run your equipment safely, you must meet the specific power requirements for each switch and external power supply unit installed in the system.

For power specifications of the switches, see the specific switch listings in "Technical Specifications."

## Operating Environment Requirements

Verify that your site meets all environmental and safety requirements.
Virtually all areas of the United States are regulated by building codes and standards. During the early planning stages of installing or modifying your network, it is important that you develop a thorough understanding of the regulations that pertain to your location and industry.

## Meet Building and Electrical Codes

Building and electrical codes vary depending on your location. Comply with all code specifications when planning your site and installing cable. This section lists resources for obtaining additional information.

For information about major building codes, consult the following organization:
International Code Council (ICC)
5203 Leesburg Pike
Falls Church, VA 22041 USA
www.iccsafe.org

The organizations listed in Table 9 are authorities on electrical codes.

Table 9: Authorities on Electrical Codes

| Organization | Address | Web Site URL |
| :---: | :---: | :---: |
| National Electrical Code (NEC) Classification (USA only) <br> Recognized authority on safe electrical wiring. Federal, state, and local governments use NEC standards to establish their own laws, ordinances, and codes on wiring specifications. The NEC classification is published by the National Fire Protection Association (NFPA). | NFPA <br> 1 Batterymarch Park Quincy, MA 02169 USA | www.nfpa.org/ |
| Underwriters' Laboratory (UL) <br> Independent research and testing laboratory. UL evaluates the performance and capability of electrical wiring and equipment to determine whether they meet certain safety standards when properly used. Acceptance is usually indicated by the words "UL Approved" or "UL Listed." | UL <br> 333 Pfingsten Road <br> Northbrook, IL <br> 60062 <br> USA | www.ul.com |
| National Electrical Manufacturing Association (NEMA) (USA only) <br> Organization of electrical product manufacturers. Members develop consensus standards for cables, wiring, and electrical components. | NEMA <br> 1300 N. 17th Street <br> Rosslyn, VA 22209 USA | www.nema.org |
| Electronic Components Industry Association (ECIA) <br> Trade association that develops technical standards, disseminates marketing data, and maintains contact with government agencies in matters relating to the electronics industry. | ECIA <br> 111 Alderman Drive <br> Suite 400 <br> Alpharetta, GA <br> 30005 <br> USA | www.ecianow.or g |
| Federal Communications Commission (FCC) (USA only) <br> Commission that regulates all interstate and foreign electrical communication systems that originate in the United States according to the Communications Act of 1934. The FCC regulates all U.S. telephone and cable systems. | FCC <br> 445 12th Street S.W. <br> Washington, DC <br> 20554 <br> USA | www.fcc.gov |

## Set up the Wiring Closet

Be aware of the following recommendations for your wiring closet:

- Make sure that your system is easily accessible for installation and service. See Rack Specifications and Recommendations on page 42 for more information.
- Use appropriate AC or DC power, power distribution, and grounding for your specific installation.
- Use a vinyl floor covering in your wiring closet. (Concrete floors accumulate dust, and carpets can cause static electricity.)
- Prevent unauthorized access to wiring closets by providing door locks. Install the equipment in a secured, enclosed, and restricted access location, ensuring that only qualified service personnel have access to the equipment.
- Provide adequate overhead lighting for easy maintenance.
- Be sure that each wiring closet has a suitable ground. All equipment racks and equipment installed in the closet should be grounded.
- Be sure that all system environmental requirements are met, such as ambient temperature and humidity.

$\stackrel{$|  Note  |
| :--- |
|  Consult an electrical contractor for commercial building and wiring  |
|  specifications.  |\(}{\substack{Note <br>

\equiv}}\)

## Control the Temperature

Extreme Networks equipment generates a significant amount of heat. It is essential that you provide a temperature-controlled environment for both performance and safety.

Install the equipment only in a temperature- and humidity-controlled indoor area that is free of airborne materials that can conduct electricity. Too much humidity can cause a fire. Too little humidity can produce electrical shock and fire.

Observe these additional thermal recommendations for the location where you plan to install your equipment:

- Ensure that the ventilation in the wiring closet is adequate to maintain a temperature below $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.
- Install a reliable air conditioning and ventilation system.
- Keep the ventilation in the wiring closet running during non-business hours; otherwise, the equipment can overheat.
- Maintain a storage temperature between $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ and $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$.

Table 10 summarizes the behavior of ExtremeSwitching switches when they experience high operating temperatures.

Safeguards are built into all Extreme Networks switches and power supply units to minimize the risk of fire.

Table 10: Thermal Shutdown and Restart Behavior

| Switch Model(s) | Behavior |
| :--- | :--- |
| All models | When internal system temperatures exceed the thermal shutdown <br> temperature limit (typically about $20^{\circ} \mathrm{C}$ higher than normal system <br> operating temperatures), the system's power supplies are turned <br> off and the switch shuts down. The system remains in the OFF <br> state until the system has sufficient time to cool and the internal <br> thermal sensor measures a temperature lower than the maximum <br> specified ambient temperature, at which time the system restarts <br> automatically. <br> Alternately, you can restart the system by removing and then <br> restoring all line power to the system. The internal sensor must <br> still measure a system temperature that is lower than the <br> maximum specified ambient temperature, so recovery might not be <br> immediate. |

## Control the Humidity Level

To maximize equipment life, keep operating humidity between $50 \%$ and $70 \%$ relative humidity (non-condensing) during typical operation.

The equipment can operate between $5 \%$ and $95 \%$ relative humidity (non-condensing) for short intervals.

## Protect Your System from ESD (Electrostatic Discharge)

Your system must be protected from static electricity or ESD. Take the following measures to ensure optimum system performance:

- Remove materials that can cause electrostatic generation (such as synthetic resins) from the wiring closet.
Check the appropriateness of floor mats and flooring.
- Connect metal chassis, conduit, and other metals to ground using dedicated grounding lines.
- Use electrostatically safe equipment.

If you are working with pluggable interface modules, wear an ESD-preventive wrist strap and connect the metal end to a grounded equipment rack or other source of ground.

## Rack Specifications and Recommendations

Racks should conform to conventional standards.
In the United States, use EIA Standard RS-310C: Racks, Panels, and Associated Equipment. In countries other than the United States, use IEC Standard 297. In addition, verify that your rack meets the basic mechanical, space, and earthquake requirements that are described in this section.

## Mechanical Recommendations for the Rack

Use equipment racks that meet the following mechanical recommendations:

- Use an open style, 19 -inch rack to facilitate easy maintenance and to provide proper ventilation.
- Use a rack made of steel or aluminum.
- The rack should use the universal mounting rail hole pattern that is identified in IEC Standard 297.
- The rack should have designated earth grounding connections (typically on the base).
- The rack must meet earthquake safety requirements equal to that of the installed chassis.
- The mounting holes should be flush with the rails to accommodate the chassis.
- The rack should support approximately $270 \mathrm{~kg}(600 \mathrm{lb})$.


## Ground the Rack

The rack must be properly grounded.
Use a rack grounding kit and a ground conductor that is carried back to earth or to another suitable building ground.

At a minimum, follow these guidelines to ground equipment racks to the earth ground:

- CAD weld appropriate wire terminals to building I-beams or earth ground rods.
- For a DC-powered switch, use a minimum 14 AWG stranded copper wire for grounding.

AC-powered switches do not need separate chassis grounding.

- Position the earth ground as close to the equipment rack as possible to maintain the shortest wiring distance possible.
- Use a ground impedance tester or micro-ohm meter to test the quality of earth ground connection at the chassis. This will ensure good grounding between the chassis, rack, and earth ground.


## $\stackrel{000}{=} \quad$ Note <br> Because building codes vary worldwide, consult an electrical contractor to ensure proper equipment grounding for your specific installation.

## Provide Adequate Space for the Rack

Provide enough space in front of and behind the switch so that you can service it easily.

Allow a minimum of 48 inches ( 122 cm ) in front of the rack and 30 inches ( 76 cm ) behind the rack. When using a relay (two-post) rack, provide a minimum of 24 inches $(61 \mathrm{~cm})$ of space behind the mounted equipment. Extra room on each side is optional.

## Warning

Extreme Networks switches do not have a switch for turning power to the unit on and off. For systems using an AC power supply, power to the switch is disconnected by removing the wall plug from the electrical outlet.

Be sure that cables and other equipment do not block the switch's air intake or outflow.
Depending on other conditions in the equipment room, it may be possible to install the switches closer to each other; consult your Extreme Networks Customer Support representative for guidance.

## Secure the Rack

The rack should be attached to the wiring closet floor with $9.5 \mathrm{~mm}(3 / 8 \mathrm{in})$ lag screws or equivalent hardware. The floor under the rack should be level within $5 \mathrm{~mm}(3 / 16 \mathrm{in})$. Use a floor-leveling cement compound if necessary or bolt the racks to the floor as shown.


Figure 29: Properly Secured Rack
Brace open equipment racks if the channel thickness is less than $6.4 \mathrm{~mm}(1 / 4 \mathrm{in})$.

## Evaluate and Meet Cable Requirements

Use professional consultants for site planning and cabling.
The Building Industry Consulting Service International (BICSI) Registered Communications Distribution Designer (RCDD), which is globally recognized as a standard in site planning and cabling, can be used.

For information, visit www.bicsi.org.

## Label Cables and Keep Accurate Records

A reliable cable labeling system is essential when planning and installing a network.
Keeping accurate records helps you to:

- Relocate devices easily.
- Make changes quickly.
- Isolate faults in the distribution system.
- Locate the opposite end of any cable.
- Know the types of network devices that your cabling infrastructure can support.

Follow these guidelines when setting up a cable labeling system suitable for your installation:

- Identify cables by securely attaching labels to all cable ends.
- Assign a unique block of sequential numbers to the group of cables that run between each pair of wiring closets.
- Assign a unique identification number to each equipment rack.
- Identify all wiring closets by labeling the front panel of your Extreme Networks equipment and other hardware.
- Keep accurate and current cable identification records.
- Post records near each equipment rack. For each cable drop, include information about the cable source, destination, and jumper location.


## Install Cable

When you connect cable to your network equipment, keep the following things in mind.

- Examine cable for cuts, bends, and nicks.
- Support cable using a cable manager that is mounted above connectors to avoid unnecessary weight on the cable bundles.
- Use cable managers to route cable bundles to the left and right of the network equipment to maximize accessibility to the connectors.
- Provide enough slack, approximately 5 to 7.5 cm (2 to 3 in ), to provide proper strain relief as shown in Figure 30 on page 46.
- Bundle cable using hook-and-loop straps to avoid injuring cables.
- If you build your own cable, be sure that connectors are properly crimped.
- When installing a patch panel using twisted pair wiring, untwist no more than 2.5 cm (1 in) of the cable to avoid radio frequency (RF) interference.
- Discharge the RJ45 Ethernet cable before plugging it into a port on the switch.


## Caution

Unshielded twisted pair (UTP) cable can build up electrostatic charges when being pulled into a new installation. Before connecting any category 5 UTP cable to the switch, discharge ESD from the cable by plugging the RJ45 connector into a LAN static discharge device or use an equivalent method.

- Use plenum-rated cable when it is necessary for safety and fire rating requirements. Consult your local building codes to determine when it is appropriate to use plenum-rated cable, or refer to IEC standard 850.
- Keep all ports and connectors free of dust.


Figure 30: Properly Installed and Bundled Cable
1 = Ensure adequate slack and bend radius

## Handle Fiber Optic Cable

Fiber optic cable must be handled carefully during installation.
Every cable has a minimum bend radius and fibers will be damaged if the cables are bent too sharply. It is also important not to stretch the cable during installation. Ensure
that the bend radius for fiber optic cables is equal to at least 5 cm ( 2 in ) for each 90-degree turn as shown in Figure 31.


Kinks and sharp bends can destroy or impair the cable's ability to convey light pulses accurately from one end of the cable to the other. Use care in dressing the optical fiber cables: provide satisfactory strain relief to support the cable and maintain an adequate bend radius at all cable turns, particularly where the cable connects to the I/O module.


Figure 31: Bend Radius for Fiber Optic Cable
$1=$ Minimum $5 \mathrm{~cm}(2 \mathrm{in})$ radius in $90^{\circ}$ bend

## Cable Distances and Types

Table 11 shows one example of cable media types and maximum distances that support reliable transmission in accordance with international standards (except where noted). Refer to the Extreme Optics website for descriptions of optics and cables, as well as a complete list of supported cable lengths, and a list of the cable types that are compatible with your equipment.

Table 11: Cable Distances and Types

| Standard | Media Type | $\mathrm{MHz} \cdot \mathrm{km}$ <br> Rating | Maximum <br> Distance (Meters) |
| :--- | :--- | :--- | :--- |
| 1000BASE-SX <br> (850nm optical window) | $50 / 125 \mu \mathrm{~m}$ multimode fiber | 400 | 500 |
|  | $50 / 125 \mu \mathrm{~m}$ multimode fiber | 500 | 550 |
|  | $62.5 / 125 \mu \mathrm{~m}$ multimode fiber | 160 | 220 |
|  | $62.5 / 125 \mu \mathrm{~m}$ multimode fiber | 200 | 275 |

Table 11: Cable Distances and Types (continued)

| Standard | Media Type | $\mathrm{MHz} \cdot \mathrm{km}$ Rating | Maximum Distance (Meters) |
| :---: | :---: | :---: | :---: |
| 1000BASE-LX <br> (1300nm optical window) | 50/125 $\mu \mathrm{m}$ multimode fiber | 400 | 550 |
|  | 50/125 $\mu \mathrm{m}$ multimode fiber | 500 | 550 |
|  | 62.5/125 $\mu \mathrm{m}$ multimode fiber | 500 | 550 |
|  | 10/125 $\mu \mathrm{m}$ single-mode fiber | - | 5,000 |
|  | 10/125 $\mu \mathrm{m}$ single-mode fiber | - | 10,000 |
| 1000BASE-ZX (1550nm optical window) | 10/125 $\mu \mathrm{m}$ single-mode fiber | - | 80,000 |
| 100BASE-LX100 <br> (1550nm optical window) | 10/125 $\mu \mathrm{m}$ single-mode fiber | - | 100,000 |
| ```1000BASE-BXIO (1490nm optical window) (1310nm optical window)``` | 10/125 $\mu \mathrm{m}$ single-mode fiber | - | 10,000 |
| 1000BASE-LX70 <br> (1550nm optical window) | 10/125 $\mu \mathrm{m}$ single-mode fiber | - | 70,000 |
| 10/100/1000BASE-T SFP | (1 Gbps link) Category 5 and higher UTP cable | - | 100 |
|  | (100 Mbps link) Category 5 and higher UTP cable | - | 150 |
|  | (10 Mbps link) Category 5 and higher UTP cable | - | 250 |
| 10GBASE-T SFP+ | (10 Gb links) Category 6A and higher UTP cable | - | 30 |
| 10GBASE-SR SFP+(850nm optical window) | $62.5 \mu \mathrm{~m}$ multimode fiber | 160 | 26 |
|  | $62.5 \mu \mathrm{~m}$ multimode fiber (OM1) | 200 | 33 |
|  | $50 \mu \mathrm{~m}$ multimode fiber | 400 | 66 |
|  | $50 \mu \mathrm{~m}$ multimode fiber (OM2) | 500 | 82 |
|  | $50 \mu \mathrm{~m}$ multimode fiber (OM3) | 2000 | 300 |
| 10GBASE-LR SFP+ (1310nm optical window) | 10/125 $\mu \mathrm{m}$ single-mode fiber | - | 10,000 |
| 10GBASE-ER SFP+ (1550nm optical window) | 10/125 $\mu \mathrm{m}$ single-mode fiber | - | 40,000 |

1 Proprietary to Extreme Networks. Connections between two Extreme Networks 1000BASE-LX interfaces that use 10/125 $\mu \mathrm{m}$ single-mode fiber can use a maximum distance of 10,000 meters.

Table 11: Cable Distances and Types (continued)

| Standard | Media Type | MHz•km <br> Rating | Maximum <br> Distance (Meters) |
| :--- | :--- | :--- | :--- |
| 40GBASE-SR4 QSFP+ <br> (850nm optical window) | $50 \mu \mathrm{~m}$ multimode fiber (OM3) | - | 100 |
|  | $50 \mu \mathrm{~m}$ multimode fiber (OM4) |  | 150 |
| 1000BASE-T | Category 5 and higher UTP <br> cable | - | 100 |
| 100BASE-TX | Category 5 and higher UTP <br> cable | - | 100 |
| 1OBASE-T | Category 3 and higher UTP <br> cable | - | 100 |

Table 12 and Table 13 on page 49 list direct-attach cables available from Extreme Networks.

Table 12: Extreme Networks 100Gb Direct-Attach Cables

| Cable Type | Part Number | Length |
| :--- | :--- | :--- |
| QSFP28-QSFP28 Direct attach passive <br> copper cable | 10411 or AA1405029- <br> E6 | 1 meter |
|  | 10413 or AA1405031- <br> E6 | 3 meters |
|  | 10414 or <br> AA1405032-E6 | 5 meters |
|  | 10421 | 1 meter |
|  | 10423 | 3 meters |
|  | 10424 | 5 meters |
| QSFP28-4xSFP28 (4×25Gb) Active optical <br> breakout cable | 10444 | 20 meters |

Table 13: Extreme Networks 40Gb Direct-Attach Cables

| Cable Type | Part Number | Length |
| :--- | :--- | :--- |
| QSFP+ to QSFP+ Direct attach cable | AA1404037-E6 | 0.5 meter |
|  | AA1404029-E6 | 1 meter |
|  | AA1404030-E6 | 2 meters |
|  | AA1404031-E6 | 3 meters |
|  | AA1404032-E6 | 5 meters |
| QSFP+ to QSFP+ Active optical cable | AA1404028-E6 | 10 meters active <br> optical |

Table 13: Extreme Networks 40Gb Direct-Attach Cables (continued)

| Cable Type | Part Number | Length |
| :--- | :--- | :--- |
| QSFP+ to 4xSFP+ Breakout cable | AA1404033-E6 | 1 meter |
|  | AA1404035-E6 | 3 meters |
|  | AA1404036-E6 | 5 meters |
|  | AA1404041-E6 | 10 meters active <br> optical |

## Use RJ45 Connector Jackets

Use RJ45 cable with connector jackets that are flush with the connector or that have connectors with a no-snag feature.

Using cable with jackets that are wider than the connectors can cause:

- Connectors that are not properly aligned with the port.
- Crowded cable installation, which can cause connectors to pop out of the port.

Figure 32 shows examples of recommended and non-recommended connector jacket types.


Figure 32: RJ45 Connector Jacket Types

## Prevent Radio Frequency Interference (RFI)

If you use UTP cabling in an installation, take precautions to avoid radio frequency (RF) interference.

RF interference can cause degradation of signal quality, and, in an Ethernet network environment, can cause excessive collisions, loss of link status, or other physical layer problems that can lead to poor performance or loss of communication.

To prevent RF interference, avoid the following situations:

- Attaching UTP cable to AC power cables
- Routing UTP cable near antennas, such as a ham radio antenna
- Routing UTP cable near equipment that could exhibit RF interference, such as ARC welding equipment
- Routing UTP cable near electrical motors that contain coils
- Routing UTP cable near air conditioner units
- Routing UTP cable near electrical transformers

In areas or applications where these situations cannot be avoided, use fiber optic cabling or shielded twisted pair cabling.

## Meeting Power Requirements

Observe the following requirements and precautions for powering your hardware.

## Requirements for PoE Devices

When connecting PoE devices to a PoE switch, all connections between the PoE device and the switch must remain within the same building and use a low-voltage power distribution system per IEEE 802.3af.

## Power Supply Requirements

Follow these recommendations when you plan power supply connections for your equipment:

- Place the equipment in an area that accommodates the power consumption and component heat dissipation specifications.
- Be sure that your power supply meets the site DC power or AC power requirements of the network equipment.
- When you connect power to installed equipment, do not make this connection through an extension cord or power strip.
- If your switch includes more than one power supply, connect each power supply to a different, independent power source.

If a power source fails, it will affect only the switch power supply to which it is connected. If all switch power supplies are connected to a single power source, the entire switch is vulnerable to a power source failure.

- In regions that are susceptible to electrical storms, plug your system into a surge suppressor.

For detailed power specifications for your equipment, see "Technical Specifications."

## Requirements for Power Cords

Most ExtremeSwitching switches do not ship with power cords. Visit
www.extremenetworks.com/product/powercords/ for information on selecting and
purchasing the correct power cords for use with specific Extreme Networks equipment. The web page provides specifications for power cords in each country so that you can purchase cords locally.

AC power cords must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 109.

## UPS (Uninterruptible Power Supply) Requirements

A UPS (uninterruptible power supply) is a device that sits between a power supply (such as a wall outlet) and a device (such as a switch) to prevent outages, sags, surges, and bad harmonics from adversely affecting the performance of the device.

A UPS traditionally can perform the following functions:

- Absorb relatively small power surges.
- Smooth out noisy power sources.
- Continue to provide power to equipment during line sags.
- Provide power for a period of time after a blackout has occurred.

In addition, some UPS devices or UPS-plus-software combinations provide the following functions:

- Automatically shut down equipment during long power outages.
- Monitor and log power supply status.
- Display the voltage (current draw) of the equipment.
- Restart equipment after a long power outage.
- Display the voltage currently on the line.
- Provide alarms on certain error conditions.
- Provide short-circuit protection.


## Select a UPS

To determine UPS requirements for your switch, answer these questions:

- What are the amperage requirements?
- What is the longest potential time period that the UPS would be required to supply backup power?
- Where will the UPS be installed?
- What is the maximum transition time that the installation will allow? (See Provide a Suitable UPS Transition Time on page 53.)


Note
Use a UPS that provides online protection.

## Calculate Volt-Amperage Requirements

To determine the size of UPS that you need:

1. Locate the voltage and amperage requirements for each piece of equipment. These numbers are usually found on a sticker on the back or bottom of your equipment.
2. Multiply the numbers together to get Volt-Amperes (VA):

VA $=$ Volts $\times$ Amperes
3. Add the VA from all the pieces of equipment together to find the total VA requirement.

To determine the minimum volt-amperage requirements for your UPS, add $30 \%$ to the total.

## Provide a Suitable UPS Transition Time

UPS transition time is the time required for the UPS to change from providing AC power derived from the utility (or mains) supply to providing AC power derived from the battery backup. UPS transition time is sometimes called UPS transfer time.

UPS transition times vary between UPS models and implementations, but shorter transition times are preferred. For Extreme Networks stacking products, a UPS transition time of 20 milliseconds or less ensures optimum performance and minimizes service interruptions.

For high-availability and fault-tolerant installations in which the switches use redundant power supply units (PSUs), ensure that each PSU in a switch is connected to a different UPS and that each UPS is powered by an independent AC supply. This will prevent service interruptions when a power source is lost, or when a UPS unit fails. (Note that a single, appropriately sized UPS can power PSUs in multiple switches. The recommendation is simply that for any given switch, the two PSUs should be connected to different UPS units.)

## Follow Applicable Industry Standards

Always follow applicable industry standards.
For more information, see the following ANSI/TIA/EIA standards:

- ANSI/TIA/EIA-568-A-the six subsystems of a structured cabling system
- ANSI/TIA/EIA-569-A—design considerations
- ANSI/TIA/EIA-606-cabling system administration
- ANSI/TIA/EIA-607-commercial building grounding and bonding requirements

You can access these standards at: www.ansi.org or www.tiaonline.org.

## Build Stacks

Introduction to Stacking on page 54
Plan to Create Your Stack on page 64
Set up the Physical Stack on page 68

A stack consists of a group of up to eight switches that are connected to form a ring. The stack offers the combined port capacity of the individual switches; it operates as if it were a single switch, making network administration easier.

Stacking is facilitated by the SummitStack-V feature - part of the Switch Engine Basic License features.

This topic describes the supported configurations for stacking switches, the considerations for planning a stack, and the steps for setting up the hardware. Read this chapter before installing the switches that will make up the stack.

Refer to the Stacking chapter in the Switch Engine 32.1 User Guide for information about configuring a stack, maintaining the stack configuration, and troubleshooting.

## Introduction to Stacking

When stacking switches, the stack operates as if it were a single switch with a single IP address and a single point of authentication. One switch - called the primary switch is responsible for running network protocols and managing the stack. The primary runs Switch Engine software and maintains all the software tables for all the switches in the stack.

All switches in the stack, including the primary switch, are called nodes. Figure 33 shows four nodes in a stack, connected to each other by SummitStack cables.

All connections between stack ports must be directly between switches. A stacking connection cannot pass through a third device, for example a Virtual Port Extender or an LRM/MACsec Adapter.


Figure 33: Switches Connected to Form a Stack
Using the SummitStack feature-part of the Switch Engine Edge license-a stack can combine switches from different series, provided that every switch in the stack:

- Runs in the same partition (primary or secondary).
- Runs the same version of Switch Engine.
- Includes support for stacking.

See Combine Switches from Different Series on page 66 for information about which switch series can be combined to form a stack.

The following topics introduce you to the basic principles of stacking and provide recommendations for creating stacks.

More information to answer your questions about stacking and help you plan your configuration is available on the Extreme Networks GTAC Knowledge Base.

## Build Basic Stacks

A stack can be created in either of two ways:

- In native stacking, switches are connected using either designated Ethernet data ports or dedicated stacking connectors.
- In alternate stacking, switches are connected using 10-Gbps Ethernet data ports that have been configured for stacking. These ports are located either on the switch itself or on option cards installed on either the front or the rear of the switch.

When planning and building your stack, be sure to follow port compatibility and cabling recommendations as described in this chapter.

## Slot Numbers in Stacks

A switch stack can be thought of as a virtual chassis. Each switch (node) operates as if it were occupying a slot in a chassis and is controlled by the primary. The high-speed stacking links function like the backplane links of a chassis.

Each switch in the stack is assigned a "slot number" during the initial software configuration of the stack. Starting at the switch with the console connection, numbers are assigned in numerical order following the physical path of the connected stacking cables. For example, if you follow the cabling recommendations presented in Connect the Switches to Form the Stack Ring on page 68 and configure a vertical stack from the console on the switch at the top of the physical stack, the switches will be assigned slot numbers 1 through 8 from the top down.

The top half of the number blinks if the switch is the primary, and the bottom half blinks if it is the backup. If the LED is steadily lit, the switch is a standby. If the LED is off the switch is not configured as a member of a stack.

The Mode button is used to cycle through three display modes for the port LEDs. After two presses of the Mode button, the port LEDs will enter the STK Display Mode, indicated by the STK LED. STK mode is used to indicate slot presence and slot number via the first eight port LEDs.


Figure 34: Mode Button with STK LED Example
The LED is steady green if the link is OK, blinking green if traffic is present, and off if no signal is present.

A quick way to verify that the cable connections match the software configuration is to check the stack number indicator on each switch. If the slot numbers do not line up in the order you arranged the switches, this might indicate that the stacking cable setup differs from what you intended when you configured the software. In this case, reconnect the cables in the correct order and perform the software configuration again.

## Primary/Backup Switch Redundancy

When your stack is operational, one switch is the primary switch, responsible for running network protocols and managing the stack.

To provide recovery in case of a break in the stack connections, you can configure redundancy by designating a backup switch to take over as primary if the primary switch fails. When you perform the initial software configuration of the stack, the "easy setup" configuration option automatically configures redundancy, with slot 1 as the primary and slot 2 as the backup. You can also configure additional switches as
"primary-capable," meaning they can become a stack primary in case the initial backup switch fails.

When assigning the primary and backup roles in mixed stacks, consider the feature scalability and the speed of each switch model. The easy setup configuration process selects primary and backup switches based on capability and speed. The following list shows the capabilities based on the ability to cross stack with other switch families. The most capable switches are shown at the top of each list:

1. ExtremeSwitching 5720
2. ExtremeSwitching 5520

For example, in a stack that combines 5720 series switches with 5520 series switches, a 5720 series switch might provide more memory and more features than the 5520 series switches in the stack. Consider these differences when selecting a primary node, selecting a backup node, and configuring failover operation.

## Important

The 5720 series switches can be stacked with themselves using Native V400 stacking (SummitStack-V400) or with the 5520 series switches using Native V200 stacking (SummitStack-V200). Assign the primary and backup roles to switches from the same series. For example, if the primary node is a 5720 series switch, the backup node must also be a 5720 series switch. The 5520 series switches must only be used as standby nodes when they are in a mixed stack with 5720 Series switches. Similarly, if the primary node is an 5520 series switch, the backup node must also be an 5520 series switch.

When easy setup compares two switches that have the same capability, the lower slot number takes precedence.

Follow the same ranking hierarchy when you plan the physical placement of the switches in the stack.

## SummitStack Topologies

Figure 35 presents a graphical representation of a stack and some of the terms that describe stack conditions.


Figure 35: Example of a Stack, Showing the Active Topology and the Stack Topology

A stack is the collection of all switches, or nodes, that are cabled together to form one virtual switch using the Switch Engine SummitStack feature.

The maximum cable length supported between switches depends on the types of switches in your stack, the installed option cards, and the configured stacking ports.

A stack topology is the set of contiguous nodes that are powered up and communicating with each other. In the example shown, Switch 8 is not part of the stack topology because it is not powered up.

An active topology is the set of contiguous nodes that are active. An active node is powered up, is configured for stack operation, and is communicating with the other active nodes.

Switch 5 in the example has failed, stacking is disabled on Switches 6 and 7, and Switch 8 has no power. As a result, the active topology includes Switches 1 through 4 only.

For more information about SummitStack terminology, see SummitStack Terms on page 60.

## Ring Topology: Recommended for Stacking

SummitStack nodes should be connected to each other in a ring topology. In a ring topology, one link is used to connect to a node and the other link is used to connect to another node. The result forms a physical ring connection. This topology is highly recommended for normal operation.

Figure 36 represents a maximal ring topology of eight active nodes.


Figure 36: Graphical Representation of a Ring Topology
Figure 37 shows what the same ring topology would look in actual practice. Each switch in the rack is connected to the switch above it and the switch below it. To complete the ring, a longer cable connects Switch 1 with Switch 8.


Figure 37: Switches Connected to Each Other in a Ring Topology
Note that, while a physical ring connection may be present, a ring active topology exists only when all nodes in the stack are active.

## Daisy Chain Topology: Not Recommended for Stacking

Stackable switches can be connected in a daisy-chain topology. This is a ring topology with one of the links disconnected, inoperative, or disabled. A daisy chain can be created when a link fails or a node reboots in a ring topology, but the daisy chain topology is not recommended for normal operation.

Connect your stack nodes in a ring topology, not a daisy-chain topology, for normal operation.

In Figure 38, the nodes delineated as the active topology are operating in a daisy-chain configuration, even though there is physically a ring connection in the stack.


Figure 38: Daisy Chain Topology
You might need to use a daisy chain topology while adding a new node, removing a node, or joining two stacks.

If you are using a daisy chain topology, the possibility of a dual primary condition increases. Before you create a daisy chain topology, read "Managing a Dual Primary Situation" in the Switch Engine 32.7 User Guide.

## SummitStack Terms

Table 14 describes the terms used for the SummitStack feature. These terms are listed in the recommended reading sequence.

## Table 14: List of Stacking Terms

| Term | Description |
| :--- | :--- |
| Stackable switch | An Extreme Networks switch that provides two stacking ports <br> and can participate in a stack. |
| Stacking port | A physical interface of a stackable switch that is used to allow <br> the connection of a stacking link. Stacking ports are point-to- <br> point links that are dedicated for the purpose of forming a <br> stack. |
| Native stacking | A stacking configuration in which stack members are <br> connected using either designated Ethernet data ports or <br> dedicated stacking connectors. |

## Table 14: List of Stacking Terms (continued)

| Term | Description |
| :--- | :--- |
| Alternate stacking | A stacking configuration in which stack members are <br> connected using 10-Gbps Ethernet data ports that have been <br> configured for stacking. These ports are located either on the <br> switch itself or on option cards installed on the rear of the <br> switch. |
| Stacking link | A cable that connects a stacking port of one stackable switch <br> to a stacking port of another stackable switch, plus the <br> stacking ports themselves. |
| Node | A switch that runs the Switch Engine operating system and is <br> part of a stack. Synonymous with stackable switch. |
| Stack | A set of stackable switches and their connected stacking links <br> made with the intentions that: (1) all switches are reachable <br> through their common connections; (2) a single stackable <br> switch can manage the entire stack; and (3) configurable <br> entities such as VLANs and link trunk groups can have <br> members on multiple stackable switches. A stack consists of <br> all connected nodes regardless of the state of the nodes. |
| Stack topology | A contiguously connected set of nodes in a stack that are <br> currently communicating with one another. All nodes that <br> appear in the show stacking command display are present <br> in the stack topology. |
| Active topology | A data path that is formed over the stacking links for the <br> purpose of determining the set of nodes that are present in <br> the stack topology and their locations in the stack. Every node <br> is always present in a stack path whether or not stacking is <br> enabled on the node. |
| Active node |  |
| A contiguous set of active nodes in a stack topology plus |  |
| the set of stacking links that connect them. When an active |  |
| topology consists of more than one node, each node in the |  |
| active topology is directly and physically connected to at |  |
| least one other node in the active topology. Thus, the active |  |
| topology is a set of physically contiguous active nodes within a |  |
| stack topology. |  |

## Table 14: List of Stacking Terms (continued)

| Term | Description |
| :---: | :---: |
| Candidate node | A node that is a potential member of an active topology, or an active node that is already a member of an active topology. A candidate node may or may not be an active mode - that is, it may or may not have joined the control path. |
| Node role | The role that each active node plays in the stack - either primary, backup, or standby. |
| Primary node | The node that is elected as the primary node in the stack. The primary node runs all of the configured control protocols such as OSPF (Open Shortest Path First), RIP (Routing Information Protocol), Spanning Tree, and EAPS (Extreme Automatic Protection Switching). <br> The primary node controls all of its own data ports as well as all data ports on the backup and standby nodes. To accomplish this, the primary node issues specific programming commands over the control path to the backup and standby nodes. |
| Backup node | The node assigned to take over the role of primary if the primary node fails. The primary node keeps the backup node's databases synchronized with its own databases in preparation for such an event. <br> If and when the primary node fails, the backup node becomes the primary node and begins operating with the databases it has previously received. In this way, all other nodes in the stack can continue operating. |
| Standby node | A node that is prepared to become a backup node in the event that the backup node becomes the primary node. When a backup node becomes a primary node, the new primary node synchronizes all of its databases to the new backup node. When a node operates in a standby role, most databases are not synchronized - except those few that directly relate to hardware programming. |
| Acquired node | A standby or backup node that is acquired by a primary node. This means that the primary node has used its databases to program the hardware of the standby or backup node. The standby or backup node has acted as a hardware programming proxy, accepting the instructions of the primary node to do so. <br> An acquired backup node maintains the databases needed to reflect why the hardware is programmed as it is. However, a standby node does not. An acquired node can be re-acquired (without a reboot) by the backup node only when the backup node becomes the primary node, and only when both the backup and standby nodes were already acquired by the same primary node at the time of its failure. |
| Data ports | The set of ports on a stackable switch that are available for connection to your data networks. Such ports can be members of a user-configured VLAN or trunk group. They can be used for Layer 2 and 3 forwarding of user data traffic, for mirroring, or other features you can configure. Data ports are different from stacking ports. |

## Table 14: List of Stacking Terms (continued)

| Term | Description |
| :--- | :--- |
| Failover | The process of changing the backup node to the primary node <br> when the original primary node has failed. <br> When a primary node fails, if a backup node is present, and if <br> that node has completed its initial synchronization with the <br> primary node, then the backup node assumes the role of <br> primary node. The standby nodes continue their operation and <br> their data ports do not fail. |
| Hitless failover | A failover in which all data ports in the stack, except those of <br> the failing primary node, continue normal operation when the <br> primary node fails. |
| Node address | The unique MAC address that is factory-assigned to each <br> node. |
| Node role election | The process that determines the role for each node. The <br> election takes place during initial stack startup and elects one <br> primary node and one backup node. An election also takes <br> place after a primary node failover, when a new backup node <br> is elected from the remaining standby nodes. |
| Node role election <br> priority | A priority assigned to each node, to be used in node role <br> election. The node with the highest node role election priority <br> during a role election becomes the primary node. The node <br> with the second highest node role election priority becomes <br> the backup. |
| Stack segment | A node that has achieved operational state as a card in a slot. <br> The operational state can be displayed using the show slot <br> \{ slot \{detail $\}$ |
| System detail \} command. |  |

## Plan to Create Your Stack

Use the information in the following topics to plan the physical makeup of your stack - switches, versatile interface modules (VIMs), and cables - and the stacking protocols you will use. Included are:

- Guidelines and other information for each switch model in your stack
- Considerations for combining different switch models in a stack
- Information about stacking cables


## Enable and Disable the Stacking-Support Option

The stacking-support option is enabled by default for many switch and option card configurations. However, some configurations require you to enable the stackingsupport option before a switch can participate in a stack.

- To enable stacking-support, issue the enable stacking-support command.

You must enable stacking-support individually for every switch in the stack that does not have stacking support enabled by default.

- To disable stacking support, configure the switch data ports to use the Ethernet protocol instead of the stacking protocol.
Use the disable stacking-support command.


## Recommendations for Placing Switches for Stacked Operation

For best results in a SummitStack configuration, follow these recommendations for physically situating your equipment:

- Use the shortest possible stacking cables to connect the switches in the stack. This reduces the likelihood that the stacking cables might accidentally be damaged or disconnected. Stacking cables are available in lengths ranging from 0.3 meters to 100 meters.
- When possible, place all switches for the stack in the same rack or in adjacent racks. This facilitates using shorter stacking cables.
- The primary switch, or node, is the switch through which you will perform the initial stack configuration, using the console port. For simplicity and ease of connecting the stacking cables, plan to designate the top switch in a vertical physical stack as the primary switch. If switches are installed in several adjacent racks, place the primary switch at one end of the row.
- Physically locate the intended primary and backup nodes adjacent to each other, and plan to connect these nodes to each other directly so that Switch Engine application synchronization traffic is localized to a single stack link.
- On the primary node, connect the Ethernet management port to your management network.
- To provide management access to the stack in case of a failure in the primary switch, connect all switches that will participate in redundancy to your management network using the Ethernet management port on each switch.
- Use stacking cables to interconnect the stack nodes into a ring topology (see Ring Topology: Recommended for Stacking on page 58). Include only the nodes that you expect to be active in the stack.

Follow the recommendations in Recommendations for Configuring Stacks on page 65 to configure the software for your stack.

The recommended procedures for installing and interconnecting a stack are found in Set up the Physical Stack on page 68.

## Recommendations for Configuring Stacks

When deploying a new stack, follow these recommendations for configuring the software:

- Plan to use the stack as if it were a single multi-slot switch. You need to decide the number and type of stackable switches in the stack and how the stack ports will be connected to the network.
- You can physically connect the stack to your networks before the nodes are configured. However, the default configuration on a switch in non-stacking mode assumes a default untagged VLAN that contains all switch ports. When first powered on, the switch acts as a Layer 2 switch, possibly resulting in network loops.
- Make sure all nodes support the SummitStack feature and are running the same Switch Engine software version. (See the Switch Engine 32.1 Feature License Requirements.) To view the Switch Engine software version on a node, restart the node and run the command:

```
show version {detail | process name | images {partition partition}
{slot slot_number} } .
```

If any node does not have the right version, install the correct version on that node. Use the same image partition on all nodes. After stacking is enabled, images can be upgraded from the stack only if the same image is selected on all nodes.

- If you intend to deploy new units that might be part of a stack in the future, turn on stacking mode during initial deployment to avoid the need for a future restart. The only disadvantages of stacking mode are the loss of QoS (quality of service) profile QP7 and the reservation of some of the packet buffer space for stacking control traffic.
- You can configure the stack by logging into the primary node or any of the other nodes.
- If the primary-capable stackable switches have different purchased license levels, you might need to configure license level restrictions on some nodes before those nodes can join the stack. See the Switch Engine 32.7 User Guide for more information about managing licenses.
- If the stack supports any feature pack license (such as MPLS or Direct Attach), that feature pack license must be installed on all primary-capable nodes to support that feature and to prevent traffic interruption if a failover event occurs.
- Most stacking specific configurations are effective only after a restart. However, most non-stacking configuration commands take effect immediately and require no restart.
- A basic stack configuration can be achieved by using the Easy Setup procedure, as described in the Switch Engine 32.7 User Guide.
- If EAPS, Spanning Tree, or any Layer 2 redundancy protocol is not running on the network, make sure that your network connections do not form a network loop.

Follow the recommendations in Recommendations for Placing Switches for Stacked Operation on page 64 for physically situating your equipment.

## Combine Switches from Different Series

5420 Series switches can stack with themselves using standard 10Gb Ethernet Optics and passive and active cables in the SFP+ ports, using SummitStack-V40 stacking (10G link running at HG). 5420 Series switches can also be stacked with 5320 Series or 5520 Series switches using Alternate stacking (10G link running at HG).

## Select Stacking Cables

Stacking connections using the native stacking ports require stacking cables that are specific to the type of stacking port. These cables are available from Extreme Networks in lengths from 0.5 meter to 100 meters.
Note
For the most recent information about available cables, contact your Extreme
Networks sales representative or refer to the Extreme Optics website.
! Caution
Use of non-recommended cables or optics could cause stack instability.

## Using the Extreme Stacking Tool

The Extreme Stacking Tool provides an easy way to plan your stack. As you select various switch models and stacking methods, the tool shows you:

- What switch models can be stacked together and which cannot.
- Statistics showing the routing options that are available with every stack combination.
- Recommendations about which switches should be the primary and backup nodes.
- Information about the supported versions of Switch Engine for every combination.

To use the Stacking Tool, follow these steps.

1. Open the Stacking Tool (https://stackingtool.extremenetworks.com/StackingTool/) in a web browser.


## Note

The Stacking Tool is also available in the Support Tools section of the Extreme Portal.
2. Find a switch model in the Switches column.

Each switch model is represented by a rectangle, as shown in the example in the following figure. In this example, stacking ports are represented by $U 1$ and $U 2$ on the right side.


Figure 39: 5420 Switches Shown in the Stacking Tool


Tip
Select a rectangle to display more information about the switch model and the VIMs (if any) that it can use for stacking.
3. Drag the rectangle to the first slot in the Stack column in the middle of the page. To the right of the Stack column, the tool displays statistics about available routes, supported software versions, and primary/backup recommendations.


Tip
If you don't see statistics and other information, select the arrow (> symbol) to the immediate right of the Stack column.
4. Use the tool in any of the following ways:

- Select other switches and drag them to the slots in the stacking column.
- For any switch in the stack, select the U1 and U2 symbols to choose stacking methods - for example, SummitStack-V and SummitStack-V80.
- To remove a switch from the stack, drag it away from the stacking column.

Whenever you add or remove a switch from the stack, the statistics and recommendations update automatically.

In addition to statistics and recommendations, colors in the display show whether the selected switch models and stacking methods are compatible.

Table 15: Colors in the Stacking Tool Display

| Color | Meaning |
| :--- | :--- |
| Green | Compatible and preferred |
| Blue | Compatible |
| Yellow | Incompatible with the selected primary node |
| Red | Incompatible |

## Set up the Physical Stack

After you have installed the individual switches (see "Installing Your Switch"), follow these steps to create the physical stack.

1. Connect the switches that will form the stack.

See Connect the Switches to Form the Stack Ring on page 68.
2. Connect the switches to your management network.

See Connect Your Stack to the Management Network on page 71.
After setting up and connecting the switches, perform software configuration for the stack. See "Configuring a New Stack" in the Switch Engine 32.7 User Guide.

## Connect the Switches to Form the Stack Ring

After you have installed the individual switches, connect them together using the stacking cables.

The examples in this section show cable connections and the recommended order for connecting ports to facilitate the easy setup configuration.

In general, it is best to connect Stack Port 2 on one switch to Stack Port 1 on the switch with the next higher slot number. Although you can connect the switches in any order, connecting them as shown in these examples will produce better predictability and easier software configuration.

All connections between stack ports must be directly between switches. A stacking connection cannot pass through a third device, for example a Virtual Port Extender or an LRM/MACsec Adapter.

It is essential to create an unbroken data path through all the switches in the stack.

## Examples of Valid Stacking Configurations

The examples in the following sections show various physical stacking arrangements: all switches in a single rack, switches in two adjacent racks, and switches at the tops of several racks in a row.

## Example: Basic Stack with Four Switches

This example shows a stack of four switches in a single rack.
The slot numbers presume a console connection to the switch at the top of the physical stack.

Figure 40 shows cable connections for a 4-node stack using SummitStack 40G cables to connect switches with integrated SummitStack ports.


## Figure 40: SummitStack Cable Connections Using Four Switches with Integrated SummitStack Ports

Table 16 lists the recommended order for connecting the stacking ports in this example.

Table 16: Basic Stack with Four Switches: Connections

| Connect this slot and port ... |  | $\ldots$ To this slot and port |  |
| :--- | :--- | :--- | :--- |
| Slot 1 | Stack Port 2 | Slot 2 | Stack Port 1 |
| Slot 2 | Stack Port 2 | Slot 3 | Stack Port 1 |
| Slot 3 | Stack Port 2 | Slot 4 | Stack Port 1 |
| Slot 4 | Stack Port 2 | Slot 1 | Stack Port 1 |

## Example: Basic Stack with Eight Switches

Figure 41 shows cable connections for an 8-node stack using SummitStack 40G cables to connect switches with integrated SummitStack ports.


Figure 41: SummitStack Cable Connections Using Eight Switches with Integrated SummitStack Ports

Table 17 lists the recommended order for connecting the stacking ports in this example.

Table 17: Basic Stack with Eight Switches: Connections

| Connect this slot and port . . |  | $\ldots$ To this slot and port |  |
| :--- | :--- | :--- | :--- |
| Slot 1 | Stack Port 2 | Slot 2 | Stack Port 1 |
| Slot 2 | Stack Port 2 | Slot 3 | Stack Port 1 |
| Slot 3 | Stack Port 2 | Slot 4 | Stack Port 1 |
| Slot 4 | Stack Port 2 | Slot 5 | Stack Port 1 |
| Slot 5 | Stack Port 2 | Slot 6 | Stack Port 1 |
| Slot 6 | Stack Port 2 | Slot 7 | Stack Port 1 |
| Slot 7 | Stack Port 2 | Slot 8 | Stack Port 1 |
| Slot 8 | Stack Port 2 | Slot 1 | Stack Port 1 |

## Example: Stacked Switches across Several Racks

Figure 42 shows five switches installed at the tops of five adjacent racks. To accommodate the shortest possible cables, immediately adjacent switches are not always connected together. Port 2 on one switch is connected to Port 1 on the next connected switch. If the easy setup feature is used to configure the stack parameters, the assigned slot numbers will be as shown in the figure.


Figure 42: Top-of-Rack Stack Installation
Table 18 lists the recommended order for connecting the stacking ports in this example.

Table 18: Stacked Switches across Several Racks: Connections

| Connect this slot and port ... |  |  | $\ldots$ To this slot and port |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Slot 1 | Rack A | Port 2 | Slot 2 | Rack B | Port 1 |
| Slot 2 | Rack B | Port 2 | Slot 3 | Rack D | Port 1 |
| Slot 3 | Rack D | Port 2 | Slot 4 | Rack E | Port 1 |
| Slot 4 | Rack E | Port 2 | Slot 5 | Rack C | Port 1 |
| Slot 5 | Rack C | Port 2 | Slot 1 | (Rack A | Port 1 |

## Connect Your Stack to the Management Network

Before you can configure Switch Engine for a new stack, your management console must be connected to at least one switch in the stack.

Connect your management console to the Ethernet management port on the switch that will become the stack primary node. If you plan to configure redundancy, connect to the console ports of all switches in the stack that will be primary-capable.

If you followed the cabling examples in Connect the Switches to Form the Stack Ring on page 68, and if you use the Easy Setup configuration procedure, only slots 1 and 2 can become the primary node. However, you can connect all switch management ports in the stack if you choose to do so. There is an alternate IP address configuration that will enable you to log in directly to each switch in the stack through its Ethernet management port.

See the Switch Engine User's Guide for the version of Switch Engine you are using, for instructions to perform the software configuration for your stack.


## Installing Your Switch

Safety Considerations for Installing Switches on page 73
What You Will Need for the Installation on page 73
Attach the Switch to a Rack or Cabinet on page 74
Install Optional Components on page 75
Install Internal AC Power Supplies on page 76
Connect Network Interface Cables on page 76
Turn on the Switch on page 77

Before you attempt to install or remove an Extreme Networks switch, read the precautions in Safety Considerations for Installing Switches on page 73.

Extreme Networks switches fit into standard 19-inch equipment racks.
A two-post rack-mounting kit is provided with the switch.
The installation process includes the following tasks:

1. Prepare to install the switch.

See What You Will Need for the Installation on page 73.
2. Install the switch in the rack.

See Attach the Switch to a Rack or Cabinet on page 74.
3. Install optional components: optical transceivers and cables.

See the instructions in Install Optional Components on page 75.
4. If your switch does not come with an installed internal power supply, install one or two power supplies.
See Install Internal AC Power Supplies on page 76.
5. Power up the switch.

See Turn on the Switch on page 77.
6. Connect network interface cables.

See Connect Network Interface Cables on page 76.
7. Perform initial network connection and configuration.

See Activate and Verify the Switch on page 78.

## Safety Considerations for Installing Switches

Read the information in this chapter thoroughly before you attempt to install or remove an Extreme Networks switch.

Ensure that proper ESD (electrostatic discharge) controls are in use before switch maintenance is performed. This includes but is not limited to wrist straps that are grounded to the switch housing and earth grounds.


Warning
Connect the chassis ground wire before you connect any DC power cables. Disconnect the ground wire after you disconnect all DC power cables.

Take care to load the equipment rack so that it is not top-heavy. Start installing equipment at the bottom of the rack and work up.

Do not cover vents that would restrict airflow.

$\stackrel{000}{\equiv} \quad$| Note |
| :--- |
| See Safety and Regulatory Information on page 112 for additional safety |
| information. |

## What You Will Need for the Installation

Ensure that you have followed the guidance in "Preparing to Install," and ensure that you have the appropriate people and tools on hand.

Installing Extreme Networks switches is easiest when there are two people to maneuver the switch and attach mounting hardware.

Provide enough space in front of and behind the switch so that you can service it easily. Allow a minimum of 122 cm ( 48 in ) in front of the rack and 76 cm ( 30 in ) behind the rack.

If your switch has internal power supplies, make sure they have the same airflow direction as the fans in the switch.

Check Quick Reference Guide for your switch model to see what hardware is provided in the switch packaging. Most Extreme Networks switches come with the following hardware:

- Two rack mounting brackets (ears) adaptable for either a front-mount or mid-mount installation.
- Two long mounting brackets (rails) or slider kits for mounting in a four-post installation.
- Screws for attaching mounting hardware to the switch housing.

You need the following additional tools and equipment. These are not provided with your switch.

- Rack mounting screws: eight for a four-post installation; four for other installations. The size of the screws will vary based on the rack system you are using.
- Screwdriver for securing the rack mounting screws.
- \#2 Phillips screwdriver to attach bracket screws that are provided with the switch. Use a magnetic screwdriver.
- AC power cord. For switches with removable AC power supplies, a separate power cord is needed for each installed power supply. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 109.
- ESD-preventive wrist strap for installing optional ports at the back of the switch.


## Attach the Switch to a Rack or Cabinet

To attach a switch to a four-post rack or a cabinet, follow these steps.
Take care to load the rack so that it is not top-heavy. Start installing equipment at the bottom and work up.

1. On one side of the switch, set a mounting bracket against the switch housing. Set the flange even with the front panel of the switch - or, if you are mid-mounting the switch, set the flange toward the back of the switch.

The following figures illustrate how to attach the brackets for two common mounting options.

- Figure 43 shows a mid-mount configuration using a short mounting bracket.
- Figure 44 shows a front-mount configuration using a short mounting bracket.


Figure 43: Mid-Mount: Attaching Short Mounting Brackets


## Figure 44: Front Mount: Attaching Short Mounting Brackets

2. Use the small bracket-mounting screws (provided) to secure the bracket to the switch housing.
If using screws other than those provided, ensure that the threaded length of the screws is within 4 to 5 cm .
3. Repeat step 1 and step 2 to attach the other bracket to the other side of the switch.
4. Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack.
(Rack-mounting screws are not provided.)
5. If a grounding lug is present, ground the switch.
a. At one end of the wire, strip the insulation to expose $1 / 2$ inch ( 12 mm ) of bare wire.
b. Identify the grounding lug on the back of the switch.
c. Insert the stripped wire into the grounding lug.
d. Tighten the retaining screw with a straight-tip torque screwdriver to 20 in - lb (2.25 Nm ).
e. Connect the other end of the wire to a known reliable earth ground point at your site.

After the switch is secured to the rack or cabinet, install optional components using the instructions in Install Optional Components on page 75.

Then, install one or two power supplies using the instructions in Install Internal AC Power Supplies on page 76.

## Install Optional Components

After the switch is secured to the rack, install optional components.
ExtremeSwitching switches support the use of pluggable transceivers and cables in the SFP+, SFP28, QSFP+, and QSFP28 formats.

For a list of the optical components supported with ExtremeSwitching devices, see the Extreme Optics website.

## Pluggable Transceiver Modules

Extreme Networks offers several optical transceiver modules for transmitting and receiving data over optical fiber rather than through electrical wires.

## Optical Cables

Direct-attach copper and fiber cables provide connections between populated SFP+, SFP28, QSFP+, and QSFP28 ports.

## Install Internal AC Power Supplies

The following AC internal power supplies (PSUs) are available for 5420 Series switches:
150 W AC PSU
Part number XN-ACPWR-150W is compatible with 5420F-24T-4XE, 5420F-24S-4XE, 5420F-48T-4XE, 5420M-24T-4YE, and 5420M-48T-4YE switch models.

## 600 W AC PSU

Part number XN-ACPWR-600W is compatible with 540F-24P-4XE and 5420F-8W-16P-4XE switch models.

## 920 W AC PSU

Part number XN-ACPWR-920W is compatible with 5420F-48P-4XE, 5420F-48P-4XL, 5420M-24W-4YE, 5420M-48W-4YE, 542OM-16MW-32P-4YE switch models.

## 1200 W AC PSU

Part number XN-ACPWR-1200W is compatible with 5420F-16W-32P-4XE and 5420F-16MW-32P-4XE switch models.

2000 W AC PSU
Part number XN-ACPWR-2000W is compatible with $5420 \mathrm{M}-48 \mathrm{~W}-4 \mathrm{YE}$ and 5420M-16MW-32P-4YE switch models.

For installation instructions, see Replace Internal AC Power Supplies on page 83.

## Connect Network Interface Cables

Use the appropriate type of cable to connect the ports of your switch to another switch or router.

| Cable Type | Maximum Distance |
| :--- | :--- |
| CAT5E | 55 meters |
| CAT6 | 55 meters |
| CAT6A | 100 meters |

Working carefully, one port at a time, do the following:

1. Verify that you have identified the correct cable for the port.
2. Use an alcohol wipe or other appropriate cleaning agent to clean the cable connectors; make sure they are free of dust, oil, and other contaminants.
3. If you are using optical fiber cable, align the transmit ( $T x$ ) and receive ( $R x$ ) connectors with the correct corresponding connectors on the switch or the I/O module.
4. Press the cable connectors into their mating connectors on the switch or I/O module until the cable connector is firmly seated.
5. Repeat the preceding steps for the remaining cables on this or other switches or I/O modules.
6. Dress and secure the cable bundle to provide appropriate strain relief and protection against bends and kinks.

## Turn on the Switch

An AC power cord is not included with the AC power supply. You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 109.

To turn on an Extreme Networks switch, do the following.

1. For switches that are connected to AC power, connect the power cord to the AC power input socket on the switch (or power supply) and to an AC power outlet.
2. For switches that are connected to DC power, do the following:
a. Verify that the DC circuit is de-energized.
b. Verify that the ground wire is connected to the grounding lug on the rear of the switch.

The grounding lug is identified by the international symbol for earth ground: $\xlongequal[=]{ }$
c. Verify that the DC power input cables are properly connected to the DC power supplies at the rear of the switch.
d. Energize the circuit.
3. When power is connected, verify that the PSU LED turns green.

When the PSU LED has turned green, follow the instructions in Connect Network Interface Cables on page 76.

If the PSU and RPS LEDs do not turn green, refer to the LEDs topic for your switch model (in 5520 Series Switch LEDs) for troubleshooting information.

## Activate and Verify the Switch

Connect the Switch to a Management Console on page 78
Log in for the First Time on Switch Engine on page 78
Configure the Switch's IP Address for the Management VLAN on page 80
Change the Switch OS via the Bootloader Menu on page 80
Change the Switch OS via the Startup Menu on page 81
Log In for the First Time on Fabric Engine on page 81

Operating system selection and activation can be done via the following:

1. XIQ-automatically by pre-selecting the preferred switch OS
2. Bootloader menu - option to change the switch OS on initial activation only
3. Startup menu in Switch Engine CLI - post-Bootloader menu prompt

Refer to Read Me First - Switch OS Selection for Universal Hardware shipped with your switch, or visit https://www.extremenetworks.com/support/switch-os-selection/ for information on changing your switch OS after initial activation.

Otherwise, use the instructions in the following topics.

## Connect the Switch to a Management Console

Connect each switch's serial console interface (an RJ45 jack) to a PC or terminal. The PC or terminal will serve as the management console, used to monitor and configure the switch.

The default communication protocol settings for the serial console interface are:

- Baud rate: 115200
- Data bits: 8
- Stop bit: 1
- Parity: None


## Log in for the First Time on Switch Engine

Onboard your switch with ExtremeCloud™. Log in or create your XIQ administrator account in order to select your switch operating system with XIQ at https:// extremecloudiq.com

Switch Engine is the default operating system for the 5420 Series. If you want to run Fabric Engine, see Change the Switch OS via the Bootloader Menu on page 80 or Change the Switch OS via the Startup Menu on page 81.

Before logging in, verify that the switch LEDs are on (solid green or blinking green) and that it is connected to a management console as described in Connect the Switch to a Management Console on page 78.

To perform the initial login and complete initial configuration tasks, follow these steps.

1. Using a terminal emulator such as PuTTY or TeraTerm, connect to the switch using the serial port connection. You can also connect to the switch via telnet or SSH.
Be sure that your serial connection is set properly:

- Baud rate: Baud rate: 115200
- Data bits: 8
- Stop bit: 1

2. At the management console, press [Enter] one or more times until you see the login prompt.
3. At the login prompt, log in using the default user name admin.

For example:
login: admin
$\left[\begin{array}{l}\text { Note } \\ \equiv=000 \\ \text { For the initial password, simply press [Enter]. }\end{array}\right.$

When you have successfully logged on to the system, the command line prompt displays the system name (for example, 5420F-24T-4XE-SwitchEngine\#) in its prompt. You are logged in with administrator privileges, which gives you access to all switch functions.
4. Respond to the screen prompts to configure the level of security you need.

$\stackrel{$|  Note  |
| :--- |
|  For more information about logging in to the switch and configuring switch  |
|  management access, see the Switch Engine 32.7 User Guide.  |$}{\text { mand }}$

5. Enter show version.

The switch serial number is displayed, as highlighted in the following example. Make a note of this number for future reference.

```
Transit.3 # show version
Switch : 800444-00-05 0723G-01234 Rev 5.0 BootROM:
```

Configure the switch's IP address for the management virtual LAN (VLAN) by following the steps in Configure the Switch's IP Address for the Management VLAN on page 80.

## Configure the Switch's IP Address for the Management VLAN

You can configure the switch's IP address for the management virtual LAN (VLAN).


Note
The management port is part of the mgmt VLAN. This VLAN membership cannot be changed.

Log in to the management console, connect to the switch, and follow these steps.

1. Assign a name, IP address, and default subnetwork mask for the VLAN as shown in the following example.
```
configure vlan vlan_name ipaddress nn.nn.nn.nn 255.255.255.0
```

Your changes take effect immediately.
2. Enter save to save your configuration changes so that they will be in effect after the next system reboot.


Note
For more information about saving configuration changes, see the Switch Engine 32.1 User Guide.

The configuration is saved to the configuration database of the switch.

## Change the Switch OS via the Bootloader Menu

Onboard your switch with ExtremeCloudTM. Log in or create your XIQ administrator account in order to select your switch operating system with XIQ at https:// extremecloudiq.com.

Switch Engine is the default operating system for the Universal Hardware switch. You can change the switch OS from the Bootloader menu on initial activation only by completing the following steps:

1. Using a terminal emulator such as PuTTY or TeraTerm, connect to the switch using the serial port connection.
Be sure that your serial connection is set properly:

- Baud rate: Baud rate: 115200
- Data bits: 8
- Stop bit: 1

2. Once the switch is powered on, after seeing the "Boot Menu" screen, press the [spacebar] key within 30 seconds.
3. Use the down-arrow key to select Change the switch OS to Fabric Engine, then select Enter.

The switch installs Fabric Engine, then resets. Once the NOS is selected, the "Boot Menu" will only wait for 3 seconds before continuing.
To change the switch OS if you take no action during the initial boot, see Change the Switch OS via the Startup Menu on page 81.

## Change the Switch OS via the Startup Menu

Onboard your switch with Switch Engine ${ }^{T M}$. Log in or create your XIQ administrator account in order to select your switch operating system with XIQ at https:// extremecloudiq.com.

Switch Engine is the default operating system for the Universal Hardware switch. If you take no action during the initial bootup, you can change the switch OS from the Startup menu on initial activation only by completing the following steps:

1. Connect to the switch via telnet, SSH, or console with a baud rate of 115200 .
2. At the login prompt, log in using the default user name admin.

For example:
login: admin

| 0 |
| :---: |
| 三 |

3. The switch prompts you to choose which switch personality you want to use:

This switch can alternatively run the Fabric Engine Network Operating System.
If you answer yes, all data including configurations, logs and debugs will be cleared, except for the license activation status, Fabric Engine will be installed, and Switch Engine will be removed. Would you like to change the switch OS to Fabric Engine? [y/N/q]:

The switch installs Fabric Engine, then resets.
After resetting, your switch will boot with Fabric Engine. See Log In for the First Time on Fabric Engine on page 81 for more information.

## Log In for the First Time on Fabric Engine

Onboard your switch with ExtremeCloud™. Log in or create your XIQ administrator account in order to select your switch operating system with XIQ at https:// extremecloudiq.com.

To perform the initial login and complete initial configuration tasks, follow these steps.

1. Use a terminal emulator such as PuTTY or TeraTerm to connect to the switch through the serial port connection.
You can also connect to the switch via telnet or SSH. Be sure that your serial connection is set properly:

- Baud rate: 115200
- Data bits: 8
- Stop bit: 1

2. Press [Enter] one or more times until you see the login prompt.
3. At the login prompt, log in using the default user name rwa.

For example:
login: rwa
When prompted for the password, enter rwa.
When you are logged in with the role-based authentical level of rwa, you can configure the login and password values for the other role-based authentication levels.


## Replace Internal AC Power Supplies

## Replacing a 150 W AC Power Supply on page 83 <br> Replacing a 600 W, 920 W, 1200 W, or 2000 W AC PoE Power Supply on page 85

This topic describes how to replace internal AC power supplies in a switch.
Caution
Power supplies that support PoE cannot be installed in switches that do not support PoE. The switch operating system prevents PoE power contribution from a power supply that is not listed for use with that particular switch model.

## Replacing a 150 W AC Power Supply

The 150 W AC PSU (Model XN-ACPWR-150W with front-to-back ventilation airflow) is compatible with 5420F-24T-4XE, 5420F-24S-4XE, 5420F-48T-4XE, 5420M-24T-4YE, and 5420M-48T-4YE switch models.

5420F models have 1 hot-swappable PSU and 1 fixed PSU. 5420M models have 2 hotswappable PSUs. In a switch with a redundant power configuration, you can replace one AC power supply without powering down the switch.

## Caution

A 150 W AC power supply cannot be installed and used in a switch that supports PoE.

You need the following tools and materials to replace a 150 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

To replace a 150 W AC power supply, follow these steps:

1. Disconnect the $A C$ power cord from the wall outlet and from the power supply.
2. Note the orientation of the installed power supply, and the location of the latching tab at the right of the unit.
3. Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.
See Figure 45.


Figure 45: Removing an 150 W AC Power Supply
4. Carefully slide the power supply the rest of the way out of the switch.


## Caution

Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.


Note
If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.
5. Verify that the replacement power supply is oriented the same way as the unit you removed, and has the same airflow direction.
6. Carefully slide the power supply all the way into the power supply bay.

See Figure 46.


Figure 46: Installing an 150 W AC Power Supply
7. Push the power supply in until the latch snaps into place.


Caution
Do not slam the power supply into the switch.
8. Connect the power cord to the power supply and to a grounded AC power outlet.


Warning
Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.
9. If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

## Replacing a 600 W, 920 W, 1200 W, or 2000 W AC PoE Power Supply

The 600W AC PoE PS (Model XN-ACPWR-600W with front-to-back ventilation airflow) is compatible with 540F-24P-4XE and 5420F-8W-16P-4XE switch models.

The 920 W AC PoE PSU (Model XN-ACPWR-920W with front-to-back ventilation airflow) is compatible with 5420F-48P-4XE, 5420F-48P-4XL, 5420M-24W-4YE, 5420M-48W-4YE, 5420M-16MW-32P-4YE switch models.

The 1200W AC PoE PS (Model XN-ACPWR-1200W with front-to-back ventilation airflow) is compatible with 5420F-16W-32P-4XE and 542OF-16MW-32P-4XE switch models.

The XN-ACPWR-2000W (Model XN-ACPWR-2000W with front-to-back ventilation airflow) is compatible with $5420 \mathrm{M}-48 \mathrm{~W}-4 \mathrm{YE}$ and $5420 \mathrm{M}-16 \mathrm{MW}-32 \mathrm{P}-4 \mathrm{YE}$ switch models.

5420F models have 1 hot-swappable PSU and 1 fixed PSU. 5420M models have 2 hotswappable PSUs. In a switch with a redundant power configuration, you can replace one AC power supply without powering down the switch.


## Caution

The $600 \mathrm{~W}, 920 \mathrm{~W}, 1200 \mathrm{~W}$, and 2000 W AC power supplies that support PoE cannot be installed and used in a switch that does not support PoE.

Note
The switch operating system prevents PoE power contribution from a power supply that is not listed for use with that particular switch model.

You need the following tools and materials to replace a $600 \mathrm{~W}, 920 \mathrm{~W}, 1200 \mathrm{~W}$, or 2000 W AC PoE power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

To replace a 600 W, 920 W, 1200 W, or 2000 W AC PoE power supply, follow these steps:

1. Disconnect the AC power cord from the wall outlet and from the power supply.
2. Note the orientation of the installed power supply, and the location of the latching tab at the right of the unit.
3. Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.

See Figure 47.


Figure 47: Removing a 600 W, 920 W, 1200 W, or 2000 W AC Power Supply
4. Carefully slide the power supply the rest of the way out of the switch.

Caution
Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.


Note
If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.
5. Verify that the replacement power supply is oriented the same way as the unit you removed, and has the same airflow direction.
6. Carefully slide the power supply all the way into the power supply bay.

See Figure 48.


Figure 48: Installing a 600 W, 920 W, 1200 W, or 2000 W AC Power Supply
7. Push the power supply in until the latch snaps into place.

## Caution

Do not slam the power supply into the switch.
8. Connect the power cord to the power supply and to a grounded AC power outlet.


Warning
Always be sure that the source outlet is properly grounded before plugging the $A C$ power cord into the AC power supply.
9. If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.


## Replace Fan Modules

## Pre-Installation Requirements on page 88 <br> Airflow Direction Requirements on page 88 <br> Replace a Fan Module on page 88

For switches with replaceable fan modules, refer to the following information to replace the fan modules.

## $\stackrel{000}{=} \quad$ Note

Read all of the information in this chapter thoroughly before attempting to replace a fan module.

## Pre-Installation Requirements

You need a $1 / 4$-inch flat-blade screwdriver to replace a fan module.
Caution
Be sure to finish the replacement procedure promptly. The switch could overheat if left without cooling for an extended period.

## Airflow Direction Requirements

5420 Series switches are available with front-to-back airflow. In this switch, the fan modules are labled Air Out.

All installed fan modules must blow air in the same direction and must match the airflow direction of the installed power supplies.

## Replace a Fan Module

To replace the fan module in a switch, do the following:

1. Completely loosen the captive retaining screws on the fan module.

On most switch models, the fan module has two retaining screws at the bottom corners of the module, as shown in Figure 49.

On some switch models, the fan module has a single retaining screw at the top right corner of the module.
2. Slide the fan module out of the switch and set it aside.


Figure 49: Removing a Fan Module
3. Verify that the airflow direction on the replacement fan module matches that of the installed fan modules.
Fans with front-to-back airflow are labeled Air Out. Fans with back-to-front airflow are labeled Air In.
4. Carefully slide the replacement fan module into the switch.


Figure 50: Installing a Fan Module
5. Align and fully tighten the captive retaining screws.

## Monitoring the Device

## 5420 Series Switch LEDs on page 90

The following topics help you monitor the status of the switch/appliance as it is running.

## 5420 Series Switch LEDs

ExtremeSwitching 5420 Series front panel port LEDs, as described in the following table:

Table 19: 5420 Series Port LEDs

| LED | Color/State | Port State |
| :--- | :--- | :--- |
| SYStem status LED <br> (Legacy MGMT function) | Green Flash slowly | POST Passed, <br> normal operation, blinks on <br> standalone switch, stack <br> primary, and backup nodes in <br> a stack; <br> off for standby nodes in a stack |
|  |  | POST in progress |
|  | Green Blinking | PSU status LEDs P1/P2 |
|  | Amber Blinking | POST failed or overheat |
|  | Green | Power On |
|  | Off | Power off and no power <br> attached |
|  | Amber Blinking | Power supply failures |
| Fan status for 5420F | STK solid green | Speed mode |
|  | All off | Stacking mode |
| Fan module status for 5420M | Green | Normal mode |
|  | Amber Blinking | Fan failure |
|  | Green | Normal operation |
|  | Amber Blinking | Fan module failure |
|  | Off | Fan module not present |

Table 19: 5420 Series Port LEDs (continued)

| LED | Color/State | Port State |
| :--- | :--- | :--- |
| Bluetooth Status LED (BT) | Green Blinking | Bluetooth pairing in progress |
|  | Green | Bluetooth connected |
|  | Off | Bluetooth not connected |
| Locator LED (LOC) | Blue Blinking | Locator function |

The following figure shows the two alternate mode LEDs for 5420 Series switches: SPD and STK. The Mode button is used to cycle through three display modes for the port LEDs. In the default mode, SPD and STK are off. SPD and STK display modes expire after 30 seconds, at which time the port LEDs revert to the default SYS mode. Pressing and holding the the Mode button initiates Bluetooth pairing.


Figure 51: 5420 Series Mode and System Status LEDs
$\stackrel{\text { Note }}{\equiv \equiv} \mathrm{F}$ Front-panel PoE ports use Amber to indicate PoE states.

## Port LEDs in Default (SYS) Mode

In the default SYS mode, SPD is OFF, and the port status displays behavior for link, traffic, and PoE as described in the following table:

Table 20: Port LEDs in SYS Mode (default)

| Color/State | Meaning |
| :--- | :--- |
| Steady green | Link is OK; port is not powered |
| Steady amber | Link is OK; port is powered; no traffic |
| Blinking green | Link is OK and transmitting packets; port is not <br> powered |
| Blinking amber | Link is OK and transmitting packets; port is powered |

Table 20: Port LEDs in SYS Mode (default) (continued)

| Color/State | Meaning |
| :--- | :--- |
| Slow blinking amber | No link, or disabled port; port is powered |
| Alternating amber and green | Port has a power fault |
| Off | Port is not powered, has no link, or is disabled |

## Port LEDs in SPD Mode

The port LEDs enter the SPD display mode when the Mode button is pressed one time, indicated by the SPD LED. SPD mode is used to help determine the operational speed of a port.

There are two LEDs per SFP-DD port on 5420 models. When an SFP-DD port is used for Ethernet and stacking is disabled, each SFP-DD port can be used as either a single SFP+ port or two SFP+ ports if an SFP-DD transceiver is used on 5420M models. When the SFP-DD port is used for as a single SFP+ port, the first LED represents link and traffic, while the second LED is not operational. When the SFP-dd port is used as two SFP+ ports, the first LED represents link and traffic for the first port, and the second LED represents link and traffic for the second port. 5420F models are limited to one 10Gbps port per SFP-DD port in Ethernet mode with stacking disabled. The second SFP+ port is not available and the second LED is not operational.

In stack mode, each SFP-DD port can be used as one 20Gbps SFP+ port, or one 10Gbps SFP+ port, depending on the stack speed and optic used. The first LED represents the link state and traffic of the stack port with solid or blinking green. The second SFP+ port is not available and the second LED is not operational.

Color and blink pattern indicate speeds, as referenced by the following table:

Table 21: Port LEDs in SPD Mode

| Color/State | Speed |
| :--- | :--- |
| Steady green | 10 Mbps |
| Blinking green | 100 Mbps |
| Solid amber | 1000 Mbps |
| Slow blinking amber | 2.5 Gbps |
| Slow blinking green | 10 Gbps |
| Fast blinking green | 25 Gbps |
| Fast blinking green | $40 / 50 \mathrm{Gbps}$ |

## Port LEDs in STK Mode

The port LEDs enter the STK display mode after the Mode button is pressed twice, indicated by the STK LED. STK mode is used to indicate slot presence and slot number via the first eight port LED, as referenced by the following table:

Table 22: Port LEDs in STK Mode

| Color/State | Speed |
| :--- | :--- |
| Steady green | The slot corresponding to the port number of the LED is present. |
| Blinking green | This slot has a slot number corresponding to the port number of the <br> blinking LED. |

## Management Port LEDs

The management port uses two LEDs to indicate port activity and link status, as referenced by the following table:

Table 23: Management Port LEDs

| Right side LED |  | State |
| :--- | :--- | :--- |
| Link | Solid Green | Link up |
|  | Off | No link up or port disabled |
|  | Left side LED |  | State |
| Act | Blinking Green | Packet transmitting or receiving |
|  | Off | No packet transmitting or receiving |



## Technical Specifications

Extreme 5420 Series Technical Specifications on page 95<br>Acoustic Noise and Fan Speed on page 100<br>CPU, Memory Specifications on page 101<br>Mean Time Between Failures on page 101<br>Power Specifications on page 103<br>Environmental on page 107<br>Standards on page 107<br>Power Cord Requirements for AC-Powered Switches and AC Power<br>Supplies on page 109<br>Console Connector Pinouts on page 109

This section lists technical specifications for the hardware products described in this document.

## Extreme 5420 Series Technical Specifications

## External Interfaces

| Switch Model | Interfaces |
| :---: | :---: |
| 5420F-24T-4XE | $24 \times 10 / 100 / 1000 B A S E-T$ ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 G b$ SFP+ uplink ports(unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 5420F-24P-4XE | $24 \times 10 / 100 / 1000 B A S E-T$ 802.3at (30W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 G b$ SFP+ uplink ports(unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 5420F-24S-4XE | $24 \times 100 / 1000 B A S E-X$ (SFP) ports (unpopulated) <br> - MACsec-capable <br> $4 \times 1 / 10 G b$ SFP+ uplink ports(unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |


| Switch Model | Interfaces |
| :---: | :---: |
| 5420F-48T-4XE | $48 \times 10 / 100 / 1000 B A S E-T$ ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 G b$ SFP+ uplink ports(unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000$ BASE-T out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 5420F-48P-4XE | $48 \times 10 / 100 / 1000 B A S E-T 802.3 a t$ (30W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 G b$ SFP+ uplink ports(unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 5420F-48P-4XL | $48 \times 10 / 100 / 1000 B A S E-T$ 802.3at (30W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 G b$ SFP+ uplink ports(unpopulated) <br> - MACsec-capable <br> - LRM-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |


| Switch Model | Interfaces |
| :---: | :---: |
| 5420F-8W-16P-4XE | $8 \times 10 / 100 / 1000 B A S E-T$ 802.3bt (90W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $16 \times 10 / 100 / 1000 B A S E-T$ 802.3at (30W) ports <br> - Full/Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 7 / 10 G b$ SFP+ uplink ports (unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 5420F-16W-32P-4XE | $16 \times 10 / 100 / 1000 B A S E-T$ 802.3bt (90W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $32 \times 10 / 100 / 1000 B A S E-T ~ 802.3 a t ~(30 W)$ ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 G b$ SFP+ uplink ports(unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000$ BASE-T out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 5420F-16MW-32P-4XE | $16 \times 100 \mathrm{M} / 1 \mathrm{G} / 2.5 \mathrm{GBASE}-\mathrm{T} 802.3 \mathrm{bt}$ (90W) ports <br> - MACsec-capable <br> $32 \times 10 / 100 / 1000 B A S E-T$ 802.3at (30W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 G b$ SFP+ uplink ports(unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |


| Switch Model | Interfaces |
| :---: | :---: |
| 5420M-24T-4YE | $24 \times 10 / 100 / 1000 B A S E-T$ ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 7 / 10 / 25 G b$ SFP28 uplink ports (unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 5420M-24W-4YE | $24 \times 10 / 100 / 1000 B A S E-T$ 802.3bt (90W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 7 / 10 / 25 G b$ SFP28 uplink ports (unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 5420M-48T-4YE | $48 \times 10 / 100 / 1000 B A S E-T$ ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 / 25 G b$ SFP28 uplink ports (unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |


| Switch Model | Interfaces |
| :---: | :---: |
| 5420M-48W-4YE | $48 \times 10 / 100 / 1000 B A S E-T$ 802.3bt (90W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 / 25 G b$ SFP28 uplink ports (unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |
| 542OM-16MW-32P-4YE | $16 \times 100 \mathrm{M} / 1 \mathrm{G} / 2.5 \mathrm{GBASE}-\mathrm{T} 802.3 \mathrm{bt}$ (90W) ports <br> - MACsec-capable <br> $32 \times 10 / 100 / 1000 B A S E-T$ 802.3at (30W) ports <br> - Full / Half-Duplex(autosensing) <br> - MACsec-capable <br> $4 \times 1 / 10 / 25 \mathrm{~Gb}$ SFP28 uplink ports (unpopulated) <br> - MACsec-capable <br> $2 \times$ Stacking/SFP-DD ports* (unpopulated) <br> $1 \times$ Serial console port (RJ-45) <br> $1 \times 10 / 100 / 1000 B A S E-T$ out-of-band management port <br> $2 \times$ USB A ports for management or external USB flash <br> $1 \times$ USB Micro-B console port |

Weights and Dimensions

| Switch Model | Weight* | Physical Dimensions |
| :---: | :---: | :---: |
| 5420 Systems |  |  |
| 5420F-24T-4XE | 4.10 kg (9.03 lb.) | Height: 43.2 mm (1.7 in.) <br> Width: 442.0 mm ( 17.4 in .) <br> Depth: 287.02 mm (11.3 in.) |
| 5420F-24P-4XE | $4.64 \mathrm{~kg}(10.23 \mathrm{lb}$. |  |
| 5420F-24S-4XE | $4.12 \mathrm{~kg}(9.08 \mathrm{lb}$. |  |
| 5420F-8W-16P-4XE | $4.64 \mathrm{~kg}(10.23 \mathrm{lb}$. |  |
| 5420F-48T-4XE | $4.64 \mathrm{~kg}(10.23 \mathrm{lb}$. |  |
| 5420F-48P-4XE | $5.28 \mathrm{~kg}(11.64 \mathrm{lb}$. | Height: 43.2 mm ( 1.7 in .) Width: 442.0 mm ( 77.4 in. ) Depth: 330.20 mm (13.0 in.) |
| 5420F-48P-4XL | $5.28 \mathrm{~kg}(17.64 \mathrm{lb}$. |  |
| 5420F-16W-32P-4XE | $5.36 \mathrm{~kg}(17.82 \mathrm{lb}$. |  |
| 5420F-16MW-32P-4XE | $5.30 \mathrm{~kg}(17.68 \mathrm{lb}$. |  |
| 5420M-24T-4YE | $4.18 \mathrm{~kg}(9.22 \mathrm{lb}$. |  |
| 5420M-24W-4YE | $4.40 \mathrm{~kg}(9.70 \mathrm{lb}$. |  |
| 5420M-48T-4YE | 4.39 kg (9.68 lb.) |  |


| Switch Model | Weight* $^{*}$ | Physical Dimensions |
| :---: | :---: | :---: |
| $5420 \mathrm{M}-48 \mathrm{~W}-4 \mathrm{YE}$ | $4.73 \mathrm{~kg}(10.43 \mathrm{lb})$. |  |
| $5420 \mathrm{M}-16 \mathrm{MW}-32 \mathrm{P}-4 \mathrm{YE}$ | $5.30 \mathrm{~kg}(11.68 \mathrm{lb})$. |  |

* Measured weight includes fan (XN-FAN-OOO) and PSU cover(s), but does not include optional power supply unit(s).


## Acoustic Noise and Fan Speed

## Acoustic Noise

|  | Bystander Sound Pressure - <br> dB(A)* |  | Declared Sound Power - <br> Bels* |  |
| :---: | :---: | :---: | :---: | :---: |
| Switch Model | 1 PSU | 2 PSUs | 1 PSU | 2 PSUs |
| 542OF-24T-4XE | 35.50 | 36.20 | 4.83 | 4.93 |
| 542OF-24P-4XE | 39.60 | 39.90 | 5.16 | 5.24 |
| 542OF-24S-4XE | 39.70 | 39.60 | 5.21 | 5.22 |
| 5420F-48T-4XE | 35.30 | 34.90 | 4.78 | 4.77 |
| 542OF-48P-4XE | 41.30 | 42.00 | 5.42 | 5.48 |
| 5420F-48P-4XL | 44.00 | 42.60 | 5.67 | 5.57 |
| 5420F-8W-16P-4XE | 42.30 | 43.20 | 5.52 | 5.63 |
| 542OF-16W-32P-4XE | 44.30 | 54.10 | 5.72 | 6.62 |
| 542OF-16MW-32P-4XE | 45.30 | 54.40 | 5.77 | 6.64 |
| 5420M-24T-4YE | 33.50 | 33.00 | 4.59 | 4.65 |
| 5420M-24W-4YE | 33.00 | 42.80 | 5.02 | 5.51 |
| 542OM-48T-4YE | 33.40 | 33.00 | 4.56 | 4.59 |
| 5420M-48W-4YE** | 52.70 | 59.80 | 6.42 | 6.97 |
| 5420M-16MW-32P-4YE** | 51.70 | 50.50 | 6.30 | 6.25 |

* Noise measurements are based on operational tests conducted at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ in compliance with ISO 7779
** 5420M-48W-4YE and 5420M-16MW-32P-4YE results using 2000 W PSUs (XN-ACPWR-2000W)

[^0]The speed of the fan increases only when the temperature of the device increases. Fan speed is not dependent on any fan failures.

| Model | Internal PSU Fan |  | Internal | Fan Module |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 402017000 \\ & \text { RPM Fan } \end{aligned}$ | $\begin{aligned} & 402816000 \\ & \text { RPM Fan } \end{aligned}$ | $\begin{aligned} & 402816000 \\ & \text { RPM Fan } \end{aligned}$ | $\begin{aligned} & 402816000 \\ & \text { RPM Fan } \end{aligned}$ |
| 5420F-24P-4XE | 1 | N/A | 1 | N/A |
| 5420F-24T-4XE | 1 | N/A | 1 | N/A |
| 5420F-8W-16P-4XE | 1 | N/A | 1 | N/A |
| 5420F-48P-4XE | 2 | N/A | 1 | N/A |
| 5420F-16W-32P-4XE | N/A | 2 | 1 | N/A |
| 5420F-48T-4XE | 1 | N/A | 1 | N/A |
| $\underset{\mathrm{E}}{5420 \mathrm{~F}-16 \mathrm{MW}-32 \mathrm{P}-4 \mathrm{X}}$ | N/A | 2 | 1 | N/A |
| 5420F-24S-4XE | 1 | N/A | 1 | N/A |
| 5420F-48P-4XL | 2 | N/A | 1 | N/A |
| 5420M-24W-4YE |  |  | N/A | 1 |
| 5420M-24T-4YE | N/A |  | N/A | 1 |
| 5420M-48W-4YE | N/A |  | N/A | 1 |
| 5420M-48T-4YE | N/A |  | N/A | 1 |
| $\begin{aligned} & \text { 542OM-16MW-32P-4Y } \\ & \mathrm{E} \end{aligned}$ | N/A |  | N/A | 1 |

## CPU, Memory Specifications

```
CPU/Memory
1-core, 1.7GHz x86 ARM CPU (Cortex A72)
1 GB DDR4 ECC memory
1GB SLC NAND Flash Memory
4 \text { MB packet buffer per chip}
```


## Mean Time Between Failures

Table 24: 5420M family MTBF

| Model | MTBF at $25^{\circ} \mathrm{C}$ |
| :--- | :--- |
| $48 \mathrm{~W}-4 \mathrm{YE}$ without PSU | 547,531 |
| $48 \mathrm{~W}-4 \mathrm{YE}$ with 1 CRPS 920W PSU | 219,609 |
| $48 \mathrm{~W}-4 \mathrm{YE}$ with 2 CRPS 920W PSUs | 274,975 |

Table 24: 5420M family MTBF (continued)

| Model | MTBF at $25^{\circ} \mathrm{C}$ |
| :--- | :--- |
| 48W-4YE with 1 CRPS 2000W PSU | 288,273 |
| 48W-4YE with 1 CRPS 920W and 1 CRPS 2000W PSU | 304,604 |
| 48W-4YE with 2 CRPS 2000W PSUs | 342,300 |
| 48T-4YE without PSU | 818,774 |
| 48T-4YE with 1 CRPS 150W PSU | 337,509 |
| 48T-4YE with 2 CRPS 150W PSUs | 419,750 |
| 24W-4YE without PSU | 652,991 |
| $24 W-4 Y E$ with 1 CRPS 920W PSU | 236,680 |
| 24W-4YE with 2 CRPS 920W PSUs | 301,563 |
| 24T-4YE without PSU | 842,727 |
| $24 T-4 Y E$ with 1 CRPS 150W PSU | 341,393 |
| $24 T-4 Y E$ with 2 CRPS 150W PSUs | 425,775 |
| 16MW-32P-4YE without PSU | 576,512 |
| 16MW-32P-4YE with 1 CRPS 920W PSU | 224,128 |
| 16MW-32P-4YE with 2 CRPS 920W PSUs | 281,986 |
| 16MW-32P-4YE with 1 CRPS 2000W PSU | 296,110 |
| 16MW-32P-4YE with 1 CRPS 920W and 1 CRPS <br> 2000W PSU | 353,406 |
| 16MW-32P-4YE with 2 CRPS 2000W PSUs |  |

Table 25: 5420F family MTBF

| Model | MTBF at $25^{\circ} \mathrm{C}$ |
| :--- | :--- |
| 48P-4XE without PSU | 406,882 |
| 48P-4XE with 1 OFPS 860W PSU | 270,052 |
| 48P-4XE with 1 OFPS 860W and 1 CRPS 920W PSU | 264,420 |
| 48P-4XL without PSU | 414,751 |
| 48P-4XL with 1 OFPS 860W PSU | 273,496 |
| 48P-4XL with 1 OFPS 860W and 1 CRPS 920W PSU | 267,721 |
| 48T-4XE without PSU | 623,178 |
| 48T-4XE with 1 OFPS 120W PSU | 541,636 |
| 48T-4XE with 1 OFPS 120W and 1 CRPS 150W PSU | 441,361 |
| 16MW-32P-4XE without PSU | 377,035 |

Table 25: 5420F family MTBF (continued)

| Model | MTBF at $25^{\circ} \mathrm{C}$ |
| :---: | :---: |
| 16MW-32P-4XE with 1 OFPS 1200W PSU | 219,064 |
| 16MW-32P-4XE with 1 OFPS 1200W and 1 CRPS 1200W PSU | 263,301 |
| 16W-32P-4XE without PSU | 383,424 |
| 16W-32P-4XE with 1 OFPS 1200W PSU | 221,205 |
| 16W-32P-4XE with 2 CRPS 1200W PSUs | 266,401 |
| 8W-16P-4XE without PSU | 541,183 |
| 8W-16P-4XE with 1 OFPS 660W PSU | 271,147 |
| 8W-16P-4XE with 1 OFPS 660W and 1 CRPS 600W PSU | 326,619 |
| 24P-4XE without PSU | 548,157 |
| 24P-4XE with 1 OFPS 660W PSU | 272,887 |
| 24P-4XE with 1 OFPS 660W and 1 CRPS 600W PSU | 329,146 |
| 24S-4XE without PSU | 590,144 |
| 24S-4XE with 1 OFPS 150W PSU | 291,032 |
| 24S-4XE with 1 OFPS 150W and 1 CRPS 150W PSU | 350,197 |
| 24T-4XE without PSU | 637,131 |
| 24T-4XE with 1 OFPS 120W PSU | 552,146 |
| 24T-4XE with 1 OFPS 120W and 1 CRPS 150W PSU | 448,314 |

## Power Specifications

## Power Supply Options

|  | XN- <br> ACPWR-150W | XN- <br> ACPWR-600W | XN- <br> ACPWR-920W | XN- <br> ACPWR-1200W* | XN- <br> ACPWR-2000W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage <br> Input <br> Range <br> (Nominal) | $100-127 / 200-240$ <br> VAC | $100-127 / 200-24$ <br> VAC |
| Line <br> Frequency <br> Range | 47 Hz to 63 Hz | 47 Hz to 63Hz |
| Power <br> Supply Input <br> Socket | IEC/EN60320 <br> C14 | IEC/EN60320 <br> C14 | IEC/EN60320 <br> C14 | IEC/EN60320 <br> C16 | IEC/EN60320 C |


|  | $\begin{gathered} \text { XN- } \\ \text { ACPWR-150W } \end{gathered}$ | $\begin{gathered} \text { XN- } \\ \text { ACPWR-600W } \end{gathered}$ | $\begin{gathered} \text { XN- } \\ \text { ACPWR-920W } \end{gathered}$ | $\begin{gathered} \text { XN- } \\ \text { ACPWR-1200W* } \end{gathered}$ | $\begin{gathered} \text { XN- } \\ \text { ACPWR-2000W } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Power Cord Input Plug | IEC/EN60320 <br> C13 | IEC/EN60320 C13 | IEC/EN6032O C13 | $\begin{gathered} \text { IEC/EN60320 } \\ \text { C15 } \end{gathered}$ | IEC/EN60320 C |
| Operating Temperature | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ <br> $\left(32^{\circ} \mathrm{F}\right.$ to $122^{\circ} \mathrm{F}$ ) <br> Normal Operation | $\begin{gathered} 0^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F}\right) \end{gathered}$ <br> Normal Operation | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ <br> $\left(32^{\circ} \mathrm{F}\right.$ to $122^{\circ} \mathrm{F}$ ) <br> Normal Operation | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ <br> ( $32^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$ ) <br> Normal Operation | $\begin{gathered} 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C}(32 \\ \text { to } \left.113^{\circ} \mathrm{F}\right)^{* * *} \end{gathered}$ |

*200-240VAC is required to achieve full 1200 W output. If run at $100-120 \mathrm{VAC}$, output is limited to 860W
** 200-240 VAC is required to achieve full 2000 W output. If run at $100-120$ VAC, output is limited to 1100 W
${ }^{* * *}$ At sea-level, $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ at1500 $\mathrm{m} ; 0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$ at3000 m

## 5420F Internal Fixed and Secondary Power Supply Options

| Model | Internal Fixed Power Supply <br> Unit (PSU)* | Secondary Power Supply Unit <br> (PSU)** |
| :---: | :---: | :---: |
| 5420F-24T-4XE | 120WAC PSU | XN-ACPWR-150W |
| 5420F-24P-4XE | 660WAC PSU | XN-ACPWR-600W |
| 5420F-24S-4XE | 150WAC PSU | XN-ACPWR-150W |
| 5420F-48T-4XE | 120WAC PSU | XN-ACPWR-150W |
| 5420F-48P-4XE | 860WAC PSU | XN-ACPWR-920W |
| 5420F-48P-4XL | 860WAC PSU | XN-ACPWR-920W |
| 5420F-8W-16P-4XE | 660WAC PSU | XN-ACPWR-600W |
| 5420F-16W-32P-4XE | 1200WAC PSU | XN-ACPWR-1200W |
| 5420F-16MW-32P-4XE | 1200WAC PSU | XN-ACPWR-1200W |

* Internal Fixed PSU is non-orderable and comes pre-installed with each 5420F model.
** Secondary PSU provides power redundancy in 5420F non-PoE models and enables maximum PoE Power Budget in 5420F PoE models (see table below). Model/PSU combinations other than those listed above are blocked physically or in software.


## 5420F PoE Power Budget

| Model | PoE Budget with Single <br> Internal Fixed PSU | PoE Budget with Recommended <br> Secondary PSU |
| :---: | :---: | :---: |
| $5420 \mathrm{~F}-24 \mathrm{P}-4 \mathrm{XE}$ | 380 W | 720 W |
| $5420 \mathrm{~F}-48 \mathrm{P}-4 \mathrm{XE}$ | 740 W | 1480 W |


| Model | PoE Budget with Single <br> Internal Fixed PSU | PoE Budget with Recommended <br> Secondary PSU |
| :---: | :---: | :---: |
| 5420F-48P-4XL | 740 W | 1480 W |
| 5420F-8W-16P-4XE | 480 W | 960 W |
| 5420F-16W-32P-4XE | $872 \mathrm{~W}^{*} / 960 \mathrm{~W}^{* *}$ | $1437 \mathrm{~W}^{*} / 1874 \mathrm{~W}^{* *}$ |
| $5420 \mathrm{~F}-16 \mathrm{MW}-32 \mathrm{P}-4 \mathrm{XE}$ | $860 \mathrm{~W}^{*} / 960 \mathrm{~W}^{* *}$ | $1425 \mathrm{~W}^{*} / 1862 \mathrm{~W}^{* *}$ |

* @100-120 VAC
** @ 200-240 VAC


## 5420M Primary and Secondary Power Supply Options

| Model | Primary Power Supply Unit <br> $($ PSU)* | Secondary Power Supply Unit <br> (PSU)* |
| :---: | :---: | :---: |
| $5420 \mathrm{M}-24 \mathrm{~T}-4 \mathrm{YE}$ | XN-ACPWR-150W | XN-ACPWR-150W |
| $5420 \mathrm{M}-24 \mathrm{~W}-4 \mathrm{YE}$ | XN-ACPWR-920W | XN-ACPWR-920W |
| $5420 \mathrm{M}-48 \mathrm{~T}-4 \mathrm{YE}$ | XN-ACPWR-150W | XN-ACPWR-150W |
| $5420 \mathrm{M}-48 \mathrm{~W}-4 \mathrm{YE}$ | XN-ACPWR-920W or XN- <br> ACPWR-2000W | XN-ACPWR-920W or XN- <br> ACPWR-2000W |
| $5420 M-16 M W-32 P-4 Y E$ | XN-ACPWR-920W or XN- <br> ACPWR-2000W | XN-ACPWR-920W or XN- <br> ACPWR-2000W |

* Primary PSU is required; Secondary PSU provides power redundancy and enables maximum PoE Budget in 5420M PoE models (see table below). Model/PSU combinations other than those listed above are blocked physically or in software.


## 5420M PoE Power Budget

| Model | $\begin{array}{\|c\|} \hline 1 x \\ 920 W \end{array}$ | $\begin{gathered} 2 x \\ 920 W \end{gathered}$ | $\begin{array}{\|c\|} \hline 1 x \\ 2000 \mathrm{~W} \\ @ \\ 100-120 \\ \text { VAC } \end{array}$ | $\begin{array}{\|c\|} \hline 1 x \\ 2000 \mathrm{~W} \\ @ \\ 200-240 \\ \text { VAC } \end{array}$ | $\begin{gathered} 1 x \\ 920 \mathrm{~W} \\ \& \\ 1 \mathrm{x} \\ 2000 \mathrm{~W} \\ @ \\ 100-120 \\ \text { VAC } \end{gathered}$ | $\begin{gathered} \hline 1 \times 920 \mathrm{~W} \\ \& \\ 1 \mathrm{x} \\ 2000 \mathrm{~W} \\ @ \\ 200-240 \\ \text { VAC } \end{gathered}$ | $\begin{array}{\|c\|} \hline 2 x \\ 2000 \mathrm{~W} \\ \text { @ } \\ 100-120 \\ \text { VAC } \end{array}$ | $\begin{array}{\|c\|} \hline 2 x \\ 2000 \mathrm{~W} \\ @ \\ 200-240 \\ \text { VAC } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5420M-24W-4YE | 720W | 1440W | - | - | - | - |  |  |
| 5420M-48W-4YE | 804 W | 1558W | 884W | 1440W | 1212W | 2076W | 1704W | 2880W |
| 5420M-16MW-32P-4YE | 787W | 1547W | 867W | 1440W | 1195W | 2059W | 1687W | 2400W |

## Minimum/Maximum Power Consumption and Heat Dissipation

| Switch Model | Minimum <br> Power <br> Consumption <br> (W) | Minimum <br> Heat <br> Dissipation <br> (BTU/hr) | Maximum <br> Power <br> Consumption <br> (W)* | MaximumHeat <br> Dissipation <br> (BTU/hr)** |
| :---: | :---: | :---: | :---: | :---: |
| 542OF Switches |  |  |  |  |
| 542OF-24T-4XE | 24 | 81 | 62 | 211 |
| 542OF-24P-4XE | 37 | 127 | 833 | 387 |
| 5420F-24S-4XE | 35 | 119 | 114 | 388 |
| 5420F-48T-4XE | 31 | 106 | 75 | 255 |
| 5420F-48P-4XE | 48 | 164 | 1674 | 663 |
| 5420F-48P-4XL | 49 | 168 | 1657 | 604 |
| 5420F-8W-16P-4XE | 37 | 127 | 1092 | 452 |
| 5420F-16W-32P-4XE | 46 | 156 | 2150 | 785 |
| 5420F-16MW-32P-4XE | 50 | 172 | 2152 | 790 |

* Includes maximum PoE load (W) through the switch
**Does not include PoE load heat dissipated through external electronic load

| Switch Model | Minimum <br> Power <br> Consumption <br> $(W)$ | Minimum <br> Heat <br> Dissipation <br> $(B T U / h r)$ | Maximum <br> Power <br> Consumption <br> $(W)^{*}$ | MaximumHeat <br> Dissipation <br> $(B T U / h r)^{* *}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5420M-24T-4YE | 28 | 95 | 57 | 194 |
| 542OM-24W-4YE | 43 | 148 | 1601 | 551 |
| 542OM-48T-4YE | 34 | 117 | 68 | 232 |
| 5420M-48W-4YE | 72 | 245 | 3090 | 716 |
| 542OM-16MW-32P-4YE | 69 | 234 | 2564 | 560 |

* Includes maximum PoE load (W) through the switch
**Does not include PoE load heat dissipated through external electronic load


## Environmental

Environmental Specifications<br>EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage<br>EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation<br>EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational<br>EN/ETSI 300753 (1997-10) - Acoustic Noise<br>ASTM D3580 Random Vibration Unpackaged 1.5 G<br>\section*{Environmental Compliance}<br>EU RoHS - 2011/65/EU<br>EU WEEE - 2012/19/EU<br>EU REACH - Regulation (EC) No 1907/2006 Reporting<br>China RoHS - SJ/T 11363-2006<br>Taiwan RoHS - CNS 15663(2013.7)<br>\section*{Environmental Operating Conditions}<br>Temp: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$<br>Humidity: 10\% to 95\% relative humidity, non-condensing Altitude: 0 to 3,000 meters ( 9,850 feet)<br>Shock (half sine) $30 \mathrm{~m} / \mathrm{s} 2$ (3G), $11 \mathrm{~ms}, 60$ shocks<br>Random vibration: 3 to 500 Hz at 1.5 Grms

## Packaging and Storage Specifications

Temp: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Humidity: 10\% to 95\% relative humidity, non-condensing
Packaged Shock (half sine): $180 \mathrm{~m} / \mathrm{s} 2$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks
Packaged Vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}, 62$ to 500 Hz at 0.2 G
Packaged Random Vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz
Packaged Drop Height: 14 drops minimum on sides and corners at 42 inches (<15 kg box)

## Standards

North American ITE
UL 60950-1
UL/CuL 62368-1 Listed
CSA 22.2 No. 60950-1 2nd edition 2014 (Canada)
Complies with FCC 21CFR 1040.10 (U.S. Laser Safety)
CDRH Letter of Approval (US FDA Approval)

## European ITE

EN 60950-1 2nd Edition
EN 62368-1
EN 60825-1Class 1 (Lasers Safety)
2014/35/ EU Low Voltage Directive

International ITE
CB Report \& Certificate per IEC 60950-1
CB Report \& Certificate IEC 62368-1
AS/NZS 60950-1 (Australia /New Zealand)

EMI/EMC Standards
North American EMC for ITE
FCC CFR 47 Part 15 Class A (USA)
ICES-003 Class A (Canada)
European EMC Standards
EN 55032 Class A
EN 55024
EN 61000-3-2,2014 (Harmonics)
EN 61000-3-3 2013 (Flicker)
EN 300386 (EMC Telecommunications)
2014/30/EU EMC Directive
International EMC Certifications
CISPR 32, Class A (International Emissions)
AS/NZS CISPR32
CISPR 24 Class A (International Immunity)
IEC 61000-4-2 / EN 61000-4-2 Electrostatic Discharge, 8kV Contact, 15 kV Air, Criteria B
IEC 61000-4-3 /EN 61000-4-3 Radiated Immunity 10V/m, Criteria A
IEC 61000-4-4 / EN 61000-4-4 Transient Burst, 2 kV, Criteria B
IEC 61000-4-5 /EN 61000-4-5 Surge, 2 kV L-L, 2 kV L-G, Level 3, Criteria B
IEC 61000-4-6 Conducted Immunity, 0.15-80 MHz, 10V/rms, 80\%AM ( 1 kHz ), Criteria A
IEC/EN 61000-4-11 Power Dips \& Interruptions, >30\%, 25 periods, Criteria C
Country Specific
VCCI Class A (Japan Emissions)
ACMA RCM (Australia Emissions)
CCC Mark (China)
KCC Mark, EMC Approval (Korea)
BSMI (Taiwan)
Anatel (Brazil)

NoM (Mexico)
EAC (Russia, Belarus, Kazakhstan)
NRCS (South Africa)

IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T
IEEE 802.3bz 2.5G/5GBASE-T
IEEE 802.3bt Type4 PoE
IEEE 802.3ae 10GBASE-X
IEEE 802.3aq 10GBASE-LRM
IEEE 802.3by 25GBASE-X
IEEE 802.3az Energy Efficient Ethernet

## Power Cord Requirements for AC-Powered Switches and AC Power Supplies

An AC power cord is not included with the AC power supply.
Power cords used with AC-powered switches or AC power supplies must meet the following requirements:

- The power cord must be agency-certified for the country of use.
- The power cord must have an appropriate connector for connection to the switch or power supply. See the power supply documentation for the appropriate power cord.
- The power cord must have an appropriately rated and approved wall plug applicable to the country of installation.
- For cords up to 14.76 feet ( 4.5 m ) long, the wire size must be 15 AWG ( $2 \mathrm{~mm}^{2}$ ) minimum wire length up to $4.92 \mathrm{ft}(1.5 \mathrm{~m})$,

For details about obtaining AC power cords for use in your country, refer to http:// www.extremenetworks.com/product/powercords/.

## Console Connector Pinouts

Table 26 describes the pinouts for a DB-9 console plug connector.

Table 26: Pinouts for the DB-9 Console Connector

| Function | Pin Number | Direction |
| :--- | :--- | :--- |
| DCD (data carrier detect) | 1 | In |
| RXD (receive data) | 2 | In |
| TXD (transmit data) | 3 | Out |
| DTR (data terminal ready) | 4 | Out |
| GND (ground) | 5 | - |
| DSR (data set ready) | 6 | In |

Table 26: Pinouts for the DB-9 Console Connector (continued)

| Function | Pin Number | Direction |
| :--- | :--- | :--- |
| RTS (request to send) | 7 | Out |
| CTS (clear to send) | 8 | In |

Figure 52 shows the pinouts for a 9-pin to 25-pin (RS-232) null-modem cable.

Switch PC/Terminal
Cable connector: 9-pin female Cable connector: 25-pin male/female

| Screen | Shell | - | - | 1 | Screen |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TxD | 3 | - | - | 3 | RxD |
| RxD | 2 | $\bullet$ | $\bullet$ | 2 | TxD |
| Ground | 5 | $\bullet$ | - | 7 | Ground |
| RTS | 7 | - | - | 4 | RTS |
| CTS | 8 | - | - | 20 | DTR |
| DSR | 6 | - | - | 5 | CTS |
| DCD | 1 | $\bullet$ | - | 6 | DSR |
| DTR | 4 | $\bullet$ | $\bullet$ | 8 | DCD |

Figure 52: Null-Modem Cable Pinouts
Figure 53 shows the pinouts for a 9-pin to 9-pin (PC-AT) null-modem serial cable.


Figure 53: PC-AT Serial Null-modem Cable Pinouts

Table 27 shows the pinouts for the RJ45 console port on the ExtremeSwitching switches.

Table 27: RJ45 Console Port on Switch

| Function | Pin Number | Direction |
| :--- | :--- | :--- |
| RTS (request to send) | 1 | Out |
| DTR (data carrier detect) | 2 | Out |
| TXD (transmit data) | 3 | Out |
| GND (ground) | 4 | - |
| GND (ground) | 5 | - |
| RXD (receive data) | 6 | In |
| DSR (data set ready) | 7 | In |
| CTS (clear to send) | 8 | In |

Table 28 shows the pinouts for an RJ45-to-DB-9 adapter.

Table 28: Pinouts for an RJ45 to DB-9 Adapter

| Signal | RJ45 Pin | DB-9 Pin |
| :--- | :--- | :--- |
| CTS (clear to send) | 1 | 8 |
| DTR (data carrier detect) | 2 | 6 |
| TXD (transmit data) | 3 | 2 |
| GND (ground) | 4 | 5 |
| GND (ground) | 5 | 5 |
| RXD (receive data) | 6 | 3 |
| DSR (data set ready) | 7 | 4 |
| RTS (request to send) | 8 | 7 |



## Safety and Regulatory Information

Considerations Before Installing on page 113<br>General Safety Precautions on page 113<br>Maintenance Safety on page 114<br>Fiber Optic Ports and Optical Safety on page 114<br>Cable Routing for LAN Systems on page 115<br>Install Power Supply Units and Connect Power on page 116<br>Selecting Power Supply Cords on page 117<br>Battery Notice on page 117<br>Battery Warning - Taiwan on page 118<br>EMC Warnings on page 118<br>Japan (VCCI Class A) on page 119<br>Korea EMC Statement on page 119

## Warning

Read the following safety information thoroughly before installing Extreme Networks products. Failure to follow this safety information can lead to personal injury or damage to the equipment.

Only trained and qualified service personnel (as defined in IEC 60950-1 and AS/NZS 3260) should install, replace, or perform service to Extreme Networks switches and their components. Qualified personnel have read all related installation manuals, have the technical training and experience necessary to be aware of the hazards to which they are exposed in performing a task, and are aware of measures to minimize the danger to themselves or other persons.

If you are located in the United States, install the system in accordance with the U.S. National Electrical Code (NEC).

## Considerations Before Installing

Consider the following items before you install equipment.

- For equipment designed to operate in a typical Telco environment that is environmentally controlled, choose a site that has the following characteristics:
- Temperature-controlled and humidity-controlled, such that the maximum ambient room temperature shall not exceed what the equipment manufacturer recommends.
- Clean and free from airborne materials that can conduct electricity.
- Well ventilated and away from sources of heat including direct sunlight.
- Away from sources of vibration or physical shock.
- Isolated from strong electromagnetic fields produced by electrical devices.
- For equipment designed to be installed in environments that are not environmentally controlled, such as outdoor enclosures, see the product data sheet or for environmental conditions, temperature, and humidity.
- Establish at least 3 inches clearance on all sides for effective ventilation. Do not obstruct the air intake vent on the front, side, or rear ventilation grills. Locate the system away from heat sources.
- Make sure that your equipment is placed in an area that accommodates the power consumption and component heat dissipation specifications.
- Make sure that your power supplies meet the site DC power or AC power requirements of all the network equipment.
- Racks for Extreme Networks equipment must be permanently attached to the floor. Failure to stabilize the rack can cause the rack to tip over when the equipment is removed for servicing.
- Do not operate the system unless all modules, faceplates, front covers, and rear covers are in place. Blank faceplates and cover panels are required for the following functions:
- Preventing exposure to hazardous voltages and currents inside the equipment
- Containing electromagnetic interference (EMI) that might disrupt other equipment
- Directing the flow of cooling air through the equipment
- Ultimate disposal of this product should be handled according to all national laws and regulations.


## General Safety Precautions

Follow these guidelines:

- Do not try to lift objects that you think are too heavy for you.
- When you install equipment in a rack, load heavier devices in the lower half of the rack first to avoid making the rack top-heavy.
- Use only tools and equipment that are in perfect condition. Do not use equipment with visible damage.
- Route cables in a manner that prevents possible damage to the cables and avoids causing accidents, such as tripping.
- Do not place a monitor or other objects on top of the equipment. The chassis cover is not designed to support weight.
- To reduce the risk of fire, use only \#26 AWG or larger telecommunications line cord. Use only copper conductors.
- Do not work on the system or connect or disconnect cables during periods of lightning activity.
- This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor.


## Maintenance Safety

When you perform maintenance procedures on Extreme Networks equipment, follow these recommendations:

- Use only authorized accessories or components approved for use with this system. Failure to follow these instructions may damage the equipment or violate required safety and EMC regulations.
- This system contains no customer serviceable components. Do not attempt to repair a chassis, power supply, module, or other component. In the event of failure, return the defective unit to Extreme Networks for repair or replacement, unless otherwise instructed by an Extreme Networks representative.
- To remove power from the system, you must unplug all power cords from wall outlets. The power cord is the disconnect device to the main power source.
- Disconnect all power cords before working near power supplies, unless otherwise instructed by a product-specific maintenance procedure.
- Replace a power cord immediately if it shows any signs of damage.
- When you work with optical devices, power supplies, or other modular accessories, put on an ESD-preventive wrist strap to reduce the risk of electronic damage to the equipment. Connect the other end of the strap to an appropriate grounding point on the equipment rack or to an ESD jack on the chassis if one is provided. Leave the ESD-preventive wrist strap permanently attached to the equipment rack or chassis so that it is always available when you need to handle components that are sensitive to ESD.
- Install all cables in a manner that avoids strain. Use tie wraps or other strain relief devices.


## Fiber Optic Ports and Optical Safety

The following safety warnings apply to all optical devices used in Extreme Networks equipment that are removable or directly installed in an I/O module or chassis system.

Such devices include but are not limited to gigabit interface converters (GBICs), small form factor pluggable (SFP) modules (or mini-GBICs), QSFP+ modules, XENPAK transceivers, and XFP laser optic modules.

A

## Warning

Laser optic modules become very hot after prolonged use. Take care when removing a laser optic module from the module or option card. If the laser optic module is too hot to touch, disengage the laser optic module and allow it to cool before removing it completely.
When working with laser optic modules, always take the precautions listed below to avoid exposure to hazardous radiation.

- Never look at the transmit LED/laser through a magnifying device while the transmit LED is powered on.
- Never look directly at a fiber port on the switch or at the ends of a fiber cable when they are powered on.
- Invisible laser radiation can occur when the connectors are open. Avoid direct eye exposure to the beam when optical connections are unplugged.
- Never alter, modify, or change an optical device in any way other than suggested in this document.

GBIC, SFP (Mini-GBIC), QSFP+, XENPAK, and XFP Regulatory Compliance
Extreme Networks pluggable optical modules and direct-attach cables meet the following regulatory requirements:

- Class 1 or Class 1M Laser Product
- EN60825-1:2007 2nd Ed. or later, European standard
- FCC 21 CFR Chapter 1, Subchapter J in accordance with FDA \& CDRH requirements
- Application of CE Mark in accordance with 2014/30/EU EMC Directive and the 2014/35/EU Low Voltage Directives
- UL and/or CSA registered component for North America
- 47 CFR Part 15, Class A when installed into Extreme products


## Cable Routing for LAN Systems

Extreme Networks equipment meets the requirements for LAN system equipment.
LAN systems are designed for intra-building installations; that is, cable runs between devices must be in the same building as the connected units, except under the conditions listed in the next paragraph.

As allowed in the USA by the National Electrical Code (NEC), this equipment can be connected between buildings if any one of the following conditions is true:

- Cable runs between buildings are less than 140 feet long.
- Cable runs between buildings are directly buried.
- Cable runs between buildings are in an underground conduit, where a continuous metallic cable shield or a continuous metallic conduit containing the cable is bonded to each building grounding electrode system.

Caution
Failure to follow these requirements for cable routing conditions may expose the user to electrical shock and expose the unit to damage that can cause errors.

## Warning

The Ethernet ports of the equipment and its sub-assemblies are suitable only for intra-building connections (within the same building) or for connections to unexposed wiring or cabling. (See the conditions listed above.) The Ethernet ports of this equipment or its sub-assemblies must not be metallically connected to interfaces that connect to the outside plant (OSP) or its wiring. Ethernet interfaces are designed for use only as intra-building interfaces (described as Type 2 or Type 4 ports in GR-1089-CORE, Issue 6) and require isolation from the exposed OSP wiring. The addition of Primary Protectors is not sufficient protection to connect these interfaces metallically to OSP wiring. This warning does not apply to T1/E1 ports because T1/E1 ports have built-in isolation and surge protection that allows them to be connected to OSP wiring.

## Install Power Supply Units and Connect Power

For the ratings and power input requirements of each power supply unit, see "Technical Specifications" or the data sheet for the power supply at www.extremenetworks.com.

## Warning

Be sure to satisfy the requirements listed in this section when you install Extreme Networks power supplies or connect power.

When you install any power supply:

- Do not use excessive force when you insert a power supply into the bay.
- Do not attempt to open the power supply enclosure for any reason; the power supply does not contain user-serviceable parts. In the event of failure, return the defective power supply to Extreme Networks for repair or replacement.
- Do not put your hand into an open power supply bay when a power supply is not present.
- Before you work on equipment that is connected to power lines, remove all jewelry, including watches. Metal objects heat up when they are connected to power and ground and can cause serious burns or weld the metal object to the terminals.
- An electrical arc can occur when you connect or disconnect the power with power applied. This could cause an explosion in hazardous area installations. Be sure that power is removed from the device.
- When you install or replace equipment, always make the ground connection first and disconnect the ground connection last.

When you install DC power supplies or connect DC power:

- Extreme Networks DC power supplies do not have switches for turning the unit on and off. Make sure that the DC circuit is de-energized before connecting or disconnecting the DC power cord at the DC input power socket.
- Connect the system or power supply only to a DC power source that complies with the safety extra-low voltage (SELV) requirements in IEC 60950-based safety standards.


#### Abstract

Note Because building codes vary worldwide, consult an electrical contractor to ensure proper equipment grounding and power distribution for your specific installation and country.

\section*{$\Delta$}

\section*{Warning}

Extreme Networks power supplies do not have switches for turning the unit on and off. Disconnect all power cords to remove power from the device. Make sure that these connections are easily accessible. Extreme Networks alimentations n'ont pas de contact pour mettre l'appareil sous et hors tension. Débranchez tous les cordons d'alimentation pour couper l'alimentation de l'appareil. Assurez-vous que ces connexions sont facilement accessibles.


## Selecting Power Supply Cords

You can purchase a power cord for your product and for your specific country from your local Extreme Networks Channel Account Manager or Sales Manager, or you can purchase a cord from your local supplier. Requirements for the power cord are listed in the Technical Specifications for your product.

To locate a Sales Manager or Partner in your region, visit www.extremenetworks.com/ partners/where-to-buy.
Note
This equipment is not intended to be directly powered by power distribution
systems where phase-phase voltages exceed 240 VAC ( $2 \mathrm{P}+\mathrm{PE}$ ), such as those
used in Norway, France, and other countries. For these applications, use a
transformer to step down the voltage to < 240 VAC from phase-phase, or make
a connection to a (P+N+PE) power distribution where voltages do not exceed
240 VAC.
All installations should confirm that the product is reliably grounded according
to the country's local electrical codes.

## Battery Notice



Warning: This product contains a battery used to maintain product information. If the battery should need replacement it must be replaced by Service Personnel. Please contact Technical Support for assistance.

Risk of explosion if battery is replaced by an incorrect type． Dispose of expended battery in accordance with local disposal regulations．


Attention：Ce produit renferme une pile servant à conserver les renseignements sur le produit．Le cas échéant，faites remplacer la pile par le personnel du service de réparation．Veuillez communiquer avec l＇assistance technique pour du soutien．

Il y a risque d＇explosion si la pile est remplacée par un type de pile incorrect．Éliminez les piles usées en conformité aux règlements locaux d＇élimination des piles．

## Battery Warning－Taiwan

## 警告

# 如果更換不正確之電池型式會有爆炸的風險，請依製造商說明書處理用過之電池。 

## EMC Warnings

Taiwan BSMI Warning

## 警告使用者：

此為甲類資訊技術設備，於居住環境中使用時，可能會造成射頻
擾動，在此種情況下，使用者會被要求採取某些適當的對策。

China CQC Warning
警告使用者：
此为A级产品，在生活环境中，该产品可能会造成无线电干扰。在这种情况下，可能需要用户对干扰采取切实可行的措施。

Japan（VCCI Class A）

－
Warning
This is a Class A product based on the standard of the VCCI Council．If this equipment is used in a domestic environment，radio interference may occur，in which case the user may be required to take corrective actions．

この装置は，クラスA情報技術装置です。この装置を家庭環境で使用す ると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

VCCI－A

## Korea EMC Statement

이 기기는 업무용 환경에서 사용할 목적으로 적
합성평가를 받은 기기로서 가정용 환경에서 사 용하는 경우 전파간섭의 우려가 있습니다．


## Index

## Numerics

1200 W AC power supply
features 36
150 W AC power supply
features 34
replacing 83
2000 W AC power supply
features 36
5420 series switches
fan speed 100
features 12-15
specifications 95, 99
5420 Series switches
features 15-18, 20-26, 28-30
LEDs 90-93
600 W AC PoE power supply
features 35
replacing 85
920 W AC PoE power supply features 35

## A

AC power
connecting to switch 77
requirements for cords 109
access 40
acquired node
definition 62
active node 61
active topology 61
airflow 88
alternate stacking 61
amperage
calculating for UPS 53
ANSI standards 53

## B

backup node
definition 62
redundancy 56
battery notice 117, 118
bend radius 45, 46
BICSI 44
building codes 39
Building Industry Consulting Service International., see BICSI

## C

cabinet attaching switch 74
cable
ANSI standards 53
bend radius 46
bundling 45
category 545
fiber optic 46, 76
for stacking 66
for switch ports 76
installing 45, 46
labeling 45
network interface 76
optical 75, 76
plenum-rated 45
RJ45 50
slack 45
standards 44
types and distances 47
candidate node 62
category 5 cable 45
combining
switches in a stack 66
commercial building standards 53
components
optional 75,76
configuration
IP address 80
VLAN 80
configuring the switch 81
connecting
to management console 78
connecting power 77
connector jackets
RJ45 50
connector pinouts
DB-9 console connector 109
null-modem cable 109
console port
5420 series 12-15
for stacked configurations 71
on switch 109
settings 78
control path 61
conventions
notice icons 7
text 7
cooling 88
cords
requirements 109
selecting 117

## D

daisy chain topology 59
data port 62
DB-9 console connector pinouts 109
DB-9 pinouts 109, 110
DC power
connecting to switch 77
design standards 53
distances
cables 47
documentation
feedback 9
location 11
dual primary condition 59

## E

Easy-Setup 63
election
node role 63
priority 63
electric power
connecting to switch 77
electrical codes 39
electrostatic discharge, see ESD
environmental requirements
building codes 39
electrical codes 39
electrostatic discharge (ESD) 42
humidity 42
temperature 41
wiring closet 40
equipment
installing 72
tools needed to install 73
equipment rack
grounding 43
mechanical recommendations 43
mounting holes 43
securing 44
service access 43
space requirements 43

## ESD

discharge from cable 45
system protection 42
Extreme Stacking Tool 66

## F

Fabric Engine
initial login 81
failover 63
fan
fan (continued)
airflow 88
replacing 88
fan speed
5420 switch 100
feedback 9
fiber optic cable
bend radius 46
connecting 76
handling 46
installing 46
first switch login 78, 81
frequency, see radio frequency interference (RFI)
front-to-back cooling 88

## G

grounding
racks 43
requirements 53
wiring closet 40

## H

hitless failover 63
humidity 42
industry standards 53
initial switch login 78, 81
installing
connecting power 77
fiber optic cable 46
optical transceivers 75, 76
optional components 75, 76
personnel 73
preparing 73
safety information 73
switches 72-74
tools 73
IP settings
configuring 80
J
jackets
RJ45 connector 50
labeling cables 45
LEDs
5420 Series 90-93
stack number indicator 55
local management connection 78
logging in to the switch 78,81

## M

MAC address 63
management port
5420 series 12-15
connecting to switch 78
for stacked configurations 71
settings 78
multiple-rack stacking 70

## N

native stacking 60
native stacking ports 55
network interface connections 76
node address 63
node role
definition 62
election 63
notices 7
null-modem cable pinouts 109
operating environment requirements 41
operational node 63
optical cables
installing 75, 76
optical transceivers
installing 75, 76
optional components
installing 75, 76

## $P$

pinouts
DB-9 console connector 109, 110
null-modem cable 109
planning
site 38
plenum-rated cable 45
pluggable transceivers, see optical transceivers
ports
console port settings 78
for stacked configurations 71
management 78
native stacking 55
power
connecting to switch 77
requirements for cords 109
power cords
selecting 51, 117
power over Ethernet (PoE)
power requirements 51
power requirements
PoE devices 51
power supply 51
power supply unit (PSU)
1200 W AC 36
power supply unit (PSU) (continued)
150 W AC 34
2000 W AC 36
600 W AC PoE 35
920 W AC PoE 35
power requirements 51
primary node
definition 62
redundancy 56
primary switch 64
priority
for node role election 63

## R

rack
attaching switch 74
rack specifications
grounding 43
securing to floor 44
space requirements 43
radio frequency interference (RFI)
patch panel installation 45
preventing 50
redundancy
in a stack 56
regulatory information 112
removing
1200 W AC power supply 85
150 W AC power supply 83
2000 W AC power supply 85
600 W AC power supply 85
920 W AC power supply 85
fan module 88
replacing
1200 W AC power supply 85
150 W AC power supply 83
2000 W AC power supply 85
600 W AC power supply 85
920 W AC power supply 85
fan module 88
restricted 40
restricted access 40
RFI, see radio frequency interference (RFI)
ring topology 58
RJ45 cable 50

## S

safety
precautions when installing 73
requirements 112
secure boot 32,33
service access to the rack 43
settings
for management console 78
signal quality 50
single-rack stacking 69
site planning 38
site preparation 73
slack in cable 45
slot number 55
space requirements, rack 43
specifications
5420 switch 95,99
equipment racks 43
stack 60
see also SummitStack
stack number indicator 55
stackable switch 60
stacking
backup 56
cables 66
combining switch models 66
connecting cables 71
connecting management port 71
connection order 68
daisy chain 59
definition 55
dual primary condition 59
examples 69,70
guidelines 64,65
LEDs 55
multiple-rack 70
native stacking ports 55
primary 56
priority 56
recommendations 64, 65
redundancy 56
ring topology 58
single-rack 69
slot number 55
stack number indicator 55
terminology 60
tool 66
troubleshooting 55
web app 66
stacking link 61
stacking port 60
standards
cabling 44, 53
commercial building 53
design 53
grounding 53
standby node
definition 62
SummitStack
path 61
segment 63
state 63
topology 57, 61
web app 66
SummitStack configuration 54
support, see technical support
switches
attaching to cabinet 74
attaching to rack 74
switches (continued)
connecting power 77
initial login 78, 81
installing 72
installing optional components 75, 76
safety information 73
tools needed to install 73

## T

technical support
contacting 10
temperature 41
tools for installing equipment
switches 73
transceivers, see optical transceivers
transition time
UPS 53
troubleshooting stack connections 55

## U

unshielded twisted pair, see UTP cable
UPS (uninterruptible power supply)
requirements 52
selecting 52, 53
transition time 53
UTP cable
bend radius 45
category 545
discharge ESD 45
preventing RFI 50
V
VLAN
configuring 80

## W

warnings 7
web app
SummitStack 66
wiring closet
electrostatic discharge (ESD) 42
floor coverings 40
grounding 40
humidity 42
rack, securing 44
temperature 41
wiring terminals 43


[^0]:    Fan Speed

