Manage Radio Settings

About this task

Use the Radio dashboard to apply QoS, ACL, operational mode, WLAN attributes and sensor configuration settings to the radio.

To edit an access point's radio settings:

Procedure

  1. Select Profiles > Profile Name > Interface > Radio > radio1 or radio 2.
  2. Define the following radio configuration parameters from within the Basic settings:
    Description Provide or edit a description (1 to 64 characters in length) for the radio that helps differentiate it from others with similar configurations
    Admin Status Select Enable to define this radio as active to the profile it supports. Select Disable to deactivate this radio configuration within the profile. It can be activated at any future time when needed
    RF Mode The radio can be configured to provide WLAN service for 2.4 GHz and 5 GHz enabled clients. You can also set the radio to provide sensor support, scan-ahead support, or function as a client bridge.

    Set the mode to either 2.4 GHz WLAN or 5 GHz WLAN depending on the radio's intended client support requirement

    Set the mode to Sensor if using the radio for rogue device detection. To set a radio as a detector, deactivate Sensor support on the other access point radio

    Lock RF Mode Select Lock RF Mode to lock Smart RF for this radio
    LDPC Select this option to activate low-density parity-check for the selected radio
    RIFS Mode Set the RIFS mode for the selected radio
    Radio Placement Use the drop-down list box to specify whether the radio is located Indoors or Outdoors. The placement should depend on the country of operation and its regulatory domain requirements for radio emissions
    Channel Use the drop-down list box to select the channel of operation for the radio. Only a trained installation professional should define the radio channel. Select Smart for the radio to scan non-overlapping channels listening for beacons from other access points. After channels are scanned, the radio selects the channel with the fewest access points. In the case of multiple access points on the same channel, it selects the channel with the lowest average power level. The default value is Smart. Channels with a “w” appended to them are unique to the 40 MHz band. Channels with a “ww” appended to them are 802.11ac specific, and are unique to the 80 MHz band
    Fallback Channel Use the drop-down list box to select a fallback channel if the main channel doesn't work
    Transmit Power Select Smart to automate the transmit power for the radio

    Select Transmit Power and assign a value between 1 to 30 dBm

    Client Power Select Client Power and assign a value between 1 to 20 dBm
    Max Clients Use the spinner control or type a maximum permissible number of clients to connect with this radio. The available range is between 1 to 512 clients. The default value is 512
    Dynamic Chain Selection Select this option for the radio to dynamically change the number of transmit chains
    Rate Selection Method Specify a radio selection method for the radio. The selection methods are: Standard: standard monotonic radio selection method will be used. Opportunistic: sets opportunistic radio link adaptation as the radio selection method. This mode uses opportunistic data rate selection to provide the best throughput
    Radio QoS Policy Use the drop-down list box to specify an existing QoS policy to apply to the access point radio in respect to its intended radio traffic
    Association ACL Use the drop-down list box to specify an existing Association ACL policy to apply to the access point radio. An Association ACL is a policy-based ACL that either prevents or allows wireless clients from connecting to an access point radio. An ACL is a sequential collection of permit and deny conditions that apply to packets. When a packet is received on an interface, its compared against applied ACLs to verify the packet has the required permissions to be forwarded. If a packet does not meet any of the criteria specified in the ACL, the packet is dropped
    Data Rates Once the radio band is provided, the Data Rates drop-down list box populates with rate options depending on the 2.4 or 5.0 GHz band selected. If the radio band is set to Sensor or Detector, the Data Rates drop-down list box is not activated, as the rates are fixed and not user configurable. If 2.4 GHz is selected as the radio band, select separate 802.11b, 802.11g and 802.11n rates and define how they are used in combination. If 5 GHz is selected as the radio band, select separate 802.11a and 802.11n rates then define how they are used together. When using 802.11n (in either the 2.4 or 5 GHz band), Set a MCS (modulation and coding scheme) in respect to the radio's channel width and guard interval. A MCS defines (based on RF channel conditions) an optimal combination of 8 data rates, bonded channels, multiple spatial streams, different guard intervals and modulation types. Clients can associate as long as they support basic MCS (as well as non-11n basic rates).

    If dedicating the radio to either 2.4 or 5.0 GHz support, a Custom Rates option is available to set a modulation and coding scheme (MCS) in respect to the radio's channel width and guard interval. A MCS defines (based on RF channel conditions) an optimal combination of rates, bonded channels, multiple spatial streams, different guard intervals and modulation types. Clients can associate as long as they support basic MCS (as well as non-11n basic rates). If Basic is selected within the 802.11n Rates field, the MCS0-7 option is auto selected as a Supported rate and that option is grayed out. If Basic is not selected, any combination of MCS0-7, MCS8-15 and MCS16-23 can be supported, including a case where MCS0-7 and MCS16-23 are selected and not MCS8-15. The MCS0-7 and MCS8-15 options are available to each support access point.

  3. Set the following profile WLAN Properties for the selected access point radio:
    Beacon Interval Set the interval between radio beacons in milliseconds (either 50, 100, or 200). A beacon is a packet broadcast by adopted radios to keep the network synchronized. The beacon includes the WLAN service area, radio address, broadcast destination addresses, time stamp and indicators about traffic and delivery such as a DTIM. Increase the DTIM/beacon settings (lengthening the time) to let nodes sleep longer and preserve battery life. Decrease these settings (shortening the time) to support streaming-multicast audio and video applications that are jitter-sensitive. The default value is 100 milliseconds
    Guard Interval Use the drop-down list box to specify a Long orAny guard interval. The guard interval is the space between the packets being transmitted. The guard interval is there to eliminate inter-symbol interference (ISI). ISI occurs when echoes or reflections from one transmission interfere with another. Adding time between transmissions allows echo's and reflections to settle before the next packet is transmitted. A shorter guard interval results in a shorter times which reduces overhead and increases data rates by up to 10%.The default value is Long
    RTS Threshold Specify a Request To Send (RTS) threshold (between 1 to 65,536 bytes) for use by the WLAN's adopted access point radios. RTS is a transmitting station's signal that requests a Clear To Send (CTS) response from a receiving client. This RTS/CTS procedure clears the air where clients are contending for transmission time. Benefits include fewer data collisions and better communication with nodes that are hard to find (or hidden) because of other active nodes in the transmission path.

    Control RTS/CTS by setting an RTS threshold. This setting initiates an RTS/CTS exchange for data frames larger than the threshold, and sends (without RTS/CTS) any data frames smaller than the threshold.

    Consider the trade-offs when setting an appropriate RTS threshold for the WLAN's access point radios. A lower RTS threshold causes more frequent RTS/CTS exchanges. This consumes more bandwidth because of additional latency (RTS/CTS exchanges) before transmissions can commence. A disadvantage is the reduction in data-frame throughput. An advantage is quicker system recovery from electromagnetic interference and data collisions. Environments with more wireless traffic and contention for transmission make the best use of a lower RTS threshold.

    A higher RTS threshold minimizes RTS/CTS exchanges, consuming less bandwidth for data transmissions. A disadvantage is less help to nodes that encounter interference and collisions. An advantage is faster data-frame throughput. Environments with less wireless traffic and contention for transmission make the best use of a higher RTS threshold.

    Probe Response Rate Use the drop-down list box to specify the data transmission rate used for the transmission of probe responses. Options include, highest-basic, lowest-basic and follow-probe-request (default setting)
    Probe Response Retry Select Probe Response Retry to retry probe responses if they are not acknowledged by the target wireless client
    Short Preamble If using an 802.11bg radio, select this checkbox for the radio to transmit using a short preamble. Short preambles improve throughput. However, some devices (SpectraLink or Polycomm phones) require long preambles
    DTIM Interval BSSID

    Set a DTIM Interval to specify a period for Delivery Traffic Indication Messages (DTIM). A DTIM is periodically included in a beacon frame transmitted from adopted radios. The DTIM period determines how often the beacon contains a DTIM, for example, 1 DTIM for every 10 beacons. The DTIM indicates broadcast and multicast frames (buffered at the access point) are soon to arrive. These are simple data frames that require no acknowledgment, so nodes sometimes miss them. Increase the DTIM/ beacon settings (lengthening the time) to let nodes sleep longer and preserve their battery life. Decrease these settings (shortening the time) to support streaming multicast audio and video applications that are jitter-sensitive

  4. Set the following WLAN/BSS MAPPINGS configuration:

    Select Add to create a new WLAN/BSS Mapping for the selected radio.

    BSSID The BSSID is automatically assigned to the radio
    Wireless Select a WLAN from the drop-down list box
  5. Set the following MCX configuration:

    Select Add to create new Mesh Mapping setting for the selected radio.

    BSSID The BSSID is automatically assigned when creating a new MCX mesh mapping
    Meshpoint Select a meshpoint from the drop-down list box
  6. Set the following Antenna configuration:
    Gain Set the antenna between 0.0 to 14.5 dBi. The access point's Power Management Antenna Configuration File (PMACF) automatically configures the access point's radio transmit power based on the antenna type, its antenna gain (provided here) and the deployed country's regulatory domain restrictions. Once provided, the access point calculates the power range. Antenna gain relates the intensity of an antenna in a given direction to the intensity that would be produced ideally by an antenna that radiates equally in all directions (isotropically), and has no losses. Although the gain of an antenna is directly related to its directivity, its gain is a measure that takes into account the efficiency of the antenna as well as its directional capabilities. Only a professional installer must set the antenna gain. The default value is 0
    Mode Set the number of transmit and receive antennas on the access point. 1×1 is used for transmissions over just the single "A" antenna, 1×3 is used for transmissions over the "A" antenna and all three antennas for receiving. 2×2 is used for transmissions and receipts over two antennas for dual antenna models. 3×3×3 is used for transmissions and receipts over three antennas models. The default setting is dynamic based on the access point model deployed and its transmit power settings
    Diversity Select to activate antenna diversity on supported antennas. Antenna diversity uses two or more antennas to increase signal quality and strength
  7. Set the following Aggregation properties:
    A-MSDU Modes Use the drop-down list box to define the A-MSDU mode supported. Options include:
    • ux-rx
    • tx-rx
    A-MPDU Modes Use the drop-down list box to define the A-MPDU mode supported. Options include Transmit Only, Receive Only, Transmit and Receive and None. The default value is Transmit and Receive. Using the default value, long frames can be both sent and received (up to 64 KB). When enabled, define either a transmit or receive limit or both
    Receive A-MPDU Frame Size Limit If the A-MPDU mode is set to Receive Only or Transmit and Receive, use this option to define an advertised maximum limit for received A-MPDU aggregated frame size. The options include:
    • 8191 - Advertises the maximum received frame size limit as 8191 bytes.
    • 16383 - Advertises the maximum received frame size limit as 16383 bytes.
    • 32767 - Advertises the maximum received frame size limit as 32767 bytes.
    • 65535 - Advertises the maximum received frame size limit as 65535 bytes.
    • 128000 - Advertises the maximum received frame size limit as 128000 bytes.
    • 256000 - Advertises the maximum received frame size limit as 256000 bytes.
    • 512000 - Advertises the maximum received frame size limit as 512000 bytes.
    • 1024000 - Advertises the maximum received frame size limit as 1024000 bytes.
    • default - This option auto configures the maximum received frame size based on the platform and radio type. This is the default setting.
    Minimum Gap Between A-MPDU Frames Use the drop-down list box to define, in microseconds, the minimum gap between consecutive A-MPDU frames. The options include:
    • 0 – Configures the minimum gap as 0 microseconds
    • 1 – Configures the minimum gap as 1 microseconds
    • 2 – Configures the minimum gap as 2 microseconds
    • 4 – Configures the minimum gap as 4 microseconds
    • 8 – Configures the minimum gap as 8 microseconds
    • 16 – Configures the minimum gap as 16 microseconds
    • auto – Auto configures the minimum gap depending on the platform and radio type (default setting)
    Transmit A-MPDU Frame Size Limit If the A-MPDU mode is set to Transmit Only or Transmit and Receive, use the spinner control to set limit on transmitted A-MPDU aggregated frame size.

    The range depends on the AP type and the radio selected.

    For 802.11ac capable APs, the range is as follows:
    • 2000 - 65,535 bytes - For radio 1, the range is 2000 - 65,535 bytes. The default value is 65,535 bytes.
      Note: The WiNG AP7662 and AP7632 access points are an exception to the above rule. For the AP7662 and AP7632 access point models, the radio 1 range is 2000 - 1,024,000 bytes. And the default value is 1,024,000 bytes.
    • 2000 - 1,024,000 bytes - For radio 2, the range is 2000 - 1,024,000 bytes. The default value is 1,024,000 bytes.
  8. Set the following Scanning parameters:
    Enable Select Enable to scan across all channels using this radio. Channel scans use access point resources and can be time consuming, so only enable when your sure the radio can afford the bandwidth be directed towards to the channel scan and does not negatively impact client support.
    2.4 GHz Channels Define a list of channels for off channel scans using the 2.4 GHz access point radio. Restricting off channel scans to specific channels frees bandwidth otherwise utilized for scanning across all the channels in the 2.4 GHz radio band.
    5 GHz Channels Define a list of channels for off channel scans using the 5 GHz access point radio. Restricting off channel scans to specific channels frees bandwidth otherwise utilized for scanning across all the channels in the 5 GHz radio band.
    Max Multicast Set the maximum number from 0 to 100 of multicast or broadcast messages used to perform off channel scanning. The default setting is four
    Scan Interval Set the interval from 2 to 100 dtims off channel scans occur. The default setting is 20 dtims
    Sniffer Redirect Host Specify the IP address of the host to which captured off channel scan packets are redirected.
  9. Set the following Aeroscout and Ekahau parameters:
    Forwarding Host Specify the Aeroscout engine‘s IP address. When specified, the AP forwards Aeroscout beacons directly to the Aeroscout locationing engine without proxying through the controller or RF Domain manager
    Forwarding Port Set the port on which the Aeroscout or Ekahau engine is reachable. The range is between 0 to 65,535
    MAC Address to be Forwarded Specify the MAC address
  10. Select Save to update the radio interface changes.